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Abstract
The recent banking crisis has again emphasized the importance of understanding and mitigating
systemic risk in financial networks. In this paper, we study a market-driven approach to rescue
a bank in distress based on the idea of claims trading, a notion defined in Chapter 11 of the U.S.
Bankruptcy Code. We formalize the idea in the context of the seminal model of financial networks
by Eisenberg and Noe [5]. For two given banks v and w, we consider the operation that w takes
over some claims of v and in return gives liquidity to v (or creditors of v) to ultimately rescue v (or
mitigate contagion effects). We study the structural properties and computational complexity of
decision and optimization problems for several variants of claims trading.

When trading incoming edges of v (i.e., claims for which v is the creditor), we show that
there is no trade in which both banks v and w strictly improve their assets. We therefore consider
creditor-positive trades, in which v profits strictly and w remains indifferent. For a given set C of
incoming edges of v, we provide an efficient algorithm to compute payments by w that result in a
creditor-positive trade and maximal assets of v. When the set C must also be chosen, the problem
becomes weakly NP-hard. Our main result here is a bicriteria FPTAS to compute an approximate
trade, which allows for slightly increased payments by w. The approximate trade results in nearly
the optimal amount of assets of v in any exact trade. Our results extend to the case in which banks
use general monotone payment functions to settle their debt and the emerging clearing state can be
computed efficiently.

In contrast, for trading outgoing edges of v (i.e., claims for which v is the debtor), the goal is to
maximize the increase in assets for the creditors of v. Notably, for these results the characteristics
of the payment functions of the banks are essential. For payments ranking creditors one by one, we
show NP-hardness of approximation within a factor polynomial in the network size, in both problem
variants when the set of claims C is part of the input or not. Instead, for payments proportional to
the value of each debt, our results indicate more favorable conditions.
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1 Introduction

The global banking crisis of March 2023 caused turmoil in a market fearful of the repeat
of the Great Financial Crisis of 2007. These recent events serve as a stark reminder of the
paramount importance of the study of systemic risk in financial networks. In this growing
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42:2 Algorithms for Claims Trading

body of work, the focus is mainly on the complexity of computing clearing states, known
to measure the exposure of the different banks in the network to insolvencies within, see,
e.g., [5, 10, 23], and strategic aspects of the banks’ behavior, cf. [1, 8, 11, 17]. However, to
calm the market and prevent contagion, regulators and central banks are more interested
in finding ways to rescue banks in distress, reassure investors that the system is stable and
avoid further bank runs. In fact, Silicon Valley Bank, Signature Bank and Credit Suisse –
the three banks at the heart of the crisis last March – were all acquired by other banks in
the network, and, by modifying the network, this has seemingly mitigated systemic risk.

A line of research in financial networks on interventions in the network is recently discussed
in [7,18], the main idea being that banks can swap debt contracts. In particular, the authors
of [7] study the extent to which a sequence of debt swaps can reduce the risk in the network,
in the sense that bank assets Pareto-improve. Notably, swaps can occur anywhere in the
network, even if the focus is strict improvement of the assets of a given bank.

In this work, we build on this idea and initiate research on the computation of a network-
based “rescue package” deal for a given bank with the objective of making it solvent. This
is exactly the problem that regulators faced in March 2023 for the aforementioned banks.
However, acquisitions do not seem to be the right operations in these instances since they
have two main drawbacks from a societal perspective (as also witnessed by the reactions to
recent deals). Firstly, the acquiring bank rarely has enough time or freedom to evaluate the
purchase and make a sensible business decision. Secondly, and consequently, it often requires
a security for bailout from the central bank, in the form of significant protection against
potential losses from risks associated with the transaction. For example, in the acquisition of
Credit Suisse, UBS had little choice in the matter, as reported by Bloomberg news [2], and
received a guarantee worth CHF 9 billion, as confirmed by the Swiss Federal Council [3].

We instead study a market-driven approach to rescue banks in distress based on the idea
of claims trading. Claims trading is defined in Chapter 11 of the U.S. Bankruptcy Code. We
formalize the idea and analyze the consequences of such trades in the context of financial
networks. When a company is in financial distress, its creditors can assert their rights to
repayment by submitting a claim. At this point, a creditor can either wait for the positions to
unwind and get (a part of) the claim once the bankruptcy is settled, or she can sell her credit
claim to a willing buyer for some immediate liquidity. The former approach is equivalent to
the mainstream work on systemic risk since the insolvency of a bank can directly cascade
through the network via lower payments to its creditors. We want to explore ways to find
interested buyers that purchase the claims of an insolvent bank v and give liquidity to the
network that ultimately rescues v. Ideally, the buyers should avoid any loss so that the cash
invested in buying the claim will return via increased payments within the network; this way
incentives of buyers are aligned, and systemic risk is reduced at no extra cost to the network.

We design efficient algorithms to compute claims trades or settle the inherent complexity
status of the problems. The importance of algorithms computing claim trades that resolve
complicated systemic issues in finance cannot be underestimated. In practice, deals are
concocted when markets are closed, and algorithms that efficiently compute solutions in
these pressurised situations become essential.

Related Work. Much of the work on systemic risk in financial networks, including ours,
builds upon [5]. In this seminal work, the authors propose a model and prove existence and
properties of clearing states. Moreover, they also provide a polynomial-time algorithm for
their computation. The model in [5] has been extended along many dimensions by follow-up
work; for example, the authors of [20] add default costs whereas financial derivatives are
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considered in [22]. Computation of clearing states for the latter model is studied in [9,10,23]
for different notions of approximation and payment schemes adopted. The solution space of
clearing states for financial networks with derivatives is studied in [19].

The study of strategic behavior in financial networks was initiated in [1], where banks are
assumed to strategize in the way they allocate money to their creditors. A similar approach
is used in [8, 11]. A different model, featuring derivatives, and banks strategically donating
money or cancelling debts is studied in [17]. The idea of cancelling debts is further explored
in [12]. The authors of [12,16] consider computational complexity of computing optimal or
approximate bailout policies from the central bank external to the network. In contrast,
in our work all transfers of assets are intrinsic to the network, and the bank providing the
assets must not be harmed. In [13], the authors study computational complexity of strategic
changes to the underlying network via debt transfers.

Debt swapping is introduced in [18] – the authors focus more on the existence and
properties of swaps with and without shocks to the system. As discussed above, the authors
of [7] share goals that are somewhat similar to ours but use a different operation to update
the network. A related line of work considers portfolio compression, an accounting operation
by means of which all the cycles in the network are deleted. The effects on systemic risk of
portfolio compression are studied in [21, 24]. However, it is important to note that portfolio
compression can lead to a worse outcome for banks that are not contained in the cycle [21]
and consequently it is not clear why banks should accept to modify their balance sheets in
this way, as argued empirically in [15].

To the best of our knowledge, ours is the first work to study claims trading in the analysis
of financial networks. Claims trading in bankruptcy has been studied by law scholars, who
for example argue that its effects in that context are variegated and nuanced in general [14]
but do not concern the governance of the bankruptcy process [6].

Contribution. We focus on the elementary setting with one given bank v to save (e.g.,
Credit Suisse) and one bank w that may rescue it (e.g., UBS). We consider the following
problem: Are there claims of v that can be sold to w so that v becomes solvent (i.e., after
the claims trade, v can fully pay all its liabilities)? This problem gives rise to a suite of
algorithmic questions, depending on the remit of the algorithmic decision, such as: How
many claims are we allowed to trade? Which claims of v should we trade? What are the
payments that must be transferred from w to v to make the trade worthwhile for w? Our
treatment is steered by the following structural insight: We prove that it is impossible for
both v and w to strictly profit from the claims trade. Accordingly, we restrict our attention
to creditor-positive trades that strictly improve v without harming w.

For our first set of algorithmic results in Section 3, we fix one claim with creditor v to
be traded with w. Does this represent a feasible (i.e., creditor-positive) trade? This can be
decided by simply computing clearing states that determine the payment towards each debt in
the network. The problem becomes interesting if we also determine the haircut rate α ∈ [0, 1]
of the trade – in order to provide liquidity, w may be willing to pay an α-fraction of the
claim’s liability to v. Depending on the payment functions used by banks to distribute money
to their debts, we design different polynomial-time algorithms that determine feasibility
of the trade and also α∗ (if any), the value of α maximizing the assets of v (or a close
approximation of α∗ if the payment functions are too granular vis-a-vis the input size). Let
us highlight that these results also apply to the case in which v is the debtor of the claim to
trade; in fact, we prove that every creditor-positive trade Pareto-improves the clearing state –
each bank in the network is (weakly) better off after the trade. By maximizing the assets of
the creditor of the traded claim we, thus, also maximize assets of the debtor.

STACS 2024
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We consider trading multiple claims with creditor v in Section 4. For a fixed set of claims
our results from Section 3 extend rather directly. The picture becomes less benign when
we also have to choose the subset of claims to be traded. Indeed, in Section 4.2 we show
that it is weakly NP-hard to decide if there is a subset of claims along with suitable haircut
rates to obtain a creditor-positive claims trade that makes v solvent. In our most technical
contribution, we show that there exists a bicriteria FPTAS for deciding this problem. If an
exact trade exists that yields total assets of A∗ for v, we find an approximate trade with
assets at least A∗ − δ for exponentially small δ, which allows haircut rates of at most 1 + ε.
The FPTAS applies to all financial networks with general monotone payment functions for
which a clearing state can be computed efficiently. On a technical level, we fix a desired value
A for the total assets of v. Using a subroutine we determine if there is an approximate trade
that yields this asset level for v. En route, we discover an intricate monotonicity property
– if there is an exact trade that yields assets A∗ for v, then for every A ≤ A∗ there is an
approximate trade with assets A for v. Notably, monotonicity can break above A∗. Still, we
can apply binary search to find an approximate trade with assets at least A∗ − δ.

Finally, for trading multiple claims with debtor u in Section 5 – rather than trying to
save u – our goal is improve conditions for the creditors of u to minimize the contagion
effects by u’s bankruptcy. Interestingly, the results here depend significantly on the choice of
the payment functions. For payments based on a ranking of the creditors, we show that the
problem becomes NP-hard to approximate within a factor polynomial in the network size. In
contrast, for payments proportional to the value of each debt, we can solve the problem for a
given set of claims, but it becomes strongly NP-hard when having to choose the set of claims.

All missing proofs are deferred to the full version of this paper.

2 Model and Preliminaries

A financial network F = (G, ℓ, ax, f) is expressed as a directed multigraph1 G = (V, E, de, cr)
without self loops. We denote n = |V |. Every node v ∈ V in the graph represents a financial
institution or bank. Every edge e ∈ E represents a debt contract or claim involving two banks.
For each edge e ∈ E, de(e) specifies the debtor (i.e., the source) and cr(e) the creditor (i.e.,
target). Edge e ∈ E has a weight ℓe ∈ N>0. In other words, in the context of debt contract e,
bank de(e) owes cr(e) an amount of ℓe. We denote the set of outgoing and incoming edges of
a bank v by E+(v) = {e ∈ E | v = de(e)} and E−(v) = {e ∈ E | v = cr(e)}. Since we allow
multi-edges, several debt contracts with possibly different liabilities could exist between the
same pair of banks. The total liabilities Lv of v are the sum of weights of all outgoing edges
of v, i.e.,

∑
e∈E+(v) ℓe = Lv. Furthermore, every bank v holds external assets ax

v ∈ N. They
can be interpreted as an amount of money the bank receives from outside the network.

Let bv ∈ [ax
v , ax

v +
∑

e∈E−(v) ℓe] be the total funds of bank v. Bank v distributes her total
funds according to a given payment function fv = (fe)e∈E+(v), where fe : R → [0, ℓe]. For
every outgoing edge, the function fe(bv) defines the amount of money v pays towards e. We
follow previous literature and assume the following conditions for every payment function:
(1) Every function fe(bv) is non-decreasing and bounded by 0 ≤ fe(bv) ≤ ℓe.
(2) Every bank pays all funds until all liabilities are settled:

∑
e∈E+(v) fv(bv) = min{bv, Lv}.

(3) The sum of payments of a bank is limited by the total funds:
∑

e∈E+(v) fv(bv) ≤ bv.
Here (2) implies (3), and we mention (3) explicitly for clarity. For a monotone function fv, v

weakly increases the payment on every outgoing edge when receiving additional funds.

1 Claims trades in simple graphs can result in graphs with multi-edges. This can sometimes be avoided by
analyzing the trades in equivalent simple graphs with suitable auxiliary banks. Since all our arguments
can also be applied in the context of multigraphs, we discuss the more general model.
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Clearing States. Let p = (pe)e∈E be the arising payments in the network when every bank
v distributes the funds according to her payment functions fv. The incoming payments
of v are given by

∑
e∈E−(v) pe. The total assets av are defined as the external assets plus

the incoming payments, i.e., av = ax
v +

∑
e∈E−(v) pe. Observe that the above conditions

(1), (2) and (3) are fixed-point constraints. A vector of total assets a = (av)v∈V is called
feasible if it satisfies all fixed-point constraints. More formally, for every feasible a it holds
that av = ax

v +
∑

e∈E−(v) fe(ade(e)). The payments p corresponding to a feasible vector a
are called a clearing state. For fixed payment functions, multiple clearing states may exist.
We assume throughout that every payment function fv is monotone, i.e., fe(x) ≥ fe(y) for
all x ≥ y ≥ 0 and every e ∈ E+(v). This implies that all clearing states form a complete
lattice [1, 4]. Thus, the point-wise minimal and maximal clearing states are unique. We
follow previous literature and assume that the maximal clearing state arises in the network.

Payment Functions. In the seminal work of Eisenberg and Noe [5] and the majority of
subsequent works, all banks are assumed to allocate their assets using proportional payment
functions. The recovery rate rv = min{av/Lv, 1} is the fraction of total liabilities v can pay
off, and the payments on edge e ∈ E+(v) are defined proportionally by fe(av) = rv · ℓe.
Hence, if rv = 1, then v will fully settle all liabilities. Otherwise, v is in default, rv < 1,
and the liabilities are settled partially in proportion to their weight. These payments are
often used when all debt contracts fall due at the same date. If, on the other hand, different
debt contracts are assigned different priorities or maturity dates, payments are more suitably
expressed by edge-ranking payment functions. Then, the debt contracts in E+(v) are ordered
by a permutation πv. First, v makes payments towards the highest ranked edge πv(1) until
the edge is saturated or v has no remaining assets. Once πv(1) is fully paid off, v pays off the
second highest ranked edge πv(2) until the edge is saturated or v has no remaining assets.
The process continues and ends when either all liabilities are settled or v exhausted all assets.

Both proportional and edge-ranking payments are monotone. For proportional payments,
the clearing state can be computed in polynomial time [5]; for edge-ranking payments in
strongly polynomial time [1].

In this paper, we obtain some results explicitly for networks with proportional and edge-
ranking payment functions. Most of our results, however, generalize to arbitrary monotone
payment functions when there is an efficient clearing oracle, i.e., there exists an algorithm
that receives a network F as input and outputs the clearing state p in polynomial time.

Claims Trades. When a bank u is in default and unable to settle all debt, this introduces
risk into the network. In particular, the creditors of u do not receive their full liabilities.
This could lead to further defaults of the creditor banks. In order to reduce the risk of
spreading default, the creditors of u can sell claims they make towards u. More in detail,
consider banks u, v and w with edge e with de(e) = u and cr(e) = v, ℓe ≥ 0. Suppose u is in
default. If v and w perform a claims trade, w becomes the new creditor of bank u with the
same liability. Consequently, any payment from u towards the claim will be received by w.
In return for the traded claim, v receives a return ρ from w, i.e., an immediate payment of
ρ = α · ℓe, for some α ∈ [0, 1]. We call α the haircut rate. To separate the return from the
payments in the clearing state, we model the return by a transfer of external assets from w to
v. Note that w can invest at most her external assets as a return, so every trade must satisfy
αℓe ≤ ax

w. After a trade the external assets of v and w might no longer be integer values.
We proceed to define three variants of claims trades. We are given a financial network

with distinct banks u, v, w ∈ V , an edge e ∈ E with (de(e), cr(e)) = (u, v) and haircut rate
α ∈ [0, 1]. For a (single) claims trade of e to w we perform the following adjustments to
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Figure 1 The network from Example 1 before the trade is depicted left, and right after the trade.
All liabilities equal 2. Edges are labeled with positive payments (if any) in the clearing state.

the network: (1) change the creditor of e to cr′(e) = w, (2) change external assets of v to
ax

v + α · ℓe and (3) change external assets of w to ax
w − α · ℓe ≥ 0. We denote the resulting

post-trade network by F ′ = (G′, ℓ, a′x, f), and the resulting clearing state in F ′ by p′. For a
given trade of e to w, we call v the creditor and w the buyer. Observe that the total assets
of v after the trade are given by a′

v = ax
v + α · ℓe +

∑
e′∈E′−(v) p′

e′ . Similarly, the total assets
of w after the trade are a′

w = ax
w − α · ℓe +

∑
e′∈E′−(w) p′

e′ .
The claims trade operation can be directly extended to a trade of multiple edges. As

outlined in the introduction, we are interested in the effects when a single bank (in default)
trades claims with another bank w (such as a central bank). We study the differences when
trading incoming or outgoing edges. Observe that both generalize single claims trades.

For a multi-trade of incoming edges, there are distinct banks v, w in a network F , a set
C of k distinct incoming edges e1, . . . , ek ∈ E−(v), and haircut rates α1, . . . , αk, such that
de(ei) ̸= w, for all i. After the trade, a new network F ′ emerges: We change cr′(ei) = w, for all
i = 1, . . . , k, adjust external assets for v to ax

v +
∑k

i=1 αiℓei , and for w to ax
w −

∑k
i=1 αiℓei ≥ 0.

For a multi-trade of outgoing edges, there are distinct banks u, w in a network F , a set C

of k distinct outgoing edges e1, . . . , ek ∈ E+(v) with cr(ei) = vi, and haircut rates α1, . . . , αk,
such that cr(ei) ̸= w, for all i. After the trade, a new network F ′ emerges: We change
cr′(ei) = w, for all i = 1 . . . , k, adjust external assets for each vi to ax

vi
+ αiℓei

, and for w to
ax

w −
∑k

i=1 αiℓei
≥ 0.

We proceed with a small example of trading a single claim.

▶ Example 1. Consider the example network depicted in Figure 1 (left) on a simple directed
graph. The liability of every edge is 2. The only banks with non-zero external assets are u

and w, where ax
u = 1 and ax

w = 2. ax
v = 0 is also explicitly displayed for convenience. Banks

u, w and y each have at most one outgoing edge. They pay all their assets (if any) to the
unique outgoing edge until it is saturated. This implies payments of 1 on edge (u, v). v is the
only bank with a non-trivial payment function – suppose it uses an edge-ranking function
with priority πv(1) = (v, w) and πv(2) = (v, y). Then, v pays the incoming assets of 1 to w,
and there are no payments on the cycle of v and y. To see this, assume p(y,v) = x > 0. By
the edge-ranking function, from these additional assets v allocates a portion of min(x, 1) to
(v, w) and the rest to (v, y). Hence, the total assets of y are max(x − 1, 0) while the outgoing
payments are x, which contradicts the feasibility constraint (3). Overall, in the clearing state,
the total assets are au = av = 1, aw = 3 and ay = 0.

Suppose we perform the trade of edge e = (u, v) to w with α = 1, see Fig. 1 (right) for
the resulting network. w buys edge e and pays the full liability ℓe to v. The external assets
of v increase to 2 and allow v to settle all debt. The total assets become 1 for u, 2 for y, 3
for w and 4 for v. The total assets of u and w are unaffected by the trade, the total assets of
v and y strictly increase. Overall, the clearing state is point-wise non-decreasing.

A similar observation can be made when v uses proportional payments. Before the trade,
v pays 1 to y and w. After the trade, both edges can be paid fully. ⌟
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Properties of Claims Trades. In Example 1, v strictly benefits from the trade while w is
indifferent. Interestingly, it is impossible for both creditor and buyer to strictly profit from a
single trade. This property holds true for the more general class of multi-trades of incoming
edges, and it applies in any network F with monotone payment functions.

The proof builds on a connection with debt swaps studied in [7,18]. A debt swap exchanges
the creditors of two edges with the same liabilities. We show that a claims trade and the
resulting payments can be represented by a debt swap in an auxiliary network.

▶ Definition 2 (Debt Swap). Consider a financial network F with four distinct nodes
u1, u2, v1, v2 ∈ V and edges e1, e2 ∈ E, where u1 = de(e1), v1 = cr(e1) and u2 = de(e2), v2 =
cr(e2). Suppose the liabilities are ℓe1 = ℓe2 . A debt swap σ of e1 and e2 creates a new
network Fσ with Gσ = (V, E, de, crσ) where crσ(e1) = v2, crσ(e2) = v1 and crσ(e) = cr(e)
for all e ∈ E \ {e1, e2}.

▶ Proposition 3. For every financial network with monotone payment functions, there exists
no multi-trade of incoming edges such that both creditor v and buyer w strictly improve their
total assets.

Proof. For a given network F , consider a multi-trade of incoming edges and construct a
new network F̂ by adding an auxiliary bank v̂ to F without external assets. v̂ serves as an
“accumulator” for the payments along the edges ei. We change the targets of the edges in C to
cr(ei) = v̂. We add an edge ê with de(ê) = v̂ and cr(ê) = v and liability ℓê =

∑k
i=1 ℓei . Every

payment that gets paid to v via ei in F now first goes to v̂, and then gets forwarded from v̂ to
v, since ê has sufficiently high liability. Consider the clearing state p̂ in the resulting network
F̂ . Obviously, for the new edge p̂ê =

∑k
i=1 p̂ei

. As such, every (non-auxiliary) bank from F
receives the same external assets and eventually the same incoming and outgoing payments
in F̂ . Consequently, both F and F̂ give rise to the same clearing state, i.e., pe = p̂e, for all
e ∈ E, and the same assets for every (non-auxiliary) bank.

The new network F̂ allows to conveniently route all payments along edges in C to w by
trading the single accumulator edge ê to w. Thus, the multi-trade of incoming edges C in F
is equivalent to trading the single claim ê to w in F̂ , for a suitably chosen haircut rate α̂

such that α̂ ·
∑k

i=1 ℓei
=

∑k
i=1 αi · ℓei

.
Now let us further adjust F̂ to F̃ by introducing an auxiliary bank w̃. Intuitively, we

“outsource” parts of external assets from w to w̃. Formally, external assets of w are reduced
to ax

w −
∑k

i=1 αi · ℓei
≥ 0, external assets of w̃ are

∑k
i=1 αi · ℓei

. We add an edge ẽ with
de(ẽ) = w̃ and cr(ẽ) = w as well as liabilities ℓẽ = ℓê =

∑k
i=1 ℓei . The clearing state p̃ in the

resulting network F̃ is p̃ẽ =
∑k

i=1 αiℓei
, since ẽ is the only outgoing edge of w̃ and ℓẽ ≥ ax

w̃.
Hence, w and (consequently) every non-auxiliary bank from F receives the same total assets
in p̃. Indeed, F , F̂ and F̃ yield equivalent clearing states with pe = p̂e = p̃e, for all e ∈ E.

In F̃ we can implement the return payments from w to v by re-routing the “outsource”
edge e′ to v instead of w. Thus, the claim trade of ê in F̂ can be expressed by a swap of
creditors of ê and ẽ in F̃ . Now since ℓẽ = ℓê, this swap of creditors represents a debt swap.
Thus, the multi-trade in F is equivalent to single trade in F̂ and a debt swap in F̃ . No
debt swap can strictly improve both creditor banks [7, Corollary 6]. Thus, no multi-trade of
incoming edges can strictly improve both creditor and buyer. ◀

The above proof implies a structural equivalence. Using the network F̂ , we reduced a
multi-trade of incoming edges to a single claim trade.

▶ Corollary 4. For every multi-trade of incoming edges in a network F , there is an adjusted
network F̂ such that the result of the multi-trade in F is the result of a single trade in F̂ .

STACS 2024



42:8 Algorithms for Claims Trading

Our motivation is to analyze claims trades to improve the situation of a creditor in default
by trading claims with a buyer. Since it is impossible to strictly improve the conditions of
both banks, we focus on strictly improving the creditor and weakly improving the buyer.
Note that the trade performed in Example 1 satisfies this property.

▶ Definition 5 (Creditor-positive trade). A multi-edge trade of incoming edges of bank v to
bank w is called creditor-positive if a′

v > av and a′
w ≥ aw.

For the proof of Proposition 3, we express the multi-trade by a debt swap in an auxiliary
network. For a creditor-positive trade, the associated debt swap satisfies the same property,
i.e., it is a so-called semi-positive debt swap. In any network F with monotone payment
functions, a semi-positive debt swap Pareto-improves the clearing state and, hence, the total
assets of every bank [7]. This directly implies the next corollary.

▶ Corollary 6. In every financial network with monotone payments, every creditor-positive
trade Pareto-improves the clearing state.

A creditor-positive trade reduces the impact of a defaulting debtor on the creditor. No bank
in the entire network suffers. Hence, these trades contribute to the stabilization of the entire
financial network. We focus on creditor-positive trades for the remainder of the paper.

3 Trading a Single Claim

In this section, we study a given single creditor-positive trade and optimize the effects on the
assets in the network. For exposition, we mostly focus on financial networks with proportional
or edge-ranking payments.

The choice of α affects the external assets of v and, thus, payments throughout the
network. If a given trade is creditor-positive for some α ∈ [0, 1], we say that α is creditor-
positive. Can we efficiently decide the existence of a creditor-positive α? What is the optimal
α to maximize the improvement a′

v − av of v? Clearly, a trade with optimal α maximizes the
total assets a′

v. Since a′
w = aw in every creditor-positive trade, maximizing a′

v also maximizes
the payments of v, the incoming payments of v’s creditors, and, inductively, the payments
and assets of every edge and bank in the network. A creditor-positive α that maximizes a′

v

also simultaneously maximizes (1) the Pareto-improvement of payments for each edge in the
network, and (2) the return ρ by w. This holds for all networks with monotone payment
functions.

To answer the above questions, we modify F into a return network F ret defined as follows.
We switch edge e to cr(e) = w and add a return edge er with de(er) = w and cr(er) = v. The
payment on this edge models the return from w to v, so the liability is ℓer = min{ℓe, ax

w}.
Since we consider creditor-positive trades, we modify the payment function of w as follows.
For all e′ ∈ E+(w) \ {er}, we set f ret

e′ (x) = fe′(x) for all x ≤ aw and f ret
e′ (x) = fe′(aw) for

all x ≥ aw. For er we set f ret
er

(x) = 0 for all x ≤ aw and f ret
er

(x) = x − aw for all x ≥ aw.
Similarly, we modify the liabilities to ℓe′ = fe′(aw). Intuitively, in F ret w maintains its
payments up to a total outgoing assets of aw. It forwards any assets exceeding aw as return
via er to v.

▶ Lemma 7. Consider the clearing state pret in Fret.
(a) Suppose there is an optimal creditor-positive α with return ρ = αℓe. Then Fret has

ax
w > pe. In pret we obtain assets of aret

w ∈ (aw, aw + ℓer
] and aret

v > av, and pret
er

= ρ.
(b) If ax

w > pe and pret yields assets of aret
w ∈ (aw, aw + ℓer ] and aret

v > av, then payment per

represents a return of an optimal creditor-positive trade.
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Proof. We first show (a). Suppose there is an optimal creditor-positive α. It results in a
return ρ = αℓe ≤ min{ℓe, ax

w} = ℓer
, assets of aw for w, and a′

v > av for v. When we assign
payments p̂e = p′

e for all e′ ∈ E and set the payment on er to p̂er
= ρ, we obtain a vector of

payments p̂ in F ret that satisfies all fixed-point conditions.
We first show that this implies ax

w > pe, the payment on e in p before the trade. Consider
the assets of w. We have âv = a′

v > av. Recall p′ ≥ p by Corollary 6, so

âv = ax
v + ρ +

∑
e′∈E−(v)\{e}

p̂e′ = ax
v + ρ +

∑
e′∈E−(v)\{e}

p′
e′

≥ ax
v + ρ +

∑
e′∈E−(v)\{e}

pe′ = av + ρ − pe

Hence ax
w ≥ ρ > pe, as desired.

For the other conditions, consider the clearing state pret in F ret. Due to maximality of
the clearing state, pret ≥ p̂. Thus, aret

w > aw, aret > av and pret
er

≥ ρ. We show that, indeed,
p̂ = pret, and that the condition aw + ℓer

≥ âw is satisfied.
Case 1: The clearing state satisfies aw + ℓer

≥ aret
w . Then we prove below that pret is

equivalent to a creditor-positive trade with payments that Pareto-dominate p̂ and,
consequently, higher assets for v with âv ≥ aret

v . As such, pret represents a better
creditor-positive trade, a contradiction to p̂ stemming from an optimal one.

Case 2: The clearing state satisfies aw + ℓer
< aret

w . Then aret
v > av, and w is solvent in F ret.

Indeed, w could transfer even more assets to the edges of E+(w) \ {er}. This implies
that with return ℓer

, there is a clearing state in F ′ that can strictly improve both v and
w. This is a contradiction to Corollary 3.

To prove (b), suppose pret fulfills the conditions. Then, clearly, the payment pret
er

represents
a feasible return. The payments pret

e′ on the other edges e′ ∈ E \ {er} fulfill the fixed-point
conditions in F ′. Now for contradiction assume that p′

e′ > pret
e′ for some e′. Then e′ ̸= er,

since we assume pret
er

is the return used to construct F ′. Hence, any strict increase in p′

could be manifested in pret as well, which contradicts the maximality of pret in F ret. ◀

▶ Corollary 8. Consider a given single claims trade of e to w.
(a) A return of ax

w ≥ ρ > pe is necessary to make the trade creditor-positive. For ρ = pe, we
obtain p′ = p.

(b) Consider all creditor-positive α. A value α with return ρ = αℓe maximizes the assets of
v if and only if it maximizes the payment on every single edge in F ′, the assets of every
single bank, as well as the value of ρ and α.

▶ Proposition 9. For a given financial network with edge-ranking payments and a single
claims trade, there is an efficient algorithm to compute an optimal creditor-positive α∗ ∈ [0, 1]
or decide that none exists.

Proof. We construct network F ret as described above. Observe that the adjusted payment
function f ret

w is again an edge-ranking function – it first fills edges according to fw until
assets aw are paid. Thus, at most one edge e′ ∈ E+(w) is paid partially. For this edge, the
liabilities are reduced to fe′(aw). For all other edges, the liabilities either remain untouched
or are decreased to 0. Then the additional assets are directed to er. Thus, f ret

w can be
represented by the same ranking as fw up to (and including) edge e′, and then using er as
the next (and last) edge in the order. Hence, we can compute F ret in strongly polynomial
time. By checking the conditions of Lemma 7, we can verify in polynomial time whether or
not a creditor-positive trade exists and obtain the optimal return as the payment on er. ◀
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▶ Proposition 10. For a given financial network with proportional payments and a single
claims trade, there is an efficient algorithm to compute an optimal creditor-positive α∗ ∈ [0, 1]
or decide that none exists.

Finally, our main result in this section shows that for general monotone payments with
efficient clearing oracle, we can obtain an approximately optimal solution via binary search.

▶ Theorem 11. Consider a given financial network with monotone payment functions and
efficient clearing oracle. For a given single claims trade, there exists an additive FPTAS for
approximating the optimal improvement of v from any creditor-positive α.

Our algorithm uses binary search. Towards this end, we first show, for a given target
value A ≥ av, how to verify the existence of a trade that achieves at least a value A for the
total assets of v. For intuition, we use a split network F sp obtained from F ′ after the trade
as follows: We replace v and w by source and sink banks vin, vout, and win, wout. vin has
the incoming edges of v, win the ones of w (including e). The outgoing edges of v (w) are
attached to vout (wout). We set the external assets of vout and wout to A and aw, and these
banks use the payment functions of v and w, respectively. As such, the clearing state psp in
F sp can be computed using the clearing oracle.

Consider the incoming payments of psp at vin and win. These payments shall exactly
recover the expenses at vout and wout – modulo external assets and the return payment from
w to v. We define the budget difference by

dsp
w =

ax
w +

∑
e′∈E−(win)

psp
e′

 − aw and dsp
v = A −

ax
v +

∑
e′∈E−(vin)

psp
e′

 .

dsp
w is the surplus money earned by win that shall be invested into the return, dsp

v is the
excess money spent by vout that must be recovered through the return.

▶ Lemma 12. For a given single claims trade and a given target value A > av, there is a
creditor-positive trade with a value at least A for v if and only if dsp

v = dsp
w > 0.

Proof. We first show that if dsp
v = dsp

w > 0, then there exists a creditor-positive trade with
asset at least A for v. Suppose we consider psp in the network F ′ using return ρ = dsp

v = dsp
w .

This exactly equilibrates the budgets of v and w – v receives dsp
v , the money needed to obtain

total assets of A. Also, w spends exactly dsp
w , the money needed to obtain total assets of aw.

Hence, psp satisfies all fixed-point conditions in F ′. As such, p′ ≥ psp coordinate-wise due
to maximality of the clearing state. This implies that using return ρ, the clearing state p′

yields a′
v ≥ A > av and a′

w ≥ aw. A creditor-positive trade with return ρ exists.
Now for the other direction, consider an optimal creditor-positive trade, which yields the

highest asset level A∗ and consider any A ∈ (av, A∗]. We show that in this case dsp
v = dsp

w > 0
holds in the clearing state psp of F sp with external assets A for vout.

Consider the optimal trade, its return ρ∗ > 0 and the emerging payments p∗ in F ′ after
this trade. Now in the corresponding split network F∗,sp with external assets of A∗ for vout,
the payments p∗ yield d∗

v = d∗
w = ρ∗, by definition of p∗. The previous paragraph and

maximality of A∗ then imply that p∗ must also be the clearing state p∗,sp = p∗ of F∗,sp.
Now suppose in F∗,sp we reduce the external assets of vout by ε = A∗ − A > 0. Then

F sp evolves. Since we reduce the assets of a single source vout by ε, we obtain p∗,sp ≥ psp.
Moreover, by non-expansivity [7, Lemma 33], the total incoming assets of all sinks must
reduce by at most ε. For the sinks vin and win we set

εv = a∗,sp
vin

− asp
vin

=
∑

e′∈E−(vin)

p∗
e′ − psp

e′ εw = a∗,sp
win

− asp
win

=
∑

e′∈E−(win)

p∗
e′ − psp

e′
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and, thus, dsp
v = d∗

v − (ε − εv) and dsp
w = d∗

w − εw. Non-expansivity implies εv + εw ≤ ε.
First, we observe that εv + εw < ε is impossible. Then εw < ε − εv, so dsp

w > dsp
v , i.e., w

has more excess money in psp than required by v. Consider a return of ρ = dsp
v and psp as

payment vector in the resulting network F ′. Then all banks are feasible w.r.t. the fixed-point
conditions, except for w which has strictly more income than outgoing assets. Hence, the
clearing state satisfies p′ ≥ psp, a′

v ≥ A > av, and a′
w > aw, a contradiction to Proposition 3.

Second, suppose that εv + εw = ε, then dsp
v = dsp

w . Then the clearing state psp exactly
fulfills the fixed-point conditions for all banks in F ′ and yields assets A > av for v and aw for
w with ρ = dsp

v . Note that ρ > 0, since otherwise we contradict the maximality of the initial
clearing state p. Therefore, the existence of a creditor-positive trade with assets A∗ > A for
v implies that dsp

v = dsp
w > 0 for psp in F sp emerging from A. ◀

We are now ready to prove Theorem 11.

Proof of Theorem 11. Our algorithm works by testing different target values A for the
total assets of v. For a given target value A, we then use Lemma 12 to verify existence
of a return ρ achieving at least assets A for v. The maximum achievable assets for v are
Mv =

∑
e′∈E−(v)\e ℓe′ + ax

v + min{ax
w, ℓe}. We determine the maximal achievable A using

binary search on the interval (av, Mv].
More formally, we choose δ > 0 and apply binary search over the set {av + δ, av +

2δ, . . . , Mv}. Verifying the condition in Lemma 12 can be done in polynomial time via a call
to the clearing oracle in F sp. If the algorithm discovers that the condition does not hold for
all tested values, then no creditor-positive trade with asset level at least av + δ for v exists.
Otherwise, let Â be largest discovered value for which the test is positive. Then, any value
of at least Â + ε cannot be achieved for any return ρ. Hence, the optimal achievable total
assets of v in any creditor-positive trade are bounded by A∗ ∈ [Â, Â + δ], and the additive
approximation follows Â − av ≥ (A∗ − av) − δ.

For the running time, we require at most ⌈log2(1 + (Mv − av)/δ)⌉ oracle calls, which is
polynomial in the input size and 1/δ. ◀

Since the number of possible (single) claims trades in a network is limited by |E| · |V |, we
can use the algorithm above to compute every creditor-positive trade with an (approximately)
optimized haircut rate for a given network in polynomial time.

4 Multi-Trades of Incoming Edges

4.1 Fixed Set of Claims
In this section, we are interested in multi-trades of incoming edges of a creditor bank v to a
buyer bank w. This arises naturally, for example, when a high fraction of v’s debtors are in
default or v is “too big to fail”. Then bankruptcy of v would cause significant damage to the
entire network.

We are given a financial network F with two distinct banks v and w, and a set C

of k incoming edges of v. Suppose the haircut rates αi can be chosen individually for
each ei ∈ C as part of the trade. We call a vector α = (α1, . . . , αk) of haircut rates
creditor-positive if the resulting multi-trade is creditor-positive. Our goal is to select creditor-
positive αi ∈ [0, 1], for every i ∈ [k], in order to maximize the improvement of v, i.e.,
a′

v − av =
∑k

i=1 αi · ℓei
+

∑
e′∈E′−(v) p′

e′ −
∑

e′∈E−(v) pe′ . Observe that we can restrict our
attention to vectors with uniform αi = α′ for all i ∈ [k] and some α′ ∈ [0, 1] – given any α,
choose α′ with α′

i = α′ such that α′ ·
∑k

i=1 ℓei
=

∑k
i=1 α′

i · ℓei
. This results in α′ ∈ [0, 1], the

same return, and the same assets of v as for α.
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Our result is a reduction to single trades.

▶ Proposition 13. Consider a financial network with monotone payment functions and
efficient clearing oracle. For a given multi-trade of incoming edges, there is an additive
FPTAS for approximating the optimal improvement of v from any creditor-positive α.

Proof. Consider a financial network F with banks v and w and edges C, where |C| = k. By
Corollary 4, the multi-trade in F can be modeled by a single claims trade with edge ê in
adjusted network F̂ . Invoke the FPTAS to compute a haircut rate α for the single claim in
F̂ . This results in assets of α ·

∑k
i=1 ℓei

+
∑

e∈E′−(v) p′
e for v in F̂ . Clearly, the same value

is obtained with the multi-trade when all haircut rates are set to α, i.e., αi = α ∀i ∈ [k].
Clearly, this choice of haircut rates also yields an (approximately) optimal solution for the
multi-trade. ◀

Combining the insight with Propositions 10 and 9, we obtain the following corollary.

▶ Corollary 14. Consider a financial network with proportional or edge-ranking payments.
For a given multi-trade of incoming edges, there are efficient algorithms to compute an
optimal creditor-positive α∗ or decide that none exists.

4.2 Choosing Subsets of Claims
For a fixed pair of creditor v and buyer w, the incoming edges of v yield an exponential
number of different edge sets C that might be used for a multi-trade. Thus, a creditor-positive
multi-trade cannot be derived trivially by checking feasibility for all sets C. For improving
the assets of v by a multi-trade with buyer w, the selection of claims to be traded is critical.
How can we compute a (near-)optimal set of incoming edges C ⊆ (E−(v) \ E+(w)) for a
creditor-positive multi-trade with w such that we maximize the improvement of v?

The challenge is to find a set of claims C with creditor v and appropriate individual
haircut rates αi, for ei ∈ C. The resulting multi-trade shall be creditor-positive and yield the
maximal improvement for v (over all creditor-positive multi-trades of incoming edges of v).

We show that this problem is NP-hard, for every set of monotone payment functions.
Formally, we show it is NP-hard to decide whether creditor v can be saved by a creditor-
positive multi-trade of incoming edges, i.e., whether total assets of Lv can be achieved. We
call this problem IncomingSave-VR (for variable haircut rates).

In the class of networks we construct for the reduction, every bank has at most one
outgoing edge. Hence, all payments will be independent of the payment function that is used.
Moreover, once a set of claims C is chosen, finding optimal haircut rates for the multi-trade
of C to w is trivial in this class of networks. Hardness arises from the choice of C.

▶ Theorem 15. IncomingSave-VR is weakly NP-hard.

4.2.1 Approximate Claims Trades
Contrasting NP-hardness, we show that the problem to compute a multi-trade improving v

by a given amount can be solved efficiently when slightly relaxing the liability condition.

▶ Definition 16 (ε-Approximate Multi-Trade). A multi-trade C with creditor v, buyer w,
return ρ > 0 and haircut rates αi ∈ [0, 1 + ε], for all ei ∈ C, is called ε-approximate if
ρ ≤ (1 + ε) ·

∑
ei∈C ℓei

.
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Consider a creditor-positive ε-approximate trade. Such a trade (1) strictly increases the assets
of v and exactly maintains the ones of w, (2) is affordable by w, i.e., ρ =

∑
ei∈C αiℓei

≤ ax
w,

and (3) satisfies exact fixed-point conditions in the emerging clearing state. It is approximate
only in the liability condition of the trade.

We construct a bicriteria FPTAS to compute a creditor-positive multi-trade of incoming
edges. Suppose ε, δ > 0 such that 1/ε is polynomial and 1/δ is exponential in the representa-
tion size of F . Our FPTAS guarantees that the computed trade is ε-approximate and yields
assets of at least A∗ − δ for v, where A∗ are the assets of v resulting from an optimal exact
creditor-positive trade. The FPTAS uses a connection to the Knapsack problem.

We proceed in several steps: First, we consider computing an (exact) trade that achieves a
target asset value A for the creditor. For this problem, we derive Knapsack-style constraints
capturing a set of three necessary and sufficient conditions of a valid creditor-positive trade.
We then adapt the dynamic program for Knapsack to construct an FPTAS to compute an
ε-approximate multi-trade with assets value at least A for v in polynomial time. Finally, we
show how to use binary search to find a trade with asset level at least A∗ − δ.

Necessary and Sufficient Conditions. As a first step, we consider exact trades that achieve
assets of at least A for v. Suppose there is such a trade with a set C of traded edges, and let
k = |C|. Consider F ′ after trade C has occurred with a suitably chosen return. Since C is
fixed, by Corollary 4 we can express the outcome of the trade using a single claims trade.
Now apply the split network F sp and Lemma 12. Hence, using

dsp
v = A −

ax
v +

∑
e′∈(E−(v)\C)

p′
e′

 and dsp
w =

ax
w +

∑
e′∈(E−(w)∪C)

p′
e′

 − aw ,

a creditor-positive trade with set C and asset value at least A exists if and only if dsp
v = dsp

w > 0.
This implies that

(A − ax
v) + (aw − ax

w) =
∑

e∈E−(v)∪E−(w)

p′
e (1)

must hold. This condition is independent of the set C of traded edges. As such (1) is a
necessary condition that any creditor-positive trade with asset level at least A for v can exist.

With return ρ = dsp
v for the given set C, we satisfy the fixed-point conditions in F ′. By

Lemma 12 the optimal trade using the given set C only yields a larger return, i.e., ρ ≥ dsp
v > 0.

Moreover, the liabilities of the traded edges must be high enough to allow the return ρ, i.e.,∑
ei∈C ℓei

≥ ρ. Using P ′ =
∑

e∈E−(v) p′
e this necessary condition is expressed by∑

e∈C

ℓe ≥ dsp
v = A − ax

v − P ′ +
∑
e∈C

p′
e ⇐⇒

∑
e∈C

(ℓe − p′
e) ≥ A − ax

v − P ′ . (2)

w must be able to pay the required return. Since the return is solely funded by external
assets, we obtain the necessary condition

ax
w ≥ ρ = dsp

v ⇐⇒
∑
e∈C

p′
e ≤ ax

w − A + ax
v + P ′ . (3)

While each condition (1)-(3) is necessary, it is easy to see that in combination they are
sufficient. Indeed, if they hold, then there is a creditor-positive trade of set C with return
ρ ≥ dsp

v = dsp
w > 0 that respects the exact liabilities of traded edges, is affordable by w, and

achieves asset level at least A for v. We summarize the argument in the following lemma:
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▶ Lemma 17. For a given set C of incoming edges of v, the following are equivalent:
1. There is a multi-trade of C to w that achieves an asset level at least A for v.
2. Equation (1) holds, and the set C satisfies (2) and (3).

Knapsack-Style FPTAS. While condition (1) can be checked directly after computing the
clearing state p′, determining the existence of a set C that satisfies conditions (2) and (3)
can be cast as a Knapsack decision problem: For each edge e ∈ E−(v) the payments p′

e are
the non-negative weight of e, and the residual ℓe − p′

e is the non-negative value of e. Decide
the existence of a subset of edges with total value lower bounded by (2) and total weight
upper bounded by (3).

We next adapt the standard FPTAS for Knapsack to compute an approximate multi-
trade. We round up the residual ℓe − p′

e of every edge to the next multiple of a parameter s.
This can be interpreted as increasing the liabilities ℓe by a small amount. We then determine
if (2) and (3) allow a feasible solution by using the standard dynamic program for Knapsack
in polynomial time. We term this procedure the Level-FPTAS.

▶ Lemma 18 (Level-FPTAS). For a given number A, suppose there exists a creditor-positive
multi-trade of incoming edges that yields assets at least A for v. Then, for every ε > 0, there
is an algorithm to compute an ε-approximate creditor-positive trade with assets at least A for
v in time polynomial in the size of F and 1/ε.

Proof. First, check feasibility of condition (1) since otherwise the desired trade does not
exist. Then, consider all incoming edges e ∈ E−(v) of v and define m = |E−(v)|. We denote
by re = ℓe − p′

e the residual of e. Let rmax be the maximal residual capacity with respect
to p′ of any edge that satisfies the weight constraint, i.e., rmax = max{re | e ∈ E−(v), p′

e ≤
ax

w − A + ax
v + P ′}. Round the residual capacities up using a scaling factor s = ε·rmax

m . Then
determine the optimal solution C∗ for the rounded values r̃e = s · ⌈(re)/s⌉ via the standard
dynamic program for Knapsack. The running time is bounded by O(m3/ε).

Using a return of ρ = A −
(

ax
v +

∑
e∈E−(v)\C∗ p′

e

)
the trade of C∗ yields a clearing state

in F ′ with assets at least A for v. By definition, C∗ satisfies (3), and since the instance
satisfies (1), ρ ≤ ax

w is also guaranteed.
Regarding the liabilities, note that∑
e∈C∗

r̃e ≤
∑

e∈C∗

re + s ≤ εrmax +
∑

e∈C∗

re ≤ (1 + ε)
∑

e∈C∗

re ≤
∑

e∈C∗

ℓe(1 + ε) − p′
e .

There exists an exact trade C with assets at least A for v, so the trade with C satisfies (2)
and (3). As such,∑

e∈C∗

r̃e ≥
∑
e∈C

r̃e ≥
∑
e∈C

re ≥ A − ax
v − P ′ ,

so the optimal solution C∗ satisfies (2) using the rounded residuals. Hence,

ρ = A −

ax
v +

∑
e∈E−(v)\C∗

p′
e

 = A − ax
v − P ′ +

∑
e∈C∗

p′
e ≤

∑
e∈C∗

r̃e + p′
e

≤ (1 + ε)
∑

e∈C∗

ℓe ,

so the return generated by C∗ violates the liability condition by at most a factor of 1 + ε. ◀
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The lemma gives rise to an efficient algorithm computing an ε-approximate multi-trade
with assets at least A, whenever an exact trade with assets at least A exists. Similar to
Theorem 11, we use this test to construct a bicriteria FPTAS.

Bicriteria-FPTAS. As our main result for multi-trades of incoming edges, we obtain a
bicriteria FPTAS. Suppose assets A∗ for v are achievable by an exact creditor-positive
multi-trade of incoming edges. We will compute an ε-approximate one resulting in assets at
least A∗ − δ for v, for any ε, δ > 0. We say such a trade is δ-optimal.

▶ Theorem 19. Consider a financial network with monotone payment functions and efficient
clearing oracle, creditor v and buyer w. If there exists a creditor-positive multi-trade of
incoming edges, then an ε-approximate δ-optimal trade can be computed in time polynomial
in the size of F , 1/ε and log 1/δ, for every ε, δ > 0,

Proof. We use the binary search idea put forward in Theorem 11. We choose δ > 0 and
apply binary search over the set {av + δ, av + 2δ, . . . , Mv} of potential asset values for v.
Recall that Mv is an upper bound for maximal achievable assets of v. For multi-trades, Mv

is upper bounded by ax
v + ax

w +
∑

e∈E−(v) ℓe. The goal is to find an asset value that is as
large as possible.

Running the Level-FPTAS with any value from the interval A′ ∈ (av, A∗], we are
guaranteed to receive an approximate multi-trade with asset level at least A′ for v in
polynomial time. As such, the binary search will never terminate with a value of A′ ≤ A∗ − δ.
The search terminates in at most ⌈log2(1 + (Mv − av)/δ)⌉ steps. ◀

When called with an asset level A′ > A∗, the Level-FPTAS might or might not return a
corresponding multi-trade – rounding up the residuals can introduce non-monotone behavior.
As such, using binary search our algorithm does not necessarily return an optimal asset value
of v for any creditor-positive ε-approximate multi-trade. However, since the Level-FPTAS
never fails to return a multi-trade for any asset level A′ ≤ A∗, we are guaranteed that assets
of more than A∗ − δ for v are achieved.

Ranking Payments. For edge-ranking payments, the set of meaningful values to be tested
for A∗ in the binary search can be restricted to a grid of at most exponential precision in the
input size. This allows to compute an ε-approximate multi-trade with assets at least A∗, i.e.,
such a trade is δ-optimal with δ = 0.

▶ Corollary 20. Consider a financial network with edge-ranking functions, creditor v and buyer
w. If there exists a creditor-positive multi-trade of incoming edges, then an ε-approximate
0-optimal trade can be computed in time polynomial in the size of F and 1/ε.

Proof. Consider an optimal exact multi-trade C with return ρ that achieves optimal assets
of A∗ for v. Recall that all liabilities and external assets are integers, and so is Mv. If A∗

is integral, then we can run the binary search with δ = 1 and obtain an approximate trade
with assets of (more than A∗ − 1 and, thus) at least A∗ for v.

To show that A∗ is integral, consider an optimal creditor-positive trade C achieving assets
A∗. We resort to the equivalent representation as a single claims trade (Corollary 4). For
this single trade, consider the return network F ret. An optimal return ρ for a trade of edge
set C evolves as the payment pret

er
on er in the clearing state pret. Recall that the payment

function of w in the return network is also an edge-ranking function (c.f. Proposition 9). For
edge-ranking payments, if all liabilities and external assets are integers, then the clearing
state has integral payments [1]. The assets of every bank in pret (and A∗) are integral. ◀
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5 Multi-Trades of Outgoing Edges

In this section, we study multi-trades of outgoing edges of a bankrupt bank u. We strive
to improve the assets of u’s creditors directly (and not indirectly via u through trades of
incoming edges). It might not be feasible to save a particular bank u, e.g., when its debt is
too high in relation to the claims. In such cases, we attempt to minimize the contagion of
bankruptcy from u to her creditors by conducting multi-trades of outgoing edges of u. We
execute multi-trades that maximize the total profit of all creditors, not just those involved in
the trade. No creditor nor buyer w should be harmed by the trade.

▶ Definition 21 (Pareto-positive trade). Let v1, v2, . . . , vl be u’s creditors. A multi-trade of
outgoing edges of u to w is called Pareto-positive, if a′

vi
> avi

for at least one creditor vi,
a′

vi
≥ avi

for all creditors and a′
w ≥ aw.

Suppose we are given a financial network with banks u, w and a set C of k outgoing
edges of u. Denote the creditors of edges C by VC = {vi | ei ∈ C, cr(ei) = vi}. A collection
of haircut rates α = (α1, α2, . . . , αk) is called Pareto-positive if C together with α forms
a Pareto-positive multi-trade. The objective is to derive the optimal values of α which
maximize the sum of profit of creditors v1, v2, . . . , vl, i.e., max

∑l
i=1 a′

vi
− avi

.
Consider the problem where set C is not given as part of the input but is chosen as part

of the solution. The goal is to select a subset of u’s outgoing edges C ⊆ E+(v) together with
a vector of haircut rates α = (α1, α2, . . . , α|C|) such that the multi-trade is Pareto-positive
and maximizes the improvement of u’s creditors, i.e.,

∑l
i=1 a′

vi
− avi

.
In the previous section, we obtained a bicriteria FPTAS for this problem when we trade

incoming edges of an insolvent bank. Interestingly, the results hold for all monotone payment
functions for which there is an efficient clearing oracle (e.g., edge-ranking or proportional
payments). Our results here show a strong contrast – depending on the payment functions
trading outgoing edges can be much harder. For edge-ranking functions (and variable haircut
rates), we denote the problem by OutgoingER-VR.

▶ Theorem 22. OutgoingER-VR is strongly NP-hard. For any constant ε > 0 there exists
no efficient n1/2−ε-approximation algorithm for OutgoingER-VR unless P = NP.

Now suppose the set of traded edges C is given as part of the input. Interestingly, the
hardness for edge-ranking payments continues to apply when C is fixed a priori.

▶ Corollary 23. Consider a financial network with banks u, w, a set of outgoing edges C of u

and edge-ranking payment rules. It is strongly NP-hard to determine Pareto-positive haircut
rates that maximize the sum of profits of u’s creditors. For any constant ε > 0, there exists
no efficient n1/2−ε-approximation algorithm unless NP = P.

Finally, we briefly observe that these problems for outgoing edges depend crucially on
the set of payment functions. For proportional payments (and variable α), the problem for a
given set C can be solved efficiently (even if the set C of edges involves different debtors).
When the set C of outgoing edges is chosen as part of the solution, we refer to the problem
as OutgoingPROP-VR and obtain NP-hardness. The approximability status of these
problems for different payment functions is an interesting direction for future work.

▶ Proposition 24. For a given financial network with proportional payments and a set C of k

edges, there exists an efficient algorithm that computes an optimal Pareto-positive α∗ ∈ [0, 1]k
or decides that none exists.

▶ Theorem 25. OutgoingPROP-VR is strongly NP-hard.
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