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Abstract
We study parameterized and approximation algorithms for a variant of Set Cover, where the
universe of elements to be covered consists of points in the plane and the sets with which the points
should be covered are segments. We call this problem Segment Set Cover. We also consider a
relaxation of the problem called δ-extension, where we need to cover the points by segments that are
extended by a tiny fraction, but we compare the solution’s quality to the optimum without extension.

For the unparameterized variant, we prove that Segment Set Cover does not admit a PTAS
unless P=NP, even if we restrict segments to be axis-parallel and allow 1

2 -extension. On the
other hand, we show that parameterization helps for the tractability of Segment Set Cover:
we give an FPT algorithm for unweighted Segment Set Cover parameterized by the solution
size k, a parameterized approximation scheme for Weighted Segment Set Cover with k being
the parameter, and an FPT algorithm for Weighted Segment Set Cover with δ-extension
parameterized by k and δ. In the last two results, relaxing the problem is probably necessary: we
prove that Weighted Segment Set Cover without any relaxation is W[1]-hard and, assuming
ETH, there does not exist an algorithm running in time f(k) · no(k/ log k). This holds even if one
restricts attention to axis-parallel segments.
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1 Introduction

In the classic Set Cover problem, we are given a set of elements (universe) U and a family
of sets F that are subsets of U and sum up to the whole U . The task is to find a subfamily
S ⊆ F such that

⋃
S = U and the size of S is minimum possible.

In the most general form, Set Cover is NP-complete, inapproximable within factor
(1 − δ) ln |U| for any δ > 0 assuming P ̸= NP [5], and W[2]-complete with the natural
parameterization by the size of the solution [4, Theorem 13.21]. However, restricting the
problem to various specialized settings can lead to more tractable special cases. Particularly
well-studied setting is that of Geometric Set Cover, where U consists of points in some
Euclidean space V (most often the plane R2), while F consists of various geometric objects
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in V . In this paper we take a closer look at the Segment Set Cover problem, where we
assume that U is a finite set of points in the plane and F consists of segments in the plane
(not necessarily axis-parallel). Each of these problems has also a natural weighted variant,
where each set A ∈ F comes with a nonnegative real weight w(A) and the task is to find a
solution with the minimum possible total weight.

Approximation. Over the years there has been a lot of work related to approximation al-
gorithms for Geometric Set Cover. Notably, Geometric Set Cover with unweighted
unit disks or weighted unit squares admits a PTAS [6,17]. When we consider the same
problem with weighted disks or squares (not necessarily unit), the problem admits a
QPTAS [16], see also [19]. On the other hand, Chan and Grant proved that unweighted
Geometric Set Cover with axis-parallel fat rectangles is APX-hard [3]. They also showed
similar hardness for Geometric Set Cover with many other standard geometric objects.
See the introductory section of [3] for a wider discussion of approximation algorithms for
Geometric Set Cover with various kinds of geometric objects.

Parameterization. We consider Geometric Set Cover parameterized by the size of
solution: Given an instance (U , F) and a parameter k, the task is to decide whether there is
a solution of cardinality at most k. In the weighted setting, we look for a minimum-weight
solution among those of cardinality at most k, and k remains a parameter.

(Unweighted) Geometric Set Cover where F consists of lines in the plane is called
Point Line Cover, and it is a textbook example of a problem that admits a quadratic
kernel and a 2O(k log k) · nO(1)-time fixed-parameter algorithm (cf. [4, Exercise 2.4]). See
also the work of Kratsch et al. [10] for a matching lower bound on the kernel size and a
discussion of the relevant literature. The simple branching and kernelization ideas behind
the parameterized algorithms for Point Line Cover were generalized by Langerman and
Morin [11] to an abstract variant of Geometric Set Cover where the sets of F can be
assigned a suitable notion of dimension. This framework in particular applies to the problem
of covering points with hyperspaces in Rd.

As proved by Marx, unweighted Geometric Set Cover with unit squares in the plane
is already W[1]-hard [12, Theorem 5]. Later, Marx and Pilipczuk showed that there is
an algorithm running in time nO(

√
k) that solves weighted Geometric Set Cover with

squares or with disks, and that this running time is tight under the Exponential-Time
Hypothesis (ETH) [15]. However, they also showed that any small deviations from the setting
of squares or disks – for instance considering thin rectangles or rectangles with sidelengths
in the interval [1, 1 + δ] for any δ > 0 – lead to problems for which there are lower bounds
refuting running times of the form f(k) · no(k) or f(k) · no(k/ log k), for any computable f .
See [15] for a broader exposition of these results and for more literature pointers.

We are not aware of any previous work that concretely considered the
Segment Set Cover problem. In particular, it seems that the framework of Langer-
man and Morin [11] does not apply to this problem, since no suitable notion of dimension
can be assigned to segments in the plane (more concretely, the fundamental [11, Lemma 1]
fails, which renders further arguments not applicable). In [13] Marx considered the related
Dominating Set problem in intersection graphs of axis-parallel segments, and proved it
to be W[1]-hard. The parameterized complexity of the Independent Set problem for
segments in the plane was studied in the same work of Marx, and independently by Kára
and Kratochvíl [8].
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δ-extension. We also consider the δ-extension relaxation of the Segment Set Cover
problem. Formally, for a center-symmetric object L ⊆ R2 with center of symmetry S =
(xs, ys), the δ-extension of L is the set:

L+δ = {(1 + ϵ) · (x − xs, y − ys) + (xs, ys) : (x, y) ∈ L, 0 ⩽ ϵ < δ}.

That is, L+δ is the image of L under homothety centred at S with scale (1 + δ) but with the
extreme points excluded. In particular, δ-extension turns a closed segment into a segment
without endpoints and a rectangle into the interior of a rectangle; this is a technical detail
that will turn out to be useful in presentation.

In Geometric Set Cover with δ-extension, we assume that in the given instance (U , F),
F consists of center-symmetric objects, and we are additionally given the accuracy para-
meter δ > 0. The task is to find S ⊆ F such that S+δ := {L+δ : L ∈ S} covers all points
in U , but the quality of the solution – be it the cardinality or the weight of S – is compared
to the optimum without assuming extension. Thus, requirements on the the output solution
are relaxed: the points of U have to be covered only after expanding every object of S a tiny
bit. The parameterized variants of Geometric Set Cover with δ-extension are defined
naturally: the task is to either find a solution of size at most k that covers all of U after
δ-extension, or conclude that there is no solution of size k that covers U without extension.

The study of the δ-extension relaxation is motivated by the δ-shrinking relaxation
considered in the context of the Geometric Independent Set problem: given a family
F of objects in the plane, find the maximum size subfamily of pairwise disjoint objects. In
the δ-shrinking model, the output solution is required to be disjoint only after shrinking
every object by a 1 − δ multiplicative factor. Geometric Independent Set remains
W[1]-hard for as simple objects as unit disks or unit squares [13] and admits a QPTAS for
polygons [2], but the existence of a PTAS for the problem is widely open. However, as first
observed by Adamaszek et al. [1], and then confirmed by subsequent works of Wiese [20]
and of Pilipczuk et al. [18], adopting the δ-shrinking relaxation leads to a robust set of FPT
algorithms and (efficient or parameterized) approximation schemes. The motivation of this
work is to explore if the analogous δ-extension relaxation of Geometric Set Cover also
leads to more positive results.

In fact, we are not the first to consider the δ-extension relaxation of
Geometric Set Cover. In [7], Har-Peled and Lee considered the Weighted Geometric
Set Cover problem with δ-extension1 for fat polygons, and proved that the problem admits
a PTAS with running time |F|O(ϵ−2δ−2) · |U|. Given this result, our goal is to understand
the complexity in the setting of ultimately non-fat polygons: segments.

Our contribution. First, we show that Segment Set Cover does not have a polynomial-
time approximation scheme (PTAS) assuming P̸=NP, even if segments are axis-parallel and
we relax the problem with 1

2 -extension. Thus, there is no hope for the analog of the result of
Har-Peled and Lee [7] in the setting of segments.

▶ Theorem 1. There exists a constant γ > 0 such that, unless P=NP, there is no polynomial-
time algorithm that given an instance (U , F) of (unweighted) Segment Set Cover in
which all segments are axis-parallel, returns a set S ⊆ F such that S+ 1

2 covers U and
|S| ⩽ (1 + γ) · opt, where opt denotes the minimum size of a subset of F that covers U .

1 We note that Har-Peled and Lee considered a different definition of δ-extension, where every object L is
extended by all points at distance at most δ · rad(L), where rad(L) is the radius of the largest circle
inscribed in L. This definition works well for fat polygons, but not so for segments, hence we adopt the
homothetical definition of δ-extension discussed above.
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Theorem 1 justifies also considering parameterization by the solution size k. For this
parameterization, we provide three parameterized algorithms:

an FPT algorithm for (unweighted) Segment Set Cover with k being the parameter;
a parameterized approximation scheme (PAS) for Weighted Segment Set Cover: a
(1 + ϵ)-approximation algorithm with running time of the form f(k, ϵ) · (|U||F|)O(1); and
an FPT algorithm for Weighted Segment Set Cover with δ-extension, where both
k and δ > 0 are the parameters.

Formal statements of these results follow below.

▶ Theorem 2. There is an algorithm that given a family F of segments in the plane, a set
U of points in the plane, and a parameter k, runs in time kO(k) · (|U||F|)O(1), and either
outputs a set S ⊆ F such that |S| ⩽ k and S covers all points in U , or determines that such
a set S does not exist.

▶ Theorem 3. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and ϵ > 0, runs in time (k/ϵ)O(k) ·(|U||F|)O(1)

and outputs a set S such that:
S ⊆ F , |S| ⩽ k, and S covers all points in U , and
the weight of S is not greater than 1 + ϵ times the minimum weight of a subset of F of
size at most k that covers U ,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

▶ Theorem 4. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and δ > 0, runs in time f(k, δ) · (|U||F|)O(1)

for some computable function f and outputs a set S such that:
S ⊆ F , |S| ⩽ k, S+δ covers all points in U , and
the weight of S is not greater than the minimum weight of a subset of F that covers U
without δ-extension,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

It is natural to ask whether relying on relaxations – (1+ ϵ)-approximation or δ-extension –
is really necessary for Weighted Segment Set Cover, as Theorem 2 shows that it is not
in the unweighted setting. Somewhat surprisingly, we show that this is the case by proving
the following result. Recall that here we consider Weighted Segment Set Cover as a
parameterized problem where we seek a solution of the minimum total weight among those
of cardinality at most k.

▶ Theorem 5. The Weighted Segment Set Cover problem is W[1]-hard when paramet-
erized by k and assuming ETH, there is no algorithm for this problem with running time
f(k) · (|U| + |F|)o(k/ log k) for any computable function f . Moreover, this holds even if all
segments in F are axis-parallel.

Thus, the uncovered parameterized complexity of Segment Set Cover is an interesting
one: the problem is FPT when parameterized by the solution size k in the unweighted
setting, but this tractability ceases to hold when moving to the weighted setting. However,
fixed-parameter tractability in the weighted setting can be restored if one considers any of
the following relaxations: (1 + ϵ)-approximation or δ-extension.

Organization. In Section 2 we prove Theorems 2, 3 and 4, while in Section 3 we prove
Theorem 5. Due to space constraints, the proof of Theorem 1 is presented only in the full
version of this article [9].
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2 Algorithms

In this section we give our positive results – Theorems 2, 3, and 4. We start with a shared
definition. For a set of collinear points C in the plane, extreme points of C are the endpoints
of the smallest segment that covers all points from set C. In particular, if C consists of one
point or is empty, then there are 1 or 0 extreme points, respectively.

2.1 Unweighted segments and a parameterized approximation scheme
We first a give an FPT algorithm for Weighted Segment Set Cover where we addition-
ally consider the number of different weights to be the parameter.

▶ Theorem 6. There is an algorithm that given a family F of weighted segments in the
plane, a set U of points in the plane, and a parameter k, runs in time (qk)O(k) · (|U||F|)O(1),
where q is the number of different weights used by the weight function, and either outputs a
solution S ⊆ F such that |S| ⩽ k and S covers all points in U , or determines that such a set
S does not exist.

Clearly, Theorem 2 follows from applying Theorem 6 for q = 1. However, later we
use Theorem 6 for larger values of q to obtain our parameterized approximation scheme:
Theorem 3.

We remark that the proof of Theorem 6 relies on branching and kernelization arguments
that are standard in parameterized algorithms. Even though the statement does not formally
follow from the work of Langerman and Morin [11], the basic technique is very similar.

Towards the proof of Theorem 6, we may assume that the given instance (U , F , w), where
w : F → R⩾0 denotes the weight function on F , is reasonable in the following sense: there
do not exist distinct A, B ∈ F with the same weight such that A ∩ U ⊆ B ∩ U . Indeed, then
A could be safely removed from F , since in any solution, taking B instead of A does not
increase the weight and may only result in covering more points in U . In the next lemma
we show that in reasonable instances we can find a small subset of F that is guaranteed to
intersect every small solution.

▶ Lemma 7. Suppose (U , F , w) is a reasonable instance of Weighted Segment Set
Cover where the weight function w uses at most q different values. Suppose further that
there exists a line L in the plane with at least k + 1 points of U on it. Then there exists a
subset R ⊆ F of size at most qk such that every subset S ⊆ F with |S| ⩽ k that covers U
satisfies |R ∩ S| ⩾ 1. Moreover, such a subset R can be found in polynomial time.

Proof. Let us enumerate the points of U that lie on L as x1, x2, . . . , xt in the order in which
they appear on L. By reasonability of (U , F), for every i ∈ {1, . . . , k} there exist at most q

different segments in F that are collinear with L and cover xi, but do not cover xi−1 (or
just cover x1, in case i = 1). Indeed, if A ∈ F is collinear with L, covers xi and does not
cover xi−1, then A ∩ U = {xi, . . . , xj} for some j ⩾ i; so if there was another B ∈ F with
the same property and the same weight as A, then the reasonability of (U , F) would imply
that A = B. Let Ri be the set of segments with the property discussed above; then |Ri| ⩽ q.
Our proposed set is defined as:

R :=
k⋃

i=1
Ri.

Clearly, R can be found in polynomial time and |R| ⩽ qk. It remains to prove that R has
the desired property. Consider any set S ⊆ F of size at most k that covers U .

STACS 2024
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Let SL be the set of segments from S that are collinear with L. Every segment that is
not collinear with L can cover at most one of the points that lie on this line. Hence, if SL

was empty, then S would cover at most k points on line L, but L had at least k + 1 different
points from U on it.

Therefore, we know that SL is not empty and hence |S − SL| ⩽ k − 1. Segments from
S − SL can cover at most k − 1 points among {x1, x2, . . . , xk}, therefore at least one of these
points must be covered by segments from SL. Let i ∈ {1, . . . , k} be the smallest index such
that xi is covered by a segment in SL. Then, by minimality, this segment cannot cover xi−1
(if existent), so it must belong to Ri. We conclude that R ∩ S is nonempty, as desired. ◀

With Lemma 7 in hand, we prove Theorem 6 using a straightforward branching strategy.

Proof of Theorem 6. Let (U , F , w) be the given instance and k be the given parameter:
the target size of a solution. We present a recursive algorithm that proceeds as follows:
(1) As long as there are distinct sets A, B ∈ F with A∩U ⊆ B∩U and w(A) = w(B), remove

A from F . Once this step is applied exhaustively, the instance (U , F , w) is reasonable.
(2) If there is a line with at least k + 1 points from U , we branch over the choice of adding

to the solution one of the at most qk possible segments from the set R provided by
Lemma 7. That is, for every s ∈ R, we recurse on the instance (U − s, F − {s}, w),
and parameter k − 1. If any such recursive call returned a solution S ′, then return the
lightest among solutions S ′ ∪ {s} obtained in this way. Otherwise, return that there is
no solution.

(3) If every line has at most k points on it and |U| > k2, then return that there is no solution.
(4) If |U| ⩽ k2, solve the problem by brute force: check all subsets of F of size at most k.

That the algorithm is correct is clear: the correctness of step (2) follows from Lemma 7,
and to see the correctness of step (3) note that if no line contains more than k points, than
no segment of F can cover more than k points in U , hence having more than k2 points in U
implies that there is no solution of size at most k.

For the time complexity, observe that in the leaves of the recursion we have |U| ⩽ k2,
so |F| ⩽ qk4, because every segment can be uniquely identified by its weight and the two
extreme points it covers (this follows from reasonability). Therefore, there are

(
qk4

⩽k

)
⩽ (qk)O(k)

possible solutions to check, each can be checked in polynomial time. Thus, step (4) takes
time (qk)O(k) whenever applied in the leaf of the recursion.

During the recursion, the parameter k is decreased with every recursive call, so the
recursion tree has depth at most k and at each node we branch over at most qk possibilities.
Thus, there are at most O((qk)k) nodes in the recursion tree, and local computation in each of
them can be done in time (|U||F|)O(1) · (qk)O(k) (the second factor is due to possibly applying
step (4) in the leaves). Thus, the time complexity of the algorithm is (qk)O(k)·(|U||F|)O(1). ◀

Finally, we use Theorem 6 to prove Theorem 3, recalled below for convenience. The idea
is to multiplicatively round the weights so that we obtain an instance with only few different
weight values, on which the algorithm of Theorem 6 can be employed.

▶ Theorem 3. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and ϵ > 0, runs in time (k/ϵ)O(k) ·(|U||F|)O(1)

and outputs a set S such that:
S ⊆ F , |S| ⩽ k, and S covers all points in U , and
the weight of S is not greater than 1 + ϵ times the minimum weight of a subset of F of
size at most k that covers U ,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .
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Proof. Let S⋆ be an optimum solution: a minimum-weight set at most k segments in F
that covers U . The algorithm does not know S⋆, but by branching into at most |F| choices
we may assume that it knows the weight of the heaviest segment in S⋆; call this weight W .
Thus, we have W ⩽ w(S⋆) ⩽ kW . We may dispose of all segments in F whose weight is
larger than W , as they will for sure not participate in the solution.

We define a new weight function w′ : F → R⩾0 as follows. Consider any segment A ∈ F .
If w(A) ⩽ ϵ

2k · W , then set w′(A) := ϵ
2k · W . Otherwise, set w′(A) := W

(1+ϵ/2)i , where i is the
unique integer such that

W

(1 + ϵ/2)i+1 < w(A) ⩽ W

(1 + ϵ/2)i
.

Note that the assumption w(A) > ϵ
2k · W implies that we always have i ⩽ log1+ϵ/2(2k/ϵ) =

O(1/ϵ log(k/ϵ)). As we also have i ⩾ 0 due to removing segments of weight larger than W ,
we conclude that the weight function w′ uses at most O(1/ϵ log(k/ϵ)) different weight values.

Next, observe that for every segment A ∈ F , we have

w′(A) ⩽ (1 + ϵ/2) · w(A) + ϵ

2k
· W.

Summing this inequality through all segments of S⋆ yields

w′(S⋆) ⩽ (1 + ϵ/2) · w(S⋆) + k · ϵ

2k
· W ⩽ (1 + ϵ/2) · w(S⋆) + ϵ/2 · w(S⋆) = (1 + ϵ) · w(S⋆).

As S⋆ is an optimum solution, we conclude that the optimum solution in the instance
(U , F , w′) for parameter k is at most (1 + ϵ) times heavier than the optimum solution in the
instance (U , F , w) for parameter k. Hence, it suffices to apply the algorithm of Theorem 6
to the instance (U , F , w′) and parameter k and return the obtained solution. The running
time is (1/ϵ · k log(k/ϵ))O(k) · (|U||F|)O(1) = (k/ϵ)O(k) · (|U||F|)O(1), as promised. ◀

2.2 Weighted segments with δ-extension
In this section we prove Theorem 4, restated below for convenience.

▶ Theorem 4. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and δ > 0, runs in time f(k, δ) · (|U||F|)O(1)

for some computable function f and outputs a set S such that:
S ⊆ F , |S| ⩽ k, S+δ covers all points in U , and
the weight of S is not greater than the minimum weight of a subset of F that covers U
without δ-extension,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

Roughly speaking, our approach to prove Theorem 4 is to find a small kernel for the
problem; but we need to be careful with the definition of kernelization, because we work in
the δ-extension model. The key technical tool will be the notion of a dense subset.

Dense subsets. Intuitively speaking, for a set of collinear points C, a subset A ⊆ C is dense
if any small cover of A becomes a cover of C after a tiny extension. This is formalized in the
following definition.

▶ Definition 8. For a set of collinear points C, a subset A ⊆ C is (k, δ)-dense in C if for
any set of segments R that covers A and such that |R| ⩽ k, it holds that R+δ covers C.

STACS 2024
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The key combinatorial observation in our approach is expressed in the following Lemma 9:
in every collinear set C one can always find a (k, δ)-dense subset of size bounded by a function
of k and δ. Later, this lemma will allow us to find a kernel for our original problem.

▶ Lemma 9. For every set C of collinear points in the plane, δ > 0 and k ⩾ 1, there exists
a (k, δ)-dense set A ⊆ C of size at most (2 + 4

δ )k. Moreover, such a (k, δ)-dense set can be
computed in time O(|C| · (2 + 4

δ )k).

Proof. We give a proof of the existence of such a dense subset A, and at the end we will argue
that the proof naturally gives rise to an algorithm with the promised complexity. We fix δ

and proceed by induction on k. Formally, we shall prove the following stronger statement:
For any set of collinear points C, there exists a subset A ⊆ C such that:

A is (k, δ)-dense in C,
|A| ⩽ (2 + 4

δ )k, and
the extreme points of C are in A.

Consider first the base case when k = 1. Then it is sufficient to just take A that consists
of the (at most 2) extreme points of C. Indeed, if the extreme points of C are covered with
one segment, then this segment must cover the whole set C (even without extension). Thus,
the set A has size at most 2 < (2 + 4

δ )1, as required.
We now proceed to the inductive step. Assuming inductive hypothesis for any set of

collinear points C and for parameter k, we will prove it for k + 1.
Let s be the minimal segment that includes all points from C. That is, s is the segment

whose endpoints are the extreme points of C.
Split s into M := ⌈1 + 4

δ ⌉ subsegments of equal length. We name these segments
v1, v2, . . . , vM in order, and we consider them closed. Note that |vi| = |s|

M for each 1 ⩽ i ⩽ M ,
where | · | denotes the length of a segment.

Let Ci be the subset of C consisting of points belonging to vi. Further, let ti be the
segment with endpoints being the extreme points of Ci. Note that ti might be a degenerate
single-point segment if Ci consists of one point, or even ti might be empty if Ci is empty.
Figure 1 presents an example of the construction.

v1 v2 v3 v4 v5 v6 v7

t1 t2 t4 t6

a b c = t3 d = t7

a b c d

y z

Figure 1 Example of the construction in the proof of Lemma 9 for M = 7 and some set of
points C (marked with black circles). The top panel shows segments vi. The middle panel shows
segments ti. Note that t5 is an empty segment, because there are no points in C that belong to
v5, while each of the segments t3 and t7 is degenerated to a single point: c and d, respectively.
Segments t1 and t2 share one point b. The bottom panel shows an example of the second case in the
correctness proof: a solution R of size 4 whose all segments intersect t4. Then one of y and z will
cover the whole of C4 after extension.
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We use the inductive hypothesis to choose a (k, δ)-dense subset Ai of Ci, for each
i ∈ {1, . . . , M}. Note that if |Ci| ⩽ 1, then Ai = Ci, so Ai is (k, δ)-dense set for Ci. Also, by
assumption, Ai contains the extreme points of Ci.

Next, we define A :=
⋃M

i=1 Ai. Thus A includes the extreme points of C, because they
are included in the sets A1 and AM .

By induction, the size of each Ai is at most (2 + 4
δ )k. Therefore,

|A| ⩽ M

(
2 + 4

δ

)k

=
⌈

1 + 4
δ

⌉
·
(

2 + 4
δ

)k

⩽

(
2 + 4

δ

)k+1
.

We are left with verifying that A is (k + 1, δ)-dense in C. For this, consider any cover of A

with k + 1 segments and call it R.
Consider any segment ti. If there exists a segment x ∈ R that is disjoint with ti, then

R − {x} constitutes a cover of Ai with at most k segments. Since Ai is (k, δ)-dense in Ci,
(R − {x})+δ covers Ci. So R+δ covers Ci as well.

On the other hand, if for any fixed ti a segment x ∈ R as above does not exist, then
all the k + 1 segments of R intersect ti. An example of such a situation is depicted in the
bottom panel of Figure 1. Let us consider any such ti. By induction, the endpoints of s are
in A1 and AM respectively, so R must cover them. So for each endpoint of s, there exists a
segment in R that contains this endpoint and intersects ti. Let us call these two segments y

and z. It follows that |y| + |z| + |ti| ⩾ |s|. Since |ti| ⩽ |vi| = |s|
M ⩽ |s|

1+ 4
δ

= δ|s|
δ+4 , we have

max(|y|, |z|) ⩾ |s|
(

1 − δ

δ + 4

)
/2 = 2|s|

δ + 4 .

After δ-extension, the longer of the segments y and z will expand at both ends by at least:

δ/2 · max(|y|, |z|) ⩾ δ|s|
δ + 4 = |s|

1 + 4
δ

⩾
|s|
M

= |vi| ⩾ |ti|.

Therefore, the longer of segments y and z will cover the whole segment ti after δ-extension.
We conclude that R+δ covers Ci as well.

Since C =
⋃M

i=1 Ci, we conclude that R+δ covers C. So indeed, A is (k + 1, δ)-dense
in C. This concludes the proof of the existence of such a dense set A. To compute A in time
O

(
|C| ·

(
2 + 4

δ

)k
)

observe that the inductive proof explained above can be easily turned
into a recursive procedure that for a given C and k, outputs a (k, δ)-dense subset of C. The
recursion tree of this procedure has size O

((
2 + 4

δ

)k
)

in total, while every recursive calls uses

O(|C|) time for internal computation, so the total running time is O
(

|C| ·
(
2 + 4

δ

)k
)

. ◀

Long lines. We need a few additional observations in the spirit of the algorithm of Theorem 6.
For a finite set of points U in the plane, call a line L k-long with respect to U if L contains
more than k points from U . We have the following observations.

▶ Lemma 10. Let U be a finite set of points in the plane such that there are more than k

lines that are k-long with respect to U . Then U cannot be covered with k segments.

Proof. We proceed by contradiction. Assume there are at least k + 1 different k-long lines
and there is a set of segments R of size at most k covering all points in U .

Consider any k-long line L. Note that every segment R which is not collinear with L,
covers at most one point that lies on L. Since L is long, there are at least k + 1 points from
U that lie on L. This implies that there must be a segment in R that is collinear with L.

Since we have at least k + 1 different long lines, there are at least k + 1 segments in R
collinear with different lines. This contradicts the assumption that |R| ⩽ k. ◀
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▶ Lemma 11. Let U be a finite set of points in the plane such that there are more than k2

points from U that do not lie on any line that is k-long with respect to U . Then U cannot be
covered with k segments.

Proof. We proceed by contradiction. Assume that we have more than k2 points in U that
do not lie on any k-long line. Call this set A. Suppose there is a set of segments R of size at
most k that covers all points in U .

Since any line in the plane can cover only at most k points in A, the same is also true for
every segment in R. Therefore, the segments from R can cover at most k2 points in A in
total. As |A| > k2, R cannot cover the whole A, which is a subset of U ; a contradiction. ◀

We are now ready to give a proof of Theorem 4.

Proof of Theorem 4. Let (U , F , w) be the input instance of Weighted Segment Set
Cover, where w : F → R⩾0 is the weight function. Further, let k and δ > 0 be the input
parameters. Our goal is to either conclude that (U , F , w) has no solution of cardinality at
most k, or to find an instance (U ′, F ′, w) of size bounded by f(k, δ) for some computable
function f and satisfying U ′ ⊆ U and F ′ ⊆ F , such that the following two properties hold:

(Property 1) For every set S ⊆ F such that |S| ⩽ k and S covers U , there is a set S1 ⊆ F ′

such that |S1| ⩽ k, the weight of S1 is not greater than the weight of S, and S1 covers U ′.
(Property 2) For every set S ⊆ F ′ such that |S| ⩽ k and S covers all points in U ′, S+δ

covers all points in the original set U .
Suppose we constructed such an instance (U ′, F ′, w). Then using Property 1 we know
that an optimum solution of size at most k to (U ′, F ′, w) has no greater weight than an
optimum solution of size at most k to (U , F , w). On the other hand, using Property 2 we
know that any solution to (U ′, F ′, w) after δ-extension covers U . So it will remain to find
an optimum solution to the instance (U ′, F ′, w). This can be done by brute-force in time
|F ′|k+O(1) · |U ′|O(1), which is bounded by a computable function of k and δ.

It remains to construct the instance (U ′, F ′, w). Let ℓ be the number of different lines
that are k-long with respect to U . By Lemmas 10 and 11, if we had more than k different
k-long lines or more than k2 points from U that do not lie on any k-long line, then we can
safely conclude that (U , F , w) has no solution of cardinality at most k, and terminate the
algorithm. So assume otherwise, in particular ℓ ⩽ k.

Next, we cover U with at most k + 1 sets:
D consists of all points in U that do not lie on any k-long line. Then we have |D| ⩽ k2.
For 1 ⩽ i ⩽ ℓ, Ci consists of all points in U that lie on the i-th long line. Then |Ci| > k.

Note that sets Ci do not need to be disjoint.
For every set Ci, we apply Lemma 9 to obtain a subset Ai ⊆ Ci that is (k, δ)-dense

and satisfies |Ai| ⩽ (2 + 4
δ )k. We define U ′ := D ∪

⋃ℓ
i=1 Ai. Thus, U ′ has size at most

k2 + k(2 + 4
δ )k. Further, we define F ′ as follows: for every pair of points in U ′, if there are

segments in F that cover this pair of points, we choose one such segment with the lowest
weight and include it in F ′. Thus F ′ has size at most |U ′|2, which means that both F ′ and U ′

have sizes bounded by O
(
(k2 + k(2 + 4

δ )k)2)
. We are left with verifying Properties 1 and 2.

For Property 2, consider any set S ⊆ F ′ such that |S| ⩽ k and S covers all points in U ′.
Then in particular, for every i ∈ {1, . . . , ℓ}, S in covers all points in Ai. As Ai is (k, δ)-dense
in Ci, we conclude that S+δ covers Ci. Hence S+δ covers D ∪

⋃ℓ
i=1 Ci = U , as required.

For Property 1, consider any solution S to (U , F , w) of size at most k. For every segment
s ∈ S, let Bs be the set of points in U ′ that are covered by s. Bs is of course a set of collinear
points, hence Bs can be covered by any segment that covers the extreme points of Bs.
Therefore, we can replace s with a segment s′ ∈ F that has the lowest weight among the
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segments that cover the extreme points of Bs. Such a segment belongs to F ′ by construction,
and s′ has weight no greater than the weight of s, because s also covers the extreme points
of Bs. Therefore, if S1 ⊆ F ′ is the set obtained by performing such replacement for every
s ∈ S, then S1 has both size and weight not greater than S, and S1 covers U ′. ◀

3 W[1]-hardness of WEIGHTED SEGMENT SET COVER

In this section we prove Theorem 5, recalled below for convenience.

▶ Theorem 5. The Weighted Segment Set Cover problem is W[1]-hard when paramet-
erized by k and assuming ETH, there is no algorithm for this problem with running time
f(k) · (|U| + |F|)o(k/ log k) for any computable function f . Moreover, this holds even if all
segments in F are axis-parallel.

To prove Theorem 5, we give a reduction from a W[1]-hard problem: Partitioned
Subgraph Isomorphism, defined as follows. An instance of Partitioned Subgraph
Isomorphism consists of a pattern graph H, a host graph G, and a function λ : V (G) → V (H)
that colors every vertex of G with a vertex of H. The task is to decide whether there exists
a subgraph embedding ϕ : V (H) → V (G) that respects the coloring λ. That is, the following
conditions have to be satisfied.

λ(ϕ(a)) = a for each a ∈ V (H), and
ϕ(a) and ϕ(b) are adjacent in G for every edge ab ∈ E(H).

The following complexity lower bound for Partitioned Subgraph Isomorphism was
proved by Marx in [14].

▶ Theorem 12 ([14]). Consider the Partitioned Subgraph Isomorphism problem where
the pattern graph H is assumed to be 3-regular. Then this problem is W[1]-hard when
parameterized by k, the number of vertices of H, and assuming the ETH there is no algorithm
solving this problem in time f(k) · |V (G)|o(k/ log k), where f is any computable function.

In the remainder of this section we prove Theorem 5 by providing a parameterized reduc-
tion from Partitioned Subgraph Isomorphism to Weighted Segment Set Cover.
The technical statement of the reduction is encapsulated in the following lemma.

▶ Lemma 13. Given an instance (H, G, λ) of Partitioned Subgraph Isomorphism where
H is 3-regular and has k vertices, one can in polynomial time construct an instance (U , F , w)
of Weighted Segment Set Cover and a positive real W such that:
(1) all segments in F are axis-parallel;
(2) if the instance (H, G, λ) has a solution, then there exists a solution to (U , F , w) of

cardinality 11
2 k and weight at most W ; and

(3) if there exists a solution to (U , F , w) of weight at most W , then the instance (H, G, λ)
has a solution.

Note that in (3) we in fact do not require any bound on the cardinality of the solution,
just on its weight.

It is easy to see that Lemma 13 implies Theorem 12. First, Lemma 13 gives a parameterized
reduction from the W[1]-hard Partitioned Subgraph Isomorphism problem with 3-regular
pattern graphs to Weighted Segment Set Cover parameterized by the cardinality of the
sought solution, which shows that the latter problem is also W[1]-hard. Second, combining
the reduction with an algorithm for Weighted Segment Set Cover with running time as
postulated in Theorem 5 would give an algorithm for Partitioned Subgraph Isomorphism
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with running time f(k) · |V (G)|o(k/ log k) for a computable function f , which would contradict
ETH by Theorem 12. So we are left with giving a proof of Lemma 13, which spans the
remainder of this section.

The key element of the proof will be a construction of a choice gadget that works within
a single line; this construction is presented in the lemma below. Here, a chain is a sequence
(A1, A2, . . . , Aℓ) of subsets of R such that for each i ∈ {1, . . . , ℓ − 1}, all numbers in Ai are
strictly smaller than all numbers in Ai+1.

▶ Lemma 14. Suppose we are given an integer N > 100 and p chains {(Aj,1, . . . , Aj,ℓ) : j ∈
{1, . . . , p}} of length ℓ each such that the sets {Aj,t : j ∈ {1, . . . , p}, t ∈ {1, . . . , ℓ}} are all
pairwise disjoint and contained in {1, . . . , N}. Then one can in polynomial time construct
a set of points U ⊆ R, U ⊇ {1, . . . , N}, as well as a set of segments F contained in R such
that the following holds:

For every j ∈ {1, . . . , p} and every set B that contains exactly one point from each
element of the chain (Aj,1, . . . , Aj,ℓ), there exists RB ⊆ F such that |RB | = ℓ + 1, RB

covers all points of U except for B, and the total length of the segments in RB is equal to
N + 1 − 2ℓ/N2.
For every subset of segments R ⊆ F , if R covers all points in U − {1, . . . , N}, then the
total length of segments in R is at least N + 1 − 2/N .
For every subset of segments R ⊆ F , if the total length of segments of R is not larger than
N + 3

2 and R covers all points in U −{1, . . . , N}, then the total length of segments of R is
equal to N + 1 − 2ℓ/N2 and there exists j ∈ {1, . . . , p} such that for every t ∈ {1, . . . , ℓ},
R does not cover the whole set Aj,t.

Proof. Denote I := {1, . . . , N} and ϵ := 1/N2 for convenience. For every i ∈ I, let

i− := i − ϵ and i+ := i + ϵ.

Define I− := {i− : i ∈ I}, I+ := {i+ : i ∈ I}, and

U := {0} ∪ I− ∪ I ∪ I+.

Next, for every j ∈ {1, . . . , p}, define the following set of segments:

Rj := {[0, a−] : a ∈ Aj,1} ∪
ℓ−1⋃
t=1

{[a+, b−] : (a, b) ∈ Aj,t × Aj,t+1} ∪ {[a+, N + 1] : a ∈ Aj,ℓ}.

We set

F :=
p⋃

j=1
Rj .

See Figure 2 for a visualization of the construction. We are left with verifying the three
postulated properties of U and F .

1 2 3 4 5 6 7 80 9

Figure 2 Construction of Lemma 14 for N = 8. Elements of I ∪ {0} are depicted with circles and
elements of I+ ∪ I− are depicted with squares. Blue segments represent the set RB for B = {3, 7}.
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For the first property, let bt be the unique element of B ∩ Aj,t, for t ∈ {1, . . . , ℓ}, and let

RB := {[0, b−
1 ], [b+

1 , b−
2 ], . . . , [b+

ℓ−1, b−
ℓ ], [b+

ℓ , N + 1]}.

It is straightforward to see that RB covers all the points of U except for B, and that the
total sum of lengths of segments in RB is N + 1 − 2ℓϵ = N + 1 − 2ℓ/N2.

For the second postulated property, observe that each segment of F that covers any
point i+ ∈ I+, in fact covers the whole interval [i+, (i + 1)−] (where (N + 1)− = N + 1).
Similarly, each segment of F that covers any point i− ∈ I−, in fact covers the whole interval
[(i−1)+, i−] (where 0+ = 0). Hence, if R ⊆ F covers all points of U −I, in particular R covers
all points in I+ ∪ I−, hence also all intervals of the form [i+, (i + 1)−] for i ∈ {0, 1, . . . , N}.
The sum of the lengths of those intevals is equal to N + 1 − 2ϵN = N + 1 − 2/N . Hence, the
sum of length of intervals in R must be at least N + 1 − 2/N .

For the third postulated property, observe that if two segments of F intersect, then their
intersection is a segment of length at least 1 − 2ϵ. Since R covers all points of U − I, by the
second property the sum of lengths of the segments in R is at least N + 1 − 2/N . Now if any
of those segments intersected, then the total sum of lengths of the segments in R would be
at least N + 1 − 2/N + (1 − 2ϵ), which is larger than N + 3

2 . We conclude that the segments
of R are pairwise disjoint.

Since 0 ∈ U − I, there is a segment s1 ∈ R that covers 0. By construction, there exists
j ∈ {1, . . . , p} such that s1 = [0, b−

j,1] for some bj,1 ∈ Aj,1. As the segments of R are pairwise
disjoint and cover all points in I+, the next (in the natural order on R) segment in R must
start at b+

j,1, and in particular bj,1 is not covered by R. Since all sets in all chains on input
are pairwise disjoint, the segment in R starting at b+

j,1 must be of the form s2 = [b+
j,1, b−

j,2]
for some bj,2 ∈ Aj,2. Continuing this reasoning, we find that in fact R = RB for some set
B = {bj,1, bj,2, . . . , bj,ℓ} such that bj,t ∈ Aj,t for each t ∈ {1, . . . , ℓ}. In particular, the total
length of segments in R is equal to N + 1 − 2ϵℓ and R does not cover any point in B; the
latter implies that for each t ∈ {1, . . . , ℓ}, R does not cover Aj,t entirely. ◀

With Lemma 14 established, we proceed to the proof of Lemma 13.
Let (H, G, λ) be the given instance of Partitioned Subgraph Isomorphism where H

is a 3-regular graph. Let k := |V (H)| and ℓ := |E(H)|; note that ℓ = 3
2 k. We may assume

that V (H) = {1, . . . , k}, and that whenever uv is an edge in G, we have that λ(u)λ(v) is an
edge of H (other edges in G play no role in the problem and can be discarded). We construct
an instance (U , F , w) of Weighted Segment Set Cover as follows; see Figure 3 for a
visualization.

Figure 3 Example solution in the instance (U , F) constructed in the proof of Lemma 13 for
H = K4. Blue segments belong to the sets Si for i ∈ {1, 2, 3, 4} and orange segments belong to D.

For each edge ab ∈ E(H), let Eab be the subset of those edges uv of G for which
λ(u) = a and λ(v) = b. Thus, {Eab : ab ∈ E(H)} is a partition of E(G). Let N := |E(G)|
and ξ : E(G) → {1, . . . , N} be any bijection such that for each ab ∈ E(H), ξ(Eab) is a
contiguous interval of integers. By copying some vertices of G if necessary, we may assume
that N > 100k.
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Consider any a ∈ {1, . . . , k} and let b1, b2, b3 be the three neighbors of a in H, ordered so
that (ξ(Eab1), ξ(Eab2), ξ(Eab3)) is a chain. For each u ∈ λ−1(a), let Eu be the set of edges of
G incident to u, and let us construct the chain

Cu := (ξ(Eu ∩ Eab1), ξ(Eu ∩ Eab2), ξ(Eu ∩ Eab3)).

Note that all sets featured in all the chains Cu, for u ∈ λ−1(a), are pairwise disjoint. We now
apply Lemma 14 for the integer N and the chains {Cu : u ∈ λ−1(a)}. This way, we construct
a suitable point set Ua ⊆ R and a set of segments Fa contained in R. We put all those points
and segments on the line {(x, a) : x ∈ R}; that is, every point x ∈ Ua is replaced with the
point (x, a), and similarly for the segments of Fa. By somehow abusing the notation, we let
Ua and Fa be the point set and the segment set after the replacement.

Next, for every edge uv of G, we define suv to be the segment with endpoints (ξ(uv), a)
and (ξ(uv), b), where a = λ(u) and b = λ(v).

We set

U :=
k⋃

a=1
Ua and F := {suv : uv ∈ E(G)} ∪

k⋃
a=1

Fa.

Note that all segments in sets Fa are horizontal and each segment suv is vertical, thus F
consists of axis-parallel segments. Each segment s ∈

⋃k
a=1 Fa is assigned weight w(s) equal

to the length of s, and each segment suv for uv ∈ E(G) is assigned weight w(suv) = δ, where
δ := 1/N4. Finally, we set

W := k · (N + 1 − 6/N2) + δℓ.

This concludes the construction of the instance (U , F , w). We are left with verifying the
correctness of the reduction, which is done in the following two claims.

▷ Claim 15. Suppose the input instance (H, G, λ) of Partitioned Subgraph Isomorphism
has a solution. Then the output instance (U , F , w) of Weighted Segment Set Cover
has a solution of cardinality 4k + ℓ = 11

2 k and weight at most W .

Proof. Let ϕ be the supposed solution to (H, G, λ). By the first property of Lemma 14, for
every a ∈ {1, . . . , k} there is a set Rϕ,a of size 4 and total weight N + 1 − 6/N2 that covers
all points from Ua except for the points

(ξ(ϕ(a)ϕ(b1)), a), (ξ(ϕ(a)ϕ(b2)), a), (ξ(ϕ(a)ϕ(b3)), a),

where b1, b2, b3 are the neighbors of a in H. Define

S := {sϕ(a)ϕ(b) : ab ∈ E(H)} ∪
k⋃

a=1
Rϕ,a.

Thus, for each a ∈ {1, . . . , k}, the aforementioned points of Ua not covered by Rϕ,a are
actually covered by the segments sϕ(a)ϕ(b1), sϕ(a)ϕ(b2), sϕ(a)ϕ(b3). We conclude that S covers
all the points in U and has cardinality 4k + ℓ = 11

2 k and total weight W , as promised. ◁

▷ Claim 16. Suppose the output instance (U , F , w) of Weighted Segment Set Cover
has a solution of weight at most W . Then the input instance (H, G, λ) of Partitioned
Subgraph Isomorphism has a solution.
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Proof. Let S be the supposed solution to (U , F , w). Denote

D := S ∩ {suv : uv ∈ E(G)}

and

Sa := S ∩ Fa for a ∈ {1, . . . , k}.

Fix a ∈ {1, . . . , k} for a moment. Observe that the segments from D can only cover points with
positive integer coordinates within the set Ua, hence the whole point set Ua−({1, . . . , N}×{a})
has to be covered by Sa. By the second property of Lemma 14 we infer that the total weight
of Sa must be at least N + 1 − 2/N .

Observe now that

W − k · (N + 1 − 2/N) = δℓ + 2k/N − 6k/N2 <
1
2 .

It follows that the total weight of each set Sa must be smaller than N + 3
2 , for otherwise the

sum of weights of sets Sa would be larger than W . By the third property of Lemma 14, we infer
that for every a ∈ {1, . . . , k}, the total weight of Sa is equal to N + 1 − 6/N2 and there exists
ϕ(a) ∈ λ−1(a) such that Sa does not entirely cover any of the sets ξ(Eϕ(a) ∩ Eab1), ξ(Eϕ(a) ∩
Eab2), ξ(Eϕ(a) ∩ Eab3), where b1, b2, b3 are the three neighbors of a in H. In particular, there
are edges ea,b1 ∈ Eab1 , ea,b2 ∈ Eab2 , ea,b3 ∈ Eab3 , all sharing the endpoint ϕ(a), such that Sa

does not cover the points (ξ(ea,b1), a), (ξ(ea,b2), a), (ξ(ea,b3), a). Call these points Xa and let
X :=

⋃k
a=1 Xa. Note that

|X| = 3k = 2ℓ

and that X must be entirely covered by D.
Since the weight of Sa is equal to N + 1 − 6/N2 for each a ∈ {1, . . . , k}, the weight of D

is upper bounded by

W − k · (N + 1 − 6/N2) = δℓ.

As every member of D has weight δ, we conclude that |D| ⩽ ℓ. Now, one can readily verify
that every segment suv ∈ D can cover at most two points in X, as X cannot contain more
than two points with the same horizontal coordinate (recall that this coordinate is the index
of an edge of G). Moreover, suv can cover two points in X only if u = ϕ(a) and v = ϕ(b),
where a = λ−1(u) and b = λ−1(v). As |X| = 2ℓ and |D| ⩽ ℓ, this must be the case for every
segment in D. In particular, ϕ(a)ϕ(b) must be an edge in G for every edge ab ∈ E(H), so ϕ

is a solution to the instance (H, G, λ) of Partitioned Subgraph Isomorphism. ◁

Claims 15 and 16 finish the proof of Lemma 13. So the proof of Theorem 5 is also done.
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