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Abstract
In sum of radii clustering, the input consists of a finite set of points in a metric space. The problem
asks to place a set of k balls centered at a subset of the points such that every point is covered by
some ball, and the objective is to minimize the sum of radii of these balls. In the capacitated version
of the problem, we want to assign each point to a ball containing it, such that no ball is assigned more
than U points, where U denotes the capacity of the points. While constant approximations are known
for the uncapacitated version of the problem, there is no work on the capacitated version. We make
progress on this problem by obtaining a constant approximation using a Fixed Parameter Tractable
(FPT) algorithm. In particular, the running time of the algorithm is of the form 2O(k2) · nO(1). As a
warm-up for this result, we also give a constant approximation for the uncapacitated sum of radii
clustering problem with matroid constraints, thus obtaining the first FPT approximation for this
problem.
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1 Introduction

Clustering problems have received a great deal of attention in theoretical as well as practical
research. Different ways of modeling a clustering problem have been proposed. A common
way to model clustering problems is to assume that the data is represented as a set of points
in a finite metric space, and the distance between a pair of points is a measure of similarity
between the corresponding data points. Now, we want to partition the set of input points,
such that the points belonging to each group are more similar to each other than the points
outside the group. In the following, we focus on a particular set of three related clustering
objective functions – k-center, k-median, and sum of radii clustering. We first describe the
general setup.

Let P be a set of n input points in a metric space, and let d be the corresponding distance
function. Let k denote the number of desired clusters, where k is a parameter of the problem.
We want to find a set C ⊆ P of at most k centers, such that a certain clustering objective
function σ(C,P ) is minimized. In the k-center problem, the objective function is the largest
distance of a point to its nearest center; whereas in the k-median problem, it is the sum of
all such distances.
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Now we describe the closely related sum of radii objective. For any c ∈ P , and ρ ≥ 0, let
B(c, ρ) = {p ∈ P : d(c, p) ≤ ρ} denote the ball of radius ρ centered at c. In the sum of radii
objective, we want to additionally compute a radius assignment r : C → R+, such that the
corresponding set of balls B = {B(c, r(c)) : c ∈ C} covers the entire set of points P . The
objective is to minimize the sum of radii of the balls, i.e.,

∑
c∈C r(c).

The sum of radii problem was studied by Charikar and Panigrahy [8], who gave a constant
approximation. This result is obtained by first obtaining a constant approximation via the
primal-dual technique to a closely related problem, which is the Lagrangian relaxation of
the original sum of radii problem. Subsequently, Behsaz and Salavatipour [4] improved the
approximation ratio in a restricted setting, and Gibson et al. [14] gave a (1+ε)-approximation
in quasi-polynomial time. In light of the latter result, the problem is likely not APX-hard,
under standard complexity theoretic assumptions. There has also been significant work
on certain generalizations of this problem. More general objective functions, such as the
sum of α’th powers of the radii for a fixed α ≥ 1, and more general constraints, such as
multi-covering of points, have been addressed, but these generalizations are outside the scope
of this article.

Constant approximations are also known for the metric k-center and k-median problems,
and unlike the sum of radii clustering problem, these problems are known to be APX-hard
– see [15, 17, 5] and the references therein for these results. We now focus on a particular
generalization of clustering problems which is the focus of this work.

1.1 Capacitated Clustering

A commonly considered generalization of clustering problems is the capacitated clustering,
which models the situation where a center is able to provide a certain service to a specific
number of points, which are sometimes referred to as clients in this context. In the uniform
capacitated clustering problem, we are given an integer 1 ≤ U ≤ n, which represents the
capacity of any chosen center. Now, we also want to assign each point to a chosen center,
such that no center is assigned more than U points. Here, we also require that, if a point p is
assigned to a center c, then it is also covered by the ball placed at c. In a generalization called
the non-uniform version of the problems, different centers may have different capacities.

The capacitated sum of radii problem has not yet been considered in the literature.
Known techniques do not seem to extend to the capacitated sum of radii problem. Firstly,
it can be easily shown that the standard Linear Programming (LP) relaxation has large
integrality gap. Furthermore, it is not clear whether it is possible to strengthen this LP
by imposing additional constraints implied by the problem structure, as done in [2] for
capacitated facility location. Another piece of evidence is a hardness result from [3] for a
closely related problem, which can be modified to rule out an o(logn)-approximation in
polynomial time, if we want to minimize the sum of α-th powers of radii, where α > 1. While
this hardness result does not rule out an O(1) approximation in polynomial time for α = 1,
it does tell us that such a result would need to exploit rather special properties that hold in
the α = 1 case.

Before describing our results, we review the work on the capacitated versions of the
k-center and k-median problems, and look at possible approaches that have been successful
for these problems.
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Related Work

The capacitated versions of the k-center and k-median problems can be defined analogously.
These problems have received a great attention from the researchers. Constant approximations
for the capacitated k-center are known [18], even for the non-uniform version. On the
other hand, obtaining a constant approximation for the capacitated k-median problem
has been a long-standing open problem in approximation algorithms. Researchers have
explored different approaches for tackling this problem, in particular, relaxing some of
the requirements of traditional approximation algorithms. One such relaxation allows for
bi-criteria approximations – constant approximations have been obtained by violating the
capacities by a small factor ([7, 10, 6, 13]), or by violating the k-constraint (the number of
medians) by a constant factor ([20, 21]).

Yet another recent approach relaxes the requirement that the algorithm run in polynomial
time. An algorithm with the running time of f(p) · nO(1) is known as a Fixed Parameter
Tractable (FPT) algorithm, where p is a parameter of the problem. Note that, although the
running time may depend exponentially (or worse) on the parameter p, the dependence on n,
the input size, is strictly polynomial. In the context of capacitated clustering, such an FPT
algorithm parameterized by k, the number of clusters, may be acceptable, if k is a small
constant. Adamczyk et al. [1] give a (7 + ε)-approximation for the (uniform/non-uniform)
capacitated k-median problem in kO(k) · nO(1) time. They use an approximate solution for
the uncapacitated k-median problem to convert the given instance into a simpler instance
that has more structure, at an expense of a small constant factor loss in the approximation
guarantee. Then, they obtain a near-optimal solution for this simpler instance in FPT time.
Cohen-Addad and Li [11] improved the approximation guarantee to 3 + ε, again using a
similar FPT running time. Their algorithm is based on a coreset construction, and they
obtain a constant approximation for this smaller coreset in FPT time. They also obtain an
(1 + ε)-approximation in Euclidean metrics. These results are complemented by Adamczyk
et al. [1], who observe that one cannot hope to obtain an exact FPT algorithm even for the
uncapacitated k-median problem. Parameterized algorithms and complexity is a large and
active domain of research, and we direct the reader to a textbook such as [12] for a more
detailed background.

1.2 Our Results and Techniques

Our main result is a 28-approximation for the uniform capacitated sum of radii problem,
that runs in 2O(k2) · nO(1) time. This result is in a similar vein as the aforementioned
results ([1, 11]) for the capacitated k-median problem. Adapting techniques they develop for
capacitated k-median, we can obtain an FPT approximation for capacitated sum of radii in
metrics of constant doubling dimension. However, for general metrics, we have not been able
to adapt their approach. Therefore, we develop a novel algorithm, which we discuss at a
high level below.

Fix an optimal solution to the problem. First we discretize the optimal solution by
rounding the radii up to a power of 1 + ε for a fixed ε > 0, and now suppose that this
discretized solution exactly ki balls of radius ri, where each ri is a power of (1 + ε). We show
that this first step can be implemented in FPT time. Therefore, we can assume henceforth
that we know the “radius profile” of the optimal solution. Our main algorithm proceeds
in multiple levels. Roughly speaking, the goal of the algorithm at a particular level i is
to guess the approximate locations of the ki optimal balls of radius ri. However, the size
of the search space for this guessing is too large to ultimately obtain an FPT algorithm.

ESA 2020
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Therefore, we employ a certain greedy strategy to guess some balls not chosen in the optimal
solution. This allows us to bound the size of the search space, while simultaneously allowing
us to argue that an appropriate capacity reassignment is possible if our algorithm misses the
approximate location of an optimal ball.

Sum of Radii with a Matroid Constraint

Although the high-level idea of our algorithm is relatively simple, the technical arguments to
establish that such a capacity reassignment is possible are quite sophisticated and involved.
Therefore, we first consider a related, but simpler, problem as a warm-up. The natural
candidate is the uncapacitated version (for which constant approximations are known in
polynomial time [8]), but we consider a more general version, which replaces the k-constraint
by a more general matroid constraint.

A matroid M, on the set of given points P , is the pair (P, I), where I is a collection
of subsets of P with the following properties: (i) A ∈ I implies that ∀B ⊆ A, B ∈ I, (ii)
If A,B ∈ I with |B| < |A|, then there exists a p ∈ A \ B, such that B ∪ {p} ∈ I. If a set
C belongs to I, then C is said to be independent in the corresponding matroid M. One
consequence of this definition is that all inclusion-wise maximal independent sets of a matroid
M have equal size, and they are called the bases ofM.

In the Matroid Sum of Radii problem, a feasible solution consists of a set of centers
C, and a radius assignment r : C → R+ such that the resulting set of balls covers P .
Furthermore, we also require that C be an independent set according to a given matroidM.
The objective of the problem is to minimize the sum of radii. We assume that we have an
oracle access to an algorithm AM that answers in polynomial time, whether a candidate set
of centers is independent in the matroidM. For many “natural” matroids, the definition
of an independent set is simple, and thus the oracle can be simulated in a straightforward
manner.

We give a (9 + ε)-approximation for this problem in bO(b) · nO(1) time, where b is the size
of a basis of the matroidM. At a high level, our strategy is similar to our main result for
the capacitated sum of radii problem. However, unlike the capacitated version, here we can
always find the approximate locations of the optimal centers, which simplifies the algorithm
and its analysis. Although this result is not the main contribution of our work, it provides a
good vantage point to understand our result for capacitated sum-of-radii clustering.

We note that constant approximations are known for the matroid versions of k-center
and k-median [9, 19]. These problems were originally motivated from the so-called red-blue
median problem [16], where the centers come in one of the two types: red and blue, and we
are required to select at most kr red centers and kb blue centers to minimize the k-median
objective. The matroid formalization captures this scenario as well as its generalization for
arbitrary number of types. In particular, the special case of one color corresponds to the
k-constraint in the uncapacitated setting.

2 Sum of Radii with a Matroid Constraint

In this problem, we are given a finite metric space (P, d), and a matroidM = (P, I) on the
set of points P . We want to place a set of balls to cover the points in P , while minimizing the
sum of radii of the balls. Furthermore, it is required that the set of centers is an independent
set in the given matroid.

Formally, we want to find a set of centers that forms an independent set, i.e., C ∈ I
and assign radii r : C → R+, such that P ⊆

⋃
c∈C B(c, r(c)). The objective is to minimize∑

c∈C rc, over all such feasible solutions.
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Fix an optimal solution (C∗, r∗), and let k = |C∗|. Note that C∗ is an independent set in
M. First, we guess the value of k by iteratively trying k′ = 1, 2, . . . , b, and returning the
solution with smallest cost. Here, b denotes the size of any base in M. For a particular
value k′, the algorithm runs in k′O(k′) · nO(1) time. Note that the overall running time of this
algorithm is

∑b
k′=1 k

′O(k′) · nO(1) = bO(b)nO(1). From now on, we will focus on the iteration
where k′ = k.

Before discussing our main algorithm, we discuss K-Center(U, r), which is an important
subroutine. Here, U ⊆ P is a set of points to be covered, and r ≥ 0 denotes the target
radius. It is a simple iterative procedure that selects an as-yet uncovered point p, and marks
all points in its 2r-neighborhood as covered. It also adds p to the set of centers Q, and
this iterative procedure continues until all points in U are marked as covered. This is a
well-known 2-approximation algorithm for the k-center problem, and is summarized in the
following lemma.

I Lemma 1. Let U ⊆ P be a subset of points, and suppose there exists a set C ⊆ P

of k centers such that maxu∈U d(u,C) ≤ r. Then, the set of centers Q returned by K-
Center(U, r′) for any value r′ ≥ r satisfies: (i) |Q| ≤ k, and (ii) max

u∈U
d(u,Q) ≤ 2r′.

Algorithm 1 K-Center(U, r).

1: Initially, all points in U are marked as uncovered, Q← ∅
2: while there exists an uncovered point in U do
3: Let p ∈ U be an uncovered point, add p to Q
4: Mark all points in B(p, 2r) as covered
5: return Q

Preprocessing

First, we discretize the possible choices of radii in the following way. Let ε > 0 be a constant,
and let R denote the smallest power of 1 + ε larger than the maximum radius of any optimal
ball – note that we can “guess” the value of R in polynomial time. Furthermore, for any ball
with radius smaller than εR

k , we round its radius up to εR
k , and the total increase over at

most k such balls is at most εR, which is at most ε times the optimal cost. Now, we round
up radii of all balls to the next larger power of (1 + ε). Note that the resulting solution is
within a factor of (1 + ε)2 from the cost of the optimal solution. Furthermore, there are
t = log1+ε

R
Rε
k

= O( 1
ε log k

ε ) distinct values of radii. Since ε is fixed, t = O(log k). From
now onwards, we will slightly abuse the terminology, and use the terms “optimal solution”,
“optimal ball” etc. to refer to the corresponding entities in the optimal solution modified in
this manner.

Define r1 = R, r2 = R
1+ε , . . . , rt = R

(1+ε)t−1 , where rt+1 <
Rε
k ≤ rt. Suppose for every

1 ≤ i ≤ t, the optimal solution uses exactly 0 ≤ ki ≤ k balls of radius ri. Note that∑t
i=1 ki = k. Let O =

⋃t
i=1Oi be the set of balls in the optimal solution, where Oi ⊆ Oi is

the subset of balls of radius ri. Let C∗ ⊆ P denote the set of centers, and let C∗i ⊆ C∗ denote
the set of centers of the balls in Oi. For a particular value of i, we define O<i =

⋃i−1
j=1Oj ,

and the subsets O≤i,O>i,O≥i (resp. C∗≤i etc.) are defined similarly.
First, we guess the “radius profile” of the optimal solution. There are O(log k) classes

of radii, and for each class ri, 0 ≤ ki ≤ k. Therefore, the number of overall choices for the
radius profile can be upper bounded by kO(log k) � kO(k).

ESA 2020
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Algorithm 2 MatroidSoR(B, i).

. 1 ≤ i ≤ t + 1 is the current level – we want to guess at most ki centers for balls of
radius 4ri
. B is the set of balls fixed at earlier levels 1 through i− 1

1: Ui ← P \
(⋃

B∈B B
)

. Set of points not covered by balls in B
2: if i = t+ 1 and Ui = ∅ then . All points are covered at level ≤ t
3: D ← Disjointify(B) . Procedure Disjointify is described before Observation 3 in text
4: for every non-empty subset D′ ⊆ D do
5: if balls returned by MatroidIndependentSet(D′,D) cover all points then
6: output MatroidIndependentSet(D′,D) and halt
7: else if i = t+ 1 and Ui 6= ∅ then . Not all points are covered by balls at level ≤ t
8: return . B is a wrong guess
9: Pi ← K-Center(Ui, ri) . Pi is the potential set of centers at level i

10: if |Pi| > k then . Ui cannot be covered by at most k balls of radius ri
11: return . B is a wrong guess
12: else
13: For every Ci ⊆ Pi of size at most ki, call MatroidSoR(B ∪ B(Ci), i+ 1)

. B(Ci) := {B(c, 4ri) : c ∈ Ci}

Algorithm

Having guessed the radius profile (k1, k2, . . . , kt), our algorithm invokes MatroidSoR(∅, 1)
(see Algorithm 2). The procedure MatroidSoR(B, i) is recursive, and proceeds in multiple
levels. Fix 1 ≤ i ≤ t, which denotes the current level. We are given a set of balls B selected
at higher levels, i.e., levels 1 through i− 1. For 1 ≤ j ≤ i− 1, we let Cj denote the set of
centers of balls in B of level j. We know that |Cj | ≤ kj , and each c ∈ Cj has a ball of radius
4rj around it. Now, we want to find a set of at most ki centers to place balls of radius 4ri at
this level.

Let us now see how the algorithm MatroidSoR(B, i) places these balls at level i. We find
Ui, the set of points not covered by any ball in B. We then use algorithm K-Center(Ui, ri)
to find a solution to cover the points in Ui using balls of radius 2ri. We will later prove in
Lemma 2 that if the set of balls B added to the solution so far is “correct” (formalized in
the Lemma), then the solution Pi returned by the K-center algorithm contains at most k
centers. Therefore, if |Pi| > k, we conclude that the set of balls B added to the solution so
far is incorrect, and we stop.

Now, suppose |Pi| ≤ k. Then, we enumerate every subset Ci ⊆ Pi of size at most ki,
and recurse on each subset. Note that the number of subsets can be upper bounded by∑ki
i=0
(
k
ki

)
≤ kO(ki). Assuming the set B is “correct”, one of these kO(ki) recursive calls is

also “correct”. Now we formalize this notion in the following Lemma.

I Lemma 2. At any level 1 ≤ i ≤ t, in one of the recursive calls to MatroidSoR(B, i),
for any optimal center c∗j ∈ C∗j with 1 ≤ j < i, one of the following holds:
1. There exists c ∈ C` with ` ≤ j, and B(c∗j , rj) ⊆ B(c, 4r`), OR
2. B(c∗j , rj) is completely covered by balls in B of level 1 through j − 1. In this case, there

exists a center c ∈ C` with ` < j, such that d(c∗j , c) ≤ 4r`.

Proof. We prove this claim inductively.

Base case. This corresponds to i = 2. We want to show that, there exists a set B of balls
chosen at level 1, such that, at the start of the algorithm MatroidSoR(B, 2), every ball
B(c∗1, r1) ∈ O1 is contained in some ball in B.
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For the base case, consider the situation at the start of the algorithm, after we invoke
MatroidSoR(∅, 1). Note that U1 = P . Note that the optimal solution covers P using k
balls of radius at most r1. Consider the set P1 of points returned by K-Center(U1, r1).
Using Lemma 1, we have that |P1| ≤ k, and for any c∗1 ∈ C∗1 , there is some ϕ(c∗1) := c ∈ P1
with d(c∗1, c) ≤ 2r1. Let C1 = {ϕ(c∗1) | c∗1 ∈ C∗1}. Clearly, |C1| ≤ |C∗1 | = k1, and for any
c∗1 ∈ C∗1 , B(c∗1, r1) ⊆ B(ϕ(c∗1), 4r1). Thus, the recursive call MatroidSoR(B(C1), 2) satisfies
the required properties.

Inductive hypothesis. Now we assume that the claim holds inductively at the start of
iteration i, and prove that it also holds at level i+ 1 in one of the recursive calls. That is,
fix a recursive call MatroidSoR(B, i), where B is a set of balls chosen at levels 1 through
i− 1, such that, any ball B∗ ∈ O<i is covered by a ball in B, as guaranteed by the induction
hypothesis. Now, let U∗i be the set of points not covered by any such optimal ball (from
O<i). Note that inductive hypothesis implies that Ui ⊆ U∗i , which implies that Ui can be
covered using at most k balls of radius at most ri. Now, Lemma 1 implies that the set Pi of
points returned by K-Center(Ui, ri) has size at most k.

We will define a mapping ϕ : C∗i → Pi∪{⊥} that specifies a center in Pi whose ball covers
B(c∗i , ri), if any. Now, consider an optimal center c∗i ∈ C∗i , that has a ball B∗ = B(c∗i , ri)
centered at it. We consider two different cases.

Case 1. If there exists a point p ∈ B∗∩Ui, then using Lemma 1, there exists a center c ∈ Pi
returned by K-Center(Ui, ri), such that d(c, p) ≤ 2ri. Since d(c∗i , c) ≤ d(c∗i , p)+d(p, c) ≤ 3ri,
B(c∗i , ri) ⊆ B(c, 4ri). In this case, we define ϕ(c∗i ) = c.

Case 2. Otherwise, B∗ ∩ Ui = ∅, which implies that all points in B∗ are covered by the
balls in B of levels 1 through i− 1. In particular c∗i is also covered by a ball B(c, 4r`), where
` < i. In this case, we set ϕ(c∗i ) = ⊥.

Note that the two cases correspond to the two criteria in the statement of the lemma.
Furthermore, if ϕ(c∗i ) = ⊥, then B(c∗i , ri) is covered by one or more balls in B of levels 1
through i− 1, i.e., we do not require a ball at level i to cover this ball. Otherwise, ϕ(c∗i ) ∈ Pi,
and B(c∗i , ri) ⊆ B(ϕ(c∗i ), 4ri). Let Ci := {c ∈ Pi : ϕ−1(c) 6= ∅}. Since |C∗i | = ki, |Ci| ≤ ki,
and the recursive call corresponding to MatroidSoR(B ∪ B(Ci), i+ 1) satisfies the required
properties, recalling that B(Ci) := {B(c, 4ri) : c ∈ Ci}. J

Now, let us discuss the algorithm at level i = t+ 1. Note that Lemma 2 implies that, all
points must be covered at level t + 1 in one of the recursive calls. Therefore, if Ut+1 6= ∅,
then we conclude that the set of balls B is incorrect.

Henceforth, let B denote the set of balls at level t + 1 guaranteed by Lemma 2, and
focus on the call MatroidSoR(B, t+ 1). Note that B covers all points, which implies that
Ut+1 is empty. We now call the procedure Disjointify(B), which we describe now. In this
procedure, we assign each point in P to the largest ball in B that covers it, breaking ties
arbitrarily. Let Dj(c) denote the set of points assigned to a particular ball B(c, 4rj) ∈ B.
Note that Dj(c) ⊆ B(c, 4rj); however the inclusion may be strict. In particular, it may be
the case that c 6∈ Dj(c), or Dj(c) may even be empty.

Let D be the resulting collection of sets in B that are made disjoint in this manner. In
order to distinguish the resulting disjoint sets from the original set of balls, we refer to them
as clusters. The following observations follow from the definition of B and the description of
Disjointify.

I Observation 3.
1. The clusters in D partition P .
2. If an optimal center c∗i ∈ C∗i is contained in a cluster D`(c) ∈ D, then ` ≤ i.

ESA 2020
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Next, for every non-empty subset D′ ⊆ D, we call MatroidIndependentSet(D′,D).
In this algorithm, we define a matroidM(D′,D) – see Algorithm 3 for the definition. It is
easy to see that for any D′ ⊆ D, thatM(D′,D) is a (partition) matroid on P . We then find
a common maximum independent set C in both matroidsM andM(D′,D). Then, if c ∈ C
is contained in a cluster of level i in D, then we place a ball of radius 9ri around it. Next, we
prove that, for at least one subset D′ ⊆ D, the algorithm MatroidIndependentSet(D′,D)
finds a set of balls that covers the entire point set P .

Algorithm 3 MatroidIndependentSet(D′,D).

1: Define a new matroidM(D′,D) = (P, I(D′)), where a set C ⊆ P is independent in I(D′)
iff it contains at most one point from each cluster in D′, and no points from cluster in
D \ D′

2: The weight of an independent set is equal to its size
3: Solve the maximum-weight matroid intersection problem for matroidsM andM(D′,D)

to find an independent set C ⊆ P
4: For every c ∈ C, place a ball of radius 9ri, if c is covered by a level i cluster in D
5: return the resulting set of balls placed around each center in C

To this end, let D∗ ⊆ D denote the subset of clusters that contain at least one optimal
center. This implies that clusters in D \ D∗ contain no optimal center. In the following
claim, we focus on the call MatroidIndependentSet(D∗,D), and show that the set of
balls found in this call covers P .

I Lemma 4. The set of balls computed by MatroidIndependentSet(D∗,D) covers the
entire set of points. Furthermore, the cost of this set of balls is upper bounded by 9 times the
cost of B.

Proof. From every cluster in D∗, pick an arbitrary optimal center, and let the resulting set
be Ĉ∗. Since Ĉ∗ ⊆ C∗, it is an independent set inM. Furthermore, it contains exactly one
point from each cluster in D∗, and no point from any cluster in D \ D∗. Therefore, Ĉ∗ is
independent in the matroidM(D∗,D).

Let C denote the maximum weight independent subset computed in
MatroidIndependentSet(D∗,D). Thus |C| ≥ |Ĉ∗|. As C is independent inM(D∗,D),
this implies that C (like Ĉ∗) contains exactly one point from each cluster in D∗.

We prove that the set of balls, centered at C, computed at the end of
MatroidIndependentSet(D∗,D), covers all points of P . Fix a point p ∈ P , and suppose it
is covered by an optimal ball B(c∗j , rj). From Observation 3, there exists a cluster D`(c) ∈ D∗
of level ` ≤ j such that c∗j ∈ D`(c). Therefore, d(p, c) ≤ rj + 4r` ≤ 5r`. From the previous
paragraph, there exists a center c′ ∈ C ∩D`(c). Note that d(c, c′) ≤ 4r`. This implies that,
d(p, c′) ≤ d(p, c) + d(c, c′) ≤ 5r` + 4r` = 9r`. Thus, p is covered by the ball of radius 9r`
centered at c′.

Finally, note that for every cluster in D∗ of level i, we place at most one ball of radius
9ri. Therefore, the cost of the balls thus computed can be bounded by 9 times the cost of
balls in B. J

I Theorem 5. For any fixed ε ≥ 0, there exists a (9 +O(ε))-approximation algorithm to the
Matroid Sum-of-radii problem that runs in bO(b) · nO(1) time, where b denotes the size of a
base in the given matroid.
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Proof. We focus on a particular value of k′, and show that the algorithm runs in k′O(k′) ·nO(1)

time. Then, the running time guarantee follows, since
∑b
k′=1 k

′O(k′) = bO(b), as previously
discussed.

There are k′O(log k′) choices for guessing the “radius profile”, and one of these choices
corresponds to that of the modified optimal solution. Now fix this choice of the radius
profile. At any level 1 ≤ i ≤ t, there are at most k′O(ki) recursive calls to the algorithm
at level i + 1. Therefore, the number of recursive calls at level t + 1 can be bounded by
k′
∑t

i=1
O(ki) = k′O(k′). At level t+ 1, we call MatroidIndependentSet(D′,D) for every

non-empty D′ ⊆ D. Thus, there are at most 2|D| ≤ 2k′ calls to MatroidIndependentSet,
and each matroid intersection problem can be solved in polynomial time, given access to the
oracle forM. Therefore, the algorithm terminates in k′O(k′) · nO(1) time.

Now, consider the iteration when k′ = k, and when we correctly guess the radius profile
corresponding to the optimal solution. From Lemma 4, one of the calls to MatroidInde-
pendentSet computes a solution that covers all the points, and the cost of this solution can
be upper bound by 9 times the cost of the radius profile. Therefore, the cost of this solution
can be upper bounded by 9 +O(ε) times the cost of the original optimal solution. J

3 Uniform Capacitated Sum of Radii

Problem Definition

In this problem, we are given a finite metric space (P, d). We are also given a positive integer
U , which denotes the capacity. We want to place a set of k balls B, and assign each point of
P to a ball containing it, such that no ball is assigned more than U points. Furthermore, we
want to minimize the sum of radii of the balls in B.

More formally, a feasible solution to the problem consists of a set of centers C ⊆ P of size
at most k, and a radius assignment r : C → R+. Let B be the set of resulting balls. Note that
the centers of balls in B are distinct. The solution also consists of an assignment µ : P → B,
such that p is contained in the ball µ(p), and |µ−1(B)| ≤ U for every B ∈ B. Finally, the
objective is find such a feasible solution that minimizes the sum of radii:

∑
B(c,r)∈B r.

Notation

Let P ′ ⊆ P be a subset of points, and let B′ be some non-empty set of balls. Then, an
assignment µ : P ′ → B′ is said to be a valid assignment, if it satisfies the following two
properties: (i) for every p ∈ P ′, p ∈ µ(p), and (ii) |µ−1(B)| ≤ U for any ball B ∈ B′. In the
following discussion, we will allow B′ to contain concentric balls and even be a multi-set.
But for simplicity of exposition, we will refer to a multi-set (resp. a multi-subset thereof)
as simply a set (resp. a subset). Note that the definition of a valid assignment is consistent
even if B is such a set of balls, by treating each copy of a ball in B as a distinct object.

Fix an optimal solution and the corresponding optimal assignment. We preprocess this
solution in order to discretize the set of radii, exactly as done in the previous section. After
this discretization, we assume that the solution uses exactly ki balls of radius ri, where
i ≤ i ≤ t, and t = O(log k). Henceforth we will refer to the optimal solution modified in this
manner. As in the previous section, let O denote the set of optimal balls, and C∗ ⊆ P be
the set of optimal centers. The subsets Oi,O≤i etc. of the optimal balls O, and the subsets
C∗i , C

∗
≤i etc. of the optimal centers are also defined as in the previous section. Furthermore,

let µ∗ : P → O be the optimal assignment. Note that µ∗ is a valid assignment by definition.
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Algorithm

Our algorithm invokes CapacitatedSoR(∅, 1). Now we describe CapacitatedSoR(B, i)
(Algorithm 4), which is recursive and proceeds in multiple levels. At a particular level
1 ≤ i ≤ t, we determine the set of balls of level i in the solution. At the start of the algorithm
at level i, we are given a (multi-)set B of balls chosen earlier. B consists of balls of level
1 through i − 1. Before we discuss the algorithm in iteration i, let us define some more
notation.

Suppose a ball centered at c was added to B at level j < i – its radius was 6rj when it was
added to B. At every subsequent iteration j + 1 ≤ ` < i, we expand its radius by an additive
2r` factor. Thus, at the beginning of iteration i, the radius of this ball is 6rj +

∑i−1
`=j+1 2r`.

Now, in iteration i, we will consider two versions of any ball in B – expanded and unexpanded.
Consider a ball in B, with center c, added during iteration j < i. At the beginning of iteration
i, this ball has radius 6rj +

∑i−1
`=j+1 2r`; we refer to this as the unexpanded version. On the

other hand, the expanded version has radius equal to 6rj +
∑i
`=j+1 2r`, which we denote by

Eij(c). Note that the expanded version Eij(c) is larger than its corresponding version Bij(c)
by an additive +2ri factor. Therefore, if B∗ = B(c∗i , ri) has a non-empty intersection with
Bij(c), then B∗ ⊆ Eij(c).

Let B′ ⊆ B be any subset of balls chosen so far, and let B′ = B \ B′. Let E(B′) denote
the set of expanded versions of balls in B′. Finally, we define

I(B′) :=


(⋂

E∈E(B′) E
)
\
(⋃

B∈B′ B
)

if B′ 6= ∅

P \
(⋃

B∈B B
)

if B′ = ∅

That is, if B′ is non-empty, then I(B′) is exactly the set of points that belong to the common
intersection of the expanded versions of balls in B′, but not in any of the unexpanded versions
of balls in B′. If B′ is empty, then I(B′) is the set of points that does not belong to any
unexpanded ball in B. Note that if B′ ⊆ B is exactly the subset of balls that have non-empty
intersection with an optimal ball B(c∗i , ri), then B(c∗i , ri) ⊆ I(B′).

Let us return to the discussion of CapacitatedSoR(B, i). For each subset B′ ⊆ B, we
call Greedy(B′,B, ri) (Algorithm 5). This Algorithm computes a set Pi(B′) of at most 4k
centers chosen in a certain “greedy” manner. This is the set of potential centers from the
region I(B′) for placing balls of level i. The algorithm ensures that the distance between
any two centers in Pi(B) is greater than 4ri. Furthermore, if Pi(B′) < 4k, then each point in
I(B′) is within distance 4ri of some point in Pi(B′). We repeat this process for every subset
B′ of B (including ∅).

We will first argue in Lemma 6 that, in some recursive call to the algorithm at level
i = t+ 1, the set of balls B computed captures the optimal solution in an appropriate way.
Having shown that this happens, the invocation of PostProcess(B) (Algorithm 7) will
appropriately modify the set of balls B and return a feasible solution. We will discuss the
algorithm PostProcess and its analysis later.

I Lemma 6. Fix a level 1 ≤ i ≤ t+1. In one of the recursive calls to CapacitatedSoR(B, i),
there exists an assignment that maps each point p ∈ µ−1

∗ (O<i) to a ball in B containing p,
such that the number of points assigned to each ball does not exceed U .

Proof. We prove this lemma inductively.
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Algorithm 4 CapacitatedSoR(B, i).

1: if i = t+ 1 then
2: if PostProcess(B) 6= fail then
3: return B(R) returned by PostProcess(B) and halt
4: else
5: For every B′ ⊆ B, let Pi(B′)← Greedy(B′,B, ri)
6: Let Pi ←

⋃
B′⊆B Pi(B′)

7: for every multi-subset Ci ⊆ Pi of size at most ki do
8: Expand every ball in B by an additive 2ri factor
9: CapacitatedSoR(B ∪ B(Ci), i+ 1) . B(Ci) := {B(c, 6ri) : c ∈ Ci}

Algorithm 5 Greedy(B′,B, r).

1: Let T ← I(B′); start with all points of T as unmarked
2: P (B′)← ∅
3: while |P (B′)| < 4k and there is an unmarked point in T do
4: p ∈ T be an unmarked point with maximum number of unmarked points in B(p, r)∩T
5: Add p to P (B′); mark all points in B(p, 4r) ∩ T
6: return P (B′)

Base case

This corresponds to the start of the calls CapacitatedSor(·, i), where i = 2. To this end,
consider the invocation of the algorithm at the earlier level, i.e., CapacitatedSor(∅, 1).
Note that since B = ∅, B′ = ∅, and there is only one call Greedy(∅, ∅, r1). Note that the
optimal solution uses k1 + k2 + . . .+ kt ≤ k balls of radius at most r1 in order to cover the
entire set of points P = I(B′). Recall that the set of centers P1(∅) = P1 returned by the
Greedy algorithm has the property that any two centers in P1(∅) are at least 4r1 away from
each other. Therefore, P1(∅) contains at most one point from each optimal ball, and thus
|P1(∅)| ≤ k. It follows that for any optimal center c∗1 ∈ C∗1 , there is a center c ∈ P1, such
that d(c∗1, c) ≤ 4r1. That is, for every optimal ball B∗ = B(c∗1, r1) ∈ O1, there exists c ∈ P1,
such that B∗ ⊆ B(c, 5r1). We let ϕ(B∗) := c (select a nearest c form c∗1 there are multiple
such c ∈ P1). Let C1 ⊆ P1 be the multi-set that is the image of the mapping ϕ : O1 → P1,
where the multiplicity of each c ∈ C1 is equal to |ϕ−1(c)|. Therefore, for each B∗ ∈ O1 the
points in µ−1

∗ (B∗) can be reassigned to a unique ball in B(C1) centered at ϕ(B∗) ∈ C1. This
completes the proof for the base case.

Note that we were able to “guess” the locations of the optimal centers approximately
in the base case. However, we cannot accomplish this in the subsequent levels, because
some optimal balls may be contained in larger optimal balls. This is what complicates the
algorithm and its analysis. Nevertheless, we will argue that we can find an appropriate set of
substitute centers whenever necessary that will facilitate the reassignment process.

Inductive hypothesis

Suppose during some invocation of the algorithm CapacitatedSoR(B, i) at level i, we have
a set of balls B of levels 1 ≤ j < i, such that the set of points µ−1

∗ (O<i) can be assigned
to the balls in B. Let us also suppose that we have a mapping ϕ : O<i → C<i, where C<i
denotes the set of centers of balls in B.
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Inductive Step

We first sketch the high level idea. Here, we will extend ϕ to include Oi, i.e., we will map
every optimal ball in Oi to a center in Pi; where Pi is the set of centers computed in lines
5 and 6 of Algorithm 4. Now, let Ci ⊆ Pi be the image of ϕ(Oi), where the multiplicty of
each c ∈ Pi is set to be |ϕ−1(c)|. Note that |Ci| = |Oi| = ki. Having found such a mapping,
we will consider an optimal ball B∗i = B(c∗i , ri) ∈ Oi, and reassign points in µ−1

∗ (B∗i ) to the
balls in B ∪ B(Ci). We will use the ball ϕ(B∗i ) to show that this reassignment can be done
without violating the capacities. Doing this for every optimal ball in Oi, we will show that
all points in µ−1

∗ (O≤i) are assigned to balls in B ∪ B(Ci). Now we discuss the details of this
inductive argument.

For any B∗ = B(c∗i , ri) ∈ Oi, if there is c ∈ Pi such that B∗ ⊆ B(c, 6ri), then we set
ϕ(B∗i ) = c (choosing a nearest such c from c∗, if there are multiple such c∗ ∈ Pi). Let
O1
i ⊆ Oi be the subset that is mapped in such way, and let C1

i ⊆ Pi be its image (with
multiplicity ϕ−1(c) for every c ∈ C1

i ). Note that all the points assigned a ball B∗i ∈ O1
i , are

also contained in the ball B(c, 6ri), where c = ϕ(B∗i ). Therefore, we can reassign points in
µ−1
∗ (B∗i ) to the ball B(c, 6ri).
Now, let O2

i := Oi \ O1
i be the set of optimal balls not mapped so far. We will map each

ball in O2
i to a unique center in Pi \ C1

i , and use this mapping to compute the required
reassignment. We describe the assignment in the following mapping procedure – note that
this is used only in the analysis.

Algorithm 6 Mapping procedure.

1: Suppose all balls in O2
i are unmapped at the beginning; let C2

i ← ∅
2: for each subset B′ ⊆ B in an arbitrary order do
3: Let O2

i (B′) ⊆ O2
i be the subset of unmapped balls contained in I(B′)

. Unmapped balls in O2
i are the balls that have not yet been mapped using ϕ in an earlier

iteration.
4: Let Fi(B′) ⊆ Pi(B′) include every point that:

(i) belongs to C1
i , or (ii) is chosen as a center of a ball in B, or

(iii) is within 2ri from some center in C2
i , or

(iv) is within ri + rj from some center in C∗j , where j ≥ i, or
(v) belongs to C∗<i.

5: Extend ϕ to O2
i (B′) by arbitrarily mapping each ball in O2

i (B′) to a unique center in
Pi(B′) \ Fi(B′).

6: Let C2
i (B′) be the image of O2

i (B′), under the above mapping ϕ.
7: Mark all balls in O2

i (B′) as mapped, and add C2
i (B′) to C2

i .

B Claim 7. For any B′ ⊆ B, if O2
i (B′) 6= ∅, then |O2

i (B′)| ≤ |Pi(B′) \ Fi(B′)|. That is, there
are enough centers available in Pi(B′) \ Fi(B′) to be mapped in Line 5.

Proof. Since O2
i (B′) 6= ∅, let B(c∗i , ri) ∈ O2

i (B′). Note that c∗i ∈ I(B′), and B(c∗i , ri) ⊆ I(B′).
Consider the call Greedy(B′,B, ri). We first claim that the while loop ends with

|Pi(B′)| = 4k. Suppose for the contradiction that the while loop ends because all points in
Pi(B′) are marked. Let c be the point added to Pi(B′) when c∗i is marked. Then, d(c∗i , c) ≤ 4ri.
Thus, B(c∗i , ri) ⊆ B(c, 6ri), which implies that B(c∗i , ri) ∈ O1

i . This is a contradiction, since
B(c∗i , ri) ∈ O2

i .
Now we claim that |Fi(B′)| ≤ 3k, by considering each of the five conditions (Fi(·) stands

for centers forbidden due to one of the five conditions). Conditions (i) and (ii) include at
most

∑i−1
j=1 kj , and at most ki points respectively. Therefore, k is an upper bound for points

satisfying conditions (i) and (ii).
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We now claim that ki is also an upper bound for points satisfying condition (iii). To this
end, we claim that for c ∈ C2

i , there is at most one c ∈ Pi(B′) such that d(c, c′) ≤ 2ri. Suppose
that there are two distinct such points c1, c2 ∈ Pi(B′). Then, d(c1, c2) ≤ d(c, c1) + d(c, c2) ≤
4ri. This is a contradiction, since the distance between any two points in Pi(B′) is greater
than 4ri. Finally, since |C2

i | ≤ k, k is also an upper bound on the centers excluded due to
condition (iii).

A similar proof also shows that for any fixed c∗j ∈ C∗j with j ≥ i, there is at most one
c ∈ Pi(B′) with d(c∗j , c) ≤ ri + rj . Therefore,

∑t
j=i kj is an upper bound for points satisfying

condition (iv).
∑i−1
j=1 kj is an upper bound on condition (v). Therefore, k is an upper bound

on conditions (iv) and (v) together.
Putting everything together, |Fi(B′)| ≤ 3k, which implies that |Pi(B′) \ Fi(B′)| ≥ k.

Therefore, each ball in O2
i (B′) can be mapped to a unique point in |Pi(B′)|. C

The next claim is used later to argue that the reassignment can be done using the mapping
ϕ constructed in this manner.

B Claim 8. Fix B′ ⊆ B and a ball B∗ = B(c∗i , ri) ∈ O2
i (B′). If ϕ(B∗) = c, then

|B(c, ri) ∩ I(B′)| ≥ |B∗| ≥ |µ−1
∗ (B∗)|.

Proof. We first claim that no point in B∗ is marked in Greedy(B′,B, ri). Otherwise,
let c′ ∈ I(B∗) be the point added to Pi(B′) when a point p ∈ B∗ was marked. Then,
d(c′, c∗i ) ≤ d(c′, p) + d(p, c∗i ) ≤ 5ri, which implies that B∗ ⊆ B(c′, 6ri), which implies
that B(c∗i , ri) ∈ O1

i . This is a contradiction, since B(c∗i , ri) ∈ O2
i . Therefore no point in

B∗ ∩ I(B′) = B∗ is marked until the end of the while loop.
Now, consider the beginning of the iteration when c was added to Pi(B′). At this point,

c∗i is also a candidate. Since c is chosen over c∗i , it implies that |B(c, ri) ∩ I(B′)| ≥ |B∗| ≥
|µ−1
∗ (B∗)|, where the last inequality holds by definition. C

We use this claim to show that we can reassign points from µ−1
∗ (O2

i ) to balls in B∪B(Ci),
where Ci = C1

i ∪ C2
i . Recall that we have already reassigned points µ−1

∗ (O1
i ) to C1

i .
Now let us consider the optimal balls in O2

i in the same order in which they were mapped
in Algorithm 6. Consider an optimal ball B∗ = B(c∗i , ri), and suppose it was mapped in
the iteration corresponding to B′ ⊆ B. That is, B∗ ∈ O2

i (B′). Let c = ϕ(B∗). Because of
condition (v), there is no optimal center c∗j ∈ C∗j with j ≥ i, such that B(c∗j , rj)∩B(c, ri) 6= ∅.
Therefore, all points in B = B(c, ri) are assigned to balls in O<i in the optimal assignment
µ∗. Furthermore, because of condition (iv), there is no other center c′ ∈ C2

i within distance
2ri from c, which implies that points in B have not been currently assigned to a ball in
B(Ci). Therefore, by the inductive hypothesis, these points are assigned to balls in B.

Now we reassign m points from the set B ∩ I(B′) to the ball B(c, 6ri), where m =
min{U, |B∩I(B′)|}. These points are originally assigned to balls in B. As they are contained
in I(B′), no such point belongs to a ball in B \ B′, by the definition of I(B′). Thus, these
points are assigned to balls in B′. Their reassignment to B(c, 6ri) collectively frees up m
units of capacity from balls in B′. Note that B∗ is also completely contained in I(B′), and
m ≥ |µ−1

∗ (B∗)| by Claim 8. Therefore, we can use the freed capacity of balls in B′ to assign
points in µ−1

∗ (B∗).
We perform this reassignment process for each ball in O2

i . Therefore, at the end, every
point in µ−1

∗ (O≤i) is assigned to a ball in B ∪B(Ci). This finishes the proof of Lemma 6. J

ESA 2020



62:14 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Using Lemma 6 at level t+ 1, we know that there exists a recursive call to
CapacitatedSoR(B, t+ 1), such that the set of points in µ−1

∗ (O) = P can be assigned to
the balls in B without violating capacities. Fix such a recursive call. With this, let us define
C1 =

⋃t
i=1 C

1
i , and C2 =

⋃t
i=1 C

2
i , and let C = C1 ∪ C2. Note that there may be several

concentric balls in B. We want to move the concentric balls to “nearby” unique centers
in order to obtain a feasible solution. The following observations, which follow from the
description of the mapping procedure (see Algorithm 6), will aid us in doing this.

I Observation 9.
1. For any c ∈ C1

i , define R∗(c) to be the set of optimal centers of the balls in ϕ−1(c).
(A) The sets {R∗(c)}c∈C1 are pairwise disjoint, i.e., for distinct c1, c2 ∈ C1, we have that
R∗(c1) ∩R∗(c2) = ∅.
(B) R∗(c) ⊆ B(c, 5ri) for any c ∈ C1

i .
2. For any c ∈ C2, define R∗(c) := {c}

(A) |ϕ−1(c)| = 1 for all c ∈ C2

(B) C2 ∩ C∗ = ∅, and
(C) C2 ∩ C1 = ∅.

3. Items 1 and 2 imply that the sets {R∗(c)}c∈C are pairwise disjoint.

Proof. For item 1.A, note that ϕ : O → C is a many-to-one function, and that every ball in
O has a distinct center. Item 1.B follows from the definition of ϕ.

Claims in item 2 follow from the definition of set of forbidden centers Fi(B′) in the
mapping procedure (see line 4). J

Now we are ready to show that, when PostProcess(B) (Algorithm 7) is called from
CapacitatedSoR(B, t+1), where B is the set of balls guaranteed by Lemma 6, it successfully
returns a feasible solution.

Algorithm 7 PostProcess(B).

1: For every 1 ≤ i ≤ t, and every c ∈ Ci, find a set R(c) ⊆ B(c, 5ri) where |R(c)| equals the
multiplicity of c in Ci and the sets R(c) are pairwise disjoint for all c ∈ C
This can be solved using a max-flow problem

2: if such a collection of sets R(c) does not exist: return fail
3: Let R =

⋃
c∈C R(c), and let B(R) := {B(c, α · ri) : c ∈ R}

. α is defined below in the proof of Lemma 10
4: Check whether there exists a feasible assignment from P to the balls in B(R)

This can be solved using a max-flow problem
5: if a feasible assignment exists: return B(R); else: return fail

I Lemma 10. PostProcess(B) succeeds in finding a set of balls B(R), and there is a
feasible assignment µ′ : P → B(R).

Proof. From Lemma 6, there exists a feasible assignment µ : P → B, however there may be
concentric balls in the set B. However, Observation 9 implies that the sets R∗(c) are pairwise
disjoint for c ∈ C, and that R∗(c) ⊆ B(c, 5ri) for a center c ∈ Ci. Therefore, in line 1 of
Algorithm PostProcess(B), we can successfully find the sets R(c) as claimed. Note that
R(c) ⊆ B(c, 5ri).
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From Lemma 6, for any B = B(c, 6ri) ∈ B, µ−1(B) ⊆ Eti (c). Note that the radius of
the expanded version of the ball Eti (c) is equal to 6ri +

∑t
`=i+1 2r` ≤ α′ · ri, for some α′.

Therefore, for any point p ∈ µ−1(B), and any c′ ∈ R(c), we have that d(p, c′) ≤ 5ri + α′ri =
(α′ + 5)ri = αri

1. This implies that, in line 4 of the Algorithm 7, we can find such a feasible
assignment µ′. J

I Lemma 11. CapacitatedSoR(∅, 1) runs in 2O(k2) · nO(1) time.

Proof. Fix a level 1 ≤ i ≤ t, and consider CapacitatedSoR(B, i). At the beginning of the
algorithm, |B| ≤ k, therefore the number of subsets can be upper bound by 2k, which implies
that |Pi| ≤ 4k · 2k. Now, let k′i ≤ ki denote the size of the set Ci without multiplicities.

Therefore, there are
ki∑
k′
i
=1

(
4k · 2k

k′i

)
=
(
4k · 2k

)O(ki) = 2O(k·ki) number of choices for selecting

the set Ci (without multiplicities). For a fixed choice of Ci, there are at most (ki)k
′
i = kO(ki)

choices for placing one or more copies at each location in Ci. We make a recursive call for
each such choice of the multi-set Ci. The overall number of recursive calls to level i+ 1 can
be upper bounded by kO(ki) · 2O(k·ki) = 2O(k·ki).

Let T (i) denote the running time of the algorithm at level i. Then, we have the following
recurrence relation: T (i) = 2O(k·ki) · T (i+ 1) + 2O(k·ki) · nO(1).

Furthermore, T (t + 1) = nO(1), since PostProcess runs in time polynomial in n. This
recurrence solves to T (1) = 2O(k2) · nO(1), where we use the fact that

∑t
i=1 ki = k. J

I Theorem 12. There exists a 28-approximation for the Capacitated Sum of Radii problem
that runs in 2O(k2) · nO(1) time.s

Proof. There are O(n2) choices for guessing the maximum radius, and kO(log k) choices
for guessing the radius profile of the optimal solution. Note that we lose a factor of
(1 + ε)2 in the latter step. Now, fix the correct value of maximum radius and the radius
profile that corresponds to the modified optimal solution. By Lemma 11, the algorithm
CapacitatedSoR(∅, 1) runs in 2O(k2) · nO(1) time for any fixed choice of the radius profile.

Furthermore, By Lemma 10, there exists a recurse call at level t+1, that returns a feasible
solution. Finally, for any 1 ≤ i ≤ t we use ki balls of radius αri in this solution, whereas
the optimal solution uses ki balls of radius ri. Therefore, the approximation guarantee is at
most (1 + ε)2 · α, where α is as in Lemma 10. Choosing ε ≈ 0.267, the above quantity can be
upper bounded by 28. J

4 Conclusion

We obtain constant approximations for the uniform capacitated sum of radii problem in FPT
time. It is unclear whether a similar result can be obtained in polynomial time. Finally,
obtaining a constant approximation for the matroid version of the problem in polynomial
time remains open.

1 It can be shown that α = 2+11·ε(1+ε)
ε(1+ε) .
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