
O(1/ε) Is the Answer in Online Weighted
Throughput Maximization
Franziska Eberle #

Technische Universität Berlin, Germany

Abstract
We study a fundamental online scheduling problem where jobs with processing times, weights, and
deadlines arrive online over time at their release dates. The task is to preemptively schedule these jobs
on a single or multiple (possibly unrelated) machines with the objective to maximize the weighted
throughput, the total weight of jobs that complete before their deadline. To overcome known lower
bounds for the competitive analysis, we assume that each job arrives with some slack ε > 0; that is,
the time window for processing job j on any machine i on which it can be executed has length at
least (1 + ε) times j’s processing time on machine i.

Our contribution is a best possible online algorithm for weighted throughput maximization
on unrelated machines: Our algorithm is O

(
1
ε

)
-competitive, which matches the lower bound for

unweighted throughput maximization on a single machine. Even for a single machine, it was not
known whether the problem with weighted jobs is “harder” than the problem with unweighted jobs.
Thus, we answer this question and close weighted throughput maximization on a single machine
with a best possible competitive ratio Θ

(
1
ε

)
.

While we focus on non-migratory schedules, on identical machines, our algorithm achieves the
same (up to constants) performance guarantee when compared to an optimal migratory schedule.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Scheduling algorithms

Keywords and phrases Deadline scheduling, weighted throughput, online algorithms, competitive
analysis

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.32

Related Version Full Version: https://doi.org/10.48550/arXiv.2310.16697

Funding Supported by the Dutch Research Council (NWO), Netherlands Vidi grant 016.Vidi.189.087.

1 Introduction

We consider an online scheduling problem with m parallel unrelated machines. Online over
time, job j arrives at its release date rj . Upon arrival of job j, its processing time, sometimes
also referred to as size, pij ∈ R>0 ∪ {∞} on machine i ∈ [m] := {1, . . . , m}, its weight wj ,
and its deadline dj are revealed to the online algorithm. The density of j on machine i is
given by ρij := wj

pij
. A machine i is eligible for job j if pij < ∞. If pij = pj holds for all i

and all j, we call the machines identical and omit the index.
The processing of a job is allowed to be interrupted, we say preempted, and resumed at

any later point in time, also on a different machine; that is, we allow migration. A job j

completes if
∑m

i=1
qij

pij
= 1, where j receives a total of qij time units on machine i. In a

feasible schedule, at any point in time, every machine can process at most one job, and every
job can be processed by at most one machine. The objective is to find a feasible schedule
that maximizes the weighted throughput, the total weight of jobs that meet their deadlines.

This model captures a resource allocation problem, e.g., encountered in public cloud
computing environments or large internal clusters, where the available hardware needs to be
allocated to (often) time-sensitive and mission-critical jobs [18]. Focusing on the objective

© Franziska Eberle;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.eberle@tu-berlin.de
https://orcid.org/0000-0001-8636-9711
https://doi.org/10.4230/LIPIcs.STACS.2024.32
https://doi.org/10.48550/arXiv.2310.16697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

of maximizing weighted throughput allows us to factor in deadlines of time-sensitive jobs,
account for the variety in the importance of jobs, and overall maximize total utility [8]. As
explained in [6], allowing preemption in multiprocessor computer systems is cost-wise quite
reasonable, while migration, which our algorithm will not use, can be quite expensive due to
additional communication requirements.

Due to the lack of information because of the online nature of the problem, there are
instances where an online algorithm cannot find the schedule with maximum throughput as
shown in Section 3 of [3] for single-machine instances. Thus, we employ standard competitive
analysis to measure the performance of an online algorithm, where we compare the weighted
throughput of an online algorithm to the weighted throughput of an optimal offline algorithm,
that has complete knowledge about the instance in advance and uses this information to
make scheduling decisions.

It has been known for 30 years that in this general setting no deterministic algorithm
can achieve a bounded competitive ratio on identical machines [4, 16]. In fact, even when
allowing randomization on a single machine, the competitive ratio for weighted throughput
maximization remains unbounded [7]. All of the aforementioned lower bounds heavily rely
on “tight” jobs, that is, on jobs that need to be processed immediately and continuously
upon release in order to finish before their deadlines.

To overcome these lower bounds, we make a standard slackness assumption that the
window for processing job j has some slack: we assume that dj − rj ≥ (1 + ε)pij holds
if machine i is eligible for j, i.e., if pij < ∞. We expect our algorithm to perform better
with larger slack parameter ε > 0. This trade-off between slack and competitive ratio has
successfully been studied before [1, 2, 8, 10–12, 18, 21]. The slackness assumption does not
pose a real obstacle for applications since deadlines are typically not tight [13] and slack can
even be introduced by lowering the operating level or increasing the speed [9, 20].

Recently, unweighted throughput maximization has been solved on a single machine with
a competitive ratio of O

(1
ε

)
[8], on identical machines with a O(1)-competitive algorithm [19],

and on unrelated machines with a competitive ratio of O
(1

ε

)
[10]. For weighted throughput

maximization it is known that O(1)-competitive algorithms are not possible, independent of
the machine environment, even when allowing randomization [16]. Even on a single machine,
there remained a gap between the performance bound O

(1
ε2

)
of the algorithm by [18] and

the lower bound Ω
(1

ε

)
carried over from the unweighted setting [8].

In this work, we close this gap and essentially the line of research concerned with online
weighted throughput maximization started in this form by [18]. We give an (up to constant
factors) best possible online algorithm for weighted throughput maximization on unrelated
machines with competitive ratio O

(1
ε

)
. On identical machines, our non-migratory algorithm

remains O
(1

ε

)
-competitive against the optimal schedule that is allowed to use migration. In

particular, we solve the problem on a single machine, matching the known lower bound for
unweighted throughput maximization [8].

Related work
Online throughput maximization gained a lot of interest during the last years [8, 10, 13,19],
but research has been active for decades [2–5].

For tight jobs with dj − rj = pj , there are non-constant lower bounds on the competitive
ratios of deterministic and randomized algorithms [4,7], which justify our slackness assumption.
Baruah et al. [4] give a lower bound of (1+√µ)2 on the competitive ratio of any deterministic
single-machine algorithm, where µ = maxj ρj

minj ρj
, while Koren and Shasha [17] give an algorithm

with matching competitive ratio. On identical machines, their algorithm achieves the

F. Eberle 32:3

best possible competitive ratio of Θ(ln µ) [16]. Canetti and Irani [7] consider randomized
algorithms and show a lower bound of Θ

(log ν
log log ν

)
, where ν = min

{ max pj

min pj
,

max wj

min wj

}
. They

also give an almost matching upper bound.
Since both parameters, µ and ν, can become arbitrarily large, research started to in-

vestigate instances satisfying a slackness assumption [18]. Most relevant to our work is the
O

(1
ε2

)
-competitive algorithm by Lucier et al. [18] for weighted throughput maximization on

identical machines under the slackness assumption. Azar et al. [1] study the same problem
and give a truthful mechanism with a competitive ratio of 2 + Θ

(
1

3√1+ε−1 + 1
(3√1+ε−1)3

)
.

The special case of maximizing machine utilization, where the weight of each job equals
its processing time, allows for O(1)-competitive algorithms, even in settings without slack.
On a single machine, the algorithm by Baruah et al. [4, 5] is 4-competitive, and on identical
machines, Koren and Shasha [16] claim an O(1)-competitive algorithm.

In the unweighted setting, Baruah et al. [3] show that non-trivial competitive ratios are
impossible in the presence of tight jobs. However, randomization allows for a competitive
ratio of O(1) [15]. If every job arrives with a slack of ε, the (deterministic) algorithm by
Chen et al. [8] achieves the provably best competitive ratio of Θ

(1
ε

)
on a single machine.

On at least two machines, the algorithm by Moseley et al. [19] is O(1)-competitive, even
for instances without slack. Eberle et al. [10] design a Θ

(1
ε

)
-competitive algorithm for

throughput maximization on unrelated machines when each job has ε-slack.

Our results
As our main result, we present an O

(1
ε

)
-competitive algorithm for online weighted throughput

maximization.

▶ Theorem 1. For weighted throughput maximization on unrelated machines without migra-
tion, there is an O

(1
ε

)
-competitive online algorithm.

This generalizes and improves the O
(1

ε2

)
-competitive algorithm by [18]. It matches the

known lower bound of Ω
(1

ε

)
on a single machine [8] and, thus, closes the gap that remained.

During the analysis, we focus on comparing the non-migratory schedule obtained by our
algorithm to an optimal, non-migratory schedule. On identical machines, it is known that
the throughput achievable without migration is within a constant multiplicative factor of
the throughput achievable using migration by Kalyanasundaram and Pruhs [14]. Thus, our
result also holds in the migratory setting.

▶ Theorem 2. For weighted throughput maximization on identical machines with migration,
there is an O

(1
ε

)
-competitive online algorithm.

One threshold cannot beat Θ(1/ε2)
Previous results for throughput maximization use a threshold-based policy to decide about
the admission of newly released and the preemption of currently running jobs [1,8,10,18].
Crucially, these algorithms rely on a single density threshold γ ∈ Θ(ε) to determine if a
currently running job is preempted in favor of a newly released job with higher density.

The following two examples give an intuition why a single-threshold algorithm cannot
break the O

(1
ε2

)
-barrier. Let ε < 1 and suppose that γ ∈ (0, 1] is the threshold which an

algorithm uses to discard currently running jobs in favor of newly released jobs with density
higher by a factor at least 1

γ . In both examples, δ ≪ 1 is a small constant, for which we will
eventually consider the limit δ → 0, and the jobs are tight, i.e., they satisfy rj +(1+ε)pj = dj .

STACS 2024

32:4 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

▶ Example 3. There is a single machine and n + 1 tight jobs with the parameters r0 = 0,
p0 = w0 = ρ0 = 1 and rj = rj−1 + (1 − δ)pj−1, pj = (ε + δ)pj−1 and ρj = 1+δ

γ ρj

for j ∈ [n] := {1, . . . , n}.
By our choice of parameters, job j interrupts the execution of job j− 1 immediately upon

arrival. It is easy to calculate that dj ≥ dj−1 and Cj = dj−1 for j ∈ [n] if the processing of
job j is not interrupted. Combining these two observations implies that the algorithm can
only complete the last job on time if the constant δ is chosen sufficiently small. Hence, the
algorithm obtains a total weight of ρnpn =

(
(1+δ)(ε+δ)

γ

)n

→
(

ε
γ

)n

as δ → 0. Conversely, by
scheduling only job 1, one can obtain a total weight of 1, implying that the competitive ratio
is at least

(
γ
ε

)n. Hence, γ ≤ ε is necessary to achieve a bounded competitive ratio.

▶ Example 4. We have a single-machine instance with two tight jobs 1 and 2. The parameters
are p1 = w1 = 2, r1 = 0 and p2 = 1

ε , w2 = 1
εγ−δ , r2 = δ. Since both jobs are tight, no feasible

schedule can complete both jobs on time. Hence, it is optimal to schedule only the second
job upon release and obtain a total weight of 1

εγ−δ . However, the parameters are chosen such
that an algorithm with threshold γ admits the first job upon release and cannot discard it
in favor of the second job, implying a competitive ratio of Ω

(1
εγ−δ

)
, which goes to Ω

(1
γε

)
as δ → 0.

What becomes apparent in the examples is that by relying on a single threshold to guide
the admission decisions, an algorithm is both too careless (Example 3) and too conservative
(Example 4) in admitting jobs. In fact, such an algorithm does not distinguish the reasons
for a job having a relatively high density: it might be caused by a large weight or by a small
processing time.

We show that, by using two distinct thresholds, a simple greedy algorithm achieves a
competitive ratio of Θ

(1
ε

)
, which is optimal up to constants even in the unweighted setting [8].

Our algorithm compares the sizes of a newly released job j⋆ and a currently running job j, in
order to decide whether to abandon the latter in favor of the former. In Example 3, we have
already established that if j is preempted in favor of j⋆ with pij⋆ ∈ O(ε)pij , then the density
of j⋆ should be greater by a factor Ω

(1
ε

)
. Conversely, to avoid the issue present in Example 4,

if the new job j⋆ is larger than the currently running job j, then j should be interrupted in
favor of processing j⋆ if it has a similar density as j. For technical reasons, our algorithm
employs a third admission rule that smoothly interpolates between the threshold Θ(ε) for
jobs smaller by a factor O(ε) and a threshold Θ(1) for larger jobs.

In the following section, we formally describe our algorithm before analyzing its compet-
itive ratio in the two subsequent sections.

2 The two-threshold algorithm

In this section, we design the two-threshold algorithm. We assume without loss of generality
that ε ≤ 1 as otherwise we can simply run the algorithm with ε = 1 and obtain a constant
competitive ratio.

The two-threshold algorithm starts job j on machine i for the first time only before dj −(
1 + ε

2
)

pij . If machine i starts processing job j at time aj , we say j is admitted to machine i

at time aj . For each machine i, the algorithm maintains the set of jobs that are active at
time τ . A job j is active at time τ on machine i if it was admitted to i before time τ , is
not yet completed and can still complete before time aj +

(
1 + ε

2
)

pij , i.e., the remaining
processing time of j on i is at most aj +

(
1 + ε

2
)

pij − τ .

F. Eberle 32:5

On a high-level, our algorithm uses two independent subroutines: the scheduling routine
and the admission routine. The admission routine merely assigns jobs to machines. Among
the jobs assigned to a machine, the scheduling routine chooses which job to actually process.

Scheduling routine. At time τ and on each machine i, the algorithm simply processes the
job j which is active for i at τ and has the highest density ρij = wj

pij
among all such jobs.

Admission routine. There are two events that trigger the admission routine at time τ : the
release of a new job and the completion of a job. The admission routine loops over the
machines and decides whether the currently running job j should be preempted for a job
with higher density.

To this end, it considers the jobs that have been released, have not yet been admitted,
and whose deadline is sufficiently far in the future, i.e., dj⋆ − τ ≥

(
1 + ε

2
)

pij⋆ , in decreasing
order of machine-dependent density ρij⋆ . Let j⋆ be the job with highest density that has not
been considered for admission to machine i before. The algorithm compares j⋆’s processing
time with that of the job j that is currently processed by machine i.

If no such job exists, then j⋆ is admitted to machine i and starts executing immediately.
If such a job j exists and its processing time is at least 2

ε pij⋆ , then the first density-
threshold 8

ε is invoked: if ρij⋆ ≥ 8
ε ρij , then j⋆ is admitted to i at time aj⋆ = τ . If j

exists and ε
2 pij < pij⋆ ≤ pij , then we use a smooth transition between the two thresholds:

if wj⋆ ≥ 4wj , then j⋆ is admitted to i at time aj⋆ = τ . Otherwise, that is, j is currently
running on machine i and its processing time is smaller than pij⋆ , then the second density-
threshold 4 is invoked: if ρij⋆ ≥ 4ρij , then j⋆ is admitted to i at time aj⋆ = τ .

If job j⋆ interrupts the execution of job j, we say that j is the parent π(j⋆) of j⋆ and j⋆

is a child of j. Note that by construction, a newly admitted job has highest density on its
machine and starts processing immediately. We summarize our algorithm in Algorithm 1.

The following observation formalizes the “smooth transition” between the two density
thresholds.

▶ Observation 5. Consider jobs j and k with ε
2 pij < pik ≤ pij for some machine i.

If wk ≥ 4wj, then ρik = wk

pik
≥ 4wj

pij
= 4ρij. If wk < 4wj, then ρik <

4wj

ε/2pij
= 8

ε ρij. Further,
if pik > pij and ρik ≥ 4ρij, then wk = ρikpik ≥ 4wj.

Roadmap of the analysis
The analysis of the two-threshold algorithm naturally splits into two parts. In Section 3, we
show that the highest-density rule used for scheduling active jobs guarantees that the total
weight of jobs completed before their deadlines is at least half of the total weight of jobs
admitted by the admission routine. In Section 4, we compare the total weight of the jobs
admitted by the two-threshold algorithm to the weighted throughput of an optimal solution
before proving Theorem 1.

3 Weight of finished jobs vs. weight of admitted jobs

In this section, we show that the two-threshold algorithm obtains at least half of the total
weight of the jobs that were admitted. We prove the following theorem where J denotes
the set of jobs admitted by our algorithm and F ⊆ J the set of jobs completed before their
respective deadlines.

STACS 2024

32:6 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

Algorithm 1 Two-threshold algorithm.

Initialize: If ε > 1, then reset ε← 1.
Scheduling Routine: At all times τ and on all machines i, run the job with highest
density that is active for i.

Event: Release of a new job at time τ

Call Admission Routine
Event: Completion of a job at time τ

Call Admission Routine

Admission Routine:
for i = 1 to m do

J⋆ ← {j | rj ≤ τ, dj − τ ≥
(
1 + ε

2
)

pij , j not yet admitted} // eligible jobs
K ← {k : k active on machine i at time τ } // jobs currently active for i

for j⋆ ∈ J⋆ in order of decreasing ρij⋆ do // select highest-density job
if K = ∅ then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← ∅ // j⋆ does not have a parent
break for-loop

else
j ← arg max{ρik | k ∈ K} // currently running job
if pij⋆ ≤ ε

2 pij and ρij⋆ ≥ 8
ε ρij then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop
else if ε

2 pij < pij⋆ ≤ pij and wj⋆ ≥ 4wj then
admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop
else if pij⋆ > pij and ρij⋆ ≥ 4ρij then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop

▶ Theorem 6. Let J and F be the set of jobs admitted and finished, respectively, by the
two-threshold algorithm. Then,∑

j∈F

wj ≥
1
2

∑
j∈J

wj .

For intuition, consider an instance that only consists of a job j and the set K of j’s
children. Suppose that j does not finish on time as otherwise the theorem trivially holds.
Recall that j was admitted at aj ≤ dj −

(
1 + ε

2
)

pij to machine i. (Jobs that are not
interrupted complete before aj +

(
1 + ε

2
)

pij ≤ dj .) This implies that the total processing
time of jobs interrupting j is at least ε

2 pij . If there is at least one job k with pik > ε
2 pij ,

Observation 5 and the admission rule for jobs with ε
2 pij < pik ≤ pij imply that wk ≥ 4wj

showing the statement. If all jobs k have processing time at most ε
2 pij , their densities are

bounded from below by 8
ε ρij , and their total weight is again at least 4wj .

F. Eberle 32:7

In the formal proof of Theorem 6, we assume the existence of an instance that violates
the statement and restrict to one that is minimal with respect to the total number of jobs.
The above intuition tells us that sub-instances consisting of a job and its children cannot
cause the violation. In fact, we show that we can carefully merge such sub-instances into one
job without changing the fact that the complete instance violates the theorem statement,
which contradicts the minimality of the original instance.

Proof of Theorem 6. Let U = J \ F be the set of jobs admitted by the two-threshold
algorithm that were discarded, i.e., that did not complete by time aj +

(
1 + ε

2
)

pij . In order
to show the theorem, it suffices to prove

∑
j∈F wj ≥

∑
j∈U wj .

For the sake of contradiction, we assume that there is an instance with
∑

j∈F wj <∑
j∈U wj . Among all such instances, we consider an instance with the smallest number of

jobs. In particular, this implies that there are no jobs in the instance that were not admitted
by the algorithm and there is only one machine in the instance. We show that there is
another instance with strictly fewer jobs that still satisfies the above inequality, contradicting
the choice of the instance.

Without loss of generality, for all jobs j, we can assume that rj = aj and dj = rj +(1+ε)pj

holds. Indeed, since the first assumption does not change the availability of a job j at time aj

or the density, the two-threshold algorithm still admits j at time aj . Further, as the
algorithm discards jobs when they cannot be completed by time aj +

(
1 + ε

2
)

pj < dj , the
second assumption does not change whether a job is completed on time by the algorithm.

Observe that a job that is not interrupted completes on time. Hence, the assump-
tion

∑
j∈F wj <

∑
j∈U wj implies that there are jobs whose processing is interrupted. Fix

a job j that is preempted but whose children’s processing is not interrupted. Let K be
the set of children of j, and let π = π(j) if it exists. Let C ′

j′ be the last point in time
that the two-threshold algorithm works on job j′, which is either the completion time
of j′ or the point when j′ was discarded because of jobs with higher densities. Denote
by C ′ := max{maxk∈K C ′

k, C ′
j}, the last point in time when j or one of its children were

processed. Observe that during [aj , C ′) only j and j’s children are processed.
Our goal is to create a new instance where j and its children are replaced by a new job j⋆.

Let F ′ and U ′ denote the finished and unfinished jobs, respectively, after the replacement.
We will show that the new instance satisfies the following properties:

(i) Job j⋆ is admitted at aj and completes at time C ′.
(ii)

∑
j′∈F ′ wj′ <

∑
j′∈U ′ wj′ .

(iii) There are strictly fewer jobs.
By assumption j has at least one child. Hence, property (iii) follows trivially from our
replacement. We do not make any changes to a job j′ /∈ K ∪ {j}. Thus, property (i) and the
assumptions on the instance imply that our changes will not influence whether such a job j′

is discarded or completed by the algorithm.
We set pj⋆ = p̄j +

∑
k∈K pk, where p̄j ≤ pj is the actual amount that the two-threshold

algorithm processed j in the original instance. For ensuring that j⋆ is available at aj , we
set rj⋆ = aj and dj⋆ = rj⋆ + (1 + ε)pj⋆ . This choice of parameters implies that, if j⋆ is
admitted at time rj⋆ , it will complete at time

rj⋆ + pj⋆ = aj + p̄j +
∑
k∈K

pk = C ′ < dj⋆

STACS 2024

32:8 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

since no other job is released during the interval [aj , C ′) in the new instance. Thus, in order
to show property (i), it suffices to show that j⋆ interrupts job π at rj⋆ . Recall that the
two-threshold algorithm compares pj⋆ with pπ in order to decide upon admission of j⋆. There
are three possibilities: pj⋆ ≤ ε

2 pπ, pj⋆ ∈
(

ε
2 pπ, pπ

]
, and pj⋆ > pπ. Depending on the interval,

different admission rules apply.
For defining the weight of job j⋆, we distinguish two cases based on job j.

Case I. If j completes on time, set wj⋆ = wj +
∑

k∈K wk ≥ wj . We observe that
∑

k∈K pk ≤
ε
2 pj as j completes on time. Further,

ρj⋆ =
wj +

∑
k∈K wk

pj +
∑

k∈K pk
≥

ρjpj + 8
ε ρj

∑
k∈K pk

pj +
∑

k∈K pk
≥ ρj .

Thus, if pj⋆ and pj belong to the same interval with respect to pπ, j⋆ is admitted upon
release and property (i) is satisfied. If they belong to different intervals, we note that(

1 + ε

2

)
pj ≥ pj⋆ = pj +

∑
k∈K

pk ≥ pj (1)

and distinguish two cases.
pj ≤ ε

2 pπ < pj⋆ : We note that (1) and ε ≤ 1 imply pj⋆ ≤ pπ. Thus,

wj⋆ = ρj⋆pj⋆ ≥ ρj
ε

2pπ ≥
8
ε

ρπ
ε

2pπ = 4wπ,

which guarantees property (i).
pj ≤ pπ < pj⋆ : We have pj⋆ = (1+δ)pj ≤ (1+δ)pπ for some δ ∈

(
0, ε

2
]
. Further, wj⋆ ≥

wj + δ 8
ε wj ≥ 4(1 + δ)wπ. Thus, ρj⋆ = wj⋆

pj⋆
≥ 4(1+δ)wπ

(1+δ)pπ
≥ 4ρπ, and property (i) holds.

Hence, the total weight of the jobs completed by the two-threshold algorithm and the total
weight of the discarded jobs does not change in all cases, which implies property (ii).

Case II. If j does not complete on time, we set wj⋆ = 3
4

∑
k∈K wk. If some k⋆ ∈ K

satisfies pk⋆ > ε
2 pj , then

∑
k∈K wk ≥ wk⋆ ≥ 4wj by definition of the two-threshold algorithm.

Using that j does not finish on time, we know that
∑

k∈K pk > ε
2 pj . Thus, if the processing

times for all k ∈ K are bounded from above by ε
2 pj , then

∑
k∈K wk ≥ 8

ε ρj

∑
k∈K pk ≥ 4wj .

For property (i), we start by bounding wj⋆ and ρj⋆ . Using the observation above, wj⋆ =
3
4

∑
k∈K wk ≥ 3wj . By Observation 5, k ∈ K with pk ∈

(
ε
2 pj , pj

]
satisfy ρk ≥ 4ρj . Hence,∑

k∈K wk =
∑

k∈K ρkpk ≥ 4ρj

∑
k∈K pk. Using again that

∑
k∈K wk ≥ 3wj , we have

ρj⋆ = wj⋆

pj⋆

≥
1/2

∑
k∈K wk + wj

p̄j +
∑

k∈K pk
≥

2ρj

∑
k∈K pk + ρjpj∑

k∈K pk + p̄j
≥ ρj .

As before, if pj and pj⋆ are in the same interval with respect to pπ, these observations
guarantee that j⋆ interrupts π at aj , which implies property (i). If they belong to different
intervals, we distinguish five cases.

pj ≤ ε
2 pπ < pj⋆ ≤ pπ : We have wj⋆ = ρj⋆pj⋆ ≥ ρj

ε
2 pπ ≥ 8

ε ρπ
ε
2 pπ = 4wπ.

pj ≤ ε
2 pπ < pπ < pj⋆ : We have ρj⋆ ≥ ρj > 4ρπ.

ε
2 pπ < pj ≤ pπ < pj⋆ : We know that ρj⋆ ≥ ρj = wj

pj
≥ 4wπ

pπ
= 4ρπ.

pj⋆ ≤ ε
2 pπ < pj : We note that pj⋆ ≥

∑
k∈K pk > ε

2 pj , which implies pj ≤ pπ. We
have ρj⋆ = wj⋆

pj⋆
≥ 3wj

ε/2pπ
≥ 12wπ

ε/2pπ
= 24

ε ρπ.
ε
2 pπ < pj⋆ ≤ pπ < pj : We have wj⋆ ≥ 3wj = 3ρjpj > 3 · 4ρπpπ = 12wπ.

F. Eberle 32:9

Hence, in all cases, j⋆ satisfies the conditions of the two-threshold algorithm to interrupt
the processing of π at rj⋆ .

Recall that
∑

k∈K wk ≥ 4wj . After replacing K ∪ {j} with j⋆, it holds that∑
j′∈F ′

wj′ =
∑
j′∈F

wj′ − 1
4

∑
k∈K

wk <
∑
j′∈F

wj′ − wj <
∑
j′∈U

wj′ − wj =
∑

j′∈U ′

wj′ ,

which implies property (ii).
As argued above, this contradicts the choice of the instance, which concludes the proof. ◀

4 Weight of admitted jobs vs. weight of Opt

In this section, we show that the total weight of jobs finished by an optimal solution is up to a
factor O

(1
ε

)
comparable to the total weight of jobs admitted by the two-threshold algorithm:

▶ Theorem 7. Let Opt and J be the set of jobs admitted by an optimal, non-migratory
solution and the two-threshold algorithm, respectively. Then,

∑
x∈Opt wx ≤ O

(1
ε

) ∑
j∈J wj.

For proving this statement, it is sufficient to focus on X, the set of jobs scheduled by
Opt that the two-threshold algorithm did not admit since Opt ⊆ X ∪ J .

Fix a job x ∈ X that Opt schedules on machine i. The two-threshold algorithm
admits a job j during the interval [rj , dj −

(
1 + ε

2
)

pij) if it is sufficiently dense. Since x is
not admitted by our algorithm, the algorithm is processing jobs Jx on machine i during
the interval [rx, dx −

(
1 + ε

2
)

pix) with densities that are large and prevent interruption
by x. That is, for jobs j ∈ Jx with ε

2 pij ≥ pix it holds that ρij > ε
8 ρix, for jobs j ∈ Jx

with pix ∈
(

ε
2 pij , pij] Observation 5 implies ρij > ε

8 ρix and for jobs pij < pix it holds
that ρij > 1

4 ρix. We say that the jobs Jx block the admission of x. We will charge the
weight wx to the weight of the jobs in Jx. Exploiting the two thresholds which the algorithm
uses to make admission decisions, we show that the algorithm “obtains” a weight from
partially finished jobs of at least Ω(ε)wx in the interval [rx, dx).

Proof idea. We give an intuition by considering a single-machine instance where the two-
threshold algorithm admits exactly one job j. Consider the jobs in X whose admission was
blocked by j: We know that the interval [rx, dx −

(
1 + ε

2
)

px) is completely covered by the
processing of job j, i.e., by the interval [aj , Cj).

Now consider a job x with px ≤ pj . Thus, the deadline of x is at most Cj +
(
1 + ε

2
)

px ≤
aj +

(
2+ ε

2)pj . This implies that Opt can schedule such jobs only during
[
aj , aj +

(
2+ ε

2
)
pj

)
,

an interval of length
(
2 + ε

2
)
pj . The admission rule for the case px ≤ ε

2 pj and Observation 5
for px ∈

(
ε
2 pj , pj] imply ρx < 8

ε ρj . Hence,∑
x∈X

px≤pj

wx =
∑
x∈X

px≤pj

ρxpx ≤
8
ε

ρj

∑
x∈X

px≤pj

px ≤
8
ε

ρj

(
2 + ε

2

)
pj =

(
16
ε

+ 4
)

wj .

For a job x with px > pj , the slacknes assumption guarantees that rx ≤ dx − (1 + ε)px.
Further, the interval

[
rx, dx −

(
1 + ε

2
)

px

)
is contained in [aj , Cj). This allows us to upper

bound the processing time px by 2
ε pj . Thus, Opt can schedule such jobs only during

[
aj , aj +(

1 + 2
ε

)
pj

)
. Using the admission rule of our algorithm in this case gives∑

x∈X
px>pj

wx =
∑
x∈X

px>pj

ρxpx < 4ρj

∑
x∈X

px>pj

px < 4ρj

(
1 + 2

ε

)
pj =

(
4 + 8

ε

)
wj .

Combining the above two calculations yields that
∑

x∈X wx ∈ O
(1

ε wj

)
.

STACS 2024

32:10 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

Proof outline. In this particular instance, each job x ∈ X is blocked by a job with either
larger or smaller processing time. In general, this is not necessarily true. Hence, in order
to extend this idea to arbitrary instances, we partition the jobs in X according to whether
at least half of their availability interval

[
rx, dx −

(
1 + ε

2
)

px

)
is covered by jobs in J with

smaller or larger processing times. We then show that by losing an additional factor 3, we
can assume that only one type covers the availability interval of each job in X. This is done
in Lemma 10.

An additional technical challenge poses the fact that, even after we assume that a job
is blocked by either shorter or longer jobs, the densities of these jobs are still not uniform
enough to directly generalize the above idea to arbitrary instances. In Lemma 8, we show
that, at the loss of an additional factor 4, we can partition the jobs in X according to their
densities and bound the weight for each density level separately. We then upper bound Opt’s
available time for scheduling jobs of a certain density level in Lemmas 13 and 14 depending
on the size of the blocking jobs.

Proof of Theorem 7. Since Opt and the two-threshold algorithm are non-migratory, we
fix one particular machine i and only consider jobs that either Opt or the two-threshold
algorithm scheduled on machine i. For simplicity, we drop the index i for the remainder.

In order to partition jobs according to their densities, we geometrically partition the
range of potential job densities, (0, maxj ρj], into intervals of the form (2ℓ−1, 2ℓ] and call
ℓ ∈ Z a density level. We say that a job j ∈ J has density level ℓ if 2ℓ−1 < ρj ≤ 2ℓ. (For jobs
x ∈ X we are interested in the density levels of the jobs that block them, which we define
later.)

For a job j ∈ J with density level ⌈log2 ρj⌉, we first argue that we can separately charge j

at the levels ℓ ≤ ⌈ρj⌉ at the loss of a constant factor, formalized in the next lemma. This
allows us to focus on one density level ℓ at a time.

▶ Lemma 8. Suppose there is a scheme that charges job j ∈ J a weight of at most 2ℓcpj at
level ℓ ≤ ⌈log2 ρj⌉ and no weight at level ℓ > ⌈log2 ρj⌉, where c > 0 is a constant. Then, the
total weight charged to j is at most 4cwj.

Proof. The total weight charged to j is upper bounded by

⌈log2 ρj⌉∑
−∞

2ℓcpj = c · pj

(
1 + 2⌈log2 ρj⌉+1 − 1

)
≤ 4cρjpj = 4cwj ,

as desired. ◀

Having this lemma at hand, we now restrict to one density level ℓ ∈ Z and define Jℓ :=
{j ∈ J : ρj ≥ 2ℓ}. Next, we remove the technical challenge that a job x ∈ X can be blocked
by jobs with smaller and larger processing times. To this end, we carefully modify the
intervals where jobs in Jℓ are scheduled such that the availability interval of a job x ∈ X

blocked by jobs in Jℓ is completely contained in the modified intervals. To this end, we fix a
level ℓ and let Sℓ denote the set of processing intervals of the jobs in Jℓ, that is, the intervals
during which jobs in Jℓ are processed.

The modification works as follows: We copy each interval in I ∈ Sℓ twice and call one
copy the early and the other the late copy. For each original interval I = [α, ω), we move the
early copy earlier such that it ends at α and we move the late copy later such that it begins
at ω. If a copy intersects with another original (even if only partially), by potentially splitting
the copy, we shift the part that intersects further into the indicated direction; that is, for the

F. Eberle 32:11

early copy, we move the part earlier and for the late copy, we move the part later. We treat
the time points where multiple copies overlap similarly. More precisely, if the interval [t, t′) is
currently contained in k different copies, we use a 1

k -fraction from every copy to cover [t, t′)
and send the remaining k−1

k -fraction into the directions indicated by their name.
We denote the resulting set of intervals (including the original ones) by Iℓ. Next, we

prove some structural properties about Iℓ and, for each job x ∈ X, relate its availability
interval

[
rx, dx −

(
1 + ε

2
)

px

)
to Iℓx

for some carefully chosen ℓx ∈ Z.

▶ Observation 9. Let S and T be two sets of intervals such that for each S ∈ S there is
a T ∈ T with S ⊆ T . Then, the result of the modification of T covers all time points covered
by the result of the modification of S.

▶ Lemma 10. For each job x ∈ X, let ℓ1x = 1
4 · 2⌊log2 ρx⌋ and ℓ2x = ε

8 · 2⌊log2 ρx⌋.
Then,

[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ1x

I or
[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ2x

I.

Proof. Fix a job x ∈ X and the two levels ℓ1x and ℓ2x from the lemma statement. By
assumption, x is blocked by jobs in J at all times in

[
rx, dx −

(
1 + ε

2
)

px

)
.

Assume that x is blocked for at least half of the time by jobs j with pj < px. By definition
of Algorithm 1, this implies that 4ρj > ρx holds for these jobs j. Hence, j ∈ Jℓ1x

. We will
show that in this case ℓ1x satisfies the lemma; for simplicity, set ℓ = ℓ1x.

Conversely, suppose that x is blocked for at least half of the time by jobs j with px ≤ pj .
Observation 5 for ε

2 pj < px ≤ pj and the admission threshold for ε
2 pj ≥ px guarantee ρx < 8

ε ρj .
Hence, j ∈ Jℓ2x holds if px ≤ pj and j blocks x. For simplicity, set ℓ = ℓ2x in this case.

Using Observation 9, it suffices to focus on the set S of intervals that actually cover
the interval

[
rx, dx −

(
1 + ε

2
)

px

)
and correspond to scheduling times of jobs that block x at

level ℓ. By truncating, we assume that the earliest interval in S starts not earlier than rx and
that the latest interval ends no later than dx −

(
1 + ε

2
)

px. We index the intervals in S by
starting point and let K = |S|. Denote by αk and ωk the start and end point, respectively,
of the kth interval.

By assumption, S covers at least half of
[
rx, dx −

(
1 + ε

2
)

px

)
. Thus,

ωK − α1 ≤ dx −
(

1 + ε

2

)
px − rx ≤ 2

K∑
k=1

(ωk − αk).

This implies that S and its copies cover the intervals [α1, α1 + 2
∑K

k=1(ωk − αk)) and [ωK −
2

∑K
k=1(ωk − αk), ωK) because S and the late copies would suffice to cover the former and S

and the early copies would suffice to cover the latter interval.
Hence, the lemma follows if we show that rx ≥ ωK−2

∑K
k=1(ωk−αk) and dx−

(
1 + ε

2
)

px ≤
α1 + 2

∑K
k=1(ωk − αk). To this end, we observe that

(α1 − rx) +
((

dx −
(

1 + ε

2

)
px

)
− ωK

)
=

((
dx −

(
1 + ε

2

)
px

)
− rx

)
− (ωK − α1)

≤ 2
K∑

k=1
(ωk − α1)− (ωK − α1),

where we used that α1 ≥ rx and ωK ≤ dx −
(
1 + ε

2
)

px by assumption on S. This implies
that both summands on the left hand side are bounded by the term on the right hand side.
Rearranging shows the above bounds on rx and dx −

(
1 + ε

2
)

px and proves the lemma. ◀

▶ Lemma 11. For each job j ∈ Jℓ, j’s processing intervals are contained in one contiguous
interval of

⋃
I∈Iℓ

I.

STACS 2024

32:12 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

Proof. The statement holds trivially if j only has one processing interval as this interval
is in Iℓ. If j is preempted at some time τ and resumed at some later time τ ′, then the
two-threshold algorithm processes higher-density jobs in the interval [τ, τ ′). By definition,
these higher-density jobs are in Jℓ if j ∈ Jℓ. Hence, the processing intervals of j together
with these higher-density jobs form a contiguous interval in

⋃
I∈Iℓ

I. ◀

Consider subsets of jobs of Jℓ that are inclusion-wise maximal with respect to the
processing intervals of the corresponding jobs and their copies forming exactly one contiguous
interval in

⋃
I∈Iℓ

I. Let Jℓ,k for 1 ≤ k ≤ K and K ∈ N be those maximal subsets of Jℓ, i.e.,
for each k, the processing intervals of the jobs in Jℓ,k form a contiguous interval and adding
one more job to Jℓ,k would create at least one more interval. Lemma 11 and Lemma 10
imply the following corollary.

▶ Corollary 12. The above defined sets Jℓ,1, . . . , Jℓ,K partition Jℓ. If job x ∈ X is blocked at
level ℓ, then there exists exactly one index k ∈ {1, . . . , K} such that Jℓ,k blocks x.

We now partition X as follows: Let XL ⊆ X and XS ⊆ X be the jobs in Opt that are,
for at least half of their availability interval

[
rx, dx −

(
1 + ε

2
)

px

)
blocked by jobs with larger

and smaller processing times, respectively. Let X∗ℓ ⊂ X∗ for ∗ ∈ {L, S} be the jobs that are
blocked at level ℓ. The previously proven structural properties allow us to upper bound the
total time that Opt has available for processing jobs in XSℓ and XLℓ in the following two
lemmas.

▶ Lemma 13. For each level ℓ ∈ Z, the total time that Opt has available for processing jobs
in XLℓ is at most

(
4 + ε

2
) ∑

j∈Jℓ
pj.

Proof. By Corollary 12 it suffices to separately show the lemma for each maximal subset J ′.
Consider a job x that is blocked by a subset of J ′ for at least half of

[
rx, dx −

(
1 + ε

2
)

px

)
,

where the jobs in J ′ blocking x have a larger processing time than x. By the definition of the
two-threshold algorithm, this implies that there is a job j ∈ J ′ with px ≤ pj that is processed
during

[
rx, dx −

(
1 + ε

2
)

px

)
. By Lemma 10,

[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ

I and, therefore,[
rx, dx −

(
1 + ε

2
)

px

)
is contained in the interval I = [α, ω) associated with the jobs in J ′.

Combining these two observations implies that

[rx, dx) =
[
rx, dx −

(
1 + ε

2

)
px

)
∪

[
dx −

(
1 + ε

2

)
px, dx

)
⊆ I ∪

[
ω, ω +

(
1 + ε

2

) ∑
j∈J′

pj

)
.

Using that the length of I is at most 3
∑

j∈J′ pj concludes the proof. ◀

▶ Lemma 14. For each level ℓ ∈ Z, the total time that Opt has available for processing jobs
in XSℓ is at most

(4
ε + 5

) ∑
j∈Jℓ

pj.

Proof. By Corollary 12 it suffices to separately show the lemma for each maximal subset J ′.
Let I = [α, ω) be the interval associated with J ′.

Consider a job x that is blocked by a subset of J ′ for at least half of
[
rx, dx −

(
1 + ε

2
)

px

)
,

where the jobs in J ′ blocking x have a smaller processing time than x. By definition
of the two-threshold algorithm, this implies that there is a job j ∈ J ′ that is processed
during

[
rx, dx −

(
1 + ε

2
)

px

)
.

F. Eberle 32:13

By our slackness assumption, it holds that dx − rx ≥ (1 + ε)px or equivalently, px ≤
2
ε

(
dx −

(
1 + ε

2
)

px − rx

)
. Since x is blocked for at least half of

[
rx, dx −

(
1 + ε

2
)

px

)
by jobs

in J ′, this implies px ≤ 4
ε

∑
j∈J′ pj . Thus,

[rx, dx) =
[
rx, dx −

(
1 + ε

2

)
px

)
∪

[
dx −

(
1 + ε

2

)
px, dx

)
⊆ I ∪

[
ω, ω +

(
4
ε

+ 2
) ∑

j∈J′

pj

)
.

Using again that the length of I is at most 3
∑

j∈J′ pj concludes the proof. ◀

Proof of Theorem 7. We now bound the weight of the sets XSℓ and XLℓ separately for
each ℓ ∈ Z.

By Lemma 14, the time available for processing jobs in XSℓ is bounded from above
by

(4
ε + 5

) ∑
j∈Jℓ

pj . Being blocked at level ℓ by smaller jobs implies that ρx ≤ 4 ·2 ·2ℓ = 8 ·2ℓ.
Hence,∑

x∈XSℓ

wx =
∑

x∈XSℓ

ρxpx ≤ 8 · 2ℓ

(
4
ε

+ 5
) ∑

j∈Jℓ

pj .

Similarly, by Lemma 13, the time available for processing jobs in XLℓ is upper bounded
by

(
4 + ε

2
) ∑

j∈Jℓ
pj and being blocked at level ℓ by larger jobs implies ρx ≤ 8

ε · 2 · 2
ℓ, where

we used Observation 5 for a blocking job j with px ∈
(

ε
2 pj , pj

]
. Hence,∑

x∈XLℓ

wx =
∑

x∈XLℓ

ρxpx ≤
16
ε
· 2ℓ

(
4 + ε

2

) ∑
j∈Jℓ

pj .

Combining the last two equations with Lemma 8 gives∑
x∈X

wx ≤ 4
(

8 ·
(

4
ε

+ 5
)

+ 16
ε

(
4 + ε

2

)) ∑
j∈J

wj = 192
(

2
ε

+ 1
) ∑

j∈J

wj = O
(

1
ε

) ∑
j∈J

wj .

◀

Proof of main result
Proof of Theorem 1. Recall that Opt is the set of jobs scheduled in an optimal non-
migratory solution and that F is the set of jobs that the two-threshold algorithm completes
on time. Combining Theorems 6 and 7, we obtain∑

x∈Opt
wx ≤

∑
x∈X

wx +
∑
x∈J

wx ≤ O
(

1
ε

) ∑
j∈J

wj ≤ O
(

1
ε

) ∑
j∈F

wj , (2)

which concludes the proof of our main result. ◀

Proof of Theorem 2. On identical machines, it is known that the optimal throughput
achievable without migration is within a constant multiplicative factor of the throughput
achievable using migration by Kalyanasundaram and Pruhs [14]. More precisely, as before,
let Opt be the subset of jobs finished by an optimal (offline) non-migratory schedule, and let
Optmig be the subset of jobs finished by an optimal (offline) schedule that is allowed to use
migration. Then, Theorem 1.1 in [14] shows that 1

6
∑

j∈Optmig
wj ≤

∑
j∈Opt wj . Combining

this with (2), we immediately obtain∑
j∈Optmig

wj ≤ O(1)
∑

j∈Opt
wj ≤ O

(
1
ε

) ∑
j∈F

wj ,

which proves Theorem 2. ◀

STACS 2024

32:14 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

5 Conclusion

We have presented a provably best possible non-migratory algorithm for online weighted
throughput maximization on unrelated machines, that is O

(1
ε

)
-competitive against an optimal

non-migratory schedule. Even for a single machine, only an O
(1

ε2

)
-competitive algorithm

was previously known [18] while the lower bound was Ω
(1

ε

)
[8]. Our result closes this gap on

a single machine.
In contrast to special cases such as maximizing throughput with unit weights [19] or

maximizing machine utilization (wj = pj) [16], it is known that O(1)-competitive algorithms
are not possible even on identical machines and even when using randomization [7]. It is
conceivable that o

(1
ε

)
-competitive algorithms are possible for m ≥ 2 identical machines,

which we leave as an interesting open problem.

References
1 Yossi Azar, Inna Kalp-Shaltiel, Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan

Yaniv. Truthful online scheduling with commitments. In EC, pages 715–732. ACM, 2015.
doi:10.1145/2764468.2764535.

2 Sanjoy K. Baruah and Jayant R. Haritsa. Scheduling for overload in real-time systems. IEEE
Trans. Computers, 46(9):1034–1039, 1997. doi:10.1109/12.620484.

3 Sanjoy K. Baruah, Jayant R. Haritsa, and Nitin Sharma. On-line scheduling to maximize task
completions. In RTSS, pages 228–236. IEEE Computer Society, 1994. doi:10.1109/REAL.
1994.342713.

4 Sanjoy K. Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind Raghunathan,
Louis E. Rosier, Dennis E. Shasha, and Fuxing Wang. On the competitiveness of on-line
real-time task scheduling. Real-Time Systems, 4(2):125–144, 1992. doi:10.1007/BF00365406.

5 Sanjoy K. Baruah, Gilad Koren, Bhubaneswar Mishra, Arvind Raghunathan, Louis E. Rosier,
and Dennis E. Shasha. On-line scheduling in the presence of overload. In FOCS, pages 100–110.
IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185354.

6 Luca Becchetti, Stefano Leonardi, and S. Muthukrishnan. Scheduling to minimize average
stretch without migration. In SODA, pages 548–557. ACM/SIAM, 2000.

7 Ran Canetti and Sandy Irani. Bounding the power of preemption in randomized scheduling.
SIAM J. Comput., 27(4):993–1015, 1998. doi:10.1137/S0097539795283292.

8 Lin Chen, Franziska Eberle, Nicole Megow, Kevin Schewior, and Cliff Stein. A general
framework for handling commitment in online throughput maximization. Math. Prog., 183:215–
247, 2020. doi:10.1007/s10107-020-01469-2.

9 Bhaskar DasGupta and Michael A. Palis. Online real-time preemptive scheduling of jobs with
deadlines. In APPROX, volume 1913 of Lecture Notes in Computer Science, pages 96–107.
Springer, 2000. doi:10.1007/3-540-44436-X_11.

10 Franziska Eberle, Nicole Megow, and Kevin Schewior. Online throughput maximization on
unrelated machines: Commitment is no burden. ACM Trans. Algorithms, 19(1), February
2023. doi:10.1145/3569582.

11 Juan A. Garay, Joseph Naor, Bülent Yener, and Peng Zhao. On-line admission control and
packet scheduling with interleaving. In INFOCOM, pages 94–103. IEEE Computer Society,
2002. doi:10.1109/INFCOM.2002.1019250.

12 Michael H. Goldwasser. Patience is a virtue: The effect of slack on competitiveness for
admission control. J. Sched., 6(2):183–211, 2003. doi:10.1023/A:1022994010777.

13 Samin Jamalabadi, Chris Schwiegelshohn, and Uwe Schwiegelshohn. Commitment and slack
for online load maximization. In SPAA, pages 339–348. ACM, 2020. doi:10.1145/3350755.
3400271.

14 Bala Kalyanasundaram and Kirk Pruhs. Eliminating migration in multi-processor scheduling.
J. Algorithms, 38(1):2–24, 2001. doi:10.1006/jagm.2000.1128.

https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1109/12.620484
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1007/BF00365406
https://doi.org/10.1109/SFCS.1991.185354
https://doi.org/10.1137/S0097539795283292
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1145/3569582
https://doi.org/10.1109/INFCOM.2002.1019250
https://doi.org/10.1023/A:1022994010777
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1006/jagm.2000.1128

F. Eberle 32:15

15 Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63–85, 2003. doi:10.1016/S0196-6774(03)00074-9.

16 Gilad Koren and Dennis E. Shasha. MOCA: A multiprocessor on-line competitive algorithm
for real-time system scheduling. Theor. Comput. Sci., 128(1&2):75–97, 1994. doi:10.1016/
0304-3975(94)90165-1.

17 Gilad Koren and Dennis E. Shasha. Dover: An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM J. Comput., 24(2):318–339, 1995. doi:
10.1137/S0097539792236882.

18 Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online scheduling
for deadline-sensitive jobs: Extended abstract. In SPAA, pages 305–314. ACM, 2013. doi:
10.1145/2486159.2486187.

19 Benjamin Moseley, Kirk Pruhs, Clifford Stein, and Rudy Zhou. A competitive algorithm for
throughput maximization on identical machines. In IPCO, volume 13265 of Lecture Notes in
Computer Science, pages 402–414. Springer, 2022.

20 Kirk Pruhs and Clifford Stein. How to schedule when you have to buy your energy. In
APPROX, volume 6302 of Lecture Notes in Computer Science, pages 352–365. Springer, 2010.
doi:10.1007/978-3-642-15369-3_27.

21 Chris Schwiegelshohn and Uwe Schwiegelshohn. The power of migration for online slack
scheduling. In ESA, volume 57 of LIPIcs, pages 75:1–75:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.75.

STACS 2024

https://doi.org/10.1016/S0196-6774(03)00074-9
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.4230/LIPIcs.ESA.2016.75

	1 Introduction
	2 The two-threshold algorithm
	3 Weight of finished jobs vs. weight of admitted jobs
	4 Weight of admitted jobs vs. weight of Opt
	5 Conclusion

