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Abstract
The HOM-problem asks whether the image of a regular tree language under a given tree homo-
morphism is again regular. It was recently shown to be decidable by Godoy, Giménez, Ramos, and
Àlvarez. In this paper, the N-weighted version of this problem is considered and its decidability is
proved. More precisely, it is decidable in polynomial time whether the image of a regular N-weighted
tree language under a nondeleting, nonerasing tree homomorphism is regular.
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1 Introduction

The prominent model of finite-state string automata has seen a variety of extensions in the
past few decades. Notably, their qualitative evaluation was generalized to a quantitative
one to yield the weighted automata of [26]. These automata are able to neatly represent
process factors such as costs, consumption of resources or time, and probabilities related to
the input, and have been extensively studied [25]. Semirings [17, 18] present themselves as a
well suited algebraic structure for evaluating the weights because of their generality as well
as their reasonable computational efficiency that is derived from distributivity.

Parallel to this development, finite-state string automata have been generalized to process
other forms of inputs such as infinite words [23], graphs [3] and trees [5]. Finite-state
tree automata and the regular tree languages they generate have been widely researched
since their introduction in [7, 27, 28]. These models prove to be useful in a variety of
application areas including natural language processing [19], image generation [8], and
compiler construction [29]. Many applications require both features: trees as more expressive
input structure and quantitative evaluation. This led to the development of several weighted
tree automata (WTA) models. An extensive overview can be found in [12, Chapter 9].

Finite-state tree automata have serious limitations; notably, they cannot guarantee that
two specific subtrees are always equal in the accepted trees provided that those subtrees can
be arbitrarily large. Similarly finite-state string automata cannot ensure that the number
of a’s and b’s in the accepted words is equal. These restrictions are well-known [13], and
the mentioned drawback was addressed in [21], where an extension was proposed that can
explicitly require certain subtrees to be equal or different. This extension is very convenient
in the study of tree transformations [12] that can duplicate subtrees, and it is also the primary
tool used in the seminal paper [15] to prove the decidability of the HOM-problem.
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51:2 Weighted HOM-Problem for Nonnegative Integers

The HOM-problem, a previously long-standing open question in the study of tree lan-
guages, asks whether the image of a regular tree language under a given tree homomorphism
is also regular. The image need not be regular since tree homomorphisms can also duplicate
subtrees. Indeed, if this duplication ability is removed from the tree homomorphism (e.g.,
linear tree homomorphisms), then the image is always regular [13]. The HOM-problem
was recently solved in [15, 16], where the image is represented by a tree automaton with
constraints, for which it is then determined whether it generates a regular tree language.
Later the HOM-problem was shown to be EXPTIME-complete [6].

In the weighted case, decidability of the HOM-problem remains wide open. Previous
research on the preservation of regularity in the weighted setting [4, 9, 10, 11] focuses on
cases that explicitly exclude the duplication power of the homomorphism. Recently, the
weighted HOM-problem over zero-sum free semirings was addressed, but only solved for
significantly restricted inputs [22]. In the present work, we prove that the HOM-problem for
regular weighted tree languages over the semiring N of nonnegative integers can be decided
in polynomial time. The proof outline is as follows: Consider such a regular N-weighted tree
language and a nondeleting, nonerasing tree homomorphism. First, we represent this image
efficiently using an extension (WTGh) of weighted tree automata that permits constraints [20].
Next, we ask whether this WTGh generates a regular weighted tree language. This semantic
problem is reduced to an easier, essentially syntactic property: the large duplication property.
In turn, this allows us to prove decidability of the weighted HOM-problem in polynomial time
by directly proving it for the large duplication property. If the WTGh for the homomorphic
image does not have this property, then we give an effective construction of an equivalent
N-weighted tree automaton without constraints (albeit in exponential time), thus proving
its regularity. Otherwise, we use a pumping lemma presented in [20] and isolate a strictly
non-regular part from the WTGh. The most challenging part of our proof and our main
technical contribution is showing that the remaining trees in the homomorphic image cannot
compensate for the non-regular behavior of this isolated part. For this, we employ Ramsey’s
theorem [24] to identify a witness for the non-regularity of the whole weighted tree language.

Compared to the unweighted case where the HOM-problem is EXPTIME-complete [6],
the N-weighted HOM-problem can be decided in polynomial time. Both proofs reduce the
(non)regularity of the homomorphic image in question to a decidable property of the tree
grammar with constraints representing it; however, the unweighted regularity notion is
very different from the corresponding notion for weighted tree languages over N. Unlike
the Boolean semiring B, which corresponds to the unweighted case, the semiring N can
be embedded into a field, which allows us to apply methods of linear algebra. The large
duplication property, to which we successfully reduce the N-weighted HOM-problem, is
certainly necessary, but insufficient in the unweighted case. This is due to the fact that the
Boolean semiring is idempotent, which permits covering an irregular tree language with the
help of a regular one (e.g., the union L ∪ TΣ = TΣ of an irregular tree language L with the
regular tree language TΣ of all trees is again regular). We will prove that such covers cannot
happen in the semiring N of nonnegative integers. As a consequence, the large duplication
property is necessary and sufficient for non-regularity of weighted tree languages over N. In
summary, our overall strategy for approaching the HOM-problem is similar to [15], but the
required notions and details of the proofs significantly differ.

Tree automata and grammars with constraints are applied in domains such as automated
deduction [2] or security verification [1]. In this context, studying quantitative extensions of
these models is naturally relevant. Tree structures are also central in XML, and homomorphic
transformations on trees allow us to modify the codes while preserving the hierarchical
structure. Moreover, the HOM-problem plays a role in the context of term rewriting [14]: For
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a term rewrite system, the set of normal forms (i.e., terms to which no rule can be applied)
can be expressed as the complement of a homomorphic image; a better understanding of
these images can help generalize known results in this field.

2 Preliminaries

We denote the set of nonnegative integers by N. For i, j ∈ N we let [i, j] = {k ∈ N | i ≤ k ≤ j}
and [j] = [1, j]. Let Z be an arbitrary set. The cardinality of Z is denoted by |Z|, and the set
of words over Z (i.e., the set of ordered finite sequences of elements of Z) is denoted by Z∗.

Trees, Substitutions, and Contexts

A ranked alphabet (Σ, rk) consists of a finite set Σ and a mapping rk : Σ→ N that assigns
a rank to each symbol of Σ. If there is no risk of confusion, then we denote the ranked
alphabet (Σ, rk) by Σ alone. We write σ(k) to indicate that rk(σ) = k. Moreover, for
every k ∈ N we let Σk = rk−1(k) and rk(Σ) = max {k ∈ N | Σk ≠ ∅} be the maximal rank of
symbols of Σ. Let X = {xi | i ∈ N} be a countable set of (formal) variables. For every n ∈ N,
we let Xn = {xi | i ∈ [n]}. Given a ranked alphabet Σ and a set Z, the set TΣ(Z) of
Σ-trees indexed by Z is the smallest set such that Z ⊆ TΣ(Z) and σ(t1, . . . , tk) ∈ TΣ(Z) for
every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). We abbreviate TΣ(∅) simply by TΣ, and any
subset L ⊆ TΣ is called a tree language.

Let Σ be a ranked alphabet, Z a set, and consider a tree t ∈ TΣ(Z). The
set pos(t) of positions of t is defined by pos(z) = {ε} for all z ∈ Z and
by pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)} for all k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). With their help, we define the size ‘size(t)’ and height ‘ht(t)’
of t as size(t) = |pos(t)| and ht(t) = maxw∈pos(t)|w|. Positions are partially ordered by
the standard prefix order ≤ on [rk(Σ)]∗, and they are totally ordered by the ascending
lexicographic order ⪯ on [rk(Σ)]∗, in which prefixes are larger; i.e., ε is the largest element.
More precisely, for v, w ∈ pos(t) if there exists u ∈ [rk(Σ)]∗ with vu = w, then we write v ≤ w,
call v a prefix of w, and let v−1w = u because u is uniquely determined if it exists. Provided
that u = u1 · · ·un with u1, . . . , un ∈ [rk(Σ)] we also define the path [v, . . . , w] from v to w as
the sequence (v, vu1, vu1u2, . . . , w) of positions. Any two positions that are ≤-incomparable
are called parallel.

Given t, t′ ∈ TΣ(Z) and w ∈ pos(t), the label t(w) of t at w, the subtree t|w of t at w,
and the substitution t[t′]w of t′ into t at w are defined by z(ε) = z|ε = z and z[t′]ε = t′

for all z ∈ Z and by t(ε) = σ, t(iw′) = ti(w′), t|ε = t, t|iw′ = ti|w′ , t[t′]ε = t′, and
t[t′]iw′ = σ

(
t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk

)
for all trees t = σ(t1, . . . , tk) with k ∈ N, σ ∈ Σk,

t1, . . . , tk ∈ TΣ(Z), all i ∈ [k], and all w′ ∈ pos(ti). For all sets S ⊆ Σ ∪ Z of symbols,
we let posS(t) = {w ∈ pos(t) | t(w) ∈ S}, and we write poss(t) instead of pos{s}(t) for
every s ∈ Σ ∪ Z. The set of variables occuring in t is var(t) = {x ∈ X | posx(t) ̸= ∅}.
Finally, consider n ∈ N and a mapping θ′ : Xn → TΣ(Z). Then by substitution, θ′ in-
duces a mapping θ : TΣ(Z) → TΣ(Z) defined by θ(x) = θ′(x) for every x ∈ Xn, θ(z) = z

for every z ∈ Z \ Xn, and θ(σ(t1, . . . , tk)) = σ(θ(t1), . . . , θ(tk)) for all k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). For t ∈ TΣ(Z), we denote θ(t) by tθ or, more commonly, by
t[x1 ← θ′(x1), . . . , xn ← θ′(xn)].

Let □ /∈ Σ. A context is a tree C ∈ TΣ(□) with pos□(C) ̸= ∅. More specifically, we
call C an n-context if n = |pos□(C)|. For an n-context C and t1, . . . , tn ∈ TΣ, we define the
substitution C[t1, . . . , tn] as follows. Let pos□(C) = {w1, . . . , wn} be the occurrences of □
in C in lexicographic order w1 ≺ · · · ≺ wn. Then we let C[t1, . . . , tn] = C[t1]w1 · · · [tn]wn .

STACS 2024
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Tree Homomorphisms and Weighted Tree Grammars

Given ranked alphabets Σ and Γ, let h′ : Σ → TΓ(X) be a mapping with h′(σ) ∈ TΓ(Xk)
for all k ∈ N and σ ∈ Σk. We extend h′ to h : TΣ → TΓ by h(α) = h′(α) ∈ TΓ(X0) = TΓ
for all α ∈ Σ0 and h(σ(t1, . . . , tk)) = h′(σ)[x1 ← h(t1), . . . , xk ← h(tk)] for all k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ. The mapping h is called the tree homomorphism induced by h′,
and we identify h′ and its induced tree homomorphism h. For the complexity analysis of
our decision procedure, we define the size of h as size(h) =

∑
σ∈Σ size(h(σ)). We call h

nonerasing (respectively, nondeleting) if h′(σ) /∈ X (respectively, var(h′(σ)) = Xk) for
all k ∈ N and σ ∈ Σk. In this contribution, we will only consider nonerasing and nondeleting
tree homomorphisms h : TΣ → TΓ, which are therefore input finitary; i.e., the preimage h−1(u)
is finite for every u ∈ TΓ since |t| ≤ |u| for every t ∈ h−1(u). Any mapping A : TΣ → N is
called N-weighted tree language, and we define the weighted tree language hA : TΓ → N for
every u ∈ TΓ by hA(u) =

∑
t∈h−1(u) A(t) and call it the image of A under h. This definition

relies on the tree homomorphism to be input-finitary; otherwise the defining sum is not finite,
so the value hA(u) is not necessarily well-defined.

A weighted tree grammar with equality constraints (WTGc) [20] is a tuple (Q, Σ, F, P, wt),
in which Q is a finite set of states, Σ is a ranked alphabet of input symbols, F : Q → N
assigns a final weight to every state, P is a finite set of productions of the form (ℓ, q, E)
with ℓ ∈ TΣ(Q) \ Q, q ∈ Q, and finite subset E ⊆ N∗ × N∗, and wt: P → N assigns a
weight to every production. A production p = (ℓ, q, E) ∈ P is usually written p = ℓ

E−→ q

or p = ℓ
E−→wt(p) q, and the tree ℓ is called its left-hand side, q is its target state, and E

are its equality constraints, respectively. Equality constraints (v, v′) ∈ E are also written
as v = v′. A state q ∈ Q is final if F (q) ̸= 0.

Next, we recall the derivation semantics of WTGc from [20]. Let (v, v′) ∈ N∗ × N∗ be
an equality constraint and t ∈ TΣ. The tree t satisfies (v, v′) if and only if v, v′ ∈ pos(t)
and t|v = t|v′ , and for a finite set C ⊆ N∗ × N∗ of equality constraints, we write t |= C

if t satisfies all (v, v′) ∈ C. Let G = (Q, Σ, F, P, wt) be a WTGc. A sentential form
(for G) is a tree ξ ∈ TΣ(Q). Given an input tree t ∈ TΣ, sentential forms ξ, ζ ∈ TΣ(Q), a
production p = ℓ

E−→ q ∈ P , and a position w ∈ pos(ξ), we write ξ ⇒p,w
G,t ζ if ξ|w = ℓ,

ζ = ξ[q]w, and t|w |= E; i.e., the equality constraints E are fulfilled on t|w. A se-
quence d = (p1, w1) · · · (pn, wn) ∈ (P × N∗)∗ is a derivation (of G) for t if there ex-
ist ξ0, . . . , ξn ∈ TΣ(Q) such that ξ0 = t and ξi−1 ⇒pi,wi

G,t ξi for all i ∈ [n]. We call d

left-most if additionally w1 ≺ w2 ≺ · · · ≺ wn. Note that the sentential forms ξ0, . . . , ξn

are uniquely determined if they exist, and for any derivation d for t there exists a unique
permutation of d that is a left-most derivation for t. We call d complete if ξn ∈ Q, and in
this case we also call it a derivation to ξn. The set of all complete left-most derivations
for t to q ∈ Q is denoted by Dq

G(t). A complete derivation to some final state is called
accepting. If for every p ∈ P , there exists a tree t ∈ TΣ, a final state q and a deriva-
tion (p1, w1) · · · (pm, wm) ∈ Dq

G(t) such that F (q) ·
∏n

i=1 wt(pi) ̸= 0 and p ∈ {p1, . . . , pm}; i.e.
if every production is used in an accepting derivation with nonzero weights, then G is trim.

Let d = (p1, w1) · · · (pn, wn) ∈ Dq
G(t) for some t ∈ TΣ and i ∈ [n]. Moreover,

let {j1, . . . , jℓ} be the set {j ∈ [n] | wi ≤ wj} with the indices j1 < · · · < jℓ of those positions
of which wi is a prefix. We refer to (pj1 , w−1

i wj1), . . . , (pjℓ
, w−1

i wjℓ
) as the derivation for t|wi

incorporated in d. Conversely, for w ∈ N∗ we abbreviate the derivation (p1, ww1) · · · (pn, wwn)
by wd.

The weight of a derivation d = (p1, w1) · · · (pn, wn) is defined as wtG(d) =
∏n

i=1 wt(pi).
The weighted tree language generated by G, written JGK : TΣ → N, is defined for all t ∈ TΣ by
JGK(t) =

∑
q∈Q, d∈Dq

G
(t) F (q) · wtG(d). For t ∈ TΣ and q ∈ Q, we will often use the
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value wtq
G(t) defined as wtq

G(t) =
∑

d∈Dq
G

(t) wtG(d). Using distributivity, JGK(t) then sim-
plifies to JGK(t) =

∑
q∈Q F (q) · wtq

G(t). We call two WTGc equivalent if they generate the
same weighted tree language.

We call a WTGc (Q, Σ, F, P, wt) a weighted tree grammar (WTG) if E = ∅ for every
production ℓ

E−→ q ∈ P ; i.e., no production utilizes equality constraints. Instead of ℓ
∅−→ q we

also simply write ℓ→ q. Moreover, we call a WTGc a weighted tree automaton with equality
constraints (WTAc) if posΣ(ℓ) = {ε} for every production ℓ

E−→ q ∈ P , and a weighted tree
automaton (WTA) if it is both a WTG and a WTAc. The classes of WTGc and WTAc are
equally expressive, and they are strictly more expressive than the class of WTA [20]. We call
a weighted tree language regular if it is generated by a WTA and constraint-regular if it is
generated by a WTGc. Productions with weight 0 are obviously useless, so we may assume
that wt(p) ̸= 0 for every production p. Finally, we define the size of a WTGc as follows.

▶ Definition 1. Let G = (Q, Σ, F, P, wt) be a WTGc and p = ℓ
E−→ q ∈ P be a production.

We define the height of p as ht(p) = ht(ℓ) and its size as size(p) = size(ℓ), the height of P

as ht(P ) = maxp∈P ht(p) and its size as size(P ) =
∑

p∈P size(p), and finally the height of G

as ht(G) = |Q| · ht(P ) and its size as size(G) = |Q|+ size(P ).

It is known [20] that WTGc of a particular shape can represent homomorphic images of
regular weighted tree languages. This subclass of WTGc will be central in our work.

▶ Definition 2. A WTGc
(
Q, Σ, F, P, wt

)
is classic if every production p = ℓ

E−→ q ∈ P

satisfies E ⊆ posQ(ℓ)2; i.e., all equality constraints point to the Q-labeled positions of its left-
hand side. Without loss of generality, we can assume that every set E of equality constraints is
reflexive, symmetric, and transitive, that is, an equivalence relation on a subset D ⊆ posQ(ℓ),
so not all occurrences of states need to be constrained.

A classic WTGc is eq-restricted if it has a so-called sink state ⊥ ∈ Q \ F such that (i)
σ(⊥, . . . ,⊥)→1 ⊥ belongs to P for all σ ∈ Σ, and no other productions target ⊥, and (ii)
for every production ℓ

E−→ q with q ̸= ⊥, if posQ(ℓ) = {p1, . . . , pn} and qi = ℓ(pi) for i ∈ [n],
the following conditions hold:
1. For each i ∈ [n], the set {qj | pj ∈ [pi]≡E

} \ {⊥} is a singleton.
2. There exists exactly one pj ∈ [pi]≡E

such that qj ̸= ⊥.

In other words, an eq-restricted WTGc G has a designated nonfinal sink state ⊥ ∈ Q

such that F (⊥) = 0 as well as pγ = γ(⊥, . . . ,⊥)→ ⊥ ∈ P and wt(pγ) = 1 for every γ ∈ Γ.
In addition, every production p = ℓ

E−→ q ∈ P satisfies the following two properties.
First, E ⊆ posQ(ℓ)2; i.e., all equality constraints point to the Q-labeled positions of its
left-hand side. Second, ℓ(v) = ⊥ and ℓ(w) ̸= ⊥ for every v ∈ [w′]E \ {w} and w′ occurring in
E, where w = min⪯[w′]E ; i.e., all but the lexicographically least position in each equivalence
class of E are guarded by state ⊥. Essentially, an eq-restricted WTGc G performs its
checks (and charges weights) exclusively on the lexicographically least occurrences of equality-
constrained subtrees. All the other subtrees, which by means of the constraint are forced to
coincide with another subtree, are simply ignored by the WTGc, which formally means that
they are processed in the designated sink state ⊥. In the following, we will use ⊥ to denote
such a sink state, and write Q ∪ {⊥} to explicitly indicate its presence.

To simplify our terminology, we will refer to eq-restricted WTGc simply as WTGh.

▶ Theorem 3 (see [20, Theorem 5]). Let G = (Q, Σ, F, P, wt) be a trim WTA and h : TΣ → TΓ
be a nondeleting and nonerasing tree homomorphism. Then there exists a trim WTGh G′

with JG′K = hJGK. Moreover, size(G′) ∈ O
(
size(G) · size(h)

)
and ht(G′) ∈ O

(
size(h)

)
.

STACS 2024
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▶ Example 4. Let G = (Q ∪ {⊥}, Γ, F, P, wt) with Q = {q, qf}, Γ = {α(0), γ(1), δ(3)},
F (q) = F (⊥) = 0 and F (qf ) = 1, and the following set P of productions.{

α→1 q, γ(q)→2 q, δ
(
q, γ(⊥), q

) 1=21−→1 qf , α→1 ⊥, γ(⊥)→1 ⊥, δ(⊥,⊥,⊥)→1 ⊥
}

The WTGc G is a WTGh. It generates the homomorphic image JGK = hA for the tree
homomorphism h induced by the mapping α 7→ α, γ 7→ γ(x1), and σ 7→ δ

(
x2, γ(x2), x1

)
applied to the regular weighted tree language A : TΣ → N given by A(t) = 2|posγ (t)| for
every t ∈ TΣ with Σ = {α(0), γ(1), σ(2)}. The weighted tree language JGK is itself not regular
because its support is clearly not a regular tree language.

The restrictions in the definition of a WTGh allow us to trim it effectively.

▶ Lemma 5. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. An equivalent, trim WTGh G′

can be constructed in polynomial time.

Proof. First, recall that we may assume wt(p) ̸= 0 for every p ∈ P because wtG(d) = 0 for
every derivation d of G that contains a production p with wt(p) = 0. For the proof, we
employ a simple reachability algorithm. For every n ∈ N and U ⊆ Q, let

Q0 = ∅ Qn+1 = Qn ∪
⋃

(ℓ
E−→q)∈P

ℓ∈TΣ(Qn)

{q} ΠU =
⋃

(ℓ
E−→q)∈P

ℓ∈TΣ(U)

{
(q, q′) ∈ U2 | posq′(ℓ) ̸= ∅

}
.

Since Q is finite, there exists N with QN = QN+1. Let Q′ = QN . A straightforward proof
shows that q ∈ Q′ if and only if for some t ∈ TΣ there exists d ∈ Dq

G(t) with wtG(d) ̸= 0. To
ensure the reachability of a final state, we let ◁ be the smallest reflexive and transitive relation
on Q′ that contains ΠQ′ . Then P ′ = {ℓ E−→ q ∈ P | q ∈ Q′, ∃qf ∈ Q′ : F (qf) ̸= 0, qf ◁ q}, and
the desired WTGh is simply G′ = (Q ∪ {⊥}, Σ, F, P ′, wt |P ′). ◀

3 Substitutions in the Presence of Equality Constraints

This short section recalls from [20] some definitions together with a pumping lemma for
WTGh, which will be essential for deciding the integer-weighted HOM-problem. First, we
need to refine the substitution of trees such that it complies with existing constraints.

▶ Definition 6 (see [20] and cf. [15]). Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. Moreover,
let q, q′ ∈ Q, t, t′ ∈ TΣ, and d ∈ Dq

G(t) as well as d′ ∈ Dq′

G(t′) such that q ̸= ⊥ ≠ q′ and
d = d(p, ε) uses p = c[q1, . . . , qk] E,∅−→ q ∈ P as its final production. For every i ∈ [k]
let wi = posxi

(c) and di be the unique left-most derivation for ti = t|posxi
(c) incorporated

in d. Finally, for every u ∈ TΣ let d⊥
u be the unique left-most derivation for u to ⊥. For

every w ∈ pos(t) at which the production used in d targets q′, we recursively define the
derivation substitution dJd′Kw of d′ into d at w and the resulting tree tJt′Kd

w as follows.
If w = ε, then dJd′Kε = d′ and tJt′Kd

ε = t′. Otherwise w = wjw for some j ∈ [k] and we have

dJd′Kw = d′
1 · · · d′

k(p, ε) and tJt′Kd
w = c[t′

1, . . . , t′
k] ,

where for each i ∈ [k] we have
if i = j (i.e., wi is a prefix of w), then d′

i = wi(diJd′Kw) and t′
i = tiJt′Kd′

i
w ,

if qi = ⊥ and wi ∈ [wj ]≡E
(i.e., it is a position that is equality restricted to wj), then

d′
i = wid

⊥
u and t′

i = u with u = tjJt′K
d′

j
w , and

otherwise d′
i = widi and t′

i = ti (i.e., derivation and tree remain unchanged).
It is straightforward to verify that dJd′Kw is a complete left-most derivation for tJt′Kd

w to q.
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▶ Example 7. Consider the WTGh G of Example 4 and the following tree t it generates
into which we want to substitute the tree t′ = γ(α) at position w = 11.

t =

δ

γ

α

γ

γ

α

γ

α

tJt′K11 =

δ

γ

γγγ

ααα

γ

γ

γγγ

ααα

γ

α

We consider the following complete left-most derivation for t to qf .

d =
(

α→ q, 11
) (

γ(q)→ q, 1
) (

α→ ⊥, 211
) (

γ(⊥)→ ⊥, 21
)

(
α→ q, 31

) (
γ(q)→ q, 3

) (
δ
(
q, γ(⊥), q

) 1=21−→ qf , ε
)

Moreover, let d′ =
(
α → q, 1

) (
γ(q) → q, ε

)
and d′

⊥ =
(
α → ⊥, 1

) (
γ(⊥) → ⊥, ε

)
.

With the notation of Definition 6, in the first step we have v1 = 1, v2 = 21, v3 = 3,
d1 = d3 = d′, d2 = d′

⊥, and ŵ = v−1
1 w = 1. Respecting the only constraint 1 = 21,

we set d′
1 = d1Jd′Kŵ = d′Jd′K1, d′

2 = d2Jd′
⊥Kŵ = d′

⊥Jd′
⊥K1, and d′

3 = d3 = d′. Eventually,
d′

1 =(α→ q, 11)(γ(q)→ q, 1)(γ(q)→ q, ε) and d′
2 =(α→ ⊥, 11)(γ(⊥)→ ⊥, 1)(γ(⊥)→ ⊥, ε).

Hence, we obtain the following derivation dJd′K11 for our new tree tJt′K11.

dJd′K11 =
(

α→ q, 111
) (

γ(q)→ q, 11
) (

γ(q)→ q, 1
) (

α→ ⊥, 2111
) (

γ(⊥)→ ⊥, 211
)

(
γ(⊥)→ ⊥, 21

) (
α→ q, 31

) (
γ(q)→ q, 3

) (
δ
(
q, γ(⊥), q

) 1=21−→ qf , ε
)

Although t|31 = α also coincides with the subtree t|11 = α we replaced, these two subtrees
are not equality-constrained, so the simultaneous substitution does not affect t|31.

The substitution of Definition 6 allows us to prove a pumping lemma for the class of
WTGh: If d is an accepting derivation of a WTGh G = (Q ∪ {⊥}, Σ, F, P, wt) for a tree t

with ht(t) > ht(G), then there exist at least |Q \ {⊥}|+ 1 positions w1 > · · · > w|Q|+1 in t at
which d applies productions with non-sink target states. By the pigeonhole principle, there
thus exist two positions wi > wj in t at which d applies productions with the same non-sink
target state. Employing the substitution we just defined, we can substitute t|wj

into wi and
obtain a derivation of G for tJt|wj Kwi . This process can be repeated to obtain an infinite
sequence of trees strictly increasing in size. Formally, the following lemma was proved in [20].

▶ Lemma 8 ([20, Lemma 4]). Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. Consider some
tree t ∈ TΣ and non-sink state q ∈ Q \ {⊥} such that ht(t) > ht(G) and Dq

G(t) ̸= ∅. Then
there are infinitely many pairwise distinct trees t0, t1, . . . such that Dq

G(ti) ̸= ∅ for all i ∈ N.

▶ Example 9. Recall the WTGh G of Example 4. We have ht(P ) = 2 and ht(G) = 4, but
for simplicity, we choose the smaller tree t = δ(γ(α), γ(γ(α)), γ(α)), which we also considered
in Example 7, since it also allows pumping. The derivation d presented in Example 7 for t

applies the productions (α→ q) at 11 and γ(q)→ q at 1, so we substitute t|1 = γ(α) at 11
to obtain tJγ(α)K11. In fact, this is exactly the substitution we illustrated in Example 7.
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4 The Decision Procedure

Let us now turn to the N-weighted version of the HOM-problem. In the following, we show
that the regularity of the homomorphic image of a regular N-weighted tree language is
decidable in polynomial time. More precisely, we prove the following theorem.

▶ Theorem 10. The weighted HOM-problem over N is polynomial; i.e. for fixed ranked
alphabets Γ and Σ, given a trim WTA A over Γ, and a nondeleting, nonerasing tree homo-
morphism h : TΓ → TΣ, it is decidable in polynomial time whether hJAK is regular.

In the beginning, the proof of Theorem 10 resembles the unweighted case [15]: Given a
regular weighted tree language A (represented by a trim WTA) and a tree homomorphism h,
we first construct a trim WTGh G for its image JGK = hA applying Theorem 3. We then
show that JGK is regular if and only if the equality constraints used in G only act on subtrees
of height at most ht(G). In other words, if there exists a production ℓ

E−→ q in G such that
for some equality constraint (u, v) ∈ E with non-sink state q = ℓ(u) there exists a tree t ∈ TΣ
with ht(t) > ht(G) and Dq

G(t) ̸= ∅, then JGK is not regular, and if no such production exists,
then JGK is regular. There are thus three parts to our proof. First, we show that the existence
of such a production is decidable in polynomial time. Then we show that JGK is regular if
no such production exists. Finally, we show that JGK is not regular if such a production
exists. The latter part employs Ramsey’s theorem [24] and is the most significant technical
contribution in our paper. For convenience, we attach a name to the property described here.

▶ Definition 11. Let G = (Q∪{⊥}, Σ, F, P, wt) be a trim WTGh. We say that G has the large
duplication property if there exist a production ℓ

E−→ q ∈ P , an equality constraint (u, v) ∈ E

with ℓ(u) ̸= ⊥ = ℓ(v), and a tree t ∈ TΣ such that ht(t) > ht(G) and D
ℓ(u)
G (t) ̸= ∅.

We start with the decidability of the large duplication property.

▶ Lemma 12. Consider a fixed ranked alphabet Σ. The following is decidable in polynomial
time: Given a trim WTGh G, does it satisfy the large duplication property?

Proof. Let G = (Q ∪ {⊥}, Σ, F, P, wt) and construct the directed graph G = (Q, E) with
edges E =

⋃
ℓ

E−→q∈P
{(q′, q) | q′ ∈ Q, posq′(ℓ) ̸= ∅}. Clearly, the large duplication property

is equivalent to the condition that there exists a production ℓ
E−→ q ∈ P , an equality

constraint (u, v) ∈ E with ℓ(u) ̸= ⊥ = ℓ(v), and a state q′ ∈ Q \ {⊥} such that there exists a
cycle from q′ to q′ in G and a path from q′ to ℓ(u) in G. This equivalent condition can be
checked in polynomial time. The equivalence of the two statements is easy to establish. If
the large duplication property holds, then the pumping lemma [20, Lemma 4] exhibits the
required cycle and path. Conversely, if the cycle and path exist, then the pumping lemma [20,
Lemma 4] can be used to derive arbitrarily tall trees for which a derivation exists. ◀

Next, we show that if a WTGh G does not satisfy the large duplication property, then its
generated weighted tree language JGK is regular. To this end, we construct the linearization
of G. The linearization of a WTGh G is a WTG that simulates all derivations of G which
only ensure the equality of subtrees of height at most ht(G). For this, we replace every
production ℓ

E−→ q in G by the collection of all productions ℓ′ → q which can be obtained by
instantiating E, i.e., substituting each position constrained by E with a compatible tree of
height at most ht(G) that satisfies E. Note that positions in ℓ that are unconstrained by E

are unaffected by these substitutions. Formally, we define the linearization following [15,
Definition 7.1].
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▶ Definition 13. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. The linearization lin(G)
of G is the WTG lin(G) = (Q ∪ {⊥}, Σ, F, Plin, wtlin), where Plin and wtlin are defined as
follows. For ℓ′ ∈ TΣ(Q) \ Q and q ∈ Q, we let (ℓ′ → q) ∈ Plin if and only if there exist a
production (ℓ E−→ q) ∈ P , positions w1, . . . , wk ∈ posQ∪{⊥}(ℓ), and trees t1, . . . , tk ∈ TΣ with
{w1, . . . , wk} =

⋃
w∈pos⊥(ℓ)[w]E; i.e., E constrains exactly the positions w1, . . . , wk,

ti = tj if (wi, wj) ∈ E for all i, j ∈ [k],
ℓ′ = ℓ[t1]w1 · · · [tk]wk

, and

D
ℓ(wi)
G (ti) ̸= ∅ and ht(ti) ≤ ht(G) for all i ∈ [k].

For every such production ℓ′ → q we define wtlin(ℓ′ → q) as the sum over all weights

wt(ℓ E−→ q) ·
∏

i∈[k]

wtℓ(wi)
G (ti)

for all (ℓ E−→ q) ∈ P , w1, . . . , wk ∈ posQ∪{⊥}(ℓ), and t1, . . . , tk ∈ TΣ as above.

If a trim WTGh G does not satisfy the large duplication property, then every equality
constraint in every derivation of G only ensures the equality of subtrees of height at most ht(G).
Thus, lin(G) and G generate the same weighted tree language JGK = Jlin(G)K, which is then
regular because lin(G) is a WTG. Thus we summarize:

▶ Proposition 14. Let G be a trim WTGh and suppose that G does not satisfy the large
duplication property. Then JGK is a regular weighted tree language.

Finally, we show that if a WTGh G = (Q∪{⊥}, Σ, F, P, wt) satisfies the large duplication
property, then JGK is not regular. For this, we first show that if G satisfies the large duplication
property, then we can decompose it into two WTGh G1 and G2 such that JGK = JG1K+ JG2K
and at least one of JG1K and JG2K is not regular. To conclude the desired statement, we then
show that the sum JGK = JG1K + JG2K is also not regular. For the decomposition, consider
the following idea. Assume that there exists a production p = (ℓ E−→ q) ∈ P as in the large
duplication property such that F (q) ̸= 0. Then we create two copies G1 and G2 of G as
follows. In G1 we set all final weights to 0, add a new state f with final weight F (q), and
add the new production (ℓ E−→ f) with the same weight as p. On the other hand, in G2
we set the final weight of q to 0, add a new state f with final weight F (q), and for every
production p′ = (ℓ′ E′

−→ q) ∈ P except p, we add the new production ℓ′ E′

−→ f to G2 with
the same weight as p′. Then JGK = JG1K + JG2K because every derivation of G whose last
production is p is now a derivation of G1 to f , and every other derivation is either directly a
derivation of G2 or, in case of other derivations to q, is a derivation of G2 to f .

By our assumption on the production p = (ℓ E−→ q), there exist a tall tree t ∈ TΣ
with ht(t) > ht(G) and a constraint (u, v) ∈ E with ℓ(u) ̸= ⊥ = ℓ(v) and D

ℓ(u)
G (t) ̸= ∅. Thus,

every tree t′ generated by G1 satisfies t′|u = t′|v, and by Lemma 8, there exist infinitely many
pairwise distinct trees with a derivation to ℓ(u). The support (i.e., set of nonzero weighted
trees) of JG1K is therefore not a regular tree language. This implies that JG1K is not regular,
as the support of every regular weighted tree language over N is a regular tree language [12].

In general, we cannot expect that a production ℓ
E−→ q as in the large duplication property

exists that already targets a final state. We therefore “grow” productions from the top,
beginning with a production whose target state is final, by substituting Q-labeled positions
with left-hand sides of other productions until we have “synthesized” a production which
satisfies the large duplication property. We then construct G1 by adding this newly formed
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production as a production to a new state f . We construct G2 simply to ensure that it
simulates all derivations of G that are not already accounted for by G1. Formally, we show
the following lemma.

▶ Lemma 15. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a trim WTGh that satisfies the large
duplication property. Then there exist two trim WTGh G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) and
G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2) such that JGK = JG1K + JG2K and for some f ∈ Q1 we have

F1(f) ̸= 0 and F1(q) = 0 for all q ∈ Q1 \ {f}, and
there exists exactly one production pf = (ℓf

Ef−→ f) ∈ P1 with target state f , and for this
production there exists (u, v) ∈ Ef with ℓf(u) ̸= ℓf(v) = ⊥ and an infinite sequence of
pairwise distinct trees t0, t1, t2, . . . ∈ TΣ such that D

ℓf(u)
G1

(ti) ̸= ∅ for all i ∈ N.

Proof. Let p = (ℓ E−→ q) ∈ P be a production as in the large duplication property. Since
G is trim, there exist a tree t′ ∈ TΣ, a final state qf ∈ Q with F (qf) ̸= 0, a deriva-
tion d = (p1, w1) · · · (pm, wm) ∈ Dqf

G(t′), and i ∈ [m] such that pi = p. In other words,
there is a derivation utilizing production p. We let pj = ℓj

Ej−→ qj for every j ∈ [m], and
let wi1 > · · · > wik

be the sequence of prefixes of wi among the positions {w1, . . . , wm} in
strictly descending order with respect to the prefix order. In particular, we have wi1 = wi

and wik
= ε.

For a position w and a set E′ of constraints, we define wE′ = {(wu, wv) | (u, v) ∈ E′}.
We want to join the left-hand sides of the productions pi1 , . . . , pik

to a new produc-
tion ℓik

[ℓik−1 ]wik−1
· · · [ℓi1 ]wi1

Ef−→ qf with Ef =
⋃

j∈[k] wij
Eij

. However, we need to ensure
that wi1 , . . . , wik

do not occur in Ef. Therefore, we assume that p, t′, qf, d, and i above are
chosen such that wi is of minimal length among all possible choices. Then we see as follows
that wi1 , . . . , wik

do not occur in Ef.
Let (u, v) ∈ E with ℓ(u) ̸= ℓ(v) = ⊥ and t ∈ TΣ with ht(t) > ht(G) and D

ℓ(u)
G (t) ̸= ∅.

Suppose there exists j ∈ [k] such that wij
occurs in Ef. Then there exists (u′, v′) ∈ Eij+1

with wij
= wij+1u′. Then the tree t′JtKwiu|wij

shows us that pij+1 is also a production as in
the large duplication property, but |wij+1 | < |wi|, so wi is not of minimal length.

We define G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) as follows. Let f /∈ Q ∪ {⊥} be a new state.
We set Q1 = Q ∪ {f}, F1(f) = F (qf), and F1(q′) = 0 for all q′ ∈ Q. For the produc-
tion pf = (ℓik

[ℓik−1 ]wik−1
· · · [ℓi1 ]wi1

Ef−→ f) with Ef =
⋃

j∈[k] wij
Eij

, we let P1 = P ∪ {pf},
wt1(pf) =

∏
j∈[k] wt(pij

), and wt1(p′) = wt(p′) for all p′ ∈ P . Then G1 simulates all
derivations of G with productions pi1 , . . . , pik

at the positions wi1 , . . . , wik
, respectively.

For the existence of the infinite sequence of trees, let (u, v) ∈ E with ℓ(u) ̸= ℓ(v) = ⊥
and t ∈ TΣ with ht(t) > ht(G) and D

ℓ(u)
G (t) ̸= ∅. By Lemma 8, there exists an infin-

ite sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees with D
ℓ(u)
G (ti) ̸= ∅ for all i ∈ N.

Since D
ℓ(u)
G (ti) ⊆ D

ℓ(u)
G1

(ti) for all i ∈ N, this is the desired sequence. We conclude the
definition of G1 by noting that (wiu, wiv) ∈ Ef and that the left-hand side ℓf of pf satis-
fies ℓf(wiu) = ℓ(u).

Next, we construct G2 such that it simulates all remaining derivations of G in the following
sense. If d is a derivation of G to a state different from qf, then it is a derivation of G2 to that
same state. If d is a derivation of G to qf but its last production is not pik

, then it is simulated
by a derivation of G2 to a new state f . If d is a derivation of G and its last production
is pik

but the production at wik−1 is not pik−1 , then it again is simulated by a derivation
of G2 to f , and so on. To have a more compact definition for G2, we use the symbol □ to
denote a tree of height 0 and a term □[ℓik

]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij
for j = k is to be read

as □[ℓ′]wij
. We let f /∈ Q ∪ {⊥} be a new state and define G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2)

by Q2 = Q ∪ {f}, F2(qf) = 0, F2(f) = F (qf), and F2(q′) = F (q′) for all q′ ∈ Q \ {qf}.



A. Maletti, A.-T. Nász, and E. Paul 51:11

t′ = σ

γ1

σ

α α

α

pf = σ

γ1

σ

q0 ⊥

q0

111=112−→ 8 f

Figure 1 The tree t′ and the new production pf .

For the set P2 of productions, we let

P2 = P ∪
⋃

j∈[k]

{
□[ℓik

]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij

Ef−→ f
∣∣∣ p′ = (ℓ′ E′

−→ qij
) ∈ P \ {pij

},

Ef = wij
E′ ∪

k⋃
j′=j+1

wij′ Eij′

}
.

For a production pf = □[ℓik
]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij

Ef−→ f constructed from p′ as above we
let wt2(pf ) = wt(p′) ·

∏k
j′=j+1 wt(pij′ ) and for every p′ ∈ P we let wt2(p′) = wt(p′). Then

we have JGK(t) = JG1K(t) + JG2K(t) for every t ∈ TΣ. Note that trimming G1 and G2 will
not remove any of the newly added productions under the assumption that G is trim. ◀

▶ Example 16. We present an example for the decomposition in Lemma 15. Consider the
trim WTGh G = (Q ∪ {⊥}, Σ, P, F, wt) with Q = {q0, q̄, qf}, Σ = {α(0), γ(1), σ(2), γ

(1)
1 , γ

(1)
2 },

final weights F (qf) = 1 and F (q0) = F (q̄) = F (⊥) = 0, and the set P = P⊥ ∪ P ′ defined
by P ′ =

{
α→1 q0, γ(q0)→1 q0, σ(q0,⊥) 1=2−→2 q̄, γ1(q̄)→2 q̄, γ2(q̄)→2 q̄, σ(q̄, q0)→2 qf

}
and the usual productions targeting ⊥ in P⊥. Trees of the form γ(· · · (γ(α)) · · · ) of arbitrary
height are subject to the constraint 1 = 2, so G satisfies the large duplication property.

We consider t′ as in Figure 1 and use its (unique) derivation in G. Following the approach
sketched above, we choose a new state f and define G1 = (Q ∪ {f} ∪ {⊥}, Σ, F1, P1, wt1),
where F1(f) = 1 and F1(q) = 0 for every q ∈ Q ∪ {⊥}, and P1 = P ∪ {pf} with the new
production pf depicted in Figure 1, which joins all the productions of G used to derive t′,
from the one evoking the large duplication property to the one targeting a final state. It
remains to construct a WTGh G2 such that JGK = JG1K + JG2K. All productions of G still
occur in G2, but qf is not final anymore. Instead, we add a state f with F2(f) = F (qf) = 1
and make sure that this state adopts all other accepting derivations that formerly led to qf.
For this, we handle first the derivations that coincide with the derivation for t′ at the juncture
positions ε and 1, but not at 2. This leads to the following new productions p1

1 and p1
2:

p1
1 = σ

γ1

γ1

q̄

q0

→8 f p1
2 = σ

γ1

γ2

q̄

q0

→8 f .
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Next we cover the derivations that differ from the derivation for t′ at the position 1 but
coincide with it at the root. This leads to the new productions

p2
1 = σ

σ

q0 ⊥

q0

11=12−→ 4 f p2
2 = σ

γ2

q0

q0

→4 f .

Apart from the production incorporated at the root of pf, no other production of G targets qf
directly, so no more productions are added to P2.

Finally, we define the WTGh G2 = (Q∪{f}∪{⊥}, Σ, F2, P2, wt2) with F2(f) = F (qf) = 1,
F2(qf) = F2(q0) = F2(q̄) = F2(⊥) = 0, and P2 = P ∪ {p1

1, p1
2} ∪ {p2

1, p2
2}.

It remains to show that the existence of a decomposition JGK = JG1K+JG2K as in Lemma 15
implies the non-regularity of JGK. For this, we employ the following idea. Consider a ranked
alphabet Σ containing a letter σ of rank 2, a WTA G′ = (Q, Σ, F, P, wt) over Σ (which
exemplifies G2), and a sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees. At this point, we
assume that P contains all possible productions, but we may have wt(p) = 0 for p ∈ P . Using
the initial algebra semantics [12], we can find a matrix representation for the weights assigned
by G′ to trees of the form σ(ti, tj) as follows. We enumerate the states Q = {q1, . . . , qn}
and for every i ∈ N define a (column) vector νi ∈ Nn by (νi)k = wtqk

G′(ti) for k ∈ [n].
Furthermore, we define a matrix N ∈ Nn×n by Nkh =

∑
q∈Q F (q) · wt(σ(qk, qh) → q) for

k, h ∈ [n]. Then JG′K(σ(ti, tj)) = νT
i Nνj for all i, j ∈ N, where νT

i is the transpose of νi.
We employ this matrix representation to show that the sum of JG′K and the (non-regular)

characteristic function 1L of the tree language L = {σ(ti, ti) | i ∈ N} is not regular. We
proceed by contradiction and assume that JG′K + 1L is regular. Thus we can find an
analogous matrix representation using a matrix N ′ and vectors ν′

i for JG′K + 1L. Since the
trees t0, t1, t2, . . . are pairwise distinct, we can write(

JG′K + 1L

)(
σ(ti, tj)

)
= (ν′

i)TN ′ν′
j = JG′K

(
σ(ti, tj)

)
+ δij = νT

i Nνj + δij

for all i, j ∈ N, where δij denotes the Kronecker delta. The vectors ν′
i and νi contain

nonnegative integers, so we may consider the concatenated vectors ⟨ν′
i, νi⟩ as vectors of Qm

where m ∈ N is the sum of number of states of G′ and of the WTA we assumed recog-
nizes JG′K + 1L. Since Qm is a finite dimensional Q-vector space, the Q-vector space spanned
by the family (⟨ν′

i, νi⟩)i∈N is also finite dimensional. We may thus select a finite generating
set from (⟨ν′

i, νi⟩)i∈N. For simplicity, we assume that ⟨ν′
1, ν1⟩, . . . , ⟨ν′

K , νK⟩ form such a gener-
ating set. Thus there exist a1, . . . , aK ∈ Q with ⟨ν′

K+1, νK+1⟩ =
∑

i∈[K] ai⟨ν′
i, νi⟩. Applying

the usual distributivity laws for matrix multiplication, we reach a contradiction as follows.(
JG′K + 1L

)(
σ(tK+1, tK+1)

)
= (ν′

K+1)TN ′ν′
K+1 =

∑
i∈[K]

ai(ν′
i)TN ′ν′

K+1

=
∑

i∈[K]

aiν
T
i NνK+1 = νT

K+1NνK+1 = JG′K
(
σ(tK+1, tK+1)

)
For the general case, we do not want to assume that JG2K is regular, so we cannot assume

to have a matrix representation as we had for JG′K above. In order to make our idea work, we
identify a set of trees for which the behavior of JG1K+ JG2K resembles that of JG′K+ 1L; more
precisely, we construct a context C and a sequence t0, t1, t2, . . . of pairwise distinct trees
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such that (JG1K+ JG2K)(C(ti, tj)) = ν
(1)
i Nν

(2)
j + δijµi for all i, j ∈ N and additionally, µi > 0

for all i ∈ N. This representation then allows us to perform linear algebra computations in
order to prove that JG1K + JG2K is non-regular. Unfortunately, working with a 2-context C

may be insufficient if G1 uses constraints of the form {v = v′, v′ = v′′}, where more than
two positions are constrained to be pairwise equivalent. Therefore, we have to consider more
general n-contexts C and then identify a sequence of trees such that the equation above is
satisfied on C(ti, tj , tj , . . . , tj).

Isolating this desired sequence of trees is the most technically involved proof in our paper.
We illustrate the effect of this selection in Example 19 below. Along the way, we will use the
following version of Ramsey’s theorem [24]. For a set X, we denote by

(
X
2
)

the set of all
subsets of X of size 2.

▶ Theorem 17. Let k ≥ 1 be an integer and f :
(N

2
)
→ [k] a mapping. There exists an infinite

subset E ⊆ N such that f |(E
2) ≡ i for some i ∈ [k].

▶ Lemma 18. Let G = (Q∪{⊥}, Σ, F, P, wt) be a trim WTGh. If G satisfies the large duplic-
ation property, then there exists an integer r ≥ 2, an r-context C ∈ TΣ(□), trees (ti)i∈N ⊆ TΣ,
an integer m ∈ N, row vectors (ν(1)

i )n∈N ⊆ Nm, column vectors (ν(2)
i )n∈N ⊆ Nm, a matrix

N ∈ Nm×m, and weights (µi)i∈N ⊆ N\{0} with JGK(C(tk, th, th, . . . , th)) = ν
(1)
k Nν

(2)
h +δkhµk

for all k, h ∈ N.

Proof. By Lemma 15 there exist two trim WTGh G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) and
G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2) with JGK(t) = JG1K(t) + JG2K(t) for all t ∈ TΣ. Additionally,
there exists f ∈ Q1 with F1(f) ̸= 0 and F1(q) = 0 for all q ∈ Q1 \ {f} and there exists
exactly one production pf = (ℓf

Ef−→ f) ∈ P1 whose target state is f . Finally, for this
production pf there exists (u(1), v(1)) ∈ Ef with ℓf(u(1)) ̸= ℓf(v(1)) = ⊥ and an infinite
sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees with D

ℓf(u(1))
G1

(ti) ̸= ∅ for all i ∈ N.
Let t ∈ TΣ be such that Df

G1
(t) ̸= ∅, and let u

(1)
1 , . . . , u

(1)
r be an enumeration of all

positions that are equality-constrained to u(1) via Ef, where we assume that u
(1)
1 = u(1). We

define a context C = t[□]
u

(1)
1
· · · [□]

u
(1)
r

. Then JG1K(C(ti, tj , tj , . . . , tj)) > 0 iff i = j.
Let us establish some additional notations. Let k, h ∈ N and assume there is q ∈ Q2

with F2(q) ̸= 0 and d = (p1, w1) · · · (pm, wm) ∈ Dq
G2

(C(tk, th, th, . . . , th)). Let pi = ℓi
Ei−→ qi

for every i ∈ [m], and for a set X ⊆ pos(C(tk, th, th, . . . , th)), we let i1 < · · · < in be such
that wi1 , . . . , win

is an enumeration of {w1, . . . , wm} ∩X; i.e., all positions in X to which d

applies productions. We set d|X = (pi1 , wi1) · · · (pin
, win

), wt2(d|X) =
∏

j∈[n] wt2(pij
), and

Dkh = {d′|pos(C) | ∃q′ ∈ Q2 : F2(q′) ̸= 0, d′ ∈ Dq′

G2
(C(tk, th, th, . . . , th))}.

We now employ Ramsey’s theorem in the following way. For k, h ∈ N with k < h,
we consider the mapping {k, h} 7→ Dkh. This mapping has a finite range as every Dkh is
a set of finite words over the alphabet P2 × pos(C) of length at most size(C). Thus, by
Ramsey’s theorem, we obtain a subsequence (tij )j∈N with Dikih

= D< for all k, h ∈ N and
some set D<. For simplicity, we assume Dkh = D< for all k, h ∈ N with k < h. Similarly,
we select a further subsequence and assume Dkh = D> for all k, h ∈ N with k > h. Finally,
the mapping k 7→ Dkk also has a finite range, so by the pigeonhole principle, we may select
a further subsequence and assume that Dkk = D= for all k ∈ N and some set D=. In the
following, we show that D< = D> ⊆ D=.

For now, we assume D< ̸= ∅, let (p1, w1) · · · (pm, wm) ∈ D<, and let pi = ℓi
Ei−→ qi

for every i ∈ [m]. Also, we define Ckh = C(tk, th, th, . . . , th), Ck□ = C(tk,□,□, . . . ,□),
and C□h = C(□, th, th, . . . , th) for k, h ∈ N. We show that every constraint from every Ei is
satisfied on all Ckh with k, h ≥ 1, not just for k < h. More precisely, let i ∈ [m], (u′, v′) ∈ Ei,
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and (u, v) = (wiu
′, wiv

′). We show Ckh|u = Ckh|v for all k, h ≥ 1. Note that by assumption,
Ckh|u = Ckh|v is true for all k, h ∈ N with k < h. We show our statement by a case
distinction depending on the position of u and v in relation to the positions u

(1)
1 , . . . , u

(1)
r .

1. If both u and v are parallel to u(1)
1, then Cij |u and Cij |v do not depend on i. Thus,

C0j |u = C0j |v for all j ≥ 1 implies the statement.
2. If u is in prefix-relation with u(1)

1 and v is parallel to u(1)
1, then Cij |v does not depend

on i. If u ≤ u(1)
1, then by our assumption that (ti)i∈N are pairwise distinct, we obtain the

contradiction C02|v = C02|u ̸= C12|u = C12|v, where C02|v = C12|v should hold. Thus,
we have u(1)

1 ≤ u and in particular, Cij |u does not depend on j. Thus, for all i, j ≥ 1
we obtain Cij |u = Ci,i+1|u = Ci,i+1|v = C0,i+1|v = C0,i+1|u = C0j |u = C0j |v = Cij |v. If
v is in prefix-relation with u(1)

1 and u is parallel to u(1)
1, then we come to the same

conclusion by formally exchanging u and v in this argumentation.
3. If u and v are both in prefix-relation with u(1)

1, then u and v being parallel to each
other implies u(1)

1 ≤ u and u(1)
1 ≤ v. In particular, both u and v are parallel to

all u
(1)
2 , . . . , u

(1)
r . Thus, we obtain, as in the first case, that Cij |u and Cij |v do not depend

on j and the statement follows from Ci,i+1|u = Ci,i+1|v for all i ∈ N.
Let k, h ≥ 1 and dC ∈ D<, and let q ∈ Q2, dk,k+1 ∈ Dq

G2
(Ck,k+1), and dh−1,h ∈ Dq

G2
(Ch−1,h)

such that dC = dk,k+1|pos(C) = dh−1,h|pos(C). Then for dk = dk,k+1|pos(Ck,k+1)\pos(C□,k+1)
and dh = dh−1,h|pos(Ch−1,h)\pos(Ch−1,□), we can reorder d = dkdhdC to a complete left-most
derivation of G2 for Ckh, as all equality constraints from dk are satisfied by the assumption
on dk,k+1, all equality constraints from dh are satisfied by the assumption on dh−1,h, and
all equality constraints from dC are satisfied by our case distinction. Considering the
special cases k = 2, h = 1, and k = h = 1, and the definitions of D> and D=, we
obtain dC ∈ D21 = D> and dC ∈ D11 = D=, and hence, D< ⊆ D> and D< ⊆ D=.

The converse inclusion D> ⊆ D< follows with an analogous reasoning. In conclusion, we
obtain D< = D> ⊆ D=. By the reasoning above, the case D< = ∅ we excluded earlier is
only possible if also D> = ∅, in which case we again have D< = D> ⊆ D=.

Let d1, . . . , dn be an enumeration of D<, i ∈ [n], and k ∈ N. We define the sets

D
(1)
i,k =

{
d|pos(Ck,k+1)\pos(C□,k+1) | d ∈ Dq

G2
(Ck,k+1), di = d|pos(C), q ∈ Q2

}
D

(2)
i,k =

{
d|pos(Ck+1,k)\pos(Ck+1,□) | d ∈ Dq

G2
(Ck+1,k), di = d|pos(C), q ∈ Q2

}
and the corresponding weights ν

(1)
i,k =

∑
d∈D

(1)
i,k

wt2(d) and ν
(2)
i,k =

∑
d∈D

(2)
i,k

wt2(d). Let qi

be the target state of the last production in di and define νi = F2(qi) · wt2(di). Then for
all k, h ∈ N we have JG2K(Ckh) =

∑
i∈[n](ν

(1)
i,k · νi · ν(2)

i,h ) + δkhµ′
k for nonnegative (µ′

j)j∈N,
which stem from the fact that potentially D= \D< ̸= ∅. We arrange the weights ν

(1)
i,k into

a row vector ν
(1)
k , and the weights ν

(2)
i,h into a column vector ν

(2)
h , and the weights νi

into a diagonal matrix N such that JG2K(Ckh) = ν
(1)
k Nν

(2)
h + δkhµ′

k. Finally, recall
that JG1K(Ckh) > 0 iff k = h for all k, h ∈ N. Thus we set µk = µ′

k + JG1K(Ckk) and ob-
tain JGK(Ckh) = JG2K(Ckh)+JG1K(Ckh) = ν

(1)
k Nν

(2)
h +δkhµk with µk > 0 for all k, h ∈ N. ◀

Before concluding the correctness of our decision procedure for the weighted HOM-problem,
we want to exemplify how the Lemma 12 acts on a simple weighted tree language.

▶ Example 19. Consider the WTGh G = ({q, qf ,⊥}, {a(0), g(1), f (2)}, F, P, wt) with final
weights F (qf ) = 1, F (q) = F (⊥) = 0 and the following productions:

P =
{

a→1 q, g(q)→2 q, f(q,⊥) 1=2−→1 qf , f
(
q, g(⊥)

) 1=21−→1 qf

}
∪ P⊥
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where P⊥ = {a→1 ⊥, g(⊥)→1 ⊥, f(⊥,⊥)→1 ⊥}. The production f(q,⊥) 1=2−→1 qf and the
tree ght(G)(a) satisfy the conditions in the large duplication property, so let G1 denote the
WTGh constructed according to Lemma 15 which simulates all derivations of G that use this
production at ε. Consider the sequence ti = gi+ht(G)(a) for i ∈ N. The context C = f(□,□)
satisfies JG1K

(
C(ti, tj)

)
̸= 0 iff i = j. In order to reproduce the linear-algebra argument

from the special case of JG′K + 1L described above, we need a matrix representation for the
remaining part JG2K, possibly with an additional factor δij . In terms of the weights computed
by G2, we can achieve this by the condition that JG2K

(
C(ti, tj)

)
̸= 0 either for all i, j ∈ N,

or for none, or only if i = j. However, because of the production f
(
q, g(⊥)

) 1=21−→1 qf , for
each i we have JG2K

(
C(ti, ti+1)

)
̸= 0 and JG2K

(
C(ti, tj)

)
= 0 for all j ≠ i + 1. To fix this

issue, we may select the subsequence (t2i)i∈N: In that case, we have JG2K
(
C(t2i, t2j)

)
= 0 for

all i, j ∈ N, and the matrix representation for JG2K is trivial.

Let us now conclude the decidability of the N-weighted HOM-problem.

▶ Theorem 20. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a trim WTGh. If G satisfies the large
duplication property, then JGK is not regular.

Proof. Let C ∈ TΣ(□), (ti)i∈N ⊆ TΣ, m ∈ N, (ν(1)
i )n∈N, (ν(2)

i )n∈N ⊆ Nm, N ∈ Nm×m, and
(µi)i∈N ⊆ N \ {0} be as in Lemma 18, i.e., JGK(C(tk, th, th, . . . , th)) = ν

(1)
k Nν

(2)
h + δkhµk

for all k, h ∈ N. If JGK is regular, then we can assume a representation for all k, h ∈ N as
JGK(C(tk, th, th, . . . , th)) = g(κk, κh, κh, . . . , κh), where κh is a finite vector of weights over N
where each entry corresponds to the sum of all derivations for th to a specific state of a
WTA, and g is a multilinear map encoding the weights of the derivations for C(□,□, . . . ,□)
depending on the specific input states at the □-nodes and the target state at the root ε. We
choose K such that the concatenated vectors ⟨κ1, ν

(1)
1 ⟩, . . . , ⟨κK , ν

(1)
K ⟩ form a generating set

of the Q-vector space spanned by (⟨κi, ν
(1)
i ⟩)i∈N. Then there are coefficients a1, . . . , aK ∈ Q

with κK+1 =
∑

i∈[K] aiκi and ν
(1)
K+1 =

∑
i∈[K] aiν

(1)
i . Thus, we reach our contradiction by

ν
(1)
K+1Nν

(2)
K+1 + µK+1 = g(κK+1, κK+1, . . . , κK+1) =

∑
i∈[K]

aig(κi, κK+1, . . . , κK+1)

=
∑

i∈[K]

aiν
(1)
i Nν

(2)
K+1 = ν

(1)
K+1Nν

(2)
K+1. ◀

5 Conclusion

In this contribution, we proved that the N-weighted HOM-problem is decidable. Formally,
given a regular weighted tree language A over N and a nondeleting, nonerasing tree homo-
morphism h as input, it is decidable in polynomial time whether the homomorphic image hA

is again regular. This was achieved by reducing the HOM-problem to the newly introduced
large duplication property, which formalizes the non-regular behavior of the investigated
weighted tree language hA, and then showing that this property is decidable.

Initially, hA is represented by a generalized tree grammar (WTGh) as introduced in [20].
Such a device expresses the duplication of subtrees performed by h by means of explicit equality
constraints. This WTGh is trimmed and tested directly for the large duplication property. If
it does not satisfy this property, we construct an equivalent weighted tree grammar without
constraints, which proves regularity of the generated weighted tree language. However, if the
trim WTGh for hA does satisfy the large duplication property, then no equivalent weighted
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tree grammar exists. To prove this, we first identify a special sequence of productions, isolate
it from the remainder of the WTGc, and then prove that it induces a non-regularity which
cannot be compensated by the remaining derivations of the WTGh.

We require h to be nondeleting and nonerasing simply to ensure that hA is well-defined
in general. These properties have no impact on the correctness of the reduction or the
computational complexity of the large duplication property, to which we reduce the N-
weighted HOM-problem. Indeed, our decision procedure for this problem is polynomial,
while the unweighted HOM-problem is EXPTIME-complete [6]. In the N-weighted setting
we proved that the large duplication property is sufficient for non-regularity; this is the main
technical difficulty and utilizes Ramsey’s theorem to identify a sequence of trees that acts
as a witness for the non-regularity of the homomorphic image. A matrix representation
that resembles the initial algebra semantics is then utilized to prove non-regularity. In the
unweighted case the large duplication property is clearly necessary, but not sufficient. This
difference is caused by the different algebraic structures of the underlying semirings. Whereas
the semiring N embeds into a field, the Boolean semiring is idempotent, which can be used to
cover non-regular behavior with regular behavior making it irrelevant. Essentially we proved
that such covers are impossible in N, which simplifies the execution of the decision procedure
and allows us to prove polynomial-time decidability of the N-weighted HOM-problem.
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