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Abstract

Modern attestation based on Trusted Execution Environments (TEEs) can significantly reduce the
risk of secret compromise, allowing users to securely perform sensitive computations such as running
cryptographic protocols for authentication across security critical services. However, this has made
TEEs a high-value target, driving an arms race between novel compromise attacks and continuous
TEEs updates.

Ideally, we want to achieve Post-Compromise Security (PCS): even after a TEE compromise, we
can update it back into a secure state. However, at the same time, we would like to guarantee the
privacy of users, in particular preventing providers (such as Intel, Google, or Samsung) or services from
tracking users across services. This requires unlinkability, which seems incompatible with standard
PCS healing mechanisms.

In this work, we develop TokenWeaver, the first privacy-preserving post-compromise secure
attestation method with automated formal proofs for its core properties. Our construction weaves
together two types of token chains, one of which is linkable and the other is unlinkable. We provide
the formal models based on the Tamarin and DeepSec provers, including protocol, security properties,
and proofs for reproducibility, as well as a proof-of-concept implementation in python that shows the
simplicity and applicability of our solution.

1 Introduction
One of the most basic requirements for secure communication is the ability to authenticate the identity of
remote parties. Proving one’s identity usually involves proving the knowledge of some secret, such as a
password or cryptographic key. However, the security of any authentication scheme is only as strong as the
security of the secrets used for authentication. If an attacker is able to compromise the device that stores
the secrets and extracts them, it can exploit them for impersonation. To mitigate such attacks, a Trusted
Execution Environment (TEE) such as ARM’s TrustZone [2], AMD’s Secure Encrypted Virtualization
(SEV) [26], and Intel’s SGX [16] offers a secure and isolated environment at the hardware level that can
be used to protect sensitive secrets. Remote attestation allows a device to prove that it is running the
latest and most secure software version and that cryptographic keys were generated and used inside a
client-side TEE.

In practice, remote attestation introduces two additional requirements. First, we want to protect users’
privacy: no one should be able to track users as they access different services by exploiting the remote
attestation mechanism, which can be expressed as an unlinkability property. For example, if the same
device performs remote attestation to two different third-party servers, the servers shouldn’t be able to
learn it is the same device even if they both collude with the provider.

Second, we would like to achieve Post-Compromise Security (PCS) [15]. In the past few years,
we have seen a large number of attacks that are able to extract cryptographic keys and bypass the
attestation of even state-of-the-art TEEs such as TrustZone [39,40,43,50], SEV [10,29,30,31,37,48,49],
and SGX [7,12,18,21,22,27,28,32,38,42,44,45,46,47]. Although subsequent software or microcode patches

∗An extended abstract of this paper appears at IEEE S&P’25; this is the full version.
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mitigate the attacks, all previous secrets stored in the TEE may have been compromised. This raises the
question of how to detect if a vulnerability has been exploited in the wild and recover the trust in our
attestation process even when cryptographic keys are leaked, i.e., whether we can achieve PCS.

To achieve PCS, even if an attacker obtains all cryptographic material of a user (e.g., by cloning a
user) at some point and actively controls the network, it should still be possible to either lock out the
attacker and heal the honest user, or at least to detect the compromise. However, the natural way to
detect the compromise is to be able to detect that there are suddenly two agents, the honest user and the
attacker, that in fact share the same TEE. But, crucially, this implies that the provider is then able to
link the distinct uses of the same TEE that rely on the same set of secrets.

However, privacy explicitly requires unlinkability, i.e., to prevent any “tracking” of the usage of secrets.
Due to the importance of this problem, both Google and Intel attempted to solve it (for TrustZone and
SGX, respectively), but as we will show, only partial solutions were given. Thus, we ask ourselves the
following question:

Is it possible to detect a compromise of a TEE and recover security while still preserving the privacy of
users?

Contributions. In this paper, we present TokenWeaver, the first formal-analysis co-design solution
for a privacy-preserving and post-compromise secure attestation with TEEs. To achieve this, we proceed
in the following steps:

• We define and model the concrete security goals and requirements for a privacy-preserving and PCS
secure remote attestation.

• We design both linkable and unlinkable one-time authorization mechanisms that are provably
privacy-preserving and post-compromise secure.

• We leverage these mechanisms to build the fully-fledged TokenWeaver solution that a TEE provider
can use to provision tokens that support both anonymous and identifiable (non-anonymous) attesta-
tion to third-party parties while achieving both PCS and privacy w.r.t to third parties and the TEE
provider.

• Unlike existing solutions, we formally model and prove the core properties of TokenWeaver and
provide reproducible results at [17]. Notably, our co-design allowed us to detect and fix an early
design flaw.

• To advocate for the simplicity, efficiency, and scalability of our solution, we provide a python-based
proof-of-concept and benchmarking results.

The design of our PCS solution allows the TEE provider to automatically detect when a TEE was
compromised. Thus, our solution not only helps to protect individual users but also acts as a “canary in
the coal mine.” It allows the TEE provider to learn that a new vulnerability has been exploited and needs
to be fixed. The fact that such attacks cannot remain stealthy and will be detected can be an added
deterrence against exploiting or even developing them in the first place.

Outline. We give TEE’s background and related work on remote attestation in Section 2. We then
outline our security goals in Section 3, define the building blocks for our solution in Section 4, and present
our full solution in Section 5. We formally analyze the security of our solution in Section 6, and describe
our proof-of-concept implementation and benchmark in Section 7. We discuss limitations and future work
in Section 8 and conclude in Section 9.

In the appendices, we provide pseudo-code for TokenWeaver, discuss secure channel requirements, and
provide details on the privacy proof.

2 Background
We first describe here remote attestation in the TEEs setting, existing solutions and their limitations.

2.1 Remote attestation in the TEE setting
Context description. The scenario we are considering involves the following parties:

• A provider (e.g., Intel, Google, or Samsung);
• A user;
• A user device with a TEE provisioned by the provider; and
• A set of third-parties that the user interacts with through its device.
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Each TEE is is provisioned with initial keying material by the provider. Such TEEs should be able to
run the “Secure World” — a small and sensitive code base, securely and in isolation from the “Normal
World” (that includes the operating system and regular applications). Additionally, they should be able
to attest that they are valid TEEs to third parties, either using an Anonymous Certificate (AC) or using
a Identifiable Certificate (IC). ACs are used to attest to being some valid TEE, and ICs are used to
attest to being a specific valid TEE with a given Serial Number (SN). This attestation capability is the
core functionality that we wish to design in this work. As such, the main functionalities that need to be
considered from the TEE point of view are:

1. Attestation to a third party;
2. Provisioning of new certificates from the provider;

Point 1) is the core usage case of TEEs, and Point 2) is essentially the certificate provisioning and
management. To ensure some security guarantees, additional mechanism are then added to those
functionalities

Our goals. In this generic TEE setting, our main goals are:
1. privacy: A single user owning a TEE can use it with distinct ACs to attest to different parties. In

such a case, even if those parties and the provider collude, they should not be able to detect that
those different attestations in fact come from the same TEE.

2. PCS: if either the secrets of some certificate (or even the secrets used to performing the provisioning)
are compromised, then it should be possible to either detect the compromise, or heal the corresponding
TEE and lock the attacker out.

2.2 Existing solutions and limitations
Google. Google’s certificate provisioning for Android is defined through their APIs, and some informal
descriptions of the internal details are given a Google blog-post [6]. In this blog-post, PCS is explicitly
stated as a goal of Android Attestation. Android Attestation will keep a list of known-compromised
software and will not allow devices running this software to be provisioned. It is not clear which exact
properties of PCS they claim to achieve. However, based on the user-facing API, it seems that it is
possible for Google to track users using this mechanism. The informal description [6] states that tracking
is prevented by a so-called split-brain solution: internally, Google strictly separates the verification of the
device’s public key from the processing of the attestation key. If done correctly, it means that the server
verifying the device key (and thus knows which device) never learns the attestation keys that are handled
by other servers, preventing the attestation keys from being linked to the device key. However, this cannot
be externally verified, and depends on trusting Google to enforce this policy internally through some
additional mechanism.

SGX. Intel provides a method for remote attestation for code running inside the SGX enclave based
on Enhanced Privacy ID (EPID) [9]. It extends the previous Direct Anonymous Attestation (DAA)
solution [8] with enhanced revocation capabilities. The code running inside the enclave is signed using
an Intel-provisioned private key. The signature is then verified by Intel’s Attestation Server (IAS). At a
technical level, EPID uses bilinear pairing to support anonymous attestation. It also supports revocation
by requiring clients to prove that they did not generate previous signatures that were flagged (using a
zero-knowledge proof of discrete logarithm inequality). Note that the cost of verification grows linearly with
the number of revoked signatures, so in practice, only a small number of revocations can be supported. The
EPID keys can be updated using dedicated shared symmetric keys called the “Provisioning Key”. Recently,
Intel proposed a new attestation solution called SGX DCAP [41] that relies on ECDSA signatures which
do not provide anonymity of the signer.

Limitations. Existing solutions are lacking in two respects:
• they do not provide PCS guarantees, but only offer basic healing mechanisms;
• privacy concerns are at best addressed informally.

Indeed, Google’s solution only offers privacy as long as one trusts Google, which is a surprising setting
for privacy. The only healing mechanism offered by Google’s solution is a time based expiration for
certificates. This means that if an attacker can compromise a certificate of a TEE, the compromised
certificate will at some point be useless. However, for deeper compromises of the TEE, revealing for
instance the cryptographic material used by the TEE to obtain fresh certificate, no healing would be
possible. There is also no mechanism to detect such a compromise.

While privacy preserving, Intel’s solutions are expensive because of their use of EPID. It offers the
possibility to manually revoke a potentially compromised certificate through the blacklist system of
EPID, and to also manually regenerate the EPID keys using the provisioning keys. However, these two
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mechanisms need to be triggered manually, and there is no compromise detection mechanism that could
inform such a decision. Moreover, if the provisioning keys are compromised, healing becomes impossible.

In contrast, we propose in the next sections a a first proposal for a privacy preserving and
post-compromise secure attestation mechanism for TEEs.

2.3 Further related work
To the best of our knowledge, we are the first to consider the PCS issue in the context of certificate
provisioning for TEEs, and as such, there does not exist any real-world or academic solution in the
literature. More generally, w.r.t. the privacy concerns, our work can be seen as neighbor to the anonymous
credentials research area. In this context, we previously mentioned how Direct Anonymous Attestation [8]
was in fact the ancestor of EPID.

Recently, Privacy-pass [19] was proposed to provide an anonymous user-authentication mechanism.
They use a Verifiable Oblivious Pseudo-Random Function (VOPRF) to provision anonymous tokens, that
can for instance be used to reduce the number of CAPTCHAs challenges specific users are requested to
solve. Our work can also be linked to the anonymous blocklisting/allowlisting ideas from [23]: intuitively,
only honest TEEs can obtain certificates.

In general, none of these works match our specific needs, nor provide PCS. While such techniques
could be reused to emulate the blinded token part in the unlinkable chain we later define, for instance
with a VOPRF, they would not allow for delivering blindly signed certificates that the TEE can then use
to third parties. Since we already rely on blind signatures for the third-party functionality, we chose to
also use them for the blinded tokens.

The simpler global attestation key variant of TokenWeaver (see Section 8) was suggested as a new
attestation mode for FIDO2 in a subsequent work [5]. The authors mention that this will be the first FIDO2
attestation mode that will provide anonymity together with PCS and the ability to revoke compromised
authenticators. They also provide a pen-and-paper proof showing that the simple TokenWeaver-based
mode indeed provides authentication security, unlinkability, and PCS. Their proof complements our
symbolic analysis, each covering slightly different aspects of the full solution, and yielding a different type
of assurance.

3 Informal Security Goals
A first basic security goal of the certificate provisioning is Authentication: only valid TEEs can
successfully obtain certificates from the provider. This will of course be covered by our TokenWeaver
proposal. In this paper, we go beyond this, and try to achieve PCS guarantees in a privacy preserving
way. We now provide a high-level description of our security goals (see Section 6 for the formal version).

3.1 PCS
The property we aim to achieve deals with the possibility of automatically recovering after a compromise,
namely Post-Compromise Security (PCS) [15]. In many security protocols, compromising the state of
some honest party implies a complete security loss (at least in regard to that party). However, for protocols
that have a state-update mechanism, PCS specifies that it is possible to recover from compromise: after a
compromise of some honest party’s state, if the honest party performs one more step of the protocol, the
honest party should be able to heal, and the attacker can be locked out again. In the context of TEEs,
PCS is relevant as the TEE state is frequently updated by a recurring certificate provisioning mechanism.
The PCS goal is then that, when an attacker compromises a TEE, if after the compromise this TEE did a
new certificate provisioning round, then the TEE heals and the attacker is locked out again.

Compromise levels. We can define various flavors of PCS, depending on whether all secrets are
compromised, or only a subset. For our TEE context, we consider two variants:

1. Certificate compromise, where only a signing key is stolen by the attacker;
2. Full compromise, where any and all secrets within the TEE are stolen by the attacker.
Distinguishing these levels make sense as the long-term secrets can be stored more securely and used

only for a dedicated set of operations, while the certificates can be accessed (and misused) through the
API by multiple applications as was exploited in [43].

Each type of compromise corresponds to a different level of possible PCS guarantees. We will set out
to design in the next sections a solution that provides the following PCS guarantees:

• In case of a certificate compromise, the certificate will become useless at some point.
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• If an honest TEE is fully compromised (the attacker learns all secrets), and it subsequently runs the
certificate provisioning, the attacker becomes locked out again.

Notice that the first point is easily achieved, as we can simply put an expiry date on the certificates,
similar to Google’s approach. The second point is substantially more challenging: recall that SGX does
not meet the second point, as the attacker can obtain the EPID key and go forever undetected, and only
a manually triggered recovery mechanism can lock the attacker out again.

Additional goals beyond PCS. There are several reasons why stronger variants of PCS cannot
be achieved. For example, a persistent compromise where the attacker continuously compromises fresh
material from the TEE, allowing it to always defeat any healing mechanism.

In addition, in the case of a full compromise, there is nothing we can hope for if the honest TEE
never runs the protocol again to obtain new certificates, as the attacker can simply perfectly impersonate
the honest TEE forever; intuitively, this is why healing is required. As noted in [15], this is in general
impossible to prevent, since the attacker cannot be distinguished from the honest TEE. A side effect is
that if after a full compromise, the attacker runs the protocol itself first, the healing mechanism may
lock out the honest user. Fortunately, such a situation can be detected [36], and we thus consider two
additional goals:

• Clone Detection: if an attacker performs a full compromise (“clones” the honest TEE) and runs
the healing mechanism to lock out the honest user, then this can be detected and the user will be
notified.

• Active revocation: if the clone detection is triggered, an independent mechanism will allow the
honest user to completely reset the protocol, locking out the attacker and restoring the trust for the
honest user. Active revocation typically needs to rely on some Out-of-Band (OoB) channel to reset
the state of the protocol.

3.2 Privacy
To propose a fully satisfying solution, we want to achieve PCS but in a privacy-preserving way. For
example, if the provider and third-party servers collude, they might be able to track the usage of certain
certificates across multiple servers, and even link them to a specific device or group of devices.

Our privacy goal is an unlinkability property, where an adversary cannot distinguish whether some
actions were performed by the same TEE or not, which is stronger than anonymity. We aim for two joint
privacy properties:

• Certificate Provisioning Unlinkability: the certificate provisioning step is unlinkable, even for
colluding providers and third-parties. This implies that no one can know if a particular TEE even
requested some certificates, or if two distinct provisioning map to the same TEE.

• Attestation Unlinkability: the attestation step is unlinkable, even for colluding providers and
third-parties. This implies that no one can know if a particular TEE performed some attestation, or
if two distinct attestations map to the same device.

This unlinkability requirement leads to an interesting problem. How can the provider detect a clone if
it cannot tell if two actions originated from the same device or two different devices?

To resolve this apparent contradiction, the core idea is that while the provider should not know whether
two updates link back to the same device, the provider can make sure that the same update from the same
state is never performed twice. However, this seems to lead to a strong performance implication, a new
update needs to prove that it is an update that was never done before, with respect to all previous updates
of all TEEs. We remark that classical mechanisms such as counters for clone detection trivially fail to
satisfy the privacy requirements, as observed for instance by the WebAuthn specification [33, Section
6.1.1].

4 Authorization Chains for PCS
We first describe here the two core mechanisms that we will use for the certificate provisioning:

• a linkable authorization token chain, which will gives us PCS in a simple way, but will not
provide any privacy;

• a unlinkable authorization token chain, which will give us both PCS and privacy by relying on
so-called blind signatures.1

1Note that as is done in [19], Verifiable Oblivious Pseudo-Random Function (VOPRF) can be used instead of blind
signatures. However, as the full TokenWeaver solution requires anyway the provisioning of anonymous certificates for
third-party servers, we use blind signatures that can be used for both use cases.
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Client
t

Server
ValidTok = {t, . . . }
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authorization
If tl ∈ ValidTok then

Generate fresh t′l
ValidTok :=

(
ValidTok ∪ {t′l}

)
\ {tl}

else ErrorNotify
t′l

token renewal

Figure 1: Linkable Authorization Token Chain

Client
tu, Sign(tu, skS)

Server
skS , pkS

Generate fresh t′u, skb (Blind(t′u, skb), tu, Sign(tu, skS)) = (B, tu, S)

authentication & token query
If tu /∈ OldToken
& Verify(S, tu, pkS) = true

then OldToken := OldToken ∪ {tu}
else AbortSB′ = Sign(Blind(t′u, skb), skC)

token delivery
let S′ = Unblind(SB′, skb)
if Verify(S′, t′u, pkS) = true
then Accept

Figure 2: Unlinkable Authorization Token Chain

We first present those two mechanisms independently from the TEE context, as they are generic mechanisms
for the following question: how to perform a recurring authorization from a client to a server with PCS
and privacy? The context is then that we have a server S, and a set of authorized clients C. We assume
that C can easily establish a one-sided authenticated channels to S, for instance using TLS. Then, each
client C should be able to confirm it is one of the authorized clients, and may have to perform this
operation regularly. In the TEE context, the clients will be the TEEs and the server the provider. The
security goals will be similar to those in Section 3, namely authentication, PCS and unlinkability.

4.1 Linkable Authorization Token Chain
The simplest way to establish an authorization mechanism would be to deliver to each client an authenti-
cation key pair (pkC , skC) that each authorized client uses to authenticate to the server. However, after a
client compromise, the attacker would obtain the corresponding secrets, enabling the attacker to keep
logging in indefinitely.

To design an authorization mechanism that achieves PCS, one possibility is to have the server deliver
one-time authorization tokens to clients. Clients should present a valid one-time tokens to perform a single
authorization step, and every time the authorization is successful, the server delivers a freshly generated
authorization token to the client. This first mechanism requires that the server maintains a set ValidTok
of currently valid authorization tokens. Then, the following steps are followed:

• Whenever a new client is registered for the first time, the server generates a fresh token, and adds it
to ValidTok and provides it to the client.
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• To perform an authorization, a client with current token tl establishes a TLS connection with the
server and sends tl over the connection.

• The server then verifies that the token is valid, i.e. tl ∈ ValidTok, in which case the authorization
succeeds. The server then generates a new fresh token t′l, removes tl and adds t′l to ValidTok, and
finally sends t′l back to the client.

We show this simple flow in Fig. 1.
Security Intuition. The crucial observation is that each token can be used only once, and cannot be

predicted. When a client is compromised, the attacker learns the current tl. However, once the client
performs a subsequent authorization, tl is consumed on the server side, and the attacker is effectively
locked-out again.

However, this design offers no strong privacy. In fact, each client is linkable by the server: the server
can effectively remember the previous token delivered to some client, and then recognize that a new
connection comes from the same client when this specific token is presented. This allows reconstructing
the full chain of tokens corresponding to a given client.

4.2 Unlinkable Authorization Token Chain
We now consider a client C that wishes to perform the authorization process in a completely unlinkable way
while retaining PCS. The core issue in the previous mechanism is that the server knows each authorization
token owned by the clients. Our solution is then to make it so that the tokens are not generated by the
server but rather by the client. The server will not even learn the token but will only blindly sign it with
a dedicated signing key. This blind signature can later be verified to check the token validity.

Blind signatures. We use so-called blind signature schemes [11]. They are defined by four algorithms
(Sign, Verify, Blind, Unblind), such that for a valid keypair (skS , pkS), (Sign, Verify) is a classical signature
scheme, but with the additional feature that for a freshly sampled blinding key skb, Blind(m, skb) reveals no
information about m, and even a malicious server cannot link Blind(m, skb) and the unblinded signature
Sign(m, sks), and of course we also have that Unblind(Sign(Blind(m, skb), sks), skb) = Sign(m, sks).

Setup. We consider that the server S has a signature key pair (skS , pkS), and the client C already
has a token tu (a nonce) along with a proof of validity of the token Sign(tu, skS). S maintains a set of
expired tokens OldToken, initialized with the empty set.

Process description. Assume that C can establish an authenticated channel to S (e.g. via a TLS
certificate for S). Then, the authentication and token renewal process is depicted in Fig. 2.

1. C generates a blinding key skb and a new secret token t′u, and send the values (Blind(t′u, skb), tu, Sign(tu, skS))
to S.

2. S receives (B, tu, S), checks the validity of the given token by running Verify(S, tu, pkS) and checking
that tu /∈ OldToken. If so, authentication succeeds, the server deprecates the token by updating
OldToken := OldToken ∪ {tu}, and sends Sign(Blind(t′u, skb), skS) to the client. If the token was
already used, the server notifies the user that it owns a deprecated token.

3. C computes Unblind(Sign(Blind(t′u, skb), skS), skb) = S′, runs Verify(S′, t′u, pkS) and if it is valid, it
stores the token t′u along with its signature S′.

Security Intuition. We present the formal analysis later in Section 6, but intuitively, our solution
meets the expected security properties as:

• Authentication: The unforgeability of the signature ensures that only people with a valid token
can obtain a new token.

• Privacy: Thanks to the blinding, the server does not know which token it is delivering to which
client. Note that it is crucial that the client does check it got a valid signature, as otherwise the
server could maliciously deliver a broken signature to detect the later use of this particular token.
This check was actually missing from our initial protocol draft, but the flaw and the attack were
discovered automatically by our tools when we tried to formally prove it.

• PCS: If a client is compromised and the token is stolen, either the client first uses it and the token
obtained by the attacker becomes useless, or if the attacker first uses it and then the client tries to
use it, the update will fail and the compromise will be detected.

Crucially, we note that the detection of the compromise in this initial design has a significant limitation.
If the attacker did use the honest user’s token, the honest user update will fail and they could report it to
the server. However, even if the compromise is detected, the server can only deliver a new token to the
honest user, but it cannot deprecate the attacker’s token, as due to the blind signatures and the resulting
unlinkability, the server has no information about this token. We are thus missing the active revocation
capability. In the next section, we show how to solve this remaining issue.
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Mainstart Mainstart Mainstart

Provider
state machine

TEE
state machine

Third Party
state machine

Expiry
(Section 5.5)

Expiry
(Section 5.5)

Expiry
(Section 5.5)

Initialize Linkable Chain
(Section 5.1)

Update Linkable Chain & IC provisioning
& Initialize Unlinkable Chain (Section 5.2)

Update Unlinkable Chain
& AC provisioning (Section 5.3) Anonymous attestation

(Section 5.4)

Identifiable attestation
(Section 5.4)

Figure 3: TokenWeaver: high-level state machines and connecting protocols indicated with dashed edges,
and in blue. The Provider and the TEEs states evolve together either when 1) a new TEE is created
(initialization of the linkable chain), 2) a TEE performs a linkable chain update or 3) a TEE performs
an unlinkable chain update. A TEE and a third party state evolve when a TEE performs either an
identifiable or anonymous attestation. The only operation where all agents are updated is when the global
provider’s certificate expires.

5 TokenWeaver
We now define our full solution, dubbed TokenWeaver, that combines the previously presented linkable and
unlinkable token chains in order to achieve the full certificate provisioning solution. The only cryptographic
dependency are classical and blind signature schemes.

Overview. The linkable chain is used between the provider and each TEE, to track which entities are
valid TEEs. This part does not yield privacy, but enables efficient compromise detection and revocation.
To then provide privacy, we sprout from each node of this linkable chain a fresh unlinkable chain. The
TEE then uses this unlinkable chain between itself and the provider for on-demand provisioning of new
ACs for third-party authentication. This ensures quick recovery from compromise as well as privacy.

We summarize the high-level state machines in Fig. 3 and provide the protocol details in the remainder
of this section. Additionally, we provide a pseudo-code specification in Appendix A.

External dependencies. In the design of TokenWeaver, we assume that several things are classically
deployed based on TEEs. We notably mention the following features:

• We require that each TEE is able to establish a secure channel to its provider, in order to send a
single message and receive a single answer such that messages are confidential and integrity protected
and the TEE is anonymous. Such a channel can easily be built, for instance by relying on the
existing TLS certificates of the Provider. We provide additional details on how to define, build, and
use this channel in Appendix B.

• Optional – In many scenarios, OoB channels are set-up between providers and end users (e.g., using
SMS communications). When our design automatically detects a compromise, such a channel can
be used to authenticate the honest user, revoke the current linkable token, and allow provisioning of
a new set of secrets to the TEE to establish a new linkable chain. This is only optional, as in some
application contexts, it is often enough to detect the compromise.

Cryptographic materials. To ease the presentation of the underlying protocols, we now highlight all
materials owned by either the provider or the TEEs and their use, for a summary see Table 2 in Appendix A.
We first consider that the provider owns two distinct key pairs:

• attestation key pair skA, pkA: this is the public key trusted by third parties for the attestation
aspect.

• provisioning key pair skP , pkP : this is the key pair used by the provider for signing tokens in the
unlinkable authorization chain.

Both key pairs should expire and be renewed frequently to ensure that attackers are eventually locked
out. The expiration of skP and skA is our only way of locking out an attacker that compromised some
unlinkable token.

The state of a TEE then depends on the following values:
• A SN - a public identifier of the TEE.
• Current valid AC and IC - multiple TEE owned key pairs signed by the current skA, that can be
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TEE

Long-term
◦ Serial Number (SN)

Medium-term
◦ Linkable token tl
◦ Software and Firmware versions
◦ Identifiable Certificates (ICs)

Short-term
◦ Anonymous Certificates (ACs)
◦ Unlinkable token tu, Sign(tu, skP )

Device
Provider

◦ Provisioning key pair skP , pkP
◦ Attestation key pair skA, pkA
◦ Valid linkable tokens {(tl,SN )}
◦ Deprecated unexpired unlinkable tokens {tu}

Third party (e.g., webserver)

◦ Attestation public key pkA

TEE API internet

internet

Figure 4: TokenWeaver’s TEE setup

used to attest to third parties. AC is fully anonymous, while IC is tied to the SN. They are implicitly
deprecated when skA is renewed.

• A current unlinkable one-time authorization token t, Sign(tu, skP ) - when presented to the provider,
the token is consumed. In return, the TEE can generate a new token t′u and ask the provider to
blindly sign it with skP . In addition, the provider also blindly signs a new key pair for AC generated
by the TEE using the latest skA.

• A linkable one-time authorization token tl - This token is used to renew the unlinkable one-time
authorization token (e.g., when skP is renewed). When tl is presented to the provider, it is consumed,
the provider delivers a new token t′l, and blindly signs a new token t′ generated by the TEE. The
provider also signs a new IC key-pair with skA.

The full states of the multiple parties can be summarized as in Fig. 4. In practice, tl is used less often and
should be better protected if possible in concrete deployments.

5.1 TEE initialization
Instantiating a new TEE is straightforward as it only requires to initialize the linkable token chain. Note
that to be fully functional and obtain valid certificates, the TEE will then need to perform a linkable
chain update followed by an unlinkable chain update as described next.

Setup. At the factory, the provider generates and provides a fresh token tl to the TEE identified by
SN , and stores the pair (tl,SN ) inside the set LinkedToken.

5.2 Update Linkable Chain
We describe here the full update of a linkable chain, which leverages the mechanism from Section 4.1 to
initialize or re-initialize the TEE’s unlinkable chain and additionally deliver a new IC. This step must be
performed every time skP is deprecated.

Protocol description. To (re-)initialize the unlinkable chain and receive a new IC the following
steps are followed:

• the TEE establishes a one-way authenticated encrypted channel to the provider (e.g., a TLS channel
based on the provider’s PKI certificate);

• the TEE generates a new secret token t′u, a blinding key skb, and a fresh key pair (skIC , pkIC ). He
then sends the values (Blind(t′u, skb), tl, pkIC ) to the provider.

• the provider checks that there exists SN such that (tl,SN ) ∈ LinkedToken, in which case it drops
it from the list, generates a fresh t′l, adds (t′l,SN ) to LinkedToken, and then sends back the values
(Sign(Blind(t′, skb), skP ), t′l, Sign((SN , pkIC ), skA)).

• the TEE computes
Unblind(Sign(Blind(t′u, skb), skP ), skb) = S′ ,

and runs Verify(S′, t′u, pkP ). If the verification is successful, it stores t′l as its new linkable token,
(t′u, S

′) as its current unlinkable token, and (pkIC , skIC , Sign((SN , pkIC ), skA) as its IC.
If at any time a honest user is locked out because an attacker already used the token tl, the honest

user must use some OoB authentication and send a compromise report to the provider containing its SN.
In this case, the provider erases any entry linked to SN inside LinkedToken, thus deprecating the current
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linkable token actually used by the attacker, and then should communicate a fresh tl to the TEE through
a secure OoB communication channel to the user.

Note that if a TEE updates its linkable chain multiple times in the lifespan of a single skP , it would
obtain multiple valid blinded tokens and be able to initiate multiple parallel unlinkable chains. However,
they would all still be deprecated simultaneously when the corresponding skP expires.

5.3 Update Unlinkable Chain
We now leverage the unlinkable chain mechanism from Section 4.2 to perform the AC provisioning. We
assume here that the TEE has a valid unlinkable token (tu, Sign(tu, skP )) for the current provisioning key
of the provider. Otherwise, it must first run the previous mechanism.

To achieve anonymous attestation, we run the AC provisioning in parallel to the unlinkable chain
update. The TEE generate their own attestation key pairs and ask the provider to blindly sign it with
the latest skA, which yields an AC. As this process can be run multiple times, the TEE can accumulate
multiple distinct ACs. Using a different AC for attestation to each third-party server (or each account)
preserves the unlinkability of the attestation process.

Protocol description. The AC provisioning is performed in parallel to a valid unlinkable chain
update as follows:

• At any time, a TEE may choose to generate a new attestation key pair (skT , pkT ). It then establishes
a secure session with the provider (e.g., over TLS with a certificate for the provider), and then
performs a one-time authorization, including the value Blind(pkT , sk

′
b) (with sk′b a fresh blinding key)

in the first message.
• The provider processes the one-time authorization, and if it is valid, includes in its answer BSA′ =

Sign(Blind(pkT , sk
′
b), skA).

• The TEE processes the answer and stores the new token. It additionally stores SA′ = Unblind(BSA′, sk′b),
after successfully verifying that SA′ is a valid signature.

Every time a TEE runs such a process, it has:
• A one-time anonymous authentication token (tu, Sign(tu, skP )) from completing the one-time unlink-

able authorization process;
• A new attestation key pair (skT , pkT ) along with a valid certificate of the public key Sign(pkT , skA).
Due to the blind signature, the provider learns no information about the attestation key pair that it

provided a certificate for. Furthermore, the TEE can now attest itself to any third party by using skT to
sign a challenge and send this signature along with the certificate Sign(pkT , skA).

5.4 Attestation: Certificate Verification
Assuming that a TEE is up to date and has performed a full AC provisioning valid for the current
attestation public key pkA, it should currently own:

• at least two signing secret keys, skT and skIC ;
• at least two certificates, an anonymous one Sign(pkT , skA) and an identifiable one Sign((SN , pkIC ), skA).
Such a TEE can then use either skT or skIC to sign any desired data, and send this signature along

with the corresponding certificate to a third party. The third party then simply has to validate the
certificate chain, verifying the validity of the current public attestation key of the provider pkA.

A TEE can perform multiple AC provisionings to obtain additional signing keys skT . When attesting
to services, distinct ACs must be used to ensure unlinkability.

Security Intuition. We provide a formal analysis in Section 6, but on an intuitive level, we inherit
the PCS guarantees from the one-time authorization token. However, the concrete privacy we achieve
depends on the implementation details of the third party attestation process. Our scheme prevents the
provider and third party servers from linking together a particular TEE with any of its ACs or linking
together different ACs used by the same TEE. However, in some use cases, the attestation process itself
may leak some metadata that can be exploited to link together distinct attestations even when using
different ACs (e.g., the device’s IP address). As this is application dependent, we consider it to be outside
the scope of our work.

5.5 Expiring public keys
The provider needs to manage the renewal of the two public keys pkA and pkP . The expiration should be
time-based to ensure PCS. Here, any classical technique used to manage public keys can be plugged in, in
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a similar fashion to TLS certificate management. For example, a third longer term key could be published
by the provider and used to sign the two sub keys along with the expiry date.

6 Formal Analysis
In this section, we describe in-depth the formal analysis of the core elements of TokenWeaver, providing
stronger assurance guarantees than any other solution in this domain. The analysis was performed in
parallel to the design, its results allowing us to update the design whenever an issue was reported. Our
ideal proof goals are ambitious: a complete coverage of all the goals of the full design is currently beyond
the reach of any single automated analysis tool. To obtain our strong guarantees, we therefore use a
combination of state-of-the-art protocol verification tools.

In particular, we perform three distinct analyses:
• We first prove that in isolation, the unlinkable token chain is indeed unlinkable.
• We then show that the unlinkable token chain in isolation does meet the expected PCS property.

We also illustrate how the formal analysis reported an attack on a previous design, and lead us to
improve it.

• Finally, for the full AC provisioning mechanism, including both linkable and unlinkable chains, we
prove that the linkable chain does meet PCS, and that linkable chain does lock out an attacker from
the unlinkable chains.

We were not able to study the unlinkability of the full solution due to what we believe to be limitations of
the state-of-the-art tools. The main difficulty is that tools enabling unbounded verification tend to verify
a stronger privacy property (diff-equivalence) than what TokenWeaver actually requires and provides.

Reproducibility. All automated formal analyses carried out in this section where performed on a
laptop with 16Gb of RAM and a quad-core Intel(R) Core(TM) i7-10510U CPU at 1.80GHz and can easily
be inspected or reproduced. We provide the models at [17] along with instructions to download a docker
image allowing readers to inspect and reproduce the analyses and proofs.

6.1 Choosing appropriate proof tools
The main mechanisms of our solution occur at the logical level: TokenWeaver can be seen as a complex
stateful security protocol that keeps several different layers of state, but also depends on cryptographic
primitives. This combination suggests that state-of-the-art symbolic protocol analysis tools may be
appropriate, such as Tamarin [35] or Proverif, which can provide proofs for unboundedly many sessions.
Because of the type of state machines in the protocol, and because we expected the complexity to be
beyond the scope of fully automated proofs, we chose Tamarin.

However, during our analysis, it became clear that while Tamarin was appropriate for proving PCS,
neither Tamarin nor Proverif currently provide for the privacy properties we wanted to prove for
TokenWeaver. While Tamarin and other tools allow to verify a specific class of privacy properties, they
only allow proving a privacy property that is too strong for our setting: for those tools, updating the state
of one TEE and not another one lead to a false attack. As we require a fine grained notion of privacy, we
thus turn to the DeepSec prover [13]: it has the downside of forcing us to consider only a fixed number of
TEEs and possible updates, but it can verify a privacy notion that is fine-grained enough for our setting.

Thus, using this combination of tools, we can prove PCS properties for a complex model with an
unbounded of TEEs and updates, and also fine-grained privacy properties for a fixed number.

6.2 PCS Analysis of the Unlinkable Chain
We used Tamarin to prove that the unlinkable chain provides PCS against an attacker that can compromise
the tokens of the chain.

Model. We modeled the core unlinkable mechanism as described in Fig. 2. Our model covers an
unbounded number of TEEs (client) interacting with the provider (server), and contains the following
possible actions:

• Initialize - Initialization of a new TEE, which sends a blinded token to the provider and receives
the corresponding signature. We assume the communication is done over a trusted channel where
the provider can authenticate the TEE, e.g., initialization done at the factory.

• TEE Query - A TEE sends its current token as well as a fresh blinded one to the Provider over a
secure channel.
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• Provider Answer - The provider checks the validity of the token, deprecates it, and returned the
blind signature on the new one.

• TEE Process - The TEE checks the validity of the provided signature, and stores the new token.
There are two possible attacker actions:
• Compromise - The attacker can compromise a given TEE and obtain its current token.
• Attacker Query - The attacker can contact the provider and try to perform a step of the process

with any message it can compute based on its knowledge.
Property. To model security properties such as authentication of PCS, we rely on so called events:

whenever a possible action is executed, we add to the execution trace the corresponding event. We can
then express security properties over those events inside a temporal logic.

For instance, in our models, we raise the event Accept(tl) whenever the provider accepts a token
tl, Query(tl) when a TEE sends the token tl in the query step. For a TEE, processing a new token
corresponding to healing, so we raise Heal(SN ) whenever a TEE identified by SN performs the TEE
process action and should then have healed, and Compromise(SN ) whenever the attacker compromises the
TEE corresponding to SN . Then, the PCS property can intuitively be expressed as follows: If a provider
accepts a token at timepoint i then:

• either there exists a TEE that sent it as a query at a previous timepoint j < i;
• or the attacker compromised a TEE at a previous timepoint j < i, and between i and j the TEE

never healed.
This property essentially captures the only possible ways for a token to be accepted. The first case
corresponds to a valid token processing, and the second one to an attacker token processing. Note that if
the attacker compromise a TEE that heal afterward, then only honest token processing can happen, and
the attacker is locked out and cannot interfere with the process anymore. Formally, it then translates to:

∀ tl, i. Accept(tl)@i⇒
(∃ j. Query(tl)@j & j < i)

∥
(
∃ SN , j. Compromise(SN )@j & j < i
& ¬(∃ k. Heal(SN )@k & j < k & k < i

)
Proof. To prove such a property, Tamarin works in a so called backward fashion: for our PCS

property, it starts from the Accept state, and will try to prove that all possible ways to get to a state that
violates the property are impossible. As we consider an unbounded number of updates, the problem is in
general undecidable. Tamarin then relies on heuristics to choose an optimal next proof rule out of its
set of possible proof rules. In our case, Tamarin’s built-in heuristics are not able to automatically find
a proof. However, Tamarin has an interactive proof mode, which we can use to guide the proof search,
either by adding helper lemmas, or by performing ourselves the proof in the interactive mode.

We formalized such lemmas in Tamarin, and were able to prove the PCS property with a total of 9
lemmas, 6 of them automatically proven by Tamarin and 3 proven by hand for a total of 174 proof steps.
Tamarin verifies the corresponding proof files in under 10 seconds.

6.3 PCS Analysis of the AC provisioning
Model. We model the two linkable and unlinkable chains in Tamarin intertwined as described in Section 5.
The model specifies the following possible actions:

• Renew keys - renew the provider keys skP and skA.
• Initialize - create a fresh TEE instantiated with a valid linkable token.
• Linkable chain query - a TEE establishes a secure channels and sends its current linkable token

along with a blinded token and a fresh blinded public key pkT ;
• Linkable chain answer - the provider checks the validity of the linkable token, in which case it

signs the blinded token with the current skP and the blinded pkT , and send it along with a new
fresh linkable token.

• Linkable chain process - the TEE receives and stores its new linkable and unlinkable tokens after
unblinding and verifying the received signatures.

• Unlinkable chain Query/Answer/Process - the three possible actions from the previous model
(Section 6.2) are then possible, where as long as the TEE has an unlinkable token signed with the
current skP , it can then obtain a new AC certificate signed with the current skA.

The attacker can Compromise a TEE, in which case it gets the linkable and unlinkable tokens that
it can use to obtain valid certificates for the compromised TEE. The attacker can also send its own
unlinkable or linkable queries to the provider and obtain valid certificates for its own TEEs.
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Properties. We have previously proved that each unlinkable chain gives us PCS. When combined
with the linkable chain, we have to prove that:

• the linkable chain itself provides PCS: if the attacker compromise a linkable token, it can either use
it and lock the user out, or the user will use it and the attacker is locked out.

• renewing the keys of the provider then ensure the global PCS: after a key is renewed, the only way
for the attacker to continue obtaining ACs is to use a linkable token it compromised.

The first property is similar to the previous one for the unlinkable case. We can in fact be slightly more
precise, as the provider knows which TEE it is authenticating. We now raise the event AcceptL(tl,SN )
whenever the provider accepts a linkable token tl corresponding to TEE SN , QueryL(tl,SN ) when the TEE
sends the token tl in the query step, and HealL(SN ) whenever the TEE finishes the final linkable process
action and should then be healed. We still raise Compromise(SN ) whenever the attacker compromise
the TEE corresponding to SN , where the compromise is common to both the linkable and unlinkable
processes.

∀ tl,SN , i. AcceptL(tl,SN )@i⇒
(∃ j. Query(tl,SN )@j & j < i)

∥
(
∃ j. Compromise(SN )@j & j < i
& ¬(∃ k. HealL(SN )@k & j < k & k < i

)
We can show that if the attacker compromises a TEE and then the keys are renewed, the attacker

needs to use the linkable token it obtained to keep getting new ACs. The only way for the attacker to keep
compromising the system is thus to lock out the honest user, which enables clone detection. If we raise
the event Renew whenever the provider keys are renewed, raise the event AcceptUAtt when the attack
succeed in performing an unlinkable authorization, and raise the event AcceptLAtt when it succeeds in
performing a linkable authorization, we can then formally express the property as:

∀ i, j, k. Compromise(SN )@i & Renew@j &
AcceptUAtt@k & i < j < k
⇒ ∃ l. AcceptLAtt@l & j < l < k

This property precisely expresses that if a compromise happened at a timepoint i and the keys were
renewed afterwards at j > i, then if the attacker can still perform an unlinkable step later at k > j, it must
have in fact performed a linkable step at timepoint l in between j and k. The converse of this property
then tells us that if the attacker did not perform the linkable step, it is locked out of the AC provisioning.

Proofs. The intuition of the proof is close to the previous one. On the one hand it is simpler, because
there is no cryptography involved inside the linkable process, but on the other hand it is more complex,
because the full model is bigger. Overall, we needed 19 lemmas, 2 of them being the target properties,
13 of them proved automatically and 6 of them proved manually in 425 steps. The full model verifies in
about 15 seconds.

Encoding assumptions. An implicit assumption in our Tamarin analysis is that the encodings of IC
Sign((SN , pkIC ), skA) and AC Sign(pkAC , skA) are disjoint. The underlying reason is that in the natural
symbolic encoding of public keys, a pkAC can never be equal to a pair of elements (SN , pkIC ). In most
implementation, this separation is naturally achieved by the formatting and encoding of public keys and
tuples. For implementations that do not ensure this separation, one could either include a label or also
use two distinct keys instead of a single skA to achieve domain separation.

6.4 Privacy Analysis of the Unlinkable Chain
Our goal here is to verify that TokenWeaver does provide the expected unlinkability of certificate
provisioning and attestation actions. While many unlinkability notions have been formalized and equipped
with dedicated proof techniques (see e.g. [1, 3, 24]), a core issue is that they all define an unlinkability
notion in the context of protocols where a device will be fully unlinkable in all the possible protocol steps.
In our context, within an execution of TokenWeaver, a given TEE will be sometimes trivially and as
expected linkable (it is of course trivial to link a device during the linkable update, but it is also trivial
and expected that one can distinguish two devices that are not in the same epoch), while it should be
unlinkable at other times. Essentially, we consider an unlinkability property where all TEEs that are in
the same epoch must all be between themselves unlinkable for any attestation or certificate provisioning
step.

As such, we are forced to come up with a tailored definition of unlinkability for this use case. In this
section, we only provide a high level intuition without formally defining the underlying security properties.
We provide further details in Appendix C. To analyze the privacy properties, we use DeepSec, which can
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verify that two scenarios are indistinguishable by the attacker. We describe now the two scenarios we
compared.

Our DeepSec model. We model two TEEs that, after initialization, can both perform unlinkable
and linkable updates. After performing a linkable update, a TEE state should contain a valid unlinkable
token pair (tu, Sign(t, skP ). We then model the fact that it can make a one step authorization, where it
authenticates to the provider using tu and renew its unlinkable token obtaining a new valid t′u as well as
obtaining a new AC.

We consider a threat model where the attacker controls all external elements to the TEE. Crucially,
we thus consider that the Provider is malicious and attacker-controlled.

Note that whenever a TEE did not perform the latest linkable update after skP expired, it does not
have a valid token. It is then easy to distinguish an unlinkable update from a TEE that did the latest
linkable update compared to one that did not. We therefore aim to prove that when two TEEs have both
made the same number of linkable updates, then a scenario where only a single TEE performs unlinkable
updates is indistinguishable from the scenario where the two different TEEs are performing updates.

Using DeepSec, we verified that this property holds, which corresponds to proving that an attacker
can not tell if two updates are linked, whenever the two TEEs are both either up to date or outdated
with respect to skP .

As mentioned, DeepSec only works for a bounded number of protocol sessions, and the proof
complexity increases exponentially with respect to the number of sessions. We can prove the unlinkability
for 16 total updates (8 linkable and 8 unlinkable ones) in under a minute. Despite the exponential growth,
we can push the numbers by using a server with more RAM and parallelization. On a 64 cores CPU at
2.60GHz and with 23Gb of RAM, we were able to go up to 24 total updates (12 linkable updates and 12
unlinkable updates), verified in about 20 hours.

Our formal analysis caught an early design error. An early version of our design did not include
verification of the resulting blind signature by the TEE in the last step of the unlinkable chain update.
When we tried to prove the unlinkability of this version with DeepSec, we uncovered a simple attack
on the design that DeepSec reported in under a second. Without verification, a malicious provider can
return an invalid signature. This can be exploited later on to track the TEE, as the provider can spot
when it receives an invalid signature, thus violating unlinkability. We subsequently updated our design.

6.5 Summary of provable security guarantees
Based on our formal analysis, we can summarize the security guarantees of our solution as follows.

Privacy. We proved that the unlinkable chain combined with the linkable chain and the AC provisioning
ensures unlinkability. There are cases not covered by our analysis that include naturally unavoidable
breaches of privacy:

• a TEE uses an IC; or
• a TEE reuses the same AC for two distinct use cases, or use an AC while leaking non-anonymous

metadata.
It would be interesting to be able to express a fine-grained unlinkability property over the full system,
additionally capturing those behaviors and metadata. It would also be interesting to lift the limitation on
the bound on the number of sessions. Both of those points however appear to require further advances in
formal methods development.

PCS with compromise of unlinkable token or certificate. This is the most likely compromise,
as the unlinkable token and the certificates are used frequently. In this case, our PCS proof of the
unlinkable chain shows that if the honest user uses the unlinkable token, the attacker cannot obtain any
new certificates. Additionally, the certificates obtained by the attacker will expire when the provider
renews the attestation key skA. If the attacker first uses its clone of the unlinkable token, the user will
detect it when trying to use it. Then, the user could renew its certificate using the linkable token and
reveal its compromised IC to the provider. The provider could then, e.g., publish it in a deprecated
certificate list.

PCS with compromise of linkable token. This is a deeper compromise, as the linkable token is
only used to reset the unlinkable chain. In this case, our PCS proof of the linkable token chain shows
that if the user uses the linkable token, it locks the attacker out of the linkable chain. The attacker can
still run the unlinkable certificate provisioning as long as the provider keys are not renewed. However,
our analysis of the AC provisioning shows that as soon as the provider’s keys expire, the only way the
attacker can keep getting valid certificates is by running the linkable update. If an attacker does so, it
would lock the user out and would be detected. In such a case, the user sends a compromise report to the

14



TEEs Unlinked
Tokens

Token
Buckets

Database
Size (GiB)

Linked Operation Time (ms) Unlinked Operation Time (ms)

TEE Prov. Crypto Prov. DB TEE Prov. Crypto Prov. DB

105 2 · 106 1 0.167 2 6 0.6 5 8 0.8
106 2 · 107 4 1.684 2 6 0.6 5 8 0.8
107 2 · 108 16 16.97 2 6 0.6 5 8 0.9
108 2 · 109 256 169 2 6 0.6 5 8 1.1

Table 1: Experimental Results — For each number of TEEs n, the number of deprecated unlinked tokens
in the database was set to 20n, and the number of Token Buckets was adjusted accordingly. The database
size is the total required for all databases and buckets. The run-times are averaged across 1000 repetitions.
For the Provider, the measurements are provided for the cryptographic and database operations separately.

provider, who deprecates any linkable token corresponding to this user’s TEE. Then, the provider can use
a secure OoB channel to provide a fresh linkable token to the TEE.

7 Proof of Concept Implementation
To advocate for the simplicity and applicability of our solution, we implemented in Python the operations
described in Section 5 for the full AC provisioning. We implemented two proof of concept variants —
an un-optimized variant to show the simplicity of the solution and an optimized variant to show the
efficiency and scalability of our solutions. Both variants are available at [17]. The un-optimized variant
takes 42 lines of code for the TEE, 31 for the provider side, and 8 lines for the Third-Party. The core
cryptographic dependency is a blind signature scheme, for which we use the reference implementation
of the IETF standard for RSA blind signatures [20], which was proven secure in [34]. For the actual
attestation, an extra signature is required, for which we use a standard ECDSA signature scheme. A
linkable token update round requires one blind signature and verification and an additional standard
signature for the IC, An attestation requires one standard signature from the TEE. On the third party
side, it requires one blind signature verification and one standard signature verification.

Experimental Evaluation. To ascertain that a protocol implementation could efficiently support
a large number of TEEs, we implemented an optimized provider that stores its state in an SQLite
database [17]. To minimize overhead when scaling the number of tokens, the deprecated unlinkable tokens
are distributed across multiple buckets, which are indexed based on the initial bits of the random token.
This approach allows us to query only the relevant bucket when checking if an unlinked token is present
in the database, as it cannot appear in the other buckets. We also explored the use of a Bloom Filter as
an optimization for queries, but found that due to the high efficiency of the SQLite database the time
difference was negligible.

We ran the experiments on an Intel Xeon E5-4669 v4 CPU with 504GB of RAM, running Ubuntu
18.04.3 LTS. We used Python 3.6.9 with PyCryptodome 3.18.0 and sqlite3 3.22.0. We varied the number
of TEEs already stored in the database, storing 20 deprecated unlinked tokens for each TEE. The details
are outlined in Table 1.

Across all experiments, the average TEE run-time was below 2 milliseconds for a linked operation and
below 5 milliseconds for an unlinked operation. Correspondingly, the average provider run-time was below
4 milliseconds for a linked operation and below 9 milliseconds for an unlinked operation. The database
queries constituted 10%–15% of the provider’s run-time, the rest taken up by cryptographic operations.

As a point of comparison, we benchmarked the time required to perform the main cryptographic
operations necessary for establishing a TLS connection from both the Server and Client sides. On the
server side, we benchmarked two ECDH exponentiation operations and an RSA-PSS signature. Over 1000
iterations, the average run-time was 6 milliseconds, which means that the run-time complexity of our
provider is comparable to a TLS server. For the client side, we benchmarked two ECDH exponentiation
operations and an RSA-PSS verification. Over 1000 iterations, the average run-time was 3.4 milliseconds,
which means that the run-time complexity of our TEE is actually smaller than a TLS client, comparable
to a TLS server. Because TLS clients are commonly implemented and used inside modern TEEs, we
claim that our protocol (which is faster and based on similar cryptographic building blocks) is efficient
and practical for this application domain.

In terms of space, the provider needs to maintain a list containing a pair (tl,SN ) for each TEE, as
well as a list containing all the deprecated unexpired unlinkable tokens, a list which is reset whenever the
public key pkP expires. Even for our largest experiment that stored 2 · 109 deprecated tokens, the total
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space requirement is less than 170 GiB which is arguably very small for such applications.

8 Discussion
Out-of-Band Channel.

When TokenWeaver reports a compromise and locks out both the user and the attacker, it is possible
to rely on some OoB channel to restore trust. Several banks have already set-up such mechanisms for
online payments, with notably 3-D Secure, which either triggers a smartphone application confirmation,
or sends a one-time code over SMS. Google also has an account recovery feature, with several questions
asked, e.g. about older passwords, or relying on a recovery email account. Any such mechanisms can be
fitted for TokenWeaver.

We note that even without the OoB channel, PCS and clone detection already provide additional
guarantees, allowing to alert users of compromises. Further, TokenWeaver can motivate deployment of
new OoB channels, as they are currently useless in many scenarios without a detection mechanism to
trigger them.

Global Attestation Key Variant. In this work we presented a solution where each TEE can obtain
a set of multiple ACs, and a single AC should be dedicated to a single use case, as otherwise colluding
third party could link multiple attestations to the same TEE. This has the downside of requiring that
each TEE manages and keeps track of which account is linked to each AC, and having the TEE request
potentially many ACs from the provider.

To enable a fully anonymous attestation, the simplest solution is for the provider to just give skA to
all TEEs, and each TEE simply uses this secret key to perform attestation. This ensures the privacy as
all TEEs share the same attestation key.

In practice, we need to frequently renew the keys to enable healing. We thus tie this idea with the
one-time authentication mechanism, where every time the provider renews the keypair, all TEEs perform
an authorization upon which the provider sends them the new secret key. We thus consider the case where
the provider owns a keypair skA, pkA for attestation, and a keypair skS , pkS for the authorization part.
Then:

• All TEEs are initialized at the factory with a token tu, Sign(tu, skS).
• The provider regularly renews the key pair skA, pkA.
• When a TEEs requires a new valid key skA, it first establish a TLS connection with the provider,

and then performs a one-time authorization to the provider as depicted in Fig. 2.
• Whenever the provider accepts a valid token, it additional appends to its reply the value skA.
While simpler than TokenWeaver, the global key does not allow to instantly revoke the current ACs of

a TEE when a user detects a compromise. Furthermore, TokenWeaver also allows to detect or recover
from compromises earlier, as it implies more frequent interactions between the TEE and the provider.

Mitigation of DoS Attack. Malicious devices might attempt a Denial-of-Service (DoS) attack by
repeatedly requesting new tokens. However, as we show in Section 7, the computational cost of such a
request is relatively low (similar to the cost of a TLS handshake), making it less useful for DoS attacks.
Moreover, the provider can add a rate-limiting mechanism for token provisioning. It can insert a time
delay between the time a token is provided and when it can be used to request a new one.

Linkable token. For the linkable token tl, the provider is required to store for each TEE a pair
(tl,SN ). Other solutions could be considered, e.g., counters, or chains based on repeated application of a
pseudo-random function, combined with zero-knowledge proofs. We leave exploring alternative solutions
based on such mechanisms as future work.

Third-Party Authorization.
A third-party can decide to set up their own Authorization Token process with a TEE (which is

independent from the one with the provider). The mechanism can for instance be used by a third-party
to provide one-time tokens to access a resource in a privacy preserving way, and in parallel ask for an
attestation from the TEE.

Version-linked tokens. Tokens could be linked to the firmware, to allow to deprecate all tokens
corresponding to some outdated insecure firmware. This would however be redundant with the recurrent
expiration of skA.
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9 Conclusions
We presented TokenWeaver, a solution for privacy-preserving and post-compromise secure attestation.
TokenWeaver is based on a combination of both linkable and unlinkable token chains, which may be of
independent interest.

Compared to Google’s split brain solution, we obtain true privacy, and do not have to trust the
provider to uphold an internal split. This is a crucial distinction, since (a) users cannot verify that the
split brain policy is actually implemented, and (b) even if implemented, the split may be breached over
time. Compared to SGX, we have no need for EPID that are costly, and SGX makes no claims (let alone
proofs) of PCS. In contrast to both of these solutions, we offer provable PCS and privacy properties.
Additionally, we offer fine-grained clone detection, both at the linkable and unlinkable levels.
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A Full Description
In this section, we provide the full description in pseudo code of our proposal. Table 2 provides a summary
of the cryptographic material used in our proposal. For each agent, we provide the multiple operations
that can be performed. Local variables are written as x , while long term storage is denoted with x.
Comments are written in gray. The API provided by the cryptographic library for the signature is shown
in Fig. 5, the code of a TEE is in Fig. 6, the one of the provider is in Fig. 7, and the (very small) code of
a third party checking an attestation is in Fig. 8.

1 Signature library S:
2 Blind part

3 (sk,pk) $←− S.gen()

4 blinded, skB $←− S.blind(pk,m)
5 blinded_sig ← S.bsign(sk,blinded)
6 sig ← S.unblind(skB,pk,blinded_sig,m)
7 return Null if invalid blinded
8 Classical part

9 sig $←− S.sig(sk,m)
10 S.vrfy(pk,sig) return bool
11

Figure 5: Signature Interface

Name Description

Serial Number (SN) Serial number of a TEE
Identifiable Certificate (IC) Attestation certificate e.g. tied to the

SN, used by the TEE to attest itself
to third party servers

Anonymous Certificate (AC) Attestation certificate but fully anonymous
Authorization token One-time authorization token, where upon

each authorization a new token is delivered
Linkable Token Authorization token owned by the TEE,

linked to its SN and valid for the provider
Unlinkable Token Authorization token owned by the TEE

and blindly signed by the provider
Attestation key pair (skA, pkA) Key pair trusted by third parties to sign

ACs and ICs
Provisioning key pair (skP , pkP ) Key pair used by the provider to sign

Unlinkable Token

Table 2: Cryptographic Material Summary

B Communication Channel models
We here provide more details on how a secure channel suitable for our protocols can be established as well
as how we model it in Tamarin. We assume here basic knowledge about KEM, encryption, TLS, and
Tamarin models.

Formal Model. Our protocol and our proofs rely on a channel that is both unilaterally authenticated
and confidentiality protected (any message sent over it will be delivered as is to the Provider), and
unlinkable: two distinct sessions of the same clients are not related at all. We formally model this in
Tamarin using classical channel modelings, similar e.g. to the one of [4]. Our confidential channels are
however simplified, as there is a single receiver, the provider.

Without going into the details of the Tamarin notation, we can describe how our formal models capture
the following possible actions for the communication channel between clients and a single authenticated
server:

• A client can sample a fresh identifier id, and secretly transmit once to the Provider a pair (id,m).
Such transmission can only be delayed by the attacker.

• The server, if it knows a particular id, can send a single reply to the client.
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1 Long term storage:
2 pkP: provisioning public key
3 pkA: attestation public key
4 SN: TEE serial number
5 lt: linkable token
6 ult: unlinkable token
7 skT,pkT: Anonymous Certificate
8 signed_pkT: pkT signed with pkA
9 skIC,pkIC: Identifiable Cert

10 signed_pkIC: pkIC signed with pkA
11

12 ====================================
13 TEE Initialize(pkP,pkA,SN ,lt)
14 ------------------------------------
15 Store all values in memory:
16 (pkP,pkA,SN,lt) ← (pkP,pkA,SN ,lt)
17

18 ====================================
19 Linkable Chain
20 ------------------------------------
21 new unlinkable token
22 t

$←− Token Space

23 blinded, skB
$←− S.blind(pkP,t)

24 new identifiable cert
25 skIC,pkIC $←− S.gen()
26 send authenticated with linkable token
27 send Provider (SN, blinded, lt, pkIC)
28 receive (new_lt,bsig,sig_pkIC)
29 token_sig ← S.unblind(skB,pkP,bsig,t)
30 abort if token_sig is Null
31 abort if not S.vrfy(pkA,sig_pkIC)
32 if success, store vars
33 ut ← (t,token_sig)
34 lt ← new_lt
35 signed_pkIC ← sig_pkIC
36

37 ====================================
38 Unlinkable Chain

39 ------------------------------------
40 new unlinkable token
41 t

$←− Token Space

42 bt, skB
$←− S.blind(pkP,t)

43 new identifiable cert
44 nskT,npkT $←− S.gen()

45 bT, skBT
$←− S.blind(pkA,pkT)

46 send all authenticated with previous
47 blind token
48 send Provider (bt, bT, ut)
49 receive (bisgt,bsigT)
50 token_sig ← S.unblind(skB,pkP,bsigt,t)
51 abort if token_sig is Null
52 npkT_sig ← S.unblind(skBT,pkA,bsigT,npkT)
53 abort if npkT_sig is Null
54 if success of unblind, store vars
55 ut ← (nt,ntoken_sig)
56 skT,pkT ← nskT ,npkT
57 signed_pkT ← npkT_sig
58

59 ====================================
60 Anonymous Attest(m)
61 sig ← S.sign(skT,m)
62 sent to TTP (m,sig,pkT, signed_pkT)
63

64 ====================================
65 Identifiable Attest(m)
66 sig ← S.sign(skIC,m)
67 sent to TTP (m,sig,pkIC, signed_pkIC)
68

69 ====================================
70 Refresh keys
71 Upon expiry, fetch new pkP,pkA, e.g.,
72 relying on provider’s TLS cert.
73 Drop all expired signatures and run
74 linkable chain.
75

Figure 6: TEE specification

• The attacker can chose its own identifier id and also send a message to the server.
• The server answers to the attacker when an attacker identifier was received.
Realization. Such a channel can be for instance established by using the TLS protocol, to avoid

managing an additional certificate on the provider side. Then, for each loop of Section 5.2, the TEE
starts a fresh TLS handshake with the provider and use the TLS session as a channel. And for each loop
of Section 5.3, another fresh TLS handshake is also used. Implementers must take care not to use any
session resumption mechanism, which would otherwise compromise trivially unlinkability. If TLS is too
heavyweight for the use-case constraints, a simple communication channel can be established as follows:

• the provider has a long term KEM key pair (pk, sk);
• any client that wants to send a message m to the provider first executes skt, ect ← Encap(pk), and

then sends on the network the pair (ect, Enc((1,m), skt).
• the provider given (ect, em) obtains the key skt ← Decap(ect, sk), and decrypts the message with

Dec(em, skt). It can then process it, and finally answer to the client with message m2 by sending
back Enc((2,m2), skt).

Secure Handling of Communication issues and TEE reset. In our formal models and descrip-
tions, we implicitly assume that the connection between the provider and a TEE cannot be lost but only
delayed. In practice, we need to support scenarios where the connection with the TEE is lost after the
provider sends the new blinded signature but before it was received by and stored by the client. If the
provider doesn’t accept the old token anymore, an honest TEE who didn’t get the new blinded signature
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1 Long term storage:
2 skP,pkP: provisioning key pair
3 skA,pkA: attestation key pair
4 dlts: deprecated unlinkable tokens
5 lts: valid linkable tokens
6

7 ====================================
8 ProviderInitialize()
9 ------------------------------------

10 skP,pkP $←− S.gen()

11 skA,pkA $←− S.gen()
12

13 ====================================
14 Create TEE(SN )
15 ------------------------------------
16 lt

$←− Token Space
17 Make TEE execute:
18 TEE Initialize(pkP,pkA,SN ,lt)
19 lts ← lts + (SN ,lt)
20

21 ====================================
22 Linkable Chain
23 ------------------------------------
24 receive from non authenticated client
25 receive (SN , blinded, lt, pkIC)

26 abort if (SN ,lt) is not in lts
27 new_lt $←− Token Space
28 lts ← lts - (SN ,lt) + (SN ,new_lt)
29 bsig ← S.bsign(skP,blinded)
30 sig_pkIC ← S.sign(skA,pkIC)
31 send (new_lt,bsig,sig_pkIC)
32

33 ====================================
34 Unlinkable Chain
35 ------------------------------------
36 receive from non authenticated client
37 receive (bt, bT, (t,sigt))
38 Check validity of blind token
39 abort if not Sig.vrfy(pkP,sigt,t)
40 Check t not in dlts
41 dlts ← dlts + t
42 bsigt

$←− S.bsign(skP,bt)

43 bsigT
$←− S.bsign(skA,bT)

44 send (bsigt,bsigT)
45

46 ====================================
47 Key Refresh()
48 ------------------------------------
49 Upon expiry, run ProviderInitialize().
50 Publish new public keys.

Figure 7: Provider specification

1 ====================================
2 Check attest()
3 ------------------------------------
4 receive (m,sig,pkIC, signed_pkIC)
5 Fetch current attestation
6 key pkA from provider.
7 abort if not
8 S.vrfy(pkA, signed_pkIC, pkIC)
9 abort if not S.vrfy(pkIC, sig,m)

10 Accept

Figure 8: Third Party

will be locked out. If it accepts the old token, a malicious client may get two or more valid tokens in
exchange for one.

Suppose we use the previously proposed KEM based approach for the secure channel implementation.
In that case, the solution is trivial as the clients and server just need to replay the message previously
sent using the same encryption keys to avoid any message loss.

Another solution if TLS is used is to rely on the session resumption mechanism of TLS (but only
within the same linkable or the same unlinkable update). When as the server gets a valid token, it marks
the corresponding TLS session as valid and sends and stores its reply. If this TLS session is resumed from
a client, it accepts to resend the stored reply.

C Formal details on the privacy proof
In this appendix, while we cannot re-introduce formally all the notions needed to fully explain to a new
reader the formal details of our proofs, we present all the required notions and give precise references for
them.

Unlinkability properties. A common privacy goal is the so-called unlinkability property, informally
defined in [25] as: “Unlinkability aims at ensuring that a user may make multiple uses of a service or
resource without others being able to link these uses together.” It is a stronger goal than anonymity but
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n TEEs ml linkable
updates

mu unlinkable
updates Result

2 8 8 ok in 54s, 68MB
2 12 12 ok in 19h29m, 23GB
2 12 24 OOM>500GB in 10m

Table 3: DeepSec analysis results for three parameter sets

difficult to prove and multiple works have tried to define it formally and enable proving it [1, 3, 24]. An
important notion in the field is the trace equivalence [3, Def. 2] property, which allows to specify that two
protocols have exactly the same set of possible executions, and that those executions are indistinguishable
by any attacker. We denote P ≈ Q the fact that a protocol P is trace-equivalent to a protocol Q. Given
a protocol P (id) where id corresponds to the identifier of an agent involved in the protocol, if we denote
∥ the parallel composition of session, the unlinkability of the agents in the protocol P is expressed as
P (id)∥ . . . ∥P (id) ≈ P (id1)∥ . . . ∥P (idn). That is, an attacker cannot distinguish whether it was n times
the same agent that was involved in the n sessions of the protocol or n distinct agents. This implies that
the attacker cannot link together two sessions of the same user.

Unlinkability definition of TokenWeaver. Our goal is to verify the privacy of our solution, even
for a malicious server trying to track the TEEs. As such, we will consider here that the server is fully
attacker controlled, and the unlinkability property will only talk about the parts of the protocol executed
by the TEEs. A difficulty of specifying the unlinkability property for our protocol is that it has both
unlinkable and linkable components. Let us introduce some notations to clarify this. We split our protocol
for the TEE side into three component:

• Init(SN) - A TEE with serial number SN is given a linkable token;
• UUpdate(SN) - The TEE with id SN tries to perform an unlinkable update, sending out its

unlinkable token (if it has one) and a request for a new AC.
• LUpdate(SN) - The TEE SN sends its linkable token, and should obtain a new one along with a

blinded token.
Those three protocol parts all share the common state of the TEE SN , and cannot be interwoven together.
A first attempt at defining the unlinkability of our protocol could be, when only considering two TEEs:

Init(SN1)∥UUpdate(SN1)∥LUpdate(SN1)
∥Init(SN1)∥UUpdate(SN1)∥LUpdate(SN1)

≈
Init(SN1)∥UUpdate(SN1)∥LUpdate(SN1)∥
Init(SN2)∥UUpdate(SN2)∥LUpdate(SN2)

This property is however trivially false, as for instance the sequence of actions LUpdate(SN1).LUpdate(SN2)
is of course distinguishable from the sequence of actions LUpdate(SN1).LUpdate(SN1). This property
does not correspond to a satisfying definition of unlinkability for our setting. The natural next option is
to only consider the unlinkability for the parts of the protocol that are indeed unlinkable, as follows:

Init(SN1)∥UUpdate(SN1)∥LUpdate(SN1)
∥Init(SN2)∥UUpdate(SN1)∥LUpdate(SN2)

≈
Init(SN1)∥UUpdate(SN1)∥LUpdate(SN1)∥
Init(SN2)∥UUpdate(SN2)∥LUpdate(SN2)

While this would work for a stateless protocol, this is still not a valid definition of unlinkability in
our setting as it is also trivially false. Indeed, the sequence LUpdate(SN1).UUpdate(SN1).UUpdate(SN1)
is possible on the left hand side, but the correspond one on the right hand side, which would be
LUpdate(SN1).UUpdate(SN1).UUpdate(SN2), is an impossible execution, as UUpdate(SN2) cannot be
triggered without a corresponding LUpdate(SN2). This in fact matches the intuition that in the real
world, only devices that did perform the latest linkable update are unlinkable. Unfortunately, the existing
state of the art tools do not allow us to accurately express such a property.

We however go around the issue by restricting the scope of our analysis: we only express unlinkability
over a system where we forces all TEEs to perform at the same time the linkable update.
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We now denote LUpdate(SN1, . . . , SNn) the protocol where all the TEEs perform one after another
the linkable update, and none of those TEEs launch any other action during this global update. We can
then express our unlinkability target, in the specific case of only two TEEs performing a single linkable
and unlinkable update, as:

Init(SN1)∥Init(SN2)∥LUpdate(SN1, SN2)
∥UUpdate(SN1)∥UUpdate(SN2) ≈

Init(SN1)∥Init(SN2)∥LUpdate(SN1, SN2)
∥UUpdate(SN1)∥UUpdate(SN1)

We then generalize this property to a number of TEEs n, a number of possible linkable updates ml,
and a number of possible unlinkable updates mu by using the notation ∥1≤i≤mPi to denote P1∥ . . . ∥Pm

and writing it as:

∥1≤i≤nInit(SNi)∥1≤j≤ml
LUpdate(SN1, . . . , SNn)

∥1≤k≤mi
UUpdate(SNk) ≈

∥1≤i≤nInit(SNi)∥1≤j≤ml
LUpdate(SN1, . . . , SNn)

∥1≤k≤miUUpdate(SN1)

Our unlinkability property then captures the fact that for n TEEs that all performed the same number
of linkable updates, an attacker cannot distinguish whether it is always the same TEE or always a distinct
one which is doing an unlinkable update.

Actual Verification. Because our unlinkability property is not as simple as the classical one and
involves non unlinkable components, we cannot reuse solutions dedicated to a particular specification of
unlinkability such as [3].

We thus have to resort to general tools that support the verification of trace equivalence. In this
work, we rely on one of the latest development in this field, the DeepSec prover [13, 14], which allows
verifying trace equivalence between two given protocols. While DeepSec is a state-of-the-art tool, it puts
two restrictions on our analysis. First, it does not have built-in support for states, and we must use
private communication channels to emulate them. However, while the content of messages sent over
private channels is unknown to the attacker, the attacker can observe that a communication occurred over
a channel. Thus, if we were to encode each TEE state as one private channel, the attacker would instantly
distinguish UUpdate(SN 1)∥UUpdate(SN 2) and UUpdate(SN 1)∥UUpdate(SN 1), as in the first case a single
private channel is used, and in the second two are used. We solve this by using a single private channel to
encode the joint states of all TEEs as a tuple, and a given protocol will only touch the part of the tuple
corresponding to the given TEE. This however makes it so that our protocol model is not at all modular in
the number of different TEEs n in the proof, and we thus only restrict it to 2 instances. Second, DeepSec
only enables verification for a bounded number of sessions, and the complexity of the verification grows
exponentially with the number of sessions.

We summarize our results in Table 3, with some timeouts and out of memory occurrences to give an
idea of the limits.
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