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Abstract
The model of generalized automata, introduced by Eilenberg in 1974, allows representing a regular
language more concisely than conventional automata by allowing edges to be labeled not only with
characters, but also strings. Giammaresi and Montalbano introduced a notion of determinism for
generalized automata [STACS 1995]. While generalized deterministic automata retain many proper-
ties of conventional deterministic automata, the uniqueness of a minimal generalized deterministic
automaton is lost.

In the first part of the paper, we show that the lack of uniqueness can be explained by introducing
a set W(A) associated with a generalized automaton A. The set W(A) is always trivially equal to
the set of all prefixes of the language recognized by the automaton, if A is a conventional automaton,
but this need not be true for generalized automata. By fixing W(A), we are able to derive for
the first time a full Myhill-Nerode theorem for generalized automata, which contains the textbook
Myhill-Nerode theorem for conventional automata as a degenerate case.

In the second part of the paper, we show that the set W(A) leads to applications for pattern
matching and data compression. Wheeler automata [TCS 2017, SODA 2020] are a popular class
of automata that can be compactly stored using e log σ(1 + o(1)) + O(e) bits (e being the number
of edges, σ being the size of the alphabet) in such a way that pattern matching queries can be
solved in Õ(m) time (m being the length of the pattern). In the paper, we show how to extend
these results to generalized automata. More precisely, a Wheeler generalized automata can be stored
using e log σ(1 + o(1)) + O(e + rn) bits so that pattern matching queries can be solved in Õ(rm)
time, where e is the total length of all edge labels, r is the maximum length of an edge label and n

is the number of states.
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1 Introduction

The class of regular languages can be defined starting from non-deterministic finite automata
(NFAs). In his monumental work [18] on automata theory (which dates back to 1974),
Eilenberg proposed a natural generalization of NFAs where edges can be labeled not only
with characters but with (possibly empty) finite strings, the so-called generalized non-
deterministic finite automata (GNFAs). While classical automata are only a special case of
generalized automata, it is immediate to realize that generalized automata can only recognize
regular languages, because it is well-known that epsilon transitions do not add expressive
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power [31], and a string-labeled edge can be decomposed into a path of edges labeled only with
characters. However, generalized automata can represent regular languages more concisely
than classical automata. A standard measure of the complexity of a regular language is the
the minimum number of states of some automaton recognizing the language, and generalized
automata may have fewer states than conventional automata. In generalized automata, we
assume that both the number of states and the number of edges are finite, but the number of
edges cannot be bounded by some function of the number of states and the size of the finite
alphabet (and so edge labels may be arbitrarily long). As a consequence, in principle it is not
clear whether the problem of determining the minimum number states of some generalized
automaton recognizing a given language is decidable. In [29], Hashiguchi showed that the
problem is decidable by proving that there must exist a state-minimal generalized automaton
for which the lengths of edge labels can be bounded by a function that only depends on the
size of the syntactic monoid recognizing the language.

An NFA is a deterministic finite automaton (DFA) if no state has two distinct outgoing
edges with the same label. This local notion of determinism extends to global determinism,
that is, given a string α, there exists at most one path labeled α that can be followed starting
from the initial state. However, this is not true for generalized automata (see Figure 1).
When considering generalized automata, we must add the additional requirement that no
state has two distinct outgoing edges such that one edge label is a prefix of the other edge
label. By adding this requirement, we retrieve global determinism, thus obtaining generalized
deterministic finite automata (GDFAs).
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Figure 1 No state has two distinct outgoing edges with the same label, but there are two distinct
paths labeled abc from the initial state.

For every regular language, there exists a unique deterministic automaton recognizing
the language and having the minimum number of states among all deterministic automata
recognizing the language, the minimal DFA of the language. More generally, a classical
textbook result in automata theory is the Myhill-Nerode theorem. Let Pref(L) be the set of
all strings prefixing at least one string in the language L. We have the following result.

▶ Theorem 1 (Myhill-Nerode theorem). Let L ⊆ Σ∗. The following are equivalent:
1. L is recognized by an NFA.
2. The Myhill-Nerode equivalence ≡L has finite index.
3. There exists a right-invariant equivalence relation ∼ on Pref(L) of finite index such that

L is the union of some ∼-classes.
4. L is recognized by a DFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal DFA recognizing L (that is, two DFAs having the minimum
number of states among all DFAs that recognize L must be isomorphic).

The problem of studying the notion of determinism in the setting of generalized automata
was approached by Giammaresi and Montalbano [28, 27]. The notion of isomorphism can be
naturally extended to GDFAs (intuitively, two GDFAs are isomorphic if they are the same
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GDFA up to renaming the states), and the natural question is whether one can analogously
define the minimal GDFA of a regular language. This is not possible: in general, there
can exist two or more non-isomorphic state-minimal GDFAs recognizing a given regular
language. Consider the two distinct GDFAs in Figure 2. It is immediate to check that the
two (non-isomorphic) GDFAs recognize the same language, and it can be shown that the no
GDFA with less than three states can recognize the same language [28].

1start 2 3
a3, ba2

ba2, aba

a2
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aba, a2b

a3

Figure 2 Two state-minimal GDFAs recognizing the same regular language.

The non-uniqueness of a state-minimal GDFAs seems to imply a major difference in the
behavior of generalized automata compared to conventional automata, so it looks like there
is no hope to derive a structural result like the Myhill-Nerode theorem in the model of the
generalized automata. It is natural to wonder whether the lack of uniqueness should be
interpreted as a weakness of the model of generalized automata, or rather as a consequence
of some deeper property. Consider a conventional automaton A that recognizes a language
L. As typical in automata theory, we can assume that all states are reachable from the
initial state, and all states are either final or they allow reaching a final state. Then, the
set W(A) of all strings that can be read starting from the initial state and reaching some
state is exactly equal to Pref(L). However this is no longer true in the model of generalized
automata: typically, we do not have W(A) = Pref(L), but only W(A) ⊆ Pref(L). For
example, consider Figure 2. In both automata we have a3 ∈ Pref(L), but we have a3 ∈ W(A)
only for the GDFA on the left.

Given W ⊆ Pref(L), we say that a GNFA A recognizing L is a W-GNFA if W(A) = W.
We will show that, if L is recognized by a W-GDFA, then there exists a unique state-minimal
W-GDFA recognizing L. In particular, our result will imply the uniqueness of the minimal
automaton for standard DFAs, because for DFAs it must necessarily be W = Pref(L).

We will actually prove much more. We will show that, once we fix W , then nondetermin-
ism and determinism still have the same expressive power, and it is possible to derive a
characterization in terms of equivalence relations. In other words, we will prove a Myhill-
Nerode theorem for generalized automata. To this end, we will introduce the notion of locally
bounded set (Definition 8), which we can use to prove the following result.

▶ Theorem 2 (Myhill-Nerode theorem for generalized automata). Let L ⊆ Σ∗ and let W ⊆ Σ∗

be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L). The following are equivalent:
1. L is recognized by a W-GNFA.
2. The Myhill-Nerode equivalence ≡L,W has finite index.
3. There exists a right-invariant equivalence relation ∼ on W of finite index such that L is

the union of some ∼-classes.
4. L is recognized by a W-GDFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal W-GDFA recognizing L (that is, two W-GDFAs having
the minimum number of states among all W-GDFAs that recognize L must be isomorphic).
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26:4 A Myhill-Nerode Theorem for Generalized Automata, with Applications

In particular, we will show that there is no loss of generality in assuming that W ⊆ Σ∗

is a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L), because these are necessary
conditions for the existence of a W-GNFA. We conclude that our Myhill-Nerode theorem for
GNFAs provides the first structural result for the model of generalized automata.

In the second part of the paper, we show that the set W(A) sheds new light on the String
Matching in Labeled Graphs (SMLG) problem. The SMLG problem has a fascinating history
that dates back to more than 30 years ago. Loosely speaking, the SMLG problem can be
defined as follows: given a directed graph whose nodes are labeled with nonempty strings
and given a pattern string, decide whether the pattern can be read by following a path on
the graph and concatenating the node labels. The SMLG problem is a natural generalization
of the classical pattern matching problem on texts (which requires determining whether a
pattern occurs in a text) because texts can be seen as graphs consisting of a single path.
The pattern matching problem on text can be efficiently solved in O(n+m) time (n being
the length of the text, m being the length of the pattern) by using the Knuth-Morris-Pratt
algorithm [34]. The SMLG problem is more challenging, and the complexity can be affected
by the specific variant of the pattern matching problem under consideration or the class
of graphs to which the problem is restricted. For example, in the (approximate) variant
where one allows errors in the graph the problem becomes NP-hard [5], so generally errors
are only allowed in the pattern. The SMLG problem was studied extensively during the
nineties [35, 1, 39, 5, 41, 37]; Amir et al. showed how to solve the (exact) SMLG problem on
arbitrary graphs in O(e+me) time [5], where e is the number of edges in the graph, m is the
length of the pattern, and e is the total length of all labels in the graph. Recently, the SMLG
problem has been back in the spotlight. Equi et al. [21, 19, 20] showed that, on arbitrary
graphs, for every ϵ > 0 the SMLG cannot be solved in O(me1−ϵ) or O(m1−ϵe) time, unless
the Orthogonal Vectors hypothesis fails. In applications (especially in bioinformatics) we
often need faster algorithms, so the SMLG problem has been restricted to class of graphs on
which it can be solved more efficiently. For example, Elastic Founder graphs can be used to
represent multiple sequence alignments (MSA), a central model of biological evolution, and
on Elastic Founder graphs the SMLG problem can be solved in linear time under a number
of assumptions which only have a limited impact on the generality of the model [23, 22, 42].

The pattern matching problem on texts has been revolutionized by the invention of the
Burrows-Wheeler Transform [10] and the FM-index [24, 25], which allow solving pattern
matching queries efficiently on compressed text, thus establishing a new paradigm in bioin-
formatics (where the huge increase of genomic data requires the development of space-efficient
algorithms) [43]. Recently, these ideas were extended to NFAs. In particular, Wheeler NFAs
are a popular class of automata on which the SMLG problem can be solved in linear time,
while only storing a compact representation of the Wheeler NFA [26, 3]. A special case
of Wheeler NFAs are de Bruijn graphs [9], which are used to perform Eulerian sequence
assembly [32, 40, 7]. Wheeler NFAs are also of relevant theoretical interest: for example, the
powerset construction applied to a Wheeler NFA leads to a linear blow-up in the number of
states of the equivalent DFA, and the equivalent DFA is Wheeler [4]; on arbitrary NFAs, the
blow-up can be exponential.

The missing step is to determine whether it is possible to generalize the Burrows-Wheeler
Transform and the FM-index to GNFAs, so that the resulting data structures can also be
applied to Elastic Founder graphs and other classes of graphs where labels can be arbitrary
strings. Indeed, in data compression it is common to consider edge-labeled graphs where one
compresses unary paths in the graph to save space and the path is replaced by a single edge
labeled with the concatenation of all labels. For example, some common data structures that
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are stored using this mechanism are Patricia trees, suffix trees and pangenomes [38, 6, 36].
In the following, we only consider GNFAs without ϵ-transitions (that is, GNFAs where no
edge is labeled with the empty string ϵ) because in general a GNFA may contain arbitrarily
long paths consisting of adjacent ϵ-transitions, so the SMLG problem becomes more difficult
and our mechanism, based on the FM-index, fails. We say that a GNFA is an r-GNFA if
all edge labels have length at most r (so a GNFA is a conventional NFA if an only if it is a
1-GNFA). Let m, e and e as above, let n be the number of states, and let σ = |Σ|. In Section
4, we will extend the notion of Wheelerness to GNFAs. The key ingredient will be the same
set W(A) that we use in our Myhill-Nerode theorem: we will consider a partial order ⪯A
which sorts the set of all states with respect to the co-lexicographica order of the strings in
W(A) (See Definition 21). We will then prove the following result.

▶ Theorem 3 (FM-index of generalized automata). Let A be a Wheeler r-GNFA. Then, we
can encode A by using e log σ(1 + o(1)) + O(e + rn) bits so that later on, given a pattern
α ∈ Σ∗ of length m, we can solve the SMLG problem on A in O(rm(log r + log log σ)) time.
Within the same time bound we can also decide whether α ∈ L(A).

If r = 1 (that is, if A is a conventional Wheeler NFA), we conclude that we can encode A
by using e log σ(1 + o(1)) +O(e) bits (we assume that every state is reachable from the initial
state, thus e ≥ n− 1) so that we can solve the SMLG problem in O(m log log σ) time, that
is, we retrieve the time and space bound which were already known for Wheeler automata
[26, 15]. If r = O(1), we can still solve pattern matching queries in linear time (for constant
alphabets), thus breaking the lower bound by Equi et al., while only storing a compact
representation of A.

Due to space constraints, some proofs and some auxiliary results can be found in the full
version [14].

2 Preliminary Definitions

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite strings on Σ. We denote by
ϵ the empty string, and Σ+ = Σ∗ \ {ϵ} is the set of all nonempty finite strings on Σ. For
i ≥ 0, let Σi ⊆ Σ∗ be the set of all strings of length i (we will often interpret Σi as a new
alphabet). If L ⊆ Σ∗, let Pref(L) be the set of all prefixes of some string in L. Note that if
L ̸= ∅, then ϵ ∈ Pref(L). We say that L ⊆ Σ∗ is prefix-free if no string in L is a strict prefix
of another string in L. Note that if L is prefix-free and ϵ ∈ L, then L = {ϵ}. If L ⊆ Σ∗, the
prefix-free kernel of L is the set K(L) of all strings in L whose strict prefixes are all not in L.
Note that K(L) is always prefix-free, and L is prefix-free if and only if L = K(L).

Let us recall the definition of generalized deterministic finite automaton (GDFA) [27, 28].

▶ Definition 4. A generalized non-deterministic finite automaton (GNFA) is a 4-tuple
A = (Q,E, s, F ), where Q is a finite set of states, E ⊆ Q × Q × Σ∗ is a finite set of
string-labeled edges, s ∈ Q is the initial state and F ⊆ Q is a set of final states. Moreover,
we assume that each u ∈ Q is reachable from the initial state and is co-reachable, that is, it
is either final or allows reaching a final state.

A generalized deterministic finite automaton (GDFA) is a GNFA such that for every
u ∈ Q no edge leaving u is labeled with ϵ, distinct edges leaving u have distinct labels, and
the set of all strings labeling some edge leaving u is prefix-free.

The assumption that every state is reachable and co-reachable is standard in automata
theory because all states that do not satisfy this requirement can be removed without
changing the recognized language. A conventional NFA (DFA, respectively) is a GNFA
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26:6 A Myhill-Nerode Theorem for Generalized Automata, with Applications

(GDFA, respectively) where all edges are labeled with characters from Σ. Note that we
explicitly require a GNFA to have finitely many edges (in conventional NFAs, the finiteness of
the number of states automatically implies the finiteness of the number of edges, the alphabet
being finite). If we allowed a GNFA to have infinitely many edges, then any nonempty
(possibly non-regular) language would be recognized by a GNFA with two states, where
the first state is initial, the second state is final, all edges go from the first state to the
second state, and a string labels an edge if and only if it is in the language. By requiring a
GNFA to have finitely many edges, the class of recognized languages is exactly the class of
regular languages, because it is easy to transform a GNFA into a NFA with ϵ-transitions
that recognizes the same language by proceeding as follows: for every edge (u′, u, ρ) ∈ E,
with ρ = r1, . . . , r|ρ| ∈ Σ+, where r1, . . . , r|ρ| ∈ Σ and |ρ| ≥ 2, we delete the edge (u′, u, ρ),
we add |ρ| − 1 new states z1, . . . , z|ρ|−1 and then we add the edges (u′, z1, r1), (z1, z2, r2), . . . ,
(z|ρ|−1, u, r|ρ|) (none of the new states is made initial or final).

Let us introduce some notation that will be helpful in the paper.

▶ Definition 5. Let A = (Q,E, s, F ) be a GNFA.
1. For every α ∈ Σ∗, let Iα be the set of all states that can be reached from the initial

state by following edges whose labels, when concatenated, yield α. In other words, for
some t ≥ 0 there exist edges (s, u1, α1), (u1, u2, α2), (u2, u3, α3), . . . , (ut−1, ut, αt) such
that α = α1α2α3 . . . αt.

2. Let L(A) be the language recognized by A, that is, L(A) = {α ∈ Σ∗ | Iα ∩ F ̸= ∅}.
3. For every u ∈ Q, let Iu be the set of all strings that can be read from the initial state to u

by concatenating edge labels, that is, Iu = {α ∈ Σ∗ | u ∈ Iα}. Note that for every u ∈ Q

we have ∅ ⫋ Iu ⊆ Pref(L(A)) because every state is reachable and co-reachable.
When A is not clear from the context, we write IA

α and IA
u .

Lastly, following the introduction of the paper, we can naturally define the SMLG problem
for GNFAs.

▶ Definition 6. Let A be a GNFA. The String Matching in Labeled Graphs (SMLG) problem
for GNFAs is defined as follows: build a data structure that encodes A such that, given a
string α, we can efficiently compute the set of all states reached by a path suffixed by α.

3 The Myhill-Nerode Theorem for Generalized Automata

The Myhill-Nerode theorem for conventional automata (Theorem 1) provides some algebraic
properties that Pref(L) must satisfy for L ⊆ Σ∗ to be a regular language. Intuitively, the
reason why Pref(L) captures the regularity of a regular language (that is, the link between
the algebraic characterization and the automata characterization of regular languages) is that,
given an NFA A = (Q,E, s, F ) that recognizes L, we have

⋃
u∈Q Iu = Pref(L) because if

α ∈ Pref(L), one can read α on A starting from the initial state. However, if more generally
A = (Q,E, s, F ) is a GNFA that recognizes L, then we only have

⋃
u∈Q Iu ⊆ Pref(L), because

if α ∈ Pref(L), then one can read α on A starting from the initial state, but it may happen
that we have read only a strict prefix of the label of the last edge, if the label is a string of
length at least two.

Let us give the following definition.

▶ Definition 7. Let A = (Q,E, s, F ) be a GNFA. Define:

W(A) =
⋃

u∈Q

Iu.

We say that A is a W(A)-GNFA.
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Note that for every α ∈ Σ∗ we have Iα ̸= ∅ if and only if α ∈ W(A). Moreover,
L(A)∪{ϵ} ⊆ W(A) ⊆ Pref(L(A)), because (i) if α ∈ L(A), then Iα ∩F ̸= ∅ and in particular
α ∈ W(A), (ii) ϵ ∈ Is, (iii) Iu ⊆ Pref(L(A)) for every u ∈ Q. Let us prove an additional
property of W(A). Pick α ∈ W(A), and consider the set Tα = {ρ ∈ Σ+ | αρ ∈ W(A)}.
Consider the prefix-free kernel K(Tα). If ρ ∈ K(Tα), then Iαρ ̸= ∅, but for every ρ′ ∈ Σ+

being a strict nonempty prefix of ρ we have Iαρ′ = ∅. This implies that |ρ| ≤ r, where r is
the maximum of the lengths of edge labels. We conclude that K(Tα) must be finite, because
Σ is finite. This leads to the following definition.

▶ Definition 8.
1. Let W ⊆ Σ∗. We say that W is locally bounded if for every α ∈ W we have that K(Tα)

is finite, where Tα = {ρ ∈ Σ+ | αρ ∈ W}.
2. Let A = (Q,E, s, F ) be a GNFA, and let W ⊆ Σ∗ be a locally bounded set such that

L(A) ∪ {ϵ} ⊆ W ⊆ Pref(L(A)). We say that A is a W-GNFA if W(A) = W.

▶ Remark 9. Let A = (Q,E, s, F ) be a GDFA. Let α ∈ W(A). If α = ϵ, then Iϵ = {s}
because no edge is labeled with ϵ. If |α| > 1, then there exist a prefix α1 ∈ Σ∗ of α and
u1 ∈ Q such that (s, u1, α1) ∈ E, and since A is a GDFA, we have α1 ∈ Σ+, and both α1
and u1 are unique. In particular, α1 ∈ W(A). If α1 is a strict prefix of α, we can repeat the
argument starting from u1. We conclude that for every α ∈ W(A) we have |Iα| = 1. As a
consequence, if u, v ∈ Q are distinct, then Iu ∩ Iv = ∅. In the following, if A is a GDFA and
α ∈ W(A), we will identify Iα and the state being its unique element.

Moreover, our argument shows that, if A is a GDFA, then for every α ∈ W(A) such that
|α| > 0, the longest strict prefix of α in W(A) is the unique strict prefix α′ of α in W(A) such
that, letting ρ ∈ Σ+ be the string for which α = α′ρ, we have (Iα′ , Iα, ρ) ∈ E. This implies
that if A is a GDFA and α ∈ W(A), then K(Tα) = {ρ ∈ Σ+ | αρ ∈ W(A), (Iα, Iαρ, ρ) ∈ E}.

In the classical Myhill-Nerode we consider equivalence relations defined on Pref(L). In
our setting, we will need to define equivalence relations on subsets of Pref(L). This leads to
the following general definition.

▶ Definition 10. Let W ⊆ Σ∗ and let ∼ be an equivalence relation on W. We say that ∼ is
right-invariant if:

(∀α, β ∈ W)(∀ϕ ∈ Σ∗)(α ∼ β → ((αϕ ∈ W ⇐⇒ βϕ ∈ W) ∧ (αϕ ∈ W =⇒ αϕ ∼ βϕ)).

▶ Remark 11. Notice that the property defining a right-invariant equivalence relation is
trivially true if ϕ is the empty string, so it can be rephrased as follows:

(∀α, β ∈ W)(∀ϕ ∈ Σ+)(α ∼ β → ((ϕ ∈ Tα ⇐⇒ ϕ ∈ Tβ) ∧ (ϕ ∈ Tα =⇒ αϕ ∼ βϕ)).

Let us prove that ∼ is right-invariant if and only if:

(∀α, β ∈ W)(∀ϕ ∈ Σ+)(α ∼ β → ((ϕ ∈ K(Tα) ⇐⇒ ϕ ∈ K(Tβ))∧(ϕ ∈ K(Tα) =⇒ αϕ ∼ βϕ)).

(⇒) Let α, β ∈ W such that α ∼ β, and let ϕ ∈ K(Tα). We must prove that ϕ ∈ K(Tβ)
and αϕ ∼ βϕ. Since ϕ ∈ K(Tα) ⊆ Tα, we immediately obtain ϕ ∈ Tβ and αϕ ∼ βϕ, so we
only have to prove that ϕ ∈ K(Tβ). Since for every ϕ′ ∈ Σ+ we have ϕ′ ∈ Tα if and only
if ϕ′ ∈ Tβ , then Tα = Tβ , and so K(Tα) = K(Tβ). As a consequence, from ϕ ∈ K(Tα) we
conclude ϕ ∈ K(Tβ).

(⇐) Let α, β ∈ W such that α ∼ β, and let ϕ ∈ Tα. We must prove that ϕ ∈ Tβ and
αϕ ∼ βϕ. Let ϕ1, . . . , ϕs be all prefixes of ϕ such that αϕi ∈ W for every 1 ≤ i ≤ s, where
ϕi is a strict prefix of ϕi+1 for every 1 ≤ i ≤ s− 1. Note that s ≥ 2, ϕ1 = ϵ and ϕs = ϕ. For
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every 1 ≤ i ≤ s− 1, let ψi ∈ Σ+ be such that ϕi+1 = ϕiψi. Notice that by definition we have
ψi ∈ K(Tαϕi

) for every 1 ≤ i ≤ s − 1. Since α, β ∈ W, α ∼ β and ψ1 ∈ K(Tαϕ1) = K(Tα),
we obtain ψ1 ∈ K(Tβ) and αϕ2 = αψ1 ∼ βψ1 = βϕ2. Since αϕ2, βϕ2 ∈ W, αϕ2 ∼ βϕ2 and
ψ2 ∈ K(Tαϕ2), we obtain ψ2 ∈ K(Tβϕ2) and αϕ3 = αϕ2ψ2 ∼ βϕ2ψ2 = βϕ3. By continuing
like that, we conclude that ϕ ∈ Tβ and αϕ = αϕs ∼ βϕs = βϕ.

In general, an equivalence relation is not right-invariant. Let us show how to define a
canonical right-invariant equivalence relation starting from any equivalence relation.

▶ Lemma 12. Let W ⊆ Σ∗ and let ∼ be an equivalence relation on W. For every α, β ∈ W,
let:

α ∼r β ⇐⇒ (∀ϕ ∈ Σ∗)((αϕ ∈ W ⇐⇒ βϕ ∈ W) ∧ (αϕ ∈ W =⇒ αϕ ∼ βϕ)).

Then ∼r is an equivalence relation on W, it is right-invariant and it is the coarsest right-
invariant equivalence relation on W refining ∼. We say that ∼r is the right-invariant
refinement of ∼.

The Myhill-Nerode equivalence plays a major role in the classical Myhill-Nerode theorem.
Let us show how we can extend it when W is not necessarily equal to Pref(L).

▶ Definition 13. Let L,W ⊆ Σ∗. The Myhill-Nerode equivalence on L and W is the
equivalence relation ≡L,W on W defined as the right-invariant refinement of ∼L,W , where
∼L,W is the equivalence relation on W such that for every α, β ∈ W:

α ∼L,W β ⇐⇒ (α ∈ L ⇐⇒ β ∈ L).

If W = Pref(L), then we retrieve the classical Myhill-Nerode equivalence relation for L.
Let us describe some elementary properties of ≡L,W .

▶ Lemma 14. Let L,W ⊆ Σ∗. Then ≡L,W is right-invariant and L is the union of some
≡L,W -classes.

Proof. First, ≡L,W is right-invariant because it is a right-invariant refinement by definition.
Moreover, L is the union of some ∼L,W -classes, and so also of some ≡L,W -classes because
≡L,W refines ∼L,W . ◀

Let A be a conventional NFA, and define the equivalence relation ∼A on Pref(L(A)) as
follows: for every α, β ∈ Pref(L(A)), let α ∼A β if and only if Iα = Iβ . This equivalence
relation is an intermediate tool in the Myhill-Nerode theorem for conventional automata, and
it can be also defined for a generalized automata A by considering the equivalence relation
∼A on W(A) such that for every α, β ∈ W(A) we have α ∼A β if and only if Iα = Iβ . If
A is an NFA (or an NFA with ϵ-transitions), then ∼A is right-invariant, because for every
α ∈ Pref(L(A)) and for every prefix α′ of α, any path from the initial state to a node in Iα

must go through a node in Iα′ . However, in general this property is not true if A is a GNFA,
so ∼A need not be right-invariant if A is a GNFA (see Figure 3). Since right-invariance is
crucial in the Myhill-Nerode theorem, we will consider the right-invariant refinement of ∼A.

▶ Definition 15. Let A = (Q,E, s, F ) be a GNFA. Let ≡A be the right-invariant refinement
of ∼A, where ∼A is the equivalence relation on W(A) such that for every α, β ∈ W(A):

α ∼A β ⇐⇒ Iα = Iβ .
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a, b
c

ac

Figure 3 A GNFA A such that ∼A is not right-invariant. Indeed, a, b, ac, bc ∈ W(A) and a ∼A b,
but ac ̸∼A bc.

▶ Remark 16. Let us prove that if A is GDFA, then ∼A is right-invariant. Let α, β ∈ W
be such that Iα = Iβ , and let ϕ ∈ K(Tα). By Remark 11, we only have to prove that
ϕ ∈ K(Tβ) and Iαϕ = Iβϕ. By Remark 9, we have αϕ ∈ W(A) and (Iα, Iαϕ, ϕ) ∈ E. Hence
(Iβ , Iαϕ, ϕ) ∈ E, we obtain Iαϕ = Iβϕ and again by Remark 9, we conclude ϕ ∈ K(Tβ). Notice
that, in fact, the generalized automaton A in Figure 3 is not a GDFA.

Since ≡A is the right-invariant refinement of ∼A, we conclude that, if A is a GDFA, then
≡A and ∼A are the same equivalence relation.

Let us study the properties of ≡A.

▶ Lemma 17. Let A = (Q,E, s, F ) be a GNFA. Then, ≡A is right-invariant, it refines
≡L(A),W(A), it has finite index and L(A) is the union of some ≡A-classes.

The following lemma is crucial to derive our Myhill-Nerode theorem for generalized
automata.

▶ Lemma 18. Let L ⊆ Σ∗ and let W ⊆ Σ∗ be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆
Pref(L). Assume that L is the union of some classes of a right-invariant equivalence relation
∼ on W of finite index. Then, L is recognized by a W-GDFA A∼ = (Q∼, E∼, s∼, F∼) such
that:
1. |Q∼| is equal to the index of ∼.
2. ≡A∼ and ∼ are the same equivalence relation.
Moreover, if B is a W-GDFA that recognizes L, then A≡B is isomorphic to B.

Proof (Sketch). The desired W-GDFA A∼ = (Q∼, E∼, s∼, F∼) is defined as follows.
Q∼ = {[α]∼ | α ∈ W}.
s∼ = [ϵ]∼.
E∼ = {([α]∼, [αρ]∼, ρ) | α ∈ W, ρ ∈ K(Tα)}.
F∼ = {[α]∼ | α ∈ L}. ◀

▶ Remark 19. In the statement of Lemma 18 we cannot remove the assumption that W
is locally bounded, because we have shown that if A is a GNFA, then W(A) is locally
bounded. However, if W is not locally bounded, then A∼ is still a well-defined automaton
with finitely many states, but it has infinitely many edges. For example, W = {ϵ} ∪ a∗b is
not locally bounded because Tϵ = a∗b and K(Tϵ) = a∗b is an infinite set. If L = a∗b, then
L ∪ {ϵ} ⊆ W ⊆ Pref(L). Moreover, ≡L,W has finite index (the equivalence classes are {ϵ}
and a∗b), and by Lemma 14 we know that ≡L,W is right-invariant and L is the union of
some ≡L,W -classes. We conclude that A≡L,W is well-defined, but it has infinitely many edges
(see Figure 4).
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1start 2
b, ab, aab, aaab, . . .

Figure 4 An example where W is not locally bounded.

We can now state our Myhill-Nerode theorem for generalized automata.

▶ Theorem 20 (Myhill-Nerode theorem for generalized automata). Let L ⊆ Σ∗ and let W ⊆ Σ∗

be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L). The following are equivalent:
1. L is recognized by a W-GNFA.
2. The Myhill-Nerode equivalence ≡L,W has finite index.
3. There exists a right-invariant equivalence relation ∼ on W of finite index such that L is

the union of some ∼-classes.
4. L is recognized by a W-GDFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal W-GDFA recognizing L (that is, two W-GDFAs having
the minimum number of states among all W-GDFAs that recognize L must be isomorphic).

Proof.
(1) → (2) Let A be a W-GDFA recognizing L. By Lemma 17 we have that ≡A has finite

index and it refines ≡L,W , so also ≡L,W has finite index.
(2) → (3) By Lemma 14 the desired equivalence relation is ≡L,W .
(3) → (4) It follows from Lemma 18.
(4) → (1) Every W-GDFA is a W-GNFA.

Now, let us prove that the minimum automaton is A≡L,W as defined in Lemma 18.
First, A≡L,W is well-defined because ≡L,W is right-invariant and L is the union of some
≡L,W -classes by Lemma 14, and ≡L,W has finite index by one of the statements that we
assume to be true. Now, by Lemma 18 the number of states of A≡L,W is equal to the index
of ≡L,W , or equivalently, of ≡A≡L,W

. On the other hand, let B be any W-GDFA recognizing
L non-isomorphic to A≡L,W . Then ≡B is a refinement of ≡L,W by Lemma 17, and it must
be a strict refinement of ≡L,W , otherwise A≡L,W would be equal to A≡B , which by Lemma
18 is isomorphic to B, a contradiction. We conclude that the index of ≡L,W is smaller than
the index of ≡B, so again by Lemma 18 the number of states of A≡L,W is smaller than the
number of states of A≡B and so of B. ◀

Myhill-Nerode theorem for conventional automata (Theorem 1) is a special case of
Theorem 20, because if A is an NFA, then W(A) = Pref(L(A)). Moreover, Theorem 20
is consistent with the example in Figure 2, because, calling A1 and A2 the two GDFAs in
Figure 2, we have shown that W(A1) ̸= W(A2).

4 The FM-index of Generalized Automata

In this section, we prove Theorem 3. In order to present the main ideas, it will suffice to
consider GDFAs. The more general case of GNFAs without ϵ-transitions requires minor
technical modifications and is considered in the extended version [14].

Let V be a set. We say that a (binary) relation ≤ on V is a partial order if ≤ is reflexive,
antisymmetric and transitive. A partial order ≤ is a total order if for every u, v ∈ V we have
(u ≤ v) ∨ (v ≤ u). We say that U ⊆ V is ≤-convex if for every u, v, z ∈ V , if u ≤ v ≤ z and
u, z ∈ U , then v ∈ U . For every u, v ∈ V , we write u < v if (u ≤ v) ∧ (u ̸= v).
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Let us define Wheeler GDFAs. As customary in the literature on Wheeler automata
[3, 17], we assume that there exists a fixed total order ⪯ on Σ (in our examples, we always
assume a ≺ b ≺ c ≺ . . . ), and ⪯ is extended co-lexicographically to Σ∗ (that is, for every
α, β ∈ Σ∗ we have α ≺ β if the reverse string αR is lexicographically smaller than the reverse
string βR). Let A = (Q,E, s, F ) be a GDFA. Let ⪯A be the reflexive relation on Q such
that, for every u, v ∈ Q with u ̸= v, we have u ≺A v if and only if (∀α ∈ Iu)(∀β ∈ Iv)(α ≺ β).
Since each Iu is nonempty, it is immediate to realize that ⪯A is a partial order, but in
general it is not a total order. We can then give the following definition (see Figure 5 for an
example).

▶ Definition 21. Let A = (Q,E, s, F ) be a GDFA. We say that A is Wheeler if ⪯A is a
total order.

u1start

u2

u3

ab, b

ac, c

b

bc

OUT1 = 001011
OUT2 = 001101
IN1 = 100101
IN2 = 101001
LAB1 = (b)(c)(b)
LAB2 = (ab)(ac)(bc)
FIN = 011

Figure 5 Left: A Wheeler GDFA A. States are numbered following the total order ⪯A. Right:
The Burrows-Wheeler Transform (BWT) of A (see Definition 29).

If A is a conventional DFA, it is not immediately clear that Definition 21 is equivalent to
the local definition of Wheeler DFA commonly used in the literature [3, 11, 16]. According
to the local definition, a DFA A = (Q,E, s, F ) is Wheeler if there exists a total order ≤ on
Q such that (i) s comes first in the total order, (ii) for every (u′, u, a), (v′, v, b) ∈ E, if u < v,
then a ⪯ b and (iii) for every (u′, u, a), (v′, v, a) ∈ E, if u < v, then u′ < v′. Alanko et al. [3,
Corollary 3.1] proved that, if such a total order ≤ exists, then it is unique and it is equal to
⪯A, so we only have to prove that if ⪯A is a total order, then it satisfies properties (i), (ii),
(iii). This follows from the following lemma.

▶ Lemma 22. Let A = (Q,E, s, F ) be a Wheeler GDFA. Then:
1. s comes first in the total order ⪯A.
2. For every (u′, u, ρ), (v′, v, ρ′) ∈ E, if u ≺A v and ρ′ is not a strict suffix of ρ, then ρ ⪯ ρ′.
3. For every (u′, u, ρ), (v′, v, ρ) ∈ E, if u ≺A v, then u′ ≺A v′.

In case 2 of Lemma 22 we cannot remove the assumption that ρ′ is not a strict prefix
of ρ; as a consequence, we cannot use Lemma 22 to provide an equivalent, local definition
of Wheeler GDFA (see Figure 6). The local definition of Wheeler DFA easily implies that
the problem of deciding whether a given DFA is Wheeler can be solved in polynomial time
[3], but since we do not have a local definition of Wheeler GDFA, it is not clear whether
the corresponding problem on GDFAs is also solvable in polynomial time (and we saw in
the introduction that computational problems on generalized automata are usually hard).
However, we can prove that the problem is still tractable by reducing it to computing the
partial order ⪯A∗ on a conventional DFA A∗ equivalent to a given GDFA A.

▶ Lemma 23. Let A = (Q,E, s, F ) be a GDFA, and let e be the total length of all edge labels.
In O(e log e) time we can decide whether A is Wheeler and, if so, we can compute ⪯A.
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u1start

u2

u3

u4

ba

c a

u1start

u2

u3

ac, b

c

Figure 6 Left: A Wheeler GDFA A = (Q, E, s, F ). States are numbered following the total order
⪯A. Note that (u1, u2, ba), (u4, u3, a) ∈ E, u2 ≺A u3, a is a strict suffix of ba and a ≺ ba. Right:
A GDFA A = (Q, E, s, F ) such that states are numbered following a total order ≤ such that (i) s

comes first in the total order ≤, (ii) for every (u′, u, ρ), (v′, v, ρ′) ∈ E, if u < v and ρ′ is not a strict
suffix of ρ, then ρ ⪯ ρ′ and (iii) for every (u′, u, ρ), (v′, v, ρ) ∈ E, if u < v, then u′ < v′. Note that A
is not Wheeler because u2 and u3 are not ⪯A-comparable, since b ≺ c ≺ ac, c ∈ Iu3 and b, ac ∈ Iu2 .
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u2

u3

ab, b

ac, c

b
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u1start

u2

u3
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c

c

b b

b

c

Figure 7 Left: The GDFA A in Figure 5. Right: The DFA A∗ built starting from A in the proof
of Lemma 23.

Proof. Let us build a DFA A∗ starting from A (see Figure 7 for an example). In general, if
C ⊆ Σ+, we can build a trie such that the set of all strings that can be read following a path
starting from the root is equal to the set of all strings prefixing at least one element in C. If
C is prefix-free, then a string is in C if and only if it can be read from the root to a leaf; we
say that such a leaf spells the considered string. For every u ∈ Q, let Cu be the prefix-free
set of all strings labeling some edge leaving u. We build an automaton A∗ = (Q∗, E∗, s∗, F ∗)
by picking A, removing all edges, and building a trie for every nonempty Cu is such a way
that (a) the root of the trie is u, (b) the leaf that spells ρ is the unique v ∈ Q such that
(u, v, ρ) ∈ E and (c) every internal state of the trie is a new state. Notice that Q ⊆ Q∗;
we define s∗ = s and F ∗ = F . By construction, A∗ is a DFA, and for every u ∈ Q we
have IA

u = IA∗

u (so L(A∗) = L(A)). As a consequence, A is Wheeler if and only if the
restriction of the partial order ⪯A∗ to Q is a total order. Since A∗ is a conventional DFA,
we can compute the partial order ⪯A∗ in polynomial time [17, 33, 13, 8]. For example, the
algorithm in [8] runs in O(|E∗| log |Q∗|) time, and the claimed time bound follows because
|Q∗| − 1 ≤ |E∗| = e. ◀

The remaining of the section is devoted to proving that the SMLG problem can be
solved efficiently on Wheeler GDFAs. If A = (Q,E, s, F ) is a Wheeler GDFA, we write
Q = {Q[1], Q[2], . . . , Q[n]}, where Q[1] ≺A Q[2] ≺A · · · ≺A Q[n]; if 1 ≤ i ≤ j ≤ n, let
Q[i, j] = {Q[i], Q[i+ 1], . . . , Q[j − 1], Q[j]}. If α, β ∈ Σ∗, we write α ⊣ β if and only if α is a
suffix of β.

▶ Definition 24. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. Define:
G≺(α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α)};
G⊣(α) = {u ∈ Q | (∃β ∈ Iu)(α ⊣ β)};
G≺

⊣ (α) = G≺(α) ∪G⊣(α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α) ∨ (∃β ∈ Iu)(α ⊣ β)}.
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Intuitively, the set G⊣(α) is the set of states that the SMLG problem must return on
input α, and G≺(α) is the set of all states reached only by strings smaller than α. The
following lemma shows that, as in the case of conventional Wheeler automata, both G≺(α)
and G⊣(α) are intervals with respect to the total order ⪯A, and there is no state between
G≺(α) and G⊣(α).

▶ Lemma 25. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. Then:
1. G≺(α) ∩G⊣(α) = ∅.
2. G⊣(α) is ⪯A-convex.
3. If u, v ∈ Q are such that u ≺A v and v ∈ G≺(α), then u ∈ G≺(α). In other words,

G≺(α) = Q[1, |G≺(α)|].
4. If u, v ∈ Q are such that u ≺A v and v ∈ G≺

⊣ (α), then u ∈ G≺
⊣ (α). In other words,

G≺
⊣ (α) = Q[1, |G≺

⊣ (α)|].

In order to compute G⊣(α), it will suffice to compute G≺(α) and G≺
⊣ (α). Let us show how

to compute G≺(α) and G≺
⊣ (α); to this end, we will constantly use property 3 in Lemma 22,

which is also crucial for conventional Wheeler automata (it is a generalization of the LF
mapping in the FM-index [25]). First, let G∗(α) be the set of all states reached by an edge
labeled with a string suffixed by α. Formally:

G∗(α) = {v ∈ Q | (∃v′ ∈ Q)(∃ρ ∈ Σ∗)((v′, v, ρ) ∈ E ∧ (α ⊣ ρ))}.

Clearly, G∗(α) ⊆ G⊣(α). Now, let us give the following definition.

▶ Definition 26. Let A = (Q,E, s, F ) be a Wheeler GDFA. Let U ⊆ Q and ρ ∈ Σ+. We
denote by out(U, ρ) the number of edges labeled with ρ that leave states in U , and we denote
by in(U, ρ) the number of edges labeled with ρ that enter states in U .

If α ∈ Σ∗ and 0 ≤ k ≤ |α|, let p(α, k) and s(α, k) be the prefix and the suffix of α of length
k, respectively. If A = (Q,E, s, F ) is a GDFA and u ∈ Q, let λ(u) be the set of all strings in
Σ+ labeling an edge reaching u; we denote by minλ(u) and maxλ(u) the (co-lexicographically)
smallest and largest strings in λ(u), respectively.

The next lemma formalizes the following intuition: to compute G≺(α), we have to consider
all states whose incoming edges have a label smaller than α; moreover, if the label is s(α, k)
(for some k), then the start state must be in G≺(p(α, |α| − k)).

▶ Lemma 27. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. For 0 < k < |α|, let
fk = out(Q[1, |G≺(p(α, |α| − k))|], s(α, k)). Then, |G≺(α)| is the largest integer 0 ≤ j ≤ |Q|
such that (i) in(Q[1, j], s(α, k)) ≤ fk, for every 0 < k < |α|, and (ii) if j ≥ 1, then
maxλ(Q[j]) ≺ α.

The following crucial lemma shows that, in order to compute |G≺
⊣ (α)|, we only have to

consider |G≺(α)|, the biggest (w.r.t ⪯A) state in G∗(α) and the states in G≺
⊣ (α) \G∗(α).

▶ Lemma 28. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. For 0 < k < |α|,
let fk = out(Q[1, |G≺(p(α, |α|−k))|], s(α, k)) and gk = out(Q[1, |G≺

⊣ (p(α, |α|−k))|], s(α, k)).
Then, gk ≥ fk for every 0 < k < |α|. Moreover, |G≺

⊣ (α)| is equal to the maximum among:
1. |G≺(α)|;
2. the largest integer 0 ≤ i ≤ |Q| such that, if i ≥ 1, then Q[i] ∈ G∗(α);
3. the smallest integer 0 ≤ j ≤ |Q| such that, for every 0 < k < |α| such that gk > fk, we

have in(Q[1, j], s(α, k)) ≥ gk.
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We are now ready to generalize the Burrows-Wheeler Transform and the FM-index to
Wheeler GDFAs. Let A = (Q,E, s, F ) be a GDFA. We say that A is a r-GDFA if all edge
labels have length at most r. Fix 1 ≤ i ≤ r. Let E(i) = {(u′, u, ρ) ∈ E | ρ ∈ Σi} be
the number of edges labeled with a string of length i, and let Σ(i) = {ρ ∈ Σi | (∃u′, u ∈
Q)((u′, u, ρ) ∈ E(i)} be the set of all strings of length i labeling some edge. Let ei = |E(i)|
and σi = |Σ(i)|; we have σi ≤ min{σi, ei}. The i-outdegree (i-indegree, respectively) of a
state is equal to the number of edges in E(i) leaving (reaching, respectively) the state. The
sum of the i-outdegrees of all the states and the sum of the i-indegrees of all the states are
both equal to ei. Lastly,

∑r
i=1 ei = e and the total length of all edge labels is e =

∑r
i=1 eii.

Let us define the Burrows-Wheeler Transform of a Wheeler GDFA (see Figure 5 for an
example).

▶ Definition 29 (Burrows-Wheeler Transform of a Wheeler GDFA). Let A = (Q,E, s, F ) be a
Wheeler GDFA. The Burrows-Wheeler Transform BWT (A) of A consists of the following
strings.

1. For every 1 ≤ i ≤ r, the bit string OUTi ∈ {0, 1}ei+n that stores the i-outdegrees in unary.
More precisely, (i) OUTi contains exactly n characters equal to 1, (ii) OUTi contains exactly
ei characters equal to 0, and (iii) the number of zeros between the (ℓ− 1)-th character
equal to one (or the beginning of the sequence if ℓ = 1) and the ℓ-th character equal to 1
yields the i-outdegree of Q[ℓ].

2. For every 1 ≤ i ≤ r, the bit string INi ∈ {0, 1}ei+n that stores the i-indegrees in unary.
More precisely, (i) INi contains exactly n characters equal to 1, (ii) INi contains exactly
ei characters equal to 0, and (iii) the number of zeros between the (ℓ− 1)-th character
equal to one (or the beginning of the sequence if ℓ = 1) and the ℓ-th character equal to 1
yields the i-indegree of Q[ℓ].

3. For every 1 ≤ i ≤ r, the string LABi ∈ (Σi)ei that stores the edge labels of length i (with
their multiplicities). More precisely, we sort of all edges in E(i) by the index of the start
states (w.r.t to ⪯A). Edges with the same start state are sorted by label. Lastly, we
obtain LABi by concatenating the labels of all the edges following this edge order.

4. The bit string FIN ∈ {0, 1}n that marks the final states, that is, the i-th bit of FIN is
equal to 1 if and only if Q[i] ∈ F .

We can now prove that the BWT of a Wheeler GDFA A is a valid encoding of A, just
like the BWT of a string is a valid encoding of the string.

▶ Theorem 30. Let A = (Q,E, s, F ) be a Wheeler GDFA. If we only know BWT (A), then
we can retrieve A (up to isomorphism). In other words, BWT (A) is an encoding of A.

Proof. Consider states Q[1], . . . , Q[n]. By Lemma 22 we have s = Q[1], and by using FIN
we can retrieve the set of all final states F . We only have to show that we can retrieve E.
In other words, for every 1 ≤ i′, i ≤ n and for every ρ ∈ Σ+ we must determine whether
(Q[i′], Q[i], ρ) ∈ E. It will suffice to retrieve the set E(i) for every 1 ≤ i ≤ r, because E is
the (disjoint) union of the E(i)’s. From LABi we can retrieve the labels all edges in E(i),
with their multiplicities. From INi we can retrieve the i-indegree of each Q[ℓ]. By Lemma 22,
for every ρ ∈ Σi labeling some edge reaching some node Q[ℓ] and for every ρ′ ∈ Σi labeling
some edge reaching Q[ℓ+ 1] it must be ρ ⪯ ρ′. Since we know the labels of all edges in E(i)
with multiplicities and we know the i-indegrees, then we can retrieve the labels of all edges
entering each Q[ℓ], with multiplicities. From OUTi we can retrieve the i-outdegrees of each
Q[ℓ], and the order used in the definition of LABi implies that we can retrieve the labels of
all edges leaving each Q[ℓ]. Since we know the labels of all edges entering each Q[ℓ] and we
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know the labels of all edges leaving each Q[ℓ], then for every ρ ∈ Σi we know the set of all
states reached by an edge labeled ρ, with multiplicities, and the set of all states having an
outgoing edge labeled ρ. By Lemma 22, for every 1 ≤ j < k ≤ n, if Q[j] is reached by an
edge labeled ρ leaving the state Q[j′] and Q[k] is reached by an edge labeled ρ leaving the
state Q[k′], then it must be j′ < k′. As a consequence, we can retrieve the set E(i)ρ of all
edges labeled ρ for every ρ ∈ Σi, and so we can retrieve E(i), because E(i) is the (disjoint)
union of the E(i)ρ’s. ◀

We are ready to prove the main theorem of this section (the full proof is in the extended
version [14]). Recall that n is the number of vertices, e is the number of edges, and e is the
total length of all edge labels.

▶ Theorem 31 (FM-index of Wheeler GDFAs). Let A be a Wheeler r-GDFA. Then, we can
encode A by using e log σ(1 + o(1)) +O(e+ rn) bits so that later on, given a pattern α ∈ Σ∗

of length m, we can solve the SMLG problem on A in O(rm(log r + log log σ)) time. Within
the same time bound we can also decide whether α ∈ L(A).

Proof (Sketch). By Lemma 25, we only need to compute |G≺(α)| and |G≺
⊣ (α)|. In O(m)

steps, we recursively compute |G≺(p(α, k))| and |G⊣(p(α, k))| for every 0 ≤ k ≤ |α|. By
Lemma 27 and Lemma 28, we can reduce this problem to the problem of solving a number
of elementary queries, such as computing fk = out(Q[1, |G≺(p(α, |α| − k))|], s(α, k)) for
every 0 < k < |α|. But we only need to compute fk for 0 < k < r + 1, because otherwise
|s(α, k)| > r and all edge labels have length at most r. In general, we need to solve every
elementary query at most O(r) time. By augmenting the Burrows-Wheeler-Transform of A
with compact data structures for rank/select queries and succinct dictionaries, we can solve
every elementary query in O(log r + log log σ) time. ◀

5 Conclusions and Future Work

In this paper, we considered the model of generalized automata, and we introduced the set
W(A). We showed that W(A) plays the same role of Pref(L(A)) in conventional NFAs: the
set W(A) can be used to derive a Myhill-Nerode theorem, and it represents the starting
point for extending the FM-index to generalized automata.

Further lines of research include extending the Burrows-Wheeler Transform and the
FM-index to arbitrary GNFAs. Indeed, the Burrows-Wheeler Transform and the FM-index
were recently generalized from Wheeler NFAs to arbitrary NFAs by means of the so-called
co-lex orders [15, 17] and co-lex relations [12]. However, we remark that the efficient time
bounds for the SMLG problem that we derived in this paper cannot hold for arbitrary GNFAs
due to the (conditional) lower bounds by Equi et al. that we recalled in the introduction.

Giammaresi and Montalbano described an effective procedure for computing a minimal
GDFA equivalent to a given GDFA [28, 27], but we do not know if there exists an efficient
algorithm for minimizing a GDFA. The Myhill-Nerode theorem for generalized automata
implies that for every minimal GDFA A there exists a set W ⊆ Σ∗ such that A is isomorphic
to the minimal W-GDFA recognizing L(A). At the same time, given a W-GDFA recognizing
L, we may build the minimal W-GDFA recognizing L by extending Hopcroft’s algorithm
[30] to GDFAs. If we could prove that, for every admissible W ⊆ Σ∗, the number of states of
the minimal W-GDFA recognizing L is comparable to the number of states of a minimal
GDFA recognizing L, then we would obtain a fast algorithm that significantly reduces the
number of states of a GDFA without changing the recognized language.
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This paper leaves many questions of theoretical interest open. The class of Wheeler
languages is the class of all regular languages that are recognized by some Wheeler NFA [4].
Wheeler languages enjoy several properties: for example, they admit a characterization
in terms of convex equivalence relations [4]. In addition, every Wheeler language is also
recognized by some DFA, and, in particular, there exists a unique state-minimal DFA
recognizing a given Wheeler language [2]. The main limitation of Wheeler languages is that
they represent only a small subclass of regular languages: for example, a unary language
(that is, a language over an alphabet of size one) is Wheeler if and only if it is either finite or
co-finite [4]. The intuitive reason why most regular languages are not Wheeler is that the
definition of a Wheeler NFA A implies strong requirements on the set Pref(L(A)) (which lead
to the characterization in terms of convex equivalence relations). However, when we switch to
GNFAs, it is W(A) that plays the role of Pref(L(A)), and it may hold W(A) ⫋ Pref(L(A)),
thus now the same requirement only apply to a smaller subset. The natural question is
whether Wheeler GNFAs extend the class of Wheeler languages. The answer is affirmative:
there exists a regular L language such that L is not Wheeler (that is, no Wheeler NFA
recognizes L), but L is recognized by a Wheeler GDFA. Define L = {a2n | n ≥ 0}. Then, L
is not Wheeler [4], but L is recognized by the GDFA consisting of a single state, both initial
and final, with a self-loop labeled aa. As a consequence, the class of all languages recognized
by a Wheeler GNFA is strictly larger than the class of Wheeler languages. We can call the
languages in this new class generalized Wheeler languages: the next step is to understand
which properties of Wheeler languages are still true and how it is possible to characterize
this new class.
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