
STIP: Secure Three-Party Transformer Inference Protocol with Lossless Accuracy
and Millisecond-Level Latency

Mu Yuan1,2, Lan Zhang1, Guoliang Xing2, Xiang-Yang Li1
1University of Science and Technology of China

2The Chinese University of Hong Kong

Abstract
Security of model parameters and user data is critical for
Transformer-based services, such as ChatGPT. While re-
cent strides in secure two-party protocols have successfully
addressed security concerns in serving Transformer mod-
els, their adoption is practically infeasible due to the pro-
hibitive cryptographic overheads involved. Drawing insights
from our hands-on experience in developing two real-world
Transformer-based services, we identify the inherent effi-
ciency bottleneck in the two-party assumption. To overcome
this limitation, we propose a novel three-party threat model
that consists of model developer, model server, and data
owner. Based on this framework, we design a semi-symmetric
permutation-based protection scheme and present STIP, the
first secure Transformer inference protocol without any in-
ference accuracy loss. We analyze STIP’s resistance to brute
force, known-plaintext, and social engineering attacks and
prove the privacy leakage upper bound using distance cor-
relation. And we propose a method to integrate the trusted
execution environment with STIP to make model parameters
resistant to model extraction and fine-tuning attacks. Exper-
iments on six representative series of Transformer models,
with up to 70 billion parameters, in real systems show that
STIP has strong security and no loss of accuracy. For auto-
regressive token generation, STIP achieves 31.7 ms latency
for LLaMA2-7b model, significantly reducing the 5-minute
overhead of the state-of-the-art two-party protocols.

1 Introduction

Transformer inference-based services are the most cutting-
edge artificial intelligence applications [13, 24, 53]. Cloud
computing capabilities, such as auto-scaling [54], meet the
requirements of serving Transformers, especially large mod-
els with billions of parameters. Therefore, major organiza-
tions like OpenAI opt for full-cloud deployment for their
Transformer-based services [5]. Nevertheless, sending raw
data to the cloud is infeasible in privacy-sensitive domains,

as illustrated by incidents such as Samsung’s prohibition of
ChatGPT use after a sensitive code leak [22].

Model split is not secure enough. Model split infer-
ence [33,59,70] strategically distributes neural network layers
between the device and the cloud. The device sends intermedi-
ate activations to the cloud to continue inference. Model split
inference avoids raw data transmission while maintaining ef-
ficiency [47, 48]. However, concerns arise as research reveals
the potential for reverse-engineering sensitive information
from intermediate activations [2, 46].

Secure two-party protocols incur prohibitive overheads.
Recent studies explore secure Transformer inference through
homomorphic encryption (HE) and secure two-party compu-
tation (2PC) [11, 17, 26, 28, 40, 67]. However, these protocols
incur prohibitive computational and device-cloud communi-
cation overheads, especially with non-linear complex layers
like LayerNorm and ReLU. For example, CipherGPT costs a
25-minute processing time and 90 GiB traffic for generating
a single token with GPT2 [28] while Puma takes around 5
minutes and 2 GiB communication for LLaMA2-7b [17].

First principles thinking: three-party threat model. To
overcome the efficiency barrier, we use first principles to
rethink the basic two-party assumption: model owner and
data owner. Drawing insights from managing two real-world
Transformer-based services, a consistent experience emerged:
model developer ̸= model server. For both services, we devel-
oped Transformer models by fine-tuning [29] open-sourced
parameters [39, 60] with collected data. We have adequate
computing power for offline model development but lack the
capability for large-scale, long-term services to hundreds of
thousands of users. Consequently, as model developers, we
rely on third-party cloud platforms to serve our models. In
line with our real-world development experiences, we propose
a new three-party threat model. Within this model, we decom-
pose the model owner into two entities: model developer and
model server. As the developed models are proprietary, model
developers must safeguard their model parameters against po-
tential attacks from model servers [72], therefore we assume
they do not collude.

1

STIP insights and design. Based on our introduced three-
party threat model, we developed STIP, Secure Transformer
Inference Protocol, with two insights. First, we employ ef-
ficient feature-space permutation for secure and equivalent
Transformer inference. Since the inference is executed on
the untrusted server, model parameters and on-device data
must be transformed before uploading to the cloud. Based on
efficient permutation in the feature space, we design a data
and parameter transformation approach for Transformer lay-
ers. We prove the mathematical equivalence of computation
using our proposed transformation, thus ensuring no loss of
accuracy. Second, we design a semi-symmetrical protection
scheme between the model developer and data owners. This
insight stems from the sequential structure of neural networks.
We reveal that the model developer only needs to share iden-
tical permutations in the first and last layers with the data
owner, and can exclusively retain the information of interme-
diate layer transformation. Similar semi-symmetric protection
schemes have found application in diverse domains, such as
image encryption [16] and online shopping [21]. We demon-
strate the privacy-preserving capability of STIP based on dis-
tance correlation [58] and prove its resistance to brute-force
and known-plaintext attacks.

Contributions. We summarize three key contributions of
this work as follows:
• We identify the efficiency bottleneck inherent in the two-
party setting and its misalignment with real-world applica-
tions. We propose a new three-party threat model, decompos-
ing the model owner into two distinct entities: model devel-
oper and model server.
• We present STIP, the first secure protocol for three-party
Transformer inference, with the theoretical bound of privacy
leakage and guarantee of no loss of accuracy.
• We implement STIP and conduct evaluations on various
Transformer models with up to 70 billion parameters on real
systems. Experimental results verify the security of STIP
against brute force, known plaintext, model extraction, and
fine-tuning attacks. Our evaluation also showcases the ef-
ficiency of STIP, comparable to unprotected full-cloud in-
ference, surpassing state-of-the-art secure two-party proto-
cols [11, 17, 26, 28, 40] by millions of times.
This work does not raise any ethical issues.

2 Background

2.1 Device-Cloud Collaboration
Transformer inference-based services have become the most
compelling artificial intelligence applications, e.g., ChatGPT
sets a record for the fastest-growing user base [53].

Full-cloud inference: efficient but unsafe. Serving Trans-
formers, especially large models with billions of param-
eters, aligns with cloud computing capabilities, like auto-
scaling [54]. Several cloud-native frameworks for Trans-

former inference have been released, like NVIDIA NeMo [35]
and Microsoft DeepSpeed [4]. Therefore, most organiza-
tions, including OpenAI, adopt full-cloud deployment for their
Transformer-based services [5]. However, sending raw data to
the cloud is infeasible for various privacy-sensitive areas, e.g.,
Samsung officially banned employees from using ChatGPT
after sensitive code was leaked [22].

Full-device inference: secure but not scalable. To ad-
dress data privacy concerns, another option is deploying
Transformer models entirely on the device. Through model
compression techniques like weight quantization [14], Trans-
former models with billions of parameters can run inference
on devices [10]. However, the scalability of full-device deploy-
ment is limited. First, FLOPs (floating point operations) and
memory footprints scale linearly with the number of parame-
ters, while on-device computing resources grow much slower
than the explosive size of Transformer models [20, 74]. Sec-
ond, model compression inevitably brings accuracy loss [65],
but in the highly competitive large Transformer market, even
a slight QoS degradation may result in lagging behind com-
peting products. [30].

Device-cloud collaboration: best of both worlds. Since
neither the cloud nor the device can satisfactorily serve Trans-
former models independently, device-cloud collaboration has
naturally emerged in recent research efforts [33, 59, 70]. By
reasonably assigning inference workloads between the device
and the cloud, collaborative inference avoids transmitting raw
data while maintaining efficiency [47, 48].

2.2 Secure Two-Party Inference

Not transmitting raw data is just a bottom line for security.
Research on attacks against deep neural networks shows that
intermediate activations (e.g., text embeddings [46]) can be
reverse-engineered to disclose the sensitive information in
raw data [2]. Tighter security is urgently needed.

HE and 2PC for Transformer inference. Homomorphic
encryption (HE) is a cryptographic technique that allows com-
putations to be performed on encrypted data without decrypt-
ing it, while multi-party computation (MPC) allows multiple
parties to jointly compute a function over their inputs while
keeping those inputs private. In the context of model infer-
ence, two-party computation (2PC) is usually considered, a
special case of MPC where the model owner and the data
owner represent two parties respectively. Recent research has
demonstrated the ability to serve Transformer inference using
a combination of HE and 2PC [11,26,28]. However, these pro-
tocols incur significant computational overhead when process-
ing non-linear complex layers, such as LayerNorm and ReLU.
Additionally, there are high costs associated with device-cloud
communications, e.g., CipherGPT takes over 25 minutes to
generate a single token with GPT2 model [28].

2

2.3 Align with Real-World Applications:
Three-Party Threat Model

The simplicity of the two-party setting, where one party rep-
resents the device and the other the cloud, seamlessly fits HE
and 2PC theories. However, the efficiency challenges also
stem from the computational hardness inherent in HE and
MPC theories [49], which motivates us to think about a ques-
tion: Does the two-party setting truly align with the demands
of real-world applications?

Surprisingly but fortunately, the answer is no. This conclu-
sion comes from our experience of managing two real-world
Transformer-based services.

Service-1: campus security chatbot. At ANONYMOUS
University, we host a large language model-based chabot for
campus security. Our chatbot uses the database of surveillance
video analytics as the information source. Users, including
students and campus security officers, can ask questions like
“Did any abnormal behavior occur during a certain period?”
to the chatbot and get responses in natural language.

Service-2: vehicle cabin assistant. At ANONYMOUS
automotive company, we deploy a multi-modal Transformer
model to enhance the functionality of the smart assistant in ve-
hicle cabins. The multi-modal Transformer takes the in-cabin
video frames as the input and generates scene descriptions
in natural language. Scene descriptions can help the in-car
assistant become more user-friendly, such as recommending
music based on facial expressions.

Common experience: the model developer is not the
model server. For both services, we developed the Trans-
former model by fine-tuning [29] open-sourced parame-
ters [19, 60] with our collected data. The computing power of
our on-campus lab and company can afford offline model de-
velopment, but cannot support large-scale long-term services.
There are approximately a few hundred users of the campus
chatbot, and the vehicle assistants need to serve hundreds of
thousands of users. We, as model developers, need to resort
to third-party cloud computing platforms to serve our Trans-
former models. In fact, this experience is not just for us, but
also for other model development companies such as OpenAI.
OpenAI uses the Microsoft Azure cloud platform to provide
ChatGPT services to hundreds of millions of users [1, 5].

Three-party threat model. To align with experience from
developing real-world services, we introduce a three-party
threat model, as shown in Fig. 1. Departing from the classic
two-party setting, we divide the model owner into two distinct
entities: the model developer and the model server. Given that
the developed models are proprietary, model developers must
safeguard their model parameters against attacks from model
servers [72]. We make the assumption that model developers
do not engage in collusion with cloud platforms. Any collabo-
ration between these entities would lead to a regression to the
classic two-party setting. This decomposition of the model
owner role not only enhances practicality but also relaxes ad-

Model Owner
(Cloud)

Data Owner
(Device)

Model
Developer

Model Server
(Cloud)

Data Owner
(Device)

Against
Data

Against
Paras.

Against
Paras.

Against
Data

Against
Data

Against
Paras.

Classic Two-Party
Threat Model

Our Three-Party
Threat Model

Decompose

X No
Collusion

Figure 1: Three-Party Threat Model

versary assumptions. This adjustment proves instrumental in
overcoming the computational hardness inherent in two-party
protocols.

2.4 Design Space
Scope. This work focuses on achieving efficient and secure
execution of Transformer model inference, i.e., the end-to-
end forward pass, within the three-party setting. Transformer
inference results can serve as a foundation for downstream
applications, e.g., AI agents that automatically call external
APIs [55]. Potential security risks and efficiency issues in
downstream applications are out of the scope of this work.

Design goals. Our protocol has four main design goals:
(1) Data and parameter security. The foremost objective is to
ensure the security of on-device data and model parameters.
(2) No accuracy loss. The protocol is required to perform
accuracy-lossless inference, meaning there should be no ap-
proximation of any computations in Transformer models.
(3) Support production environments. It is crucial that the
protocol supports inference frameworks used in production
environments, incorporating techniques such as kv-cache for
efficiency optimization [4, 35].
(4) Flexible extension to Transformer variants. Given the
continuous evolution of Transformer models with various
emerging variants [6,32,39,52,60], the protocol must possess
the ability for flexible extension to accommodate Transformer
variants. This ensures long-term availability without necessi-
tating case-by-case adaptation.

Tab. 1 shows the comparison of STIP and existing Trans-
former inference methods on our four design goals.

3 Challenges

In designing STIP that achieves both efficiency and security,
we encountered two non-trivial challenges.

3.1 Prohibitive Cryptographic Overhead
Transformation of data and parameters is key to protection.
Existing protocols that combine HE and 2PC techniques for

3

Table 1: Comparison of our proposed STIP and existing Trans-
former inference methods.

Method Secure
No

Loss
Prd.
Env.

Tested
Models

Full-Cloud ✗ ✓ ✓ All

Iron [26] ✓ ✗ ✗ BERT series
THE-X [11] ✓ ✗ ✗ BERT-Tiny
CipherGPT [28] ✓ ✗ ✗ GPT-2
Bumblebee [40] ✓ ✗ ✗ GPT-2/LLaMA
Puma [17] ✓ ✗ ✗ GPT-2/LLaMA

STIP ✓ ✓ ✓

GPT/LLaMA/
ViT/LLaVA/

BERT/Mixtral

security have prohibitive computing and communication over-
heads. As shown in Fig. 2, CipherGPT [28] takes over 25
minutes and 90 GiB traffic to perform a single forward pass
of GPT2 [52] with 123 million parameters.

The success of the Transformer model hinges on the utiliza-
tion of global matrix multiplication in its self-attention and
feedforward modules, making it highly parallelizable com-
pared to recursive architectures [56]. The inductive bias of the
Transformer architecture is not only efficient at the implemen-
tation level but also has some properties such as permutation
symmetries of hidden units [3] and the token-wise permuta-
tion invariance [36]. Drawing attention to the prevalent use
of random permutation in addressing privacy and security
concerns, including secure communication [7], property infer-
ence [23], machine learning [27, 41, 75], etc. In light of these
observations, we present our first insight:

▷ Insight 1: Efficient feature-space permutation for trans-
formed and equivalent Transformer inference.

Since the inference is executed on the untrusted server, the
parameters from the model developer and the on-device data
must be transformed before uploading to the cloud. We design
a data and parameter transformation specifically for Trans-
former layers based on random permutation in the feature
space. The transformation can be efficiently implemented
with O(d)-complexity movement of memory pointers, where
d is the feature dimension. As Fig. 2 shows, our protocol,
STIP , achieves orders of magnitude higher efficiency than
CipherGPT, and the latency is close to full-cloud deployment.
We prove the mathematical equivalence of computation us-
ing our proposed transformation, thus ensuring no loss of
accuracy (§ 5.1).

Pre/Post/Comm
Transformer
Traffic

La
te

nc
y

(m
s)

1

102

104

106 C
om

m
unication (M

iB)10−3

1

103

106

Full-Cloud CipherGPT STIP

Figure 2: Latency and communication overheads of GPT2-
124m model.

3.2 Attack Surface Vulnerability

While random permutation-based schemes are efficient and
accuracy-lossless, endowing them with robust security poses
non-trivial challenges. A direct adoption of sequence-level
permutation scheme [36] leads to n! possible permutations,
rendering it inadequate for safeguarding data against brute-
force attacks (BFA) when the number of input tokens n is
small. Opting for permutation in the feature space can en-
hance protection, yet using a single permutation matrix π

remains vulnerable to known-plaintext attacks (KPA). The
reason is, once the cloud gains a pair of known plaintext of
on-device data and the transformed data, it can easily recover
the permutation matrix, subsequently inverse-transforming all
parameters and exposing sensitive information. Tab. 2 sum-
marizes the number of possible permutations for data and
parameters and resistance to BFA and KPA attacks.

▷ Insight 2: Semi-symmetrical set of permutation matrices
between the model developer and data owners.

This insight stems from the sequential structure of neural
networks. The data owner only needs to share identical per-
mutations in the first and last layers with the model developer.
Intermediate layer transformation information can be exclu-
sively retained by the model developer. Consequently, we
propose a feature-space permutation scheme utilizing a set of
matrices π1, ...,π3L, where L represents the number of layers.
Similar semi-symmetric protection schemes have been ex-
plored in domains such as image encryption [16] and online
shopping [21]. We analyze the privacy-preserving capability
of our proposed scheme based on distance correlation [58]
and prove its resistance to BFA and KPA (§ 5.3).

4 Definition

With these insights in mind, in order to formally present math-
ematically equivalent transformations and analyze theoretical
security, this section defines Transformer inference (§ 4.1)
and the three-party threat model (§ 4.2).

4

Table 2: Comparison of different permutation-based schemes
in terms of number of possibilities and resistance to attacks.

Protection Scheme Data Paras. BFA KPA

Seq. Perm. n! 1 ✗ ✗
Feat. Perm. with Single π d! d! ✓ ✗

Feat. Perm. with {π1, ...,π3L} d! (d!)3L ✓ ✓

4.1 Transformer Inference
We use the original Transformer architecture [61] to introduce
the inference workflow, without loss of generality, advanced
Transformer variants (GPT [51], LLaMA [60], ViT [18] and
Mixtral [32]) will be discussed in Sec. 6.

Device-cloud model split In Transformer models, the em-
bedding operation is the initial step that maps discrete inputs
(such as words or images) into continuous vectors [61]. In
order to decouple our protocol from the original data modal-
ity, we set the starting point of device-cloud collaborative
inference to the embeddings instead of the input. By default,
only the embedding operation executes on the device while
expensive Transformer layers and the classifier are deployed
on the cloud, as shown in Fig. 3.

Transformer layer forward pass. As shown in Fig. 3, the
on-cloud Transformer model consists of L sequential Trans-
former layers and a classifier. Let Fθ denote the Transformer
model with trainable parameters θ. We define { fi : Rn×d 7→
Rn×d |i ∈ [L]} as Transformer layers, and fc : Rn×d 7→ Rn×s

as the classifier, where n is the sequence length (e.g., the num-
ber of tokens), d is the model feature dimension, and s is the
output dimension (e.g., vocabulary size). We use xi and yi
to denote the input and output of the i-th Transformer layer,
and all these intermediate activations share the same shape
Rn×d . A forward pass of a Transformer layer, i.e., f (x) = y,
is computed as follows1:
Self-attention sub-block:

Q = xWq, K = xWk, V = xWv, Wq,Wk,Wv ∈ Rd×d ,

u = SoftMax
(

QKT
√

k
+M

)
VWo, M ∈ Rn×n,Wo ∈ Rd×d ,

v = LayerNorm(u+ x;γ1,β1), γ1,β1 ∈ Rd ,

Feedforward sub-block:

z = ReLU(vW1)W2, W1 ∈ Rd×m,W2 ∈ Rm×d ,

y = LayerNorm(z+ v;γ2,β2), γ2,β2 ∈ Rd ,

where k and m are constants that depend on the model ar-
chitecture hyperparameters, and M denotes the mask matrix.
SoftMax, LayerNorm, and ReLU are commonly used neural
network functions and their definitions are not necessary in

1For simplicity of expression, we use xW instead of xW T which is used
for real-world implementation.

Input

Embedding

MatMul

MatMul

MatMul

MatMul

Masking

SoftMax

MatMul

MatMul

Add & LayerNorm ()

MatMul

ReLU

MatMul

Add &
LayerNorm

()

Output

Classifier

Transform
er Layer

On-Device

On-Cloud

Figure 3: Inference workflow of original Transformer.

this work. Following the L-layer Transformers, a classifier
computes as follows:

o = yLWc, Wc ∈ Rd×s.

Use of masking. The mask matrix is a lower triangular
matrix, where the elements above the main diagonal are set
to negative infinity, and the elements on and below the main
diagonal are set to zero. In the original Transformer work [61],
two types of Transformer layers are proposed, encoder and
decoder. The mask is only applied to the self-attention sub-
block in the decoder to prevent positions after the current
position from being attended to. It ensures that during the
generation of each token in the output sequence, the model
only attends to the tokens preceding it. Masking is not trivial,
as it results in the infeasibility of constructing equivalent
computations using sequence-level permutation (§ 5.1).

4.2 Three-Party Setting and Threat Model
For serving Transformer models, we consider three parties:
• Model developer (P1) that trains and owns private Trans-
former model parameters, e.g., OpenAI developed GPT4.
• Model server (P2) that has the computing hardware, e.g.,
high-end GPUs on Azure cloud platform.
• Data owner (P3) that own private input and inference output,
e.g., text prompts and responses of ChatGPT users.

5

The inference protocol should ensure that P1 and P2 are un-
aware of P3’s input x1 and inference output o. And P1’s model
parameters θ should be hidden to both P2 and P3. The param-
eter θ consists of attention weights (Wq,Wk,Wv,Wo), feedfor-
ward weights (W1,W2), LayerNorm weights (γ,β), and clas-
sifier weights (Wc). In our context of Transformer inference,
P3’s input can be text prompt [60], images [19], and a combi-
nation of multiple modalities [39], and the inference output is
a probability vector of the last classification head [74].

We adopt the widely used semi-honest setting [11, 26, 28,
75] where each party will follow the protocol specifications
but attempt to infer additional sensitive information from the
observed protocol messages.

5 Design

This section first introduces how to perform equivalent infer-
ence of Transformer models with feature space permutation
(§ 5.1). Then we present, Secure Transformer Inference Pro-
tocol (STIP), the core algorithm (§ 5.2), and analyze the
protocol security (§ 5.3).

5.1 Feature Space Permutation
The permutation operation is defined by a permutation matrix
π, which is a square binary matrix that has exactly one entry
of 1 in each row and each column with all other entries of 0.
For x ∈ Rn×d , πn×nx and xπd×d performs sequence-level and
feature-level permutation respectively.

Mask makes sequence-level permutation not equivalent.
For the Transformer encoder (self-attention without masking),
the sequence-level permutation equivariance property, i.e.,
f (πx) = π f (x), has been studied [36,66]. However, due to the
mask inside the decoder, attention computation on sequence-
level permuted data cannot return equivalent output. A quick
fix is to send a permuted M′ = πMπT to the cloud computing
platform. However, since the value structure of M is known,
the cloud platform can easily infer π, which will result in a
loss of protection.

Parameter transformation. Instead, we propose to trans-
form parameters in the feature space with a set of random
permutation matrices. First, we generate π∈ {0,1}d×d for the
input x. For the i-th Transformer layer, we transform parame-
ters with another three matrices πi,1,πi,2,πi,3:

W ′q = π
TWqπi,1, W ′k = π

TWkπi,1, W ′v = π
TWvπi,2,

W ′o = π
T
i,2Woπ, W ′1 = π

TW1πi,3, W ′2 = π
T
i,3W2π,

γ
′
1 = γ1π, β

′
1 = β1π, γ

′
2 = γ2π, β

′
2 = β2π.

For the classifier, we need to generate a permutation matrix
πc ∈ {0,1}s×s. We transform the classifier parameters by

W ′c = π
TWcπc.

MatMul

MatMul

MatMul

MatMul

Add & LayerNorm ()

MatMul

Add &
LayerNorm
()

Output Classifier

Random Permutation Matrices Set

Transformer Layer

Figure 4: Feature-space parameter transformation. Colors
represent the use of different permutation matrices.

Fig. 4 illustrates the parameter transformation procedure.
Computational equivalence. Let Fθ′ denote the Trans-

former model with transformed parameters, we prove that
original inference results can be recovered equivalently:

Theorem 1. Fθ′(xπ)πT
c = Fθ(x).

Due to page limitations, the proof is placed in Appendix A.

5.2 Protocol
Based on our proposed permutation-based transformation
for Transformer models, we develop STIP protocol. Fig. 5
shows an overview of STIP. STIP has two phases: initial-
ization and inference. In the initialization phase, the model
developer P1 randomly generates the permutation matrices set
Π = {π,πc}∪{πi,1,πi,2,πi,3|i∈ [L]}. P1 transforms its owned
trained model Fθ with Π and obtain the transformed version
Fθ′ . Then P1 sends the transformed model Fθ′ to the cloud
platform and distributes the permutation matrices for the in-
put and output (π and πc) to its registered users. Now the
initialization phase finishes. For the inference phase, once a
user wants to use the inference service, it runs the embedding
on the device to obtain x. Then the user transforms the em-
bedding using the received input permutation matrix π by a
super-lightweight operation xπ = x′. Then the user sends x′ to
the cloud. The workload on the cloud platform has no change,
compared with the normal Transformer model serving. The
cloud just performs the Fθ′(x′) computations and obtains the
output o′ in the permuted feature space. Once the user receives
the returned o′ from the cloud, it simply reverse-transform

6

Party-1
Model

Developer

Party-3
Users

Party-2 Cloud Platform

1. Parameter
Transformation

2. Send
Transformed Model

2. Send
Input/Output
Permutation

Matrices
3. Embedding

Transformation

4. Send
Transformed

Embedding

5. Inference

6. Send
Output

7. Output
Reverse-

Transformation

Legend

Computation

Communication

Figure 5: Overview of STIP.

Algorithm 1: Secure Transformer Inference Protocol
input :Number of Transformer Layers L

1 Initialization phase:
2 [P1] Π←{π,πc}∪{πi,1,πi,2,πi,3|i ∈ [L]};
3 [P1] Fθ′ ← ParaTrans (Fθ,Π);
4 [P1] Send (Fθ′ , P2) and Send ({π,πc}, P3);
5 Inference phase:
6 [P3] x′← xπ and Send (x′,P2);
7 [P2] o′← Fθ′(x′) and Send (o′, P3);
8 [P3] o← o′πT

c .

the output by o = o′πT
c , which involves only memory move-

ment operations and can be implemented super efficiently.
Till now, one round of inference finished. Alg. 1 formally
presents STIP protocol.

Production environment support. Production-level Trans-
former inference frameworks, such as DeepSpeed [4] and
HuggingFace [64], incorporate many techniques to enhance
efficiency. For example, they use KV-cache mechanism to alle-
viate redundant computations by storing intermediate results
from previous attention calculations. STIP maintains a non-
intrusive approach, transforming parameter values while keep-
ing the underlying Transformer architecture unchanged. From
the cloud perspective, STIP involves switching to a distinct
set of weights, with no change in the inference computation
process. As a result, STIP seamlessly aligns with production-
level frameworks, and we have implemented STIP with the
HuggingFace [64] library.

5.3 Security Analysis

Now we demonstrate that STIP can protect model parameters
and user data from various attacks and quantify the bound of
privacy leakage risk using distance correlation measure.

Random permutation resists brute-force attacks. To be-
gin, let’s consider P1 as the attacker attempting to access user
data x,o. Due to the inaccessible nature of xπ and oπc, P1 is
unable to recover x,o with possessing π,πc. Next, consider
P2 as the attacker targeting model parameters θ and user data
x,o. Given that P2 possesses permuted parameters and xπ,
the probability of correctly guessing πd×d is 1/(d!), where
d is typically larger than 512 in practical applications such
as d = 4096 in LLaMA2-7b [60]. This renders the likelihood
of a successful attack negligible. Notably, permutation-based
protection schemes often exhibit a weakness in preserving the
set of elements (e.g., English vocabulary) [75]. Fortunately,
STIP avoids this vulnerability by applying permutation to
intermediate activations rather than the original data. Thirdly,
consider P3 as the attacker against model parameters θ. Since
P3 lacks access to θ′, it cannot recover θ despite having π,πc.
As STIP requires deploying the embedding model on the
device, the weights of the embedding are exposed to P3. How-
ever, the embedding module alone cannot perform valuable
tasks and is therefore not sensitive (e.g., OpenAI has released
its embedding module [45]).

Semi-symmetrical scheme to resist known-plaintext at-
tack. A known-plaintext attack (KPA) is a cryptographic
attack where the adversary possesses both the ciphertext (en-
crypted data) and the corresponding plaintext (unencrypted
data). The goal of KPA is to uncover the encryption key or
algorithm used to encrypt the data. In our context, if the plain-
text of the model developer’s parameters has been leaked,
there is no need to continue attacking the protection scheme.
Therefore, the focus of KPA consideration lies exclusively on
user data. Assuming P2 knows both x and xπ, it can recover π

with d times column matching, unless there are two or more
exactly identical columns. Consequently, if parameters on the
cloud rely solely on π for protection, all of them are at risk
of being leaked. This underscores the rationale behind our
adoption of a semi-symmetric protection scheme, wherein
layer parameters are permuted using two matrices. One is
exclusively owned by the model developer, while the other is
shared with the user. This design in STIP makes the model
parameters resistant to KPA. For a specific user, uncovering π

would lead to all subsequent embeddings being exposed to P2.
To address this vulnerability, we implement a strategy of peri-
odically changing the set of permutation matrices (in extreme
cases, using one-time transformation), a practice commonly
employed to resist KPA [8, 73].

Social engineering attack. Setting aside our semi-honest
assumption, in a scenario where the cloud platform deceitfully
pretends as a user and acquires the embedding model along
with π,πc, it can potentially uncover the data of other users

7

who share the same permutation matrices. To counteract this
risk, the model developer can deploy multiple instances of
the model, each employing distinct transformations. Users
can then be randomly assigned to share a model instance (in
extreme cases, each user may have an exclusive model in-
stance), effectively mitigating the risk of data leakage through
this social engineering attack. It’s noteworthy that parameters
remain resistant to this attack for the same reasons as the KPA
we discussed above.

Distance correlation bound. Above we analyzed that
STIP can ensure that data values cannot be uncovered. An
important aspect to investigate is the degree of correlation
between the original and permuted data. To quantify the risk
of privacy leakage, we employ distance correlation [58], a sta-
tistical measure of dependency between two random vectors.
Let Corr denote the distance correlation. Based on existing
theorem [75], it has been proven that:

E
πd×d ,A∈Rd×d

[Corr(x,xAπ)]≤ E
B∈Rd×1

[Corr(x,xB)].

In simpler terms, this implies that the privacy leakage result-
ing from the application of random permutation on inter-
mediate activations is bounded by the leakage observed in
one-dimensional reduction, which has demonstrated practical
privacy-preserving capabilities [44, 63].

Model split considerations. By default, STIP only deploys
the embedding module on user devices, as shown in Fig. 3.
This decision is motivated by the fact that splitting the model
before the embedding poses security challenges. In such a
scenario, the device would be required to transmit tokenized
one-hot vectors (a matrix ∈ Zn×s, where s denotes the vocab-
ulary size) to the cloud. While the matrix can be randomly
permuted, the inherent one-hot nature of the vectors makes it
susceptible to easy recovery of the permutation by the cloud.
On the flip side, distributing more layers onto the device is
also not a prudent choice. This is primarily because exposing
additional parameters to end devices compromises efficiency.

5.4 TEE Integration for Enhanced Security
Now we discuss how to use TEE in STIP to further resist
model extraction and finetuning-based attacks when the cloud
and the user degenerate into one party.

Model functionality leakage. The above-mentioned STIP
scheme utilizes random permutation and semi-symmetric
mechanisms to prevent the cloud platform from obtaining the
values of the original parameters. However, once the cloud
obtains the capabilities of the user party (for example, by so-
cial engineering attacks), the models deployed on the cloud
can still be used to perform inference computations. We refer
to this risk as model functionality leakage.

Leverage TEE for authorized inference. Trusted execu-
tion environment (TEE) [31, 43] are secure areas within a
processor that provide isolated environments for executing

X X

+

I. Embedding
Transformation

IV. Output
Reverse-Transformation

Party-3 Users

II. Self-attention of FIRST Transformer Layer

III. Feedforward of LAST Transformer Layer

Party-2 Cloud Platform

TEE Functions Controlled by Party-1 Model Developer

Figure 6: Integration of TEE into STIP protocol.

code and protecting sensitive data from unauthorized access.
Due to the sequential nature of the Transformer’s feedforward
computation, authorization of inference can be implemented
by deploying part of the model (such as the embedding and
the classifier) into the TEE. Recent work explored utiliz-
ing parameter permutation and TEE to perform authorized
Transformer inference [38]. However, our experiments (see
Sec. 7.6) show that attackers can still use authorized input-
output samples to perform model extraction [34] and fine-
tuning attacks [37] on the parameters protected by TEE.

Introducing one-time randomness. Existing work [68,76]
has shown that model extraction attacks can be effectively
resisted by introducing randomness on the input or output.
Therefore, we design an approach based on left-multiplied
random diagonal matrices to enhance the security of STIP
against such attacks on model parameters. As shown in Fig. 6,
we deploy four functions using enclave. Let A denote the
input of the TEE functions controlled by the model developer.
First, after getting the embedding, we additionally transform
the embedding x using a one-time random diagonal matrix
α: f (A) = αAπ. Second, in the first Transformer layer on the
cloud, we put the masking and softmax operations into the
TEE. Formally, we deploy the function as follows:

f (A) = αSoftMax(
α−1A(αT)−1
√

k
+M)α−1.

Third, in the last Transformer layer’s feedforward sub-block,
we put the LayerNorm operation into TEE for execution.
Specifically, we deploy the following function: f (A) =
LayerNorm(A|αβ2π,αγ2π). Fourth, the user executes the re-
verse transformation of the inference result in TEE: f (A) =
α−1AπT

c . Let Fθ′,T EE denote the Transformer model with
transformed parameters and TEE integration. We prove that
after integrating TEE, the computational equivalence property
still holds:

Theorem 2. α−1Fθ′,T EE(αxπ)πT
c = Fθ(x).

Due to page limitations, the proof is placed in Appendix A.

8

6 STIP for Transformer Variants

This section discusses how STIP supports various Trans-
former variants, including language models (§ 6.1), multi-
modal models (§ 6.2), and mixture-of-experts models (§ 6.3).
Following that, we establish generalized rules and claim the
application scope of STIP (§6.4).
Due to page limitations, all proofs are placed in Appendix. A.

6.1 Language Models
Pre-LayerNorm. The first version of GPT [50] directly
adopts the original Transformer decoder. GPT-2 [52] intro-
duces Pre-LayerNorm, relocating layer normalization to the
input of self-attention and feedforward sub-blocks, formally:

v = Attn(LayerNorm(x))+ x,

y = ReLU(LayerNorm(v)W1)W2 + v,

where Attn denotes the self-attention sub-block. From the
proof of Theorem 1, we can easily prove that this theorem
still holds for the Pre-LayerNorm structure, using the same pa-
rameter transformation. For TEE integration, we need to addi-
tionally put the ReLU activation of the feedforward sub-block
of the last Transformer layer into the enclave for execution.
Formally, function f (A) = αReLU(α−1A) is deployed.

RMSNorm. LLaMA series [60] use RMSNorm [71] to re-
place LayerNorm. To support RMSNorm operator, STIP trans-
forms its weight γ by γπ, then we can prove that

RMSNorm(xπ;γπ) = RMSNorm(x;γ)π.

GeLU. GPT uses GeLU to replace ReLU in feedforward
sub-blocks. Analogous to ReLU, GeLU involves element-
wise computation without learnable parameters, hence we
have GeLU(xπ) = GeLU(x)π and theorem 1 holds.

SwiGLU feedforward. LLaMA [60] uses SwiGLU [57]
instead of ReLU in feedforward layers. Let FFNSwiGLU denote
the feedforward layers using SwiGLU, with the definition:

FFNSwiGLU(x) = (xW1Sigmoid(xW1)xW3)W2,

W1,W3 ∈ Rd×m,W2 ∈ Rm×d .

We transform parameters as follows:

W ′1 = π
TW1, W ′3 = π

TW3πi,3, W ′2 = π
T
i,3W2π,

where FFN′SwiGLU denote the transformed feedforward sub-
block. And we prove that FFN′SwiGLU(xπ) =FFNSwiGLU(x)π.

Sparse attention. GPT-3 [9] adopts sparse attention pat-
terns in the Transformer layer [12]. Similarly, Longformer [6]
was proposed to improve the memory efficiency for long con-
text. These alterations in attention are equivalent to modifying
the masking M matrix. According to our proof, Theorem 1
holds for any M matrix, obviating the need for adjusting the
parameter transformation.

6.2 Multi-Modal Models

ViT [19] divides an image into non-overlapping patches, and
each patch is linearly embedded to create a sequence of token
embeddings. These token embeddings serve as the input to
the Transformer model. Since STIP does not rely on the pre-
processing of the original data, it can seamlessly support ViT.
LLaVA [39] takes both text and an image as inputs. It employs
a visual transformer to embed the image and subsequently
connects them with the embeddings of the text input using a
linear projection xvW , where xv denotes the visual embedding.
To integrate LLaVA with STIP, we only need to transform the
projection weight W by πT

v Wπt , where πv and πt denote the
permutation matrices used for visual and textual transformer
features, respectively.

6.3 Mixture-of-Experts Models

Mixtral [32] integrates mixture-of-experts (MoE) into Trans-
former by constructing multiple feedforward sub-blocks (re-
ferred to as experts) in parallel, complemented by a router (or
gating layer). The router determines the weights for the ex-
perts through g(x) = xWg, where Wg ∈ Rd×e and e represents
the number of experts. To support MoE, a simple transforma-
tion of Wg suffices, accomplished by πTWg.

6.4 Application Scope

For layers with learnable parameters, STIP requires them
only to involve global matrix multiplication (e.g., linear, self-
attention and feedforward) or token-wise aggregation (e.g.,
LayerNorm). To give some counterexamples, STIP cannot be
extended to convolutional and recurrent layers.

For layers without learnable parameters, STIP requires
them to meet f (xπ) = f (x)π property, i.e., column-wise per-
mutation equivariance. For example, ReLU, GeLU, SoftMax,
and Sigmoid activation layers.

7 Evaluation

We evaluate STIP on various Transformer inference tasks
using both real systems and public datasets. Our key findings
are outlined as follows:
• STIP demonstrates practical security concerning model pa-
rameters and user data and has no loss of accuracy (§ 7.3).
• STIP ’s throughput is comparable to unprotected full-cloud
inference, outperforming state-of-the-art secure two-party pro-
tocols [11, 17, 26, 28, 40] by millions of times (§ 7.4).
• STIP exhibits efficiency in evaluating various microbench-
marks, including communication overhead, memory footprint,
and effect of model split (§ 7.5).
• STIP shows effective resistance to model extraction and
finetuning-based attacks by integrating TEE (§ 7.6).

9

Table 3: Summary of Testbeds and Transformer Models

Testbeds Modality Transformers

Campus Security
Chatbot (CHAT) Text GPT2/LLaMA2

Vehicle Cabin Scene
Understanding (CABIN) Image ViT/LLaVA

Simulator (SIMU) Text BERT/Mixtral

7.1 Implementation
We implemented STIP using PyTorch and HuggingFace [64]
libraries. Modern deep learning frameworks, including Py-
Torch, adopt a row-major memory layout. To align with the
memory layout, PyTorch performs matrix multiplication in the
linear layer as xW T instead of xW . Consequently, we trans-
posed the previously introduced parameter transformation
for implementation. For permutation operations, we opted
to generate a random permutation vector πv instead of a ma-
trix πm. This vector is then used to index rows or columns,
as in W [:,πv], which achieves the same effect as Wπm. The
indexing-based approach is more computationally efficient
than matrix multiplication. See Appendix B for a code exam-
ple for transforming GPT2 model parameters using Hugging-
Face implementation. We will release the code and documen-
tation after this paper is accepted.

7.2 Experimental Setup
Testbeds and Transformer models. We use three testbeds
and six representative Transformer models for evaluation,
see Tab. 3. (1) Campus Security Chatbot (CHAT). To sup-
port natural language Q&A for campus security, we devel-
oped a large language model-based chatbot. We select pre-
trained LLaMA2-7b [60] to host this service at ANONY-
MOUS University. To scale the evaluation, we also deployed
GPT2-124m/355m/774m/1.5b [52] and LLaMA2-13b/70b
models2. (2) Vehicle Cabin Scene Understanding (CABIN).
At ANONYMOUS automotive company, we use LLaVA-
13b [39] to implement the cabin scene understanding func-
tion. LLaVA model takes in-cabin video frames and a preset
prompt as inputs to generate scene descriptions. We also
deployed ViT-86m/307m/632m models [19] for comprehen-
sive experiments. (3) Simulator (SIMU). To further evaluate
STIP on BERT series [15] and Mixtral [32] models, we build
a simulation testbed and test with randomly generated data.

Baselines. For comparisons, we consider four approaches:
(1) Full-cloud. Transformer models with original parameters
are deployed on the cloud and the device sends raw data
(plaintext) to the cloud for inference. (2-4) Iron [26], THE-
X [11], and CipherGPT [28]. They propose secure two-party

2Note that the number after the connector - refers to the parameter amount.

STIP (random permutation)
Random Projection

D
is

ta
nc

e
C

or
re

la
tio

n

0

0.2

0.4

0.6

0.8

1.0

Weight Index
20 40 60 80 100 120 140

(a) Parameters of GPT2

STIP (random permutation)
Random Projection

D
is

ta
nc

e
C

or
re

la
tio

n

0

0.2

0.4

0.6

Hidden Size
128 512 1024 2048 4096 8192

(b) Embeddings

Figure 7: Privacy leakage measurement: distance correlation.

protocols for serving BERT series and GPT-2 models. (5-6)
Bumblebee [40] and Puma [17]. They support secure two-
party inference for LLaMA series models.

Devices. For all cases, we use a server with 4 NVIDIA
A100 GPUs as the model server. In the CHAT testbed, we
use a PC with 8-core Intel Core i7 CPUs as the user device.
In the CABIN testbed, we use an NVIDIA Orin development
board as the user device. And for SIMU, we use a MacBook
Pro laptop with 4-core Intel Core i5 CPUs as the user device.

7.3 Security and Accuracy Guarantee
First, we evaluate the previously proven security and compu-
tational equivalence through experiments.

Distance correlation. In our privacy analysis, we employ
distance correlation [58] as the metric for assessing privacy
leakage. As a baseline, we utilize random linear projection
on both parameters and embeddings, referred to as Random
Projection. In Fig. 7a, we present the distance correlation be-
tween the original and transformed parameters of the GPT2-
1.5b model. Notably, STIP demonstrates a significantly lower
distance correlation compared to Random Projection. On av-
erage, Random Projection yields a distance correlation of
0.76, while STIP achieves a markedly lower value of 0.062.
To evaluate the security of on-device data, we apply trans-
formations to embeddings with various hidden sizes ranging
from 128 to 8192. The resulting distance correlations are
depicted in Fig. 7b. In the case of Random Projection, the
transformed data maintains a correlation higher than 0.6 on
average. Conversely, the distance correlation of STIP dimin-
ishes with increasing hidden sizes, ranging from 0.14 to 0.017.
This showcases the effectiveness of STIP in reducing privacy
leakage associated with transformed data. Our experimental
findings affirm the low privacy leakage of permutation-based
transformed data and parameters, providing validation for our
bound analysis in Sec. 5.3.

On-cloud parameter unavailability. In addition to quan-
tifying the correlation, we also assess the practical unavail-
ability of on-cloud parameters by generating tokens using
transformed parameters. We use identical prompts and feed
them to the GPT2-1.5b model with original and STIP trans-
formed parameters. Tab. 4 demonstrates the results. With the

10

Table 4: Unauthorized use of on-cloud transformed model
generates meaningless tokens.

Real Generation On-cloud Generation

Prompt: I’m a language model,

but what I do in that
role is to change
everything in our lives.

examines Blazers
consolationtechorate
applicationkiJanuary
PLANkikiorate Blazers
consolation Beyondki

prompt “I’m a language model,”, tokens generated by on-
cloud transformed parameters are completely meaningless,
highlighting the practical unavailability of deployed parame-
ters. This observation emphasizes the effectiveness of STIP in
securing parameters from unauthorized use.

No loss of accuracy. A key advantage of STIP lies in
its computational equivalence, ensuring that serving Trans-
former models with STIP incurs no loss of accuracy. We
assess this by examining two metrics: the sum of absolute dif-
ferences in predictions and top-1 token classification accuracy.
We conducted tests on all six selected model series, ranging
from 4 million to 70 billion parameters, using 10000 sam-
ples each. As depicted in Table 5, STIP consistently achieves
100% accuracy across all models. It’s worth noting that the
slight non-zero absolute difference is attributable to inherent
floating-point operation errors rather than any loss of accuracy
introduced by STIP .

7.4 Inference Efficiency

Next, we evaluate the inference efficiency of STIP. The results
are tested on the testbed devices associated with the model,
and we will not make additional explanations.

End-to-end throughput and scalability with parameter
size. We conducted tests to evaluate the end-to-end through-
put of serving Transformer models with STIP. The batch size
was set to 100, and the number of tokens per sample was
set to 100. As illustrated in Fig. 8 (a), STIP demonstrates
orders of magnitude higher throughput compared to base-
lines [11,17,26,28,40]. Additionally, we performed full-cloud
inference tests, but the results were close to STIP, causing
overlap of markers and, consequently, were omitted for clarity.
For GPT2-124m and LLaMA2-7b throughput, Puma reported
6.7e-2 and 3.3e-3 token/s, whereas STIP achieves 45,366 and
3738 token/s, showcasing an improvement of 0.67 and 1.1
million times. Fig. 8 (b) summarizes the throughput improve-
ments. On the other hand, our experiments with STIP have a
parameter size of up to 70 billion, which, to the best of our
knowledge, is the largest in the literature.

Autoregressive generation. In addition to a single-round
feedforward pass, we conducted tests on autoregressive gener-

STIP Baselines

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

10−4
10−3
10−2
10−1

1
101
102
103
104
105

Paras.# (million)
101 102 103 104 105

(a) End-to-end Throughput

STIP Baselines

6.7x106X
1.1x107X

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

10−3

1

103

106

GPT2-124m LLaMA-7b

(b) Improvement

STIP (wired)
STIP (wireless)
Full-Cloud

La
te

nc
y

(s
)

0

1

2

3

4

5

Generated Tokens #
0 20 40 60 80 100

(c) Autoregressive Generation

1.7

9

3

11

12

9

3

Cloud
Comm.
Device

La
te

nc
y

(m
s)

0

10

20

30

STIP Full-Cloud

(d) Latency Breakdown

Figure 8: Efficient serving Transformers with STIP.

ation with STIP, considering both wired and wireless network
connections for STIP communication. The average communi-
cation latency for wired connections is approximately 10ms,
while for wireless connections, it is around 250ms. With a
batch size of 1 and 128 input prompts, Fig. 8 (c) presents
the results for the LLaMA2-7b model. The latency for all
serving approaches exhibits a linear increase with the number
of generated tokens. The slopes for the result lines of Full-
cloud, STIP wired, and STIP wireless are approximately 12,
30, and 510, respectively. As discussed in Sec. 5.2, the com-
munication cost per generated token is inevitable to ensure
output privacy protection. Considering the practical security
that STIP introduces compared to unprotected full-cloud infer-
ence, the slightly higher latency (e.g., 2s more for 100 tokens)
is deemed acceptable.

Latency breakdown. To gain deeper insights into the over-
head introduced by STIP, we conducted an analysis of latency
breakdown, comparing it against full-cloud inference. Illus-
trated in Fig. 8d, our evaluation reveals that STIP introduces
an additional 1.7ms latency on the device while concurrently
reducing on-cloud latency from 12ms to 11ms. A crucial
factor contributing to the slower performance of STIP com-
pared to full-cloud is the communication phase. This arises
from the necessity of transmitting intermediate embeddings,
a BATCH×n×d tensor, which typically exceeds the size of
plaintext words transmitted in full-cloud serving. While prior
efforts [69] have investigated techniques to compress inter-
mediate activations and enhance communication efficiency in
model splitting scenarios, it is noteworthy that our work im-
poses strict requirements for lossless accuracy, rendering these
compression techniques beyond the current design scope. In-
tegrating such compression methods with STIP is a promising
direction for future research.

11

Table 5: STIP has the guarantee of lossless inference accuracy. Numerical differences arise from floating-point arithmetic errors.

Model GPT-2 LLaMA2 ViT BERT LLaVA Mixtral
Paras. 124m/355m/774m/1.5b 7b/13b/70b 86m/307m/632m 4m/41m/110m/336m 13b 47b

Abs. Diff. 0.021/0.033/0.0478/0.051 0.009/0.012/0.012 3e-4/3e-4/3e-4 5e-3/8e-3/9e-3/9e-3 0.016 8e-3
Class Acc. 100% 100% 100% 100% 100% 100%

7.5 Micro-Benchmarks
Device-cloud communication traffic. The communication
traffic induced by STIP is influenced by three factors: the num-
ber of input tokens, hidden size, and output vocabulary size.
To illustrate, considering the GPT2-124m model, a single-
round inference operation causes 5.8 MiB and 7.5 MiB of
traffic for input embedding and output activations, respec-
tively. As depicted in Fig. 2, the communication traffic in-
curred by STIP is markedly lower compared to CipherGPT,
95,151 MiB. This substantial reduction in traffic highlights
STIP’s ability to achieve security at a modest cost.

On-device memory footprint. In light of the diverse range
of devices that may be employed for Transformer-based ser-
vices, we assess the on-device memory footprint. For the
tokenizer component, LLaMA2 and ViT models exhibit mem-
ory footprints of 18 MiB and 3.1 MiB, respectively. In the
case of the embedding part, the memory allocation depends
on the hidden size parameter. LLaMA2-70b, utilizing a large
hidden size of 8192, incurs a memory cost of 903 MiB. In
contrast, the ViT models exhibit more modest memory re-
quirements, ranging from 3.9 MiB to 4.9 MiB. This implies
that the on-device memory demands of STIP, even for models
with substantial hidden sizes, remain feasible for contempo-
rary end devices.

Effect of model split. We vary the number of on-device
Transformer layers from 0 to 20 and analyze the correspond-
ing impact on inference latency. As depicted in Fig.9a, the
latency of end-to-end inference rises proportionally with an in-
creasing number of on-device layers. This latency increase is
attributed to the relatively lower computing power of devices
compared to the cloud. As discussed in Sec. 5.3, deploying
more layers on the device not only results in higher latency
but also exposes additional parameters to the user, thereby
introducing privacy risks. In light of these considerations, our
analysis indicates that deploying only the embedding module
on the device represents the optimal choice. This configura-
tion minimizes latency while mitigating the potential privacy
risks of exposing more layers to the user.

7.6 TEE Integration
Now we evaluate our TEE integration designs. Specifically,
we test the resistance to model extraction and fine-tuning
attacks, and the inference latency.

Model extraction attack. We assume that the attacker uses

On-Cloud
On-Device
End-to-End

La
te

nc
y

(m
s)

20

40

60

80

100

120

On-device Layers
0 5 10 15 20

(a) GPT2-1.5b

XP
Fixed-AXP
Rand-AXPM

SE
 L

os
s

0.01

0.1

1

Step
0 20 40 60 80 100

(b) GPT2-124m on Wikitext-2

Figure 9: Inference latency with different model splits (a) and
resistance to model extraction attacks (b).

authorized inference to obtain the input and output samples
of the initial transformation (module I in Fig. 6) executed in
the TEE. We consider that the attacker trains a linear model
to learn a mapping from the embedding x to three outputs:
(1) XP: column-wise permuted embedding; (2) Fixed-AXP:
transformation with a fixed diagonal matrix; (3) Rand-AXP:
transformation with random diagonal matrices, which is also
the approach used by STIP. We use the pre-trained GPT2-
124m model’s embedding and the WikiText-2 dataset [42] to
train linear models. As shown in Fig. 9b, using only permuta-
tion for protection is easily compromised by a linear fitting.
When we use a fixed linear transformation, the loss also has a
slow downward trend. Increasing the sample size or enlarging
the capacity of the fitting model may lead to a certain degree
of risk. Our design introduces one-time randomness, therefore
the loss is in an oscillating state and has no downward trend,
effectively preventing model extraction attacks.

Fine-tuning attack. Another possible attack approach is
to use the obtained output tokens to fine-tune the transformed
model, aiming to restore the original model performance.
Specifically, we consider two attacks: (1) Train Transformed:
Fine-tune all parameters on the STIP-transformed model; (2)
Train Linear: Freeze transformed parameters, then add and
train a linear layer after embedding. For comparison, we con-
sider two baselines: (3) Finetune: Fine-tune all parameters on
the normal model; (4) Train from Scratch: Train all parame-
ters on a randomly initialized model; We use the GPT2 series
models and the WikiText-2 dataset [42] for experiments. As
shown in Tab. 6, neither fine-tuning all parameters nor train-
ing additional linear layers can effectively restore the model
performance (worse than training a model from scratch). We
also compare the fine-tuning results of models with different

12

Table 6: Resistance to finetuning-based attacks using GPT2-
124m model. PPL denotes the perplexity metric. The values
before and after the / symbol represent the experiment results
using the original and the finetuned parameters, respectively.

Train Test
Approach Loss Loss Acc. PPL
Original - 3.42 0.38 31
Finetune 3.13 3.05 0.43 21
Train from Scratch 6.59 6.29 0.18 538

Train Transformed
7.25
/7.16

6.93
/6.82

0.14
/0.15

1028
/919

Train Linear
10.23
/10.25

9.36
/9.54

0.11
/0.11

11640
/13963

Table 7: Inference latency with and without TEE in STIP.

10x100 tokens inference latency (s)

Model w/o TEE w/ TEE (all) w/ TEE (io)

ViT-86m 0.76 1.15 0.78 (↓2.63%)
GPT2-124m 0.86 1.27 0.93 (↓8.14%)
GPT2-1.5b 0.98 2.26 1.03 (↓5.10%)
LLaMA2-7b 1.81 3.38 1.96 (↓8.29%)
LLaMA2-70b 8.64 31.32 9.45 (↓9.38%)

parameter sizes. Experimental results show that the effect
of attacking the 1.5b model is much worse than training the
pre-trained 124m model. We can conclude that in practical
applications, instead of attacking the model protected by STIP,
it is better for attackers to directly train an open-source model.

Inference latency. We use NVIDIA A100 GPUs and Intel
Xeon 6330 CPUs to simulate TEE execution. We compare
three execution approaches: (1) w/o TEE: All calculations
are performed in the GPU. (2) w/ TEE (all): For every Trans-
former layer, TEE is used. (3) w/ TEE (io): TEE is used
only for the first (input) and last (output) Transformer layers,
which is also the default design used by STIP. Tab. 7 shows
the latency of six Transformer models with parameters rang-
ing from 86m to 70b. Experimental results show that with
our carefully designed integration approach, using TEE only
reduces the efficiency by 2.6-9.4%. Considering the enhanced
security of model parameters brought by integrating TEE, this
efficiency loss is completely acceptable.

8 Discussion

Supported two-party use cases. Recall that our threat model
only assumes that the model developer and the cloud cannot
collude. For the cases where (1) the cloud and the device are
one party, and (2) the model developer and the device are one
party, STIP can still be applied. The first case is common in
all-in-one solutions that include models and hardware. For

example, a company deploys its own developed model on its
own hardware and delivers the entire solution to users, who
then perform inference on their own data. The second use
case is more common in academia, for example, a laboratory
develops its own model and then deploys the model on a cloud
platform to process private data.

Training support extension. STIP is designed to address
the forward pass, and model training introduces the complex-
ity of backward gradient propagation. We envision that the
principles underlying STIP could be promisingly extended to
support privacy-preserving training. However, this extension
entails studying the communication overhead associated with
gradients and the additional privacy leakage risks introduced
during gradient propagation [62], e.g., data poisoning and
membership inference attacks [67]. Future ongoing explo-
ration is needed to fully realize the potential of STIP in the
context of Transformer training and finetuning.

9 Related Work

Neural network split. The practice of splitting neural net-
work layers and distributing them between the device and
server has been explored as a means to protect raw on-device
data while preserving efficiency [33,40,47,48,59,70]. Recent
research [66] proposes using permutations to enhance pro-
tection further. However, despite this split, the potential for
reverse-engineering sensitive information from intermediate
activations [2], such as text embeddings [46], remains a con-
cern. STIP builds upon the concept of model split and goes a
step further by incorporating random permutation, offering
theoretically enhanced security measures.
Secure Transformer inference. In the context of a two-party
setting, prior efforts [11, 17, 26, 28, 40, 67] have explored
the combination of homomorphic encryption and multi-party
computation techniques to devise secure protocols for Trans-
former inference. In addition to HE techniques, function se-
cret sharing [25] can also be used for secure Transformer infer-
ence. These approaches customize and optimize computation
protocols for specific layers within Transformer models, such
as non-linear activation and layer normalization. In contrast to
these two-party systems, STIP introduces a novel three-party
threat model and employs a semi-symmetrical permutation
scheme to enhance security.

10 Conclusion

In this paper, we studied security concerns in Transformer
inference. We proposed a three-party threat model and pre-
sented the design of STIP, a secure transformer inference
protocol based on our semi-symmetrical permutation scheme.
Theoretical analysis and experiments in real systems evalu-
ated STIP’s practical security, computational equivalence, and
computational efficiency.

13

Ethics Considerations and Compliance with the
Open Science Policy

Disclosures. The data and parameter security issue discussed
in this paper is a classic, long-standing multi-party computa-
tion problem with no disclosure risk.

Innovations with both positive and negative potential out-
comes. Our secure inference protocol fairly protects user data
privacy and model developers’ proprietary parameters without
favoring the interests of any one party. Therefore, we believe
that integrating STIP will not have direct negative outcomes.

The law. STIP was created to make the existing Trans-
former inference services more compliant with laws and reg-
ulations, such as GDPR. Our research in this paper complies
with laws and regulations.

Open science: Availability, functionality, and reproducibil-
ity. The data, model structure, and model weights used in this
paper are all public. The algorithm details have been clearly
described and we will open-source the algorithm code after
the paper is accepted. Specifically, we will release:

• Code for performing parameter transformation for GPT2,
LLaMA2, ViT, LLaVA, BERT, Mixtral models (Tab. 3);

• Code for measuring distance correlation, see Fig. 7b and
Fig, 7a;

• Code for testing inference throughput (Fig. 8) and la-
tency (Fig. 8d);

• Code for testing the absolute difference and accuracy of
inference results (Tab. 5);

• Code for performing model extraction attack (Fig. 9b)
and fine-tuning attacks (Tab. 6);

• Code for performing TEE simulation inference and la-
tency tests (Tab. 7).

References

[1] Microsoft: We’re bringing chatgpt to
the azure cloud-computing service.
https://www.zdnet.com/article/microsoft-were-
bringing-chatgpt-to-the-azure-openai-cloud-
computing-service/, 2023.

[2] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra
Thapa, Seyit A Camtepe, Yansong Gao, Hyoungshick
Kim, and Surya Nepal. Can we use split learning on 1d
cnn models for privacy preserving training? In Proceed-
ings of the 15th ACM Asia Conference on Computer and
Communications Security, pages 305–318, 2020.

[3] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. Git re-basin: Merging models modulo per-
mutation symmetries. arXiv preprint arXiv:2209.04836,
2022.

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. Deepspeed-inference: enabling efficient in-
ference of transformer models at unprecedented scale. In
SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–15. IEEE, 2022.

[5] Azure. Chatgpt is now available in azure openai ser-
vice. https://azure.microsoft.com/en-us/blog/chatgpt-is-
now-available-in-azure-openai-service/, 2023.

[6] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

[7] Umang Bhargava, Aparna Sharma, Raghav Chawla, and
Prateek Thakral. A new algorithm combining substitu-
tion & transposition cipher techniques for secure com-
munication. In 2017 International Conference on Trends
in Electronics and Informatics (ICEI), pages 619–624.
IEEE, 2017.

[8] Tiziano Bianchi, Valerio Bioglio, and Enrico Magli.
Analysis of one-time random projections for privacy
preserving compressed sensing. IEEE Transactions
on Information Forensics and Security, 11(2):313–327,
2015.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[10] Samuel Carreira, Tomás Marques, José Ribeiro, and Car-
los Grilo. Revolutionizing mobile interaction: Enabling
a 3 billion parameter gpt llm on mobile. arXiv preprint
arXiv:2310.01434, 2023.

[11] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong,
Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and
Furu Wei. The-x: Privacy-preserving transformer in-
ference with homomorphic encryption. arXiv preprint
arXiv:2206.00216, 2022.

[12] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

[13] Google DeepMind. Gemini.
https://deepmind.google/technologies/gemini/, 2023.

[14] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022.

14

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[16] Xiaoqiang Di, Jinqing Li, Hui Qi, Ligang Cong, and
Huamin Yang. A semi-symmetric image encryption
scheme based on the function projective synchronization
of two hyperchaotic systems. PloS one, 12(9):e0184586,
2017.

[17] Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu,
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,
Tao Wei, and Wenguang Cheng. Puma: Secure in-
ference of llama-7b in five minutes. arXiv preprint
arXiv:2307.12533, 2023.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR,
2021.

[20] Ozlem Durmaz Incel and Sevda Özge Bursa. On-device
deep learning for mobile and wearable sensing appli-
cations: A review. IEEE Sensors Journal, 23(6):5501–
5512, 2023.

[21] N Fares and Shavan Askar. A novel semi-symmetric
encryption algorithm for internet applications. Journal
of University of Duhok, 19(1):1–9, 2016.

[22] Forbes. Samsung bans chatgpt among
employees after sensitive code leak.
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-
bans-chatgpt-and-other-chatbots-for-employees-after-
sensitive-code-leak/, 2023.

[23] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and
Nikita Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security,
pages 619–633, 2018.

[24] Google. Bard. https://bard.google.com/chat, 2023.

[25] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. Sigma: Secure gpt inference with func-
tion secret sharing. Cryptology ePrint Archive, 2023.

[26] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing,
Guowen Xu, and Tianwei Zhang. Iron: Private infer-
ence on transformers. Advances in Neural Information
Processing Systems, 35:15718–15731, 2022.

[27] Qijian He, Wei Yang, Bingren Chen, Yangyang Geng,
and Liusheng Huang. Transnet: Training privacy-
preserving neural network over transformed layer. Pro-
ceedings of the VLDB Endowment, 13(12):1849–1862,
2020.

[28] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie
Lu, Cheng Hong, and Kui Ren. Ciphergpt: Secure two-
party gpt inference. Cryptology ePrint Archive, 2023.

[29] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models.
CoRR, abs/2106.09685, 2021.

[30] HuggingFace. Open-llm-leaderboard, 2023.

[31] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. Trusted execution environments: properties, ap-
plications, and challenges. IEEE Security & Privacy,
18(2):56–60, 2020.

[32] Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard
Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon An-
toniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

[33] Penghao Jiang, Ke Xin, Chunxi Li, and Yinsi Zhou.
High-efficiency device-cloud collaborative transformer
model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2203–
2209, 2023.

[34] Wenbo Jiang, Hongwei Li, Guowen Xu, Tianwei Zhang,
and Rongxing Lu. A comprehensive defense framework
against model extraction attacks. IEEE Transactions
on Dependable and Secure Computing, 21(2):685–700,
2023.

[35] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kriman,
Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, et al.

15

Nemo: a toolkit for building ai applications using neural
modules. arXiv:1909.09577, 2019.

[36] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek,
Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant
neural networks. In International conference on ma-
chine learning, pages 3744–3753. PMLR, 2019.

[37] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong
Su. Defending against neural network model stealing
attacks using deceptive perturbations. In 2019 IEEE
Security and Privacy Workshops (SPW), pages 43–49.
IEEE, 2019.

[38] Qinfeng Li, Zhiqiang Shen, Zhenghan Qin, Yang-
fan Xie, Xuhong Zhang, Tianyu Du, and Jianwei
Yin. Translinkguard: Safeguarding transformer mod-
els against model stealing in edge deployment. arXiv
preprint arXiv:2404.11121, 2024.

[39] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. Visual instruction tuning, 2023.

[40] Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian
Liu, Kui Ren, Cheng Hong, Tao Wei, and WenGuang
Chen. Bumblebee: Secure two-party inference frame-
work for large transformers. Cryptology ePrint Archive,
2023.

[41] Takahiro Maekawa, Ayana Kawamura, Yuma Kinoshita,
and Hitoshi Kiya. Privacy-preserving svm computing
in the encrypted domain. In 2018 Asia-Pacific Signal
and Information Processing Association Annual Summit
and Conference (APSIPA ASC), pages 897–902. IEEE,
2018.

[42] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models, 2016.

[43] NVIDIA. Confidential comput-
ing. https://www.nvidia.com/en-us/data-
center/solutions/confidential-computing/, 2024.

[44] Stanley RM Oliveira and Osmar R Zaiane. Privacy-
preserving clustering by object similarity-based repre-
sentation and dimensionality reduction transformation.
In Proceedings of the 2004 ICDM Workshop on Pri-
vacy and Security Aspects of Data Mining, pages 40–46,
2004.

[45] OpenAI. tiktoken. https://github.com/openai/tiktoken,
2024.

[46] Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang.
Privacy risks of general-purpose language models. In
2020 IEEE Symposium on Security and Privacy (SP),
pages 1314–1331. IEEE, 2020.

[47] Dario Pasquini, Giuseppe Ateniese, and Massimo
Bernaschi. Unleashing the tiger: Inference attacks on
split learning. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2113–2129, 2021.

[48] Ngoc Duy Pham, Alsharif Abuadbba, Yansong Gao,
Tran Khoa Phan, and Naveen Chilamkurti. Binarizing
split learning for data privacy enhancement and com-
putation reduction. IEEE Transactions on Information
Forensics and Security, 2023.

[49] Manoj Prabhakaran and Mike Rosulek. Cryptographic
complexity of multi-party computation problems: Clas-
sifications and separations. In David Wagner, editor, Ad-
vances in Cryptology – CRYPTO 2008, pages 262–279,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[50] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[51] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019.

[52] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[53] REUTERS. Chatgpt sets record for
fastest-growing user base - analyst note.
https://www.reuters.com/technology/chatgpt-sets-
record-fastest-growing-user-base-analyst-note-2023-
02-01/, 2023.

[54] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. Infaas: Automated model-less in-
ference serving. In 2021 USENIX Annual Technical
Conference, pages 397–411, 2021.

[55] Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu Mao,
Ziyue Li, Xingyu Zeng, and Rui Zhao. Tptu: Large
language model-based ai agents for task planning and
tool usage, 2023.

[56] Alexander M Rush. The annotated transformer. In
Proceedings of workshop for NLP open source software
(NLP-OSS), pages 52–60, 2018.

[57] Noam Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

[58] Gábor J Székely, Maria L Rizzo, and Nail K Bakirov.
Measuring and testing dependence by correlation of
distances. 2007.

16

[59] Chandra Thapa, Pathum Chamikara Mahawaga
Arachchige, Seyit Camtepe, and Lichao Sun. Splitfed:
When federated learning meets split learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8485–8493, 2022.

[60] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[62] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Pro-
tect privacy from gradient leakage attack in federated
learning. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications, pages 580–589. IEEE,
2022.

[63] Yining Wang, Yu-Xiang Wang, and Aarti Singh. A
theoretical analysis of noisy sparse subspace clustering
on dimensionality-reduced data. IEEE Transactions on
Information Theory, 65(2):685–706, 2018.

[64] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

[65] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. Smoothquant: Accu-
rate and efficient post-training quantization for large
language models. In International Conference on Ma-
chine Learning, pages 38087–38099. PMLR, 2023.

[66] Hengyuan Xu, Liyao Xiang, Hangyu Ye, Dixi Yao,
Pengzhi Chu, and Baochun Li. Permutation equivari-
ance of transformers and its applications. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5987–5996, 2024.

[67] Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue
Zhang, Zhaochun Ren, and Xiuzheng Cheng. On pro-
tecting the data privacy of large language models (llms):
A survey. arXiv preprint arXiv:2403.05156, 2024.

[68] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay.
Using randomness to improve robustness of tree-based
models against evasion attacks. In Proceedings of the

ACM International Workshop on Security and Privacy
Analytics, pages 25–35, 2019.

[69] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang,
Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher.
Deep compressive offloading: Speeding up neural net-
work inference by trading edge computation for network
latency. In Proceedings of the 18th conference on em-
bedded networked sensor systems, pages 476–488, 2020.

[70] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and
Junshan Zhang. Coedge: Cooperative dnn inference
with adaptive workload partitioning over heterogeneous
edge devices. IEEE/ACM Transactions on Networking,
29(2):595–608, 2020.

[71] Biao Zhang and Rico Sennrich. Root mean square layer
normalization. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[72] Chengliang Zhang, Junzhe Xia, Baichen Yang,
Huancheng Puyang, Wei Wang, Ruichuan Chen,
Istemi Ekin Akkus, Paarijaat Aditya, and Feng Yan.
Citadel: Protecting data privacy and model confiden-
tiality for collaborative learning. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’21, page
546–561, New York, NY, USA, 2021. Association for
Computing Machinery.

[73] Tieyu Zhao, Qiwen Ran, Lin Yuan, Yingying Chi, and
Jing Ma. Information verification cryptosystem using
one-time keys based on double random phase encod-
ing and public-key cryptography. Optics and Lasers in
Engineering, 83:48–58, 2016.

[74] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xi-
aolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang,
Junjie Zhang, Zican Dong, et al. A survey of large lan-
guage models. arXiv preprint arXiv:2303.18223, 2023.

[75] Fei Zheng, Chaochao Chen, Xiaolin Zheng, and Mingjie
Zhu. Towards secure and practical machine learning
via secret sharing and random permutation. Knowledge-
Based Systems, 245:108609, 2022.

[76] Shuai Zhou, Tianqing Zhu, Dayong Ye, Wanlei Zhou,
and Wei Zhao. Inversion-guided defense: Detecting
model stealing attacks by output inverting. IEEE Trans-
actions on Information Forensics and Security, 2024.

17

Appendices are supporting material that has not been
peer-reviewed.

A Proofs

Proof of Theorem 1:

Fθ′(xπ)πT
c = Fθ(x).

Proof. First, since the calculation of non-linear activa-
tion is element-wise, they are permutation equivalent, i.e.,
ReLU(xπ)=ReLU(x)π and SoftMax(xπ)=SoftMax(x)π.
Next, we prove that:

LayerNorm(xπ;γπ,βπ) =LayerNorm(x;γ,β)π.
The LayerNorm function is defined for x ∈ Rn×d by

LayerNorm(x;γ,β) = γ◦ x−µx

σx
+β, γ,β ∈ Rd ,

where ◦ denotes the Hadamard (element-wise) product op-
erator. Since µx and σx are computed by rows, µxπ = µx and
σxπ = σx. Therefore,

LayerNorm(xπ;γπ,βπ) = γπ◦ xπ−µx

σx
+βπ

=

(
γ◦ x−µx

σx
+β

)
π

= LayerNorm(x;γ,β)π.

Then, since ∀π,ππT = I:

Q′ = xππ
TWqπi,1 = xWqπi,1 = Qπi,1,

K′ = xππ
TWkπi,1 = xWkπi,1 = Kπi,1,

V ′ = xππ
TWvπi,2 = xWvπi,2 =V πi,2,

u′ = SoftMax
(

Q′K′T√
k

+M
)

V ′πT
i,2Woπ

= SoftMax

(
Qπi,1πT

i,1KT

√
k

+M

)
V πi,2π

T
i,2Woπ

= SoftMax
(

QKT
√

k
+M

)
VWoπ = uπ,

v′ = LayerNorm(u′+ xπ;γ
′
1,β
′
1)

= LayerNorm(uπ+ xπ;γ1π,β1π)

= LayerNorm((u+ x)π;γ1π,β1π) = vπ,

z′ = ReLU(v′W ′1)W
′
2 = ReLU(vππ

TW1πi,3)π
T
i,3W2π

= ReLU(vW1)W2π = zπ,

y′ = LayerNorm(z′+ v′;γ
′
2,β
′
2)

= LayerNorm(zπ+ vπ;γ2π,β2π)

= LayerNorm((z+ v)π;γ2π,β2π) = yπ,

o′ = y′W ′c = yππ
TWcπc = oπc.

Therefore, F ′
θ
(xπ)πT

c = o′πT
c = oπcπT

c = o = Fθ(x).

Proof of Theorem 2:

α
−1Fθ′,T EE(αxπ)πT

c = Fθ(x).

Proof. First, we prove that LayerNorm eliminates the linear
transformation caused by α:

LayerNorm(αx) = LayerNorm(x).

Since α performs a linear transformation on each row, the
mean and standard deviation calculated for each row also
retain the linear transformation, that is, µαx = αµx and σαx =
ασx. Therefore:

LayerNorm(αx;γ,β) = γ◦ αx−αµx

ασx
+β

=

(
γ◦ x−µx

σx
+β

)
= LayerNorm(x;γ,β).

Then, since αα−1 = I,ππT = I, by reusing the notations used
in the proof of Theorem 1, the inference process of a Trans-
former model with TEE integration is as follows:

Q′′ = αxWqπi,1 = αQ′,

K′′ = αxWkπi,1 = αK′,

V ′′ = αxWvπi,2 = αV ′,

u′′ = αSoftMax
(

α−1Q′′K′′T (αT)−1
√

k
+M

)
α
−1V ′′πT

i,2Woπ

= αSoftMax
(

α−1αQ′K′T αT (αT)−1
√

k
+M

)
α
−1

αVWoπ

= αSoftMax
(

QKT
√

k
+M

)
VWoπ

= αuπ,

v′′ = LayerNorm(u′′+αxπ;γ
′
1,β
′
1)

= LayerNorm(αuπ+αxπ;γ1π,β1π)

= LayerNorm((u+ x)π;γ1π,β1π)

= vπ,

z′′ = ReLU(v′′W ′1)W
′
2 = zπ,

y′′ = LayerNorm(z′′+ v′′;γ
′
2,β
′
2)

= LayerNorm(zπ+ vπ;αγ2π,αβ2π)

= αLayerNorm((z+ v)π;γ2π,β2π)

= αyπ,

o′′ = y′′W ′c = αyππ
TWcπc = αoπc.

Therefore,

α
−1Fθ′,T EE(αxπ)πT

c = α
−1

αoπcπ
T
c = o = Fθ(x).

That is, after integrating TEE, the original inference results
can still be restored equivalently.

18

Proof of Pre-LayerNorm.

Proof. From the proof of Theorem.1, we can see the per-
mutation equivalence property holds for the self-attention
sub-block, i.e., Attn(xπ) = Attn(x)π. So

v′ = Attn(LayerNorm′(xπ))+ xπ

= Attn(LayerNorm(x)π)+ xπ

= Attn(LayerNorm(x))π+ xπ

= (Attn(LayerNorm(x))+ x)π = vπ,

y′ = ReLU(LayerNorm′(v′)W ′1)W
′
2 + v′

= ReLU(LayerNorm′(vπ)πTW1πi,3)π
T
i,3W2π+ vπ

= (ReLU(LayerNorm(v)W1)W2 + v)π = yπ,

where LayerNorm′ denotes layer normalization with trans-
formed parameters.

Therefore, F ′
θ
(xπ)πT

c = Fθ(x) still holds.
For TEE integration, the feedforward sub-block takes αv′

as the input. Therefore:

y′′ = αReLU(α−1
αLayerNorm′(αv′)W ′1)W

′
2 +αv′

= α(ReLU(LayerNorm(v)W1)W2 + v)π = αyπ,

Therefore, theorem 2 still holds.

Proof of RMSNorm.

Proof. The RMSNorm function is defined for x ∈ Rn×d by

RMSNorm(x;γ) = γ◦ x√
1
n ∑i x2

i

, γ ∈ Rd ,

where ◦ denotes the Hadamard (element-wise) product opera-
tor. Since ∑i x2

i is computed by rows, ∑i(xπ)2
i = ∑i x2

i . There-
fore,

RMSNorm(xπ;γπ) = γπ◦ xπ√
1
n ∑i(xπ)2

i

=

γ◦ x√
1
n ∑i x2

i

π

= RMSNorm(x;γ)π.

Proof of SwiGLU feedforward.

Proof. By definition,

FFN′SwiGLU(xπ) = (xπW ′1Sigmoid(xπW ′1)xπW3)W ′2
= (xππ

TW1Sigmoid(xππ
TW1)xππ

TW3πi,3)π
T
i,3W2π

= (xW1Sigmoid(xW1)xW3)W2π

= FFNSwiGLU(x)π.

B Parameter Transformation Code Example

Below we give a parameter transformation code for the Hug-
gingFace implementation of the GPT2 model using PyTorch.

import torch
import numpy as np
def permute_gpt2(model, p, p_out):

for name , para in model.transformer.
named_parameters():

t = name.split(".")
if t[0] in ["wte", "wpe"]:

continue
if t[0].startswith("ln"):

para.data = para.data[p]
continue

if t[2].startswith("ln"):
para.data = para.data[p]

if t[3]=="c_attn" and t[-1]=="weight":
para.data = para.data[p]

if t[2]=="attn" and t[3]=="c_proj":
if t[-1]=="weight":

para.data = para.data[:, p]
if t[-1]=="bias":

para.data = para.data[p]
if t[3]=="c_fc" and t[-1]=="weight":

para.data = para.data[p]
if t[2]=="mlp" and t[3]=="c_proj":

if t[-1]=="weight":
para.data = para.data[:, p]

if t[-1]=="bias":
para.data = para.data[p]

for name , para in model.lm_head.
named_parameters():

if name=="weight":
para.data = para.data[p_out][:, p]

return model
if __name__=="__main__":

from transformers import GPT2LMHeadModel
DMODEL = 768
DOUT = 50257
p = np.random.permutation(DMODEL)
p_out = np.random.permutation(DOUT)
model = GPT2LMHeadModel.from_pretrained("
gpt2/")
x = torch.from_numpy(np.random.rand(1, 1,
DMODEL)).float()
x_new = x[:, :, p]
with torch.no_grad():

y = model(inputs_embeds=x)
m_new = permute_gpt2(model , p, p_out)
y_new = m_new(inputs_embeds=x_new)
y_pout = y[:, :, p_out]
abs_diff = np.abs(y_new - y_pout).sum()
print("abs_diff=", abs_diff)

Our implementation does not need to perform matrix mul-
tiplication but only needs to perform re-index operations
to achieve the permutation operations, so it is very effi-
cient. Note that for code simplicity, we have omitted the
{πi,1,πi,2,πi,3 |i ∈ [L]} transformations and only kept the
transformations of π and πc.

19

	Introduction
	Background
	Device-Cloud Collaboration
	Secure Two-Party Inference
	Align with Real-World Applications: Three-Party Threat Model
	Design Space

	Challenges
	Prohibitive Cryptographic Overhead
	Attack Surface Vulnerability

	Definition
	Transformer Inference
	Three-Party Setting and Threat Model

	Design
	Feature Space Permutation
	Protocol
	Security Analysis
	TEE Integration for Enhanced Security

	STIP for Transformer Variants
	Language Models
	Multi-Modal Models
	Mixture-of-Experts Models
	Application Scope

	Evaluation
	Implementation
	Experimental Setup
	Security and Accuracy Guarantee
	Inference Efficiency
	Micro-Benchmarks
	TEE Integration

	Discussion
	Related Work
	Conclusion
	Proofs
	Parameter Transformation Code Example

