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Abstract
The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether
two circuits over A compute the same function or not. This problem not only generalises the
equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models
the problem of checking identities in A. In this paper we prove that Ceqv(A) ∈ P, if A is a finite
2-nilpotent algebra from a congruence modular variety.
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1 Introduction

It is a common problem in mathematics to decide whether two formal expressions are
equivalent. Some well-known examples are the word problem for groups and semigroups,
checking whether a Boolean formula is a Tautology, or whether two polynomials over a given
ring define the same operation. In this paper we study a class of problems that generalize
the latter two examples.

In the polynomial equivalence problem PolEqv(A) the input consists of two polynomials
p and q of the same arity over a finite algebra A, and the task is to decide whether the
(universally quantified) identity p(x1, . . . , xn) ≈ q(x1, . . . , xn) holds in A. For every fixed
finite algebra PolEqv(A) is clearly in co-NP, since we can verify in polynomial time, whether
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45:2 Circuit Equivalence in 2-Nilpotent Algebras

the identity fails at a given tuple (a1, . . . , an) ∈ An. So the chief question is to distinguish,
for which algebras the problem is hard (i.e. co-NP-complete), tractable (in P), or possibly
of some intermediate complexity. There are numerous papers investigating this question
for algebras from concrete varieties, such as groups [8, 16, 10, 33, 20], rings [7, 19, 15], and
semigroups [27, 4].

However, not much is known in general. One of the major obstacles in studying
PolEqv(A) systematically for all finite algebras is that the complexity strongly depends on
the language of A. For example, the alternating group (A4, ·) has a polynomial equivalence
problem that is in P; but after adding the commutator [x, y] = x−1y−1xy to the signature
we obtain the problem PolEqv((A4, ·, [x, y])), which is co-NP-complete (see [18]). Roughly
speaking, this follows from the fact that some polynomials in the extended language are
exponentially inflated in length, when expressed by only the group operations.

To resolve this problem, in [25] it was proposed to encode an input equation by circuits
instead of polynomials. This approach prevents an artificial “inflation” of the input. As a
consequence, the complexity then only depends on the clone of polynomial operations of the
algebra, which allows for the use of universal algebraic methods. Formally we define the
circuit equivalence problem Ceqv(A) as follows:

Ceqv(A)
Input: Two circuits g1, g2 over A with input gates x1, . . . , xn

Question: Is g1(a1, . . . , an) = g2(a1, . . . , an) for all (a1, . . . , an) ∈ An?

In [25], Idziak et al. set the goal to classify the computational complexity of Ceqv(A)
for all algebras from congruence modular varieties. On one hand, such a classification
would subsume many of the previously known results (e.g. for groups [17], rings [19]
and lattices [31, 12]). On the other hand, congruence modular varieties offer a structural
advantage, since tools from tame congruence theory and commutator theory work particularly
well in them. As it turns out, the complexity of Ceqv in the congruence modular case is
strongly linked to commutator theoretical properties. By results contained in [25] and [23] it
is known that Ceqv for non-nilpotent algebras from congruence modular variety is co-NP-
complete. On the other hand, it was shown in [3] that Ceqv for supernilpotent algebras
from congruence modular varieties is in P.

Since in congruence modular varieties supernilpotence implies nilpotence (see e.g. [30]),
results mentioned above leave only a gap for nilpotent, but not supernilpotent algebras (Prob-
lem 2 in [25]). It was shown in [22], [28], that, under the assumption of the Exponential Time
Hypothesis, the complexity of Ceqv(A) has quasipolynomial lower bounds Ω(2c(log n)k−1),
if A is nilpotent and of supernilpotent rank k (where the supernilpotent rank, introduced
in [22], is one of the generalizations of group-theoretical Fitting length notion). On the
other hand, under the assumption of an open conjecture in circuit complexity theory, for
every nilpotent but not supernilpotent algebra there actually is an algorithm solving Ceqv
that has quasipolynomial running time [29]. These two conditional results indicate that
nilpotent algebras of supernilpotent rank greater than 2 have coNP-intermediate complexities.
Interestingly, this mirrors the situation for the polynomial equivalence problem PolEqv(G)
for solvable groups G = (G, ·, e,−1 ) of Fitting length k [33, 20].

As one can observe, many of recent results connected with complexity of PolEqv and
Ceqv are obtained under assumptions of some known hypotheses. For example, hardness
results from [22], [20], [28] and [33] are proved under the assumption of Exponential Time
Hypothesis (or its randomized version). On the other hand upper bounds for algorithms
complexity are often obtained under the assumption of some conjectures (e.g. Strong
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Exponential Size Hypothesis, Constant Degree Hypothesis), which assume lower bounds for
the size of circuits computing AND. Such results can be found e.g. in [22], [24], [20] and [29].
In contrast, this paper provides unconditional results.

Our paper is structured as follows: In Section 2, we introduce some standard notation
and definitions. Section 3 contains basic structural results about 2-nilpotent algebras. In
Section 4 we prove that all operations f : Un → L between a cyclic group (U, +) = Zpk

of prime power order and a coprime (L, +) are already generated by all unary functions
g : U → L (and the addition on U and L). It provides us with a useful normal form for all
the functions of type Un → L. In Section 5 we prove that we can check in polynomial time,
whether such a normal form induces a constant function. Results of Sections 4 and 5 might
be of independent interest in the study of linearly closed clonoids.

Section 6 then contains the proof that Ceqv(A) ∈ P for 2-nilpotent A from congruence
modular varieties. Our algorithm mixes the two prevalent approaches for checking equivalence,
as it first partially restricts the domain of a given circuit (as in [3]), while then doing a
syntactic manipulation on the resulting circuits (as in [21]). The latter part is based on the
algorithm from Section 5.

2 Preliminaries

In this paper, small bold letters always denote tuples. For instance, tuples of constants are
denoted a = (a1, . . . , an) ∈ An and tuples of variables are denoted x = (x1, . . . , xn). We
are going to use standard notation and definitions from universal algebra (see e.g. [6]). We
define algebra type (or algebra signature) to be a sequence of function symbols together with
a corresponding arity for each symbol. For a signature F , an algebra A over F is a pair
(A, F A), where A is a set (the universe of A) and F A = (fA)f∈F is a family of finitary
operations fA : Aar(f) → A. Each fA is called a basic operation of A. Sometimes we are
not going to distinguish between the basic operation fA and the corresponding function
symbol f , but this should never cause confusion. We say A is a finite algebra if it has a finite
universe A and finitely many basic operations. By ar(A) we denote the maximal arity of the
basic operations in A.

An operation that can be constructed by composing basic operations is called a term
operation of A. If also constants from A are allowed in its construction we call it a polynomial
operation of A. If for example A = (A, +, 0, −, ·) is a ring, its polynomial operations are
exactly the polynomial operations over the ring in the traditional sense. The clone of all
polynomial operations of A is denoted by Pol(A). We say that B and A are polynomially
equivalent iff there exists an algebra B′ isomorphic to B with Pol(A) = Pol(B′).

A properly formed string defining a polynomial operation is called a polynomial over A
(e.g. if A = (A, fA, gA) such that f is ternary and g is binary, the expression p(x, y, z) =
g(g(x, a), f(x, x, y)) for a ∈ A is a polynomial over A). It might seem that polynomials
are the most natural way of encoding polynomial operations, however circuits offer some
advantages. A circuit p(x1, . . . , xn) over A is a finite directed acyclic graph, such that

all the vertices of in-degree 0 (fan-in 0) are labeled by a variable xi (input gates), or a
constant from A (constant gates),
all other vertices (gates) are labeled by a basic operation f of A, and an enumeration of
the ar(f)-many incoming edges (thus fan-in must be ar(f)).

The vertices with no outgoing edge are called output-gates. In this paper we will only
consider circuits over A with one output gate; such circuits also naturally encode the
polynomial operations of A. Two circuits (or polynomials) p(x1, . . . , xn), q(x1, . . . , xn) over
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45:4 Circuit Equivalence in 2-Nilpotent Algebras

A are equivalent if they compute the same polynomial operation over A. For short, let us
then write p(x1, . . . , xn) ≈ q(x1, . . . , xn). Note that polynomials can be considered as those
circuits, whose underlying digraph is a tree. Thus PolEqv(A) reduces to Ceqv(A).

As pointed out in [25] circuits are well suited to discuss computational problems in
universal algebra, by the following folklore result:

▶ Lemma 2.1. Let A and B be two finite algebras with the same universe. If Pol(A) ⊆ Pol(B),
then every circuit c1 over A can be rewritten in logspace into an equivalent circuit c2 over B,
so that c1 and c2 compute the same function.

In particular, this implies that whenever Pol(A) ⊆ Pol(B), the problem Ceqv(A) reduces
to Ceqv(B) in polynomial time.

3 The structure of 2-nilpotent algebras

In this section we discuss 2-nilpotent algebras from congruence modular varieties and the
structure of their polynomial clones. In general, nilpotent algebras can be defined by having a
finite central series of congruences, where centrality is defined via the so-called term condition:

▶ Definition 3.1. Let A be an algebra. For congruences α, β, γ ∈ Con(A) we say that α

centralizes β modulo γ (and write C(α, β; γ)) if and only if for all polynomials p(x, y) ∈ Pol(A),
and all tuples a, b ∈ An, c, d ∈ Am, such that ai ∼α bi for i = 1, . . . , n and cj ∼β dj for
j = 1, . . . , m, the implication

p(a, c) ∼γ p(a, d)
⇒ p(b, c) ∼γ p(b, d)

holds.
An algebra A is called n-nilpotent if there is a central series of length n, i.e. a series of

congruences 0A = α0 ≤ α1 ≤ · · · ≤ αn = 1A, such that C(αi+1, 1A; αi) for i = 0, . . . , n − 1.
An algebra A is called Abelian, if it is 1-nilpotent, and is called nilpotent if it is n-nilpotent,
for some natural number n > 0.

We refer to [11] for further background on commutator theory. For our purposes we
however do not need this original definition of nilpotence, since in congruence modular
varieties we have equivalent characterizations by properties of the polynomial clone. For
Abelian algebras, a classical result of Herrmann states the following:

▶ Theorem 3.2 ([14]). Let A be an algebra from a congruence modular variety. Then A is
Abelian if and only if it is polynomially equivalent to a module.

Here R-modules are considered as algebras (A, +, 0, −, (r)r∈R), where every scalar r ∈ R

is identified with the unary operation r(x) = r · x. Abelian algebras from congruence
modular varieties are also called affine, since their polynomial operations are exactly the
affine operations of some module.

2-nilpotent algebras from congruence modular varieties can be characterized as a special
kind of wreath product (in the sense of [32]) of two affine algebras, which is defined as follows:

▶ Definition 3.3. Let U and L be two affine algebras of the same type F , and let F̂ = (f̂)f∈F

be a family of operations f̂ : Uk → L such that the arity k of f̂ is the arity of the corresponding
operation symbol f ∈ F . We then define L ⊗F̂ U as the algebra of type F with universe
L × U and basic operations

fL⊗F̂ U((l1, u1), . . . , (lk, uk)) = (fL(l1, . . . , lk) + f̂(u1, . . . , uk), fU(u1, . . . , uk)).

If F̂ is clear from the context, we also write L ⊗ U.
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By a result of Freese and McKenzie the following holds:

▶ Theorem 3.4 (Corollary 7.2. in [11]). An algebra A = (A, F A) from a congruence modular
variety is 2-nilpotent if and only if there are two affine algebras U, L of type F , and a set F̂

such that A ∼= L ⊗F̂ U.

In the following we are often going to identify 2-nilpotent A with such a wreath product,
and write A = L ⊗ U for short. We remark however, that this representation of A is in
general not unique. Given a wreath product representation, we can use it to construct its
polynomial expansion with some additional nice properties:

▶ Lemma 3.5. For every finite 2-nilpotent algebra A′ from a congruence modular variety
there exists a finite 2-nilpotent A = L ⊗F̂ U such that
1. Pol(A′) ⊆ Pol(A);
2. A contains Abelian group operations +, 0, −;
3. all other basic operations fA of A are either

“scalar multiplications” fA((l, u)) = (λ · l, 0) or fA((l, u)) = (0, ρ · u),
with respect to the modules equivalent to L and U,
or of “hat type” fA((l1, u1), . . . , (lk, uk)) = (f̂(u1, . . . , uk), 0).

Proof. By Theorem 3.4 we know that A′ is equal to a wreath product L′ ⊗F̂ ′ U′ such
that L′ and U′ are polynomially equivalent to two modules (L, +, 0, −, (λ)λ∈RL

) and
(U, +, 0, −, (ρ)ρ∈RU

).
We define A also to have the universe L × U . The group operations of A are defined by

(l1, u1) + (l2, u2) = (l1 + l2, u1 + u2), 0 = (0, 0) and −(l, u) = (−l, −u). We further define the
“scalar multiplications” on A by fA((l, u)) = (λ · l, 0) for all λ ∈ RL and fA((l, u)) = (0, ρ · u)
for all ρ ∈ RU . Finally, for every f̂ ∈ F̂ ′ we introduce a basic operation of “hat type”
(f̂(u1, . . . , uk), 0) in A.

Note that A is polynomially richer than A′, since every basic operation
fA′((l1, u1), . . . , (lk, uk)) = (c +

∑k
i=1 λili + f̂(u1, . . . , uk), d +

∑k
i=1 ρiui) of A′ is also a

polynomial operation of A. Moreover, A′ is finite, and 2-nilpotent by Theorem 3.4. ◀

For short, let us call the algebra A given by Lemma 3.5 a group coordinatization of A′.
A similar construction for arbitrary nilpotent algebras (from congruence modular varieties)
was discussed in [1, Theorem 4.2].

By Lemma 2.1 and Lemma 3.5 it is enough to prove that the circuit equivalence problem
of every 2-nilpotent group coordinatization is in P in order to prove it for all finite 2-nilpotent
algebras from congruence modular varieties. The main advantage of working in a group
coordinatization A = L ⊗ U is, that every circuits/polynomials can be rewritten easily, by
simplifying linear combinations over the modules U, L, and observing that the composition
of two or more operations of “hat type” is always trivial:

▶ Observation 3.6. Let A = L ⊗ U be a two nilpotent group coordinatisation. If, for
a circuit p(x1, . . . , xn) over A we identify every variable with xi = (li, ui), then p can be
rewritten in polynomial time to an expression

pA((l1, u1), . . . , (lk, uk)) =
(
pL(l1, . . . , lk) + p̂(u1, . . . , uk), pU(u1, . . . , uk)

)
,

where pL and pU are affine combinations over the modules L or U respectively, and
p̂(u1, . . . , un) is a sum of expressions of the form λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm),

such that f̂ ∈ F̂ , all ρi,j are scalars of U, ci ∈ U , and λ is a scalar of L.

STACS 2024



45:6 Circuit Equivalence in 2-Nilpotent Algebras

Note that the expressions p̂ in Observation 3.6 are formed by closing the basic operations
f̂ ∈ F̂ under affine combinations in U (from the inside) and L (from the outside). In the
language of [9] the induced functions p̂ : Un → L form the (L, U)-linearly closed clonoid,
which is generated by the operations F̂ (and their translations by constants).

Now clearly pA is constant, if and only if the operations given by pL, pU and p̂ are all
constant. Since this task is easy to decide for the affine combinations pL and pU, in this
paper we focus mainly on the analysis of the functions p̂ : Un → L.

In the special case that a finite nilpotent algebra A from a modular variety is additionally
of prime power size, it has several nice additional properties. In particular any such algebra
is supernilpotent, see e.g. [3, 30] for background. We are going to use the following result for
such prime power size algebras:

▶ Theorem 3.7 ([3, 1]). Assume that A is a nilpotent algebra from a congruence modular
variety that is finite and of prime power size. Then, there is a constant C ≤ ar(A)(|A| −
1)log2 |A|−1 such that, for every polynomial p(x1, . . . , xn) and any constant 0 ∈ A:

p(x) ≈ 0 ⇔ p(a) = 0 for all a ∈ An(C, 0),

where An(C, 0) := {(a1, . . . , an) ∈ An : |{i : ai ̸= 0}| ≤ C}.

Theorem 3.7 was used in [3] to prove that PolEqv A is in P for supernilpotent algebras.
This result implies also the existence of the polynomial time algorithm solving Ceqv(A).

4 A result on linearly closed clonoids

In this section we analyse functions p̂ : Un → L between Abelian groups (U, +) and (L, +) of
coprime orders. We show that, in some cases, the unary functions between U and L already
generate all such functions. In order to state our results, let us introduce the following
notation:

▶ Notation 4.1. Let p be a prime and k be a natural number. Then, for two tuples b =
(b1, . . . , bn), u = (u1, . . . , un) ∈ (Zpk )n we are going to use the notation b ⊙ u =

∑n
i=1 bi · ui

for the “inner product” of the two tuples in the ring Zpk .
For U = Zpk , let us call a tuple b ∈ Un non-degenerate, if one of its entries is a

multiplicative invertible element of U . Furthermore, let us call a non-degenerate tuple
normalized, if the first invertible element in b is equal to 1 and let us write (Un)∗ for the set
of all normalized tuples.

Note that, for a fixed tuple b ∈ Un the map u 7→ b ⊙ u is an affine operation and equal
to a polynomial of (U, +). In other words, the group (U, +) can be regarded as a module over
the ring (U, +, ·). This explains the slight abuse of notation in the following, in which we use
the inner product b ⊙ u, although talking about operations of the Abelian group (U, +).

▶ Theorem 4.2. Let (U, +) = Zpk for a prime power pk and let (L, +) be an Abelian group
of order coprime to |U |. Then, for every function f : Un → L there are unary functions
mb : U → L for all b ∈ (Un)∗ such that

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u). (1)

Let us call (1) a normal form of f .
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Using the terminology from [9], Theorem 4.2 says that the set of all operations f : Un → L

is the ((U, +), (L, +))-linearly closed clonoid generated by all unary functions from U to L.
Before we prove Theorem 4.2, note that the existence of a normal form for f is equivalent to the
existence of a representation as sum f(u) =

∑
b∈Un mb(b⊙u), in which the coefficients range

over arbitrary b ∈ Un. This follows directly from the fact that every a ∈ Un can be uniquely
written as a = c · b, for b ∈ (Un)∗ and c ∈ U . Thus, if we define m′

b(u) =
∑

c∈U mcb(c · u),
for every b ∈ (Un)∗ we obtain a normal form f(u) =

∑
b∈(Un)∗ m′

b(b ⊙ u).

Proof of Theorem 4.2. We first show by induction on n = 2, 3, . . . that the existence of
normal forms for all binary functions f : U2 → L implies that also all n-ary function
f : Un → L have a normal form.

For n = 2 this is trivial. For an induction step n → n + 1, let f : Un+1 → L be an
n + 1-ary function. Then, for every a ∈ U , by induction hypothesis, there exist unary
functions ma,b : U → L such that f(u, a) =

∑
b∈Un mb,a(b ⊙ u). For every b ∈ Un, we

can then define the binary function sb(u, v) = mb,v(u). By our assumption, every sb has a
normal form. Thus also

f(u, un+1) =
∑

b∈Un

sb(b ⊙ u, un+1)

has a normal form, which can be computed by substituting every binary sb by its normal
form and simplifying the resulting sum. This finishes the proof of our claim.

By the above, it is enough to prove the lemma for arity n = 2. Without loss of generality we
can assume that (L, +) = Zm is also a cyclic group (otherwise we take a direct decomposition
(L, +) ∼=

∏k
i=1(Li, +) into cyclic groups. Then clearly f has a normal form, if all projections

πif have a normal form).
Note that it is further enough to prove that the function

w(u1, u2) := w(0,0)(u1, u2) =
{

1 if (u1, u2) = (0, 0)
0 else,

has a normal form. If this is the case, then all other binary functions f : U2 → L also have a
normal form by the equation f(u1, u2) =

∑
a1,a2∈U f(a1, a2) · w(u1 − a1, u2 − a2).

We prove that w has a normal form by induction on the exponent k of the prime power
pk. If k = 1, then note that

p · w(u1, u2) =
p−1∑
i=0

w0(u1 + iu2) −
p−1∑
j=1

w0(j + u2).

where

w0(u) =
{

1 if u = 0
0 else.

This was shown before in [2, Lemma 5.3], and can easily be verified by a case distinction.
Since L is coprime to U , p has a multiplicative inverse p−1 in L, and thus w(u1, u2) =
p−1(

∑p−1
i=0 w0(u1 + iu2) −

∑p−1
j=1 w0(j + u2)), which can be rewritten to a normal form.

For an induction step k − 1 → k, let us first define the auxiliary function

t(u1, u2) =
pk−1∑
i=0

w0(u1 + iu2) +
pk−1−1∑

i=0
w0(piu1 + u2).
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45:8 Circuit Equivalence in 2-Nilpotent Algebras

We claim that t(u1, u2) = pkw(u1, u2) + min( pk−1

|pu1| ,
pk−1

|pu2| ), where |u| denotes the order of the
group element u ∈ U . To prove this claim, note that for the two sums defining t we have:

pk−1∑
i=0

w0(u1 + iu2) =

{
pk

|u2| if |u2| ≥ |u1|
0 else,

and
pk−1−1∑

i=0

w0(piu1 + u2) =

{
pk−1

|pu1| if |pu1| ≥ |u2|
0 else.

Observe further that u ̸= 0 is equivalent to 1 < |u| = p · |pu|. Thus, if u1 ̸= 0, then
t(u1, u2) = pk−1

|pu2| for |u2| ≥ |u1| and t(u1, u2) = pk−1

|pu1| for |u2| < |u1|; in other words
t(u1, u2) = min( pk−1

|pu1| ,
pk−1

|pu2| ). If u1 = 0 and u2 ≠ 0, then t(u1, u2) = pk

|u2| = min(pk−1, pk−1

|pu2| ).
Finally if u1 = 0 and u2 = 0, then t(u1, u2) = pk + pk−1 = pk + min(pk−1, pk−1).

Thus we have verified that t(u1, u2) = pkw(u1, u2) + min( pk−1

|pu2| ,
pk−1

|pu1| ). If we define
r : (pU)2 → L as the function r(pu1, pu2) = min( pk−1

|pu2| ,
pk−1

|pu1| ), then, by the induction assump-
tion (and pU ∼= Zpk−1) r has a normal form. Since also t has (by definition) a normal form,
it follows that w(u1, u2) = p−k · (t(u1, u2) − r(pu1, pu2)) has a normal form. This finishes
the proof. ◀

As a direct consequence of Theorem 4.2 we obtain the following version of it for direct
products:

▶ Corollary 4.3. Let (U, +) = Zpk for a prime power pk, and (L, +) be an Abelian group of
coprime order. Then, for any set V and any function f : Un × V → L there are functions
mb : U × V → L for all b ∈ Un such that f(u, v) =

∑
b∈(Un)∗ mb(b ⊙ u, v).

Proof. For any fixed value a ∈ V , there is a normal form f(u, a) =
∑

b∈(Un)∗ mb,a(b ⊙ u)
by Theorem 4.2. Thus the functions mb(b ⊙ u, v) = mb,v(b ⊙ u) give us the above normal
form. ◀

This corollary is in particular of interest, if we consider the direct products of cyclic
groups Zpk . Let us then use the following notation:

▶ Notation 4.4. For a list of prime powers p = (pk1
1 , pk2

2 , . . . , pkm
m ), let us define the ring

Zp =
∏m

i=1(Z
p

ki
i

). Moreover, for a list of positive integers n = (n1, n2, . . . , nm), let us define

the n-th power Zp as (Zp)n =
∏m

i=1(Z
p

ki
i

)ni . For short, let us also write Zp for Z(1,1,...,1)
p

and Zn
p for (Zp)n. For every index i = 1, . . . , m, let u(i) denote the projection of u ∈ Zn

p to
(Z

p
ki
i

)ni .
For two tuples b, u ∈ Zn

p we define their “inner product”

b ⊙ u = (b(1) ⊙ u(1), b(2) ⊙ u(2), . . . , b(m) ⊙ u(m)) ∈ Zp.

Note that, for a fixed b ∈ Zn
p the map u 7→ b⊙u is a linear map from Zn

p to Zp. In particular,
for Z(n,n,...,n)

p ∼= (Zp)n it can be considered as an n-ary polynomials of the affine algebra
(Zp, +, π1, . . . , πm), where πi((u(1), . . . , u(n))) = (0, . . . , 0, u(i), 0, . . . , 0).

Let us call a tuple b ∈ Zn
p non-degenerate/normalized, if b(i) is non-degenerate/normalized

for every component i = 1, . . . , m, and let us write (Zn
p)∗ for the set of normalized tuples.

▶ Corollary 4.5. Let (U, +) = Zp for a list of prime powers p = (pk1
1 , pk2

2 , . . . , pkm
m ) and

let (L, +) be an Abelian group of order coprime to |U |. Then, for any n ∈ Nm and any
f : Un → L there are functions mb : U → L for all b ∈ (Un)∗ such that

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u) =
∑

b∈(Un)∗

mb(b(1) ⊙ u(1), . . . , b(m) ⊙ u(m)).

We call this representation a normal form of f .
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Proof. This follows directly from iteratively applying Corollary 4.3 to all the components of
the direct product Zp =

∏m
i∈1 Zp

ki
i

. ◀

At last, we show that for coprime modules U and L, all functions in a finitely generated
(L, U)-clonoid can be rewritten into such a normal form in polynomial time. Note here,
that whenever some mb is equal to the constant 0 function, we can just skip it in the
representation of the normal form. In this way we can avoid summing over the entire (Un)∗

(which has exponential size).

▶ Lemma 4.6. Let U and L be two finite modules over coprime domains, let p be list of
prime powers p = (pk1

1 , pk2
2 , . . . , pkm

m ) such that (U, +) = Zp is the group reduct of U. Let F̂

be a finite set of operations from U to L. Then any n-ary function p̂ in the (L, U)-clonoid
generated by F̂ can be rewritten in polynomial time into a normal form

p̂(u) =
∑
b∈X

mb(b ⊙ u)

where n = (n, n, . . . , n) ∈ Nm and X ⊆ (Un)∗.

Proof. Recall that any p̂(u1, . . . , un) in an (L, U)-clonoid is a sum of expressions
λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρm,iui + cm), with f̂ ∈ F̂ . It is thus enough to prove, that

every such summand can be rewritten into a normal form.
The naive way to do this, would be to substitute every f̂ ∈ F̂ by its normal form,

and simplify the resulting sum. There is however a catch: The ring R of the module
U = (U, +, 0, −, (ρ)ρ∈R) is possibly different from (Zp, +, 0, −, ·, 1). This problem can be
resolved by computing normal forms for all functions

f̂(
∑
ρ∈R

ρu1,ρ,
∑
ρ∈R

ρu2,ρ, . . . ,
∑
ρ∈R

ρun,ρ), (2)

for f̂ ∈ F̂ and distinct variables ui,ρ for all indices i and coefficients ρ ∈ R.
To rewrite an expression λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm), we then collect in

every argument of f̂ all variables according to their coefficients from R, and then substitute
the normal form for the expression (2). ◀

5 A recursive principle

Let (U, +) = Zp and (L, +) be two finite Abelian groups of coprime order. By Corollary 4.5
we know that every function f : Un → L is equal to the sum of operations mb(b ⊙ u). In
this section we prove that we can check in polynomial time whether an f given by such a
normal form is constant. Our algorithm is based on the fact that a normal form is constant,
if and only if it can be partitioned in certain constant subsums, where the partition is formed
with respect to the following equivalence relation ∼:

▶ Definition 5.1. Let (U, +) = Zpk . Then, for two tuples a, b ∈ (Un)∗, let us write a ∼ b,
if a − b ∈ (pU)n.

Note that, if a ∼ b, then an entry ai is invertible (i.e. not a multiple of p) if and only if
bi is invertible.

STACS 2024
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▶ Proposition 5.2. Let (U, +) = Zpk and let (L, +) be of order coprime to U . Let f : Un → L

be an operation given by the normal form

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u).

Then f is constant if and only if for every a ∈ (Un)∗ the sum

fa(u) =
∑

b∈[a]∼

mb(b ⊙ u)

is constant.

Proof. If fa is constant for all a ∈ (Un)∗, then obviously f is also constant, since we can pick
the transversal a1, . . . , as of ∼ and the statement can be inferred from f(u) =

∑s
i=1 fai

(u).
For the other direction, we first assume that a = (1, 0, . . . , 0). Now in the case where

f(u) =
∑

b∈(Un)∗ mb(b ⊙ u) is constant, we are going to prove an even stronger statement,
namely that for every i = 0, . . . , k we have∑

b∈[a]∼

∑
c∈piU

mb(b ⊙ u + c) is constant. (3)

Note that the case i = k in (3) says, that the expression
∑

b∈[a]∼

∑
c∈piU mb(b ⊙ u) = fa(u)

represents a constant function.
We prove (3) by induction on i = 0, 1, . . . , k. For i = 0, the statement is true, since then

the inner sum
∑

c∈U mb(b ⊙ u + c) =
∑

c∈U mb(c) is constant for every b.
For an induction step i → i + 1, let us define C = pi+1U × (piU)n−1. Then, the sum∑
c∈C

f(u + c) =
∑

b∈(Un)∗

∑
c∈C

mb(b ⊙ (u + c)), (4)

is constant, since f is constant.
Note that for every g ∈ (Un)∗, which is not equivalent to a = (1, 0, . . . , 0), there is an

index j ̸= 1, such that gj is invertible. Therefore, if we restrict the sum (4) to only summands
from the equivalence class of such a g, we obtain∑

b∈[g]∼

∑
c∈C

mb(b ⊙ (u + c)) = |C|
pk−i

∑
b∈[g]∼

∑
cj∈piU

mb(b ⊙ u + cj),

which is constant by induction assumption.
This, together with (4) being constant implies that also∑
b∈[a]∼

∑
c∈C

mb(b ⊙ (u + c)) = |C|
pk−i−1

∑
b∈[a]∼

∑
c1∈pi+1U

mb(b ⊙ u + c1)

is constant. Since |C|
pk−i−1 is a power of p, it has an inverse in L. Thus also∑

b∈[a]∼

∑
c1∈pi+1U mb(b ⊙ u + c1) is constant. This finishes the proof of (3), and therefore

also the proof of the proposition in case a = (1, 0, . . . , 0).
Now, to make this proof work also for a ̸= (1, 0, . . . , 0), we need the following.

▷ Claim 1. For a prime p and a natural number k, let U = Zpk and let a ∈ (Un)∗. There
exist two linear maps T ′

a(u) and Ta(u) of type Un 7→ Un such that
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1. Ta maps (a1, . . . , an) → (1, 0, . . . , 0),
2. both T ′

a and Ta are linear bijections from Un → Un,
3. function Ta preserves the equivalence relation ∼,
4. d ⊙ T ′

a(u) = Ta(d) ⊙ u
Let j denote the first coordinate such that aj = 1 and let Sj = {1.., n} \ {1, j}. One can
check that the following definitions of

T ′
a(u) = (uj , u2, u3, . . . , uj−1, u1 − a1uj −

∑
i∈Sj

aiui, uj+1, . . . , un)

and

Ta(d) = (dj , d2 −dj ·a2, d3 −dj ·a3, . . . , dj−1 −dj ·aj−1, d1 −(dj) ·a1, dj+1 −dj ·aj+1, . . . , dn −dj ·an)

satisfy these four conditions (for j = 1 formulas should be interpreted as T ′
a(u) = (u1 −∑n

i=2 aiui, u2, . . . , un) and Ta(d) = (d1, d2 − d1 · a2, d3 − d1 · a3, . . . , dn − d1 · an)).
Hence, if we now define f ′(u) := f(T ′

a(u)) we can see that f ′ is a function with a normal
form defined by m′

b = m(Ta)−1(b). This shows, that the Proposition is true for the pair (f ,
[a]∼) iff it is true for the pair (f ′, [(1, 0, . . . , 0)]∼) . This finishes the proof, as we already
considered the case when a = (1, 0, . . . , 0). ◀

As we work not only with (U, +) = Zpk , but also with more general groups (U, +) = Zp,
we need to adjust our definitions accordingly.

▶ Definition 5.3. For a list of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp and let
n ∈ Nm. For an i ∈ {1, . . . , m} let us say that two elements the a, b ∈ (Un)∗ are in
equivalence relation a ∼i b if and only if they satisfy a(i) ∼ b(i) in Z

p
ki
i

.

Here is a very important corollary which is a direct consequence of Proposition 5.2 applied
to the direct component Z

p
ki
i

of Zp.

▶ Corollary 5.4. For a list of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp and (L, +)
be a finite Abelian group of coprime order. For n ∈ Nm let f : Un → L be an operation given
by a normal form

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u).

Then for every i ∈ {1, . . . , m}: function f is constant if and only if for every a ∈ (Un)∗ we
have that

fi,a(u) =
∑

b∈[a]∼i

mb(b ⊙ u)

is constant.

Now, we are going to use Corollary 5.4 to check in polynomial time, if a function in a
normal form is constant.

▶ Lemma 5.5. For a fixed tuple of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp, and
(L, +) be a finite Abelian group of coprime orders. Then, for n ∈ Nm and any function
f : Un → L that is given by a normal form

f(u) =
∑
b∈X

mb(b ⊙ u),

for some X ⊆ (Un)∗, we can decide in time O(|f |C) whether f is constant or not (with C

depending only on p).
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Proof. The algorithm, that we are going to present, is based on a recursion. In each recursive
call, both the total number of variables on all coordinates (i.e. n1 + n2 + . . . + nm), as well
as the sum of all exponents (i.e. k1 + . . . + km) are decreased by at least one.

Note that, in the case when for all i = 1, ..., m we have either ni = 0 or ki = 0, the
function f is constant. So first, we pick an appropriate coordinate i with ni ≠ 0 and ki ≠ 0.
Now we take a transversal a1, . . . , al of ∼i ∩(X × X). From Corollary 5.4 we know that the
function f is constant iff. all the fi,a’s are constant, for all a ∈ {a1, . . . , al}.

Now, we will slightly transform those fi,a’s by applying linear maps to their argu-
ments. We will use linear maps from Claim 1 applied to the i-th component of U , that
is: T ′

a(i)(u
(i)
1 , . . . , u

(i)
ni ), Ta(i)(d(i)

1 , . . . , d
(i)
ni ) in order to define linear maps on the entire U as

follows:

(T ′
a(u))(k) =

{
T ′

a(i)(u
(i)
1 , . . . , u

(i)
ni ) if k = i

(u(k)
1 , . . . , u

(k)
nk ) otherwise

as well as

(Ta(d))(k) =
{

Ta(i)(d(i)
1 , . . . , d

(i)
ni ) if k = i

(d(k)
1 , . . . , d

(k)
nk ) otherwise

Note, that those maps only act on the variables from i-th component of U and keep other
variables untouched. Since T ′

a(u) is just a permutation of Un, instead of checking that fi,a(u)
is constant we can check that f ′

i,a(u) = fi,a(T ′
a(u)) is constant. Moreover, we can see that

d ⊙ T ′
a(u) = Ta(d) ⊙ u (like in the Claim 1), so we can actually compute the normal form of

each such f ′
i,a, as it is given by the formula:

f ′
i,a(u) =

∑
b∈X′

m′
b(b ⊙ u),

where m′
b = m(Ta)−1(b) and X ′ = Ta([a]∼i

∩ X).
In order to check that such created f ′

i,a’s are constant we will substitute constants c ∈ Z
p

ki
i

for the variable u
(i)
1 in f ′

i,a and recursively check that such created f ′
i,a[u(i)

1 = c] are constant.
Additionally, we have to also make sure, that the returned constants are equal for all different
c ∈ Z

p
ki
i

. For this purpose, it is enough to assign to all variables the value 0 and check that

the set {f ′
i,a[u(i)

1 = c](0, . . . , 0) : c ∈ Z
p

ki
i

} has size one.
Before the recursive call, we made a substitution for the variable and thus reduced the

number of variables (on i-th coordinate) by one. But the effort taken to compute this f ′
i,a,

instead of applying substitutions directly to f , will now provide us with an additional benefit.
It turns out, that as a side effect of this substitution, we have also implicitly reduced the
size of the domain U . To see it, recall that Ta(a)(i) = (1, 0, . . . , 0) and Ta preserves the ∼i

relation (by Claim 1). It means that all the b ⊙ u that occur in the normal form of f ′
i,a on

the i-th coordinate have a very special form: b(i) ⊙ u(i) = u
(i)
1 + pi · (db ⊙ (u(i)

2 , . . . , u
(i)
ni )),

for some db ∈ (Z
p

ki
i

)ni−1. So now, when we substitute constant c for u
(i)
1 , the normal form

of f ′
i,a transforms into the expression:∑
b∈X′

m′
b(b(1) ⊙ u(1), . . . , c + pi · (db ⊙ (u(i)

2 , . . . , u(i)
ni

)), . . . , b(m) ⊙ u(m)),

Here, linear combinations of variables u
(i)
j are in fact computable in Z

p
ki−1
i

, since pi · Z
p

ki
i

≡
Z

p
ki−1
i

(where ≡ denotes an additive group isomorphism). So we can just reinterpret
the variables to the new domain, and normalize the obtained form, so that now we can
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recursively check if f ′
i,a[u(i)

1 = c] is constant, when treated as a function over the domain
U ′ = (Z

p
k1
1

) × . . . , ×(Z
p

ki−1
i

) × . . . × (Zpkm
m

). For completness, notice, that while going from

f to the normalized form of f ′
i,a[u(i)

1 = c], some variable other than u
(i)
1 can disappear. To

handle it, we can just decrease the number of variables appropriately before the recursive
call. The described procedure can be summarized as follows.

Algorithm 1 For a fixed Abelian (L, +), this algorithm takes as input a list of prime powers
p = (pk1

1 , . . . , pkm
m ) coprime to |L|, a list of arities n = (n1, . . . , nm), and checks whether a function

f : (Zp)n → L given by a normal form f(u) =
∑

b∈X
(b ⊙ u) is constant.

1: procedure IsConstant(p, n, f : (Zp)n → L)
2: if for all i = 1, . . . , m: ni = 0 or pki

i = 1 then return True
3: else
4: Let i be the minimal value such that ni, ki ̸= 0
5: Let a1, a2, . . . , as be a transversal of ∼i inside X × X

6: for all a ∈ {a1, . . . , as} do
7: for all c ∈ Z

p
ki
i

do

8: Compute a normal form of f ′
i,a[u(i)

1 = c]
9: Compute new domain p′ and new arities n′

10: if ¬ IsConstant(p′, n′, f ′
i,a[u(i)

1 = c]) then return False
11: if |{f ′

i,a[u(i)
1 = c](0, . . . , 0) : c ∈ Z

p
k1
i

}| ≠ 1 then return False

12: return True

Now we analyse the running time of the above algorithm. Procedure IsConstant(p, n,
f) first computes at most pki

i |f |-many functions f ′
i,a[u(i)

1 = c], whose normal forms have sizes
bounded by |f |. To obtain them we need to regroup the normal form of f into ∼i classes and
apply linear map T ′, which can be done with a naive quadratic algorithm. For the obtained
functions, it compares values f ′

i,a[u(i)
1 = c](0, . . . , 0), which takes linear time in |f |. Moreover,

all the normalizations can be done in a linear time. The recursion depth of IsConstant is
at most

∑m
i=1 ki, thus we obtain a running time of O(|f |2 · |f |(k1+···+km)).

A careful reader can see, that actually the sum of lengths of expressions that are computed
during the runtime of the above algorithm is bounded by a linear function in |f |. Using this
observation one can prove an even more accurate result, namely that the presented algorithm
is in fact quadratic in the worst case. ◀

6 Proof of the main theorem

We are now ready to prove the main theorem:

▶ Theorem 6.1. Let A be a finite 2-nilpotent algebra from a congruence modular variety.
Then we can decide in time O(nC) whether an n-ary circuit p(x1, . . . , xn) over A represents a
constant function, where C depends only on A. In particular, this implies that Ceqv(A) ∈ P.

Proof. By Lemma 2.1 and Lemma 3.5, we can without loss of generality assume that
A = L ⊗F̂ U is a group extension. If we identify every variable xi of the circuit p(x1, . . . , xn)
with a pair xi = (li, ui) of variables over L and U , then, by Observation 3.6, we can rewrite
it in polynomial time to an expression

pA((l1, u1), . . . , (lk, uk)) =
(
pL(l1, . . . , lk) + p̂(u1, . . . , uk), pU(u1, . . . , uk)

)
,

STACS 2024



45:14 Circuit Equivalence in 2-Nilpotent Algebras

where pL(l1, . . . , lk) = c +
∑k

i=1 λili and pU(u1, . . . , uk) = d +
∑k

i=1 ρiui are affine com-
binations in the modules L and U respectively, and p̂(u1, . . . , un) is a sum of expressions
λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm), for f̂ ∈ F̂ .

Clearly pA is constant if and only if pL, pU and p̂ are constant. For the affine operations
pL, pU we can check this, by simply checking whether all coefficients λi and ρi are equal
to 0. Thus the problem reduces to checking, whether the expression p̂(u1, . . . , un) defines a
constant function.

Since L is a module, it has a direct decomposition L =
∏r

i=1 Li into factors of prime
power size. If πi denotes the projection of L to Li, then p̂ is constant if and only if πi ◦ p̂ is
constant for every i = 1, . . . , m. Thus, without loss of generality, we can assume that the
size of L is a power of some prime q. Also U can be directly decomposed into U = U1 × U2
such that |U1| is a power of q, and |U2| is coprime to q. Let us then identify every variable u

over U with its direct decomposition (u(1), u(2)) with respect to U1 × U2.
Now we want to check that p̂(u(1), u(2)) is constant. Note, that p̂(u(1), u(2)) is an

expression of (L, (U1 × U2))-clonoid. However, by fixing u(2) to some constant a(2) ∈ (U2)n

we create p̂(u(1), a(2)), which is an expression of (L, U1)-clonoid. This clonoid is generated
by all the functions f̂b(2)(u(1)) = f̂(u(1), b(2)) and is of prime power order. Hence, we can
associate this (L, U1)-clonoid with a 2-nilpotent algebra of prime power order (q is the prime
here). By Theorem 3.7 there is a set S of polynomial size O(nC) (and independent of a(2)),
such that p̂(u(1), a(2)) is constant iff it is constant on the set S. So now, going back to
(L, (U1 × U2))-clonoid, our expression p̂(u(1), u(2)) represents a constant function iff all
the p̂(a(1), u(2)) represent the same constant function c for all a(1) ∈ S. So, in order to
check that p̂(u(1), u(2)) is constant, it is enough to pick arbitrary tuple 0 ∈ U2, check that
{p(a(1), 0) : a(1) ∈ S} is one element set, and then check that each p̂(a(1), u(2)) is constant.

Since the set S is of polynomial size, this is a polynomial-time Turing reduction from the
problem over the (L, (U1 × U2))-clonoid to the problem over the (L, U2)-clonoid, where
this (L, U2)-clonoid is generated by all operations f̂b(1)(u(2)) = f̂(b(1), u(2)), for f̂ ∈ F̂ and
b(1) ∈ (U1)ar(f). Since |L| and |U2| are coprime, by Lemma 4.6 we know that p̂(a(1), u(2))
can be rewritten into a normal form

∑
b(2)∈X mb(2)(b(2) ⊙ u(2)) in polynomial time (where

X ⊆ ((U2)n)∗, with n = (ar(f), . . . , ar(f)). By Lemma 5.5 we can check in polynomial time,
whether this normal form represents a constant function. Thus we can check in polynomial
time whether p̂(u(1), u(2)) is constant.

In order to obtain an algorithm for Ceqv(A), note that any identity p ≈ q is equivalent
to p + (−q) ≈ 0 over A (recall that A is a group extension), so Ceqv(A) can be solved by
checking whether p + (−q) is constant and evaluates to 0 at some tuple. ◀

7 Conclusions and open problems

As it was mentioned in the introduction there is a characterization (under assumptions of
ETH and CDH) of algebras from a congruence modular variety for which Ceqv can be
solved in randomized polynomial time. Moreover, we are not far from obtaining a similar
characterization of algebras for which Ceqv can be solved in deterministic polynomial
time. The only case we have to consider to obtain such a characterization is algebras of
supernilpotent rank 2, i.e for every algebra A having supernilpotent congruence α such that
A/α is also supernilpotent. Note that in this paper we show a deterministic polynomial time
algorithm for every algebra A having an abelian congruence α such that A/α is also abelian.
The interesting question is if we can extend our recursive principle to all algebras with
supernilpotent rank 2. Note that there are many structural similarities between 2-nilpotent
algebras and algebras with supernilpotent rank 2.
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This leads us to the following question.

▶ Problem 1. Let A be a finite algebra from congruence modular variety with supernilpotent
rank 2.

Is there a deterministic polynomial time algorithm solving Ceqv A?

Note that the probabilistic algorithm solving Csat for nilpotent algebras of supernilpotent
rank 2 relies on Constant Degree Hypothesis (introduced in [5]), i.e. the conjecture that there
are no subexponential size ANDd ◦ MODm ◦ MODp-circuits computing ANDn function of
arbitrarly large arity, where d and m are some constant integers and p is a prime number.
Despite the fact that proving CDH will not automatically give us a deterministic polynomial
time algorithm solving Ceqv for algebras of supernilpotent rank 2, it is hard to believe that
such an algorithm can exist in case CDH fails. It leads us to a natural question.

▶ Problem 2. Does Constant Degree Hypothesis hold?

Although CDH is a quite a long-standing hypothesis, we strongly believe that it holds. It
is already proven in some restricted settings, for instance when the number of connections
between ANDd gates and MODm gates is restricted [13]. Recently, Kawałek and Weiss [26]
have shown that if there exist circuits witnessing that CDH fails they have to be non-
symmetric.

The natural next step after characterizing algebras from congruence modular varieties for
which Ceqv can be solved in polynomial time is to study the computational complexity of
Ceqv for algebras outside congruence modular variety. The most notable example of such
algebras are semigroups.

▶ Problem 3. For which semigroups can Ceqv be solved in (deterministic) polynomial time?
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