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Abstract
This paper gives a nearly tight characterization of the quantum communication complexity of the
permutation-invariant Boolean functions. With such a characterization, we show that the quantum
and randomized communication complexity of the permutation-invariant Boolean functions are
quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research
regarding query complexity [2, 16, 11] to communication complexity, showing symmetry prevents
exponential quantum speedups.

Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-
invariant Boolean function. Moreover, we establish a relationship between the quantum/classical
communication complexity and the approximate rank of permutation-invariant Boolean functions.
This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant
Boolean functions in both randomized and quantum settings (up to a logarithmic factor).
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1 Introduction

Exploring quantum advantages is a key problem in the realm of quantum computing.
Numerous work focuses on analyzing and characterizing quantum advantages, such as
[6, 14, 24, 20, 29, 44]. It has been known that quantum computing demonstrates a potential
exponential speedup to solve certain problems than classical computers, such as Simon’s
problem [40] and integer factoring problem [39]. However, for some problems, the quantum
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speedups can be at most polynomial, including the unstructured search problems [25] and
collision finding problems [4]. In light of the aforementioned phenomenon, Aaronson [1]
proposed such a problem: How much structure is needed for huge quantum speedups?

Regarding the above problem, there exist two major directions to explore the structure
needed for quantum speedups in the query model, which is a complexity model commonly used
to describe quantum advantages. On the one hand, Aaronson and Ambainis [2] conjectured
the acceptance probability of a quantum query algorithm to compute a Boolean function can
be approximated by a classical deterministic algorithm with only a polynomial increase in
the number of queries, which is still one of most important conjecture in the field of Boolean
analysis. On the other hand, Watrous conjectured that the quantum and randomized query
complexities are also polynomially equivalent for any permutation-invariant function [2].
Along this direction, Aaronson and Ambainis [2] initiated the study on the quantum speedup
of permutation-invariant functions with respect to query complexity. They demonstrated that
a function invariant under full symmetry does not exhibit exponential quantum speedups,
even if the function is partial, thereby resolving the Watrous conjecture. (Interested readers
may refer to [2] for a more detailed introduction.) Furthermore, Chailloux [16] expanded
upon their work by providing a tighter bound and removing a technical dependence of
output symmetry. Recently, Ben-David, Childs, Gilyén, Kretschmer, Podder and Wang [11]
further proved that hypergraph symmetries in the adjacency matrix model allow at most a
polynomial separation between randomized and quantum query complexities. All the above
results demonstrated that symmetries break exponential quantum speedups in the query
model.

While the study of problem structure in the roles of quantum speedups has obtained
considerable attention in the query model, it is a natural question to consider whether we
can derive similar results in other computation models. The communication complexity
model comes to attention as it is also extensively used to demonstrate quantum advantages.
Furthermore, while the exponential gap between quantum and classical communication
models has been shown in many works [35, 7, 21, 22, 33], there are also some problems in
communication models that demonstrate at most polynomial quantum speedups, such as set
disjointness problem [36] and (gap) Hamming distance problem [28, 38, 43, 18]. Therefore, it
is a meaningful question to consider how much structure is needed for significant quantum
speedups in the communication complexity model. More specifically, while symmetry breaks
quantum exponential advantages in the query model, does there exist a similar conclusion
in the communication complexity model? In this paper, we investigate a variant of the
Watrous conjecture concerning the quantum and randomized communication complexities of
permutation-invariant functions as follows. Briefly, a permutation-invariant Boolean function
is a function that is invariant under permutations of its inputs (see Definition 8 for a formal
definition).

▶ Conjecture 1 (Communication complexity version of the Watrous Conjecture.). For any
permutation-invariant function f : [m]n × [m]n → {−1, 1, ∗}, R(f) ≤ Q∗(f)O(1), where R(f)
and Q∗(f) are the randomized and quantum communication complexities of f , respectively.

Furthermore, we study the Log-rank Conjecture proposed by Lovasz and Saks [31],
a long-standing open problem in communication complexity. Despite its slow progress
on total functions [12, 32, 30], the conjecture has been shown for several subclasses of
total permutation-invariant Boolean functions [15] and XOR-symmetric functions [45]. Lee
and Shraibman further proposed the Log-approximate-rank Conjecture, stating that the
randomized communication and the logarithm of the approximate rank of the input matrix
are polynomially equivalent. Surprisingly, this conjecture was later proven false [19], even for
its quantum counterpart [5, 41].
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In this paper, we investigate both conjectures for permutation-invariant functions.

▶ Conjecture 2 (Log-rank Conjecture for permutation-invariant functions.). For any total
permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1}, D(f) ≤ (log rank(f))O(1),
where rank(f) is the rank of the input matrix of f .

▶ Conjecture 3 (Log-Approximate-Rank Conjecture for permutation-invariant functions.). For
any (total or partial) permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗},

R(f) ≤
(

log r̃ank(f)
)O(1)

, where r̃ank(f) is the approximate rank of the input matrix of f

(see Definition 11 for a formal definition).

▶ Conjecture 4 (Quantum Log-Approximate-Rank Conjecture for permutation-invariant func-
tions.). For any (total or partial) permutation-invariant function f : {0, 1}n × {0, 1}n →

{−1, 1, ∗}, Q(f) ≤
(

log r̃ank(f)
)O(1)

.

1.1 Our Contribution
To study the communication complexity version of the Watrous conjecture, we start with
permutation-invariant Boolean functions, which are essential to analyze general permutation-
invariant functions. We show that for any permutation-invariant Boolean function, its
classical communication complexity has at most a quasi-quadratic blowup comparing to its
quantum communication complexity (Theorem 5). Thus, we cannot hope for exponential
quantum speedups of permutation-invariant Boolean functions. Additionally, Theorem 5
gives a nearly tight bound on the quantum communication complexity. Furthermore, we
show that every non-trivial permutation-invariant Boolean function satisfies the Log-rank
Conjecture in Theorem 6. To resolve the (quantum) Log-Approximate-Rank Conjecture, we
investigate the relationship between the quantum/classical communication complexities and
the approximate rank of any permutation-invariant Boolean function in Theorem 7.

Consider a Boolean function f . Let D(f), R(f), Q(f) and Q∗(f) be the deterministic
communication complexity, randomized communication complexity, quantum communication
complexity without prior entanglement, and quantum communication complexity of f ,
respectively. Let rank (f) and r̃ank (f) be the rank and approximate rank of f . We summarize
our results below1.

▶ Theorem 5. For any permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗} in
Definition 8, the followings hold:

Ω (m (f)) ≤ R(f) ≤ Õ
(

m (f)2
)

≤ Õ
(
Q∗(f)2) and

Ω (m (f)) ≤ Q∗(f) ≤ Q(f) ≤ Õ (m (f)) ,

where m(f) is a measure defined in Definition 12. Hence, R(f) ≤ Õ(Q∗(f)2) for any
permutation-invariant function f .

The complexity measure m(·) is inspired by the work [23], where Gahzi et al. introduced
a complexity measure to capture R(f). It is worth noting that their complexity measure is
equivalent up to a fourth power of R(f), while our complexity measure m(·) is quadratically
related to R(f) and almost tightly characterizes the quantum communication complexity.

1 In Theorems 5 and 7, Õ (M (f)) = O
(
M(f) log2 n log log n

)
for any complexity measure M .

STACS 2024
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▶ Theorem 6. For any non-trivial total permutation-invariant function f : {0, 1}n×{0, 1}n →
{−1, 1} in Definition 8, we have

D(f) = O
(
log2 rank (f)

)
.

▶ Theorem 7. For any permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗} in
Definition 8, we have

R(f) = Õ
(

log2 r̃ank (f)
)

and Q(f) = Õ
(

log r̃ank (f)
)

.

1.2 Proof Techniques
In this section, we give a high-level technical overview of our main results.

1.2.1 Lower Bound
We outline our approaches to obtain the lower bound on the quantum communication
complexity, rank and approximate rank of permutation-invariant functions below:
1. Quantum communication complexity and approximate rank: In Theorem 5, to

prove Q∗(f) = Ω(m(f)) for any permutation-invariant function f , we use the following
two-step reduction (see Lemma 15 and Theorem 13): First, we reduce the lower bound of
the quantum communication complexity of the Exact Set-Inclusion Problem (ESetInc,
Definition 10) to Paturis’s approximate degree of symmetric functions [34] by the pattern
matrix method [37], a well-known method for lower bound analysis in quantum commu-
nication complexity. Second, we reduce the lower bound of any permutation-invariant
function to the lower bound of ESetInc. In Theorem 7, we use a similar method to prove
the lower bound of approximate rank: log r̃ank (f) = Ω(m(f)).

2. Rank: In Theorem 6, we reduce the lower bound of the rank of total permutation-invariant
functions to the lower bound of the rank of some representative function instances, such
as the set disjointness problem and the equality problem (see Lemma 24).

1.2.2 Upper Bound
We use the following methods to show the upper bounds on the communication complexity
of permutation-invariant functions in the randomized, quantum, and deterministic models.
1. Randomized and quantum models: In Theorem 5, to prove R(f) ≤ Õ

(
m (f)2

)
for

any permutation-invariant function f , we first propose a randomized protocol to solve
the Set-Inclusion problem (SetInc, Definition 10) using a well-suited sampling method
according to the parameters of SetInc (see Lemma 20). Afterward, we use this protocol
as a subroutine to solve any permutation-invariant function based on binary search (see
Theorem 14). Furthermore, to prove Q(f) ≤ Õ (m (f)), we use the quantum amplitude
amplification technique [13, 27] to speed up the above randomized protocol to solve SetInc
(see Lemma 21).

2. Deterministic model: In Theorem 6, to give an upper bound of deterministic commu-
nication complexity of total permutation-invariant functions, we propose a deterministic
protocol as follows (see Lemma 25): Alice and Bob first share their Hamming weight of
inputs, and decide who sends the input to the other party according to the definition of
function and the Hamming weight of inputs. The party that has all the information of
inputs will output the answer. Combining Lemmas 24 (described in Section 1.2.1) and
25, Theorem 6 can be proved.
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1.3 Related Work

The need for structure in quantum speedups has been studied in the query model extensively.
Beals, Buhrman, Cleve, Mosca and de Wolf [8] demonstrated that there exists at most a
polynomial quantum speedup for total Boolean functions in the query model. Moreover,
Aaronson and Ambainis [2] established that even partial symmetric functions do not allow
super-polynomial quantum speedups. Chailloux [16] further improved this result to a
broader class of symmetric functions. Ben-David, Childs, Gilyén, Kretschmer, Podder and
Wang [11] later analyzed the quantum advantage for functions that are symmetric under
different group actions systematically. Ben-David [10] established a quantum and classical
polynomial equivalence for a certain set of functions satisfying a specific symmetric promise.
Aaronson and Ben-David [3] proved that if domain D satisfies D = poly(n), there are at
most polynomial quantum speedups for computing an n-bit partial Boolean function.

In terms of communication complexity, there are a few results that imply the polynomial
equivalence between quantum and classical communication complexity for several instances of
permutation-invariant functions. Examples include AND-symmetric functions [36], Hamming
distance problem [28, 17], XOR-symmetric functions [45]. While the above results character-
ized quantum advantage for a certain class of permutation-invariant Boolean functions, our
work provides a systemic analysis of all permutation-invariant Boolean functions.

The study of the Log-rank Conjecture and the Log-Approximate-Rank Conjecture has a
rich history. Here, we only survey the results about the Log-rank Conjecture and the Log-
Approximate-Rank Conjecture about permutation-invariant Boolean functions. Buhuman
and de Wolf [15] verified the correctness of the Log-rank Conjecture for AND-symmetric
functions. Combining the results of Razborov [36], Sherstov [37] and Suruga [42], it is implied
that the Log-Approximate-Rank Conjecture holds for AND-symmetric functions both in
the randomized and quantum settings. Moreover, the result of Zhang and Shi [45] implies
the Log-rank Conjecture and the (quantum) Log-Approximate-Rank Conjecture hold for
XOR-symmetric functions.

In previous work, Ghazi, Kamath and Sudan [23] introduced a complexity measure, which
is polynomially equivalent to the randomized communication complexity of permutation-
invariant functions defined in Definition 8. This paper is inspired by their work.

1.4 Organization

The remaining part of the paper is organized as follows. In Section 2, we state some
notations and definitions used in this paper. In Section 3, we study the quantum and
classical communication complexities of permutation-invariant functions. In Section 4, we
show the Log-rank Conjecture holds for non-trivial total permutation-invariant functions. In
Section 5, we study the Log-approximate Conjecture of permutation-invariant functions both
in quantum and classical setting. Finally, a conclusion is made in Section 6. The appendices
contain a section on extended preliminaries and omitted proofs.

2 Preliminaries

We introduce the notations and definitions used in this paper.
A multiset is a set with possibly repeating elements. We use {[·]} to denote multiset

and {·} to denote standard set. Let S be a multiset, S \ {a} removes one occurrence of a

from S if there is any.

STACS 2024
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2.1 Boolean Functions
A partial function is a function defined only on a subset of its domain X . Formally, given
a partial Boolean function f : X → {−1, 1, ∗}, f(x) is undefined for x ∈ X if f(x) = ∗. A
total function is a function that is defined on the entire domain. We say f : X → {−1, 1, ∗}
is a subfunction of g : X → {−1, 1, ∗} if f(x) = g(x) or f(x) = ∗ for any x ∈ X .

A Boolean predicate is a partial function that has domain X = {0, 1, ..., n} for any
n ∈ N.

An incomplete Boolean matrix is a matrix with entries in {−1, 1, ∗}, where undefined
entries are filled with ∗.

A submatrix is a matrix that is obtained by extracting certain rows and/or columns
from a given matrix.

A half-integer is a number of the form n + 1/2, where n ∈ Z.
We introduce some Boolean operators as follows. For every n ∈ N and x, y ∈ {0, 1}n:
x := {x0, ..., xn−1} = {1 − x0, ..., 1 − xn−1};
x ∧ y := {x0 ∧ y0, ..., xn−1 ∧ yn−1}; and
x ⊕ y := {x0 ⊕ y0, ..., xn−1 ⊕ yn−1}.

2.2 Communication Complexity Model
In the two-party communication model, Alice is given input x, and Bob is given input
y. Then they aim to compute f(x, y) for some function f : {0, 1}n × {0, 1}n → {−1, 1, ∗}
by communication protocols. The deterministic communication complexity D(f) is
defined as the cost of the deterministic protocol with the smallest communication cost, which
computes f correctly on any input. The randomized communication complexity Rϵ(f)
is defined as the cost of the randomized protocol with the smallest communication cost, which
has access to public randomness and computes f correctly on any input with probability
at least 1 − ϵ. Similarly, the quantum communication complexity Q(f) is defined
as the cost of the quantum protocol with the smallest cost, which is not allowed to share
prior entanglement, has access to public randomness and computes f correctly on any input
with probability at least 1 − ϵ. If the quantum protocol is allowed with prior entanglement
initially, then the corresponding quantum communication complexity is denoted Q∗(f). If a
protocol succeeds with probability at least 1 − ϵ on any input for some constant ϵ < 1/2, we
say the protocol is with bounded error. If ϵ = 1/3, we abbreviate Rϵ(f), Qϵ(f), Q∗

ϵ (f) as
R(f), Q(f), Q∗(f).

2.3 Permutation-Invariant Functions
In the two-party communication model, the function value of a permutation-invariant function
is invariant if we perform the same permutation to the inputs of Alice and Bob. Specifically,
the formal definition is as follows.

▶ Definition 8 (Permutation-invariant functions [23]). A (total or partial) function f :
{0, 1}n × {0, 1}n → {−1, 1, ∗} is permutation-invariant if for all x, y ∈ {0, 1}n, and every
bijection π : {0, ..., n − 1} → {0, ..., n − 1}, f(xπ, yπ) = f(x, y), where xπ satisfies that
xπ

(i) = xπ(i) for any i ∈ {0, ..., n − 1}.

Note that any permutation-invariant function f in Definition 8 depends only on |x|, |y| and
|x∧y|. Here |·| is the Hamming weight for the binary string, i.e., the number of 1’s in the string.
Thus, for any a, b ∈ [n], there exists a function fa,b : {max {0, a + b − n} , ..., min {a, b}} →
{−1, 1} such that

fa,b(|x ∧ y|) = f(x, y), (1)
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for any x, y ∈ {0, 1}n satisfying |x| = a, |y| = b. If there exist a, b ∈ [n] such that fa,b is not
a constant function, we say f is non-trivial.

The following definition of jumps partitions the domain of fa,b into different intervals
according to the transition of function values.

▶ Definition 9 (Jump in fa,b [23]). (c, g) is a jump in fa,b if
1. fa,b(c − g) ̸= fa,b(c + g);
2. fa,b(c − g), fa,b(c + g) ∈ {−1, 1};
3. fa,b(r) is undefined for c − g < r < c + g.

Moreover, we define J (fa,b) to be the set of all jumps in fa,b:

J (fa,b) :=

(c, g) :
fa,b(c − g), fa,b(c + g) ∈ {0, 1}

fa,b(c − g) ̸= fa,b(c + g)
∀i ∈ (c − g, c + g), fa,b(i) = ∗

 .

The following definition gives an important instance of permutation-invariant functions.

▶ Definition 10 (Set-Inclusion Problem). We define the Set-Inclusion Problem SetIncn
a,b,c,g as

the following partial function:

SetIncn
a,b,c,g(x, y) :=


−1 if |x| = a, |y| = b and |x ∧ y| ≤ c − g,

1 if |x| = a, |y| = b and |x ∧ y| ≥ c + g,

∗ otherwise.

Additionally, we define the Exact Set-Inclusion Problem ESetIncn
a,b,c,g as follows.

ESetIncn
a,b,c,g(x, y) :=


−1 if |x| = a, |y| = b and |x ∧ y| = c − g,

1 if |x| = a, |y| = b and |x ∧ y| = c + g,

∗ otherwise.

2.4 Rank and Approximate Rank

If F is a real matrix, let rank(F ) be the rank of F . Then we define the approximate rank
for any incomplete matrix as follows.

▶ Definition 11 (Approximate rank). For an incomplete matrix F ∈ {−1, 1, ∗}m×n and
0 ≤ ϵ < 1, we say a real matrix A approximates F with error ϵ if:
(1) |Ai,j − Fi,j | ≤ ϵ for any i ∈ [m], j ∈ [n] such that Fi,j ̸= ∗;
(2) |Ai,j | ≤ 1 for all i ∈ [m], j ∈ [n].
Let Fϵ be the set of all the real matrices that approximate F with error ϵ. The approximate
rank of F with error ϵ, denoted by r̃ankϵ(F ), is the least rank among all real matrices in Fϵ.
If ϵ = 2/3, we abbreviate r̃ankϵ(F ) as r̃ank(F ).

Let f be a Boolean function, rank(f) := rank (Mf ) and r̃ank(f) := r̃ank (Mf ), where Mf is
the input matrix of f .

STACS 2024
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3 Polynomial Equivalence on Communication Complexity of
Permutation-Invariant Functions

To show the polynomial equivalence between quantum and classical communication com-
plexity of permutation-invariant functions as stated in Theorem 5, we prove the following
two theorems (proved in Sections 3.1 and 3.2, respectively) for the quantum and random-
ized communication complexities of permutation-invariant functions using the measure in
Definition 12.

▶ Definition 12 (Measure m(f)). Fix n ∈ Z. Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a
permutation-invariant function. We define the measure m(f) of f as follows:

m(f) := max
a,b∈[n]

(c,g)∈J (fa,b)
n1:=min{[a−c,c,b−c,n−a−b+c]}

n2:=min({[a−c,c,b−c,n−a−b+c]}\{n1})

√
n1n2

g
.

Note that this definition is motivated by Lemma 15.

The measure m(·) is inspired by the complexity measure introduced in [23], which was used
to capture the randomized communication complexity of permutation-invariant functions.

▶ Theorem 13 (Lower Bound). Fix n ∈ Z. Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a
permutation-invariant function. We have

Q∗(f) = Ω(m(f)) .

▶ Theorem 14 (Upper Bound). Fix n ∈ N. Given a permutation-invariant function f :
{0, 1}n × {0, 1}n → {0, 1, ∗} and the corresponding measure m(f) defined in Definition 12,
we have

R(f) = O
(
m(f)2 log2 n log log n

)
, and

Q(f) = O
(
m(f) log2 n log log n

)
.

3.1 Quantum Communication Complexity Lower Bound
In this section, our goal is to obtain a lower bound on the quantum communication complexity
for permutation-invariant functions (Theorem 13). Towards this end, we show that every
permutation-invariant function f can be reduced to ESetInc (defined in Definition 10) and
exhibit a lower bound for ESetInc (Lemma 15). Additionally, Lemma 15 implies if |x| =
a, |y| = b, then the cost to distinguish |x ∧ y| = c − g from |x ∧ y| = c + g is related to the
smallest and the second smallest number in [a − c, c, b − c, n − a − b + c].

▶ Lemma 15. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. Let n1 :=
min{[a − c, c, b − c, n − a − b + c]} and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We
have

Q∗ (ESetIncn
a,b,c,g

)
= Ω

(√
n1n2

g

)
.

Proof of Theorem 13. By the definitions of fa,b and jump of fa,b, any quantum protocol
computing f can also compute ESetIncn

a,b,c,g for any a, b and any jump (c, g) ∈ J (fa,b).
Therefore, given a jump (c, g) for fa,b, the cost of computing ESetIncn

a,b,c,g lower bounds the
cost of computing f . By Lemma 15, we have Q∗(f) ≥

√
n1n2
g for any jump (c, g) in fa,b,

where n1, n2 are the smallest and the second smallest number in {[a−c, c, b−c, n−a−b+c]}.
We conclude that Q∗(f) = Ω (m(f)) as desired. ◀
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Now we remain to show Lemma 15. We note that the following two lemmas imply
Lemma 15 directly, where Lemma 16 reduces the instance such that the parameter only relies
on n1, n2, g and Lemma 17 gives the final lower bound.

▶ Lemma 16. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. Let n1 :=
min{[a − c, c, b − c, n − a − b + c]} and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We
have

Q∗ (ESetIncn
a,b,c,g

)
≥ Q∗ (ESetIncn1+3n2

n1+n2,n1+n2,n1,g

)
.

▶ Lemma 17. For n1, n2 ∈ N such that n1 ≤ n2, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
= Ω

(√
n1n2

g

)
.

We use the following two results on ESetInc to show Lemmas 16 and 17 (See full version [26]
for the detailed proofs). Specifically, Lemma 18 is a variant of Lemma 4.1 in [18] and shows
some reduction methods to the instances of the Exact Set-Inclusion Problem. Lemma 19 is a
generalization of Theorem 5 in [9] proved by pattern matrix method and shows the lower
bound of a special instance of the Exact Set-Inclusion Problem.

▶ Lemma 18. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. The following
relations hold.
1. Q∗ (ESetIncn

a,b,c,g

)
≤ Q∗

(
ESetIncn+ℓ

a+ℓ1+ℓ3,b+ℓ2+ℓ3,c+ℓ3,g

)
for integers ℓ1, ℓ2, ℓ3 ≥ 0 such

that ℓ1 + ℓ2 + ℓ3 ≤ ℓ;
2. Q∗ (ESetIncn

a,b,c,g

)
= Q∗ (ESetIncn

a,n−b,a−c,g

)
= Q∗ (ESetIncn

n−a,b,b−c,g

)
;

3. Q∗ (ESetIncn
a,b,c,g

)
≤ Q∗

(
ESetInckn

ka,kb,kc,kg

)
, where k ≥ 1 is an integer.

▶ Lemma 19. For every k ∈ Z, if l is a half-integer and l ≤ k/2, then Q∗
(

ESetInc4k
2k,k,l,1/2

)
=

Ω
(√

kl
)

.

Proof of Lemma 16. Using the second item of Lemma 18, we assume n1 = c without loss
of generality. Furthermore, we assume n2 = a − c. Let n3 := b − c, n4 := n − a − b + c. Then
n3, n4 ≥ n2 ≥ n1 and n = n1 + n2 + n3 + n4. By Lemma 18, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
= Q∗ (ESetIncn1+n2+n2+n2

n1+n2,n1+n2,n1,g

)
≤ Q∗ (ESetIncn1+n2+n3+n4

n1+n2,n1+n3,n1,g

)
= Q∗ (ESetIncn

a,b,c,g

)
.

If n2 = b − c or n − a − b + c, the argument is similar. ◀

Proof of Lemma 17. Let m1 =
⌊

n1
2g + 1

2

⌋
− 1

2 , i.e., m1 is the largest half-integer no more

than n1
2g . Similarly, let m2 =

⌊
n2
2g + 1

2

⌋
− 1

2 . By Lemma 18, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
≥ Q∗

(
ESetIncm1+3m2

m1+m2,m1+m2,m1,1/2

)
.

Then we discuss the following three cases:
Case 1: m1 = m2 = 1/2. We have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Ω (1) = Ω (

√
m1m2) .
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Case 2: m2 ≥ 3/2 and m1 = 1/2. Let m′
2 :=

⌊
m1+m2

2
⌋

, l1 := m1 + m2 − 2m′
2, l2 :=

m1 + m2 − m′
2, l := m1 + 3m2 − 4m′

2. Then,

l − (l1 + l2) = m2 − m1 − m′
2 ≥ m2 + m1

2 − m′
2 ≥ 0.

By Lemmas 18 and 19, we have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Q∗

(
ESetInc4m′

2+l

2m′
2+l1,m′

2+l2,m1,1/2

)
≥ Q∗

(
ESetInc4m′

2
2m′

2,m′
2,m1,1/2

)
= Ω

(√
m1m′

2

)
= Ω (

√
m1m2) .

Case 3: m1 ≥ 3/2. Let m :=
⌊

m1
6 + m2

2
⌋

, k :=
⌊

m1
3 + 1

2
⌋

− 1
2 , l3 := m1 − k, l1 :=

(m1 + m2 − 2m)− l3, l2 := (m1 + m2 − m)− l3, l := m1 +3m2 −4m. Since k is the largest
half-integer smaller than m1

3 , we have k ≤ 1
2 ·
⌊ 2m1

3
⌋
. Since m1 ≤ m2, we have

k ≤ 1
2 ·
⌊

2m1

3

⌋
≤ 1

2 ·
⌊m1

6 + m2

2

⌋
≤ m

2 , (2)

and

l − (l1 + l2 + l3) = m2 − k − m ≥ m2 − m1

3 −
(m1

6 + m2

2

)
≥ 0 . (3)

Then we have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Q∗

(
ESetInc4m+l

2m+l1+l3,m+l2+l3,k+l3,1/2

)
≥ Q∗

(
ESetInc4m

2m,m,k,1/2

)
(by Lemma 18 and Equation (3))

= Ω
(√

mk
)

(by Lemma 19 and Equation (2))

= Ω (
√

m1m2) .

We conclude that

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
≥ Q∗

(
ESetIncm1+3m2

m1+m2,m1+m2,m1,1/2

)
= Ω

(√
n1n2

g

)
. ◀

3.2 Randomized and Quantum Communication Complexity Upper
Bound

We show upper bounds on the randomized and quantum communication complexities for
permutation invariant functions (Theorem 14). Similar to Section 3.1, we do so by giving
upper bounds for a specific problem, SetInc (see Definition 10), and reducing permutation-
invariant functions to SetInc.

The following two lemmas capture the randomized and quantum communication com-
plexity for SetInc, respectively.
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▶ Lemma 20 (Classical Upper Bound). Fix n, a, b ∈ Z. Consider c, g such that
c + g, c − g ∈ Z. Let n1 := min{[a − c, c, b − c, n − a − b + c]} and n2 :=
min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). For any input x, y ∈ {0, 1}n of SetIncn

a,b,c,g,
there exists a randomized communication protocol that computes SetIncn

a,b,c,g(x, y) using
O
(

n1n2
g2 log n log log n

)
bits of communication with success probability at least 1 − 1/(6 log n).

▶ Lemma 21 (Quantum Upper Bound). Fix n, a, b ∈ Z. Consider c, g such that
c + g, c − g ∈ Z. Let n1 := min{[a − c, c, b − c, n − a − b + c]} and n2 :=
min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). For any input x, y ∈ {0, 1}n of SetIncn

a,b,c,g,
there exists a quantum communication protocol without prior entanglement that computes
SetIncn

a,b,c,g(x, y) using O
(√

n1n2
g log n log log n

)
qubits of communication with success prob-

ability at least 1 − 1/(6 log n).

We note that Lemma 21 is a quantum speedup version of Lemma 20 by quantum amplitude
amplification. The proof of Lemma 20 is given at the end of this section, and the proof of
Lemma 21 can be seen in the full version [26].

Now we explain how to derive Theorem 14 from the lemmas above.

Proof of Theorem 14. We first present a randomized protocol to compute f based on binary
search:
1. Alice and Bob exchange a := |x|, b := |y|.
2. Alice and Bob both derive fa,b such that fa,b(|x ∧ y|) = f(x, y).
3. Let J (fa,b) = {(ci, gi)}i∈[k] for some k ≤ n be the set of jumps of fa,b as in Definition 9.
4. Alice and Bob use binary search to determine i ∈ {0, 1, ..., k} such that |x ∧ y| ∈ Ii, where

Ii is defined in Equation (4).

We first discuss the communication complexity of the above protocol. The first step
takes O(log n) bits of communication. The fourth step costs O

(
m(f)2 log2 n log log n

)
bits

of communication: For each i ∈ [k], Alice and Bob can determine whether |x ∧ y| ≤ ci − gi or
|x∧y| ≥ ci +gi by O(m(f)2 log n log log n) with a success probability of at least 1−1/ (6 log n)
by Lemma 20. Since binary search takes at most ⌈log (k + 1)⌉ = O (log n) rounds, the total
communication cost is O

(
m(f)2 log2 n log log n

)
.

Now we argue for the correctness of the protocol. Notice that the set of jumps J (fa,b)
invokes k + 1 intervals:

{I0 := [0, c1 − g1], I1 := [c1 + g1, c2 − g2], . . . , Ik−1 := [ck−1 + gk−1, ck − gk], Ik := [ck + gk, n]} .

(4)

In particular, the followings hold:
For every j ∈ [0, k] and z1, z2 ∈ Ij such that fa,b(z1) ̸= ∗ and fa,b(z2) ̸= ∗, we have
fa,b(z1) = fa,b(z2).
If z /∈ Ij for any j ∈ [0, k], then fa,b(z) = ∗.

Therefore, Alice and Bob start from i = ⌊(k + 1)/2⌋ to determine whether |x ∧ y| ≤ ci − gi or
|x ∧ y| ≥ ci + gi with success probability of at least 1 − 1/ (6 log n). Depending on the result,
they repeat the same process similar to binary search to find the interval that |x ∧ y| falls
in. After at most ⌈log (k + 1)⌉ = O (log n) repetitions, there is only one remaining interval
and they can easily determine fa,b(|x ∧ y|). For n ≥ 2, the failure probability of the above
protocol is at most

1 −
(

1 − 1
6 log n

)⌈log(k+1)⌉

≤ ⌈log (k + 1)⌉
6 log n

≤ ⌈log (n + 1)⌉
3 log n2 ≤ 1

3 .
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For the quantum case, Alice and Bob use the same protocol above, but we invoke
Lemma 21 to analyze the communication complexity. ◀

Proof of Lemma 20. We rely on the following two claims to prove the lemma.

▶ Fact 22 ([2, Lemma 30]). Fix 0 < ϵ < β < 1 such that β + ϵ ≤ 1. For a set S, suppose
there is a subset S′ of S such that |S′|

|S| ≤ β − ϵ or |S′|
|S| ≥ β + ϵ. Suppose we can sample from

S uniformly and ask whether the sample is in S′. Then we can decide whether |S′|
|S| ≤ β − ϵ

or |S′|
|S| ≥ β + ϵ by O(β/ϵ2) samples, with success probability at least 2/3.

▶ Fact 23. Suppose x, y ∈ {0, 1}n are the inputs of Alice and Bob such that |x| ≠ |y|. Alice
and Bob can sample an element from S := {i : xi ̸= yi} uniformly using O(log n) bits of
communication.

We refer interesting readers to the full version [26] for the proof of Fact 23. Now we
prove the lemma by casing on the values of n1 and n2.

Case 1: n1 = c and n2 = a − c. According to Definition 10, we have either |x∧y|
|x| ≤ c−g

a or
|x∧y|

|x| ≥ c+g
a . Alice and Bob estimate |x∧y|

|x| as follows: Alice chooses an index i such that
xi = 1 uniformly at random. Then Alice sends i to Bob, and Bob checks whether yi = 1.
By Fact 22, setting β := c

a , ϵ := g
a , Alice and Bob can decide whether |x∧y|

|x| ≤ c−g
a or

|x∧y|
|x| ≥ c+g

a with bounded error using O
(

ac
g2

)
= O

(
n1n2

g2

)
samples. Since |x| = a, using

O
(

n1n2
g2 log log n

)
samples, they can decide whether |x ∧ y| ≤ c − g or |x ∧ y| ≥ c + g with

success probability at least 1 − 1/(6 log n) by error reduction. Thus, the communication
complexity is O

(
n1n2

g2 log n log log n
)

.
Case 2: n1 = a − c and n2 = c, or n1 = a − c and n2 = c, or n1 = c and n2 = b − c. A
similar argument as in Case 1 applies.
Case 3: n1 = c and n2 = n − a − b + c. Since n1 ≤ n2, we have a + b ≤ n. Then we
consider the following two cases:

1. Case 3.1: a + b < n. Let m := n1 + n2, p := |x∧y|
|x⊕y| . Since

|x ⊕ y| = |x ∧ y| + |x ∧ y|
= |x ∧ y| + (n − (a + b − |x ∧ y|))
= n − (a + b) + 2|x ∧ y|

,

we have

p = |x ∧ y|
n − (a + b) + 2|x ∧ y|

= 1
n−(a+b)

|x∧y| + 2
.

Notice that p is an increasing function with respect to |x∧y|. As a result, if |x∧y| ≤ c−g,
then p ≤ c−g

m−2g ; if |x ∧ y| ≥ c + g, then p ≥ c+g
m+2g . Let

β := 1
2

(
c + g

m + 2g
+ c − g

m − 2g

)
= cm − 2g2

m2 − 4g2 and ϵ := 1
2

(
c + g

m + 2g
− c − g

m − 2g

)
= gm

m2 − 4g2 .

Since c − g ≥ 0, we have β ≤ c+g
m+2g ≤ 2c

m and

ϵ = 1
2

(
c + g

m + 2g
− c

m

)
+ 1

2

(
c

m
− c − g

m − 2g

)
= 1

2

(
g(m − 2c)
m(m + 2g) + g(m − 2c)

m(m − 2g)

)
= O

( g

m

)
.
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For any x ∈ {0, 1}n, we let Sx := {i : xi = 1}. By Fact 23, Alice and Bob can
sample i from Sx⊕y uniformly using O(log n) bits communication. Since i ∈ Sx⊕y,
if xi = yi = 1, then i ∈ Sx∧y; if xi = yi = 0, then i /∈ Sx∧y. By Fact 22, using
O
(

β
ϵ2

)
= O

(
mc
g2

)
= O

(
n1n2

g2

)
samples, Alice and Bob can decide whether p ≤ β − ϵ

or p ≥ β + ϵ with bounded error. Equivalently, Alice and Bob can distinguish
|x ∧ y| ≤ c − g from |x ∧ y| ≥ c + g with bounded error. By error reduction, using
O
(

n1n2
g2 log log n

)
samples, they can decide whether |x ∧ y| ≥ c − g or |x ∧ y| ≤ c + g

with success probability at least 1 − 1/(6 log n). Thus, the communication complexity
is O

(
n1n2

g2 log n log log n
)

.

2. Case 3.2: a + b = n. Alice and Bob generate new inputs x′ = x0 and y′ = y0 (pad a
zero after the original input). We know

SetIncn
a,b,c,g(x, y) = SetIncn+1

a,b,c,g(x′, y′) .

Since a + b < n + 1, Alice and Bob perform the protocol in Case 3.1 in the new inputs,
and the complexity analysis is similar to Case 3.1.

Case 4: n1 = n − a − b + c and n2 = c, or n1 = a − c and n2 = b − c, or n1 = b − c and
n2 = a − c. A similar argument as in Case 3 works. ◀

4 Log-Rank Conjecture for Permutation-Invariant Functions

Theorem 6 states the Log-rank Conjecture for permutation-invariants functions. We argue
for the lower bound (Lemma 24) and the upper bound (Lemma 25) separately.

▶ Lemma 24. Fix n ∈ N. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a non-trivial total
permutation-invariant function. For every a, b ∈ [n] such that fa,b is not a constant function,
we have

log rank(f) = Ω (max {log n, min {a, b, n − a, n − b}}) ,

where fa,b is defined as Equation (1).

▶ Lemma 25. Fix n ∈ N. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a non-trivial total
permutation-invariant function.

D(f) = O

(
max

a,b∈[n]:fa,b is not constant
min {a, b, n − a, n − b} · log n

)
,

where fa,b is defined as Equation (1).

We prove Lemma 24 below, and the proof of Lemma 25 can be found in the full version [26].

Proof of Lemma 24. We rely on the following two claims to prove the lemma. Two claims
show the lower bound on the rank of some special functions respectively.

▶ Fact 26 ([15], merging Corollary 6 with Lemma 4). Fix n ∈ N. Let f : {0, 1}n × {0, 1}n →
{−1, 1} be defined as f(x, y) := D(|x ∧ y|) for some predicate D : {0, 1, ..., n} → {−1, 1}. If
t is the smallest integer such that D(t) ̸= D(t − 1), then log rank(f) = Ω

(
log
(∑n

i=t

(
n
i

)))
.
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▶ Fact 27. Fix n ∈ N. Let X , Y := {x ∈ {0, 1}n : |x| = k}, where k ≤ n/2. Let DISJk
n :

X × Y → {−1, 1} and EQk
n : X × Y → {−1, 1} be defined as

DISJk
n(x, y) :=

{
−1 if |x ∧ y| = 0
1 if |x ∧ y| ≠ 0

and EQk
n(x, y) :=

{
−1 if x = y

1 if x ̸= y
.

Then rank
(

DISJk
n

)
≥
(

n
k

)
− 1 and rank

(
EQk

n

)
≥
(

n
k

)
− 1.

We refer interesting readers to the full version [26] for the proof of Fact 27. Now we prove
the lemma by casing on the values of a and b.

We can assume a ≤ b ≤ n/2 without loss of generality because the cases where a > n/2
or b > n/2 can be obtained by flipping each bit of Alice or Bob’s input. Thus, it suffices to
prove log rank(f) = Ω (max {log n, a}).

We prove the following two claims that directly lead to our result:
1. If a ≤ b ≤ n/2 and a = o (log n), then log rank(f) = Ω (log n).
2. If a ≤ b ≤ n/2 and a = Ω (log n), then log rank(f) = Ω (a).

We first prove Item 1. Suppose a ≤ b ≤ n/2 and a = o (log n). Since fa,b is not a constant
function, there exists c ∈ [0, a) such that fa,b(c) ̸= fa,b(c + 1). Without loss of generality,
we assume fa,b(c) = −1. Let n′ := n − (a + b − c − 2). Since b ≤ n/2 and c ≤ a = o(log n),
n′ = n − (a + b − c − 2) = Ω (n). Let X and Y be the set

{
x ∈ {0, 1}n′ : |x| = 1

}
. For any

x ∈ X , y ∈ Y,

DISJ1
n′(x, y) = fa,b(|x ∧ y| + c) = f(x′, y′) ,

where

x′ := x 1 · · · 1︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
a−c−1

0 · · · 0︸ ︷︷ ︸
b−c−1

and y′ := y 1 · · · 1︸ ︷︷ ︸
c

0 · · · 0︸ ︷︷ ︸
a−c−1

1 · · · 1︸ ︷︷ ︸
b−c−1

.

Thus, DISJ1
n′ is a submatrix of f . By Fact 27, we have

log rank(f) ≥ log rank(DISJ1
n′) ≥ log (n′ − 1) = Ω (log n) .

Now we prove Item 2. Suppose a, b ≤ n/2 and min {a, b} = Ω (log n), we consider the
following three cases:

Case 1: There exists c ∈ [4a/7, 3a/5) such that fa,b(c) ̸= fa,b(c + 1). Let k = ⌊a/2⌋ and
k′ = ⌈a/2⌉. Let g : {0, 1}k × {0, 1}k → {−1, 1} be such that g(x, y) = fa,b(|x′ ∧ y′|) for
every x, y ∈ {0, 1}k, where

x′ := xx 0 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
k′

0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
n−b−2k

and y′ := y 0 · · · 0︸ ︷︷ ︸
k

y 1 · · · 1︸ ︷︷ ︸
k′

1 · · · 1︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
n−b−2k

.

Observe that x′, y′ ∈ {0, 1}n and |x′| = a, |y′| = b. Moreover, g(x, y) = D(|x ∧ y|) for
predicate D : {0, 1, ..., k} → {−1, 1} such that D(z) = fa,b(z + k′) for every z ∈ [0, k].
Thus, we have D(c − k′) ̸= D(c − k′ + 1). By Fact 26, we have

log rank(g) = Ω
(

log
(

k∑
i=c−k′+1

(
k

i

)))
.

Since c−k′ +1 < 3a/5−⌈a/2⌉+1 ≤ a/10 ≤ k/2, we conclude log rank(g) = Ω(k) = Ω(a).
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Case 2: There exists c ∈ [0, 4a/7) such that fa,b(c) ̸= fa,b(c + 1) and fa,b is a constant
function in the range [c, 3a/5). Without loss of generality, we assume fa,b(c) = −1. Let
l := ⌊3a/5⌋, l′ := ⌈2a/5⌋, m := n − (c + b − a + 2l′). Since a ≤ b ≤ n/2 and c < 4a/7, we
have

m = n − (c + b − a + 2l′) ≥ 2a − 2l′ − c = 2l − c ≥ 2(l − c) .

Let X and Y be the set {x ∈ {0, 1}m : |x| = l − c}. For every x ∈ X , y ∈ Y, we have

DISJl−c
m (x, y) = fa,b(|x′ ∧ y′|) = f(x′, y′) ,

where

x′ := x 1 · · · 1︸ ︷︷ ︸
c

0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
l′

1 · · · 1︸ ︷︷ ︸
l′

and y′ := y 1 · · · 1︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
b−a

1 · · · 1︸ ︷︷ ︸
l′

0 · · · 0︸ ︷︷ ︸
l′

.

Thus, DISJl−c
m is a submatrix of f . By Fact 27, we have

log rank (f) ≥ log rank(DISJl−c
m ) = Ω

(
log
(

m

l − c

))
= Ω (l − c) = Ω (a) .

Case 3: There exists c ∈ [3a/5, a) such that fa,b(c) ̸= fa,b(c + 1) and fa,b is a constant
function in the range [0, c). Without loss of generality, we assume fa,b(c) = −1. Since a ≤
b ≤ n

2 , we have n−b+c ≥ a+c ≥ 2c. Let X and Y be the set
{

x ∈ {0, 1}n−b+c : |x| = c
}

.
For every x ∈ X , y ∈ Y, we have

EQc
n−b+c(x, y) = fa,b(|x′ ∧ y′|) = f(x′, y′),

where

x′ := x 0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
a−c

and y′ := y 1 · · · 1︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
a−c

.

Thus, EQc
n−b+c is a submatrix of f . By Fact 27, we have

log rank (f) ≥ log rank(EQc
n−b+c) = Ω

(
log
(

n − b + c

c

))
= Ω (c) = Ω (a) . ◀

5 Log-Approximate-Rank Conjecture for Permutation-Invariant
Functions

We discuss Theorem 7. In particular, we use the following two lemmas (proved in the full
version [26]) to prove Theorem 7. Additionally, we note that Lemmas 28 and 29 are variants
of Lemmas 18 and 19.

▶ Lemma 28. Let n, a, b, c, g ∈ Z+. The following relations hold:
1. r̃ank

(
ESetIncn

a,b,c,g

)
≤ r̃ank

(
ESetIncn+ℓ

a+ℓ1+ℓ3,b+ℓ2+ℓ3,c+ℓ3,g

)
for ℓ1, ℓ2, ℓ3 ≥ 0 such that

ℓ1 + ℓ2 + ℓ3 ≤ ℓ;
2. r̃ank

(
ESetIncn

a,b,c,g

)
= r̃ank

(
ESetIncn

a,n−b,a−c,g

)
= r̃ank

(
ESetIncn

n−a,b,b−c,g

)
; and

3. r̃ank
(
ESetIncn

a,b,c,g

)
≤ r̃ank

(
ESetInckn

ka,kb,kc,kg

)
for k ≥ 1.

▶ Lemma 29. Fix k ∈ Z. Let l be a half-integer such that l ≤ k/2. We have

log
(

r̃ank
(

ESetInc4k
2k,k,l,1/2

))
= Ω

(√
kl
)

.
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Proof sketch of Theorem 7. We use a similar argument as in the proof of Lemma 15.
Namely, for every a, b ∈ [n] and jump (c, g) ∈ J (fa,b), let n1 := min{[a−c, c, b−c, n−a−b+c]}
and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We have

log r̃ank
(
ESetIncn

a,b,c,g

)
= Ω

(√
n1n2

g

)
.

Since ESetIncn
a,b,c,g is a subfunction of f , we have

log r̃ank (f) = Ω

 max
a,b∈[n]

(c,g)∈J (fa,b)

√
n1n2

g

 = Ω (m(f)) .

Combining Theorem 14 and the above equation, we have Theorem 7 as desired. ◀

6 Conclusion

This paper proves that the randomized communication complexity of permutation-invariant
Boolean functions is at most quadratic of the quantum communication complexity (up to
a logarithmic factor). Our results suggest that symmetries prevent exponential quantum
speedups in communication complexity, extending the analogous research on query complexity.
Furthermore, we prove that the Log-rank Conjecture and Log-approximate-rank Conjecture
hold for non-trivial permutation-invariant Boolean functions (up to a logarithmic factor).
There are some interesting problems to explore in the future.

Permutation invariance over higher alphabets. In this paper, the permutation-invariant
function is a binary function. The interesting question is to generalize our results to
larger alphabets, i.e., to permutation-invariant functions of the form f : Xn × Y n → R

where X, Y and R are not necessarily binary sets.
Generalized permutation invariance. It is possible to generalize our results for a larger
class of symmetric functions. One candidate might be a class of functions that have
graph-symmetric properties. Suppose GA, GB are two sets of n-vertices graphs, and
Gn is a group that acts on the edges of an n-vertices graph and permutes them in a
way that corresponds to relabeling the vertices of the underlying graph. A function
f : GA ×GB → {0, 1} is graph-symmetric if f(x, y) = f(x◦π, y ◦π), where x ∈ GA, y ∈ GB ,
and π ∈ Gn.
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