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Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to
a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of
elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n

equidistant points). In step t, the order of the elements is changed to the t-th permutation, and
then the t-th request is served. The cost of the output consists of two parts per step: request cost
and rearrangement cost. The former is the current distance between the endpoints of the request,
while the latter is proportional to the number of adjacent element swaps required to move from one
permutation to the consecutive permutation. The goal is to find a minimum cost solution.

We present a deterministic O(log n log log n)-approximation algorithm for this problem, improving
over a randomized O(log2 n)-approximation by Olver et al. [22]. Our algorithm is based on first
solving spreading-metric LP relaxation on a time-expanded graph, applying a tree decomposition
on the basis of the LP solution, and finally converting the tree decomposition to a sequence of
permutations. The techniques we employ are general and have the potential to be useful for other
dynamic graph optimization problems.
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1 Introduction

This paper is motivated by a growing interest in optimization problems in a dynamic
setting [22, 26]. By dynamic we mean that constrains or penalties associated with requests
are ephemeral (i.e., disappear after the request is served). Such problems are well established
in the online setting (e.g., metrical task systems [21] or server problems [17]), but are also of
interest in the offline case.

A special case of dynamic optimization is the dynamic version of the classic Minimum
Linear Arrangement problem (MLA). In the Minimum Linear Arrangement (MLA) problem,
the input consists of a graph G = (V, E). The output is an ordering of elements of V (i.e.,
a bijection π from V to {1, . . . , n}). The cost of the solution is the total stretch of the edges,
i.e.,

∑
(u,v)∈E |π(u) − π(v)|, and the goal is to find an ordering with minimum cost. The

MLA problem is NP-hard [11]. A large variety of ideas and approximation techniques were
developed for MLA [14, 7, 28] culminating in an O(

√
log n · log log n)-approximation [2, 8].

Recently, the MLA problem has been studied in a dynamic setting, where the input consists
of a sequence of m edges, and an algorithm has to output a sequence of permutations [22]. For
a given edge (u, v) (a request) appearing in the input sequence, an algorithm may first change
its current permutation π of elements paying γ for each swap of adjacent elements, and then
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it has to pay the usual price of |π(u) − π(v)|. The parameter γ > 0 is used to quantify the
ratio between the cost of swapping an adjacent pair and serving a request between adjacent
vertices. While the problem is appealing from the theoretical point of view, its solution can
be also used for track management in domain wall memory [13, 22]. Olver et al. [22] proved
that the dynamic variant of MLA admits a randomized O(log2 n)-approximation for γ = 1.

As our problem definition does not specify the initial permutation1, setting γ > n · m

penalizes rearrangement to the extent that every solution with even one swap is suboptimal.
Hence, in this setting, the DMLA problem reduces to the static MLA problem, thus proving
that DMLA is NP-hard.

1.1 Our Result and Techniques
We present a deterministic approximation algorithm for the dynamic offline MLA problem,
achieving an improved approximation ratio of O(log n log log n). We emphasize that the
constants of the approximation ratio do not depend on the parameter γ nor the input
length m. Similarly to Olver et al. [22], we work on a time-expanded graph that contains
copies of the element set (one for each time step), and whose edges encode requests and
rearrangements.

The O(log2 n)-approximation algorithm of [22] is based on a non-trivial divide-and-
conquer argument, where the time-expanded graph is recursively and randomly partitioned
using a balanced cut routine. The translation of the recursive partitioning to a sequence of
permutations requires a “delicate shuffling” argument. One of the challenges in their analysis
is locally bounding the cost of rearrangements induced by the recursive decomposition.
In contrast to their approach, we propose an algorithm that computes the sequence of
permutations in a unified and straightforward manner directly from the decomposition of
the time-expanded graph.

Our approach builds on the following ideas. First, apply a spreading LP relaxation to
assign lengths to edges of the time-expanded graph (cf. Section 3). Next, apply a tree decom-
position algorithm [7] to the time-expanded graph (cf. Section 4). This binary decomposition
tree represents a laminar partitioning of the time-expanded graph. For every time step,
the permutation is simply extracted by applying an in-order traversal of the decomposition
tree intersected with the corresponding time-slice. (See Section 5 for a description of the
algorithm.)

A key component of our analysis is a local charging scheme that bounds the solution cost
by the cost of the decomposition tree (see Section 6). We rely on [7] to bound the latter by
a function of the cost of the optimal solution to the LP relaxation.

1.2 Related Work on Dynamic Graph Problems
Dynamic MLA Problem. Our paper is among the few that study the approximability of
graph problems, where the input is a sequence of requests in the form of edges and the
output is a sequence of “configurations”. The cost of a solution consists of “serving” the
request and the cost of “moving” from one configuration to the next configuration. These
problems have been usually considered in the context of online algorithms, where the solution
must be created without knowledge of future edges, and its time complexity is of secondary
importance.

1 We discuss the implication of this assumption in Section 7.
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Indeed, the dynamic MLA problem has been studied also in online flavor. As every request
incurs the cost of at least 1 and at most n, the competitive ratio of an online algorithm
that does not change its permutation is trivially O(n). Surprisingly, it is unknown whether
an online algorithm that beats this ratio exists. On the negative side, Olver et al. showed
that many natural online policies have competitive ratios of Ω(n/ log n); the best known
lower bound is merely Ω(log n) [22]. We believe that the techniques of this paper will help
improve our understanding of the problem, and provide insights that could eventually be
used to design online algorithms for dynamic MLA with non-trivial competitive ratios.

Dynamic Balanced Graph Partitioning. Another (seemingly similar) task is the balanced
graph partitioning problem [1, 9, 19], where the goal is to split n graph vertices into ℓ clusters,
each containing n/ℓ vertices, so that the number of crossing edges is minimized. For ℓ = 2,
the problem becomes the bisection problem [18, 25]. This problem has been recently extended
to a dynamic online setting, where edges arrive one by one, and the algorithm may change
the clustering on the fly [3, 5, 10, 15, 16, 23, 24, 27]. Large competitive ratios of online
solutions motivated the study of the problem in the dynamic offline setting, and recently
Räcke et al. [26] constructed an O(log n)-approximation for this variant.

On a high level, the framework of Räcke et al. [26] bears some similarities to ours: they
also create a time-expanded graph, solve an LP-relaxation of the problem on this graph,
use the edge lengths returned by the LP to partition this graph, and finally transform the
partition into the final solution (sequence of graph clusterings). Similarities end here as
the details of their approach are quite different. In particular, their LP relaxation is based
on a distinct type of spreading metric (using knapsack-like constraints), they use Bartal’s
randomized decomposition [4] to partition the graph, and the final step of transforming the
partition to a sequence of clusterings is completely different.

That said, we hope that their and our paper will inspire further work on dynamic graph
optimization problems, and eventually a coherent set of tools will be developed to tackle
such problems.

2 Preliminaries

For an integer ℓ, we use [ℓ] ≜ {1, . . . , ℓ}. The union of mutually disjoint sets X and Y is
denoted by X ⊎ Y . Throughout this paper, we work with a set of elements Q and we denote
its cardinality by n. A permutation of Q (or simply a permutation) is a bijection from Q

to [n]. We say that two elements a and b are adjacent in permutation π if |π(a) − π(b)| = 1.
To reduce ambiguity, we refer to members of Q as elements, to vertices of decomposition
trees as nodes, and use the vertices only for vertices of the time-expanded graph defined
in Section 3.

Permutation Distances. An unordered pair {x, y} of distinct elements of Q is discordant
with respect to permutations π and π′ if (π(x) − π(y)) · (π′(x) − π′(y)) < 0. We use two
notions of distance between partitions π and π′:

Kendall’s tau-distance tdist(π, π′) equal to the minimum number of swaps of adjacent
elements required to reach permutation π’ from π. This distance is also equal to the
number of discordant pairs between π and π′.
Spearman’s footrule distance defined as fdist(π, π′) ≜

∑
v∈Q|π′(v) − π(v)|.

STACS 2024
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While tdist(π, π′) is convenient for establishing relations between decomposition trees and
permutations, fdist(π, π′) is better suited for defining spreading metrics in LP relaxations.
The Diaconis-Graham inequality [6, 20] states that these two distances can differ at most by
a factor of 2, i.e.,

tdist(π, π′) ⩽ fdist(π, π′) ⩽ 2 · tdist(π, π′). (1)

Problem Definition. The Dynamic Minimum Linear Arrangement (DMLA) problem is
specified by a tuple I = (n, m, in), where n is the number of elements (i.e., |Q| = n), m is
the number of requests, and in is the input sequence consisting of m requests, each being
an unordered pair of distinct elements. That is, in ≜ {(at, bt)}m

t=1, where (at, bt) ∈ Q × Q

and at ̸= bt.
A feasible solution is a sequence of m permutations {πt}m

t=1, and its cost is

cost(I, {πt}m
t=1) ≜

m∑
t=1

{γ · fdist(πt−1, πt) + |πt(at) − πt(bt)|}.

where we assume that π0 = π1, i.e., fdist(πt−1, πt) = 0. The goal is to find a feasible
solution with minimum cost. We call fdist(πt−1, πt) the rearrangement cost at time t and
|πt(at) − πt(bt)| the request cost at time t. Finally, for an algorithm A, we denote its cost
on I by A(I), and we use Opt to denote the optimal algorithm.

As the cost incurred in every time step is at least 1 and at most n − 1, we have the
following trivial bounds on the value of Opt.

▷ Claim 1. m ⩽ Opt(I) ⩽ m · (n − 1) for an instance I = (n, m, in).

Note on the Parameter γ. Consider the following greedy algorithm that at time t moves
the element bt so that it becomes adjacent to at. It pays at most (n − 2) · γ for rearrangement
and then 1 for the request. For γ < 1/n, this amounts to at most 2. As Opt pays at
least 1 for the request cost alone, the greedy algorithm is trivially an O(1)-approximation for
γ < 1/n. Hence, in the remaining part of the paper, we assume that γ ⩾ 1/n.

Consider an algorithm that does not employ rearranging. Namely, it finds an α-
approximation for the (static) MLA instance that contains an edge for every request. This
algorithm would also be an α-approximation for the DMLA instance if γ > m · (n − 1).
Indeed, as Opt ⩽ m · (n − 1), employing even one swap would be suboptimal. Because
the (static) MLA problem admits an O(log n log log n)-approximation, we may assume that
γ ⩽ m · (n − 1).

Our algorithm crucially requires the assumption γ ⩾ 1/n to guarantee the approximation
ratio. The assumption γ ⩽ m·(n−1) is used to ensure that the edge costs of our time-expanded
graphs are polynomially bounded, and thus to ensure polynomial runtime.

3 Time-Expanded Graph and Linear Relaxation

In this section, we present a linear-programming relaxation for DMLA. The relaxation is
defined over a time-expanded graph that represents the DMLA instance. We note that
equivalent definitions of time-expanded graphs appeared in the papers of Olver et al. [22]
and Räcke et al. [26].

Consider a a DMLA instance I = (n, m, in). We represent I by a weighted time-
expanded graph G = (V, E, c) as follows. Recall that Q is the set of elements. The set of
vertices V ≜ Q × {0, . . . , m} contains a copy of Q for every time t ∈ {0, . . . , m}. We refer to
each such copy as a time-slice.
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To simplify notation, we denote the vertex (v, t) ∈ V by vt, namely, vt is the t-th copy
of the element v ∈ Q. The t-th time-slice of graph G is Qt ≜ Q × {t}. Furthermore, for
a subset of elements A ⊆ Q, we use At ≜ {vt | v ∈ A} to denote the corresponding set of
vertices in the t-th time-slice.

There are two types of edges in E. First, we introduce a set of request edges Ein containing
an edge {at

t, bt
t} for every request (at, bt) in the input in. Second, we introduce n ·m migration

edges between copies of elements in consecutive time-slices. That is, the set of migration edges
is Em ≜ {{vt−1, vt} | v ∈ Q, t ∈ [m]}. We identify each edge e ∈ E with a set containing two
of its endpoints.

Finally, for an edge e ∈ E, we define its cost by

c(e) ≜
{

1 if e ∈ Ein,
γ if e ∈ Em.

We extend the function c(e) to all subsets of edges E′ ⊆ E, i.e., c(E′) =
∑

e∈E′ c(e).

Naming Convention. Sometimes we want to refer to a vertex from V without specifying its
time-slice. In such case, we use star instead of time superscript, i.e., we use names such as
u∗ or v∗, to emphasize that we refer to vertices (members of V ) and not elements (members
of Q).

Edge Lengths. A solution to the DMLA problem induces the assignment of lengths to
edges of E in the following way:

the length of a request edge {at
t, bt

t} is set to |πt(at) − πt(bt)|;
the length of a migration edge {vt−1, vt} is set to |πt−1(v) − πt(v)|.

In particular, the total length of all (migration) edges between two consecutive time-slices Qt−1

and Qt is equal to fdist(πt−1, πt).
A valid solution to DMLA cannot induce an arbitrary assignment of edge lengths. As the

permutation πt assigns distinct positions to elements, the pairwise distances (shortest path
distances induced by lengths) between their corresponding vertices can be lower-bounded
appropriately. We make this observation more concrete when we create a linear relaxation of
the problem. This hints at a possible way of tackling the problem: we first find an assignment
of lengths to edges, and we use them to compute a sequence of permutations.

Spiders. To create a linear relaxation of the DMLA problem, we introduce a helper notion.
For a vertex v∗ ∈ V and set U ⊆ V \ {v∗}, a multi-set of edges from E is called a (v∗, U)-
spider if it is a union of |U | paths from v∗ to each vertex from U . (If an edge belongs to k

such paths, the spider contains k copies of such edge.) We use H(v∗, U) to denote the set of
all possible (v∗, U)-spiders.

LP Relaxation. The LP relaxation is obtained by introducing spreading constraints [7] to
every time-slice. Consider a DMLA instance I = (n, m, in), and let G = (V, E, c) denote the
corresponding time-expanded graph. Let S′

j ≜
∑j

i=1 i and Sk ≜ S′
⌊k/2⌋ + S′

⌈k/2⌉.
The LP relaxation introduces a variable ze for every edge e ∈ E and is formulated as

follows.

min
∑
e∈E

c(e) · ze (2a)

s.t.
∑
e∈H

ze ⩾ S|A| ∀v ∈ Q, ∀A ⊆ Q \ v, ∀t ∈ {0, . . . , m}, ∀H ∈ H(vt, At), (2b)

ze ⩾ 0 ∀e ∈ E. (2c)

STACS 2024
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Before we argue that the formulation above is indeed a relaxation of the original DMLA
problem, we first discuss the interpretation of spreading constraints (2b). For any two
vertices v∗, u∗ ∈ V , let distz(v∗, u∗) denote their shortest-path distance in G induced by
edge lengths {ze}e∈E . For a fixed time t, element v ∈ Q and a set of elements A ⊆ Q \ {v},
constraints (2b) state that

∑
e∈H ze ⩾ S|A| for every spider H ∈ H(vt, At). That is, the total

length of |A| paths from vt to all vertices of At has to be at least S|A|. Constraints (2b) are
thus equivalent to∑

u∈A

distz(vt, ut) ⩾ S|A|, ∀v ∈ Q, ∀A ⊆ Q \ {v}, ∀t ∈ {0, . . . , m}. (3)

▶ Lemma 2. The minimization program above is a linear relaxation of the DMLA problem.

Proof. Fix an instance I of the DMLA problem specified by (n, m, in) and the corresponding
instance of the minimization LP above. Consider a solution to I, that is, a sequence of
permutations {πt}m

t=1. We have to show that there exists a solution to the LP whose cost is
at most cost(I, {πt}m

t=1).
For the purpose of defining variables {ze}e∈E , we set π0 ≜ π1. For an edge e = {ut1 , vt2} ∈

E, we set the variable ze = |πt1(u) − πt2(v)|. The cost of the LP solution is then∑
e∈E

c(e) · ze =
∑

e∈Em

γ · ze +
∑

e∈Ein

ze

=
m∑

t=1

∑
v∈Q

γ · |πt(v) − πt−1(v))| +
m∑

t=1
|πt(at) − πt(bt)|

= cost(I, {πt}m
t=1).

It remains to show that the edge length variables satisfy the constraints; the only non-trivial
one is (2b).

Fix such a constraint, given by element v ∈ Q, a subset A ∈ Q \ {v}, time t, and
a spider H ∈ H(vt, At). We decompose H into |A| paths: for an element u ∈ A, let Hu be
the path from vt to ut in spider H. By a simple induction on path length, we have∑

e∈Hu

ze ⩾ |πt(u) − πt(v)| (4)

for every element u ∈ A. By summing (4) over all elements from A, we obtain that∑
e∈H

ze =
∑
u∈A

∑
e∈Hu

ze ⩾
∑
u∈A

|πt(u) − πt(v)|.

We split the elements of A into two disjoint parts A− ≜ {u ∈ A | πt(u) < πt(v)} and
A+ ≜ {u ∈ A | πt(u) > πt(v)}. As πt is bijective,

∑
u∈A+ |πt(u) − πt(v)| ⩾ S′

|A+| and∑
u∈A− |πt(u) − πt(v)| ⩾ S′

|A−| = S′
|A|−|A+|. Thus,

∑
e∈H

ze ⩾ S′
|A+| + S′

|A|−|A+| ⩾ S′
⌊|A|/2⌋ + S′

⌈|A|/2⌉ = S|A|.

The last inequality follows as the expression S′
ℓ + S′

|A|−ℓ is minimized for ℓ = ⌊|A|/2⌋. This
shows that constraints (2b) hold and concludes the proof. ◀
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4 Graph Decomposition

In this section, we present a poly-time deterministic graph decomposition procedure that is
based on [7]. The input for the graph decomposition consists of an undirected graph with
non-negative edge costs G = (V, E, c) and non-negative edge lengths {ze}e∈E . A diameter
parameter d > 0 specifies the “granularity” of the decomposition.

Distances and Diameters. For any two vertices u, v ∈ V , let distz(u, v) denote the shortest-
path distance in G induced by the edge lengths z. Furthermore, for a non-empty set U ⊆ V ,
let diamz(U) = maxu,v∈U distz(u, v) be the diameter of U . If U contains two vertices that
are not connected in G, then its diameter is infinite.

Decomposition Tree. Fix a real number d > 0. A d-decomposition tree of the graph
G = (V, E, c) is a triple T = (VT, ET, α) where (VT, ET) is a rooted binary tree where each
internal node has two children, one marked left, and the other one right. The function
α : VT → 2V \ {∅} maps tree nodes to non-empty subsets of graph vertices V and satisfies
the following conditions:

α(wr) = V , where wr is the root of T ;
α(w) = α(wL) ⊎ α(wR) for an internal node w ∈ VT and its two children wL and wR;
diamz(α(w)) ⩾ d for every internal node w ∈ VT and diamz(α(w)) < d for every leaf
w ∈ VT.

Note that the decomposition tree T represents a laminar decomposition of the graph
vertices V .

Cuts. For any subsets of graph nodes U, U ′ ⊆ V , let E[U ] ⊆ E be the subset of edges with
both endpoints in U , and let E[U, U ′] ⊆ E be the subset of edges with one endpoint in U

and the other one in U ′. For an internal tree node w ∈ VT with children wL and wR, we
define cut(w) ⊆ E as the set of edges between α(wL) and α(wR), i.e.,

cut(w) ≜ E[α(wL), α(wR)]
= E[α(w)] \ (E[α(wL)] ⊎ E[α(wR)]).

For a leaf w ∈ VT, we define cut(w) to be the empty set.

▶ Definition 3. The cost of a decomposition tree T = (VT, ET, α) of a graph G = (V, E, c)
with non-negative edge lengths {ze}e∈E is defined as

costG,z(T ) ≜
∑

w∈VT

c(cut(w)) · diamz(α(w)).

In the definition above, we assume that 0 · ∞ = 0.

Cheap Decomposition Tree. The following theorem is implicitly proven (in a slightly
different form) in [7]. For completeness, we present its proof in the appendix.

▶ Theorem 4. Fix a real d > 0 and a graph G = (V, E, c) with non-negative edge
lengths {ze}e∈E. It is possible to construct, in polynomial time, a d-decomposition tree T =
(VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)),

where ξ =
∑

e∈E c(e) · ze, fc,d = max{1, 1/(d · cmin)}, and cmin = mine∈E c(e).

STACS 2024
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We emphasize that Theorem 4 does not depend on particular properties of graph G

or the edge lengths {ze}e∈E . In particular, G does not have to be a time-expanded graph
of a DMLA instance, and the theorem does not assume that lengths {ze}e∈E satisfy the
spreading constraints (2b). In [7], the stopping condition for the decomposition is when one
reaches an independent set with respect to an auxiliary graph defined over the same vertex
set. Conceptually, our stopping condition can be viewed as reaching an independent set with
respect to an auxiliary hypergraph defined over the same vertex set. Indeed, the auxiliary
hypergraph in a d-decomposition contains a hyperedge for every subset of vertices whose
diameter is at least d.

5 Approximation Algorithm for DMLA

Algorithm definition. Consider an instance I = (n, m, in) of the DMLA problem. Our
algorithm Alg first constructs a time-expanded graph G = (V, E, c) for I. Next, Alg
solves the LP relaxation defined by (2a)–(2c), obtaining an optimal solution {ze}e∈E to
this LP. Then, it computes a (1/4)-decomposition tree T = (VT, ET, α) of G using the routine
guaranteed by Theorem 4.

Finally, Alg decodes T into a sequence of permutations {πt}m
t=1. To this end, let

w1, w2, . . . , wℓ denote the sequence of leaves of T ordered by an in-order traversal of T (that
scans the left subtree before the right subtree). Note that the corresponding sequence of
sets {α(wi)}ℓ

i=1 is a partition of V . For a fixed time t, we define a sequence of sets {Bt
i }ℓ

t=1,
where Bt

i ≜ α(wi)∩Qt. By Lemma 9 (cf. Section 6), every set Bt
i contains either one element

of Qt or is empty. Thus, the sequence {Bt
i }ℓ

t=1 induces a permutation of Qt (and hence of Q).
Let πt denote this permutation.

Handling Arbitrary Input Lengths. In the next section, we prove the following bound.

▶ Theorem 5. On an instance I, Alg returns a feasible solution of cost O(log(n · Opt(I)) ·
log log(n · Opt(I))) · Opt(I), where Opt(I) denotes the cost of the optimal solution on I.

We are interested in obtaining a smaller asymptotic approximation ratio even if Opt(I)
is super-polynomial in n.

▶ Theorem 6. There is a poly-time deterministic approximation algorithm for DMLA that
achieves an approximation ratio of O(log n · log log n).

Proof. By Claim 1, Opt(I) is super-polynomial in n only if m is. In this case, we modify
Alg as follows. Split the input sequence into L phases I1, . . . , IL, each consisting of m′ = n2

requests, with the last phase possibly being shorter. Apply Alg separately to each phase,
and return the concatenation of the permutation sequences output by Alg for each phase.

As Opt needs to pay 1 for each request, Opt(I) ⩾ (L − 1) · m′. On the other hand,
by Claim 1, Opt(Iℓ) ⩽ n · m′ = n3 for every phase Iℓ. The rearrangement cost incurred by
the transition from a permutation ending a phase to the permutation beginning the next
phase at most n2. The cost of the whole solution is then

Alg(I) = (L − 1) · n2 +
∑L

ℓ=1 Alg(Iℓ)

⩽ Opt(I) +
∑L

ℓ=1 O(log(n · Opt(Iℓ)) · log log(n · Opt(Iℓ))) · Opt(Iℓ)

= Opt(I) + O(log n · log log n) ·
∑L

ℓ=1 Opt(Iℓ)
= O(log n · log log n) · Opt(I) ,

where in the inequality above we used Theorem 5 for upper-bounding Alg(Iℓ) for each ℓ. ◀
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Polynomial Runtime. Alg can be implemented in time polynomial in n and m. This follows
trivially except for its two building blocks: solving the LP and computing the decomposition
tree. The latter runs in polynomial time by Theorem 4.

For the former (solving the LP), we note that although the linear programming formulation
contains exponentially many constraints, it can be solved in polynomial time by the Ellipsoid
method [12] with a separation oracle that returns a violating constraint if one exists. To this
end, following [7], given edge lengths {ze}e∈E , the oracle first computes all-pairs shortest paths,
i.e., the value of function distz. To find a violated constraint among constraints (3), it suffices
to check, for every time t and every element v ∈ Q, whether there exists a set A ⊆ Q \ {v},
such that

∑
u∈A distz(vt, ut) ⩾ S|A|. This becomes simple once we fix the cardinality k

of A: if inequality is violated, it is violated by the set A, such that Ak contains k elements
of Qt \ {vt} that are closest to vt (with respect to distz).

6 Approximation Ratio

In this section, we prove the approximation ratio stated in Theorem 5. Fix a DMLA
instance I = (n, m, in). Let G = (V, E, c) be the time-expanded graph, {ze}e∈E be the edge
lengths returned by the LP relaxation, and T = (VT, ET, α) be the (1/4)-decomposition tree
of G computed according to Theorem 4.

6.1 Relating OPT to the Decomposition Tree

▶ Lemma 7. It holds that costG,z(T ) ⩽ Opt(I) · O(log(n · Opt(I)) · log log(n · Opt(I))).

Proof. Let cmin = mine∈E{c(e)}. Note that cmin = min{1, γ} by the definition of graph G.
As we assumed (cf. Section 2) that γ ⩾ 1/n, it holds that cmin ⩾ 1/n. Let ξ =

∑
e∈E c(e) · ze.

By Theorem 4, the computed (1/4)-decomposition tree satisfies

costG,z(T ) ⩽ ξ · O(log(4n · ξ) · log log(4n · ξ)).

As ξ is the optimal solution to the fractional relaxation of the problem (cf. Lemma 2),
ξ ⩽ Opt(I), which concludes the proof. ◀

6.2 Graph Cost and its Relation to the Decomposition Tree

In the previous section, we related costG,z(T ) to Opt(I), and thus it remains to relate
Alg(I) to costG,z(T ). As we show later, Alg(I) can be naturally expressed as a sum of
costs of particular edges in G taken with some multiplicity. On the other hand, costG,z(T )
is defined as

∑
w∈VT

c(cut(w)) · diamz(α(w)), i.e., in terms of edge lengths. To facilitate
a combinatorial comparison between Alg(I) and costG,z(T ), we first provide an alternative
lower bound on costG,z(T ), called graph cost, which is be easier to relate to Alg(I). To
this end, we start with a few helper notions.

Least Common Ancestor. We define the function lca : 2V \ {∅} → VT as follows. Fix
a non-empty set of vertices U ⊆ V . The set of tree nodes w such that α(w) ⊇ U forms a path
in T starting at the root. Let lca(U) be the last node on this path (furthest from the root).

We drop the set notation and use lca(u1, u2, . . . , uℓ) instead of lca({u1, u2, . . . , uℓ}). Note
that for every internal tree node w and every edge {u, v} ∈ cut(w), it holds that lca(u, v) = w.

STACS 2024



15:10 An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

Width. For a non-empty subset of vertices U ⊆ V , we define

width(U) ≜ max
0⩽t⩽m

|U ∩ Qt| − 1.

Graph Cost. The cost of a graph G = (V, E, c) with respect to its decomposition tree
T = (VT, ET, α) is defined as

cost∗
T (G) ≜

∑
e∈E

c(e) · width(lca(e)).

Relating Graph Cost to Decomposition Tree Cost. We show that cost∗
T (G) ⩽ 4 ·

costG,z(T ). To this end, we use spreading properties of {ze}e∈E to relate the width of a set
to its diameter.

▶ Lemma 8. For a non-empty set U ⊆ V , it holds that width(U) ⩽ 4 · diamz(U).

Proof. Let t = arg maxs∈{0,...,m} |U ∩ Qs|, i.e., width(U) = |U ∩ Qt| − 1. For succinctness,
let Y = U ∩ Qt. Below, we prove that

diamz(Y ) ⩾ (|Y | − 1)/4. (5)

This will imply the lemma as width(U) = |Y | − 1 ⩽ 4 · diamz(Y ) ⩽ 4 · diamz(U).
If |Y | = 1, then diamz(Y ) = 0, and (5) follows trivially. Thus, in the following, we assume

that |Y | > 1. Let vt be an arbitrary vertex from Y . As {ze}e∈E satisfies LP constraints and
thus also (3), we obtain∑

ut∈Y \{vt}

distz(vt, ut) ⩾ S|Y |−1. (6)

A simple calculation shows that Sk ⩾ k2/4 + k/2 for every k ⩾ 0 (the relation is tight for
even k). Thus, Sk/k = k/4 + 1/2 > k/4 for every k ⩾ 1. Applying the averaging argument
to (6), we obtain that there exists ut ∈ Y \ {vt}, such that

distz(vt, ut) ⩾
S|Y |−1

|Y | − 1 >
|Y | − 1

4 .

As diamz(Y ) ⩾ distz(vt, ut), (5) follows. ◀

▶ Lemma 9. Fix a leaf w ∈ T . Then, width(α(w)) = 0, and consequently, |α(w) ∩ Qt| ⩽ 1
for every time t.

Proof. As T is a (1/4)-decomposition tree, diamz(α(w)) < 1/4. Thus, width(α(w)) < 1 by
Lemma 8. The first part of the lemma follows as width(α(w)) is an integer. The second part
follows as |α(w) ∩ Qt| ⩽ width(α(w)) + 1 by the definition of width. ◀

▶ Lemma 10. It holds that cost∗
T (G) ⩽ 4 · costG,z(T ).

Proof. Fix an edge e ∈ E. We first claim that

width(α(lca(e)) =
∑

w∈VT : e∈cut(w)

width(α(w)). (7)

Indeed, if lca(e) is a leaf of T , then by Lemma 9, the left-hand side is 0 and the sum on the
right-hand side is empty. If, however, lca(e) is an internal node of T , then e ∈ cut(lca(e)),
and thus the sum on the right-hand side contains only one element w = lca(e), and the claim
follows.
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Now, by the definition of cost∗
T (G),

cost∗
T (G) =

∑
e∈E

c(e) ·
∑

w∈VT : e∈cut(w)

width(α(w)) (by (7))

=
∑

w∈VT

∑
e∈cut(w)

c(e) · width(α(w))

=
∑

w∈VT

c(cut(w)) · width(α(w))

⩽ 4 ·
∑

w∈VT

c(cut(w)) · diamz(α(w)) (by Lemma 8)

= 4 · costG,z(T ). ◀

6.3 Relating ALG to the Graph Cost
Now we may relate Alg(I) to the graph cost cost∗

T (G) =
∑

e∈E c(e) · width(lca(e)). Our
charging scheme preserves time locality: we relate the request and the rearrangement costs
in step t to the graph cost pertaining to edges of G corresponding to time t.

▶ Lemma 11. For every time t, it holds that |πt(at) − πt(bt)| ⩽ width(α(lca(at
t, bt

t))).

Proof. It is convenient to look at the permutation πt output by Alg as an ordered sequence
of vertices from Qt (cf. Section 5). Recall that this sequence is obtained by an in-order
traversal of T restricted to vertices from Qt. In particular, all vertices from α(lca(at

t, bt
t))∩Qt

form a contiguous part of permutation πt and this part contains both at
t and bt

t. Therefore,
|πt(at) − πt(bt)| ⩽ |α(lca(at

t, bt
t)) ∩ Qt| − 1 ⩽ width(α(lca(at

t, bt
t))). ◀

▶ Lemma 12. Fix a time t and let {u, v} be a discordant pair of elements from Q with respect
to permutations πt−1 and πt. Then, either vt ∈ α(lca(ut−1, ut)) or ut ∈ α(lca(vt−1, vt)) (or
both).

Proof. Let U = {ut−1, ut, vt−1, vt} and let w = lca(U). As α(w) contains both ut and vt,
Lemma 9 implies that w is an internal node of T . Let wL and wR be the children of w in T .
By the definition of lca, α(wL) ∩ U ̸= ∅ and α(wR) ∩ U ̸= ∅.

It is not possible that {ut−1, ut} ⊆ α(wL) and {vt−1, vt} ⊆ α(wR): in such case, {u, v}
would not be a discordant pair, i.e., u would be before v in both permutations πt−1 and πt.
For the same reason, it is not possible that {ut−1, ut} ⊆ α(wR) and {vt−1, vt} ⊆ α(wL).

This means that either {ut−1, ut} ∈ cut(w) or {vt−1, vt} ∈ cut(w) (or both). In the former
case lca(ut−1, ut) = w while in the latter lca(vt−1, vt) = w, which concludes the proof. ◀

▶ Lemma 13. For every time t, it holds that tdist(πt−1, πt) ⩽
∑

v∈Q width(α(lca(vt−1, vt))).

Proof. We create an injective mapping M from all tdist(πt−1, πt) discordant pairs (with
respect to permutations πt−1 and πt) to pairs in VT × V . A discordant pair {u, v} is mapped:

to the pair (lca(ut−1, ut), vt) if vt ∈ α(lca(ut−1, ut)), or
to the pair (lca(vt−1, vt), ut) if ut ∈ α(lca(vt−1, vt)).

By Lemma 12, at least one of the conditions above must hold. If both hold, then we map
the discordant pair arbitrarily to one of the pairs above.

Because the domain of M contains all discordant pairs, its cardinality equals tdist(πt−1, πt).
Moreover, the range of M is contained in the set of the following pairs⊎

v∈Q

{(
lca(vt−1, vt), yt

)
| yt ∈ α

(
lca(vt−1, vt)

)
∩

(
Qt \ {vt}

)}
.
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Thus, the cardinality of the range of M is at most
∑

v∈Q

(
|α(lca(vt−1, vt)) ∩ Qt| − 1

)
. As

M is injective, its range is not smaller than its domain, i.e.,

tdist(πt−1, πt) ⩽
∑
v∈Q

|α(lca(vt−1, vt)) ∩ Qt| − 1

⩽
∑
v∈Q

width(α(lca(vt−1, vt))). ◀

▶ Lemma 14. It holds that Alg(I) ⩽ 2 · cost∗
T (G).

Proof. Let {πt}m
t=1 be the output of Alg on instance I. The total rearrangement cost of

Alg is

m∑
t=1

γ · fdist(πt−1, πt) = 2 ·
m∑

t=1
γ · tdist(πt−1, πt) (by (1))

⩽ 2 ·
m∑

t=1

∑
v∈Q

γ · width(α(lca(vt−1, vt))) (by Lemma 13)

= 2 ·
∑

e∈Em

c(e) · width(α(lca(e))). (by the definition of Em)

Moreover, its total request cost is

m∑
t=1

|πt(at) − πt(bt)| ⩽
m∑

t=1
1 · width(α(lca(at

t, bt
t))) (by Lemma 11)

=
∑

e∈Ein

c(e) · width(α(lca(e))). (by the definition of Ein)

Summing up, we obtain that Alg(I) ⩽ 2 ·
∑

e∈E c(e) · width(α(lca(e))) = 2 · cost∗
T (G). ◀

6.4 Calculating Approximation Ratio

We are now ready to prove our main result, restated for convenience below.

▶ Theorem 5. On an instance I, Alg returns a feasible solution of cost O(log(n · Opt(I)) ·
log log(n · Opt(I))) · Opt(I), where Opt(I) denotes the cost of the optimal solution on I.

Proof. Fix an instance I, corresponding graph G, output {ze}e∈E of the LP, and the
decomposition tree T of G. Then,

Alg(I) ⩽ 4 · cost∗
T (G) (by Lemma 14)

⩽ 8 · cost∗
G,z(G) (by Lemma 10)

⩽ 8 · Opt(I) · O(log(n · Opt(I)) · log log(n · Opt(I))). (by Lemma 7) ◀

As stated in Theorem 6, the algorithm can be easily transformed into an O(log n·log log n)-
approximation. We also note that the constants hidden in O-notation do not depend on γ.
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7 Final Remarks

In this paper, we present an O(log n · log log n)-approximation algorithm for the dynamic
minimum linear arrangement (DMLA) problem, improving over O(log2 n) bound by Olver
et al. [22].

We note that in the variant considered by Olver et al. [22], the initial permutation π0 is
fixed and is the part of the input instance. A small modification of their approach yields the
same approximation ratio for the case where the input does not specify the initial permutation
(as in our solution).

Conversion in the other direction is trivial, albeit it comes at a certain cost. Let π1, . . . , πm

denote the output of our algorithm without an initial permutation. Simply prepend the
given initial permutation π0 as the initial one. The extra cost of the rearrangement from
permutation π0 to π1 is at most O(n2). This additive cost does not influence the asymptotic
approximation ratio if m = Ω(n2). We leave handling shorter instances more efficiently as
further work.
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A Constructing Decomposition Tree

In this section, we show how to construct a d-decomposition tree satisfying the guarantees of
Theorem 4. In the description below, we fix a real number d > 0, a graph G = (V, E, c) with
non-negative edge costs c, and a set of edge lengths {ze}e∈E . Recall that for all subsets of
vertices U, U ′ ⊆ V , we defined E[U ] ≜ E ∩ (U × U) and E[U, U ′] ≜ E ∩ (U × U ′ ∪ U ′ × U).
Furthermore, let G[U ] be the graph G restricted to set U . Note that G[U ] might be
disconnected even if G is connected. Let

vol U ≜
∑

e∈E[U ]

c(e) · ze

be the volume of U .
In Appendix A.1, we argue that for an arbitrary subset U ⊆ V satisfying diamz(U) ⩾ d,

we may efficiently partition U into two parts, and relate the cost of the cut between these
two parts, the diameter of U , and the volume of U (cf. Lemma 17).

The d-decomposition tree T of G is simply a binary tree, constructed by the iterative
application of set partitioning procedure: we start with the whole vertex set V and terminate
when the diameter of the considered set of vertices is less than d. In Appendix A.2 and
Appendix A.3, we show that the resulting tree T satisfies the properties of Theorem 4.

We present our construction and cost bound assuming that mine∈E c(e) ⩾ 1/d. Later,
we show how to get rid of this assumption by a simple scaling.

A.1 Partitioning a Vertex Set
We start with two technical lemmas.

▶ Lemma 15 (Lemma 5 of [7]). Let f : [r0, r1] → R be a nonnegative monotone increasing
function that is differentiable almost everywhere. If the derivative f ′ is continuous almost
everywhere, then there exists an r ∈ (r0, r1) such that f ′(r) is defined and satisfies

f ′(r) ⩽ f(r)
r1 − r0

· ln
(

e · f(r1)
f(r)

)
· ln ln

(
e · f(r1)

f(r0)

)
.

▶ Lemma 16. Fix 0 < x ⩽ y. Then,

ln
(

e · (x + y)
2 · x

)
⩽

1
ln 2 · ln

(
x + y

x

)
.

Proof. Since y ⩾ x, we have ln((x + y)/x) ⩾ ln 2. Therefore,

ln
(

e · (x + y)
2 · x

)
= ln

(
x + y

x

)
+

(
1

ln 2 − 1
)

· ln 2

⩽ ln
(

x + y

x

)
+

(
1

ln 2 − 1
)

· ln
(

x + y

x

)
= 1

ln 2 · ln
(

x + y

x

)
. ◀

▶ Lemma 17. Fix a real d > 0. Fix a graph G = (V, E, c) with edge costs c satisfying
c(e) ⩾ 1/d for every e ∈ E. Let {ze}e∈E be the (non-negative) lengths of edges. For a subset
of vertices U ⊆ V satisfying diamz(U) ⩾ d, it is possible to partition U , in polynomial time,
into two disjoint non-empty sets UL and UR, satisfying the following conditions.
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If G[U ] is disconnected, then c(E[UL, UR]) = 0 and vol UL + vol UR = vol U .
If G[U ] is connected, then

c(E[UL, UR]) · diamz(U) ⩽ g · β · ln
(

vol U
β

)
· ln ln(vol V ),

where g is a universal constant, and β satisfies the following constraints:

β ⩾ max{vol UL, 1/4},

vol U − β ⩾ max{vol UR, 1/4}.

Proof. If G[U ] is disconnected, then we simply take UL to be an arbitrary connected
component of U and set UR = U \ UL. The lemma follows immediately as c(E[UL, UR]) = 0
and vol UL + vol UR = vol U . Thus in the following, we assume that G[U ] is connected.

We first show the existence of UL and UR satisfying the constraints above, and later we
argue how to find them using a polynomial-time procedure.

For any two vertices a, b ∈ U , we define distU
z (a, b) as the shortest-path distance between a

and b that uses edges only from G[U ]; we call it U -distance. Clearly, distU
z (a, b) ⩾ distz(a, b).

Let u, u′ ∈ U be the vertices satisfying distz(u, u′) = diamz(U), and let

∆ ≜ distU
z (u, u′)

be their U -distance. Then, ∆ ⩾ distz(u, u′) = diamz(U) ⩾ d. From this point on, we focus
on the graph G[U ] only and use U -distances exclusively.

For a vertex a ∈ U and a real r ⩾ 0, let

Ba(r) ≜ {v ∈ U | distU
z (a, v) < r}

be the set of vertices in U whose U -distance to a is strictly smaller than r, i.e., contained in
a ball centered at a of radius r. For an edge e ∈ E[U ], we define its (a, r)-adjusted length as

za
e (r) ≜


ze if e ∈ Ba(r) × Ba(r),
r − distU

z (a, v1) if e = (v1, v2) ∈ Ba(r) × (U \ Ba(r)),
0 otherwise.

Intuitively, the (a, r)-adjusted length of an edge e is the length of e “contained” (entirely or
partially) in the ball of radius r centered at a.

Next, we introduce the function vol∗a : R⩾0 → R⩾0 as

vol∗a(r) ≜
∑

e∈E[U ]

c(e) · za
e (r)

= vol(Ba(r)) +
∑

e=(v1,v2)∈E∩(Ba(r)×(U\Ba(r)))

c(e) · (r − distU
z (a, v1)).

As ∆ = distU
z (u, u′), the balls of radii ∆/2 centered at u and u′ are disjoint. In particular,

for each edge e ∈ E[U ], it holds that zu
e (∆/2) + zu′

e (∆/2) ⩽ ze. This implies that vol∗u(∆/2) +
vol∗u′(∆/2) ⩽ vol U . Without loss of generality, we may assume that vol∗u(∆/2) ⩽ vol U/2;
otherwise we may swap the roles of u and u′.

As G[u] is connected, vol∗u(r) is monotonically increasing in the interval [0, ∆]. Moreover,
except finitely many points it holds that

∂ vol∗u(r)
∂r

= c(Bu(r) × (U \ Bu(r))).
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That is, vol∗u(r) satisfies the conditions of Lemma 15 as the function of r in the interval [0, ∆],
and thus also in the interval [∆/4, ∆/2]. By Lemma 15, there exists r∗ ∈ (∆/4, ∆/2), such
that

c(E[Bu(r∗), U \ Bu(r∗)]) ⩽ vol∗u(r∗)
∆/4 · ln

(
e · vol∗u(∆/2)

vol∗u(r∗)

)
· ln ln

(
e · vol∗u(∆/2)

vol∗u(∆/4)

)
. (8)

Recall that G[U ] is connected and contains a path between u and u′ of length ∆ ⩾ d.
As c(e) ⩾ 1/d for every edge e, we have vol U ⩾ ∆ · (1/d) ⩾ 1. Similarly, vol∗u(∆/4) ⩾
(∆/4) ·(1/d) ⩾ 1/4. We set UL = Bu(r∗) and UR = U \UL. Furthermore, we set β = vol∗u(r∗).
By plugging these values into (8), and recalling that vol∗u(∆/2) ⩽ vol U/2, we obtain

c(E[UL, UR]) · ∆ ⩽ 4 · β · ln
(

e · vol U
2 · β

)
· ln ln(2e · vol U)

⩽
4

ln 2 · β · ln
(

vol U
β

)
· ln ln(2e · vol V ). (by Lemma 16 and U ⊆ V )

It remains to argue that β satisfies the constraints of the lemma.
By the definition of vol∗u, we have β = vol∗u(r∗) ⩾ vol(Bu(r∗)) = vol UL.
By the monotonicity of vol∗u, we have β = vol∗u(r∗) ⩾ vol∗u(∆/4) ⩾ 1/4.
By the monotonicity of vol∗u, we have β = vol∗u(r∗) ⩽ vol∗u(∆/2) ⩽ vol U/2, and thus
vol U − β ⩾ vol U/2 ⩾ 1/2 > 1/4.
Observe that zu

e (r∗) = 0 for every edge e ∈ E[UR]. (This follows as both endpoints of e are
from UR, and thus their distance to u is at least r∗.) In effect, vol∗u(r∗) + vol UR ⩽ vol U ,
or equivalently vol U − β ⩾ vol UR.

The argument above shows the existence of r∗, such that setting β = vol∗u(r) satisfies the
constraints of the lemma. To make the argument constructive and efficient, we note that
the left-hand side of (8) is constant except for at most |U | values of r∗ (more concretely,
these are values from the set Du = {distz(u, v) | v ∈ U}) and the right-hand side is
monotonically increasing in the interval [∆/4, ∆/2]. Thus, it is sufficient to look for r∗ only
in the set Du ∪ {∆/2}. ◀

A.2 Using Set Partitioning for Tree Decomposition
As stated earlier, the d-decomposition tree T = (VT, ET, α) of graph G = (V, E, c) with edge
lengths {ze}e∈E is obtained by the iterative application of Lemma 17, starting at V and
terminating with leaves corresponding to sets whose diameter is less than d.

Throughout this section, we use the function F : R⩾0 → R⩾0 defined as

F (x) ≜ max{x · ln(4x), 0}.

That is, F (x) = 0 for x ⩽ 1/4 and F (x) = x·ln(4x) for x ⩾ 1/4. Note that F is monotonically
non-decreasing. Moreover, it satisfies the following superadditivity property.

▶ Lemma 18. Fix x, y ⩾ 0. Then, F (x) + F (y) ⩽ F (x + y). Moreover, if x ⩾ 1/4 and
y ⩾ 1/4, then F (x) + F (y) + x · ln((x + y)/x) ⩽ F (x + y).

Proof. If x < 1/4, then F (x) = 0, and hence the lemma follows by monotonicity of F . The
case when y < 1/4 is analogous. Hence, we may now assume that x ⩾ 1/4 and y ⩾ 1/4.
Using the definition of F ,

F (x + y) − F (x) − F (y) = x · (ln(4x + 4y) − ln(4x)) + y · (ln(4x + 4y) − ln(4y))

⩾ x · ln
(

x + y

x

)
+ y · 0. ◀
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▶ Lemma 19. For a node w ∈ VT, let VT(w) be the set of nodes of a subtree of T rooted
at w. Let

A(w) ≜ 1
g · ln ln(vol V ) ·

∑
w′∈VT(w)

c(cut(w′)) · diamz(α(w′)),

where g is the universal constant of Lemma 17. Then, A(w) ⩽ F (vol α(w)).

Proof. For brevity, for a node w ∈ VT, we use vol w instead of vol α(w).
We show the lemma by induction. For the induction base (w is a leaf), we observe that

cut(w) = ∅, and thus c(cut(w)) = 0. Hence, A(w) = 0 ⩽ F (vol w).
For the induction step, we consider an internal node w ∈ VT with children wL and wR.

We assume that the lemma inequality follows for both wL and wR, and we prove it for w.
By the definition of A it follows that

A(w) = A(wL) + A(wR) + 1
g · ln ln(vol V ) · c(cut(w)) · diamz(α(w)). (9)

We consider two cases depending on whether G[α(w)] is connected or not.
If G[α(w)] is disconnected, Lemma 17 implies c(cut(w)) = 0 and vol(w) = vol(wL) +
vol(wR). Thus,

A(w) = A(wL) + A(wR) (applying c(cut(w)) = 0 to (9))
⩽ F (vol wL) + F (vol wR) (by the inductive assumption)
⩽ F (vol wL + vol wR) = F (vol w). (by Lemma 18)

If G[α(w)] is connected, Lemma 17 guarantees that

c(cut(w)) · diamz(α(w)) ⩽ g · βw · ln
(

vol w
βw

)
· ln ln(vol V ), (10)

where βw satisfies max{vol wL, 1/4} ⩽ βw and max{vol wR, 1/4} ⩽ vol w − βw. Thus,

A(w) ⩽ A(wL) + A(wR) + βw · ln(vol w/βw) (applying (10) to (9))
⩽ F (vol wL) + F (vol wR) + βw · ln(vol w/βw) (by the inductive assumption)
⩽ F (βw) + F (vol w − βw) + βw · ln(vol w/βw) (by the monotonicity of F )
⩽ F (βw + vol w − βw) = F (vol w). (by Lemma 18)

As in both cases A(w) ⩽ F (vol w), this concludes the inductive proof. ◀

A.3 Bounding Cost of Decomposition Tree
Before we prove Theorem 4, we prove its variant, where we assume that mine∈E c(e) ⩾ 1/d.
Theorem 4 follows then by scaling as a simple corollary.

▶ Lemma 20. Fix a real d > 0, a graph G = (V, E, c) such that c(e) ⩾ 1/d for every e ∈ E,
and non-negative edge lengths {ze}e∈E. It is possible to construct, in polynomial time,
a d-decomposition tree T = (VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log ξ · log log ξ),

where ξ =
∑

e∈E c(e) · ze.
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Proof. We construct a d-decomposition tree T as described in the previous section. Let
wr be its root. Using Definition 3,

costG,z(T ) =
∑

w∈VT(wr)

c(cut(w)) · diamz(α(w))

⩽ O(1) · F (vol(α(wr))) · ln ln(vol V ) (by Lemma 19)
= vol V · O(ln(vol V ) · ln ln(vol V )). (by the definition of F )

The lemma follows by observing that vol V = ξ. ◀

▶ Theorem 4. Fix a real d > 0 and a graph G = (V, E, c) with non-negative edge
lengths {ze}e∈E. It is possible to construct, in polynomial time, a d-decomposition tree T =
(VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)),

where ξ =
∑

e∈E c(e) · ze, fc,d = max{1, 1/(d · cmin)}, and cmin = mine∈E c(e).

Proof. Let cthr = 1/d. Note that fc,d = max{1, cthr/cmin}. If cmin ⩾ cthr, then G satisfies
the requirements of Lemma 20 and fc,d = 1. The theorem follows immediately by invoking
this lemma.

In the following, we thus assume that cmin < cthr. In this case, fc,d = cthr/cmin. We take
the graph G′ = (V, E, c′), where c′(e) = (cthr/cmin) · c(e) for every edge e ∈ E. We construct
a d-decomposition tree T of G′ using Lemma 20. We now argue that T satisfies the theorem
statement with respect to the original graph G. Let ξ′ =

∑
e∈E c′(e) · ze. Then,

costG,z(T ) = (cmin/cthr) · costG′,z(T ) (by Definition 3)
⩽ (cmin/cthr) · ξ′ · O(log ξ′ · log log ξ′) (by Lemma 20)
= ξ · O(log((cthr/cmin) · ξ) · log log((cthr/cmin) · ξ)))
= ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)). ◀
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