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Abstract
A consensus tree is a phylogenetic tree that summarizes the evolutionary relationships inferred
from a collection of phylogenetic trees with the same set of leaf labels. Among the many types of
consensus trees that have been proposed in the last 50 years, the frequency difference consensus
tree is one of the more finely resolved types that retains a large amount of information. This paper
presents a new deterministic algorithm for constructing the frequency difference consensus tree.
Given k phylogenetic trees with identical sets of n leaf labels, it runs in O(kn log n) time, improving
the best previously known solution.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Applied
computing → Bioinformatics

Keywords and phrases phylogenetic tree, frequency difference consensus tree, tree algorithm, centroid
path decomposition, max-Manhattan Skyline Problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.43

Supplementary Material Software: https://github.com/tswddd2/FDCT_new
archived at swh:1:dir:7cb120cbc61221f740e9e824e93bce0bbf64270a

Funding This work was partially funded by JSPS KAKENHI grant 22H03550 and NSERC Discovery
Grants.

Acknowledgements The authors would like to thank Varun Gupta for some ideas employed in the
procedure Fast_Label_Trees.

1 Introduction

In phylogenetic analysis, variations in datasets, algorithms, and models of evolution typically
yield different phylogenetic trees. Hence, researchers often need to analyze a collection of
phylogenetic trees with the same set of leaf labels but different branching structures, and
to this end, they use consensus trees. A consensus tree is a single phylogenetic tree that
represents a collection of phylogenetic trees, aiming to highlight the commonly agreed-upon
parts of the evolutionary history. Consensus trees have applications across various fields of
science, including biology, evolutionary studies, epidemiology, and ecology. Many alternative
consensus trees, each with its strengths and limitations, have been proposed; see, e.g., [7].

The frequency difference consensus tree (FDCT) [16] has garnered interest among re-
searchers in recent years [15, 17, 20]. Given k phylogenetic trees with identical sets of n leaf
labels, the FDCT is a phylogenetic tree consisting of each cluster that occurs more frequently
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43:2 A Faster Algorithm for Constructing the Frequency Difference Consensus Tree

in the input trees than any single cluster incompatible with it. In this context, a cluster
refers to any nonempty subset of the leaf label set and is said to occur in a phylogenetic
tree iff it corresponds to the set of all leaf labels descending from a single node of the tree.
Furthermore, two clusters are deemed incompatible if they cannot simultaneously occur in
the same phylogenetic tree. The advantage of the FDCT compared to some other popular
types of consensus trees, such as the strict consensus tree [30] and the majority rule consensus
tree [25], is that it captures more of the shared branching information and has more clusters.

It is evident that Ω(kn) serves as a lower bound for the running time of any algorithm
aiming to build the FDCT, given that it corresponds to the input size. Unlike certain other
types of consensus trees such as the strict consensus tree and the majority rule consensus tree,
there has been no algorithm proposed to construct the FDCT that can achieve a running
time matching this lower bound. Before this paper, the O(kn log2 n)-time algorithm by
Gawrychowski et al. [15] was the asymptotically fastest algorithm for constructing the FDCT.
In this paper, we present an O(kn log n)-time algorithm for constructing the FDCT, thus
reducing the gap between the upper and lower bounds for the running time of the fastest
algorithm to solve this problem.

The overarching structure of our new algorithm follows the framework proposed by Jansson
et al. [20] for computing the FDCT. By improving the methods for solving two subproblems
in [20], our algorithm achieves a running time of O(kn log n). First, our algorithm incorporates
a novel divide-and-conquer solution that runs in O(kn log n) time for the weighting step,
where the number of phylogenetic trees in which each cluster occurs is calculated. We remark
that algorithms for computing other types of consensus trees such as the greedy consensus
tree [7, 13] involve the same weighting step [15, 21, 32] and may derive advantages from
our improved method. Second, the running time of the procedure Filter_Clusters is
improved to O(n log n) by solving instances of the Max-Manhattan Skyline Problem [9]
to identify the clusters that should be removed at each recursive stage of the algorithm (refer
to Sections 3 and 5 for the detailed explanation).

1.1 Definitions and Notation
A phylogenetic tree is a rooted tree that represents the evolutionary relationships among
different organisms. Every internal node of a phylogenetic tree has at least two unordered
children and every leaf has a distinct label. The term trees will be employed as a shorthand
for phylogenetic trees in the remainder of this paper. Let T be some tree. The set of nodes
of T is denoted by V (T ). Let Λ(T ) be the set of leaf labels of T . Non-empty subsets of
Λ(T ) are called clusters. Clusters with cardinality 1 or |Λ(T )| are trivial clusters. For any
node u ∈ V (T ), T [u] is the subtree of T rooted at u and Λ(T [u]) is the set of leaf labels of
T [u], called the cluster associated with u. The cluster collection of T , denoted by C(T ), is
the set

⋃
u∈V (T ) {Λ(T [u])}. Any cluster C ⊆ Λ(T ) occurs in T iff C ∈ C(T ). For any nodes

u, v ∈ V (T ), we denote the lowest common ancestor of u and v in T by lcaT (u, v). Further,
for any non-empty set of nodes U ⊆ V (T ), we refer to the lowest common ancestor of all
these nodes in T by lcaT (U).

Any two clusters C1, C2 ⊆ Λ(T ) are said to be compatible, written as C1 ⌣ C2, iff
C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅. If C1 and C2 satisfy none of the preceding properties,
then they are incompatible, denoted as C1 ̸⌣ C2. Similarly, given trees T1 and T2 with
identical leaf label sets, and nodes u ∈ V (T1) and v ∈ V (T2), we say u is compatible with v,
denoted as u ⌣ v, if the clusters associated with u and v are compatible. We now extend
the notion of compatibility to trees. A cluster C ⊆ Λ(T ) is compatible with T (denoted
as C ⌣ T ) iff for every C ′ ∈ C(T ), we have C ⌣ C ′. Further, two trees T1 and T2 with
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identical leaf label sets are compatible (denoted as T1 ⌣ T2) iff for every C ∈ C(T1), C ⌣ T2,
i.e. iff every cluster in T1 is compatible with T2. This also means that every cluster in T2 is
compatible with T1.

The frequency difference consensus tree (FDCT) is defined as follows. Let S be a set of k

trees with identical sets of n leaf labels, i.e. S = {T1, T2, . . . , Tk} and Λ(T1) = Λ(T2) = . . . =
Λ(Tk) = L (where |L| = n). For any cluster C ⊆ L, let the weight of C, denoted as w(C), be
|{T : T ∈ S and C ∈ C(T )}|, i.e., the number of trees in S in which C occurs. For any tree
T ∈ S and any node u ∈ V (T ), we define the weight of node u as w(u) = w(Λ(T [u])). Then,
the FDCT of S is the tree TF D, where C(TF D) = {C : C ⊆ L and w(C) > max({w(C ′) :
C ′ ⊆ L and C ̸⌣ C ′})}. Thus, TF D contains every cluster that occurs more frequently than
any cluster incompatible with it (we refer to such clusters as frequency difference clusters). By
Proposition 3 in [31], this tree always exists and is unique for a given S. Figure 1 illustrates
the FDCT for a collection of four phylogenetic trees.
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Figure 1 Let S = {T1, T2, T3, T4}. TF D is the FDCT of S. In each Ti, the number beside each
non-root internal node u indicates the weight w(u). In this example, TF D does not contain the
clusters {a, b} and {b, c} with weight 2 because they are incompatible with each other. On the other
hand, TF D contains the cluster {d, e} with weight 1. Furthermore, TF D contains the cluster {a, b, c}
with weight 2, even though that cluster is incompatible with two input trees.

1.2 Previous Work

A variety of types of consensus trees have been developed over the last half-century, starting
with the Adams consensus tree [2] in 1972. Some of these consensus trees are summarized
in [7]. Here, we describe two well-studied types of consensus trees: the strict consensus
tree [30] and the majority-rule consensus tree [25]. The strict consensus tree keeps only
the clusters that occur in all input trees and is easily computed in optimal O(kn) running
time [10]. However, some potentially important clusters might be discarded from this
consensus tree, if one of the input trees does not contain them. The majority-rule consensus
tree is a generalization of the previous consensus tree and contains all clusters that occur
in more than half of the trees. The majority-rule consensus tree can also be computed in
optimal O(kn) time [21].
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43:4 A Faster Algorithm for Constructing the Frequency Difference Consensus Tree

The frequency difference consensus tree (FDCT) was introduced by Goloboff et al. [16]
as a more informative alternative that contains not only the clusters that occur in the
majority of trees but also the other frequency difference clusters. Dong et al. [11] provided a
comparison of the FDCT and a few other types of consensus trees. Barrett et al. [3] employed
the idea of using the frequency difference metric while analyzing angiosperm phylogeny. Steel
and Velasco [31] investigated a generalization of the FDCT to supertrees, i.e. consensus trees
built from input trees that do not necessarily have the same leaf label sets. They showed
that, unlike some other commonly used definitions, the FDCT easily generalizes to a viable
supertree definition. Moreover, the FDCT has been utilized in various other studies over the
years [14, 18, 19, 23, 24, 26, 27, 28, 29].

Several research works have focused on computing the FDCT of a set of k trees, each
labeled by the same set of n leaf labels. An implementation of the FDCT can be found in the
free software package TNT [17]; however, the algorithm employed by TNT and its complexity
remain undisclosed. Jansson et al. [20] gave a deterministic min{O(kn2), O(kn(k + log2 n))}-
time algorithm for constructing the FDCT. This algorithm was implemented in the open-
source FACT package [21] and experimentally shown [20] to be significantly faster than
TNT’s implementation. Subsequently, Gawrychowski et al. [15] developed a faster method for
the weighting step in [20], yielding an improved running time of O(kn log2 n) for constructing
the FDCT.

1.3 Organization of the Article
This paper is organized as follows. Section 2 contains some results from previous works
that are utilized later in this paper. Section 3 gives the framework of the O(kn log n)-time
algorithm for computing the FDCT. Sections 4 and 5 present algorithms for solving the
subproblems of the FDCT construction. Finally, Section 6 provides the concluding remarks.

2 Preliminaries

2.1 The delete Operation
The delete operation on a non-root internal node u in a tree T makes all children of u become
children of u’s parent and then removes u along with all edges connected to it. After applying
this operation on u, the cluster Λ(T [u]) is removed from the cluster collection of T . If c

denotes the number of u’s children, then the delete operation on u takes O(c) time.

2.2 The Lowest Common Ancestor
We restate the following lemma outlining the lowest common ancestor (lca) operation from [4]:

▶ Lemma 1. Given any tree T , the lca data structure can be constructed in O(n) time,
where n = |V (T )|. Then, for any nodes u, v ∈ V (T ), the query lcaT (u, v) can be answered in
constant time.

2.3 Restriction of Trees
For any tree T and any cluster C ⊆ Λ(T ), we define T |C (called T restricted to C) as the
tree T ′ with V (T ′) = {lcaT (u, v) : u, v ∈ C} such that lcaT (C ′) = lcaT ′(C ′) for all C ′ ⊆ C.
Intuitively, T ′ has the leaf label set C and consists of all nodes in T that are lca’s of the
leaves in C, and the ancestral relationships between the nodes in T ′ are the same as they
were in T . Figure 2 provides an example of restricting a tree to different clusters.



J. Jansson, W.-K. Sung, S. A. Tabatabaee, and Y. Yang 43:5
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Figure 2 Illustration of restricting a tree to different clusters, where C1 = {a, b, e, g} and
C2 = {d, e, g}.

2.4 Expanded Restriction of Trees

Recall that every node in the tree T is associated with a weight. For any subset C ⊆ L,
when we compute the restricted tree T |C, some nodes in T are deleted. This leads to losing
information about the weights of the clusters associated with these nodes. To address this,
we extend the concept of restricted trees following the definition given in [20] and allow some
nodes to be marked as spoiled (see below for details). For any C ⊆ Λ(T ), we obtain the
weighted tree T ||C (called the expanded restriction of T to C) as follows:
1. Let T ′ = T |C.
2. For every node u in T ′, set the weight of u equal to its weight in T and mark u as spoiled

if Λ(T ′[u]) ̸= Λ(T [u]) or if u is a spoiled node in T .
3. For every edge (u, v) in T ′, let P be the path in T between u and v, excluding u and v.

If P contains at least one node, then create a new node z in T ′ (referred to as a path
node), replace the edge (u, v) with the two edges (u, z) and (z, v), assign the weight of z

to the highest weight among all nodes in P , and mark z as spoiled.
4. Let T ||C = T ′.

Intuitively, a node u in T |C that was not already spoiled in T becomes spoiled in T ||C
if at least one leaf label in Λ(T [u]) is not in C. It follows that if a node becomes spoiled
in T ||C, then all of its ancestors become spoiled. Furthermore, every path node is a spoiled
node (but not vice versa). The purpose of the path nodes in T ||C is to compactly represent
the weights of the clusters that were lost when building the restriction of T to C and that
may conflict with clusters that are subsets of C. Figure 3 shows an example of the expanded
restriction of trees.
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2
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Figure 3 Illustration of the expanded restriction of a tree, where C = {a, d, e}. Internal nodes
are labeled with their weights. Nodes represented by triangles are path nodes.
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43:6 A Faster Algorithm for Constructing the Frequency Difference Consensus Tree

We extend the definition of compatibility to spoiled nodes. Suppose that C1, C2 ⊆ Λ(T )
and that u is a spoiled node in T ||C1. We have C2 ⌣ u iff C2 and Λ((T ||C1)[u]) are disjoint or
C2 ⊆ Λ((T ||C1)[u]). Observe that if Λ((T ||C1)[u]) ⊊ C2, then C2 ̸⌣ u, i.e., the set inclusion
relations in the definition of compatibility are asymmetric for spoiled nodes.

The expanded restrictions can be computed efficiently according to the following lemma:

▶ Lemma 2. Let T be a weighted phylogenetic tree with n leaves. After O(n log n) time
preprocessing, for any partition C1, C2, . . . , Cq of Λ(T ), the trees T ||Ci for all i ∈ {1, 2, . . . , q}
can be constructed in a total of O(n) time.

Proof. By Lemma 5.2 of [12], the trees T |Ci for all i ∈ {1, 2, . . . , q} can be constructed in a
total of O(n) time. By Theorem 2 of [22], after an O(n log n)-time preprocessing of T , the
maximum weight of all nodes along the path between any two nodes u and v in T can be
found in O(1) time. Furthermore, after an O(n)-time preprocessing of T , the second node on
the path from any node u in T to any other node v in T can be found in O(1) time (this can
be achieved by finding level ancestors [5, 6]). Hence, for every edge (u, v) in T |Ci (for any
i ∈ {1, 2, . . . , q}), we can compute the maximum weight of all nodes along the path between
u and v in T , excluding u and v, in O(1) time. Consequently, T ||Ci can be constructed in
O(|Ci|) time from T |Ci for any i ∈ {1, 2, . . . , q}, which completes the proof. ◀

2.5 Merging Trees
Given two trees T1 and T2 where Λ(T1) = Λ(T2) = L and T1 ⌣ T2, Merge_Trees(T1, T2)
returns a tree T such that Λ(T ) = L and C(T ) = C(T1)∪C(T2). Jansson et al. [21] showed that
Merge_Trees can be computed in O(|L|) time. Figure 4 gives an example for Merge_Trees.

T1 :

a b

c

d e

T2 :

a b c d e

T :

a b

c d e

Figure 4 Illustration of merging trees where T = Merge_Trees(T1, T2).

2.6 The Max-Manhattan Skyline Problem
Given a set S of O(n) subintervals of [1, n − 1] with positive integer heights of size O(n),
the Max-Manhattan Skyline Problem asks for a table f such that for t ∈ [1, n − 1],
f [t] = max{height([i, j]) : t ∈ [i, j], [i, j] ∈ S}. Crochemore et al. [9] gave an O(n)-time
algorithm for the Min-Manhattan Skyline Problem, defined in a similar way as the
Max-Manhattan Skyline Problem, except that it seeks the minimum height instead
of the maximum in the definition of the output table f . Their algorithm first sorts the
intervals according to their heights in non-decreasing order. Then, for each interval [i, j] in
this order, it sets the values of f [t] for all positions t ∈ [i, j] that have not yet been assigned
a value to height([i, j]). By modifying Crochemore et al.’s algorithm [9] to sort the intervals
in non-increasing order, we immediately have:

▶ Lemma 3. The Max-Manhattan Skyline Problem can be solved in O(n) time.
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2.7 Centroid Paths and Side Trees
A centroid path [8] of a tree T is a path of the form π = ⟨pα, pα−1, . . . , p1⟩, where pα is
any node in T , the node pi−1 for every i ∈ {2, . . . , α} is any child of pi with the maximum
number of leaf descendants (ties are broken arbitrarily), and p1 is a leaf. Suppose that π is
a centroid path of T . For any u ∈ V (T ) such that u does not belong to π but the parent
of u does, T [u] is called a side tree of π. From these definitions, we can derive the following
lemma:

▶ Lemma 4. Let T be a tree and τ a side tree of a centroid path that starts at the root of T .
Then |Λ(τ)| ≤ |Λ(T )|/2.

By computing a centroid path π starting at the root of T and recursively applying this
procedure to the side trees of π, we obtain a centroid path decomposition of T . It follows
from Lemma 4 that the number of recursion levels needed to complete such a decomposition
is O(log |Λ(T )|).

3 Algorithm Fast_Frequency_Difference

The pseudocode of our new algorithm, named Fast_Frequency_Difference, is shown in
Algorithm 1. Its overall structure follows the framework developed in [20] for constructing
the FDCT, which we review next.

Algorithm 1 The algorithm Fast_Frequency_Difference for constructing the FDCT, which
maintains the overall structure established by the algorithm Frequency_Difference in [20].

Algorithm Fast_Frequency_Difference

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.
Output: The frequency difference consensus tree of S.

/* Preprocessing */
1 Fast_Compute_Weights(S)

/* Main algorithm */
2 T := T1

3 for j := 2 to k do
A := Fast_Filter_Clusters(T, Tj)
B := Fast_Filter_Clusters(Tj , T )
T := Merge_Trees(A, B)

endfor
4 for j := 1 to k do

T := Fast_Filter_Clusters(T, Tj)
5 return T

End Fast_Frequency_Difference

Suppose that the input is S = {T1, T2, . . . , Tk}. The basic idea of the algorithm in [20]
is to initially let T be a copy of T1 and then consider the other trees one by one while
updating the clusters of T accordingly. More precisely, when considering any such tree Tj ,
the algorithm deletes every cluster in T that is incompatible with a cluster in Tj of equal
or higher weight, and also inserts every cluster from Tj into T that could potentially be
a frequency cluster but is not already in T . This strategy produces a tree T whose set of
clusters is a superset of the set of the frequency difference clusters, so the algorithm applies
a final postprocessing step to delete all non-frequency difference clusters from T .

STACS 2024



43:8 A Faster Algorithm for Constructing the Frequency Difference Consensus Tree

To update T in each iteration, the procedure Merge_Trees, described in Section 2.5, and
a procedure called Filter_Clusters are used. The latter takes as input two trees TA and
TB with identical leaf label sets and outputs a copy of TA from which every cluster that is
incompatible with a cluster in TB of equal or higher weight has been deleted.

Our new algorithm Fast_Frequency_Difference improves the time complexity of the pre-
vious algorithm from [20] by replacing the preprocessing step for computing the weights of all
clusters occurring in S (Step 1) and the procedure Filter_Clusters (used in Steps 3 and 4) by
more efficient solutions, referred to as Fast_Compute_Weights and Fast_Filter_Clusters
below.

In Section 4, we will prove the following theorem concerning the correctness and time
complexity of the procedure Fast_Compute_Weights:

▶ Theorem 5. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Compute_Weights(S) calculates the weights of all clusters occurring in S
in O(kn log n) time.

Moreover, Section 5 contains the proof for the following theorem regarding the correctness
and time complexity of the procedure Fast_Filter_Clusters:

▶ Theorem 6. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) filters out clusters as needed in O(n log n) time.

On the grounds of the two theorems stated above, we can prove the main theorem of this
paper:

▶ Theorem 7. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the algorithm Fast_Frequency_Difference(S) constructs the FDCT of S in O(kn log n)
time.

Proof. Assuming that the improved procedures function as intended, the correctness of
Fast_Frequency_Difference follows from that of Frequency_Difference proved by [20].

Now, we analyze the time complexity of the algorithm. Step 1 makes a call to the
procedure Fast_Compute_Weights, which takes O(kn log n) time, according to Theorem 5.
Furthermore, Steps 3 and 4 make O(k) calls to the procedures Fast_Filter_Clusters and
Merge_Trees. By Theorem 6, each call to the procedure Fast_Filter_Clusters takes
O(n log n) time. Furthermore, the procedure Merge_Trees runs in O(n) time [21]. Hence,
Steps 3 and 4 take O(kn log n) time. Consequently, the running time of the algorithm is
O(kn log n). ◀

4 Procedure Fast_Compute_Weights

We break down the improved procedure Fast_Compute_Weights into two phases called
labeling and counting, similar to the strategy used in [15]. The procedure Fast_Label_Trees
is responsible for the labeling phase. This procedure assigns an integer label to each node
u in every tree in S, denoted by id(u), such that id(u) ∈ {1, . . . , 2kn} and that for any
other node u′ in any tree in S, id(u) = id(u′) iff the clusters associated with u and u′ are
the same. Next, during the counting phase, the labels are sorted using counting sort, the
count of each distinct label is determined, and the weight of each cluster is obtained from
the count of the label of its associated node. Algorithm 2 presents the pseudocode for the
procedure Fast_Compute_Weights.
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Algorithm 2 The procedure Fast_Compute_Weights.

Algorithm Fast_Compute_Weights

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.

Output: Compute the weight of each cluster C occurring in S, i.e., the number of trees in S
in which C occurs.

/* Labeling phase */
1 Fast_Label_Trees(S)

/* Counting phase */
2 Sort the obtained labels using counting sort.
3 Determine the count of each distinct label.
4 Set the weight of each cluster to the count of the label of its associated node.

End Fast_Compute_Weights

The procedure Fast_Label_Trees uses a divide-and-conquer approach to carry out
the labeling phase. Let L′ and L′′ form a partition of L such that the difference be-
tween |L′| and |L′′| is at most one. Fast_Label_Trees({T1, . . . , Tk}) recursively calls
Fast_Label_Trees({T1|L′, . . . , Tk|L′}) and Fast_Label_Trees({T1|L′′, . . . , Tk|L′′}) to ob-
tain the labels for all nodes in Ti|L′ and Ti|L′′ for all i ∈ {1, 2, . . . , k}. Then, for each node
u in any tree Ti ∈ S, the pair (id(φL′

u ), id(φL′′

u )) is assigned to u, where φC
u for any C ⊆ L

denotes the node in Ti|C that corresponds to u (if such node does not exist in Ti|C, then
φC

u is set to Φ, a special node with id(Φ) = 0). Next, all pairs are sorted using radix sort,
and a positive integer rank is assigned to each unique pair. Finally, for each node u in any
tree Ti ∈ S, id(u) is set to the rank of the pair (id(φL′

u ), id(φL′′

u )). The pseudocode for the
procedure Fast_Label_Trees is given in Algorithm 3. Moreover, Figure 5 illustrates one
iteration of Fast_Label_Trees.

Algorithm 3 The procedure Fast_Label_Trees.

Algorithm Fast_Label_Trees

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.

Output: Label each node u in a tree in S with id(u) ∈ {1, . . . , 2k|L|} such that two nodes in
different trees receive the same label iff the clusters associated with them are the
same.

1 if |L| = 1 then
/* Base case (each tree has only one node) */
For each node u in any tree in S, set id(u) = 1.
return

endif
2 Partition L into L′ and L′′, such that the difference between |L′| and |L′′| is at most one.
3 For all i ∈ [1 . . . k], let T ′

i = Ti|L′ and T ′′
i = Ti|L′′.

4 Fast_Label_Trees({T ′
1, T ′

2, . . . , T ′
k}).

5 Fast_Label_Trees({T ′′
1 , T ′′

2 , . . . , T ′′
k }).

6 For each node u in any tree Ti ∈ S, assign the pair (id(φL′
u ), id(φL′′

u )) to u.
7 Sort all the obtained pairs using radix sort, remove duplicates, and assign a rank to each

unique pair.
8 For each node u in any tree Ti ∈ S, set id(u) to the rank of the pair (id(φL′

u ), id(φL′′
u )).

End Fast_Label_Trees
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Figure 5 Illustration of one iteration of Fast_Label_Trees({T1, T2}), where L′ = {a, b, c, d} and
L′′ = {e, f, g}. Part (a) shows the trees T1 and T2, where the pair assigned to each node is presented
beside it (except for the leaves). Part (b) shows the recursively labeled trees T1|L′, T1|L′′, T2|L′,
and T2|L′′, where the labels are presented beside the nodes.

The following lemma proves the correctness of the procedure Fast_Label_Trees:

▶ Lemma 8. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the following statements hold after running the procedure Fast_Label_Trees(S):
1. For any node u ∈ V (Ti) where Ti ∈ S, we have id(u) ∈ {1, . . . , 2k|L|}.
2. For any two nodes u ∈ V (Ti) and v ∈ V (Tj) where Ti, Tj ∈ S, we have id(u) = id(v) iff

Λ(Ti[u]) = Λ(Tj [v]).

Proof. We start by showing that the first statement holds. It can be easily seen that
|V (Ti)| < 2|L| for any Ti ∈ S. Thus, the total number of nodes in all trees is less than 2k|L|.
Consequently, the label of each node is in {1, . . . , 2k|L|}.

To prove the second statement, we use induction on |L|. The base case of |L| = 1 holds
because all nodes have the same cluster associated with them and receive the same label.
The induction hypothesis states that if |L| ≤ k for some k ≥ 1, then we have id(u) = id(v)
iff ΛTi(u) = ΛTj (v). Now, we want to prove the statement for |L| = k + 1.

If Λ(Ti[u]) = Λ(Tj [v]), we have Λ((Ti|L′)[φL′

u ]) = Λ((Tj |L′)[φL′

v ]) and Λ((Ti|L′′)[φL′′

u ]) =
Λ((Tj |L′′)[φL′′

v ]). Hence, considering that |L′| ≤ k and |L′′| ≤ k, we can apply the induction
hypothesis to state that id(φL′

u ) = id(φL′

v ) and id(φL′′

u ) = id(φL′′

v ). Consequently, we have
(id(φL′

u ), id(φL′′

u )) = (id(φL′

v ), id(φL′′

v )) and thereby, id(u) = id(v).
On the other hand, if id(u) = id(v), we have (id(φL′

u ), id(φL′′

u )) = (id(φL′

v ), id(φL′′

v )). As
a result, we have id(φL′

u ) = id(φL′

v ) and id(φL′′

u ) = id(φL′′

v ). Therefore, considering that
|L′| ≤ k and |L′′| ≤ k, we can use the induction hypothesis to deduce that Λ((Ti|L′)[φL′

u ]) =
Λ((Tj |L′)[φL′

v ]) and Λ((Ti|L′′)[φL′′

u ]) = Λ((Tj |L′′)[φL′′

v ]). Thus, we have Λ(Ti[u]) = Λ(Tj [v]).
◀

Next, we analyze the time complexity of the procedure Fast_Label_Trees:

▶ Lemma 9. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Label_Trees(S) runs in O(kn log n) time.
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Proof. Let T (n) be the running time of Fast_Label_Trees(S). By Lemma 5.2 of [12], the
construction of T ′

i and T ′′
i takes O(n) time for each Ti ∈ S, and thereby, a total of O(kn)

time for all of the trees. Computing id(φL′

u ) and id(φL′′

u ) for each node u in some tree Ti ∈ S
can be done by a bottom up traversal of Ti, along with T ′

i and T ′′
i , in a total of O(kn) time.

The number of obtained pairs is O(kn). Furthermore, we can deduce from Lemma 8 that all
values in the pairs are in {0, 1, . . . , O(kn)}. Thus, sorting these pairs using radix sort and
assigning labels to the nodes take O(kn) time. Therefore, we have T (n) = 2T (n/2) + O(kn),
and consequently, T (n) = O(kn log n). ◀

Now, we can prove Theorem 5, regarding the correctness and time complexity of the
procedure Fast_Compute_Weights:

▶ Theorem 5. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Compute_Weights(S) calculates the weights of all clusters occurring in S
in O(kn log n) time.

Proof. We start by proving that the procedure Fast_Compute_Weights works correctly.
The correctness of Step 1, making a call to the procedure Fast_Label_Trees, follows from
Lemma 8. In the following steps, the weight of each cluster is set to the count of the label of
its associated node, indicating the number of trees in S in which that cluster occurs.

Now, we analyze the time complexity. As shown in Lemma 9, assigning labels to each
node in Step 1 takes O(kn log n) time. Considering that there are O(kn) labels in total and
each label is in {1, . . . , 2kn}, Step 2 (counting sort) takes O(kn) time. Furthermore, it is
easy to see that Steps 3 and 4 take O(kn) time each. Therefore, the running time of the
procedure is O(kn log n). ◀

5 Procedure Fast_Filter_Clusters

On a high level, our new procedure Fast_Filter_Clusters, with an improved running time
of O(n log n), follows a similar approach as the O(n log2 n)-time procedure Filter_Clusters
in [20]. The objective is to build a tree T whose cluster collection is C(T ) = {Λ(TA[u]) :
u ∈ V (TA) and w(u) > w(x) for every x ∈ V (TB) with Λ(TA[u]) ̸⌣ Λ(TB [x])}, i.e., to delete
every cluster u in TA that conflicts with at least one cluster in TB with a weight greater than
or equal to that of u. To do this, both procedures apply the centroid path decomposition
technique to divide TA into a centroid path π = ⟨pα, pα−1, . . . , p1⟩, where pα is the root
of TA, and the set σ(π) of side trees of π. Since each cluster in TA is either located inside a
side tree of π or associated with a node belonging to π, the cluster collection C(TA) may be
expressed recursively as:

C(TA) =
⋃

τ∈σ(π)

C(τ) ∪
⋃

pi∈π

{Λ(TA[pi])}. (1)

Following this key observation, to check all clusters of TA in order to decide which ones
to delete, the procedures handle the side trees of π recursively and the clusters associated
with π directly.

The main difference between Filter_Clusters from [20] and Fast_Filter_Clusters
presented here is how they handle the clusters

⋃
pi∈π{Λ(TA[pi])}. The former uses a dynamic

data structure to keep track of the currently conflicting nodes from TB while traversing π

upwards and retrieving the heaviest conflicting cluster at each step, taking O(n log n) time
to process all the clusters associated with π. In addition, the time taken to set up the
recursive calls to the side trees is O(n). Since the total time spent on each recursion level is
O(n log n) and there are O(log n) recursion levels, the time complexity of Filter_Clusters is
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O(n log2 n). In contrast, Fast_Filter_Clusters detects conflicts between clusters associated
with π and clusters in TB by representing clusters as suitably defined integer intervals. It
then solves an instance of the Max-Manhattan Skyline Problem to identify the heaviest
conflicting clusters. We will show that this method requires O(n) time to handle all of the
clusters associated with π. Thus, each recursion level takes O(n) time, and the total running
time becomes O(n log n).

The pseudocode of Fast_Filter_Clusters is presented in Algorithm 4.

Algorithm 4 The procedure Fast_Filter_Clusters.

Algorithm Fast_Filter_Clusters

Input: Two weighted trees TA and TB with Λ(TA) = Λ(TB) = L such that every u ∈
V (TA) ∪ V (TB) has a positive integer weight w(u), and that some nodes in TB may
be spoiled.

Output: A tree T with Λ(T ) = L and C(T ) = {Λ(TA[u]) : u ∈ V (TA) and w(u) >

w(x) for every x ∈ V (TB) with Λ(TA[u]) ̸⌣ Λ(TB [x])}.

1 Compute a centroid path π = ⟨pα, pα−1, . . . , p1⟩ of TA, where pα is the root of TA and p1 is
a leaf, and compute the set σ(π) of side trees of π.

/* Handling the side trees */
2 for each side tree τ ∈ σ(π) do

Construct TB ||Λ(τ).
Temporarily change the node weights in τ and TB ||Λ(τ) by sorting them
in nondecreasing order and setting each node weight equal to its rank.
Let τ ′ := Fast_Filter_Clusters(τ, TB ||Λ(τ)).
Replace τ by τ ′ in TA and restore the node weights in τ ′.

endfor

/* Handling the centroid path */
3 for i = 1 to α do

Compute ni := |Λ(TA[pi])|.
4 Temporarily relabel the leaf labels in L by the positive integers {1, 2, . . . , nα} in a way that

makes π become a stratifying path in TA.

5 Compute and store, for every v ∈ V (TB), the values m(v) = min{Λ(TB [v])} and M(v) =
max{Λ(TB [v])}. For any v ∈ V (TB), if v is a spoiled node, then set M(v) = nα + 1.

6 Compute and store, for every v ∈ V (TB), the value filled(v) equivalent to the largest
integer x such that {1, 2, . . . , x} ⊆ Λ(TB [v]).

7 Create a set I of weighted intervals over {1, 2, . . . , nα + 1} as follows:
For each v ∈ V (TB), make an interval [vℓ, vr] with weight w(v), where
vℓ = 2 · max{filled(v) + 1, m(v)} and vr = 2 · M(v). Insert the weighted
interval into I.

8 Solve the Max-Manhattan Skyline Problem on I and let f be the solution.
9 for i = α downto 2 do

if w(pi) ≤ f [2 · ni + 1] then
Apply a delete operation on pi in TA.

endif
endfor

10 Restore the leaf labels of L to the values that they had before Step 4.

11 return TA

End Fast_Filter_Clusters
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Before describing the correctness of Fast_Filter_Clusters, we introduce a lemma that
can be used to speed up the detection of conflicting clusters. Let T be a phylogenetic tree
such that Λ(T ) is a set of positive integers {1, 2, . . . , n}. Moreover, let π = ⟨pα, pα−1, . . . , p1⟩
denote a path in T , where pα is the root of T and p1 is a leaf. For each i ∈ {1, 2, . . . , α},
define ni := |Λ(T [pi])|. Note that n1 = 1 and nα = n. The path π is called a stratifying path
if Λ(T [pi]) = {1, 2, . . . , ni} for every i ∈ {1, 2, . . . , α}. Furthermore, for any C ⊆ Λ(T ), define
filled(C) as the largest integer x such that {1, 2, . . . , x} ⊆ C. In the following lemma, we
determine whether a specified cluster C and the cluster associated with a specified node pi

on a stratifying path π are compatible:

▶ Lemma 10. Let T be a phylogenetic tree with Λ(T ) = {1, 2, . . . , n}. Also, let π =
⟨pα, pα−1, . . . , p1⟩ be a stratifying path in T . For any C ⊆ Λ(T ) and i ∈ {1, 2, . . . , α}, we
have C ̸⌣ Λ(T [pi]) iff max{filled(C) + 1, min(C)} < ni + 0.5 < max(C) holds, where
Λ(T [pi]) = {1, 2, . . . , ni}.

Proof. First suppose that C ̸⌣ Λ(T [pi]). This means that there exist x, y, z ∈ Λ(T ) such
that x, y ∈ C, z ̸∈ C, x, z ∈ Λ(T [pi]), and y ̸∈ Λ(T [pi]). Then:

x ∈ Λ(T [pi]) implies x ≤ ni. Since x ∈ C, we have min(C) < ni + 0.5.
y ̸∈ Λ(T [pi]) gives y > ni. Since y ∈ C is an integer, we deduce that ni + 0.5 < max(C).
z ∈ Λ(T [pi]) implies z ≤ ni. Furthermore, z ̸∈ C gives z ≥ filled(C) + 1. Combining the
two inequalities, we get filled(C) + 1 < ni + 0.5.

On the other hand, suppose that C ⌣ Λ(T [pi]). By the definition of cluster compatibility,
at least one of the following three cases holds:

C ⊆ Λ(T [pi]): Then x ≤ ni for all x ∈ C, i.e., max(C) ≤ ni. Thus, the inequality
ni + 0.5 < max(C) is false.
Λ(T [pi]) ⊆ C: Then filled(C) ≥ ni, and hence filled(C) + 1 < ni + 0.5 is false.
C ∩Λ(T [pi]) = ∅: Then x > ni for all x ∈ C, i.e., min(C) > ni. Thus, min(C) < ni +0.5
is false. ◀

Figure 6 provides an illustration of Lemma 10.

1
p

2
p

3
p

α
p

n n(        +1) . . .
α−1

1 2 . . . 8

9 . . . 15

Figure 6 Illustration of Lemma 10. Let T be the tree with a stratifying path ⟨pα, pα−1, . . . , p1⟩
shown above. Consider the node p2 and a cluster C = {5, 6, 8, 9}. Since min(C) = 5, max(C) = 9,
filled(C) = 0, and n2 = 8, Lemma 10 implies C ̸⌣ Λ(T [p2]). Next, consider p2 and C′ =
{1, 2, . . . , 12}. Since min(C′) = 1, max(C′) = 12, filled(C′) = 13, and n2 = 8, the inequality in
Lemma 10 does not hold. Thus, C′ ⌣ Λ(T [p2]).

Now, we prove the correctness of the procedure Fast_Filter_Clusters:
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▶ Lemma 11. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) works correctly.

Proof. In Step 1, the procedure computes a centroid path π = ⟨pα, pα−1, . . . , p1⟩, where pα

is the root of TA, and the set σ(π) of side trees of π. According to Equation (1), any cluster
C in TA that should be removed is in either π or one of its side trees. In the former case,
C will be removed in Steps 3–10, and in the latter case, C will be removed during some
recursive call in Step 2.

Step 2 handles the side trees in σ(π) by recursively calling the procedure for each τ ∈ σ(π)
and replacing τ in TA by the obtained tree τ ′. Before each recursive call, the procedure
normalizes the weights of the nodes in τ and TB ||Λ(τ) to make them positive integers of
size O(|Λ(τ)|). This is achieved by sorting the weights in non-decreasing order and then
setting the weight of each node equal to its rank in this order, where equally ranked nodes
get identical weights.

Steps 3–10 handle the centroid path π as follows. After doing a bottom-up traversal
of TA to compute ni := |Λ(TA[pi])| for all pi ∈ π, the leaf labels are modified to make π

a stratifying path in TA. As a consequence, for any node pi on the centroid path π, its
associated cluster Λ(TA[pi]) makes an integer interval of the form [1, ni]. According to
Lemma 10, Λ(TA[pi]) and any cluster C associated with a non-spoiled node in TB conflict
with each other iff max{filled(C) + 1, min(C)} < ni + 0.5 < max(C). Therefore, one
can determine whether Λ(TA[pi]) ̸⌣ C by constructing an interval whose left endpoint is
2 · max{filled(C) + 1, min(C)} and whose right endpoint is 2 · max(C), and then checking if
it contains the point 2 · ni + 1. Otherwise, if C is associated with a spoiled node in TB , the
condition for a conflict becomes max{filled(C)+1, min(C)} < ni+0.5, and the corresponding
interval’s right endpoint is set to 2 · (nα + 1). Steps 5–9 determine conflicts simultaneously
between all clusters associated with π and all clusters in TB by solving an instance of the
Max-Manhattan Skyline Problem. By the above, its solution f has the property that
f [2 · ni + 1] is the weight of the heaviest cluster in TB that conflicts with any cluster of
the form Λ(TA[pi]). If this number is greater than or equal to w(pi), then the procedure
deletes pi from TA. ◀

Next, we show that Fast_Filter_Clusters runs in O(n log n) time:

▶ Lemma 12. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) runs in O(n log n) time.

Proof. Step 1 can be completed in O(n) time [8]. Step 2 uses O(n) time to construct
the TB ||Λ(τ)-trees according to Lemma 2 and by applying radix sort to normalize the
node weights. Step 2 also makes a recursive call for each τ . Next, bottom-up traversals
of TA and TB are used to implement Steps 3–6, taking an additional O(n) time. Creating
the intervals that represent clusters in Step 7 takes O(n) time. Also, solving the Max-
Manhattan Skyline Problem in Step 8 takes O(n) time, according to Lemma 3. This is
because there are O(n) intervals and their weights are positive integers of size O(n). The
necessary delete operations on π are carried out in top-down order, which means that the
parent of any node in TA is changed at most once and thereby, Step 9 takes O(n) time in
total. Finally, Step 10 restores the original leaf labels in O(n) time.

The time complexity of Fast_Filter_Clusters(TA, TB) is thus g(n) +
∑

τ∈σ(π) h(τ),
where g(n) is the execution time, excluding any recursive calls, and h(τ) is the running time
of Fast_Filter_Clusters(τ, TB ||Λ(τ)) for any side tree τ of π. According to the discussion
above, g(n) = O(n). For any recursion level j, let σj denote the set of all side trees that
are computed for all the centroid paths on this level. The total time taken on the recursion
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level j +1 for the non-recursive parts is
∑

τ∈σj
g(|Λ(τ)|), and since the trees in σj are disjoint,∑

τ∈σj
g(|Λ(τ)|) = g(n) = O(n). By Lemma 4, every τ satisfies |Λ(τ)| ≤ n/2, and hence

there are O(log n) recursion levels. Therefore, the total running time is O(n log n). ◀

Combining Lemmas 11 and 12 provides the proof of Theorem 6:

▶ Theorem 6. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) filters out clusters as needed in O(n log n) time.

6 Concluding Remarks

In this paper, we introduced an O(kn log n)-time algorithm for computing the FDCT, leading
to an asymptotically faster approach compared to the best previously known algorithm
(Gawrychowski et al. [15]). The improved procedure Fast_Compute_Weights, presented
as part of our new algorithm, can also be employed in algorithms for building the greedy
consensus tree [15, 21, 32], replacing the slower versions of the procedure. Closing the gap
between the upper bound of O(kn log n) and the lower bound of Ω(kn) for the running time
of the fastest FDCT construction algorithm remains an important open problem.

We implemented our O(kn log n)-time algorithm for constructing the FDCT. The source
code can be found at https://github.com/tswddd2/FDCT_new. We achieved this imple-
mentation by adding approximately 2000 lines of C++ code to the source code of the
min{O(kn2), O(kn(k + log2 n))}-time algorithm [20] for the same problem, available at
https://github.com/Mesh89/FACT2 and also included in the FACT package [21], which
was previously the fastest implementation. To implement the new O(kn log n) algorithm, we
followed the descriptions in this article and used dynamic_bitset from the Boost libraries [1].
Preliminary experiments to evaluate the performance of our new algorithm indicate that it
is faster in practice than the O(kn2)-time and O(kn(k + log2 n))-time algorithms from [20].
The detailed results will be reported in the journal version of this paper.
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