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Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition
to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by
Pratt: every formula with additional operators can be translated to the De Morgan basis with only
polynomial increase in size.

Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows
to write exponentially smaller formulae. Moreover, we provide a complete classification of finite
sets of Boolean operators showing they are either of no help (allow polynomial translations to the
De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication.
More precisely, these results are shown for the modal logic T (and therefore for K). We complement
this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean
operators make it possible to write significantly smaller formulae.
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1 Introduction

Many classical logics such as propositional logic, first-order and second-order logic, temporal
and modal logics incorporate a complete set of Boolean operators in their definitions – mostly
the De Morgan basis (∧, ∨, ¬). While for the expressiveness it is clearly irrelevant which
complete operator set is used, this choice may have an impact on the succinctness of formulae.
The main aim of this paper is to understand which additional operators allow to express
properties with strictly more succinct formulae.

A first simple observation is that if an additional operator defines a read-once function,
i.e., it can be expressed in the De Morgan basis in such a way that every variable occurs
at most once, then it can easily be eliminated without blowing-up the formula too much.
Thus, read-once operators such as x → y ≡ ¬x ∨ y are really just syntactic sugar. For
operators that are not read-once, such as bi-implication x ↔ y or the ternary majority
operator maj(x, y, z), the situation is less clear, because mindlessly replacing them with any
equivalent De Morgan formula may lead to an exponential explosion of the formula size. So
can it be that such additional operators actually allow to write exponentially more succinct
formulae? For propositional logic, a negative answer was given by Pratt [11]: first balance
the formula so that it has logarithmic depth and then replace the additional operators by
any De Morgan translation. This clearly leads to a linear increase in formula depth and
therefore only to a polynomial increase in formula size.
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12:2 Succinctness of Modal Logic

Balancing a formula is, however, not possible for logics that contain quantifiers. For such
logics it is still possible to efficiently remove certain operators that are not read-once. We
show that if an operator op(x1, . . . , xk) is “locally read-once”, that is, has for every i ∈ [k]
an equivalent De Morgan formula in which xi appears only once, then it can be efficiently
eliminated. While we prove this result explicitly for modal logic in Section 2, it actually
holds for other logics with quantifiers as well. An example of an operator that is locally
read-once, but not read-once, is maj(x, y, z) (see Example 3).

One of our main results is that this characterisation is tight for modal logic: for operators
that are not locally read-once, there is no way of removing them without increasing the
formula size exponentially in the worst-case. Thus, adding any operator that is not locally
read-once to the De Morgan basis allows to write exponentially more succinct formulae. One
example of such a useful operator is bi-implication x ↔ y, for which it is not hard to show
that any equivalent expression over (∧, ∨, ¬) contains x and y twice and hence it is not locally
read-once. Furthermore, we analyse the succinctness classes of modal logic wrt. polynomial
translations. Can it be that adding even more Boolean operators allows to express properties
even more succinct? Here we show that any extension of modal logic by a set of operators
containing at least one that is not locally read-once has the same succinctness. Thus there are
exactly two succinctness classes that are exponentially separated: one containing standard
modal logic and the other containing its extension by bi-implication.

Since this dichotomy is in contrast with propositional logic, where only one succinctness
class exists, we also investigate what happens for fragments of modal logic defined by
restrictions on the Kripke structures. Here we obtain the same dichotomy for structures with
a reflexive accessibility relation. But upon considering equivalence relations only, we can
show that the two succinctness classes collapse, as they do in propositional logic.

Related work. It seems that this paper is the first to consider the influence of Boolean
operators to the succinctness of modal logics. Other aspects have been studied in detail.

Pratt [11] studied the effect of complete bases of binary operators on the size of pro-
positional formulae and proved in particular that there are always polynomial translations.
Wilke [15] proved a succinctness gap between two branching time temporal logics, Adler and
Immerman [1] developed a game-theoretic method and used it to improve Wilke’s result and
to show other succinctness gaps. The succinctness of further temporal logics was considered,
e.g., in [2, 10].

Lutz et al. [9, 8] study the succinctness and complexity of several modal logics. French et
al. [3] consider multi-modal logic with an abbreviation that allows to express “for all i ∈ Γ and
all i-successors, φ holds” where Γ is some set of modalities. Using Adler-Immerman-games,
they prove (among other results in similar spirit) that this abbreviation allows exponentially
more succinct formulae than plain multi-modal logic.

Grohe and Schweikardt [5] study the succinctness of first-order logic with a bounded
number of variables and, for that purpose, develop extended syntax trees as an alternative
view on Adler-Immerman-games. These extended syntax trees were used by van Ditmarsch
et al. [14] to prove an exponential succinctness gap between a logic of contingency (public
announcement logic, resp.) and modal logic.

Hella and Vilander [6] define a formula size game (modifying the Adler-Immerman-game)
and use it to show that bisimulation invariant first-order logic is non-elementarily more
succinct than modal logic.
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2 Where “all” logics coincide

Suppose L is some classical logic like propositional logic, predicate logic, second-order
predicate logic, temporal logic (linear or branching), or modal logic. All these logics use
Boolean connectives, usually {∨,¬}, {∨,∧,¬}, {→}, or {∨,∧,¬,→,↔}. One could also
allow connectives like majority (“at least two of the statements s1, s2, and s3 are true”) or
divisibility by three (“all or none of the statements s1, s2, and s3 are true”) without changing
the expressive power. But what about the succinctness? More precisely: if, in addition
to the De Morgan basis {∨,∧,¬}, we allow Boolean connectives from the sets F and G,
respectively, is the resulting logic L[F ] more succinct than L[G]? The main result of this
section demonstrates that there are at most two “succinctness classes” (up to a polynomial),
namely the one containing plain logic L and the other one containing the extension of L
with bi-implication ↔.

Formulae. Let P be a countably infinite set of propositional variables and let B = {⊤,⊥}
be the Boolean domain where we assume ⊤ > ⊥. For a set F of Boolean functions, we let
ML[F ] be the set of all formulae in modal logic that may use operators from F in addition
to the constants ⊤ and ⊥ as well as the Boolean operators ¬,∧, and ∨. Formally, ML[F ] is
defined by the syntax

φ ::= ⊥
∣∣ ⊤

∣∣ p ∣∣ ¬φ
∣∣ (φ ∧ φ)

∣∣ (φ ∨ φ)
∣∣ f(φ, . . . , φ)

∣∣ ♢φ,
for propositional variables p ∈ P and operators f ∈ F 1. We write ML for ML[∅], the set of
formulae in standard modal logic, and ML[f ] for ML[{f}]. Furthermore, PL[F ] ⊆ ML[F ]
denotes the set of propositional formulae that may use functions from F as well; more
precisely, PL[F ] is the set of formulae from ML[F ] that do not use the operator ♢. Since we
always include the null-ary functions ⊤ and ⊥ and the unary functions p and ¬p, we can
assume that all functions in F are of arity at least two.

The size |φ| of a formula from ML[F ] is the number of nodes in its syntax tree.

Semantics. Formulae are interpreted over pointed Kripke structures, i.e., over tuples S =
(W,R, V, ι), consisting of a set W of possible worlds, a binary accessibility relation R ⊆ W×W ,
a valuation V : W → P(P ), assigning to every world in W the set of propositional variables
that are declared to be true at this world, and an initial world ι ∈ W .

The satisfaction relation |= between a world w of S and an ML[F ]-formula is defined
inductively, where

S,w |= p if p ∈ V (w),
S,w |= ♢φ if S,w′ |= φ for some w′ ∈ W with (w,w′) ∈ R, and
S,w |= f(α1, . . . , αk) if f(b1, . . . , bk) = ⊤ where, for all i ∈ [k], bi = ⊤ iff S,w |= αi

(the definitions of S,w |= φ for φ ∈ {⊤,⊥,¬α, α ∨ β, α ∧ β} are as expected). A pointed
Kripke structure S is a model of φ (S |= φ) if φ holds in its initial world, i.e., S, ι |= φ.

Now let C be some class of pointed Kripke structures. A formula φ is satisfiable in C if it
has a model in C and φ holds in C if every structure from C is a model of φ. The formula φ
entails the formula ψ in C (written φ |=C ψ) if any model of φ from C is also a model of ψ; φ
and ψ are equivalent over C (denoted φ ≡C ψ) if φ |=C ψ and ψ |=C φ.

1 Depending on the context, we consider an element f ∈ F as a Boolean function or as a symbol in a
formula.

STACS 2024



12:4 Succinctness of Modal Logic

Classes of Kripke structures. For different application areas (i.e., interpretations of the
operator ♢), the following classes of Kripke structures have attracted particular interest. For
convenience, we define them as classes of pointed Kripke structures.

The class SK of all pointed Kripke structures.
The class ST of all pointed Kripke structures with reflexive accessibility relation.
The class SS5 of pointed Kripke structures where the accessibility relation is an equivalence
relation.

Suppose φ is a propositional formula. Then S, ι |= φ only depends on the set V (ι) of
variables that hold in the world ι. Thus, instead of evaluating propositional formulae (as
special modal formulae) in Kripke structures, it suffices to evaluate them (as is usually done)
in sets of propositional variables or, equivalently, mappings from the set of variables into the
Boolean domain B.

▶ Definition 1 (Translations). Let F and G be sets of Boolean functions, C a class of pointed
Kripke structures, and κ : N → N some function. Then ML[F ] has κ-translations wrt. C in
ML[G] if, for every formula φ ∈ ML[F ], there exists a formula ψ ∈ ML[G] with φ ≡C ψ and
|ψ| ≤ κ(|φ|).

The logic ML[F ] has polynomial translations wrt. C in ML[G] if it has κ-translations
wrt. C for some polynomial function κ; sub-exponential and exponential translations are
defined similarly.

In this section, we aim at sufficient conditions for the existence of polynomial translations
wrt. SK of ML[F ] in ML[G], i.e., we will always consider the class of all pointed Kripke
structures. For notational convenience, we will regularly omit the explicit reference to
the class SK, e.g., “equivalent” means “equivalent over SK”, φ |= ψ means φ |=SK ψ, and
“κ-translations” means “κ-translations wrt. SK”.

In this paper, [n] = {1, 2, . . . , n} for all n ∈ N.

2.1 Polynomial translations
Suppose F and G are sets of Boolean functions. Recall that formulae from ML[F ] can use
operators from F as well as ¬,∧, and ∨ (and similarly for ML[G]). Since the De Morgan
basis is complete, for every function f ∈ F , there is some formula ω ∈ PL ⊆ ML[G] such
that the formulae f(p1, . . . , pk) and ω(p1, . . . , pk) are equivalent. Consequently, to translate
a formula φ ∈ ML[F ] into a formula ψ ∈ ML[G], we only need to replace every sub-formula
f(α1, . . . , αk) in φ by ω(α1, . . . , αk). In general, this translation leads to an exponential size
increase. But if, in the formula ω, every variable pi appears only once, we obtain a linear
translation. In this section, we provide polynomial (and in general non-linear) translations
of ML[F ] in ML[G] under the following weaker assumption.

▶ Definition 2 (Representations). Let G be a set of Boolean functions, f a Boolean operator
of arity k, and i ∈ [k].

A PL[G]-representation of (f, i) is a PL[G]-formula ωi(p1, . . . , pk) that is equivalent to
the PL[f ]-formula f(p1, . . . , pk) and uses the variable pi at most once.

A set F of Boolean functions has PL[G]-representations if there are PL[G]-representations
for all f ∈ F and i ∈ [ar(f)].

▶ Example 3. Consider the majority function maj(p, q, r) that is true iff at least two
arguments are true. Then (maj, 1) has the PL-representation

(
p ∧ (q ∨ r)

)
∨ (q ∧ r). Using

the symmetry of maj, it follows that {maj} has PL-representations.
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p2 f
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p3 p4
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p5 p6
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p2 p3
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p5 p6

Figure 1 Syntax trees of φ = f(p1, p2∨f(p3∧p4, f(p5, p6)) and ψ = f(p1∨f(p2, p3), f(p4, p5∧p6)).

Next, consider bi-implication ↔, where the following observation seems folklore: if the
PL-formula ψ(p, q) is equivalent to p ↔ q and mentions p only once (say, under an even
number of negations), then ⊤ ≡ (⊥ ↔ ⊥) ≡ ψ(⊥,⊥) ≤ ψ(⊤,⊥) ≡ ⊥, a contradiction.

Assuming that F has PL[G]-representations, we will construct, from a formula in ML[F ],
an equivalent formula in ML[G] of polynomial size. Since this will be done inductively, we
will have to deal with formulae from ML[F ∪ G] and the task then is better described as
elimination of functions f ∈ F from formulae in ML[F ∪G].

Before we present the details of our construction, we briefly demonstrate the main idea
behind the proof (for F = {f} and G = ∅). The main results (Lemma 7 and Proposition 8)
will appear at the end of the section.

Assume that f is of arity 2 and consider the two formulae

φ = f
(
p1, p2 ∨ f

(
p3 ∧ p4, f(p5, p6)

) )
and ψ = f

(
p1 ∨ f(p2, p3), f(p4, p5 ∧ p6)

)
,

whose syntax trees are depicted in Fig. 1. A distinguishing property of the left tree is
the existence of a branch (a path from the root to a leaf) that contains all F -vertices.
Assuming f to have PL[G]-representations (with G = ∅), there exist Boolean combinations
ω1(x, y) ≡ ω2(x, y) ≡ f(x, y) of the variables x and y, such that x occurs only once in ω1(x, y)
and y only once in ω2(x, y). Proceeding bottom-up, we now replace each F -vertex f(α, β) in
the syntax tree of φ by either ω1(α, β) or ω2(α, β), depending on whether we have previously
modified the left or the right sub-tree (regarding f(p5, p6), we are free to choose between ω1
and ω2). Note that, although ω1 and ω2 may duplicate some parts of φ, our choice ensures
that we never duplicate such parts whose size has already changed. Consequently, this
procedure results in a linear increase ℓ · |φ| in the size of φ, where the coefficient ℓ essentially
depends on how often y occurs in ω1(x, y) and how often x occurs in ω2(x, y). The resulting
formula φ′ belongs to ML[G] and is equivalent to φ. Hence ML[F ∪G]-formulae for which
all F -vertices lie on some common branch have ML[G]-translations of linear size.

The formula ψ on the other hand does not have the property that all F -vertices lie
on some common branch, but the two sub-formulae α and β rooted at the children of
the root do. Hence we can apply the above transformation to them separately, yielding
equivalent ML[G]-formulae α′ and β′ whose size increases at most by a factor of ℓ. Then
ψ′ = f(α′, β′) ≡ ψ is of size |ψ′| ≤ ℓ · |ψ|. Note that this step reduces the total number of F
vertices – in particular, ψ′ now contains only a single operator from F . Applying the step
again yields an equivalent ML[G]-formula ψ′′ of size |ψ′′| ≤ ℓ · |ψ′| ≤ ℓ2 · |ψ|. For arbitrary
ML[F ∪G]-formulae, the number of steps relates to the “nesting depth” D of those F -vertices
that have at least two arguments in ML[F ∪G] \ ML[G], thus resulting in a formula of size
ℓD · |ψ|. In this section, we will show that D is at most logarithmic in the size of ψ, thus
giving a polynomial bound and establishing the main part of the succinctness result.
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12:6 Succinctness of Modal Logic
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Figure 2 Syntax trees of φ = f
(
f
(
f(p, p′), f ′(p, p)

)
, p′ ∧ f ′(p, p)

)
, dF (φ) = f

(
f(q1, q2), q3

)
, and

d2
F (φ) = q′

1.

Let F and G be disjoint sets of Boolean functions and let NF,G ⊆ ML[F ∪G] be described
by the syntax

φ ::= ψ
∣∣ (φ ∧ φ)

∣∣ (φ ∨ φ)
∣∣ ¬φ

∣∣ f(ψ, . . . , ψ, φ, ψ, . . . , ψ)
∣∣ g(φ, . . . φ)

∣∣ ♢φ,
where ψ ∈ ML[G], f ∈ F , and g ∈ G. The formulae from NF,G have a slightly more general
property than ψ in the example above. More precisely, a formula φ belongs to NF,G if, and
only if, for any sub-formula f(α1, . . . , αk) of φ with f ∈ F , at most one αi contains some
operator from F . Conjunction, disjunction, and operators from G on the other hand may
have occurrences of operators from F in any number of arguments.

▶ Definition 4 (Derivative). Let φ = φ(p) ∈ ML[F ∪ G] with p = (p1, . . . , pm). The F -
derivative dF (φ) of φ is the smallest ML[F ∪G]-formula γ(p, q1, . . . , qn) (up to renaming of
the variables q1, . . . , qn), such that

qi occurs exactly once in γ(p, q1, . . . qn) for all i ∈ [n] and
there exist α1, . . . , αn ∈ NF,G \ ML[G] such that φ and γ(p, α1, . . . , αn) are identical.

Intuitively, γ(p, q1, . . . , qn) is obtained from φ(p) by simultaneously replacing all “maximal
(NF,G \ ML[G])-formulae” by distinct fresh variables q1, . . . , qn (where multiple occurrences
of the same formula are replaced by different variables). An example is depicted in Fig. 2
(with F = {f, f ′} and G = ∅).

Let φ ∈ ML[F ∪ G] \ ML[G]. Then dF (φ) contains fewer occurrences of operators
from F than φ. Hence there exists a smallest integer r ≥ 0 for which the r-th derivative
drF (φ) = dF (dF (· · · dF (φ) · · · )) is an ML[G]-formula, where d0

F (φ) = φ.

▶ Definition 5 (Rank). Let φ ∈ ML[F ∪ G]. The F -rank rankF (φ) of φ is the smallest
integer r ≥ 0 for which drF (φ) ∈ ML[G].

We first show that a formula with high F -rank must also be large.

▶ Lemma 6. Let F and G be disjoint sets of Boolean functions and φ ∈ ML[F ∪G]. Then
|φ| ≥ 2rankF (φ).

Proof. Recall that we can assume that all functions in F have arity at least 2. Since we only
refer to the F -rank of a formula, we will simply speak of the rank of a formula.

We prove the stronger claim that the syntax tree of a formula φ of positive rank has at
least 2rankF (φ)−1 sub-trees of the form f(β1, . . . , βk) with f ∈ F and β1, . . . , βk ∈ ML[G] (in
the following, we call such a sub-tree an F -leaf ).

Since counting the F -leaves in all derivatives of φ results in a lower bound on the total
number of operators from F in φ, it follows that φ contains at least 1+2+ . . .+2rankF (φ)−1 =
2rankF (φ) − 1 operators from F . Hence |φ| ≥ 2rankF (φ) since none of the functions in F has
arity zero.



C. Berkholz, D. Kuske, and C. Schwarz 12:7

It now remains to prove the bound on the number of F -leaves. Recall that we consider
formulae of rank at least one. If rankF (φ) = 1, φ contains at least one operator from
F and hence has at least 21−1 = 1 F -leaf. Now, assume that φ = φ(p) is of rank at
least two. Let γ(p, q1, . . . , qn) be the derivative of φ, and let α1, . . . , αn ∈ NF,G such that
φ = γ(p, α1, . . . , αn). Then, for every F -leaf f(β1, . . . , βk) of γ(p, q1, . . . , qn), there exist
indices i ̸= j such that βi, βj ∈ {q1, . . . , qn}. By induction hypothesis, γ(p, q1, . . . , qn) has
at least 2rankF (φ)−2 F -leaves, each of which contains at least two of the fresh variables
{q1, . . . , qn}. Since each αi contains at least one operator from F , φ = γ(p, α1, . . . , αn) has at
least twice the number of F -leaves compared to γ(p, q1, . . . , qn), i.e., 2rankF (φ)−1 F -leaves. ◀

We can now turn to the main ingredient for our succinctness result.

▶ Lemma 7. Let F and G be disjoint sets of Boolean functions and, for f ∈ F and
i ∈ [ar(f)], let ωf,i ∈ PL[G] be a PL[G]-representation of (f, i). Let, furthermore, κ : N → N
be a monotone function such that 1 ≤ κ(1) and |ωf,i| ≤ κ(ar(f)) for any f ∈ F and i ∈ [ar(f)].
Finally, let κ′ : N → N : n 7→ κ(n)log2 n · n.

Then ML[F ∪G] has κ′-translations in ML[G].

Proof. For φ ∈ ML[F ∪G], let Kφ denote the maximal arity of any f ∈ F occurring in φ

(or 1 if φ ∈ ML[G]). Note that κ(Kφ) ≥ 1 for all φ ∈ ML[F ∪G].
We prove the following claim: every φ ∈ ML[F ∪G] is equivalent to an ML[G]-formula of

size at most
(
κ(Kφ)

)rankF (φ) · |φ|. Since Kφ ≤ |φ| and rankF (φ) ≤ log2 |φ| by Lemma 6, this
claim ensures that every ML[F ∪G]-formula φ of size n has an equivalent ML[G]-formula of
size at most κ(n)log2 n · n = κ′(n).

The proof of the claim proceeds by induction on the F -rank of φ. Since F remains fixed,
we will refer to the F -rank simply as rank. As before, we assume that all operators in F are
at least binary.

Let φ ∈ ML[F ∪ G] be of rank at most one. We show by induction on the structure
of φ that there exists an equivalent ML[G]-formula φ′ of size |φ′| ≤ κ(Kφ) · |φ|. If φ is a
propositional variable or one of the constants ⊤ or ⊥, |φ| = 1 ≤ κ(1) · |φ| since κ(1) ≥ 1.

Now, assume that φ = α1 ∧ α2. By induction hypothesis, there exist ML[G]-formulae
β1, β2 with |βj | ≤ κ(Kαj ) · |αj | and βj ≡ αj for j ∈ [2]. Since κ is monotone and Kαj ≤ Kφ,
|βj | ≤ κ(Kαj

) · |αj | ≤ κ(Kφ) · |αj | for j ∈ [2]. Set φ′ = β1 ∧β2. Then φ′ is an ML[G]-formula,
equivalent to φ, and of size

|φ′| = |β1| + |β2| + 1 ≤ κ(Kφ) · (|α1| + |α2|) + 1 ≤ κ(Kφ) · |φ| , since κ(Kφ) ≥ 1.

A similar argument establishes the cases α1 ∨ α2, ¬α, ♢α, and g(α1, . . . , αn) for g ∈ G.
Finally, assume that φ is of the form f(α1, . . . , αk) with f ∈ F . Since φ is of rank

one and therefore a formula in NF,G, there exists an index i ∈ [k] such that no argument
other than αi contains an operator from f , i.e., with αj ∈ ML[G] for all j ̸= i (and
αi ∈ ML[F ∪G]). By induction hypothesis, αi is equivalent to an ML[G]-formula βi of size
|βi| ≤ κ(Kαi

) · |αi| ≤ κ(Kφ) · |αi|. Set βj = αj for all j ̸= i. Then β1, . . . , βk ∈ ML[G].
Recall that ωf,i(p1, . . . , pk) is a PL[G]-representation of (f, i) that uses the variable pi at
most once and has size ≤ κ(k) ≤ κ(Kφ). Set φ′ = ωf,i(β1, . . . , βk). Then φ′ is equivalent to
f(α1, . . . , αk) = φ and belongs to ML[G]. Furthermore, φ′ is obtained from ωf,i(p1, . . . , pk)
by replacing one variable with βi and all others with formulae of size at most

∑
j ̸=i |βj |.

Since all functions in F are at least binary, it follows that
∑
j ̸=i |βj | ≥ 1. Hence

STACS 2024



12:8 Succinctness of Modal Logic

|φ′| = |ωf,i (β1, . . . , βk)|

≤ |βi| + κ(k) ·
∑

j∈[k]\{i}

|βj | , since
∑

j∈[k]\{i}

|βj | ≥ 1

≤ κ(Kφ) · |αi| + κ(Kφ) ·
∑

j∈[k]\{i}

|αj |

≤ κ(Kφ) · |f(α1, . . . , αk)| = κ(Kφ) · |φ|.

This shows the claim for formulae of rank at most one.
We proceed by induction on the rank of φ. Let φ = φ(p) ∈ ML[F ∪G] be of rank r ≥ 2.

Let γ(p, q1, . . . , qn) be the derivative of φ(p) and α1, . . . , αn be NF,G-formulae, such that
φ = γ(p, α1, . . . , αn). Since the αi are of rank one, there exist β1, . . . , βn ∈ ML[G] with
αi ≡ βi and |βi| ≤ κ(Kαi) · |αi| ≤ κ(Kφ) · |αi| for i ∈ [k]. Set ψ = ψ(p) = γ(p, β1, . . . , βk).
Then ψ is equivalent to φ and of size |ψ| ≤ κ(Kφ) · |φ|. Intuitively, ψ is obtained from φ by
replacing the “maximal” ML[F ∪G] sub-formulae of rank 1 by equivalent ML[G]-formulae.
Since ψ is of rank r − 1, it follows by induction hypothesis that ψ is equivalent to a formula
φ′ ∈ ML[G] of size |φ′| ≤ κ(Kψ)r−1 · |ψ| ≤ κ(Kφ)r · |φ|. Since φ ≡ ψ ≡ φ′, this finishes the
verification of the claim from the beginning of this proof. ◀

From Lemma 7, we can get the main result of this section, stating that ML[F ∪ G]
is not more succinct than ML[G], provided F is a finite set of Boolean functions with
PL[G]-representations.

▶ Proposition 8. Let F and G be disjoint finite sets of Boolean functions such that F has
PL[G]-representations. Then ML[F ∪G] has polynomial translations in ML[G].

Since ML[F ] ⊆ ML[F ∪G], this implies in particular that ML[F ] has polynomial transla-
tions in ML[G]. In view of Example 3, it ensures specifically that ML[maj] has polynomial
translations in plain ML.

Proof. Since F is finite, there is some constant c such that any f ∈ F and i ∈ [ar(f)] have
a PL[G]-representation of size at most c. By the previous lemma, any φ ∈ ML[F ∪ G] is
thus equivalent to an ML[G]-formula of size at most clog2 |φ| · |φ| = |φ|1+log2 c ≤ |φ|d for some
constant d. ◀

2.2 A decidable characterisation of representations
Proposition 8 gives a condition (“has PL[G]-representations”) for the existence of polynomial
translations. In this section, we demonstrate that this condition is decidable.

▶ Definition 9 (Local monotonicity). A Boolean function f : Bk → B is monotone in the i-th
argument if either
(M1) for all a ∈ Bi−1, b ∈ Bk−i, f(a,⊥, b) ≤ f(a,⊤, b) or
(M2) for all a ∈ Bi−1, b ∈ Bk−i, f(a,⊥, b) ≥ f(a,⊤, b).

That is, when changing the i-th argument from ⊥ to ⊤, while keeping the remaining ones
fixed, the truth value of f uniformly increases or decreases (where, in both cases, the value
may also remain unchanged). A function is called locally monotone if it is monotone in every
argument and non-locally-monotone otherwise. Then conjunction, disjunction, negation,
implication, as well as majority are locally monotone functions, while bi-implication is not.
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▶ Proposition 10. Let F and G be disjoint sets of Boolean functions. Then F has PL[G]-
representations if, and only if, all functions in F are locally monotone or some function from
G is non-locally-monotone.

Proof. First, suppose that all functions in F are locally monotone. We prove that, under
this assumption, F even has PL-representations, which ensures the claim since PL ⊆ PL[G].
So, let f ∈ F be of arity k (as before, we can assume k ≥ 2). To simplify notation, we will
only construct a PL-representation of (f, k). In addition, we assume that f is increasing
in the k-th argument, i.e., f(a,⊥) ≤ f(a,⊤) for all a ∈ Bk−1. There exists a PL-formula
ω(x1, . . . , xk) that is equivalent to f(x1, . . . , xk). Since f(a,⊥) ≤ f(a,⊤) for any a ∈ Bk−1,
it follows that

f(x1, . . . , xk) ≡
(
ω(x1, . . . , xk−1,⊤) ∧ xk

)
∨ ω(x1, . . . , xk−1,⊥) .

In particular, the formula on the right uses the variable xk only once and therefore forms a
PL-representation of (f, k).

Next, suppose there is some g ∈ G that is non-locally-monotone. We have to provide
PL[G]-representations for all functions f ∈ F . So let f ∈ F be arbitrary and of arity k; for
notational simplicity, we prove that there is some PL[G]-representation of (f, k).

Let A denote the set of tuples a ∈ Bk−1 with f(a,⊤) = f(a,⊥) = ⊤ and let B denote
the set of tuples b ∈ Bk−1 with f(b,⊤) > f(b,⊥). Let x ∈ A abbreviate the PL-formula

∨
a∈A

 ∧
i∈[k−1],ai=⊤

xi ∧
∧

i∈[k−1],ai=⊥

¬xi


and let x ∈ B be defined likewise. Then the formula f(x, xk) is equivalent to the formula

x ∈ A ∨
(
x /∈ A ∧ (x ∈ B ↔ xk)

)
, (1)

which belongs to PL[↔] (and mentions the variable xk only once).
Let ℓ be the arity of the function g ∈ G and suppose, for notational simplicity, that it is

not monotone in its last argument. Hence there are a, b ∈ Bℓ−1 such that g(a,⊥) < g(a,⊤)
and g(b,⊥) > g(b,⊤). For i ∈ [ℓ− 1], set

θi =


ai if ai = bi

x ∈ B if ai > bi

x /∈ B if ai < bi

and write θ for the tuple (θi)i∈[ℓ−1]. Note that, for all i ∈ [ℓ−1], θi is equivalent to ai if x ∈ B,
and to bi if x /∈ B. By choice of a and b it follows that the formulae (x ∈ B ↔ xk) ∈ PL[↔]
and g(θ, xk) ∈ PL[G] are equivalent. We finally replace (x ∈ B ↔ xk) in the formula (1) by
g(θ, xk) which yields the PL[G]-representation x ∈ A ∨ (x /∈ A ∧ g(θ, xk)) of (f, k).

It remains to be shown that the existence of PL[G]-representations implies that (i) or (ii)
holds. So assume that F has PL[G]-representations and that (ii) does not hold, i.e., that
all functions from G are locally monotone. We prove by induction on the size of a formula
φ(p1, . . . , pk) ∈ PL[G] the following: if the variable pk appears only once in φ, then the
function represented by φ is monotone in its k-th argument. The claim is trivial for formulae
of the form ⊤, ⊥, and pi.
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For the induction step, let φ = g(α1, . . . , αℓ) with g ∈ G. Since the formula φ contains
the variable pk only once, it appears in at most one of the arguments αi; for notational
simplicity, we assume it appears in αℓ. By the induction hypothesis, there is ⊗ ∈ {≤,≥}
such that

∀a ∈ Bℓ−1 : αℓ(a,⊥) ⊗ αℓ(a,⊤) . (2)

Since we assumed all functions from G to be locally monotone, there also is ⊙ ∈ {≤,≥} such
that

∀a ∈ Bℓ−1 : g(α1(a), . . . , αℓ−1(a),⊥) ⊙ g(α1(a), . . . , αℓ−1(a),⊤) . (3)

Putting (2) and (3) together, we obtain

∀a ∈ Bℓ−1 : φ(a,⊥) ≤ φ(a,⊤) if ⊗ = ⊙, and
∀a ∈ Bℓ−1 : φ(a,⊥) ≥ φ(a,⊤) if ⊗ ≠ ⊙ .

Intuitively, ⊙ indicates whether φ increases (when going from ⊥ to ⊤ in the last argument
of g, i.e., in αℓ), while ⊗ may flip the direction if the truth-value of αℓ decreases, when
increasing pk. Hence, the formula φ represents a function that is locally monotone in its last
argument provided φ is of the form g(α1, . . . , αℓ) for some g ∈ G. The arguments are similar
if φ is of the form α1 ∧ α2, α1 ∨ α2, or ¬α1.

This finishes the inductive proof.
Recall that F has PL[G]-representations. Since each PL[G]-representation of (f, i) de-

scribes a function (namely f) that is monotone in the i-th argument, we obtain that all
functions from F are locally monotone, which completes the proof. ◀

Now Propositions 8 and 10 yield the following central result.

▶ Theorem 11. Let C be some class of pointed Kripke structures. Let F and G be disjoint
finite sets of Boolean functions such that all functions from F are locally monotone or some
function from G is non-locally-monotone. Then ML[F ] has polynomial translations wrt. C in
ML[G].

Proof. By the assumptions on F and G, F has PL[G]-representations by Proposition 10.
Hence, by Proposition 8, ML[F ] has polynomial translations wrt. SK in ML[G], i.e., for any
formula φ ∈ ML[F ], there exists a formula ψ ∈ ML[G] of polynomial size with φ ≡SK ψ.
Since C ⊆ SK, this implies φ ≡C ψ. Hence, indeed, ML[F ] has polynomial translations wrt. C
in ML[G]. ◀

As we have mentioned at the beginning of this section, all the results also hold for
other logics L such as predicate logic, second-order predicate logic, temporal logic (linear or
branching), and probably many more. Suppose that some function from G is non-locally-
monotone. Since ↔ is non-locally-monotone, it follows that L[G] and L[↔] have polynomial
translations in each other, i.e., they are equally succinct (up to a polynomial). Similarly, if all
functions from G are locally monotone, then L[G] and L = L[∅] have polynomial translations
in each other since all functions from ∅ are locally monotone. In other words, for any set of
Boolean functions G, L[G] is as succinct as L[↔] or as L.

Thus, the situation looks similar for many logics: there are at most two “succinctness
classes”. For propositional logic, it was shown by Pratt [11] that also PL[↔] has polynomial
translations in PL, i.e., that there is just one such class. In the following section, we will
show that, whether or not modal logic has two “succinctness classes”, depends on the class
of Kripke structures.



C. Berkholz, D. Kuske, and C. Schwarz 12:11

3 Where modal logics diverge

So far, we saw that for many logics L, there are at most two “succinctness classes” (up to a
polynomial), namely those of L and L[↔], respectively. In this section, we will show that
these classes differ for the modal logic T (and hence also for K) but coincide for the modal
logic S5. We will therefore, from now on, be precise and return to the original notation, i.e.,
write ≡SK instead of ≡ etc.

3.1 Where the “succinctness classes” differ
Our aim in this section is to show that ML[↔] is exponentially more succinct than ML.
Formally, we prove ML[↔] does not have sub-exponential translations wrt. ST in ML (recall
that ST is the class of pointed Kripke structures with reflexive accessibility relation).

▶ Lemma 12. The logic ML[↔] does not have sub-exponential translations wrt. ST in ML.

Proof. Let φ0 = p0 and φn+1 = pn⊕1 ∧ (p ↔ ♢φn) for n ≥ 0, where m⊕n := (m+n) mod 2.
We will prove that |ψ| ≥ 2n for any n ≥ 0 and any ψ ∈ ML with ψ ≡ST φn. Since |φn| is
linear in n, this ensures the lemma’s claim.

In this proof, we use the following notation. Let ψ ∈ ML be any ML-formula. Then ψ is
a Boolean combination of formulae of the form ⊤, ⊥, p ∈ P , and ♢λ with λ ∈ ML. By Eψ,
we denote the set of all formulae λ ∈ ML such that ♢λ appears in this Boolean combination
with even negation depth. Similarly, Oψ denotes the set of all formulae λ ∈ ML such that
♢λ appears in this Boolean combination with odd negation depth.

A more formal definition proceeds as follows by induction:

Eψ =


∅ if ψ ∈ {⊤,⊥} ∪ P

{λ} if ψ = ♢λ, λ ∈ ML
Oα if ψ = ¬α
Eα ∪ Eβ if ψ ∈ {α ∧ β, α ∨ β}

Oψ =


∅ if ψ ∈ {⊤,⊥} ∪ P

∅ if ψ = ♢λ, λ ∈ ML
Eα if ψ = ¬α
Oα ∪Oβ if ψ ∈ {α ∧ β, α ∨ β}

We now show, by induction on n, that any ML-formula ψ with ψ ≡ST φn satisfies |ψ| ≥ 2n.
Since φn uses (at most) the propositional variables p, p0, and p1, we can assume the same
about ψ.

The case n = 0 is easy to see since any formula has size at least 1 = 20. Let now n ≥ 0
and consider the formula φn+1 = pn⊕1 ∧ (p ↔ ♢φn) and assume there were an ML-formula
ψ ≡ST φn+1 that satisfies |ψ| < 2n+1.

Note that, although the sets Eψ and Oψ may have non-empty intersection,∣∣∣∨Eψ

∣∣∣ +
∣∣∣∨Oψ

∣∣∣ ≤ |ψ| < 2n+1 ,

hence at least one of these disjunctions must be of size < 2n.

Case 1: |
∨

Oψ| < 2n. Then, by the induction hypothesis, φn ̸≡ST

∨
Oψ. Let m denote

the size of the formula φn ∧ ¬ψ.
Let α be a formula from ML that is satisfiable in ST, of size at most m, and that uses

no propositional variables other than p, p0, p1. Then α has a model Aα ∈ ST that uses, at
most, the propositional variables from α. Since there are only finitely many such formulae α,
there exists a finite set Cm ⊆ ST of pointed Kripke structures such that every ML-formula
has a model in Cm, provided it is satisfiable in ST, of size at most m, and uses at most the
propositional variables from {p, p0, p1}.
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ι

ι′

B1
B2

. . .

Br

A ι1 ι2 ιr

ιA

Figure 3 Schematic representation of Kripke structure S with V (ι) = V (ι′) = {pn⊕1}.

Let O+
ψ be the set of formulae λ from Oψ with λ |=ST φn. Since

∣∣∣∨O+
ψ

∣∣∣ ≤ |
∨
Oψ| < 2n,

the induction hypothesis ensures
∨
O+
ψ ̸≡ST φn. On the other hand,

∨
O+
ψ |=ST φn, hence

the formula φn ∧ ¬
∨
O+
ψ is satisfiable in ST and of size at most m. Consequently, there

exists a structure A = (WA, VA, RA, ιA) ∈ Cm with A |= φn but A ̸|=
∨
O+
ψ .

Let B1, . . . , Br ∈ Cm with Bi = (Wi, Ri, Vi, ιi) be the models of ¬φn from Cm. We assume
that the sets Wi for i ∈ [r] and WA are mutually disjoint.

We now define a Kripke structure S = (W,R, V ) ∈ ST as follows (cf. Fig. 3):

W = {ι, ι′} ⊎
⋃
i∈[r]

Wi ∪WA

R =
{

(ι, ι), (ι, ι′), (ι′, ι′), (ι, ιA)
}

∪
(
{ι, ι′} × {ιi | i ∈ [r]}

)
∪

⋃
i∈[r]

Ri ∪RA

V (w) =


{pn⊕1} if w ∈ {ι, ι′}
Vi(w) if w ∈ Wi for some i ∈ [r]
VA(w) if w ∈ WA

From S, we obtain the pointed Kripke structures (S, ι) and (S, ι′) by choosing the initial
world as ι and ι′ respectively. Note that both structures belong to ST since the accessibility
relation R is reflexive. Our aim is to prove (S, ι) |= ¬φn+1 ∧ ψ, which contradicts the
equivalence of φn+1 and ψ.

First, we show (S, ι) |= ¬φn+1. Recall that A |= φn and therefore (S, ιA) |= φn. From
(ι, ιA) ∈ R, we obtain (S, ι) |= ¬p ∧ ♢φn, implying (S, ι) |= ¬φn+1.

To prove (S, ι) |= ψ, we first show (S, ι′) |= φn+1, implying (S, ι′) |= ψ since we assumed
φn+1 ≡ST ψ. From this, we will infer that also (S, ι) |= ψ.

Recall that Bi |= ¬φn and therefore (S, ιi) |= ¬φn for all i ∈ [r]. Furthermore, (S, ι′) |=
¬pn mod 2 implies (S, ι′) |= ¬φn. Since {ι′, ιi | i ∈ [r]} is the set of worlds accessible from ι′,
this implies (S, ι′) |= ¬♢φn. Since, in addition, (S, ι′) |= pn⊕1 ∧ ¬p, we obtain (S, ι′) |= φn+1.
Now φn+1 ≡ST ψ and (S, ι′) ∈ ST imply (S, ι′) |= ψ.

The final step in our proof is the verification of (S, ι) |= ψ. Recall that ψ is a Boolean
combination of atomic formulae and of formulae ♢λ with λ ∈ Oψ ∪ Eψ. Note that (S, ι) and
(S, ι′) agree in the atomic formulae holding there. Since Oψ and Eψ are the formulae ♢λ
appearing in the Boolean combination with odd and even, respectively, negation depth, it
suffices to show the following:
1. If λ ∈ Eψ with (S, ι′) |= ♢λ, then (S, ι) |= ♢λ.
2. If λ ∈ Oψ with (S, ι′) ̸|= ♢λ, then (S, ι) ̸|= ♢λ.

To demonstrate the former, suppose λ ∈ Eψ with (S, ι′) |= ♢λ. Then (S, ι′) |= λ or there
is i ∈ [r] with (S, ιi) |= λ. Since (ι, ι′) ∈ R and (ι, ιi) ∈ R, we obtain (S, ι) |= ♢λ in either
case.
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To demonstrate the second claim regarding λ ∈ Oψ, we proceed by contraposition: so let
λ ∈ Oψ with (S, ι) |= ♢λ. Here, we distinguish two cases.

Suppose λ |=ST φn, i.e., λ ∈ O+
ψ . From (S, ι) |= ♢λ, we obtain that the formula λ holds

in one of the worlds ι, ι′, ιA, or ιi for some i ∈ [r]. But (S, ιA) |= λ implies A |= λ, which
is impossible since A ̸|=

∨
O+
ψ and λ ∈ O+

ψ . But also (S, ιi) |= λ and therefore Bi |= λ is
impossible since λ |=ST φn, Bi ∈ ST, and Bi |= ¬φn. Consequently, the formula λ holds
in one of the worlds ι and ι′. Again using λ |=ST φn, we obtain that also φn holds in
ι or in ι′. But this cannot be the case since pn mod 2 does not hold in either of the two
worlds – a contradition. This finishes the verification of the second claim above in case
λ ∈ O+

ψ ⊆ Oψ.
Finally, the case λ ̸|=ST φn remains to be considered. But then the formula λ ∧ ¬φn is
satisfiable in ST. Since the size of this formula is bounded by m, there is some pointed
Kripke structure B ∈ Cm with B |= λ∧ ¬φn. The choice of the pointed Kripke structures
B1, . . . Br implies B = Bi for some i ∈ [r]. Hence (S, ιi) |= λ. From (ι′, ιi) ∈ R, we obtain
(S, ι′) |= ♢λ.

This finishes the proof of the two numbered claims above. As explained there, they imply
(S, ι) |= ψ.

So, we proved (S, ι) |= ¬φn+1 ∧ ψ in case
∣∣∨Oψ

∣∣ < 2n contradicting the equivalence of
φn+1 and ψ.

Case 2: |
∨

Eψ| < 2n. We consider the formula ¬pn⊕1 ∨
(
(¬p) ↔ ♢φn

)
≡SK ¬φn+1 ≡ST

¬ψ. Observe that O¬ψ = Eψ, such that |
∨
O¬ψ| < 2n. Hence we can use the same argument

as before for ¬ψ to obtain a contradiction: simply label the worlds ι and ι′ with {p, pn⊕1}
instead of {pn⊕1}. ◀

We now come to the classification of modal logics ML[F ] that have polynomial translations
in ML.

▶ Theorem 13. Let C be either of the classes SK or ST. Let F be a finite set of Boolean
functions. Then the following are equivalent:
(1) All functions from F are locally monotone.
(2) The set F has PL-representations.
(3) ML[F ] has polynomial translations wrt. C in ML.
(4) ML[↔] does not have sub-exponential translations wrt. C in ML[F ].
(5) ML[↔] does not have polynomial translations wrt. C in ML[F ].

Proof. The implication (1)⇒(2) follows from Proposition 10 (with G = ∅), the implication
(2)⇒(3) is Proposition 8 (again, with G = ∅). Now suppose (3) and assume, towards a
contradiction, that (4) does not hold. Then ML[↔] has sub-exponential translations in
ML[F ] and ML[F ] has polynomial translations in ML. Since f(n)k is sub-exponential for
any sub-exponential function f and any constant k, we get that ML[↔] has sub-exponential
translations in ML, contradicting Lemma 12. Thus, the implication (3)⇒(4) holds. The
implication (4)⇒(5) is trivial. Finally, suppose (5) holds. Then, by Proposition 8 again,
{↔} does not have PL[F ]-representations. Hence, by Proposition 10 (with F = {↔} and
G = F ), all functions in F are locally monotone. ◀
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3.2 Where the “succinctness classes” collapse
In this section we show that, for every finite set of operators F , ML[F ] has polynomial
translations wrt. SS5 in ML. Recall that SS5 is the set of pointed Kripke structures whose
accessibility relation is an equivalence relation. Note that two formulae φ and ψ are equivalent
wrt. SS5 if, and only if, they are equivalent wrt. the class of pointed Kripke structures S from
SS5 whose accessibility relation is total. These pointed Kripke structures have the pleasant
property that a ♢-quantified formula either holds in every world or in none, i.e.,

S,w |= ♢φ iff S,w′ |= ♢φ . (4)

We use the above equivalence to prove that ML[↔]-formulae can be “balanced” when
considering structures from SS5 only. That ML[↔] has polynomial translations wrt. SS5
in ML then forms an easy corollary. The general result for any set F then follows from
Theorem 11.

For a formula φ ∈ ML[F ], let ∥φ∥ denote the number of leaves of the syntax tree of
φ, i.e., the total number of occurrences of propositional variables and constants ⊤ and ⊥.
Furthermore, let d(φ) be the depth of the syntax tree of φ, that is, the length of a longest
path from the root to a leaf. In particular, d(φ) = 0 if, and only if, φ ∈ P ∪ {⊤,⊥}. If all
operators in φ have arity at most r, the number of leaves, the size, and the depth of φ satisfy
∥φ∥ ≤ |φ| ≤ rd(φ)+1.

▶ Lemma 14. For every φ ∈ ML[↔] there exists a formula φ′ ∈ ML[↔] with φ′ ≡SS5 φ and
d(φ′) ≤ 8 ·

(
1 + log2 ∥φ∥

)
.

▶ Remark 15. Since PL[↔] ⊆ ML[↔], the above lemma implies that each formula φ ∈ PL[↔]
is equivalent to some PL[↔]-formula of depth logarithmic in ∥φ∥. According to Gashkov
and Sergeev [4], a more general form of this result for propositional logic was known to
Khrapchenko in 1967, namely that it holds for any complete basis of Boolean functions (e.g.,
for {∧,∨,¬,↔} as here). They also express their regret that the only source for this is a
single paragraph in a survey article by Yablonskii and Kozyrev [16], see also [7]. Often, it
is referred to as Spira’s theorem who published it in 1971 [13], assuming that all at most
binary Boolean functions are allowed in propositional formulae. Khrapchenko’s general form
was then published by Savage [12].

Proof. Throughout the proof, we consider the logic ML[↔] only and therefore simply speak
of formulae when referring to ML[↔]-formulae.

The proof proceeds by induction on ∥φ∥. First assume that ∥φ∥ = 1. Then φ =
op1op2 · · · oprλ with r ≥ 0, opi ∈ {¬,♢} for all i ∈ [r], and λ ∈ P ∪ {⊤,⊥}. Using the
equivalences ¬¬α ≡SS5 α, ♢♢α ≡SS5 ♢α, and ♢¬♢α ≡SS5 ¬♢α (the latter two following from
(4)), the formula φ is equivalent over SS5 to a formula ψ of depth at most 3 ≤ 8 ·

(
1+log2 ∥φ∥

)
.

This establishes the case ∥φ∥ = 1.
Otherwise, ∥φ∥ ≥ 2 and φ contains some binary operator. Let m = ∥φ∥. Intuitively, we

split the formula φ into two parts, each containing about half the leaves from φ. Formally,
there are formulae α(x) with only one occurrence of x and β such that φ = α(β),

∥β∥ > m
2 , and

β = op(β1, β2) with op ∈ {∧,∨,↔} and ∥β1∥, ∥β2∥ ≤ m
2 .

It is not difficult to find such formulae: simply start at the root of the syntax tree of φ and
proceed towards the leaves in the direction of the child that contains more than half the
leaves of φ (while there is one). The vertex, in which the procedure stops, corresponds to
the operator op in β = op(β1, β2) above. Note that ∥α(x)∥ = m− ∥β∥ + 1 < m− m

2 + 1, i.e.,
∥α(x)∥ ≤ m

2 .
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First assume that x does not occur under a ♢-operator in α(x). Then

φ = α(β) ≡SS5

(
α(⊥) ∧ ¬β

)
∨

(
α(⊤) ∧ β

)
(5)

since, in both formulae, β is interpreted in the initial-world (hence the formulae are even
equivalent over SK). By induction hypothesis, there exist formulae α′(x), β′

1, and β′
2 with

α′(x) ≡SS5 α(x) and d(α′(x)) ≤ 8 · (1 + log m
2 ) = 8 · log2 m as well as

β′
i ≡SS5 βi and d(β′

i) ≤ 8 · (1 + log m
2 ) = 8 · log2 m for i ∈ {1, 2}.

Set β′ = op(β′
1, β

′
2). Then β′ is equivalent to β over SS5 and of depth at most 1 + 8 · log2 m.

From (5), it follows that φ ≡SS5

(
α′(⊥) ∧ ¬β′) ∨

(
α′(⊤) ∧ β′) =: φ′. Furthermore, the depth

of φ′ satisfies

d(φ′) = max
{

2 + d
(
α′(x)

)
, 3 + d

(
β′)}

= max {2 + 8 · log2 m, 3 + 1 + 8 · log2 m} ≤ 4 + 8 · log2 m ≤ 8 · (1 + log2 m),

which completes the first case, where x does not occur under a ♢ in α(x).
Otherwise, the variable x occurs in the scope of a ♢-operator. Now, we split α(x) at

the last such ♢, i.e., there exist formulae α1(y) with only one occurrence of y and α2(x)
with only one occurrence of x that, furthermore, does not lie under a ♢-operator, such that
α(x) = α1(♢α2(x)). In particular, ∥α1(y)∥, ∥α2(x)∥ ≤ ∥α(x)∥ ≤ m

2 . By induction hypothesis,
there exist α′

1(y), α′
2(x), β′

1, and β′
2 with

α′
i(z) ≡SS5 αi(z) and d(α′

i(z)) ≤ 8 · log2 m for i ∈ {1, 2} as well as
β′
i ≡SS5 βi and d(β′

i) ≤ 8 · log2 m for i ∈ {1, 2}.
As before, let β′ = op(β′

1, β
′
2) with β′ ≡SS5 β and d(β′) ≤ 1 + 8 · log2 m. Now, consider the

formulae

ψ′ =
(
α′

2(⊥) ∧ ¬β′) ∨
(
α′

2(⊤) ∧ β′) and φ′ =
(
α′

1(⊥) ∧ ¬♢ψ′) ∨
(
α′

1(⊤) ∧ ♢ψ′) .
Then ψ′ ≡SS5 α2(β), since x does not occur under a ♢ in α2(x), hence β is interpreted in the
initial world in both formulae. But also φ′ ≡SS5

(
α1(⊥)∧¬♢ψ′)∨

(
α1(⊤)∧♢ψ′) ≡SS5 α1(♢ψ′)

since, whether or not ♢ψ′ holds in a particular world, does not depend on the choice of the
world (see (4)). Hence φ′ ≡SS5 α1(♢ψ′) ≡SS5 α1(♢α2(β)) = φ. Similar to the first case, one
can show

d(ψ′) = max
{

2 + d
(
α′

2(x)
)
, 3 + d

(
β′)}

≤ 4 + 8 · log2 m and
d(φ′) = max

{
2 + d

(
α′

1(y)
)
, 4 + d

(
ψ′)}

≤ max {2 + 8 · log2 m, 8 + 8 · log2 m} ≤ 8 · (1 + log2 m) ,

which completes the second case and hence the inductive proof. ◀

Let φ ∈ ML[↔]. By the previous lemma, there exists an ML[↔]-formula ψ that is
equivalent to φ over SS5 and has depth d(ψ) ≤ 8 · (1 + log2 ∥φ∥). Let φ′ be obtained
from ψ by replacing each sub-formula α ↔ β by (α ∧ β) ∨ (¬α ∧ ¬β). Then φ′ belongs to
ML, is equivalent to φ over SS5, and the depth increases at most by a factor of three, i.e.,
d(φ′) ≤ 3 · d(ψ) ≤ 3 · 8 · (1 + log2 ∥φ∥) = 24 · (1 + log2 ∥φ∥). Since all operators in φ′ are at
most binary, it follows that

|φ′| ≤ 2d(φ′)+1 ≤ 224·(1+log2 ∥φ∥)+1 ≤ c · ∥φ∥c
′

≤ c · |φ|c
′

for some constants c, c′ > 0.

Hence we verified the following claim.
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12:16 Succinctness of Modal Logic

▶ Lemma 16. ML[↔] has polynomial translations wrt. SS5 in ML.

Therefore, the modal logic S5 has only one “succinctness class”.

▶ Theorem 17. Let F be a finite set of Boolean functions. Then ML[F ] has polynomial
translations wrt. SS5 in ML.

Proof. Since ↔ is non-locally-monotone, it follows by Theorem 11 that ML[F ] has polynomial
translations wrt. SS5 in ML[↔] and therefore in ML by Lemma 16 above. ◀

4 Conclusion

This paper considers the question whether or not the use of additional Boolean functions
allows for more succinct formulae. For many logics, elimination of locally monotone functions
is possible with polynomial size increase; for arbitrary functions, this holds if we allow
bi-implication to appear in the resulting formula. Regarding propositional logic, it is known
that also bi-implication can be eliminated with polynomial size increase. The same applies
for modal logic if we restrict the class of Kripke structures to equivalence relations. When
considering all reflexive Kripke structures however, this is no longer the case – bi-implication
cannot be eliminated in modal logic without introducing an exponential size increase when
considering a class of Kripke structures that contains all reflexive structures. It remains open,
where exactly the change from polynomial to exponential size increase occurs, e.g., whether
bi-implication can be eliminated with polynomial size increase when considering all reflexive
and symmetric or all reflexive and transitive Kripke structures.
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