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—— Abstract

Border complexity measures are defined via limits (or topological closures), so that any function which
can approximated arbitrarily closely by low complexity functions itself has low border complexity.
Debordering is the task of proving an upper bound on some non-border complexity measure in terms
of a border complexity measure, thus getting rid of limits.

Debordering is at the heart of understanding the difference between Valiant’s determinant
vs permanent conjecture, and Mulmuley and Sohoni’s variation which uses border determinantal
complexity. The debordering of matrix multiplication tensors by Bini played a pivotal role in
the development of efficient matrix multiplication algorithms. Consequently, debordering finds
applications in both establishing computational complexity lower bounds and facilitating algorithm
design. Currently, very few debordering results are known.

In this work, we study the question of debordering the border Waring rank of polynomials.
Waring and border Waring rank are very well studied measures in the context of invariant theory,
algebraic geometry, and matrix multiplication algorithms. For the first time, we obtain a Waring
rank upper bound that is exponential in the border Waring rank and only linear in the degree. All
previous known results were exponential in the degree. For polynomials with constant border Waring
rank, our results imply an upper bound on the Waring rank linear in degree, which previously was
only known for polynomials with border Waring rank at most 5.
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1 Introduction

Given a homogeneous polynomial f of degree d over C, its Waring rank WR(f) is defined as
the smallest number r such that there exist homogeneous linear forms ¢4, ..., ¢, with

f= iéf.
=1

Equivalently, WR(f) is the minimal top fanin of a homogeneous ¥ A ¥ circuit computing
f. In the case of quadratic forms (polynomials of degree 2), this notion is equivalent to the
rank of the symmetric matrix associated with a quadratic form; hence Waring rank can be
regarded as a generalization of the rank of a symmetric matrix. Unlike the case of matrices,
when d > 3, Waring rank is in general not lower semicontinuous !, that is, a limit of a family
of polynomials with low Waring rank can have higher Waring rank. The simplest example is
given by the polynomial 29~ 1y, which has Waring rank d (this is a classical result [47]), but
can be presented as a limit

971y = lim 1 [(z+ ey)? — xd}

e—0 de
of a family of Waring rank 2 polynomials (note that we work over C, so this expression can
be rearranged into a sum of two powers by moving constants inside the parentheses). The
border Waring rank is a semicontinuous variation of Waring rank defined as follows: the
border Waring rank of f, denoted WR(f), is the smallest r such that f can be written as a
limit of a sequence of polynomials of Waring rank at most . We have WR(z?~'y) = 2.

Waring rank was studied already in the eighteenth century [23, 50, 25] in the context of
invariant theory, with the aim to determine normal forms for homogeneous polynomials. We
mention the famous Sylvester Pentahedral Theorem, stating that a generic cubic form in four
variables can be written uniquely as a sum of five cubes. At the beginning of the twentieth
century, the early work on secant varieties in classical algebraic geometry [48, 51] implicitly
commenced the study of border Waring rank. The notion of border rank for tensors was
introduced in [11] to construct faster-than-Strassen matrix multiplication algorithms. In [10],
Bini proved that tensor border rank and tensor rank define the same matrix multiplication
exponent. Today this theory is deeply related to the study of Gorenstein algebras [35, 15],
the Hilbert scheme of points [38], and deformation theory [18, 39].

In the context of algebraic complexity theory, Waring rank defines a model of computation
known as the homogeneous diagonal depth 3 circuits or homogeneous ¥ A ¥ circuits, see
e.g. [49]. This is a very weak computational model (determinants have provably exponential
Waring rank [33]). Nevertheless, it is important as one of the simplest nontrivial computational
models and has many unresolved open problems associated with it. The Waring rank of a
generic homogeneous polynomial of degree d > 3 in n variables is [1 - (""'j_lﬂ = Q(”{;Tl)
with finite number of exceptional values of (n,d) [2], but the best lower bounds obtained
are of order 2nl%/2 (from tensor rank lower bounds in [3]). For a large class of lower bound
methods, so called rank methods, there are barrier results showing that cannot give bounds
significantly larger than nl4/2] [28, 31, 30]. Waring rank can be useful when the degree of
the polynomials considered is constant. For example, the results of [24] guarantee that the

L A function f is lower semicontinuous at a if liminf f(z) > f(a).
r—ra
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matrix multiplication exponent is controlled by the Waring rank or border Waring rank
of the polynomial Tr(X?) with X € C"*", which is a symmetrized version of the matrix
multiplication tensor.

The lack of semicontinuity is a common phenomenon in algebraic complexity not specific
to Waring rank. Most complexity measures defined in terms of discrete structures (such as
circuits or formulas) or in terms of decompositions (such as Waring rank or tensor rank)
are not lower semicontinuous. To any algebraic complexity measure one can define the
corresponding border complexity measure in the same way as border Waring rank arises
from Waring rank: the border complexity of f is the smallest number s such that f can
be approximated arbitrarily closely by polynomials of complexity at most s. Border tensor
rank appears in the study of the computational complexity of matrix multiplication [11, 10],
border complexity for algebraic circuits was first discussed in [45] and [20].

Replacing a complexity measure by its border measure in a complexity class, we obtain
the closure of this class. For example, VP is the class of all polynomial sequences with
polynomially bounded degree and border circuit size, and VF is defined analogously using
formula size. Formally, the closure C of a complexity class C consists of all polynomial
sequences (fn)nen such that there exists a bivariate sequence (gnm)n,men With the property
that (gn,m)nen lies in C for every fixed m, and f,, = lim,,_, o0 gn,m- The operation of going
to the closure is indeed a closure operator in the sense of topology, see [36].

The relationship between border and non-border complexity is far from straightforward.

In some contexts taking a limit can be a very strong operation, which sometimes turns
non-universal computational models into universal ones. For example, there are polynomials
which cannot be computed by width 2 algebraic branching programs [4], but the corresponding
border measure is related to border formula size [14], so every polynomial is a limit of width 2
ABPs. Kumar [42] gives an even easier example: every polynomial can be presented as a
limit of a sum of 2 products of affine linear forms. On the other hand, there are examples of
complexity measures which are lower semicontinuous, so that there is no difference between
border and non-border complexity measures. A simplest example is the number of monomials
in a polynomial (equivalently, top fanin of a XII circuit). Other examples are noncommutative
ABP width (implicit in [46]) and read-once ABP width [26].

Semicontinuous complexity measures and closed complexity classes are easier to work
with using geometric methods. Because of this, the geometric complexity theory program [45]
proposes to study conjectures VNP ¢ VBP and VNP € VP instead of Valiant’s conjectures
VNP ## VBP and VNP # VP. The VNP ¢ VP conjecture was also proposed in [20]. These
border variants of Valiant’s conjecture are now usually referred to as the Mulmuley—Sohoni
conjectures. Mulmuley—Sohoni conjectures are stronger that Valiant’s conjectures, but it
is not clear how much stronger, as most questions about the relations between complexity

classes and their closures are wide open. It is unknown even whether or not VF C VNP.

Theorems of the form C C D for algebraic complexity classes C and D are called debordering
results. These kind of results can also be proven directly on the complexity measures, by
giving an upper bound on a non-border complexity in terms of border complexity. For

example, abpw(f) < WR(f), where abpw(f) is the algebraic branching program width of f.

This is proven using semicontinuity of noncommutative ABP width, see [12, Thm 4.2] and
[29]. In terms of complexity classes, this means VWaring C VBP, where VWaring is the class
of p-families that have polynomially bounded Waring rank.

Forbes [52] conjectures that VWaring = VWaring. Since this puts VWaring in VF, a proof
of this conjecture will also improve the results of Dutta, Dwivedi and Saxena [26] from
LI € VBP to XIFIIIY € VF. Ballico and Bernardi [7] propose an even stronger conjecture
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stating that WR(f) < (WR(f) — 1) - deg f. This was proven by case analysis for small values
of border Waring rank: for WR(f) < 3 in [43], for WR(f) =4 in [6], and for WR(f) = 5 and
deg f > 9 in [5].

Main result

We prove the following improved debordering theorem for border Waring rank.

» Theorem 1 (Fixed-parameter debordering). Let f be a homogeneous polynomial with
deg f =d and WR(f) =r. Then WR(f) <4"-d.

Note that the example of the polynomial ¢~y with WR(29~1y) = 2 and WR(z9"1y) = d
shows that any debordering bound must necessarily depend on both border Waring rank
r and the degree d. We call our result a fized-parameter debordering because the bound is
polynomial (in this case even linear) in d, but exponential in the complexity parameter 7.
In the case of a fixed border Waring rank this gives a bound linear in the degree. This was
previously known only for WR(f) < 5. Even for r = O(logd) we obtain an upper bound
polynomial in d.

To the best of our knowledge, this is the first fixed-parameter debordering result. Previous
methods applied to border Waring rank only allow upper bounds of the order d” or r¢. To
get WR(f) < O(d"), note that a polynomial with border Waring rank r can be transformed
into a polynomial in only r variables using a linear change of variables (see Lemma 4), and
then take the maximal possible Waring rank of an r-variate polynomial of degree d as an
upper bound. Alternatively, an upper bound WR(f) < 2?17 can be obtained by using the
previously mentioned debordering into an ABP (abpw(f) < WR(f)) and writing the ABP
as a sum of at most ¢ products, one for each path. Other known debordering techniques,
such as the interpolation technique using the bound on the degree of € in the approximation
from the work of Lehmkuhl and Lickteig [44] (which is exponential in the degree of the
polynomial), or the DiDIL technique from [26] can be applied in the border Waring rank
setting, but do not improve over the simpler results discussed above.

Proof ideas

The main ideas for the proof come from apolarity theory and the study of O-dimensional
schemes in projective space (we discuss these ideas in Appendix A of the extended version
of the paper [27]). We managed to simplify the proof so that it is elementary and does
not use the language of algebraic geometry and is based on partial derivative techniques
(see Section 2.3).

To prove the debordering, we transform a border Waring rank decomposition for f into a
generalized additive decomposition (34, 8, 9] of the form f = >")", Ki_r’“+1gk, where £}, are
linear forms, and gi are homogeneous polynomials of degrees ry — 1. We then obtain an
upper bound on the Waring rank, by first decomposing each g with respect to a basis
consisting of powers of linear forms, and then using the classical fact (see also [19]) that
WR(£45) < max(a + 1,b+ 1).

To construct a generalized additive decomposition, we divide the summands of a border
rank decomposition into several parts such that cancellations happen only between summands
belonging to the same part; see Lemma 10. The key insight is that if the degree of polynomials
involved is high enough, namely when deg f > WR(f) — 1, then all parts of the decomposition
are “local” in the sense that the lowest order term in each summand is a multiple of the same

gd—r—i—l

linear form. Each local part gives one term of the form g, where r is the number of

rank one summands in the part and ¢ is the common lowest order linear form; see Lemma 7.
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For example, consider the family of polynomials f; = nglyo + m‘fflyl +2(z0 4+ 21)% Ly,

adapted from [16]. If d > 3, then the border Waring rank of f is at most 6, as evidenced by
the decomposition

1
fa= l% o [(xo + eyo)d - :rg + (x1 + eyl)d - x‘f +2(xo + 1 + eyg)d —2(xo + xl)d] , (1)

and a matching lower bound is obtained by considering the dimension of the space of second
order partial derivatives. The summands of the decomposition (1) can be divided into three
pairs. The lowest order term of the first pair is #¢, the one of the second pair is x¢ and the
one of the third pair is (zg 4+ x1)¢. For each pair, the sum of the two powers individually
ﬁl_lyl, and
2(x¢ + 21)9 Lys, which are the summands of a generalized additive decomposition for f.
When d = 3, the polynomial f; is an example of a “wild form” [16]. It has border Waring

rank 5 given for example by the decomposition

converges to a limit as € — 0; these three limits are, respectively, xg_lyo, T

o1
fs = lim % [3(wo + eyo)® + 3(21 + ey1)*+

6(z0 + 21 + €y2)® — (w0 + 221)° — (2z0 + 23)*] . (2)

Unlike the previous decomposition, this one cannot be divided into parts that have limits
individually, and is not local — all summands have different lowest order terms. This is only
possible if the degree is low.

The condition on the degree is related to algebro-geometric questions about regularity
of 0-dimensional schemes [35, Thm. 1.69], but for the schemes arising from border rank
decompositions, this is ultimately a consequence of the fact that r distinct linear forms have
linearly independent d-th powers when d > r — 1.

2 Debordering border Waring rank

The goal of this section is to prove Theorem 1. Given a homogeneous degree d polynomial f,
we provide upper bounds for WR(f) in terms of WR(f) and d.

2.1 Definitions

In this section we introduce some notation and give a formal definition of Waring rank
and border Waring rank. We work over the field C of complex numbers. The space of
homogeneous polynomials of degree d in variables © = (x1,...,2,) is denoted by C[x];. We

write f ~ g for f,g € C(e)[x] if lim._,o f = lim._,0 g (in particular, both limits must exist).

Recall that the projective space PV is defined as the set of lines through the origin in V,
that is, for each nonzero v € V' we have a corresponding line [v] € PV, and [v] = [w] if and
only if v = aw for some «.

» Definition 2. A Waring rank decomposition of a homogeneous polynomial f € Clx]s is a
decomposition of the form

F=> 4
k=1

for some linear forms £q,...,¢, € Clz];. The minimal number of summands in a Waring
rank decomposition is called the Waring rank of f and is denoted by WR(f).

It is known that every homogeneous polynomial over C has finite Waring rank [47].

30:5
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» Definition 3. A border Waring rank decomposition of a homogeneous polynomial f € Clzx]q
is an expression of the form

1 d
f—lg%;fk

where 1,...,0, € C(e)[x]1, that is, ¢; are linear forms in x with coefficients rationally
dependent on €. The border Waring rank WR(f) is the minimal number of summands in a
border Waring rank decomposition.

Equivalently, the border Waring rank of f € C[x]; can be defined as the minimal number r
such that f lies in the closure of the set Wy, = {g € Clz]q | WR(g) < r} of all polynomials
with Waring rank at most r. The set Wy, is constructible, so its Zariski and Euclidean
closures coincide, see e.g. [41, Anh.I.7.2 Folgerung]. The equivalence to the definition given
above was established by Alder [1] (cited by [21, Ch.20]) for a similar notion of tensor rank,
the proof remains essentially the same for Waring rank of polynomials.

2.2 Orbit closure and essential variables

The number of essential variables of a homogeneous polynomial f is the minimum integer m
such that there is a linear change of coordinates after which f can be written as a polynomial
in m variables. Denote the number of essential variables of f by N (f). It is a classical
fact, which already appears in [50], that the number of essential variables of f equals the
dimension of the linear span of its first order partial derivatives, or equivalently the rank of
the first partial derivative map. In particular Neg(—) is a lower semicontinuous function.
We refer to [22] and [40, Lemma B.1] for modern proofs of this result.

An immediate consequence of the semicontinuity of the number of essential variables is
the following result.

» Lemma 4. For a homogeneous polynomial f € Clx]y we have Negs(f) < WR(f).

Proof. We first prove Ness(f) < WR(f). Let p be the dimension of the linear space spanned
by the linear forms ¢ in the decomposition f =Y, _, ¢¢. Without loss of generality the
linear forms ¢,...,¢, are linearly independent, and ¢, ..., ¢, are linear combinations
of £1,...,4,. After applying a change of variables such that y, = ¢x(x) for k=1,...,p we
see that Negs(f) < p <.

The inequality Negs(f) < WR(f) now follows from the semicontinuity of Negs: if

— 1 d
f=lim> 6,
k=1
with £ € C(e)[z], then Ness(f) < limeyo Ness(D o, £3(€)) < 7. <

2.3 Fixed-parameter debordering

The proof of Theorem 1 is based on generalized additive decompositions of polynomials,
in the sense of [34]. These decompositions were studied in algebraic geometry, usually in
connection to 0-dimensional schemes and the notion of cactus rank. We defer the discussion
of connections to algebraic geometry to the next section. Here we provide elementary proofs
of some statements on generalized additive decompositions based on partial derivatives
techniques, without using the language of 0-dimensional schemes. We bring from geometry a
key insight: a border rank decomposition can be separated into local parts if the degree of
the polynomial is large enough.
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To define formally what it means for a border rank decomposition to be local, note that

a rational family of linear forms ¢ € C(e)[x]; always has a limit when viewed projectively.

Specifically, expanding ((e) as a Laurent series £(e) = > 72, €'l; with ¢, # 0, we have
lime_yo[€(€)] = limeo[> o €4g+i] = [¢g]. A border Waring rank decomposition is called
local if for all summands in the decomposition this limit is the same. More precisely, we give
the following definition.

» Definition 5. Let f € Clzx|q be a homogeneous polynomial. A border Waring rank
decomposition

ﬂ%zw

with £y, € C(€)[x]1 is called a local border decomposition if there exists a linear form { € Clz];
such that lime_,o[lx(€)] = [£] for all k € {1,...,7}. We call the point [¢] € PC[x]; the base
of the decomposition. A local decomposition is called standard if £, = €yl for some q € Z
and v € C.

» Lemma 6. If f has a local border decomposition, then it has a standard local border
decomposition with the same base and the same number of summands.

Proof. After applying a linear change of variables, we may assume that the base of the local
decomposition for f is [xz1]. This means

=ty

with £, = €% - yx1 + Z;iqkﬂ €Il j.
Write ¢, = € (3°1" ; a;z;) where a; € C(e). Let T; = Tay — P %22;. Note that
a1 ~ v, and a; ~ 0 for 4 > 1, hence T; ~ z; and

T r
f ~ f(?ﬂ\l, . ,iL’n) ~ 81(1/5\1,1'2, e ,.Tn)d + ng(ZL’\l,l'Q, e ,xn)d = (qu’yll‘l)d -+ ZE%
_ k=2

where Zk(xl, coosy) = Lp(T1,xa,...,x,). This defines a new border rank decomposition
of f. Moreover, notice that limeﬂo[gk] = [x1] for every k, so the new decomposition is again
local with base [z1]. Since the first summand is €71, this is the desired standard local
border decomposition. |

» Lemma 7. Suppose f € Clx]q has a local border decomposition with r summands based
at [0]. Ifd > r — 1, then f = (4="+1g for some homogeneous polynomial g of degree r — 1.

Proof. After applying a linear change of variables we may assume ¢ = x;. We prove the
statement by induction on r and the difference d — (r — 1).

The cases 7 =1 and d = r — 1 are trivial.

If d > r—1, then by the previous Lemma there exists a standard local border decomposition

o d
f= ll_ff(l)];gk(f)

Write £, = Y1 | ayz; for some ay; € C(e). Since the decomposition is standard, aq; = 0
for ¢ > 1. For the derivatives of f we have the following border decompositions

30:7
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and

fhmZd i (€)lg( )

€T e—0

for i # 1. These decompositions involve the same linear forms ¢, with multiplicative

coeflicients, so they are local with the same base [z1]. By inductive hypothesis 5 f = x‘f "1
and aa;c = xf "1y, for some homogeneous polynomials g, ..., g, of approprlate degrees.

To get an analogous expression for f, combine these expressions using Euler’s formula for
homogeneous polynomials as follows

1 n
d—r d—r+1 d r+1 .
Zmlaxl d <x1 1 91+Zxx z) Fhal (gl‘f'izzgngz) . <

We will now extend this result to non-local border Waring rank decompositions. As long as
the degree of the approximated polynomial is high enough, every border rank decomposition
can be divided into local parts and transformed into a sum of terms of the form ¢4 "+1g.

» Definition 8. A generalized additive decomposition of f is a decomposition of the form

m
f=> 0 g
k=1

where €y, are linear forms such that {; is not proportional to £; when i # j, and gy are
homogeneous polynomials of degrees deg gy = ri — 1.

To show that there are no cancellations between different local parts, we need the following
lemma, which in the case of 2 variables goes back to Jordan [35, Lem. 1.35]. This lemma
can be seen as a generalization of a well-known fact that m pairwise non-proportional linear

forms /1, ..., 4, have linearly independent powers ¢,...,¢% for d >m — 1.
» Lemma 9. Let ly,..., ¢, € Clz]y be linear forms such that £; is not proportional to £; when
1#£ 7. Let g1,...,gm be homogeneous polynomials of degrees r1 — 1,...,ry — 1 respectively.
If

m

> 6" g =0,

k=1

and d > Zznzl r; — 1, then all gi are zero.

Proof. We first prove the statement for polynomials in 2 variables y;, y2 by induction on the
number of summands m; this part of the proof closely follows [32, Appx.I1I].

The case m = 1 with one summand is clear. Consider the case m > 2. We can assume
{1 = y1 by applying a linear change of variables if required. Note two simple facts about
partial derivatives. First, for a homogeneous polynomial f € Cly1,ya]a we have 95 f = 0 if

and only if f = yf "y (here 9y := d ). Second, differentiating r times a homogeneous

gd s+1

polynomial of the form g, we obtain a polynomial of the form ¢¢—7=s+1p,

Suppose

m
v g+ Y 6T g =0
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Differentiating r, times with respect to ys, we obtain

m
> gy =0,
k=2

where Ziﬂrrkﬂhk = 05 (ﬂzf’ﬂ’“ﬂgk). The degree condition d —r; > Y ;" , 7 — 1 holds
for this new expression. Therefore, by induction hypothesis we have hy = 0 and thus
05* (ﬂzf’”’“ﬂgk) = 0. It follows that fzfr’“ﬂgk = 97" H1G, for some homogeneous poly-
nomial gi. This implies that yf_“H divides gx, which is impossible since d —r; +1 >
Yope o TE > T > deg gy

Consider now the general case where the number of variables n > 2 (the case n =1 is
trivial). Suppose Y5, ¢ 1g, = 0. The set of linear maps A: (y1,y2) — (T1,...,%y)
such that ¢; o A and ¢; o A are not proportional to each other is a nonempty Zariski open
set given by the condition rank(¢; o A,¢; o A) > 1. Hence for a nonempty Zariski open (and
therefore dense) set of linear maps A the linear forms ¢ o A are pairwise non-proportional.
From the binary case above we have gy o A = 0 if A lies in this open set. By continuity this
implies g 0 A = 0 for all A. Since every point lies in the image of some linear map A we
have g, = 0. <

» Lemma 10. Let f € Clx]q be such that WR(f) = r. If d > r — 1, then there exists a
partition v =11 + -+ - + 1, such that f has a generalized additive decomposition

m
F=Y 67" g,
k=1

gr) < Tk

and moreover WR(KZ_T’”'1

Proof. Consider a border Waring rank decomposition

fﬂg;%

Divide the summands between several local decompositions as follows. Define an equivalence
relation ~ on the set of indices {1,2,...,7r} as i ~ j & limc,o[¢;] = limc,[¢;] and let
I, ..., I, be the equivalence classes with respect to this relation. Further, let r; = |I;| and
let [Lk] = limﬁ_,owi] for i € Ij,.

Consider the sum of all summands with indices in Iy. Let ¢; be the power of € in the
lowest order term, that is,

oo

S =erfit > iy,

i€l J=qr+1

with fj, € C[x]4 nonzero. This expression can be transformed into a local border decomposi-
tion

e (4

e—0 €k
i€ly

based at [L]. By Lemma 7 we have f;, = Lz_"”l gi for some homogeneous polynomial g
of degree r, — 1. The decomposition also gives WR(fx) < 7.

30:9
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Note that g < 0 since otherwise the summands ¢; with i € I, can be removed from the
original border rank decomposition of f without changing the limit. Let ¢ = min{qy, ..., gm}.
Note that if ¢ < 0, then, comparing the terms before €? in the left and right hand sides of
the equality

f+0(e ZZN

k=11i€l}
we get
d—rr+1
§ fre = E Lk " g
k:qr=q k: qr=q

From Lemma 9 we obtain g = 0 and f; = 0, in contradiction with the definition of fj.
We conclude that ¢ = 0 and

m m
Sy
k=1 k=1

obtaining the required generalized additive decomposition. |

We will now take a brief detour to define a function M (r) which we use to upper bound
the Waring rank of generalized additive decomposition.

» Definition 11. Let maxR(n,d) denote the maximum Waring rank of a degree d homogeneous
polynomial in n variables, that is maxR(n,d) = max{WR(f) | f € Clz1,...,2,]a}. Define
the partition-maxrank function as

M(r) = R( -1
(T) 7’1+'I‘I‘lf7)"(m—r Zl max rk’ Tk )
Since every homogeneous polynomial has finite Waring rank, the space Clxy, ..., 2,]q is

spanned by powers of linear forms. This implies a trivial upper bound on the maximum

Waring rank: maxR(n,d) < dimClzy,...,2,]q = ("+§_1). Improved upper bounds were

proven in [13, 37].
» Proposition 12. maxR(n,d;) < maxR(n,ds) when d; < ds.

Proof. Every form f of degree d; can be represented as a partial derivative of some form g
of degree ds. By differentiating a Waring rank decomposition of g we obtain a Waring rank
decomposition of f, thus WR(f) < WR(g) < maxR(n,d3). Since f is arbitrary, maxR(n, d;) <
maxR(n, dz). <

We are now ready to prove a debordering theorem for Waring rank.
» Theorem 13. Let f € Clz]q be such that WR(f) =r. Then
WR(f) < M(r) -d.

Proof. We consider two cases depending on relation of degree d and border Waring rank 7.

Case d < r — 1. Since WR(f) = r, the number of essential variables of f is at most 7.
Taking the maximum Waring rank as an upper bound, we obtain

WR(f) < maxR(r,d) < maxR(r,r —1) < M(r) < M(r) - d.



P. Dutta, F. Gesmundo, C. lkenmeyer, G. Jindal, and V. Lysikov 30:11

Case d > r — 1. By Lemma 10 f has a generalized additive decomposition
m
f=> 0 g
k=1

withry +--- 47, =7, deggr =7 —1 and M(ﬁgﬂ’kﬂgk) < 7. Since M(@Zf’"’“ﬂgk) <7,
the number of essential variables Negs(gr) < rg. If rp = 1, then

WR(£ g ) = WR(4]) = 1 < d.

If r, > 2, then we upper bound WR(gx) by maxR(Ness(gr),deg gr) = maxR(rg,rp — 1).

WR(g1) pd—rit1
k

Taking a Waring rank decomposition g =) .} L:’“_l and multiplying it by , We

obtain a decomposition

WR(gk)
d—re+1 _ d—ri+1 rr—1
gk gk = E €k . Lz .
i=1

It is known that WR(y§y3) = max{a,b} + 1 (this is a classical fact known at least to
Oldenburger [47], see also [19])%. Tt follows that

WR(G ML) S WR(y{ ™ st ) = max{d — rx + 2,73} < d.

Hence we have WR(£4 "1 g,) < d-WR(gy) < d-maxR(ry, — 1,7%).
Combining all parts of the decomposition together, we get

WR(f)gdimaxR(r—kz—l,rk)SM(T)~d. <
k=1

A more explicit upper bound is provided by the following immediate corollary.

» Theorem 14. Let f € Clxy,...,2n]q and let WR(f) =r. Then

WR(f) < (2:__ f) d.

Proof. The space of homogeneous polynomials of degree  — 1 in r variables has dimension
(2:__12) and is spanned by powers of linear forms. Therefore, maxR(r — 1,7) < (2:__12). Note
that if » = p + ¢ with p,q # 0, then the space C[xz1,...,x,]|,—1 contains a direct sum of
zy - Clzy,...,2p|p—1 and x’l’H -Clapt1,- .., &r)g—1. Taking the dimensions of these spaces,
we obtain (27,7'__12) > (2;’__12) + (2qq__12). It follows that M (r) < (2:__12). <

Using the Blekherman—Teitler bound on the maximum rank [13], we can get a slightly
better bound. The proof is essentially the same as for the previous theorem.

» Corollary 15. Let f € Clzy,...,z,]a and let WR(f) =r. Then
1/2r—2
WR(f) <2 |~ -d.

it is easy to see that for @ > b the monomial y¢v3 is proportional to ZZ:O % (Cky1 + yz)”b where ( is
a primitive root of unity of order a + 1.

2
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2.4 Scheme-theoretic proof

In this section we give a proof of Lemma 10 based on the theory of O-dimensional schemes
and apolarity. This short section assumes familiarity with these topics, we review them in
more details in Appendix A of the extended version of the paper [27].

» Lemma 10. Let f € Clz]q be such that WR(f) = r. If d > r — 1, then there exists a
partition r =11 + - - + Ty sSuch that f has a generalized additive decomposition

m
F=Y 67 g,
k=1

gr) < Tk

and moreover WR(ZZ_T“'1

Alternative proof. Denote by V the space of linear forms Clx];.

Since d > r — 1, the border Waring rank of f is equal to its smoothable rank SR(f) [16],
that is, there exists a 0-dimensional scheme Z C PV of degree r which is smoothable (obtained
as a flat limit of the family of r-point subsets of PV') and f is apolar to Z. Let I be the ideal
of Zandlet I =IM N...N 10 be the primary decomposition of this ideal. The primary
ideals 1) correspond to irreducible components Z; of the scheme Z.

Since f is apolar to I, we have f € I = (Ic(ll))L +F (Iém))l. In particular, there
exist f; € (Ic(lj))L such that f = fi +--- + fi,. Let ; be the degree of Z;. By the definition
of degree, r =11 + -+ 1y, If Z; is supported at the point [¢;] € PV, then for the ideal 10)
we have ((;)"7 C 1Y) ¢ {5 and (Ic(lj))J- C f;l_TjH - C[z],,—1. Therefore the polynomials f;
have the form E;l_rj 1

Additionally, all irreducible components of a smoothable scheme Z are smoothable [17,
Thm. 1.1], and since f; is apolar to Z;, we have WR(f;) < SR(f;) < ;. <

g; for some g; of degree degg; = r; — 1.
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