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—— Abstract

Quasiperiodicity is a generalization of periodicity that has been researched for almost 30 years.

The notion of cover is the classic variant of quasiperiodicity. A cover of a text T is a string whose
occurrences in T' cover all positions of 7. There are several algorithms computing covers of a text
in linear time. In this paper we consider a natural extension of cover. For a text T, we call a
pair of strings a 2-cover if they have the same length and their occurrences cover the text T'. We
give an algorithm that computes all 2-covers of a string of length n in O(nlognloglogn + output)
expected time or O(n log nlog? log n/ logloglogn + output) worst-case time, where output is the size
of output.

If (X,Y) is a 2-cover of T, then either X is a prefix and Y is a suffix of T, in which case we
call (X,Y) a ps-cover, or one of X, Y is a border (that is, both a prefix and a suffix) of T, and
then we call (X,Y) a b-cover. A string of length n has up to n ps-covers; we show an algorithm
that computes all of them in O(nloglogn) expected time or O(n log? logn/logloglogn) worst-case
time. A string of length n can have ©(n?) non-trivial b-covers; our algorithm can report one
b-cover per length (if it exists) or all shortest b-covers in O(nlognloglogn) expected time or
O(n log n log? log n/logloglogn) worst-case time. All our algorithms use linear space.

The problem in scope can be generalized to A > 2 equal-length strings, resulting in the notion
of A-cover. Cole et al. (2005) showed that the A-cover problem is NP-complete. Our algorithms

generalize to A-covers, with (the first component of) the algorithm’s complexity multiplied by n* 2.
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1 Introduction

Identifying repetitive structure of a string is one of the key research areas of text algorithms,
with applications to computational biology; see e.g. the books [19, 28]. Processing of a string
that has a regular structure can be performed more efficiently, be it for pattern matching or
for data compression.

The most elementary notion that grasps repetitiveness is periodicity. If a string can be
generated by repeated concatenation of its smaller piece, then we say that it is periodic.
The field of periodicity has been expanded upon by allowing not only concatenation, but
also superpositions, which resulted in the introduction of quasiperiodicity by Apostolico and
Ehrenfeucht [6].
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The basic terms of quasiperiodicity are the notions of cover and seed. A cover of a text
T is a string whose occurrences in T' cover all positions of T', while a seed of T is a cover of
some superstring of T. An O(n)-time algorithm for computing the shortest cover of a text of
length n was presented by Apostolico et al. [7]. Moore and Smyth showed that all the covers
of a string can be computed in O(n) time [43, 44, 45]. Moreover, O(n)-time algorithms for
computing covers of all prefixes of a string were shown [13, 41]. Seeds were introduced by
Tliopoulos et al. [33] who showed an algorithm for finding a representation of all seeds of a
string in O(nlogn) time. The majority of these classic algorithms were developed in the
1990s. It was not until many years later that an O(n)-time algorithm for computing seeds
was found [36, 37]. Various approximate variants of covers and seeds were studied — see
e.g. [3, 4, 16, 25, 38, 39] — as well as covers in other models of computation [10, 14, 26], in
non-standard stringology [1, 9, 20, 31, 32] and in 2-dimensional texts [21, 47].

We consider 2-covers which are a natural generalization of covers. A 2-cover of a text T'
is a pair of equal-length strings whose occurrences in 1" cover all positions of T; see Figure 1.
A yet more general notion of a A-cover, that is, a A-tuple of strings whose occurrences cover
the whole text T', was introduced by Iliopoulos et al. in [27, 49]. Unfortunately, the authors’
O(n?) time algorithm for finding all A-covers under fixed A and constant-size alphabet has
been proven to be faulty. In reality, the algorithm has, at worst, exponential runtime [23].

(GENGIED)
s> CIT> (GENCID)
abaaababaabaabaaabab ababaabaaabaabababab
cCa o CEx2oH a5 (G D) D>

(@)D

Figure 1 Two examples of a 2-cover of a string: a ps-cover (left) and a b-cover (right). Note that
none of these strings has a proper cover.

In this paper, we present an O(nlognloglogn + output) time algorithm for finding all
2-covers of a text of length n. Each string from a 2-cover in the output is represented by giving
endpoints of its sample occurrence. Our algorithm can compute a 2-cover of each length
or all shortest 2-covers in O(nlognloglogn) time. The complexities show the expected
running time of the algorithms; they can be made worst-case at a cost of an additional
loglogn/logloglogn factor. The space complexities of the algorithms are O(n). We assume
the standard word-RAM model of computation.

In the case of previously mentioned seeds and covers, the input text is generated by
concatenations and superpositions of a single string. However, in our problem, we need to
check if the text can be generated by two strings of equal length. This alone suggests that
the problem is computationally harder than its original counterpart. Intuitively, to find all
covers of a string we need to check only O(n) candidates, i.e. all prefixes. This is not the
case with 2-covers, because a text of length n can have up to ©(n?) different non-trivial
2-covers. (A simple example 7' = a™ba™ba™ of such a text was shown in [23].) The general
A-cover problem was shown to be NP-hard by Cole et al. [17].

There are two types of 2-cover of a text T, as shown in Figure 1: a ps-cover (X,Y") that
is composed of a prefix X and a suffix Y of T and a b-cover (X,Y) in which one of the
strings, let us say X, is a border of T. (2-covers (X,Y) in which X is actually a cover of T
are considered to be trivial and can be ignored.) Our main result consists of two algorithms,
one for each of the types.



J. Radoszewski and J. Straszynski

The first algorithm finds ps-covers. This is the easier type and for it, we propose an
O(nloglogn) expected time algorithm. It iterates over all possible candidates (there are
O(n) of them) and maintains a set of gaps, that is, parts of the text that are not covered
yet. There, we exploit locality of changes in coverage between consecutive lengths by using a
predecessor data structure [5, 48]. Secondly, we efficiently express the dynamics of the gaps
by storing linear functions.

The remaining, harder algorithm, finds b-covers (X,Y"). In this case there are significantly
more candidates to consider (up to O(n?) [23]). For each length ¢ we use string periodicity
to compute a set of O(n/f) positions in T', called anchors, that implies all non-redundant
occurrences of any string Y in a b-cover of length ¢. This set is computed using Internal
Pattern Matching [40]. Finally our algorithm forms a set of constraints on ¥ based on
the anchors and finds all strings that satisfy these constraints in O(nloglogn/¢ + output)
expected time using predecessor queries.

Our algorithms easily generalize to the A-covers problem, achieving O(n*~!polylogn +

output) time.
» Remark 1. “String cover” is also used to describe a different notion that should not be
confused with the one studied in this work. Namely, a string cover C of a set of strings S is a
set of factors of strings from S such that every string in S can be written as a concatenation
of the strings in C; see [12, 15, 30, 46].

2 Preliminaries

By [i..j] we denote the integer interval {i,...,j}; we use a round bracket if the interval
does not contain one of its ends. For a set S of integers and integer a, by S @ a and S S a
we denote the sets {s+a : s € S} and {s—a : s € S}, respectively, and by intervalsy(S)
we denote the set {[i..i+ k) : i € S}.

A string T is a sequence of letters from a given alphabet. The length of string T is
denoted by |T'|. We assume that the positions in 7" are numbered 1 through |T'|, with letter
at position ¢ denoted as T'[i]. By T[i..j] we denote the string T'[7]...T[j] that is called a
factor of T (the same notation is used for open intervals of positions). A factor T[i..j] is
called a prefiz if i =1 and a suffiz if j = |T.

For a string X, by Ocer(X) we denote the set of starting positions of occurrences of X
in T and by Covp(X) the set of positions that are covered by occurrences of X in T, i.e.,

Covp(X) = U intervals x| (Occr (X)).

We omit the subscript T when it is clear from the context. We say that a set of strings S is
a A-cover of length ¢ of T if the following conditions hold:

S =A

| X|={lforall X € S

Uxes Cov(X) = [1..|T]]

Periodicity of strings. We say that string S has period p (for p € [1..]S]]) it S[i] = S[i + p]
foralli € [1..|S] —p].

» Fact 2 (Periodicity lemma; Fine and Wilf [24]). If string S has periods p and q such that
p+q <|S|, then it has a period ged(p, q).

A string is called periodic if it has a period that is at most a half of its length and
aperiodic otherwise. Moreover, a string is called 4-periodic if it has a period that is at most a
quarter of its length.
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» Fact 3 (Folklore; see [2]). If S is periodic and S’ is a string of length |S| that differs from
S at exactly one position, then S’ is aperiodic.

In particular, if S is periodic with smallest period p and the letter c is different from
S[|S| — p + 1], then Sc, i.e., S concatenated with ¢, is aperiodic.

String B is called a border of string S if B is a prefix and a suffix of S. String S has a
period p if and only if it has a border of length n — p. In particular, this implies the following.

» Observation 4. If string S is not periodic, then |Occr(S)| = O(T|/|S])-
A string S is primitive if S = V¥ for a string V and positive integer k implies that k = 1.

» Fact 5 (Synchronization property; [19, Lemma 1.11]). A primitive string S has ezxactly two
occurrences in S2.

PREF table. The table PREF over a length-n string T stores, as PREF]i], the length of
the longest common prefix of T and TYi..n]. Let PREFZ[i] denote the length of the longest
common suffix of T" and T[1..i]. Both arrays can be computed in O(n) time by a classical
comparison-based algorithm, as in the Main-Lorentz algorithm [42]; see also the book [22].

Longest Common Extension (LCE) queries. Assume that string 7' is over an integer
alphabet [1..n°M)]. A longest common prefix (longest common suffix) query on T, given
indices 7,7 € [1..n], returns the length of the longest common prefix of suffixes T'[i..n] and
T[j..n] (the length of the longest common suffix of T'[1..4] and T'[1.. j], respectively). Both
types of queries are often referred to as LCE queries. It is well-known that after O(n)-time
preprocessing, one can answer LCE queries for T in O(1) time using the suffix array [34] and
range minimum queries [11]. Moreover, we use the inverse suffix array that gives, for each
suffix, its position in the sorted list of suffixes.

Assume that T'i .. j] is periodic with smallest period p. A position j' > j (i’ < 7) is said
to break the periodicity of T[i..j] if 5/ = min{k > j : T[k] # Tk — p]} (i = max{k < i :
T[k] # T[k + p|}, respectively). We set i’ = 0 and j/ = n + 1 if the respective position does
not exist. One can use LCE queries to compute the positions breaking periodicity of a given
factor TTi.. j], if they exist, in O(1) time.

Internal Pattern Matching (IPM) queries. Again assume that 7" is over an integer alphabet
[0..79M]. The IPM problem requires one to preprocess a text T' of length 7 so that one can
efficiently compute the occurrences of a factor of T' in another factor of T. An O(n)-sized
data structure, with O(n) expected time construction, that answers IPM queries in O(1)
time when the ratio between the lengths of the two factors is at most 2 was presented in [40].
The set of occurrences is returned as a single arithmetic sequence. Moreover, if the sequence
contains at least three elements, then its difference equals the smallest period of the pattern
factor. A deterministic version of this data structure can be found in [35]. This data structure
can also be used to answer in O(1) time so-called two-period queries, in which we are asked
to find the smallest period of a given factor of T if this factor is periodic (an alternative data
structure was proposed in [8]).

Predecessor data structures. For a set of integers A, by pred(z, A) and succ(x, A) we denote
the predecessor and successor of z in A, that is, max{a € A : a < 2z} andmin{a € A : a > z},
respectively. (We assume that max () = —oo and min () = co.) We use the following known
efficient dynamic predecessor data structures. A collection A C [1..n] can be maintained
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under insertions and deletions and can answer predecessor and successor queries in O(loglogn)
expected time per operation using a y-fast trie [48] or in O(log®logn/logloglogn) worst-
case time using an exponential search tree [5]. Below by 7, we denote the time complexity
of an operation on a predecessor data structure. Moreover, we use Han’s deterministic
algorithm [29] to sort n numbers in O(nloglogn) time.

3 Computing ps-covers

Let T be a string of length n. Let us start with a simpler but less efficient approach
for computing ps-covers. For each length ¢ we would like to check if there is a ps-cover
(X,Y) of length £ of T. We aim at O(n/{) time complexity after linear-time preprocessing.
In the preprocessing phase we compute the data structures for LCE-queries [11, 34] and
IPM queries [35, 40] in T. If T has a ps-cover (X,Y) of length ¢, then X = T[1../¢] and
Y =T[n—£¢+1..n]. We apply IPM queries to compute the sets of occurrences Occ(X) and
Occ(Y'), represented as unions of O(n/f) of arithmetic sequences, in O(n/¢) time. This lets
us compute the sets Cov(X) and Cou(Y), represented as unions of O(n/¢) maximal intervals,
sorted left-to-right. Then we need to check if Cov(X)U Cov(Y) = [1..n], which can be done
in linear time w.r.t. to the sizes of the representations of these sets by merging the sorted
lists of intervals. Thus we have shown the following result.

» Lemma 6. Let T be a string of length n over an integer alphabet. After O(n)-time and
space preprocessing, one can compute a ps-cover of T of a given length £, if it exists, in

O(n/l) time.

Let us note that Lemma 6 applied for all lengths £ = 1,...,n allows us to compute
all ps-covers in O(nlogn) time. However, there is a more efficient approach that does not
involve the intricate technique of IPM queries and also works for strings over any alphabet.
We will use the lemma when computing A-covers in Section 5.

Let P, be the prefix of length ¢ of T" and Sy be the suffix of length ¢ of T'. For each
length ¢ there is only one candidate for a ps-cover, that is, (Pp, S¢). Furthermore, the set of
positions of the text T' that are covered by Couv(P;) U Couv(Se) does not change much when ¢
is incremented.

The idea is to iterate over increasing values of £ and check whether occurrences of P, and
S¢ cover the entire text. We are going to maintain a set of gaps, that is, parts of the text
that are covered by occurrences of neither the prefix nor the suffix.

First, let us identify an occurrence of a prefix P, with the index of its leftmost character
and an occurrence of a suffix Sy with the index of its rightmost character. In this way, when
the length £ is incremented, some occurrences persist and get their length increased by one
and other occurrences disappear. Specifically, occurrences of the prefix extend to the right
and, respectively, occurrences of the suffix extend to the left. As a result, some gaps shrink
or disappear and some other gaps are created. For an example, see Figure 2. Because of the
way how joint occurrences of the prefix and the suffix affect the sizes of gaps, we will refer to
these occurrences as the pressing factors.

We will iterate over subsequent £ = 1,...,n and observe the set of gaps. If for some ¢
the set of gaps is empty, then (P, Sp) is a ps-cover. We track the following data:
length ¢

the set >, of left endpoints of occurrences of Py
the set <1y of right endpoints of occurrences of Sy
a set of pairwise disjoint gaps and an expiration time (value of £) for each of them.
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Figure 2 Illustration of gap dynamics. After incrementation of ¢, a gap b was created, a gap a
disappeared, and a gap aaa shrunk to a.
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The sets will be maintained using predecessor data structures, which allow to perform
predecessor/successor queries in 7, time. Using the aforementioned data, the outline of the
algorithm is as follows:

Algorithm 1 Outline of the algorithm for computing ps-covers.

pressing_ factors := Occurrences of P, and Sy in T
gaps := Gaps between pressing_factors;
for /:=1 to n do
to_remove := Expired pressing_factors;
Remove to_remove from pressing_ factors;
foreach expired_factor in to_remove do
Recalculate elements of gaps around expired_factor;

An occurrence i €54 (i €<l persists as long as £ < PREF[i] (¢ < PREF]i], respectively).
Therefore, for £ = PREF[i] + 1 (¢ = PREF®[i] + 1), we consider that occurrence as expired.
In conclusion, the PREF arrays allow us to compute expiration times of every prefix and
suffix. This allows us to efficiently compute expired pressing factors in amortized O(1) time
by precomputing a list of factors to expire for each moment of time in O(n) time.

Now let us simulate gap dynamics. Incrementations of £ successively get a gap increasingly
covered (by occurrences of a prefix and/or suffix) until it expires completely. Assuming that
none of the relevant pressing factors disappears, a gap expiration depends on the closest
prefix occurrence to the left and the closest suffix occurrence to the right of the gap. If we
know that some position p belongs to a gap, we would like to know the following:

Ly =max{a : a € >y, a <p}and Lg =max{a : a € <y, a < p}

Ry =min{b : b€ >y, b>p} and Ry = min{b : b € <y, b > p}.

Unfortunately, this is too much to maintain. One factor that expires might influence many
gaps. Let us analyze it further. Let us fix some prefix occurrence, i.e. pressing factor that
extends to the right. It might influence expiration time of many gaps to the right. On the
other, hand we can safely note this exclusively in the closest gap to the right. This is because
the pressing factor won’t reach other gaps before closing the immediate gap. When the gap
closes, we can propagate the information to neighbouring gaps. Therefore, in a gap we only
take into consideration pressing factors whose immediate neighbour is this gap and ignore
them otherwise. We can easily check for this and compute all these values in 7, time. If the
gap initially covers the interval [i.. j], then it can expire in two ways:

it can close on one boundary by a single opposing pressing factor, so the gap will close no
later than ¢ = min(Rq — i+ 1,5 — L + 1), or
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it can close in the middle of the gap, by both pressing factors simultaneously, at £ =
|‘R<1—L> +1~|
.

The endpoints of a gap at moment ¢ can be computed using the formulas:
i=max(Ly + ¢, Lg+1) and j = min(Rq — ¢, R — 1).

When a gap is created or its neighbouring pressing factors are altered, we use these formulas
to recompute the gap boundaries. The predecessor data structure that stores gaps uses,
for each gap, its recently computed left boundary for comparison. It is sufficient since the
left-to-right order of gaps is never changed.

Thus we can recompute the expiration moment of a single gap given at least one position
belonging to the gap. The remaining issue is to know which gaps need to be updated. Note
that each expired factor can affect at most two existing neighbouring gaps and possibly

introduce a new one. We can find the neighbouring gaps via predecessor/successor queries.

Positions that were not covered will still not be covered after removing the expired factor, so
we can pick an arbitrary position from this gap and recalculate its boundaries.

Now, we need to check if some new gap was created in the boundaries of the expired
factor. In this case we have some intervals of length ¢, representing the set Cov(P;)U Couv(Se),
and we would like to know if removing one interval creates a gap in coverage. Thanks to
the fact that all intervals are of the same length, if the expired factor is [i. . j], we only need
to find the last interval ending at most at j and the first interval starting at least at 7. If
found intervals do not cover the entirety of [i..j], we have at least one position of the gap
and we are able to calculate its boundaries. Otherwise, removing the factor did not change
the coverage, so no new gap was created. All of this can be performed using the predecessor
data structures in 7, time.

In conclusion, the entire computation of ps-covers takes O(nr,) time and O(n) space.

We obtain the following result.

» Theorem 7. Let T be a string of length n over any alphabet that allows O(1)-time checking
of letter equality. One can compute a ps-cover of T of every possible length in O(nt,) time
and O(n) space.

4 Computing b-covers

Let T be a string of length n. Our goal in this section is, given a length ¢, to check if
there is a b-cover (X,Y) of length ¢ of T. We aim at O(nr,/{) time complexity after
linear-time preprocessing. In the preprocessing phase we compute the data structures for
LCE-queries [11, 34] and IPM queries [35, 40] in T'.

Let X = T[1..4]. We apply IPM queries to compute the set Occ(X), represented as
a union of O(n/f) of arithmetic sequences, and the set Cov(X), represented as a union of
O(n/¢) maximal intervals, in O(n/¢) time. If n — £+ 1 ¢ Occ(X), there is no b-cover of
length ¢, and if Cov(X) = [1..n], we skip this length since we have the trivial case of a
2-cover containing a cover. Henceforth we assume that X is a border of T" whose occurrences
do not cover the whole string 7.

Our goal is to find all strings Y for which (X,Y) is a b-cover of T. We start by building
up some intuition. We have |Y| = ¢, so in order for Y to cover all positions from the set

Cou(Y), it suffices to use O(n/f) occurrences of Y (instead of, potentially, ©(n) occurrences).

Let Py be a set of starting positions of such a set of occurrences. We will compute ¢t = O(1)
sets I', ..., I't, each of size O(n/{), that contain information about all (Y, Py ), for every Y
that can form a b-cover with X. In each set I'; we will select an element ; € I'; and consider
only length-¢ factors Y starting at positions v; —a for a € [0.. ).
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Figure 3 This string has a b-cover (X = abab,Y = abaa). The sets Cov(X) and Couv(Y) are
shown in gray. We have Z = ba, I' = Occr(Z), and + is the position of the occurrence of Z that
ends at the first position that is not covered by Cov(X). The set Py of occurrences of Y that is
generated by (I',~, 1) is shown. For the meaning of arrows, see Section 4.3.

In particular, for every such (Y, Py) we would like to have Py C (I'; ©a) and Y =
Tlvi —a..vs —a+£) for some i € [1..¢] and a € [0..£). We then say that (Y, Py) is
generated by (I';,7vi,a). Moreover, for each set I'; we will provide an interval J; C [0..¢)
such that for every Y that forms a b-cover with X, the factor Y is generated by (T';, s, a)
for just a constant number of a € J;. This will allow us to report each sought factor Y a
constant number of times and filter out repetitions in the end.

In the algorithm we first compute a constant number of factors Z1,...,7Z; of T length
z = [£/2] such that if (X,Y) is a b-cover, then Y contains at least one of Z1, ..., Z; as a factor.
Let Z be a factor of Y such that a+1 € Occy (Z). If i € Ocer(Z) and i —a € Ocer(Y), then
we say that the occurrence 7 of Z a-anchors the occurrence i —a of Y and that the latter is
a-anchored at the former. If Z; is aperiodic, by Observation 4, we have |Occz, (T)| = O(n/¥)
and |Occz, (Y)| = O(1) for any length-¢ string Y. In this case we will take I'; = Ocez, (T)
and J; = [0..¢ — z|. If Z; is periodic with period p, we will only be interested in factors Y’
that are periodic with the same period. In this case we will take as I'; a sufficient subset of
Occyz,(T) and set J; = [0..p). See Figure 3 for an example.

Formally, we reduce computing a b-cover of a given length to a constant number of
instances of the following problem.

PosiTioNED COVER OF LENGTH /

Input: A factor Z of T, a set of positions I' C Ocer(Z), its element v € I', and an
interval J C [0..4).

Output: Report all a € J such that Covp(X)U (| intervalse(Py)) = [1..n] for (Y, Py)
that is generated by (T, v, a), with |Y| = £.

In Section 4.3 we show how to solve this problem efficiently if |T'| = O(n/¢). Clearly:

» Observation 8. If an instance of POSITIONED COVER OF LENGTH £ for any I',v,J has a
solution (X,Y) for some a € J, then (X,Y) is a b-cover of T.

Let i be the first position of T' that is not covered by occurrences of X. Hence, ¢ has to
be covered by the second string Y of the b-cover. Let us denote

2=T00/2], Zi=Tli—z+1..d), Zo=Tli..i+z).

» Observation 9. If (X,Y) is a b-cover of length £ of T, then Zy or Zs is a factor of Y.
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Proof. Let T[j..j + £) be an occurrence of Y that covers the position i. If j <i—z+1,
then it covers the factor Z;. Otherwise, j +£ —1 > i+ z and j < 4, so it covers Zs. <

We will consider as Z each of the two factors Z;, Z5 and denote by iz the starting position
of the occurrence of Z mentioned in the definition. We can ask a two-period query [8, 35, 40]
to check if Z is periodic and, if so, compute its smallest period.

» Observation 10. If 7 is aperiodic, then Y is not 4-periodic. If Z is periodic, then either
Y is 4-periodic with the same period, or'Y is not 4-periodic.

Proof. Assume that Z is aperiodic. If Y was 4-periodic with period p, i.e., 4p < £, then p
would also be a period of its factor Z and 2p < z, so Z would be periodic.

Assume now that Z is periodic. Let p be the smallest period of Z; we have 2p < z.

Assume to the contrary that Y is 4-periodic with smallest period p’ such that p’ # p. We have
4p’ < ¢, so 2p’ < z. Then p’ is not a multiple of p, since otherwise p would have been a period
of Y. By the periodicity lemma (Fact 2), Z has period ged(p,p’) < p, a contradiction. <

In the remainder of the reduction we consider two cases depending on if Y is 4-periodic.

4.1 Reduction for non-4-periodic Y
If Z is periodic, then we try two ways of substituting it with a string that is not periodic.

» Observation 11. Assume that Z is periodic with smallest period p, Y is not 4-periodic and
an occurrence T[i..i+£) of Y contains Tliz ..iz + z). Let i’ < j' be the positions that break
the periodicity of Tliz ..iz + z). Then T[i..i 4+ £) contains at least one of the fragments
Tl . .i' +2), T[j' — 2+ 1..5).

We denote the fragments in the conclusion of the observation by Z’ and Z”, respectively.
Let us recall that if Z is periodic, the positions breaking the periodicity can be computed
using LCE queries. Hence, Z’ and Z” can be computed in O(1) time. By Fact 3, if Z’ or
7" exists, it is aperiodic. If Z is periodic, we try replacing it by Z’ or Z” (and redefine the
occurrence iz).

In total we obtain up to four aperiodic strings Z such that if Y is not 4-periodic,
its occurrence contains the occurrence T[iz ..iz + z) for at least one of them. We have
|Oce(Z)| = O(n/f) (Observation 4) and all the occurrences can be found in O(n/f) time
using IPM queries. The following lemma summarizes the above argument.

» Lemma 12. If T has a b-cover (X,Y) of length £ with non-4-periodic Y, then (Y, Py) is
generated by (T',7v,a) where T' = Oce(Z), v =iz and a € [0..4 — z], for one of up to four
aperiodic strings Z. We have |T'| = O(n/f) and T, v can be computed in O(n/L) time.

4.2 Reduction for 4-periodic Y

By Observation 10, in this case Z is necessarily periodic with the same smallest period as Y.
If we used the same reduction as in Lemma 12, we could unfortunately have |T'| = |Occ(Z)| =
O(n). We deal with this problem by choosing the first occurrence of Z in Y as an anchor
and selecting only some of the occurrences of Z in T to the set I' that are sufficient for Y to
cover all positions in Cov(Y'); see Figure 4.

» Lemma 13. If T has a b-cover (X,Y) of length ¢ with 4-periodic Y, then (Y, Py) is
generated by (T',7,a) where I' C Oce(Z) and a € [0..p), for one of up to two periodic strings
Z with smallest period p and one of up to two positions v. We have |T'| = O(n/f) and T, ~,
p can be computed in O(n/L) time.
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[babababa

[babababallbababab al

la b abfababfabababablabab

oo abllababfabatbllabadabad

cbababababababababababahb

Figure 4 Z = abab (black rectangles), Y = babababa (blue rectangles); gray color shows Couv(Y).
The occurrences of Y that are 1-anchored at marked occurrences of Z are shown and cover Cou(Y).

Proof. Let p = per(Z). We apply IPM queries to compute the set Oce(Z), represented
as a union of O(n/¢) arithmetic sequences with difference p. Let us further merge these
arithmetic sequences into maximal sequences with difference p, that we denote as Sq,..., Sk.
We note that Z[1..p] is primitive, since otherwise Z would have a smaller period. By the
synchronization property (Fact 5) for Z[1..p], we can assume that max(S;) + p < min(S;41)
fori=2,...,k, so Ele |S;| = O(n/p). Initially let I' = Occ(Z). We will show how to
prune I' by leaving O(]S;|p/¢) elements in each of the sequences S;. This will indeed give
IT'| = O(n/).

The set Occy (Z) is an arithmetic sequence with difference p and first element ¢ € [1..p).
Let m = |Occy (Z)|; we have 2 < m < ¢/p. An occurrence of Y in T implies a subsequence
of length m of consecutive elements in one of the sequences S;. Moreover, any arithmetic
sequence j,j +p,...,7+ (m+ 1)p of m 4+ 2 occurrences of Z in T implies an occurrence of
Y in T at position j +p —t + 1. (Note that a difference-p arithmetic sequence of m + 1
occurrences of Z in T does not have to imply an occurrence of Y, e.g. if T = abababab,
Z = abab and Y = babababa.)

We can now construct the pruned set I as follows. Let us consider S; = {j,j +p,...,5+
(w—=1)p}. If w+ 1 < m, then we can ignore ;. Otherwise we insert to I'":

the elements j and j + p;

all elements j +m - p -t € S; for positive integer t;

the elements j + (w —m — 1)p and j + (w — m)p.

This way O(w/m) = O(|S;|p/{) elements are inserted to I, so indeed |I"| = O(n/f).

Finally, let Sp be the arithmetic sequence that contains the position iz. Then we have
two choices for v: min(Sy) or min(Sy) + p. <

4.3 Solution to Positioned Cover problem

Let us recall the problem statement.

PosiTioNED COVER OF LENGTH /

Input: A factor Z of T, a set of positions I' C Ocer(Z), its element v € I, and an
interval J C [0..4).

Output: Report all a € J such that Covp(X)U (| intervalse(Py)) = [1..n] for (Y, Py)
that is generated by (I',v,a), with |Y| = £.

» Lemma 14. After O(n) time and space preprocessing, assuming that |I'| = O(n/{),
PosITIONED COVER OF LENGTH £ over an integer alphabet can be solved in O(nt, /¢+output)
time and O(n/l) space.
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Proof. Let A = Cov(X), A’ =[1..n]\ 4, and A C [1..n]? be the set of maximal intervals
of A. We have |A| < n/¢ and A can be computed in O(n/¢) time. Then the POSITIONED
COVER problem can be solved with the following Claim 15 for

S ={(, les(T[1..9),T[1..7)), lep(T[i..n],T[y..n])) : i €T},

where lcp and Ics is the length of the longest common prefix and the longest common suffix,
respectively. Intuitively, if (i,z,y) € S, then there is an occurrence of a length-¢ factor Y
a-anchored at i € Oce(Z) if and only if a < z and |Z| < £ —a < y. See the arrows in Figure 3.

> Claim 15. In O(n7,/¢+ output) time and O(n/¢) space one can report all a € J such
that

AU U intervals, (S, © a) = [1..n], (1)

where S! ={i : (i,z,y) € S,a <z, {—a <y}

Proof. In the algorithm we store A in a predecessor data structure D 4 sorted by the left
endpoints of intervals. We will consider all a € J in a decreasing order and store the current
set S! in a predecessor data structure Dg. However, we will only consider values of a for
which S), # S, ;. Let us note that (i,x,y) € S contributes to i € S}, for a € [( —y..x].
Hence, if this interval is non-empty, we will insert ¢ to S/ for a = z and remove it for
a=1{—y—1. We have |S| = O(n/¥), so all events of insertion and deletion to Dg can be
precomputed and sorted in O(nloglogn/¢) time using Han’s algorithm [29].
Assume that Dg is the data structure that stores S/, for all a in an interval Jy C J. Let
i € Dg and ¢’ = succ(i, Dg). We can observe that:
If K=1i..i)\ A is non-empty and (1) holds for some a € Jy, then K C[i—a..i —a+
HU —a..i! —a+0).
Hence, if [i..4") is to be covered by the left hand side of (1) for some a € Jy, we have the
following set C(i,¢’) of constraints on a (see Figure 5 in the appendix):
(@) Ifi’ —i<lor[i..i) C A, no constraints are imposed. If there are at least two intervals
from A that are fully contained in [¢..¢’), then there is no such a.
(b) Otherwise, if no interval in A is a subset of [i..4'), thena >¢ —jorf—a>j —i+1,
where j = succ(i, A’) and j' = pred(i’ — 1, A”).
(c) Otherwise, if there is an interval [u..v] € A such that [u..v] C [i..4'), thena > i —v—1
and { —a >u —1i.
The respective cases can be checked and C(i,7) can be constructed in 7, time using D 4. A
similar set of conditions can be stated for the left hand side of (1) to contain all elements
of [1..min Dg) and [max Dg ..n|; we denote the resulting constraints by C(0, min Dg) and
C(max Dg,n + 1), respectively, and insert 0 and n + 1 to S,
Let us note that each of the constraints from the set C(4,4") is a conjunction of at most
two constraints of the form a ¢ I for some interval I. Indeed,

(azz)V(e<y)eag(y..z), (@zz)N(a<y)e (@g0..2)A(ag(y..0).

When ¢ is inserted to Dg, we remove the constraints C'(i’,47"”) imposed by the pair i’ =
pred(i, Dg) and i = succ(i, Dg) and insert the constraints C'(¢',4) and C(4,4”). For every
constraint a ¢ I, we will retain the value a; of a for which it is inserted and the value as for
which it is removed. If I’ = [ay .. ag), the constraint imposes a constraint a ¢ (I N I’) on
values of a that satisfy (1).
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Overall we obtain O(n/{) constraints of the form a & I for (1) to hold. Our goal is to
report all @ € J that satisfy all the constraints, i.e., all a in the complement of the union of
the O(n/¢) intervals from the constraints. This task can be completed by a classic 1d sweep
algorithm if the endpoints of intervals from the constraints are sorted [29].

The data structure D 4 takes O(nt,/f) time to construct since |A| = O(n/f) and admits
O(n/f) queries. The data structure Dg admits O(n/f) operations. Additional sorting takes
O(nty/0) time. Finally, all values of a for which (1) is satisfied are reported in O(output)
time. The complexity follows. <

This concludes the solution to POSITIONED COVER problem. <

A single string Y can be generated by (T',v,a) with a € J from Lemma 12 a constant
number of times because Z is aperiodic, and a constant number of times from Lemma 13
because of the synchronization property. By combining Lemma 14 with Observation 8 and
the reductions of Lemmas 12 and 13, we obtain the following result and its corollary.

» Lemma 16. Let T be a string of length n over an integer alphabet. After O(n)-time and
space preprocessing, one can report all b-covers of T of a given length £, each of them O(1)
times, in O(nt,/l + output) time.

» Theorem 17. Let T be a string of length n over any ordered alphabet. All b-covers of T
can be computed in O(nty, logn + output) time and O(n) space.

Proof. Let us sort and renumber letters in T so that they are in [1..n]. This takes O(nlogn)
time. Then we apply Lemma 16 for every possible length ¢ of a b-cover. Apart from the
time to report the output, the complexity becomes Y, O(n,/¢) = O(nt, logn).
Finally, we need to make sure that each b-cover is reported only once. We can use the
inverse suffix array to sort all factors Y of a given length in the lexicographic order. The
sorting is performed globally, across all lengths, using radix sort. We can then iterate over
length-¢ strings Y in the sorted order and remove duplicates using LCE-queries. <

5 Computation of 2-covers and \-covers

We summarize the results of Theorems 7 and 17 and use efficient predecessor data structures [5,
48] to obtain the following result.

» Theorem 18. Let T be a string of length n over any ordered alphabet. All 2-covers of T' can
be computed in O(nlognloglog n+output) exzpected time or O(nlognlog® logn/logloglogn+
output) worst-case time and O(n) space.

Let us recall that there are up to n ps-covers. Moreover, the algorithm behind Lemma 16
allows one to generate as many b-covers of a given length as one requires. This shows that
indeed one can compute a 2-cover of each possible length or all the shortest 2-covers in
O(nty, logn) time.

Theorem 19 extends Theorem 18 to A-covers for any A > 2. As in the case of 2-covers, we
are only interested in computing A-covers of lengths for which 7" does not have a (A —1)-cover.

» Theorem 19. Let T be a string of length n over any ordered alphabet. For any A >
2, all A-covers of T can be computed in O(n*~'lognloglogn + output) expected time or
O(n*'lognlog?logn/ logloglog n + output) worst-case time and O(n) space.
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Proof. It suffices to give a proof for A > 3. Similarly as in the case of 2-covers, we classify
A-covers § = (X71,..., X)) into ps-A-covers, for which X; is a prefix and X» is a suffix of T,
and b-A-covers, for which X is a border of T'. (Formally, in order to compute all A-covers, in
case of ps-A-covers in the end we need to generate all tuples where the prefix and suffix of T'
are not the first two respective elements of the tuple, and similarly for b-A-covers.) The two
cases are handled similarly as ps-covers and b-covers, respectively. The number of ps-A-covers
is upper bounded by n*~!, whereas the number of b-A-covers can be ©(n*); see [23].

Let us show how to compute all ps-A-covers of a given length ¢ € [1..n]. First we use
IPM queries to compute Cou(X1) U Cov(X3), represented as a union of O(n/¢) maximal
intervals, as in Lemma 6. We LCE-queries on suffixes of the suffix array of T' to partition

positions of T" into classes C1, ..., C,, such that positions i, j belong to the same class if and
only if T[i..i+¢) =T[j..j+ £). This could be also done in O(nlogn) total time using
Crochemore’s partitioning [18]. For each of the (,™,) choices of A — 2 classes Cj,,...,Cj, _,,

if none of them corresponds to X; or X5, we compute their union B. The sets B are
computed simultaneously for several choices containing ©(n) elements in total using radix
sort in order to achieve O(|Cy, | + - -+ + |C, _,|) amortized time per choice. Within the same
time complexity we can compute the set | J intervals,(B) represented as a union of maximal
intervals. Finally, we merge this set with Cov(X;) U Cou(X3) and check if their union is
[1..n]. The time complexity for a given choice of classes is O(|C;, | + - - + |Ci,_,| + n/¥).

Over all choices, the running time is proportional to

_ m A1
3 (1Cul+-+ 10l +5) = (T;) ;lcil“F()\mQ)Z < 2”6 (2

1<i;<...<ix—2<m

The total cost of computing all classes C;, over all £ € [1..n], is O(n?) (or O(nlogn)), and
the other preprocessing (LCE and IPM) takes O(n) time. Thus the overall cost of computing
all ps-A-covers is O(n*~1logn).

Computation of b-A-covers is a similar adjustment to the computation of b-covers of a
given length. Recall that X; is a length-¢ border of T. We iterate over all (,™,) choices
of A — 2 classes Cj,,...,C;,_, which corresponds to selecting factors Xs,..., X _1 from
the b-A-cover. A selection for which X; = X; for some 7 > 1 is discarded. The set
C := Cov(X1)U---U Cov(X,_1) can be expressed as a union of O(n/¢) maximal intervals
in O(|Cy,| + -+ + |Ci,_,| + n/f) time, which is O(n*~1/¢) overall by (2).

In order to compute X,, we we make a reduction to a generalization of POSITIONED
COVER OF LENGTH ¢ in which we take C instead of Covr(X). The factors Z; and Z, are

computed as in Observation 9, by setting ¢ to the first position in 7" that is not covered by C.

This allows us to compute Z depending on if X is 4-periodic, as in Sections 4.1 and 4.2,
in O(1) time. The solution of the general POSITIONED COVER OF LENGTH £ is the same
as the one given in Lemma 14, but using C instead of Covr(X). The time complexity of
the solution is O(nr, /) plus the time needed to output b-A-covers. These steps need to be
performed for each of the ( )\TQ) < n*~2 choices of classes, which gives O(n*~17,/¢) for the
given length ¢, and O(n*~'7,logn) in total (plus output).

The complexity follows by summing the complexities of computing ps-A-covers and
b-A-covers and using efficient predecessor data structures [5, 48]. |
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6

Conclusions and open problems

We presented quasi-linear time algorithms (plus the time to report the output) for computing
2-covers of a string. One could ask if a shortest 2-cover can be computed in linear time.
A further problem is to check if the general A-cover problem parameterized by A is fixed-
parameter tractable.

One could also consider alternative definitions of 2-covers (and A-covers) in which the

factors that are to cover the text need not to be of the same length. Efficient computation of
such covers seems to be an interesting open problem. In particular, under this alternative
definition, there can be ©(n*) candidates for a 2-cover (every pair of factors).
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Figure 5 Sets of constraints C(i,i') generated depending on the interactions with intervals
I,I' € A. The respective rows correspond to items (a)—(c).
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