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Abstract
We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to
approximate Turing kernelization. An α-approximate Turing kernel for a parameterized optimization
problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-
approximate solutions in O(1) time, obtains an α · c-approximate solution to the considered problem,
using calls to the oracle of size at most f(k) for some function f that only depends on the parameter.

Using this definition, we show that Independent Set parameterized by treewidth ` has a (1+ε)-
approximate Turing kernel with O( `2

ε
) vertices, answering an open question posed by Lokshtanov et

al. [STOC 2017]. Furthermore, we give (1 + ε)-approximate Turing kernels for the following graph
problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint
Triangle Packing and Connected Vertex Cover.

We generalize the result for Independent Set and Vertex Cover, by showing that all graph
problems that we will call friendly admit (1 + ε)-approximate Turing kernels of polynomial size
when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-
Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set and Edge
Dominating Set.
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1 Introduction

Many important computational problems are NP-hard and, thus, they do not have efficient
algorithms unless P = NP. At the same time, it is well known that efficient preprocessing can
greatly speed up (exponential-time) algorithms for solving NP-hard problems. The notion of
a kernelization from parameterized complexity has allowed a rigorous and systematic study
of this important paradigm. The central idea is to relate the effectiveness of preprocessing to
the structure of the input instances, as quantified by suitable parameters.

A parameterized problem consists of any (classical) problem together with a choice of one
or more parameters; we use (x, k) to denote an instance with input data x and parameter k.
A kernelization is an efficient algorithm that on input of (x, k) returns an equivalent instance
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(x′, k′) of size upper bounded by f(k), where f is a computable function. For a polynomial
kernelization we require that the size bound f(k) is polynomially bounded in k. The study of
which parameterized problems admit (polynomial) kernelizations has turned into a very active
research area within parameterized complexity (see, e.g., [1, 5, 7, 8, 16, 23, 27, 28, 29, 31, 35]
and the recent book [17]). An important catalyst for this development lies in the ability
to prove lower bounds for kernelizations, e.g., to conditionally rule out polynomial kernels
for a problem, which was initiated through work of Bodlaender et al. [4] and Fortnow and
Santhanam [18].

Unfortunately, the lower bound tools have also revealed that many fundamental para-
meterized problems do not admit polynomial kernelizations (unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses). These include a variety of problems like Connected
Vertex Cover [12], Disjoint Cycle Packing [6], Multicut [11], and k-Path [4] para-
meterized by solution size, but also essentially any NP-hard problem parameterized by width
parameters such as treewidth. This has motivated the study of relaxed forms of kernelization,
notably Turing kernelization [3] and lossy (or approximate) kernelization [30].

Given an input (x, k), a Turing kernelization may create |x|O(1) many instances of size at
most f(k) each, and the answer for (x, k) may depend on solutions for all those instances.
This is best formalized as an efficient algorithm that solves (x, k) while being allowed to
ask questions of size at most f(k) to an oracle. A priori, this is much more powerful than
regular kernelization, which creates only a single output instance. Nevertheless, there are
only few polynomial Turing kernelizations known for problems without (regular) polynomial
kernelization (e.g., [3, 26, 25, 34]). Moreover, a hardness-based approach of Hermelin et
al. [22] gives evidence that many problems are unlikely to admit polynomial Turing kernels.

More recently, Lokshtanov et al. [30] proposed a framework dedicated to the study of
lossy kernelization. This relaxes the task of the kernelization by no longer requiring that
an optimal solution to the output (x′, k′) yields an optimal solution for (x, k). Instead, for
an α-approximate kernelization any c-approximate solution to (x′, k′) can be lifted to an
α · c-approximate solution for (x, k). Amongst others, they show that Connected Vertex
Cover and Disjoint Cycle Packing admit approximate kernelizations. In contrast, they
were able to show, e.g., that k-Path has no α-approximate kernelization for any α ≥ 1
(unless NP ⊆ coNP/poly). Subsequent works have shown approximate kernelizations for other
problems [13, 14, 32], in particular, further problems with connectivity constraints, which
are often an obstruction for the existence of polynomial kernelizations.

Lokshtanov et al. [30] ask whether Independent Set parameterized by treewidth admits
a polynomial-size approximate Turing kernelization with constant approximation ratio. In
the present work, we answer this question affirmatively and in fact provide an efficient
polynomial size approximate Turing kernelization scheme (EPSATKS). Moreover, extending
the ideas for Independent Set, we provide similar results for a variety of other problems.

Our results. We prove that there is an EPSATKS for a wide variety of graph problems when
parameterized by treewidth. The simplest problems we consider are the Vertex Cover and
Independent Set problem. Observe that both problems parameterized by treewidth can
be shown to be MK[2]-hard, by a simple reduction from CNF-Sat with unbounded clause
size.1 As such, for both problems we indeed do not expect polynomial Turing kernels [22].
We show that Vertex Cover has a (1 + ε)-approximate Turing kernel with O( `ε ) vertices,
and Independent Set has a kernel with O( `

2

ε ) vertices.

1 A variant of the well-known NP-hardness proof of Independent Set (or Vertex Cover) suffices,
where we add two vertices vx and vx̄ for each variable x and connect them. Add a clique for each clause,
that has a vertex u` for each literal ` in the clause. Connect u` to vx if ` = ¬x, connect u` to vx̄ if
` = x. Observe that the treewidth is bounded by twice the number of variables.
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Both approximate Turing kernels follow a similar strategy, based on using separators
(originating from the tree decomposition) that separate a piece from the rest of the graph,
such that the solution size in this piece is appropriately bounded. For this reason, we
formulate a set of conditions on a graph problem and we call graph problems that satisfy
these conditions friendly. We then show that all friendly graph optimization problems have
polynomial-size (1 + ε)-approximate Turing kernels for all ε > 0, when parameterized by
treewidth. Precise bounds on the size of the obtained approximate Turing kernels depend on
properties of the considered problem, such as the smallest-known (approximate) kernel when
parameterized by solution size plus treewidth. In particular, applying the general result for
Vertex Cover indeed shows that it has an EPSATKS of size O( `ε ). Using this general
technique, we obtain approximate Turing kernels for Clique Cover, Vertex-Disjoint
H-Packing for connected graphs H, Feedback Vertex Set, and Edge Dominating
Set.

Finally, we prove that Edge Clique Cover and Edge-Disjoint Triangle Packing
have an EPSATKS and show that Connected Vertex Cover has a polynomial-size
(1 + ε)-approximate Turing kernel. These problems do not satisfy our definition of a friendly
problem and require a more problem-specific approach. In particular, for Connected
Vertex Cover we will need to consider subconnected tree decompositions [19] and carefully
bound the size difference between locally optimal connected vertex covers, and intersections
of (global) connected vertex covers with parts of the graph.

Overview. We start in Section 3 by illustrating the general technique using the Vertex
Cover problem as an example. We continue by giving the approximate Turing kernels
for Edge Clique Cover, Connected Vertex Cover, and Edge-Disjoint Triangle
Packing. In Section 4 we state and prove our general theorem and then show that it
allows us to give approximate Turing kernels for a number of different graph problems. For
statements marked with a F, the (full) proof can be found in the full version of the paper [24].

2 Preliminaries

We use N to denote the non-negative integers. Let [n] be defined as the set containing the
integers 1 to n. We assume that all graphs are simple and undirected, unless mentioned
otherwise. A graph G has vertex set V (G) and edge set E(G). For v ∈ V (G) we let dG(v)
denote the degree of v. For X ⊆ V (G), we use G[X] to denote the graph induced by vertex
set X, we use G−X to denote G[V (G) \X]. For F ⊆ E(G), we use G \ F to denote the
graph resulting from deleting all edges in F from G.

We say that a set X ⊆ V (G) separates vertex sets A ⊆ V (G) and B ⊆ V (G) if every
path from some vertex in A to some vertex in B contains a vertex in X.

Treewidth. Recall the definition of treewidth.

I Definition 1 ([10]). A tree decomposition of a graph G is a tuple T = (T, {Xt}t∈V (T )),
where T is a tree in which each node t ∈ V (T ) has an assigned set of vertices Xt ⊆ V (G),
also referred to as the bag of node t, such that the following three conditions hold:⋃

t∈V (T ) Xt = V (G), and
for every edge {u, v} ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ Xt, and
for all v ∈ V (G) the set Tv := {t ∈ V (T ) | v ∈ Xt} induces a connected subtree of T .

The width of a tree decomposition of G is the size of its largest bag minus one. The treewidth
of G is the minimum width of any tree decomposition of G.

ESA 2020
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In the remainder of the paper, we will always assume that a tree decomposition is given
on input, as treewidth is NP-hard to compute. If it is not, we may use the result below
to obtain an approximation of the treewidth and a corresponding tree decomposition in
polynomial time. Doing so will weaken any given size bounds in the paper, as it is not a
constant-factor approximation. The theorem below is part of [15, Theorem 6.4].

I Theorem 2 ([15, Theorem 6.4]). There exists a polynomial time algorithm that finds a tree
decomposition of width at most O(

√
log tw(G) · tw(G)) for a general graph G.

Let T = (T, {Xt}t∈V (T )) be a tree decomposition. Let t ∈ V (T ), we use Vt to denote the
set of vertices from G that are contained in some bag of a node in the subtree of T that is
rooted at t. It is well-known that for all t ∈ V (T ), the set Xt separates Vt from the rest
of the graph. A rooted tree decomposition with root r is said to be nice if it satisfies the
following properties (cf. [10]).
(i) Xr = ∅ and Xt = ∅ for every leaf t of T .
(ii) Every other node is of one of the following three types:

The node t ∈ V (T ) has exactly two children t1 and t2, and Xt = Xt1 = Xt2 . We
call such a node a join node, or
the node t ∈ V (T ) has exactly one child t1, and there exist v ∈ V (G) such that
Xt = Xt1 ∪ {v} (in this case t is an introduce node) or such that Xt1 = Xt ∪ {v} (in
which case t is a forget node).

One can show that a tree decomposition of a graph G of width ` can be transformed in
polynomial time into a nice tree decomposition of the same width and with O(`|V (G)|)
nodes, see for example [10].

To deal with the Connected Vertex Cover problem we need the tree decomposition
to preserve certain connectivity properties. Let a subconnected tree decomposition [19] be a
tree decomposition where G[Vt] is connected for all t ∈ V (T ). We observe the following.

I Theorem 3 (cf. [19, Theorem 1]). There is an O(n`3)-algorithm that, given a nice tree
decomposition on n nodes of width ` of a connected graph G, returns an O(n · `)-node
subconnected tree decomposition of G, of width at most ` such that each node in T has at
most 2`+ 2 children.

Proof. Without the additional bound on the degrees of nodes in T , the result is immediate
from [19, Theorem 1]. We obtain a subconnected tree decomposition by only executing
Phase 1 of Algorithm make-it-connected in [19]. Is is shown in [19, Claim 1] that this
procedure results in a tree decomposition of width ` that is subconnected. It remains to
analyze the maximum node degree. The only relevant step of the algorithm is the application
of the split operation on nodes t from the original tree. Observe that every node in the
original tree is visited at most once, and newly introduced nodes are never split. If t has
parent s, the split operation only modifies the degree of s, and any newly introduced nodes.
The newly introduced nodes will have degree at most dT (t). In particular, if s had degree
a before the split operation on t, it will have degree a− 1 + p after the split operation,
where p is the number of connected components of G[Vt]. We will show that the number of
connected components of G[Vt] is bounded by |Xt| if G is a connected graph. We do this by
showing that each connected component contains at least one vertex from Xt. Suppose not.
Let C be such a component. But since C ∩Xt = ∅, and Xt is a separator in G, it follows
that there are no connections from C to G[V (G) \ Vt]. If Vt = V (G), then G[Vt] is connected
and we are done, otherwise, vertices in V (G) \ Vt are not connected to C in G, contradicting
that G is connected. Thus, p ≤ |Xt| ≤ `+ 1. Since in a nice tree decomposition every node
has only two children, in the worst case split is applied to both these children. Thus, every
node in T has degree at most 2`+ 2. J
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Approximation, Kernelization, and Turing Kernelization. We recall the framework for
approximate kernelization by Lokshtanov et al. [30] following Fomin et al. [17]. We then
introduce suitable definitions for approximate Turing kernelization.

I Definition 4 ([17]). A parameterized optimization problem Q is a computable function

Q : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem are pairs (I, k) where k is the parameter.
A solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of a solution
s is given by Q(I, k, s). Using this, we may define the optimal value for the problem as

OPTQ(I, k) = min{Q(I, k, s) | s ∈ Σ∗, |s| ≤ |I|+ k},

for minimization problems and as

OPTQ(I, k) = max{Q(I, k, s) | s ∈ Σ∗, |s| ≤ |I|+ k},

for maximization problems.

An optimization problem P : Σ∗ × Σ∗ → R ∪ {±∞} is defined similarly, but without the
parameter. In both cases we will say that s is a solution for instance I, if its value is not ∞
(or −∞, in case of maximization problems).

We say that an algorithm for a (regular) minimization problem P is a c-approximation
algorithm if for all inputs x it returns a solution s such that the value of s is at most
c · OPTP(x). Similarly, for a maximization problem we require that s has value at least
1
cOPTP(x).

When a problem is parameterized by the value of the optimal solution, the definitions
of parameterized optimization problems and lossy kernels will cause problems. As such, we
use the following interpretation [30, p.229]. Given an optimization problem P that we want
to parameterize by a sum of (potentially multiple) parameters, one of which is the solution
value, we define the following corresponding parameterized optimization problem:

P⊥(I, k, s) := min{P(I, s), k + 1}.

In cases where we consider P parameterized by the treewidth of the input graph, we simply
use

P⊥(I, k, s) := P(I, s).

I Definition 5 (α-Approximate kernelization [17]). Let α ≥ 1 be a real number, let g be a
computable function and let Q be a parameterized optimization problem. An α-approximate
kernelization A of size g for Q is a pair of polynomial-time algorithms. The first one is called
the reduction algorithm and computes a map RA : Σ∗ × N → Σ∗ × N. Given as input an
instance (I, k) of Q, the reduction algorithm computes another instance (I ′, k′) = RA(I, k)
such that |I ′|, k′ ≤ g(k).

The second is called the solution-lifting algorithm. This algorithm takes as input an
instance (I, k) ∈ Σ∗ × N of Q, together with (I ′, k′) := RA(I, k) and a solution s′ to (I ′, k′).
In time polynomial in |I|+ |I ′|+ k + k′ + |s|, it outputs a solution s to (I, k) such that if Q
is a minimization problem, then

Q(I, k, s)
OPTQ(I, k) ≤ α ·

Q(I ′, k′, s′)
OPTQ(I ′, k′) .

For maximization problems we require
Q(I, k, s)

OPTQ(I, k) ≥
1
α
· Q(I ′, k′, s′)

OPTQ(I ′, k′) .

ESA 2020
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We say that a problem admits a Polynomial Size Approximate Kernelization Scheme
(PSAKS) [30] if it admits an α-approximate polynomial kernel for all α > 1.

We recall the definition of a Turing kernel, so that we can show how to naturally generalize
the notion of approximate kernelization to Turing kernels.

I Definition 6 (Turing kernelization [17]). Let Q be a parameterized problem and let f : N→ N
be a computable function. A Turing kernelization for Q of size f is an algorithm that decides
whether a given instance (x, k) ∈ Σ∗×N belongs to Q in time polynomial in |x|+k, when given
access to an oracle that decides membership of Q for any instance (x′, k′) with |x′|, k′ ≤ f(k)
in a single step.

In the following definition, we combine the notions of lossy kernelization and Turing
kernelization into one, as follows.

I Definition 7 (Approximate Turing kernelization). Let α ≥ 1 be a real number, let f be a
computable function and let Q be a parameterized optimization problem. An α-approximate
Turing kernel of size f for Q is an algorithm that, when given access to an oracle that
computes a c-approximate solution for instances of Q in a single step, satisfies the following.

It runs in time polynomial in |I|+ k, and
given instance (I, k), outputs a solution s such that Q(I, k, s) ≤ α · c ·OPTQ(I, k) if Q
is a minimization problem and Q(I, k, s) · α · c ≥ OPTQ(I, k) is Q is a minimization
problem, and
it only uses oracle-queries of size bounded by f(k).

Note that, in the definition above, the algorithm does not depend on c, just like in lossy
kernelization. We say that a parameterized optimization problem Q has an EPSATKS
when it has a polynomial-size (1 + ε)-approximate Turing kernel for every ε > 0, of size
f(ε) · poly(k) where f is a function that depends only on ε.

3 Approximate Turing kernels for specific problems

In this section we will give approximate Turing kernels for a number of graph problems
parameterized by treewidth. We start by discussing the Vertex Cover problem, since the
approximate Turing kernels for all other problems will follow the same overall structure.

3.1 Vertex Cover
In this section we discuss an approximate Turing kernel for Vertex Cover parameterized
by treewidth `. The overall idea will be to use the treewidth decomposition of the graph,
and find a subtree rooted at a node t such that G[Vt \Xt] has a large (but not too large)
vertex cover. A vertex cover of the entire graph will then be obtained by taking a vertex
cover of G[Vt \Xt], adding all vertices in Xt, and recursing on the graph that remains after
removing Vt. This produces a correct vertex cover because Xt is a separator in the graph.
Furthermore, taking all of Xt into the vertex cover is not problematic as Xt is ensured to be
comparatively small. To obtain a vertex cover of G[Vt \Xt], we will use the following lemma.

I Lemma 8 (F). Let G be a graph with OPTVC(G) ≤ k. Then there is a polynomial-time
algorithm returning vertex cover of G of size at most c ·OPTVC(G), when given access to
c-approximate oracle that solves vertex cover on graphs with at most O(k) vertices.
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Proof sketch. First apply the LP-based kernel [9] for Vertex Cover parameterized by
solution size to (G, k). This gives an instance G′ with at most 2k vertices. We can then
apply the oracle to obtain a c-approximate vertex cover of G′. We show in the complete
proof that it is straightforward to lift this solution to a c-approximate vertex cover of the
original graph G, concluding the proof. J

Using this, we can now give the (1 + ε)-approximate Turing kernel for Vertex Cover.
While the theorem statement requires ε ≤ 1, this does not really impose a restriction: if ε > 1
one may simply reset it to be 1. It simply shows that the bounds do not continue improving
indefinitely as ε grows larger than 1. Note however that Vertex Cover is 2-approximable
in polynomial time, such that choosing ε larger than one is likely not useful.

I Theorem 9. For every 0 < ε ≤ 1, Vertex Cover parameterized by treewidth ` has a
(1 + ε)-approximate Turing kernel with O( `ε ) vertices.

Proof. Consider Algorithm 1, we use the well-known 2-approximation algorithm for Vertex
Cover. First of all, we show how to do Step 8 of the algorithm efficiently.

Algorithm 1 An approximate Turing kernel for Vertex Cover.

1: procedure ApproxVC(G, T , ε)
2: Turn T into a nice tree decomposition of G
3: Obtain a 2-approximate solution S̃ for VC in G
4: if |S̃| ≤ 8(`+1)

ε then
5: Determine a c-approximate solution S to VC in G using Lemma 8
6: return S

7: else
8: Find t ∈ V (T ) s.t. (`+1)

ε ≤ OPTVC(G[Vt \Xt]) ≤ 8(`+1)
ε

9: Determine a c-approximate solution St to VC in G[Vt \Xt] using Lemma 8
10: G′ ← G− Vt
11: Let T ′ be T after removing the subtree rooted at t and all vertices in Xt

12: S′ ← ApproxVC(G′, T ′, ε)
13: return St ∪Xt ∪ S′
14: end if
15: end procedure

B Claim. There is a polynomial-time algorithm that, given graph G such that OPTVC(G) ≥
(`+1)
ε , with a nice tree decomposition T of width at most `, outputs a node t ∈ V (T ) such

that (`+1)
ε ≤ OPTVC(G[Vt \Xt]) ≤ 8(`+1)

ε .

Proof. Let T be a nice tree decomposition with root r. We start from t := r, maintaining
that OPTVC(G[Vt \Xt]) ≥ `+1

ε . Note that this is initially true since Gr = G.
Check whether the 2-approximation returns a vertex cover of size at most 8(`+1)

ε for
G[Vt \Xt]. If yes, we are done. If not, then OPTVC(G[Vt \Xt]) > 4(`+1)

ε . We show that t
has a child on which we will recurse. We do a case distinction on the type of node of t.

t is a leaf node. In this case, |Vt \ Xt| = 0, contradicting that OPTVC(G[Vt \ Xt]) >
4(`+1)
ε ≥ 0.

t is a forget or introduce node. This implies t has one child t1 and the size of Vt \Xt

and Vt1 \Xt1 differs by at most one. Therefore, OPTVC(G[Vt1 \Xt1 ]) ≥ OPTVC(G[Vt \
Xt])− 1 ≥ OPTVC(G[Vt \Xt])/2.

ESA 2020
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t is a join node with children t1 and t2. Observe that G[Vt \Xt] is the disjoint union
of the graphs G[Vt1 \Xt1 ] and G[Vt2 \Xt2 ] (note Xt = Xt1 = Xt2). As such, for one of
the two children, without loss of generality let this be t1, running the 2-approximation
algorithm for vertex cover returns a value of at least OPTVC(G[Vt \Xt])/2, meaning that
OPTVC(G[Vt1 \Xt1 ]) ≥ OPTVC(G[Vt \Xt])/4.

Thus, there is a child t1 such that OPTVC(G[Vt1 \ Xt1 ]) ≥ OPTVC(G[Vt \ Xt])/4 ≥ `+1
ε .

Continue with t := t1. C

We will now show the correctness of the algorithm by induction on |V (G)|. Let G be a
graph with nice tree decomposition T . If the algorithm returns a Vertex Cover in Step 5,
the result is immediate. If not, then it follows that the algorithm returns in Step 13, and that
OPTVC(G) > 4(`+1)

ε . The algorithm then returns a vertex cover St for G[Vt \Xt] together
with Xt and a vertex cover S′ = ApproxVC(G′, T ′, ε) in the remainder of the graph. It is
easy to see that the returned set is indeed a vertex cover of the graph. Furthermore, one
may verify that the oracle is only used for graphs with at most O( `ε ) vertices. It remains to
verify the approximation ratio. Recall that G′ := G− Vt. Then

|St|+ |S′|+ |Xt| ≤ c ·OPTVC(G[Vt \Xt]) + c · (1 + ε) ·OPTVC(G′) + `+ 1
≤ c · (1 + ε) ·OPTVC(G[Vt \Xt]) + c · (1 + ε) ·OPTVC(G′)
≤ c · (1 + ε) ·OPTVC(G). J

3.2 Edge Clique Cover
In this section, we obtain an approximate Turing kernel for Edge Clique Cover, which is
defined as follows.

Edge Clique Cover (ECC) Parameter: `
Input: A graph G with tree decomposition T of width `.
Output: The minimum value for k ∈ N such that there exists a family S of subsets of
V (G) such that |S| ≤ k, G[C] is a clique for all C ∈ S, and for all {u, v} ∈ E(G) there
exists C ∈ S such that u, v ∈ S?

To obtain an approximate Turing kernel, we will separate suitably-sized subtrees from the
graph using the tree decomposition, as we did in the approximate Turing kernel for Vertex
Cover. To show that this results in the desired approximation bound, we will need the
following lemma. It basically shows that if we find a node t of the tree decomposition such
that Xt is “small” compared to OPT(Vt), we will be able to combine an edge clique cover in
G[Vt] with one in G− (Vt \Xt) to obtain a clique cover of the entire graph that is not too
far from optimal.

I Lemma 10. Let G be a graph, let X1, X2 ⊆ V (G) such that X1 ∪ X2 = V (G) and
X = X1 ∩X2 separates X1 from X2 in G. Then

OPTECC(G) ≥ OPTECC(G[X1]) + OPTECC(G[X2])−
(
|X|
2

)
.

Proof. Let S be an edge clique cover of G. We show how to obtain clique covers S1 and S2
for G[X1] and G[X2] such that |S1|+ |S2| ≤ |S|+

(|X|
2
)
. First define

S′1 := {C | C ∩ (X1 \X) 6= ∅, C ∈ S} ∪ {C | C ⊆ X,C ∈ S},
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similarly, define

S′2 := {C | C ∩ (X2 \X) 6= ∅, C ∈ S}.

For j ∈ [2], define Sj := S′j ∪S′′j , where S′′j := {{u, v} ∈ E(G[X]) | {u, v} not covered by S′j}.
We start by showing that Sj is an edge clique cover of G[Xj ] for i ∈ [2]. First of all, we

will verify that C ⊆ Xj and that C forms a clique in G[Xj ] for all C ∈ Sj . For C ∈ S′′j this
is trivial, for C ∈ S′j , observe that C is a clique in G and any clique in G containing a vertex
from Xj \X cannot contain a vertex from V (G) \Xj , since X is a separator. Thus C ⊆ Xj .
The fact that C is a clique in G[Xj ] is immediate from C being a clique in G.

It remains to show that Sj covers all edges in G[Xj ]. Let {u, v} ∈ E(G[Xj ]). If u, v ∈ X,
then the edge is covered by definition. Without loss of generality, suppose u ∈ Xj \ X.
Let C ∈ S be a clique that covered edge {u, v}. Then clearly u ∈ C ∩ (Xj \X) and thus
C ∩ (Xj \X) 6= ∅, implying C ∈ Sj . Thus, the edge {u, v} is indeed covered by Sj .

It remains to show that |S1|+ |S2| ≤ |S|+
(|X|

2
)
. Start by observing that |S′1|+ |S′2| ≤ |S|,

since a clique cannot contain both a vertex from X1 \ X and X2 \ X. Since every edge
{u, v} ∈ E(G[X]) is covered by S, it is easy to observe from the definition that {u, v} is
covered by S′1 or S′2. As such, S′′1 ∩ S′′2 = ∅. Since G[X] has at most

(|X|
2
)
edges, it follows

that |S′′1 |+ |S′′2 | ≤
(|X|

2
)
and indeed |S1|+ |S2| ≤ |S′1|+ |S′′1 |+ |S′2|+ |S′′2 | ≤ |S|+

(|X|
2
)
. J

Before giving the approximate Turing kernel, we show that there exists a node t in the
tree decomposition such that the size of the subtree rooted at t falls within certain size
bounds. We use this to split off subtrees, similar to the strategy we used for Vertex Cover
earlier.

I Lemma 11 (F). There is a polynomial-time algorithm that, given a graph G with |V (G)| ≥
2 1+ε

ε (`+ 1)4, a nice tree decomposition T of width `, and ε > 0, outputs a node t ∈ V (T )
such that 2 1+ε

ε (`+ 1)4 ≤ |Vt \Xt| ≤ 4 1+ε
ε (`+ 1)4.

Using the lemma above, we can now give the approximate Turing kernel for Edge Clique
Cover.

I Theorem 12. For every 0 < ε ≤ 1, Edge Clique Cover parameterized by treewidth `
has a (1 + ε)-approximate Turing kernel with O( `

4

ε ) vertices.

Proof. Consider Algorithm 2, we show that it is a (1+ε)-approximate Turing kernel for ECC.
Observe that Step 2 can be done efficiently while maintaining a valid tree decomposition, as
one may simply restrict the bags of the decomposition to the relevant connected component
of G. It is easy to verify that the procedure runs in polynomial time, using that |Vt \Xt| is
always non-empty and thus the recursive call is on a strictly smaller graph. Finally, we can
verify the size-bound, as the oracle is only applied to G if |V (G)| ≤ O( `

4

ε ) or to G[Vt] when
|Vt \Xt| ≤ O( `

4

ε ), implying that |Vt| ≤ |Vt \Xt|+ `+ 1 = O( `
4

ε ).
We continue by showing that Algorithm 2 returns an edge clique cover of G. If the

algorithm returns in Step 6, this is immediate. Otherwise, observe that since Xt separates
Vt and V (G′) in G, it follows that any edge in G is in E(G[Vt]) or in E(G′). Thus, such an
edge is covered by St or S′, implying that S = St ∪ S′ is an edge clique cover of G. We now
bound |St|+ |S′|, to show that the algorithm indeed approximates the optimum ECC.

|St|+ |S′| ≤ c ·OPTECC(G[Vt]) + |S′|
= c · (1 + ε) ·OPTECC(G[Vt])− c · ε ·OPTECC(G[Vt]) + |S′|
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Algorithm 2 An approximate Turing Kernel for Edge Clique Cover.

1: procedure ApproxECC(G, T , ε)
2: If G is not connected, split G into its connected components and treat them separately.
3: Turn T into a nice tree decomposition.
4: if |V (G)| ≤ 2(1+ε)

ε (`+ 1)4 then
5: Apply the c-approximate oracle to obtain an ECC S of G
6: return S

7: else
8: Find t ∈ V (T ) s.t. 2 (1+ε)

ε (`+ 1)4 ≤ |Vt \Xt| ≤ 4(1+ε)
ε (`+ 1)4 (by Lemma 11)

9: Determine a c-approximate solution St to ECC in G[Vt] using the oracle
10: G′ ← G− (Vt \Xt)
11: Let T ′ be T after removing the subtree rooted at t except for t
12: S′ ← ApproxECC(G′, T ′, ε)
13: return St ∪ S′
14: end if
15: end procedure

Observe that every clique covers at most
(
`+1

2
)
edges, since it has at most `+ 1 vertices, since

the treewidth of G is bounded by `. Thus OPTECC(G[Vt]) ≥ |E(G[Vt])|/
(
`+1

2
)
.

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · ε · |E(G[Vt])|/
(
`+ 1

2

)
+ |S′|

Observe that Vt \Xt cannot contain vertices that are isolated in G[Vt], since G is connected
and Xt separates Vt from the remainder of G. Thus, |E(G[Vt])| ≥ |Vt \Xt|/2.

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · ε ·
|Vt \Xt|
2(`+ 1)2 + |S′|

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · (1 + ε) · (`+ 1)2 + |S′|

using `+ 1 ≥ |Xt|

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · (1 + ε) ·
(
|Xt|

2

)
+ |S′|

≤ c · (1 + ε) · (OPTECC(G[Vt]) + OPTECC(G′)−
(
|Xt|

2

)
)

By Lemma 10

≤ c · (1 + ε) ·OPTECC(G). J

3.3 Edge-Disjoint Triangle Packing
In this section we give an approximate Turing kernel for the Edge-Disjoint Triangle
Packing problem, defined as follows.

Edge-Disjoint Triangle Packing (ETP) Parameter: `
Input: A graph G with tree decomposition T of width `.
Output: The maximum value for k ∈ N such that there exists a family S of size-3
subsets of V (G) such that |S| ≥ k, G[X] is a triangle for all X ∈ S, and X and Y are
edge-disjoint for all X,Y ∈ S?
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Observe that the problem has a 3-approximation by taking any maximal edge-disjoint triangle
packing S, which can be greedily constructed. This packing then uses 3|S| edges. If there is
a solution S′ with |S′| > 3|S|, then there is a triangle in S′ that contains no edge covered by
S, contradicting that S is maximal. We now give the approximate Turing kernel.

I Theorem 13. For every 0 ≤ ε ≤ 1, Edge-Disjoint Triangle Packing parameterized
by treewidth `, has a (1 + ε)-approximate Turing kernel with O( `

2

ε ) vertices.

Proof. We will use the following claim.

B Claim 14 (F). Let G be a graph with OPTETP(G) ≤ k. There is a polynomial-time
algorithm that when given access to a c-approximate oracle, outputs a c-approximate solution
for G using calls to the oracle with at most O(k) vertices.

We now describe the algorithm. Start by computing a 3-approximate solution S̃ to Edge-
Disjoint Triangle Packing in G. If |S̃| ≤ 18 (`+1)2

ε , we obtain an approximate solution
to triangle packing using Claim 14.

Otherwise, for t ∈ V (T ) define Gt as G[Vt] \ E(G[Xt]), i.e., the graph G[Vt] from which
the edges between vertices in Xt have been removed. We show how to find t ∈ T such that

(`+ 1)2

ε
≤ OPTETP(Gt) ≤ 18(`+ 1)2

ε
,

together with an approximate solution St in Gt. Start with t := r, observe that initially
OPTETP(Gt) > 18(`+1)2

ε since Gr = G and OPTETP(Gt) ≥ |S̃|. So suppose we are at some
node t with OPTETP(Gt) ≥ (`+1)2

ε . Compute a 3-approximate solution in Gt. If this solution
has value at most 6(`+1)2

ε , we obtain an approximate solution St to triangle packing in Gt
using Claim 14. Otherwise, we will recurse on a child t1 of t for which OPTETP(Gt1) ≥ (`+1)2

ε ,
we show how to find such a child by doing a case distinction on the type of node of t.

t is a leaf node. This is a contradiction with the assumption that OPTETP(Gt) > 6 (`+1)2

ε ,
since Gt is empty.
t has exactly one child t1 and Xt = Xt1∪{v} for some v ∈ V (G). This means in particular
that Gt1 = Gt − {v}. Furthermore, we can show that v is isolated in Gt. After all, there
are no edges between vertices in Xt and v by definition of Gt. Furthermore, there are
no edges between v and vertices not in Xt, by correctness of the tree decomposition.
Therefore, trivially, OPTETP(Gt) = OPTETP(Gt1) and we continue with t← t1.
t has exactly one child t1 and Xt = Xt1 \ {v} for some v ∈ V (G). In this case Gt1 can be
obtained byGt by removing all edges between vertices in v and vertices inXt. This removes
at most (`+1) edges from the graph, and thus OPTETP(Gt1) ≥ OPTETP(Gt)−` ≥ (`+1)2

ε ,
and we continue with t← t1.
t is a join node with children t1 and t2. Observe that Xt separates Gt and that
OPTETP(Gt) = OPTETP(Gt1) + OPTETP(Gt2). As such, there is a child of Gt, w.l.o.g.
let this be t1, such that OPTETP(Gt1) ≥ OPTETP(Gt)/2 ≥ 3(`+1)2

ε . Using the 3-
approximation on both children, find a child where the returned solution size is at least
3(`+1)2

3ε = (`+1)2

ε . Continue with this child.
Using t and the obtained solution St in Gt, we now do the following. Let G′ := G− (Vt \Xt).
Obtain a solution S′ in G′ using the algorithm above on the smaller graph G′. Output
S := St ∪ S′. Since G′ and Gt are edge-disjoint subgraphs of G, it is easy to observe that S
is an edge-disjoint triangle packing in G.
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It remains to show that S has the desired size. Observe that the size of an edge-disjoint
triangle packing in G can be bounded by considering the triangles whose edges are in Gt,
those whose edges are in G′, and those with at least one edge with both endpoints in Xt.
Using that there are at most

(
Xt
2
)
edges between vertices in Xt, we get

OPTETP(G) ≤ OPTETP(Gt) + OPTETP(G′) +
(
Xt

2

)
≤ (1 + ε)OPTETP(Gt) + OPTETP(G′)
≤ c · (1 + ε)|St|+ c · (1 + ε)|S′|
≤ c · (1 + ε)|S|. J

The strategy used to obtain a kernel for Edge-Disjoint Triangle Packing can be
generalized to packing larger cliques, as long as these problems have polynomial kernels
when parameterized by solution size. Generalizing to the more general question of packing
edge-disjoint copies of some other graph H may be more difficult. In this case, there can be
copies of H that have vertices in both sides of the graph after removing the edges within a
separator, and one needs to be careful to not discard too many of these.

3.4 Connected Vertex Cover
The Connected Vertex Cover (CVC) problem asks, given a graph G and tree decom-
position T , for the minimum size of a vertex cover S in G such that G[S] is connected. It is
known that CVC has a (1 + ε)-approximate kernel of polynomial size [30].

I Theorem 15 ([30]). Connected Vertex Cover parameterized by solution size k admits
a strict time efficient PSAKS with O(kd

α
α−1 e + k2) vertices.

To obtain an approximate Turing kernel, we will use a similar strategy to the Turing
kernel for Vertex Cover described in Theorem 9. However, the connectivity constraint
makes this kernel somewhat more complicated. We deal with this by changing the procedure
in two places. First of all, we will use a subconnected tree decomposition, to ensure that
G[Vt] is connected for any node t. We will then again find a subtree with a suitably-sized
solution. In this case however, we will contract the separator between the subtree and the
rest of the graph to a single vertex. The next lemma shows that this does not reduce the
connected vertex cover size in the subtree by more than twice the size of the separator.

I Lemma 16. Let G be a connected graph and let X ⊆ V (G). Given a connected vertex
cover S of GX where GX is obtained from X by identifying all vertices from X into a single
vertex z, there is a polynomial-time algorithm that finds a connected vertex cover S′ of size
at most |S|+ 2|X| of G.

Proof. Let S be a connected vertex cover of GX . Let S′′ := S ∪X \ {z}. Observe that S′′
is a vertex cover of G, such that every connected component of G[S′′] contains at least one
vertex from X; thus, there are at most |X| connected components. If G[S′′] is connected, we
are done. Otherwise, we show that there is a single vertex v ∈ V (G) such that G[S′′ ∪ {v}]
has strictly fewer connected components than G[S′′]. It is then straightforward to obtain S′
by repeatedly adding such a vertex, until G[S′′] is connected. For any vertex u ∈ S′′ define
Cu as the connected component of vertex u in G[S′′].

Let x and x′ be in two distinct components in G[S′′], consider the shortest path P from
x to x′ in G. Refer to Figure 1 for a sketch of the situation. By this definition, Cx 6= Cx′ .
Let y be the first vertex in P such that y ∈ S′′ but y /∈ Cx, let y′ be the vertex on P before
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Xx

x′y
y′′ y′

Figure 1 A graph with a vertex cover S′′ (indicated in white) that is connected when all vertices
in X are identified into a single vertex. Shown are x, x′,y,y′,y′′, and P (indicated in bold) as used
in the proof of Lemma 16.

y, observe that y′ /∈ S′′ since otherwise y′ ∈ S′′ and y′ /∈ Cx which is a contradiction with
the fact that y is the first such vertex in P . Let y′′ be the vertex on the path before y′, such
that P = (x, . . . , y′′, y′, y, . . . , x′), where possibly x = y′′ or y = x′. Observe that y′′ ∈ S′′
as otherwise edge {y′′, y′} is not covered, and therefore y′′ ∈ Cx since y is the first vertex
on P that is in S′′ but not in Cx. Therefore, adding vertex y′ to S′′ will merge connected
components Cx and Cy, such that the number of connected components in G[S′′ ∪ {y′}] is
strictly smaller than the number of connected components in G[S′′]. In total, we add less
than |X| vertices to S′′ obtain a connected vertex cover S′ and thus |S′| ≤ |S|+ |X|. J

We now prove the main result of this section.

I Theorem 17. For every 0 < ε ≤ 1, Connected Vertex Cover parameterized by

treewidth ` has a (1 + ε)-approximate Turing Kernel with O(
(
`2

ε

)⌈ 3+ε
ε

⌉
) vertices.

Proof. We will use the PSAKS for Connected Vertex Cover from Theorem 15. Recall
that such a PSAKS consists of a reduction algorithm RA together with a solution lifting
algorithm SA. We will use the following claim.

B Claim 18. Given 0 < δ ≤ 1 and a connected graph G with tree decomposition of width
`, there is a polynomial-time algorithm to determine a d-approximate solution for CVC or
correctly decide that OPTCVC(G) > 100`2

δ , when given access to a c-approximate CVC-oracle

that allows calls using graphs with at most O(
(
`2

δ

)⌈ 1+δ
δ

⌉
) vertices, where d = min(c ·(1+δ), 2).

Proof. Using the fact that CVC is 2-approximable in polynomial time [33], obtain a 2-
approximate solution S̃ in G. If |S̃| > 200`2/δ, return no and halt. Otherwise, continue

by running RA on (G, |S̃|) to obtain (G′, k′). Observe that G′ has at most O(
(
`2

δ

)⌈ 1+δ
δ

⌉
)

many vertices. Apply the c-approximate oracle on G′ to obtain CVC S′ in G′. Obtain an
approximate solution S in G by using the solution lifting algorithm on G′ and S′. Output the
smallest solution of S and S̃, let this be Ŝ. We show that this has the desired approximation
factor, which requires an argument since the PSAKS works for CVC⊥ instead of CVC (recall
CVC⊥(G, k, S) = min{k + 1,CVC(G,S)}). Observe that |Ŝ| ≤ |S̃|, by definition. Therefore,
|Ŝ| ≤ CVC⊥(G, |S̃|, S). Thus

|Ŝ|
OPTCVC(G) ≤

CVC⊥(G, |S̃|, S)
OPTCVC(G) ≤ CVC⊥(G, |S̃|, S)

OPTCVC⊥(G, |S̃|)
.

By correctness of the solution lifting algorithm, we get

CVC⊥(G, |S̃|, S)
OPTCVC⊥(G, |S̃|)

≤ (1 + δ) CVC
⊥(G′, k′, S′)

OPTCVC⊥(G′, k′) ≤ (1 + δ) |S′|
OPTCVC(G′) ≤ c · (1 + δ),

by correctness of the oracle. C
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Algorithm. The algorithm now proceeds as follows. Our goal is to find a subtree of T for
which on the one hand, the local optimum CVC is small enough to find an approximate
solution using Claim 18, but also large enough to be able to (among other things) add the
entire set Xt to the solution, without introducing a too large error. Let δ := ε/3.

For any vertex t ∈ V (T ), let Gt be the graph given by G[Vt] after identifying all vertices
from Xt into a single vertex zt. Apply Claim 18 to G, if it returns an approximate connected
vertex cover of G, we are done. Otherwise, OPTCVC(G) > 100`2

δ . We now aim to find a
vertex t such that Claim 18 returns an approximate solution in Gt of size at least 10`

δ .

B Claim 19. There is a polynomial-time algorithm that, given G with tree decomposition
T of width ` such that OPTCVC(G) > 100`2

δ , finds t ∈ V (T ) for which Claim 18 returns an
approximate solution St with |St| ≥ 10`

δ , using calls to a c-approximate oracle of size at most

O(
(
`2

δ

)⌈ 1+δ
δ

⌉
).

Proof. Start with t := r, note that since OPTCVC(G) > 100`2

δ and Gr = G, we have that
OPTCVC(Gr) > 100`2

δ , where r is the root of T . We search through the graph maintaining
OPTCVC(Gt) > 100`2

δ . Let t1, . . . , tm be the children of t, recall that we may assume
m ≤ 2`+ 2 by Theorem 3. For each ti, apply Claim 18. Consider the following possibilities.

There exists i ∈ [m] such that the claim determines OPTCVC(Gti) > 100`2

δ , in this case,
recurse with this ti.
There exists i ∈ [m] such that the claim returns a min{2, (1 + δ) · c}-approximate solution
Sti of size at least 10`

δ for CVC. In this case, return t := ti.
Otherwise. Thus, for every i ∈ [m], the algorithm returns a connected vertex cover Si of
size at most 10`

δ for CVC in Gti . Obtain a connected vertex cover S′i of G[Vti ] of size at
most |Si|+ 2(`+ 1) using Lemma 16. We will argue that in this case CV C(Gt) < 55`2

δ ,
which is a contradiction. We obtain a connected vertex cover of Gt as follows. Let
Ŝt :=

⋃
i∈[m](S′i) ∪ {zt}. Observe that Ŝt has size at most (2`+ 2) · 13`

δ + 1 ≤ 55`2

δ . It is
easy to observe that Ŝt is indeed a connected vertex cover of Gt.

Observe that from the steps above, we always get a connected vertex cover St of Gt, that is
a (1 + δ) · c-approximation of OPTCVC(Gt) and has size at least 10`

δ . C

Using Claim 19, we obtain a node t and a connected vertex cover St of Gt, that is a
min{(1 + δ) · c, 2}-approximation of OPTCVC(Gt) and has size at least 10`

δ . Use Lemma 16
to obtain a connected vertex cover S′t of G[Vt] of size at most |St|+ 2(`+ 1), containing Xt.

We now obtain graph G′ by removing all vertices in Vt \Xt from G and then contracting
all vertices in Xt to a single vertex zt. Let T ′ to be a tree decomposition of G′, one may
obtain T ′ by replacing occurrences of vertices in Vt by zt in T . Since G′ is strictly smaller
than G, we may use the algorithm described above to obtain a c · (1+ε)-approximate solution
S′ for OPTCVC(G′), using T ′. Output S := S′ ∪ S′t \ {zt}.

Correctness. We start by showing that S is a connected vertex cover. Verify that it is
indeed a vertex cover of G: any edge within G′ is covered as S′ ⊆ S, any edge in Gt is
covered since S′t ⊆ S and any other edge has at least one endpoint in Xt ⊆ S and is thereby
covered. It remains to verify that G[S] is connected. Clearly, G[Vt ∩ S] is connected since it
corresponds to G[S′t]. Let G̃ := G− (Vt \Xt). We show that every connected component of
G̃[S] contains at least one vertex from Xt, such that the entire graph is connected as Xt ⊆ S
and the vertices in Xt are in the same connected component as observed earlier. Suppose
not, let C be such a component not containing any vertex in Xt. Consider G′[S′]. Observe
that C is also a connected component of G′[S′]. Furthermore, vertex zt is not adjacent to
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any vertex in C, as otherwise there is an edge from some vertex in C to some vertex in Xt in
G̃, since Xt ⊆ S this contradicts that C contains no vertex from Xt. Since G′ is connected
however, zt has an incident edge {zt, u} for some u ∈ V (G′) and thus u ∈ S′ or zt ∈ S′. In
both cases there is a vertex in S′ that is not in connected component C, a contradiction with
the assumption that S′ is a connected vertex cover of G′.

We now show that we indeed achieve the desired approximation factor.

B Claim 20. |S| ≤ c · (1 + ε) ·OPTCVC(G)

Proof. Let S∗ be a minimum connected vertex cover of G. Assume for now |S∗∩V (Gt)| ≥ 4/δ.

|S| ≤ |S′t|+ |S′|
≤ |St|+ 2(`+ 1) + c · (1 + ε)OPTCVC(G′)

Using |St| ≥ 10`
δ

≤ |St|+
δ

2 |St|+ c · (1 + ε)OPTCVC(G′)

≤ c · (1 + δ)(1 + δ/2)OPTCVC(Gt) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + δ)(1 + δ/2)|(S∗ ∩ V (Gt)) ∪ {zt}|+ c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + δ)(1 + δ/2)(|S∗ ∩ V (Gt)|+ 1) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|

By assuming |S∗ ∩ V (Gt)| ≥ 4/δ, and then using δ = ε/3

≤ c · (1 + δ)(1 + δ/2)(1 + δ/4)(|S∗ ∩ V (Gt)|) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + ε)(|S∗ ∩ V (Gt)|) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|

Observe that since Gt and G′ are non-empty, S∗ must contain a vertex from Xt

≤ c · (1 + ε)|S∗| = c · (1 + ε) ·OPTCVC(G).

It remains to observe that |S∗ ∩ V (Gt)| ≥ 4/δ is a reasonable assumption. Suppose not, then
OPTCVC(Gt) ≤ |S∗ ∩ V (Gt)|+ 1 ≤ 4/δ + 1. However, St ≥ 10`

δ ≥ 2 ·OPTCVC(Gt), meaning
that St is not a 2-approximation in Gt, which is a contradiction. C

Having shown the correctness of the procedure, it remains to argue the size of this Turing
kernel. Observe that the oracle is only used when applying Claim 18. As such, we may

bound the size of the kernel by O(
(
`2

δ

)⌈ 1+δ
δ

⌉
) = O(

(
`2

ε

)⌈ 3+ε
ε

⌉
), recall that δ = ε

3 . J

4 Meta result

In this section we will describe a wide range of graph problems for which approximate Turing
kernels can be obtained. The problems we will consider satisfy certain additional constraints,
such that the general strategy already described for the Vertex Cover problem can be
applied. Informally speaking, we need the following requirements. First of all, the problems
should behave nicely with respect to taking the disjoint union of graphs. Secondly, we want
to look at what happens for induced subgraphs. We will only consider problems whose value
cannot increase when taking an induced subgraph. Furthermore, we restrict how much the
optimal value can decrease when taking an induced subgraph. Finally, we require existence of
a PSAKS and an approximation algorithm for the problem. We use the following definitions.
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IDefinition 21. Let ϕ : R×N→ R be a function. A ϕ-approximation algorithm for a problem
P is a polynomial-time algorithm that, given an instance G with tree decomposition T of width
`, outputs a solution S such that (for minimization problems) P(G,S) ≤ ϕ(OPTP(G), `),
and (for maximization problems) ϕ(P(G,S), `) ≥ OPTP(G).

I Definition 22. Let P be an optimization problem whose input is a graph. We will say that
it is friendly if it satisfies the following conditions.
1. For all graphs G, G1, and G2 such that G is the disjoint union of graphs G1 and G2,

OPTP(G) = OPTP(G1) + OPTP(G2). In particular, if S1 is a solution for G1 and S2
is a solution for G2, then S1 ∪ S2 is a solution for G and

P(G,S1 ∪ S2) = P(G1, S1) + P(G2, S2).

In the other direction, given solution S in G it can efficiently be split into solutions S1 in
G1 and S2 in G2 satisfying the above. For consistency, we require that the size of the
optimal solution in the empty graph is zero.

2. There exists a non-decreasing polynomial function f such that for all graphs G, for all
X ⊆ V (G):

OPTP(G) ≤ OPTP(G−X) + f(|X|), and OPTP(G−X) ≤ OPTP(G).

In particular, for minimization problems there is a polynomial-time algorithm A that,
given a solution S′ in G −X, outputs a solution S for G such that P(G,S) ≤ P(G −
X,S′) + f(|X|). For maximization problems we require that any solution S for G−X is
also a solution for G and P(G,S) = P(G−X,S).

3. P⊥ parameterized by k + `, where k is the solution value and ` is the treewidth, has a
(1 + δ)-approximate kernel for all δ > 0, that has h(δ, k + `) vertices for some function h
that is polynomial in its second parameter.

4. P has a ϕ-approximation algorithm for some polynomial function ϕ such that α ·ϕ(k, `) <
ϕ(α · k, `) for all α > 1, and ϕ is non-decreasing in its first parameter.

Observe that many well-known vertex subset problems fit in this framework. As an example,
let us verify them for the Vertex Cover problem. The first point is immediate. For
the second point, let A(G,X, S) output S′ := S ∪X. Verify that indeed this satisfies the
conditions with f(|X|) = |X|. The third point follows with some extra work from the fact
that Vertex Cover has a kernel with 2k vertices, this kernel can then be shown to be 1-
approximate. For the last point, it is well-known that Vertex Cover has a 2-approximation
algorithm.

I Lemma 23 (F). Let P be a friendly graph optimization problem. There is a polynomial-
time algorithm B with access to a c-approximate oracle. It takes as input a graph G with
nice tree decomposition T of width ` and a number 0 < δ ≤ 1, and outputs either

a node t such that OPTP(G[Vt \Xt]) ≥ f(`+1)
δ together with a (c · (1 + δ))-approximate

solution St to P in G[Vt \Xt], or
a c · (1 + δ)-approximate solution for G,

using calls to the oracle on graphs with at most h(δ, ϕ(k, `) + `) vertices, where k = 2f(`+1)
δ +

f(1).

We will prove the result separately for maximization and minimization problems (see [24,
Lemma 25] for the minimization case).
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Proof of Lemma 23: Maximization problems. Let r be the root of T , and observe that
G = G[Vr \Xr] since Xr = ∅. Let k := 2f(`+1)

δ + f(1). Compute a ϕ-approximate solution S̃
in G. We do a case distinction on the value of this solution.

If P(G, S̃) ≤ k, then apply the PSAKS with approximation ratio 1+δ to (G,ϕ(k, `)+`) and
obtain instance (G′, k′) with at most h(δ, ϕ(k, `) + `) vertices. Obtain solution S′ by applying
the c-approximate oracle on G′. Apply the solution lifting algorithm to S′ to obtain a solution
S for G. We start by showing that S is the desired approximate solution. Clearly, P(G′, S′) ≥
1
c · OPTP(G′) by correctness of the oracle. If P(G′, S′) > k′, then P⊥(G′, k′, S′) = k′ + 1
and thus P⊥(G′, k′, S′) ≥ OPTP⊥(G′, k′). Otherwise, we have P⊥(G′, k′, S′) = P(G′, S′) ≥
1
c · OPTP(G′) ≥ 1

c · OPTP⊥(G′, k′). From the properties of the solution lifting algorithm,
it now follows that P⊥(G,ϕ(k, `) + `, S) ≥ 1

c(1+δ) OPTP⊥(G,ϕ(k, `) + `). Observe that
since P(G, S̃) ≤ k and ϕ non-decreasing in its first parameter, we get that OPTP(G) ≤
ϕ(P(G, S̃), `) ≤ ϕ(k, `) and thereby OPTP(G) = OPTP⊥(G,ϕ(k, `) + `). It follows that
P(G,S) ≥ P⊥(G,ϕ(k, `) + `, S) ≥ 1

c(1+δ) OPTP⊥(G,ϕ(k, `) + `) = 1
c(δ+1) OPTP(G).

Suppose P(G, S̃) > k. For every node t ∈ T , compute a ϕ-approximate solution S̃t
for graph G[Vt \ Xt]. We start by showing how to find a node t ∈ V (T ) such that both
P(G[Vt \ Xt], S̃t) ≤ k, and OPTP(G[Vt \ Xt]) ≥ f(`+1)

δ . Start by observing that for the
leaf vertices, it holds that P(G[Vt \ Xt], S̃t) = 0 ≤ k. On the other hand, for the root,
we found that P(G[Vr \ Xr], S̃r) = P(G, S̃) > k. As such, we can find a node p such
that P(G[Vp \Xp], S̃p) > k, while for all of its children t it holds that P(G[Vt \Xt], S̃t) ≤
k. We show that one of the children of p has the desired properties. The result that
P(G[Vt \Xt], S̃t) ≤ k for all children of p is immediate. On the other hand, observe that
OPTP(G[Vp \ Xp]) ≥ P(G[Vp \ Xp], S̃p) ≥ k ≥ 2f(`+1)

δ , by assumption. We do a case
distinction on the type of node that p is in the nice tree decomposition.

p is an introduce or forget node. In this case, p has exactly one child t and Vt\Xt = Vp\Xp,
or Vt \ Xt = (Vp \ Xp) \ {v} for some v ∈ V (G). Since P is friendly, we get that
OPTP(G[Vt \Xt]) ≥ OPTP(G[Vp \Xp])− f(1) ≥ f(`+1)

δ .
p is a join node. In this case, p has exactly two children t1 and t2 and G[Vp \ Xp]
is the disjoint union of G[Vt1 \ Xt1 ] and G[Vt2 \ Xt2 ]. Obtain S1 and S2 such that
S̃p = S1∪S2 and S1 is a solution in G[Vt1 \Xt1 ], S2 in G[Vt2 \Xt2 ], and P(G[Vp\Xp], S̃p) =
P(G[Vt1 \Xt1 ], S1) + P(G[Vt2 \Xt2 ], S2). This can be done since P is friendly.
Therefore, there is i ∈ [2] such that OPTP(G[Vti \Xti ]) ≥ P(G[Vti \Xti ], Si) ≥ P(G[Vp \
Xp], S̃p)/2 ≥ f(`+1)

δ .
So, we have obtained a node t such that P(G[Vt\Xt], S̃t) ≤ k, and OPTP(G[Vt\Xt]) ≥ f(`+1)

δ .
We now show how to obtain St. Apply the PSAKS with ratio 1 + δ to (G[Vt \Xt], ϕ(k, `) + `)
and obtain instance (G′, k′). Apply the c-approximate oracle on G′ to obtain a solution
S′′. Apply the solution lifting algorithm to S′′ to obtain solution St in G[Vt \Xt]. With
similar arguments as before, St is a c(1 + δ)-approximate solution in G[Vt \Xt]. Output t
and St. J

The next theorem gives a polynomial-size (1+ε)-approximate Turing kernel with parameter
treewidth for any friendly optimization problem P . The Turing kernel follows the same ideas
as the Turing kernels presented earlier in this paper, using Lemma 23 to find a node in the
tree decomposition where we can split the graph.

I Theorem 24 (F). Let P be a friendly optimization problem on graphs. Then P paramet-
erized by treewidth has a (1 + ε)-approximate Turing kernel with h( ε3 , ϕ( 6f(`+1)

ε + f(1), `) + `)
vertices, for all 0 < ε ≤ 1.
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While the description of the Turing kernel is mostly the same for maximization and minimiz-
ation problems, the correctness proof will differ quite significantly. Therefore, these cases will
be proven separately, the proof for minimization problems can be found in the full version of
the paper.

Proof of Theorem 24: Maximization problems. Let P be a friendly maximization problem.
We show that Algorithm 3 is the desired approximate Turing kernel, where we letA(G,Xt, S

′∪
St) return S′ ∪ St.

Algorithm 3 An approximate Turing kernel for friendly optimization problems P.

1: procedure ApproxP(G, T , ε)
2: Turn T into a nice tree decomposition
3: Apply Lemma 23 for δ := ε/3
4: if this outputs an approximate solution S for G then
5: return S

6: else // We obtained t ∈ V (T ), c(1 + δ)-approximate solution St for P in G[Vt \Xt]
such that OPTP(G[Vt \Xt]) ≥ f(`+1)

δ

7: Let G′ := G− Vt.
8: Obtain T ′ from T by removing the subtree rooted at t and all vertices in Xt

9: Let S′ := ApproxP(G′, T ′, ε)
10: return S := A(G,Xt, S

′ ∪ St)
11: end if
12: end procedure

It is easy to see that since P is friendly, the algorithm indeed returns a correct solution
for P in G, it remains to prove the size bound.

OPTP(G) ≤ OPTP(G−Xt) + f(`+ 1)
= OPTP(G− Vt) + OPTP(G[Vt \Xt]) + f(`+ 1)
≤ OPTP(G− Vt) + (1 + δ) ·OPTP(G[Vt \Xt])
≤ c · (1 + ε) · P(G− Vt, S′) + c · (1 + δ)2 · P(G[Vt \Xt], St)
≤ c · (1 + ε) · (P(G− Vt, S′) + P(G[Vt \Xt], St))
= c · (1 + ε) · (P(G−Xt, S

′ ∪ St)) = c · (1 + ε) · (P(G,S′ ∪ St)). J

4.1 Consequences

We show that a number of considered problems are friendly in the next lemma.

I Lemma 25. The following problems are friendly (with respect to the following bounds).
Independent Set with f(x) = x, h(δ,m) = (m+ 1)2, ϕ(s, `) = (`+ 1) · s.
Vertex-Disjoint H-packing for connected graphs H, with |V (H)| constant, with
f(x) = x, h(δ, k) = O(k|V (H)|−1), ϕ(s, `) = |V (H)| · s.
Vertex Cover with f(x) = x, h(δ, k) = 2k, ϕ(s, `) = 2s.
Clique Cover with f(x) = x, h(δ,m) = m(m+ 1), ϕ(s, `) = (`+ 1) · s
Feedback Vertex Set with f(x) = x, h(δ, k) = 4k2, ϕ(s, `) = 2s.
Edge Dominating Set with f(x) = x, h(δ, k) = 4k2 + 4k, ϕ(s, `) = 2s.
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Proof.
Independent Set. Clearly, if G is the disjoint union of two graphs G1 and G2, then the union

of an independent set in G1 and an independent set in G2 forms an independent set in G.
Conversely, restricting an independent set in G to V (G1) (respectively V (G2)) results in
an independent set in G1 (respectively, G2). Furthermore, if X is a subset of G it is easy
to verify that OPTIS(G) ≤ OPTIS(G−X) + |X| and that OPTIS(G−X) ≤ OPTIS(G)
as any independent set in G−X is an independent set in G. The PSAKS parameterized
by m := k+ ` is as follows. It is known that any graph of treewidth ` has an independent
set of size at least |V (G)|/(`+ 1). This can be seen from the fact that such graphs are
`-degenerate, meaning that there is an order of the vertices v1, . . . , vn such that vi has
degree at most ` in G[v1, . . . , vi]. As such, an independent set of size |V (G)|/(`+ 1) can
be greedily constructed.
Thus, if |V (G)| > (m+ 1)2, we simply let G′ be the graph consisting of an independent
set of size m + 1. The solution lifting algorithm can then simply find a size-(m + 1)
independent set and output it. This is always an optimal solution for P⊥, since it does
not distinguish between solutions of size larger than m. Otherwise, we obtain that
|V (G)| ≤ (m+ 1)2 and the PSAKS will not modify G. In both cases, we output a graph
on at most (m+ 1)2 vertices.
It remains to show that there is an approximation algorithm, the idea is equivalent to
the PSAKS. Return an independent set in G of size at least |V (G)|/(`+ 1). Then indeed
ϕ(|V (G)|/(`+ 1), `) = |V (G)| ≥ OPTIS(G).

Vertex-Disjoint H-Packing. Requirements 1 and 2 are easily verified for f(|X|) = |X|, as
any vertex in X could be contained in at most one graph in any copy of H.
A simple approximation algorithm for Vertex-Disjoint H-Packing is to simply return
any maximal H-packing S. We show that |S| ≥ 1

|V (H)|OPTP(G), such that this is an
ϕ-approximation algorithm with ϕ(s, `) = |V (H)| ·s. Suppose there is an optimal solution
S∗ with |S∗| > |V (H)| · |S|. Since the copies of H in S are vertex-disjoint, S uses exactly
|V (H)| · |S| vertices. Since S∗ contains more than |V (H)| · |S| elements, it follows that
there is s ∈ S∗ that uses no vertices used by S, contradicting that S is maximal.
The existence of a PSAKS is shown in [24, Lemma 31, Appendix A].

Vertex Cover. Requirements 1 and 2 are easily verified for vertex cover, let algorithm A
simply output the union of the given solution with set X. As (implicitly) observed in the
proof of Lemma 8, Vertex Cover has a 1-approximate kernel of size 2k. Furthermore,
it is well-known to be 2-approximable.

Clique Cover. Requirement 1 is easy to verify. We show Requirement 2. Let X ⊆ V (G). Let
S be a clique cover of G, it is easy to see that {s\X | s ∈ S} is a clique cover of G−X, of
size at most |S|. Therefore, OPTP(G) ≥ OPTP(G−X). Furthermore, let algorithm A
when given G, clique cover S of G−X and X output the clique cover S ∪ {{x} | x ∈ X}.
Then this is a clique cover of G and it has size at most |S|+ |X| ≤ |S|+ f(|X|).
To show Requirement 3, we obtain a 1-approximate kernel for Clique Cover in a
somewhat similar way as for Independent Set. Observe that any n-vertex graph with
treewidth ` has a minimum clique cover of size at least n

`+1 . So, given G and parameter
m := k + `, if n > m(m + 1) ≥ k · (` + 1), we know for sure that G does not have a
minimum clique cover of size k. The reduction algorithm reduces G to an independent
set of size m + 1. The solution lifting algorithm (irrespective of the solution given for
G′) outputs V (G). Otherwise, if n ≤ m(m + 1) we simply let G be the output of the
reduction algorithm. Since the graph does not change, the solution lifting algorithm
simply outputs the solution it is given. In both cases, the reduced instance has size at
most m(m+ 1).
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It remains to verify that there is a ϕ-approximation algorithm for Clique Cover. Given
a graph G of treewidth `, we simply output {{v} | v ∈ V (G)}. Clearly, this is a valid
clique cover of G of size |V (G)|. Observe that since G has treewidth `, G contains no
cliques of size larger than `+ 1, thus any clique in the optimal clique cover of G covers at
most `+ 1 vertices. As such, the optimal solution contains at least |V (G)|

`+1 cliques, and
thus |S| ≤ (`+ 1)OPTP(G).

Feedback Vertex Set. Requirements 1 and 2 are straightforward to verify. The problem
has a 1-approximate kernel with 4k2 vertices and therefore a PSAKS by [24, Lemma 29,
Appendix A], showing Requirement 3. It is also known that the Feedback Vertex Set
problem has a 2-approximation algorithm [2], showing Requirement 4.

Edge Dominating Set. Requirement 1 is again straightforward. For the second requirement,
let G be a graph and letX ⊆ V (G). We start by showing that OPTP(G) ≥ OPTP(G−X).
Let S be an edge-dominating set in G. We obtain an edge-dominating set S′ for
G − X as follows. Initialize S′ as the set of edges with both endpoints in V (G) \ X,
so S′ := {e ∈ S | e ∩ X = ∅}. For every edge {x, v} ∈ S with x ∈ X, v /∈ X, choose
one arbitrary edge {u, v} ∈ E(G−X) and add {u, v} to S′. If no such edge exists, do
nothing. Clearly, |S′| ≤ |S|. Furthermore, we show that S′ is indeed an edge dominating
set. Suppose for contradiction that e = {u, v} is not dominated in G − X by S′. Let
{w, v} ∈ S be the edge dominating {u, v} in G. Then, since {w, v} /∈ S′, we have w ∈ X.
But then some edge with endpoint v was added to S′, a contradiction.
We continue by showing that OPTP(G) ≤ OPTP(G−X) + |X| and that algorithm A
exists. Let S be a solution for G − X, then algorithm A will output S together with
one edge {x, v} ∈ E(G) for all x ∈ X. In the case that x ∈ X is isolated in G, no
edge is added for this vertex. By this definition, the output has size at most |S|+ |X|.
Furthermore, any edge with vertices in V (G−X) is dominated by S. Any edge with at
least one endpoint in X is dominated by the additional edges.
Edge Dominating Set has a kernel that outputs a graph G′ of size at most 4k2 + 4k
such that G′ is an induced subgraph of G and any size-k edge dominating set in G′ is
also an edge dominating set in G [21]. We can see that this is a 1-approximate kernel.
Let the solution lifting algorithm simply output the solution for G′ as a solution for G.
Since any solution of size at most k in G′ is a solution in G, and obviously any solution
in G is a solution for G′, it is clear that OPTP⊥(G′, k) = OPTP⊥(G, k). As such, the
approximation ratio is preserved by the solution lifting algorithm.
It is known that even the weighted version of Edge Dominating Set can be 2-
approximated [20], such that the problem has a ϕ-approximation for ϕ(s, `) = 2s. J

As an immediate consequence of Lemma 25 and Theorem 24, we obtain approximate
Turing kernels for a large number of graph problems. These results are summarized in the
corollary below, the size bounds are obtained by substituting the relevant bounds given by
Lemma 25 into Theorem 24.

I Corollary 26. The following problems have a polynomial (1 + ε)-approximate Turing kernel
for all 0 < ε ≤ 1, of the given size (in number of vertices), when parameterized by treewidth `.

Independent Set, of size O( `
4

ε2 ).
Vertex-Disjoint H-packing for connected graphs H, of size O(( `ε )|V (H)|−1).
Vertex Cover of size O( `ε ).
Clique Cover of size O( `

4

ε2 ).
Feedback Vertex Set of size O(( `ε )2).
Edge Dominating Set of size O(( `ε )2).
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We observe that the bounds for Independent Set and Clique Cover can be improved
to O( `

2

ε ) by a more careful analysis. Instead of using that the problem is friendly and
applying Lemma 23, one may simply find t such that the number of vertices in G[Vt \Xt] is
between (`+1)2

δ and 10(`+1)2

δ , and use that an optimal solution has size at least |V (G)|/(`+ 1)
for graphs of treewidth `. There is no need to apply a kernelization in this case.

5 Conclusion

In this paper we have provided approximate Turing kernels for various graph problems when
parameterized by treewidth. Furthermore, we give a general result that can be used to obtain
approximate Turing kernels for all friendly graph problems parameterized by treewidth.

While the notion of being friendly captures many known graph problems, some interesting
problems do not fit this definition. In particular, it is not clear whether the Dominating Set
problem has a polynomial-size constant-factor approximate Turing kernel when parameterized
by treewidth. We leave this as an open problem.
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