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Abstract
Two graphs are homomorphism indistinguishable over a graph class F , denoted by G ≡F H, if
hom(F, G) = hom(F, H) for all F ∈ F where hom(F, G) denotes the number of homomorphisms
from F to G. A classical result of Lovász shows that isomorphism between graphs is equivalent
to homomorphism indistinguishability over the class of all graphs. More recently, there has been
a series of works giving natural algebraic and/or logical characterizations for homomorphism
indistinguishability over certain restricted graph classes.

A class of graphs F is homomorphism-distinguishing closed if, for every F /∈ F , there are graphs
G and H such that G ≡F H and hom(F, G) ̸= hom(F, H). Roberson conjectured that every class
closed under taking minors and disjoint unions is homomorphism-distinguishing closed which implies
that every such class defines a distinct equivalence relation between graphs. In this work, we confirm
this conjecture for the classes Tk, k ≥ 1, containing all graphs of tree-width at most k.

As an application of this result, we also characterize which subgraph counts are detected by the
k-dimensional Weisfeiler-Leman algorithm. This answers an open question from [Arvind et al., J.
Comput. Syst. Sci., 2020].
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1 Introduction

In 1967, Lovász [16] proved that two graphsG andH are isomorphic if and only if hom(F,G) =
hom(F,H) for every graph F where hom(F,G) denotes the number of homomorphisms from
F to G. A natural follow-up question is to ask whether it is necessary to take the class
of all graphs F to obtain the above result, and which kind of other equivalence relations
can be obtained by restricting F to come from a proper subclass of all graphs. For a
graph class F , we say that two graphs G and H are F-equivalent, denoted by G ≡F H, if
hom(F,G) = hom(F,H) for all F ∈ F . Hence, Lovász’s [16] result says that ≡A is identical
to the isomorphism relation where A denotes the class of all graphs.

In recent years, there has been a series of works giving natural algebraic and/or logical
characterizations for homomorphism indistinguishability over certain restricted classes of
graphs. For example, this includes graphs of bounded tree-width [8], graphs of bounded
path-width [13], graphs of bounded tree-depth [12, 13] and the class of planar graphs [17]. In
particular, those results imply that the equivalence relations ≡F obtained from the mentioned
graph classes F do not correspond to isomorphism, and moreover, these equivalence relations
are pairwise distinct.
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In [21], Roberson initiated a more systematic study of the question which types of
graph classes F lead to different equivalence relations ≡F . A class of graphs F is called
homomorphism-distinguishing closed if, for every F /∈ F , there are graphs G and H such
that G ≡F H and hom(F,G) ̸= hom(F,H).

▶ Conjecture 1 (Roberson [21]). Let F be a graph class closed under taking disjoint unions
and minors. Then F is homomorphism-distinguishing closed.

In particular, this conjecture implies that every graph class closed under taking disjoint
unions and minors defines a distinct equivalence relation ≡F . Note that not every graph class
is homomorphism-distinguishing closed. For example, the class D2 of 2-degenerate graphs
(which is not closed under taking minors) is not homomorphism-distinguishing closed since
the corresponding equivalence relation defines the isomorphism relation between graphs [8].

For k ≥ 1 let Tk denote the class of all graphs of tree-width at most k. Roberson [21]
showed that Tk is homomorphism-distinguishing closed for k ∈ {1, 2}. In this work, we
generalize this to all k ≥ 1.

▶ Theorem 2. The class Tk is homomorphism-distinguishing closed for all k ≥ 1.

For the proof, we rely on known characterizations of homomorphism indistinguishability
over the class Tk [6, 8, 13] and existing constructions of non-isomorphic pairs of graphs that
are difficult to distinguish (see, e.g., [2, 5, 21]).

We remark that, since the first publication of the result, it has already been used in [22]
to analyse the Lasserre semidefinite programming hierarchy for graph isomorphism via a
characterization in terms of homomorphism counts. Also, the results have been used in [9]
which in particular uses a similar strategy to prove that the class T Dq of all graphs of
tree-depth at most q is homomorphism-distinguishing closed for all q ≥ 1.

As an application of this result, we are able to characterize which subgraph counts are
detected by the Weisfeiler-Leman algorithm (see also [1]). The Weisfeiler-Leman algorithm
(WL) is a standard heuristic in the context of graph isomorphism testing (see, e.g., [2]) which
recently also gained attention in a machine learning context [19, 20, 26, 28]. For k ≥ 1,
the k-dimensional Weisfeiler-Leman algorithm (k-WL) computes an isomorphism-invariant
coloring of the k-tuples of vertices of a graph G. If the color patterns computed for two
graphs G and H do not match, the graphs are non-isomorphic. In this case, we say that
k-WL distinguishes G and H. It is known that two graphs G and H are distinguished by
k-WL if and only if G ̸≡Tk

H, i.e., indistinguishability by k-WL can be characterized by
homomorphism indistinguishability over the class of graphs of tree-width at most k [6, 8, 13].

In [10], Fürer initiated research on the question of which subgraph counts are detected by
k-WL. Let F and G be two graphs. We write sub(F,G) to denote the number of subgraphs of
G isomorphic to F . We say the function sub(F, ·) is k-WL invariant if sub(F,G) = sub(F,H)
for all graphs G,H that are indistinguishable by k-WL. For example, Fürer [10] shows that
sub(Cℓ, ·) is 2-WL invariant for all ℓ ≤ 6 (where Cℓ denotes the cycle on ℓ vertices), but
sub(K4, ·) is not 2-WL invariant. In [1], Arvind, Fuhlbrück, Köbler and Verbitsky further
extended this line of research by showing sub(F, ·) is k-WL invariant for all graphs F that have
hereditary tree-width at most k. For a graph F we define its hereditary tree-width, denoted
by hdtw(F ), to be the maximum tree-width of a homomorphic image of F . Arvind et al. [1]
also provide some isolated negative results, but could not obtain a complete classification of
which subgraph counts are detected by k-WL even for the special case k = 2.

Building on Theorem 2, we provide a complete classification of which subgraph counts
are detected by k-WL for all k ≥ 1. This answers an open question from [1].
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▶ Theorem 3. Let F be a graph and k ≥ 1. Then sub(F, ·) is k-WL invariant if and only if
hdtw(F ) ≤ k.

Observe that the backward direction is already proved in [1], i.e., the main contribution
of this work is to show that for every graph F with hdtw(F ) > k, the k-WL algorithm fails
to detect subgraph counts from F .

For the proof, we use a well-known result [4] that allows us to formulate subgraph counts
as a linear combination of certain homomorphism counts, and then combine Theorem 2 with
an auxiliary lemma from [24].

We stress that Theorem 3 is also relevant in a machine-learning context. Indeed, it is
known that the expressive power of graph neural networks (GNNs), which are a common
tool for processing graph-structured data, is closely related to the expressive power of k-WL
(see, e.g., [19, 20]). On the other hand, counting small subgraph patterns, also called network
motifs [18], is a common technique in the study of large networks (see, e.g. [7, 14, 23, 27]
for the use of network motifs in computational biology). Hence, it is natural to ask which
subgraph counts can be detected by certain GNNs. This question has been studied in [3], but
similar to [10, 1] only limited results have been obtained. Exploiting the connections between
GNNs and k-WL (see, e.g., [19, 20]), Theorem 3 can provide a much more complete picture
of which subgraph counts can be detected by GNNs. In fact, in a recent work, Lanzinger and
Barceló [15] extend Theorem 3 to so-called knowledge graphs which are typically considered
by GNNs.

We also remark that another extension of Theorem 3 has been obtained by Göbel,
Goldberg and Roth [11] who determine the WL-dimension of counting the number of answers
to an existential conjunctive query.

2 Preliminaries

A graph is a pair G = (V,E) with vertex set V = V (G) and edge relation E = E(G). In
this paper all graphs are finite, simple (no loops or multiple edges), and undirected. We
denote edges by vw ∈ E(G) where v, w ∈ V (G). The neighborhood of v ∈ V (G) is denoted
by NG(v). Moreover, we write EG(v) to denote the set of edges incident to v. If the graph
is clear from context, we usually omit the index G and simply write N(v) and E(v). For
A ⊆ V (G) we denote by G[A] the induced subgraph of G on A. Also, we denote by G \A the
induced subgraph on the complement of A, that is G \A := G[V (G) \A].

An isomorphism from a graph G to another graph H is a bijective mapping φ : V (G) →
V (H) which preserves the edge relation, that is, vw ∈ E(G) if and only if φ(v)φ(w) ∈ E(H)
for all v, w ∈ V (G). Two graphs G and H are isomorphic (G ∼= H) if there is an isomorphism
from G to H. We write φ : G ∼= H to denote that φ is an isomorphism from G to H.

Let F and G be two graphs. A homomorphism from F to G is a mapping φ : V (F ) → V (G)
such that φ(v)φ(w) ∈ E(G) for all vw ∈ E(F ). We write hom(F,G) to denote the number
of homomorphisms from F to G.

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting
vertices and edges of G as well as contracting edges of G. More formally, let B = {B1, . . . , Bh}
be a partition of V (G) such that G[Bi] is connected for all i ∈ [h]. We define G/B to be the
graph with vertex set V (G/B) := B and

E(G/B) := {BB′ | ∃v ∈ B, v′ ∈ B′ : vv′ ∈ E(G)}.

A graph H is a minor of G if there is a partition B = {B1, . . . , Bh} of connected subsets
Bi ⊆ V (G) such that H is isomorphic to a subgraph of G/B. A graph G excludes H as a
minor if H is not a minor of G.
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Figure 1 The figure shows the graphs CFI(G) and CFIx(G) where G is the 2 × 4 grid. The sets
MG,∅(v) and MG,{u0}(v) are highlighted in gray. The vertex u0 is located in the top-right corner of
the grid. The marked edges show the difference between the two graphs.

3 Homomorphism Indistinguishability and Oddomorphisms

Toward the proof of Theorem 2, we need to cover several tools introduced in [21].

▶ Definition 4 (Roberson [21]). Let F and G be graphs and suppose φ is a homomorphism
from F to G. We say a vertex a ∈ V (F ) is odd (with respect to φ) if |NF (a) ∩ φ−1(v)| is
odd for every v ∈ NG(φ(a)). Similarly, we say a vertex a ∈ V (F ) is even with respect to φ
if |NF (a) ∩ φ−1(v)| is even for every v ∈ NG(φ(a)).

An oddomorphism from F to G is a homomorphism φ from F to G such that
(I) every vertex a ∈ V (F ) is odd or even (with respect to φ), and

(II) φ−1(v) contains an odd number of odd vertices for every v ∈ V (G).
A weak oddomorphism from F to G is a homomorphism φ from F to G such that there is a
subgraph F ′ of F for which φ|V (F ′) is an oddomorphism from F ′ to G.

Next, we introduce a construction for pairs of similar graphs from a base graph G that
has also been used in [21]. Actually, variants of this construction have already been used in
several earlier works (see, e.g., [2, 5]).

Let G be a graph and let U ⊆ V (G). For v ∈ V (G) we define δv,U := |{v}∩U |. We define
the graph CFI(G,U) (the name refers to the authors of [2] where a very similar construction
was first used in a related context) with vertex set

V (CFI(G,U)) := {(v, S) | v ∈ V (G), S ⊆ E(v), |S| ≡ δv,U mod 2}

and edge set

E(CFI(G,U)) := {(v, S)(u, T ) | uv ∈ E(G), uv /∈ S △ T}

(here, S△T denotes the symmetric difference of S and T , i.e., S△T := (S \T )∪ (T \S)). For
v ∈ V (G) we also write MG,U (v) := {(v, S) | S ⊆ E(v), |S| ≡ δv,U mod 2} for the vertices in
CFI(G,U) associated with v.

The following lemma is well-known (see, e.g., [2, 21])

▶ Lemma 5. Let G be a connected graph and let U,U ′ ⊆ V (G). Then CFI(G,U) ∼=
CFI(G,U ′) if and only if |U | ≡ |U ′| mod 2.

We define CFI(G) := CFI(G, ∅) and CFIx(G) := CFI(G, {u0}) for some u0 ∈ V (G). A
visualization can also be found in Figure 1.

▶ Theorem 6 (Roberson [21, Theorem 3.13]). Let F,G be graphs and suppose G is connected.
Then hom(F,CFI(G)) ≥ hom(F,CFIx(G)). Moreover, hom(F,CFI(G)) > hom(F,CFIx(G))
if and only if there exists a weak oddomorphism from F to G.
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We require two additional tools from [21] stated below.

▶ Lemma 7 ([21, Lemma 5.6]). Let F and G be graphs such that there is a weak oddomorphism
from F to G. Also suppose G′ is a minor of G. Then there is a minor F ′ of F such that
there is an oddomorphism from F ′ to G′.

▶ Lemma 8 ([21, Theorem 6.2]). Let F be a class of graphs such that
(1) if F ∈ F and there is a weak oddomorphism from F to G, then G ∈ F , and
(2) F is closed under disjoint unions and restrictions to connected components.
Then F is homomorphism-distinguishing closed.

4 Graphs of Bounded Tree-Width

In this section, we present the proof of Theorem 2. We rely on game characterizations for
graphs of bounded tree-width as well as homomorphism indistinguishability over graphs of
tree-width at most k.

4.1 Games
First, we cover the cops-and-robber game that characterizes tree-width of graphs. Fix some
integer k ≥ 1. For a graph G, we define the cops-and-robber game CopRobk(G) as follows:

The game has two players called Cops and Robber.
The game proceeds in rounds, each of which is associated with a pair of positions (v̄, u)
with v̄ ∈

(
V (G)

)k and u ∈ V (G).
To determine the initial position, the Cops first choose a tuple v̄ = (v1, . . . , vk) ∈

(
V (G)

)k

and then the Robber chooses some vertex u ∈ V (G) \ {v1, . . . , vk} (if no such u exists,
the Cops win the play). The initial position of the game is then set to (v̄, u).
Each round consists of the following steps. Suppose the current position of the game is
(v̄, u) = ((v1, . . . , vk), u).
(C) The Cops choose some i ∈ [k] and v′ ∈ V (G).
(R) The Robber chooses a vertex u′ ∈ V (G) such that there exists a path from u

to u′ in G \ {v1, . . . , vi−1, vi+1, . . . , vk}. After that, the game moves to position(
(v1, . . . , vi−1, v

′, vi+1, . . . , vk), u′).
If u ∈ {v1, . . . , vk} the Cops win. If there is no position of the play such that the Cops
win, then the Robber wins.

We say that the Cops (and the Robber, respectively) win CopRobk(G) if the Cops (and
the Robber, respectively) have a winning strategy for the game. We also say that k cops can
catch a robber on G if the Cops have a winning strategy in this game.

▶ Theorem 9 ([25]). A graph G has tree-width at most k if and only if k + 1 cops can catch
a robber on G.

Next, we discuss a game-theoretic characterization of two graphs being indistinguishable
via homomorphism counts from graphs of tree-width at most k.

Let k ≥ 1. For graphs G and H on the same number of vertices, we define the bijective
k-pebble game BPk(G,H) as follows:

The game has two players called Spoiler and Duplicator.
The game proceeds in rounds, each of which is associated with a pair of positions (v̄, w̄)
with v̄ ∈

(
V (G)

)k and w̄ ∈
(
V (H)

)k.

STACS 2024
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To determine the initial position, Duplicator plays a bijection f :
(
V (G)

)k →
(
V (H)

)k

and Spoiler chooses some v̄ ∈
(
V (G)

)k. The initial position of the game is then set to
(v̄, f(v̄)).
Each round consists of the following steps. Suppose the current position of the game is
(v̄, w̄) = ((v1, . . . , vk), (w1, . . . , wk)).
(S) Spoiler chooses some i ∈ [k].
(D) Duplicator picks a bijection f : V (G) → V (H).
(S) Spoiler chooses v ∈ V (G) and sets w := f(v). Then the game moves to position(

v̄[i/v], w̄[i/w]
)

where v̄[i/v] := (v1, . . . , vi−1, v, vi+1, . . . , vk) is the tuple obtained from
v̄ by replacing the i-th entry by v.

If mapping each vi to wi does not define an isomorphism of the induced subgraphs of
G and H, Spoiler wins the play. More precisely, Spoiler wins if there are i, j ∈ [k] such
that vi = vj ⇎ wi = wj or vivj ∈ E(G) ⇎ wiwj ∈ E(H). If there is no position of the
play such that Spoiler wins, then Duplicator wins.

We say that Spoiler (and Duplicator, respectively) wins BPk(G,H) if Spoiler (and
Duplicator, respectively) has a winning strategy for the game. Also, for a position (v̄, w̄)
with v̄ ∈

(
V (G)

)k and w̄ ∈
(
V (H)

)k, we say that Spoiler (and Duplicator, respectively)
wins BPk(G,H) from position (v̄, w̄) if Spoiler (and Duplicator, respectively) has a winning
strategy for the game started at position (v̄, w̄).

The following theorem follows from [2] and [6, 8, 13].

▶ Theorem 10. Suppose k ≥ 1. Let G and H be two graphs. Then hom(F,G) = hom(F,H)
for every F ∈ Tk if and only if Duplicator wins the game BPk+1(G,H).

4.2 Indistinguishable Graphs
The main step in the proof of Theorem 2 is to show that CFI(G) and CFIx(G) can not be
distinguished via homomorphism counts from graphs of tree-width at most k for all connected
graphs G of tree-width strictly greater than k. The proof follows similar arguments from [5]
used to prove a closely related statement. Toward this end, the next lemma provides certain
useful isomorphisms between CFI-graphs.

▶ Lemma 11. Let G be a connected graph and suppose u, v ∈ V (G). Let P be a path from u

to v. Then there is an isomorphism φ : CFI(G, {u}) ∼= CFI(G, {v}) such that
(1) φ(MG,{u}(w)) = MG,{v}(w) for all w ∈ V (G), and
(2) φ(w, S) = (w, S) for all w ∈ V (G) \ V (P ) and (w, S) ∈ MG,{u}(w).

Proof. Let E(P ) denote the set of edges on the path P . Clearly,
|E(P ) ∩ E(u)| = 1 and |E(P ) ∩ E(v)| = 1,
|E(P ) ∩ E(w)| = 2 for all w ∈ V (P ) \ {u, v}, and
|E(P ) ∩ E(w)| = 0 for all w ∈ V (G) \ V (P ).

We define φ(w, S) := (w, S△ (E(P ) ∩E(w))) for all (w, S) ∈ CFI(G, {u}). It is easy to check
that φ : CFI(G, {u}) ∼= CFI(G, {v}) and the desired properties are satisfied. ◀

The next lemma forms the key technical step in the proof of Theorem 2.

▶ Lemma 12. Let G be a connected graph of tree-width tw(G) ≥ k. Then Duplicator wins
the k-bijective pebble game played on CFI(G) and CFIx(G).
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Proof. Let us fix some vertex u0 ∈ V (G) so that CFIx(G) = CFI(G, {u0}). Since tw(G) ≥ k,
the Robber has a winning strategy in the cops-and-robber game CopRobk(G) by Theorem 9.
We translate the winning strategy for the Robber in CopRobk(G) into a winning strategy
for Duplicator in the k-bijective pebble game played on CFI(G) and CFIx(G).

We first construct the bijection f for the initialization round. Suppose x̄ = (x1, . . . , xk) ∈
(V (CFI(G)))k. We define A(x̄) := (v1, . . . , vk) where vi ∈ V (G) is the unique vertex such
that xi ∈ MG,∅(vi).

Now let u be the vertex chosen by the Robber if the Cops initially place themselves
on A(x̄). Let P be a shortest path from u to u0 (recall that G is connected), and let φ
denote the isomorphism from CFI(G, {u}) to CFI(G, {u0}) constructed in Lemma 11. We
set f(x̄) := (φ(x1), . . . , φ(xk)). It is easy to see that this gives a bijection f (we use the same
isomorphism φ for all tuples x̄ having the same associated tuple A(x̄)).

Now, throughout the game, Duplicator maintains the following invariant. Let (x̄, ȳ) denote
the current position. Then there is a vertex u ∈ V (G) and an isomorphism φ : CFI(G, {u}) ∼=
CFI(G, {u0}) such that

φ(MG,{u}(w)) = MG,{u0}(w) for all w ∈ V (G),
φ(x̄) = ȳ,
u does not appear in the tuple A(x̄), and
the Robber wins from the position (A(x̄), u), i.e., if the Cops are placed on A(x̄) and the
Robber is on u.

Note that this condition is satisfied by construction after the initialization round.
Also observe that Duplicator never looses the game in such a position. Indeed, the mapping

φ restricts to an isomorphism between CFI(G, ∅) −MG,∅(u) = CFI(G, {u}) −MG,{u}(u) and
CFI(G, {u0}) − MG,{u0}(u). Hence, since no vertex associated with u is pebbled in either
graph, the pair (x̄, ȳ) induces a local isomorphism.

So it remains to show that Duplicator can maintain the above invariant in each round of
the k-bijective pebble game. Suppose (x̄, ȳ) is the current position. Also let (A(x̄), u) be the
associated position in the cops-and-robber game. Suppose that A(x̄) = (v1, . . . , vk).

Let i ∈ [k] denote the index chosen by Spoiler. We describe the bijection f chosen by
Duplicator. Let v ∈ V (G). Let u′ be the vertex the Robber moves to if the Cops choose i and
v (i.e., the i-th cop changes its position to v) in the position (A(x̄), u). Let P denote a path
from u to u′ that avoids {v1, . . . , vk}\{vi}. Let ψ denote the isomorphism from CFI(G, {u′})
to CFI(G, {u}) constructed in Lemma 11. We set f(x) := φ(ψ(x)) for all x ∈ MG,∅(v).

It is easy to see that f is a bijection. Let x denote the vertex chosen by Spoiler and let
y := f(x). Let x̄′ := x̄[i/x] and ȳ′ := ȳ[i/y], i.e., the pair (x̄′, ȳ′) is the new position of the
game. Also, we set φ′ := ψ ◦φ (i.e., φ′(z) = φ(ψ(z))) where ψ denotes the isomorphism from
CFI(G, {u′}) to CFI(G, {u}) used in the definition of f(x).

Clearly, φ′(MG,{u′}(w)) = MG,{u0}(w) for all w ∈ V (G), since the corresponding condi-
tions are satisfied for the mappings ψ and φ. We have φ′(x) = y by definition. All the other
entries of x̄′ are fixed by the mapping ψ (see Lemma 11, Part (2)) which overall implies that
φ′(x̄′) = ȳ′. Also, u′ does not appear in the tuple A(x̄′) by construction, and the Robber
wins from the position (A(x̄′), u′).

So overall, this means that Duplicator can maintain the above invariant which provides
the desired winning strategy. ◀

With this, we are almost ready to prove Theorem 2. The next corollary states the key
consequence of Lemma 12 that allows us to apply Lemma 8.
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▶ Corollary 13. Let k ≥ 1 and let F be a graph of tree-width tw(F ) ≤ k. Also let G be a
graph and suppose there is a weak oddomorphism from F to G. Then tw(G) ≤ k.

Proof. Suppose towards a contradiction that tw(G) > k. Then there is a connected subgraph
G′ of G such that tw(G′) > k. By Lemma 7, we conclude that there is a minor F ′ of F
such that there is an oddomorphism from F ′ to G′. In particular, tw(F ′) ≤ tw(F ) ≤ k. By
Theorem 6, we conclude that hom(F ′,CFI(G′)) > hom(F ′,CFIx(G′)). Using Theorem 10 it
follows that Spoiler wins the (k + 1)-bijective pebble game BPk+1(CFI(G′),CFIx(G′)). But
this contradicts Lemma 12 since tw(G′) ≥ k + 1. ◀

Proof of Theorem 2. Let k ≥ 1 be fixed. By Corollary 13, the class Tk satisfies Condition 1
from Lemma 8. Also, the class Tk clearly satisfies Condition 2 from Lemma 8. So Tk is
homomorphism-distinguishing closed by Lemma 8. ◀

5 Weisfeiler-Leman and Subgraph Counts

In this section, we prove Theorem 3. Towards this end, we first need to formally introduce
the WL algorithm.

5.1 The Weisfeiler-Leman Algorithm
Let χ1, χ2 : V k → C be colorings of the k-tuples of vertices, where C is some finite set of
colors. We say χ1 refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies χ2(v̄) = χ2(w̄) for
all v̄, w̄ ∈ V k. The colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 ⪯ χ2 and
χ2 ⪯ χ1.

We describe the k-dimensional Weisfeiler-Leman algorithm (k-WL) for all k ≥ 1. For
an input graph G let χk,G

(0) : (V (G))k → C be the coloring where each tuple is colored with
the isomorphism type of its underlying ordered subgraph. More precisely, χk,G

(0) (v1, . . . , vk) =
χk,G

(0) (v′
1, . . . , v

′
k) if and only if, for all i, j ∈ [k], it holds that vi = vj ⇔ v′

i = v′
j and

vivj ∈ E(G) ⇔ v′
iv

′
j ∈ E(G).

We then recursively define the coloring χk,G
(i+1) obtained after i+ 1 rounds of the algorithm

(for i ≥ 0). For k ≥ 2 and v̄ = (v1, . . . , vk) ∈ (V (G))k we define

χk,G
(i+1)(v̄) :=

(
χk,G

(i) (v̄),Mi(v̄)
)

where

Mi(v̄) :=
{{(

χk,G
(i) (v̄[1/w]), . . . , χk,G

(i) (v̄[k/w])
) ∣∣∣ w ∈ V (G)

}}
and v̄[i/w] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w. For k = 1, the definition is similar, but we only iterate over neighbors of v1, i.e.,

Mi(v1) :=
{{
χk,G

(i) (w)
∣∣∣ w ∈ NG(v1)

}}
.

There is a minimal i∞ ≥ 0 such that χk,G
(i∞) ≡ χk,G

(i∞+1) and for this i∞ we define χk,G := χk,G
(i∞).

Let G and H be two graphs. We say that k-WL distinguishes G and H if there exists a
color c such that∣∣∣{v̄ ∈

(
V (G)

)k
∣∣∣ χk,G(v̄) = c

}∣∣∣ ̸=
∣∣∣{w̄ ∈

(
V (H)

)k
∣∣∣ χk,H(w̄) = c

}∣∣∣.
We write G ≃k H if k-WL does not distinguish G and H.

Recall that Tk denotes the class of graphs of tree-width at most k. The following
characterization follows from [6, 8, 13] (see also Theorem 10).
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▶ Theorem 14. Suppose k ≥ 1. Let G and H be two graphs. Then G ≃k H if and only if
G ≡Tk

H.

Recall that we write sub(F,G) to denote the number of subgraphs of G isomorphic to
F . We write sub(F, ·) to denote the function that maps each graph G to the corresponding
subgraph count sub(F,G).

▶ Definition 15. Let F be a graph. The function sub(F, ·) is k-WL invariant if

sub(F,G) = sub(F,H) (1)

for all graphs G,H such that G ≃k H.

5.2 Subgraph Counts
Using the framework from [4], it is possible to describe the subgraph count sub(F,G) as a
linear combination

sub(F,G) =
∑
i∈[ℓ]

αi · hom(Fi, G)

for certain graphs F1, . . . , Fℓ and coefficients α1, . . . , αℓ ∈ R that only depend on F . More
precisely, the graphs F1, . . . , Fℓ are exactly the homomorphic images of F .

▶ Definition 16. Let F and H be two graphs. We say that H is a homomorphic image of F
if there is a surjective homomorphism φ : V (F ) → V (H) such that

E(H) = {φ(v)φ(w) | vw ∈ E(F )}.

We write spasm(F ) to denote the set of homomorphic images of F . The hereditary tree-width
of F , denoted by hdtw(F ), is the maximum tree-width of a graph in spasm(F ), i.e.,

hdtw(F ) := max
H∈spasm(F )

tw(H).

In the following, we assume that spasm(F ) contains only one representative from each
isomorphism class, i.e., for every homomorphic image H of F there is exactly one graph
H ′ ∈ spasm(F ) that is isomorphic to H. In particular, the set spasm(F ) is finite.

The backward direction of Theorem 3 has already been proved in [1].

▶ Lemma 17 ([1, Corollary 4.3]). Let F be a graph such that hdtw(F ) ≤ k. Then sub(F, ·)
is k-WL invariant.

For the sake of completeness, we still include the simple proof.

Proof. Let F be a graph such that hdtw(F ) ≤ k and let L := spasm(F ). By [4] there is a
unique function α : L → R \ {0} such that

sub(F,G) =
∑
L∈L

α(L) · hom(L,G)

for all graphs G.
Now let G,H be two graphs such that G ≃k H. Then hom(L,G) = hom(L,H) for all

graph L ∈ Tk by Theorem 14. Since hdtw(F ) ≤ k, we get that L ⊆ Tk. So, in particular,
hom(L,G) = hom(L,H) for all graph L ∈ L. It follows that sub(F,G) = sub(F,H). ◀

STACS 2024
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For the other direction, we combine Theorem 2 and the following lemma from [24].

▶ Lemma 18 ([24, Lemma 4]). Let F be a class of graphs that is homomorphism-distinguishing
closed. Let L be a finite set of pairwise non-isomorphic graphs and α : L → R \ {0}. Also
suppose that for all graphs G,H it holds that

G ≡F H =⇒
∑
L∈L

α(L) · hom(L,G) =
∑
L∈L

α(L) · hom(L,H). (2)

Then L ⊆ F .

▶ Lemma 19. Let F be a graph such that sub(F, ·) is k-WL invariant. Then hdtw(F ) ≤ k.

Proof. Let F denote the class of graphs of tree-width at most k. By Theorem 2 the class
F is homomorphism-distinguishing closed. Let L := spasm(F ). By [4] there is a unique
function α : L → R \ {0} such that

sub(F,G) =
∑
L∈L

α(L) · hom(L,G)

for all graphs G. Since sub(F, ·) is k-WL invariant it follows that Equation (2) is satisfied
for all graphs G,H using Theorem 14. So spasm(F ) = L ⊆ F by Lemma 18. This implies
that hdtw(F ) ≤ k. ◀

Proof of Theorem 3. The theorem follows directly from Lemmas 17 and 19. ◀

6 Conclusion

We proved that for every k ≥ 1 the class Tk of all graphs of tree-width at most k is
homomorphism-distinguishing closed. As a consequence, we could answer an open question
from [1] and precisely classify the subgraph counts detected by k-WL.

Still, Conjecture 1 remains wide open. As an intermediate step, it may be interesting to
consider minor- and union-closed classes of bounded tree-width. More precisely, let F be a
graph class closed under taking disjoint unions and minors, and there is some k ≥ 1 such that
every F ∈ F has tree-width at most k. Can we show that F is homomorphism-distinguishing
closed? Towards this end, it may also be interesting to obtain a direct proof of Corollary 13
that does not rely on the characterization from Theorem 10.
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