
Fast ORAM with Server-aided Preprocessing
and Pragmatic Privacy-Efficiency Trade-off ⋆

Vladimir Kolesnikov1, Stanislav Peceny2, Ni Trieu3, and Xiao Wang4

1 kolesnikov@gatech.edu, Georgia Tech, Atlanta, GA, USA
2 stan.peceny@gatech.edu, Georgia Tech, Atlanta, GA, USA

3 nitrieu@asu.edu, Arizona State University, Tempe, AZ, USA
4 wangxiao1254@gmail.com, Northwestern University, Evanston, IL, USA

Abstract. Data-dependent accesses to memory are necessary for many
real-world applications, but their cost remains prohibitive in secure com-
putation. Prior work either focused on minimizing the need for data-
dependent access in these applications, or reduced its cost by improving
oblivious RAM for secure computation (SC-ORAM). Despite extensive
efforts to improve SC-ORAM, the most concretely efficient solutions still
require ≈ 0.7s per access to arrays of 230 entries. This plainly precludes
using MPC in a number of settings.

In this work, we take a pragmatic approach, exploring how concretely
cheap MPC RAM access could be made if we are willing to allow one of
the participants to learn the access pattern. We design a highly efficient
Shared-Output Client-Server ORAM (SOCS-ORAM) that has constant
overhead, uses one round trip of interaction per access, and whose ac-
cess cost is independent of array size. SOCS-ORAM is useful in settings
with hard performance constraints, where one party in the computation
is more trust-worthy and is allowed to learn the RAM access pattern.
Our SOCS-ORAM is assisted by a third helper party that helps initialize
(and reinitialize, as needed) the protocol and is designed for the honest-
majority semi-honest corruption model.

We implement our construction in C++ and report its performance. For
an array of length 230 with 4B entries, we communicate 13B per access
and take essentially no overhead beyond network latency.

Keywords: Cryptography, Secure computation, Efficient protocols, ORAM

1 Introduction

Real-world applications rely heavily on data-dependent accesses to memory. De-
spite many recent improvements, such accesses remain a bottleneck when eval-
uated in secure two-party, three-party, and the general multi-party computa-
tion (2PC, 3PC, MPC).1 While in plaintext execution such accesses are cheap

⋆ This work is an extended version of [1].
1 MPC refers to protocols involving more than one party. In our work, we use the term
interchangeably to refer to 2PC or 3PC, depending on the context.

constant-time operations, they are expensive in MPC, since access pattern must
remain hidden. A naive secure solution to this problem is linear scan, which
hides the access pattern by touching every element in memory and multiplexing
out the result. This, of course, incurs overhead linear in memory size for each
access. A much more scalable approach is to instead use more complex Oblivious
RAM (ORAM) protocols [2], which achieve polylog complexity, while still hiding
access patterns.

The first ORAM considered the client-server setting [2], where a client wishes
to store and access her private array on an untrusted server. Soon after, initiated
by [3,4], ORAM was shown applicable to RAM-based 2PC: Secure RAM access
was achieved for 2PC simply by having the parties execute ORAM client inside
secure computation, while both parties share the state of the server.

Despite extensive research focused on optimizing ORAM for secure compu-
tation (SC-ORAM) and ORAM in general, the overhead remains prohibitive for
many applications. For example, a recent SC-ORAM Floram [5] takes ≈ 2 sec-
onds per access, communicates ≈ 5MBs, and requires 3 communication rounds
on arrays of size 230 with 4-byte elements.

Such ORAM performance is unacceptable in settings where many accesses
of large arrays are needed. Examples include network traffic or financial markets
analyses, where data is continuously generated and frequently accessed.

3PC: 2PC with a Helper Server. Fortunately, many real-world applications can
use a third party to help with computation. This third party may already be
a participant of the computation (e.g. provide input and/or receive output) or
can be brought as an (oblivious) helper server. As secure computation of many
functions is much faster in a 3-party honest-majority setting than in the two-
party setting, [6] ask whether SC-ORAM can also be accelerated. [6] present a
solution and report total wall-clock time of 1.62s on a 236-element array. The
rest of the measurements focus on the online costs; based on the discussion
in the paper we estimate the total cost for 230-element array is ≈ 1.25s. A
follow-up work [7] then asymptotically reduces the bandwidth of [6], but still
reports ≈ 0.7s CPU time per access on a 230-element array. Although this is
an improvement over 2-party SC-ORAMs, a 0.7s RAM access time will still be
considered prohibitive in many (most?) realistic use scenarios.2

Our Goals. In this work, we are interested in exploring what secure compu-
tation is possible in settings with hard performance constraints. We thus seek
maximizing performance at the cost of relaxing the security guarantees.

We start in the easier 3-party setting, and ask whether we can get further
significant improvement if one party in the computation is more trust-worthy
and is allowed to learn the access pattern.

2 Note, accessing smaller-size memories would be, of course, cheaper: [7] reports 0.1s
CPU time per access on a 210-element array. For context, note that garbled circuit
linear scan of 210-element array would require about 215 gates and would take less
than 0.1s on a 1Gbps LAN.

2

This trust model may naturally occur in real-world scenarios (see Section 1.1)
e.g. if one of the parties is an established entity with trusted oversight, such as
a government or a law enforcement agency.

Our Setting. We summarize our considered setting. Our Shared-Output Client-
Server ORAM (SOCS-ORAM) protocol is run by three parties A, B, and C. B
holds an array d of n l-bit entries. A, B, and C first initialize SOCS-ORAM
with d. A then requests up to k read or write accesses to d. After k accesses,
SOCS-ORAM can be reinitialized to provision for up to k more accesses. The
number of reinitializations is arbitrary. For each access, A inputs index i ∈ [n]
and operation op (read or write). A and B hold a sharing JxK of a value to be
written. C holds no input and does not participate in ORAM access; he is used
to help initialize and reinitialize SOCS-ORAM.

We stress that reinitialization is an important feature (e.g., vs. an initial-
ization for more accesses). This reduces memory requirements of our imple-
mentation, as well as latency – MPC computation can commence sooner, as
initialization is now shorter. This may be important for reactive functionalities.
Importantly, in many computations (e.g. RAM-machine based MPC), execution
depends on the input and the number of accesses cannot be predicted.

All parties are semi-honest and do not collude with one another. We allow
A to learn the access pattern – indeed A can be viewed as ORAM client; B and
C learn nothing from the computation.

1.1 Motivation

Recall that our work explores a trade-off between maximizing performance at
the cost of relaxing security guarantees. This is a natural and pragmatic research
direction. For example, a similar trade-off is also considered in Blind Seer [8], a
scalable privacy-preserving database management system that supports a rich
query set for database search and addresses query privacy. [8] motivate the trade-
off, warn of potential pitfalls, and convincingly argue its benefits. Our work is
complementary. SOCS-ORAM can be used as a drop-in no-cost replacement to
improve security of Blind Seer’s unprotected RAM access. Indeed, Blind Seer
similarly uses three parties but allows two parties (i.e. all parties other than
helper server (server in their notation)) to learn the access pattern, compared to
only one party in our work. We believe this can be a crucial difference as trust
is unbalanced in natural settings (e.g., bank may be trusted more than clients,
wireless service provider – more than each individual customer, and government
agency – more than private businesses).

We now briefly discuss several motivating applications spanning network se-
curity, financial markets, and review Blind Seer’s air carrier’s passenger manifest
analysis.

Network Data Analysis. There is a significant benefit in operation of large-scale
analysis centers, such as Symantec’s DeepSight Intelligence Portal. These centers

3

collect network traffic information from a diverse pool of sources such as intrusion
detection systems, firewalls, honeypots, and network sensors, and can be used
to build analysis functions to detect network threats [9].

Network data is highly sensitive; revealing network configuration and other
details may significantly weaken its defences. Using MPC instead to enable ex-
pert network analysis and vulnerability reporting is a (costly) solution. Network
analysis works with large volumes of data (e.g. Symantec’s DeepSight has bil-
lions of events) and requires a large number of RAM accesses. Paying ≈ 1s per
RAM access is clearly not feasible for even trivial analyses.

Using SOCS-ORAM and placing, arguably, a reasonable trust in the analysis
center (allowing it to learn RAM access pattern), may potentially enable this
application.

Financial Markets Analysis. SOCS-ORAM can be used to identify fraudulent ac-
tivity, such as insider trading in financial markets. In this use case, a regulatory
agency such as SEC or FINRA investigates and analyzes data from broker-
ages. Typically SEC initiates its investigation based on suspicious activity in an
individual security. SEC next makes a regulatory request. So-called blue sheets
data brokerage response contains trading and account holder information. SEC’s
Market Abuse Unit (MAU) then runs complex analyses on the data, which may
contain billions of rows. We note that there are privacy concerns for both parties.
SEC does not want to reveal what they are investigating, while brokerages do
not want to share their clients’ data that is not essential for the investigation.
This scenario is a fit for our SOCS-ORAM: The brokerage learns nothing about
the investigation, while SEC learns only the output of the analysis functions,
alongside the access pattern.

Passenger Manifests Analysis. Passenger manifests search and analysis is one of
the motivating applications of the Blind Seer DBMS [8]. It considers a setting
where a law enforcement agency wants to analyze or search air carrier’s man-
ifests for specific patterns or persons. The air carrier would like to protect its
customers’ data, and hence reveal only the data necessary for the investigation.
The law enforcement agency would like to protect its query. Today’s approach
may be to simply provide the manifests to the agency. Using MPC (and keep-
ing the private data private) would help allay the negative popular sentiment
associated with large scale personal data collection by government.

1.2 Contributions

We present a highly efficient shared-output client-server ORAM (SOCS-ORAM)
scheme. Here the client A knows the logical indices of the RAM queries, and the
results are additively (XOR) secret-shared between her and the server B, allowing
them, unlike the output of classical ORAM, to be directly used in MPC.

This construction is suitable for secure computation applications with hard
performance constraints where one party is more trustworthy. While in MPC
none of the parties learns the set of queried RAM locations, we reveal them to

4

one of the parties. Further, our SOCS-ORAM uses a semi-honest third party who
helps initialize and reinitialize our construction, but is not active when invoking
access. In exchange, we achieve very high ORAM performance, whose only
non-trivial cost is communication rounds. In particular, we present:

– Efficient SOCS-ORAM Construction. Our construction consists of ef-
ficient third-party-aided initialization and reinitialization protocols and an
efficient 2-party access protocol.
Our initialization protocol does not execute MPC; it runs PRG and generates
a random permutation, all evaluated outside MPC. It requires 4 message
flows (the first 2 and the last 2 can be parallelized). To set up SOCS-ORAM
for k accesses to an array of size n, we require sending 2n + 2k l-bit array
entries and three pseudo-random κ-bit seeds (κ is the computational security
parameter). nl+κ bits are sent by B (secret-sharing of the input array with
one share sent by a seed), and the rest by C. Reinitialization has the same
communication and comparable computation to Π - init.
Our access protocol communicates only 2 array elements, a single array in-
dex, and an additional bit, and requires a single roundtrip of interaction.
No cryptography is involved in our access protocol: We only use the XOR
operation and plaintext array access. The cost of our access protocol is in-
dependent of array size (but system-level implementation costs manifest for
larger array sizes).

– Resulting Efficient Implementation. We implement and experimentally
evaluate our approach. Our experimental results indicate that on an array
with 230 entries each of 4B, we communicate 13B per access and run in
2.13ms on a 2ms latency network (as set by the Linux tc command; the
actual latency, due to system calls overhead is closer to 2.13ms).
Thus, our wall-clock time is very close to latency cost. While our setting is
much simpler than that of SC-ORAM, state-of-the-art 3-party SC-ORAM
of [7] reports ≈ 0.7s CPU time for arrays of the same size, while all our runs
ran in less than 0.019ms of computation. Similarly, our access communica-
tion is on the order of bytes instead of MBytes, and we use 1 round trip
of interaction instead of O(log n). For a 230 array of 4B entries (i.e. 4GB
size array) and 220 accesses, the cost to initialize our SOCS-ORAM (prepro-
cessing) is 3.1 minutes and 8GB communication. The reinitialization cost
is similar: setting up another 220 accesses requires 3.7 minutes and 8GB
communication.

2 Notation

– Party A (Alice, client) inputs access indices i.
– Party B (Bob, server) inputs array d.
– Party C (Charlie, the third party helper).
– κ denotes the computational security parameter (e.g. 128).
– [n] denotes the sequence of natural numbers 0, . . . , n− 1. [n, n+ k] denotes

the sequence n, . . . , n+ k − 1.

5

– We denote arrays in bold, index them with subscripts, and use 0-based in-
dexing. E.g., d0 is the first element of array d.

– We sometimes add subscript notation to arrays to indicate that for a bit
array f and two arrays s0, s1, the array sf holds entries from sfi at index i.
Further, we double-index arrays with a ’,’ (e.g. s0,i is i-th element of s0).

– We denote negation of a bit b as b̄.

– We manipulate XOR secret shares.

• We use the shorthand JdK to denote a (uniform) sharing of array d.

• Subscript notation associates shares with parties. E.g., JdKA is a share
of d held by party A.

3 Oblivious RAM (ORAM) Review

Our notions of client-server oblivious RAM (ORAM) and secure-computation
oblivious RAM (SC-ORAM) are standard.

Client-Server ORAM. A client-server ORAM [2] is a protocol that enables a
client to outsource data to an untrusted server and perform arbitrary read and
write operations on that outsourced data without leaking the data or access
patterns to the server.

An ORAM specifies (1) an initialization protocol that takes as input an array
of entries and initializes an oblivious working array with those entries, and (2)
an access protocol that implements each logical (read and write) access on the
oblivious structure with a sequence of polylog physical accesses. ORAM may
optionally specify a dedicated reinitialization procedure as the working array
output by initialization allows for a limited number of accesses.

We now present the ORAM functionality. Client inputs an array d of length
n. For each access, client inputs operation op (read or write), index i ∈ [n], and,
if writing, the value x to write. Server inputs ⊥. If op = read, client outputs di

and server outputs ⊥; if op = write, client and server set di = x and output ⊥.

The ORAM’s security guarantee is that the physical access patterns pro-
duced by the access protocol for any two sequences of logical accesses of the
same length must be computationally indistinguishable. We take the security
definition almost verbatim from [10].

Definition 1. Let y := ((op0, i0, x0), (op1, i1, x1), . . . , (opk−1, ik−1, xk−1)) de-
note a sequence of logical accesses of length k, where each op denotes read(i)
or write(i, x). Specifically, i denotes the array index being read or written, and
x denotes the data being written. Let A(y) denote the (possibly randomized)
sequence of physical accesses to the remote storage given the sequence of logi-
cal accesses y. ORAM is said to be secure if for any two sequences of logical
accesses y and z of the same length, their access patterns A(y) and A(z) are
computationally indistinguishable by anyone but the client.

6

RAM-Based Secure Computation. [3] noted the idea of using ORAM for se-
cure multi-party computation (SC-ORAM). [4] proposed the first complete SC-
ORAM construction. In SC-ORAM, the key idea is to have each party store a
share of the server’s ORAM state, and then execute the ORAM client access
algorithms via a general-purpose secure computation protocol.

As the server’s state is now secret-shared between both parties and the client
is executed inside secure computation, we no longer refer to the physical parties
as client and server but A and B. In SC-ORAM, A and B input a sharing of an
array JdK of size n. For each access, they input a sharing of operation JopK (read
or write), a sharing of index JiK ∈ [n], and a sharing of a value to write JxK. If
op = read, A and B output JdiK; if op = write, set JdiK = x and output ⊥.

There are a few key differences between client-server ORAM and SC-ORAM
that [11] explicate:

– In the client-server ORAM, the client owns the array and also accesses it.
Hence, the privacy requirement is unilateral. In SC-ORAM, both the array
and the access are distributed and neither party should learn anything about
the array or the access pattern.

– In the client-server ORAM, the client’s storage should be sublinear, whereas
in SC-ORAM, linear storage is distributed across both parties.

– Client-server ORAMs have traditionally been measured by their bandwidth
overhead and client storage. [12] observed that for SC-ORAMs the size of
the client circuits is more relevant to performance.

– In SC-ORAM, the initialization protocol must be executed securely; in 2PC
this cost is often prohibitive.

4 Related Work

We present a highly efficient 3-party SOCS-ORAM with applications in secure
computation. We therefore review related work that improves (1) SC-ORAMs
in the standard 2-party setting, (2) SC-ORAMs in the 3-party setting, and (3)
Garbled RAM schemes that equip Garbled Circuit with a sublinear cost RAM
without adding rounds of interaction. We also briefly discuss (4) differential
obliviousness (DO), (5) multi-server ORAMs in the client-server setting, and (6)
private information retrieval (PIR).

2-party SC-ORAM. [3] proposed the basic idea of SC-ORAM, where the parties
share the ORAM server role, while having the ORAM client algorithm executed
via secure computation. [4] presented a specific SC-ORAM construction that
started a long line of research to improve SC-ORAM. [12] observed that when
using ORAMs for secure computation, the size of the circuits is more relevant
to performance than the traditional metrics such as bandwidth overhead and
client storage. Then they presented a heuristic SC-ORAM optimized for circuit
complexity. [13] followed up with Circuit ORAM, which further reduced cir-
cuit complexity. [11] showed that by relaxing asymptotics, one can produce a
scheme that outperforms Circuit ORAM for arrays of small to moderate sizes.

7

We note that all [4,12,13,11] are recursively structured and as a result require
O(log n) rounds of communication per access; they have expensive initialization
algorithms and high memory overhead. E.g., [5] observed they could not handle
arrays of sizes larger than ≈ 220 on standard hardware. With this in mind, [5]
introduced Floram that requires 3 rounds per access and significantly decreases
memory overhead and initialization cost. Floram requires linear work per access.
Crucially, this work is inexpensive since it is local and executed outside secure
computation, unlike in the MPC-run linear scan. Still, despite a large concrete
improvement, [5] takes ≈ 2 seconds per access and communicates ≈ 5MBs in
communication on arrays of size 230 with 4-byte elements.

3-party SC-ORAM. [6] explore whether adding a third party to SC-ORAM can
improve performance. They present a construction secure against semi-honest
corruption of one party, which uses custom-made protocols to emulate the client
algorithm of the binary tree client-server ORAM [14] in secure computation. For
a 236-element array of 4-byte entries, their access runs in 1.62s wall-clock time
when executed on two co-located EC2 t2.micro machines. Their solution further
requires O(log n) communication rounds for an array of size n. [7] followed up on
their work and designed custom-made protocols to instead emulate the Circuit
ORAM [13] client. While their technique still requires O(log n) communication
rounds per access, they asymptotically decrease the bandwidth of [6] by the
statistical security parameter. Concretely, they report ≈ 0.7s CPU time per
access on a 230-element array of 4-byte entries, when run on co-located AWS
EC2 c4.2xlarge instances. While we are not directly comparable, we execute one
access in one communication round and all our runs took less than 0.019ms on
localhost on a same-size array.

[15] showed how to combine their 3-server distributed point function (DPF)
with any 2-server PIR scheme to obtain a 3-server ORAM and then extended it
to SC-ORAM. Their access protocol runs in constant rounds, requires sublinear
communication and linear work, and makes only black-box use of cryptographic
primitives. [16] present 3-party SC-ORAM from oblivious set membership that
aims to minimize communication complexity. These works do not offer implemen-
tation and evaluation, and we do not directly compare with their performance.

Garbled RAM (GRAM). GRAM is a powerful technique that adds RAM to GC
while preserving GC’s constant rounds of interaction. This technique originated
in [17] but was not suitable for practice until [18] introduced EpiGRAM. Al-
though [18] do not implement EpiGRAM, they estimate that for an array of
220 entries of 16B, the per-access communication amortized over 220 accesses
is ≈ 16MB. In comparison, our work communicates ≈ 0.09KB (initialization
included) amortized over the same number of accesses. An EpiGRAM imple-
mentation is now available as part of an MPC compiler [19]. The authors do
not evaluate EpiGRAM separately and only present benchmarks that evaluate
entire programs.

8

Differential Obliviousness (DO). DO [20] is a relaxation of access pattern pri-
vacy. As opposed to simulation-based ORAM privacy guarantees, DO requires
the program’s access pattern to be differentially private. [20] showed that for
some programs DO incurs O(log log n) overhead in contrast to ORAM’s polylog
complexity. We forfeit access pattern privacy against A.

Multi-Server Client-Server ORAM. [21] proposed exploring client-server ORAM
in a model with two non-colluding servers storing the client’s data. The client
interacts with the servers to access data, while the servers do not interact with
each other. Their solution achieved parameters that were asymptotically better
than those realized by any single-server solution. It is an involved construction
which requires O(log n) communication rounds, whereas we use a single round.
A follow-up work [22] reduced the asymptotic communication bandwidth, but
did not improve round complexity. [23] introduced a two-server ORAM that
combines any tree-based ORAMwith two-server PIR to get a one-round solution,
but requires each server to perform linear scan over the entire data. Our work
only requires constant work. Their construction also requires communicating
10 log n encrypted array entries per logical access, while ours requires only 2
array entries, a single position map entry, and one bit; i.e. it is independent of
n. Further, the helper server is offline in our access protocol.

[24] presented the first protocol in the multi-server setting to achieve perfect
security and explored whether there are any implicit advantages to the multi-
server setting. They focused on optimizing communication bandwidth while
maintaining perfect security and their construction achieved log n bandwidth for
certain block sizes. [25] showed several constructions of which the most suitable
for secure computation is a PIR-based 4-server construction that has constant
overhead, but requires linear amount of local work on the servers. They did not
implement their construction, but their PIR is constructed from a distributed
point function (DPF), which requires log n sequential PRG evaluations, whereas
we require only a constant number of plaintext array accesses and XORs.

Private Information Retrieval (PIR). PIR [26] enables a client to retrieve a
selected entry from an array such that no information about the queried entry is
revealed to the one (or multiple) server holding the array. Thus, PIR is concerned
with the privacy of the client. There are many flavors of PIR, one of which
is Symmetric PIR (SPIR) [27]. SPIR has an additional requirement that the
client learns only about the elements she is querying, and nothing else. For our
purposes, the main difference between PIR and ORAM is that PIR supports only
read operations. While we do not further discuss PIR, we emphasize that PIR is
sometimes used as a building block of ORAM constructions (e.g. in [5,23,7,25,15]
discussed above).

5 Technical Overview

We introduce and construct, at the high-level, shared-output client-server obliv-
ious RAM (SOCS-ORAM), a useful building block for efficient MPC. We present

9

our construction by first simply achieving a basic limited functionality, and then
securely building on that to achieve the goal. Full formal algorithms, with ac-
companying proofs of correctness and security, are in Section 6.

Recall from Section 1, SOCS-ORAM is run by parties A, B, and C, where
B holds an array d of length n. On access, A inputs operation op (read or
write) and an index i ∈ [n]. A and B also input a sharing of value JxK to write.
C is a helper party that aids with SOCS-ORAM (re)initialization and is not
active during array access. Initialization provisions for k dynamic accesses. Each
reinitialization provisions for k additional accesses. We consider honest majority
with security against semi-honest corruption and allow A to learn (or know) the
access pattern.

Goal. We aim to build a concretely efficient SOCS-ORAM using plaintext array
lookup, XOR masking, and PRGs, with constant access overhead and a single
round trip of interaction, whose computational cost is close to plaintext array
access. We design such SOCS-ORAM at the concession of allowing one party to
learn the access pattern. We describe our construction next.

Basic Initialization for our SOCS-ORAM. A and B, with the help of C, initialize
D with d (cf. Figure 1; d is B’s input array used to initialize the working array
D). A and B receive JDK, which is permuted according to a random permuta-
tion π unknown to B and secret-shared using randomness neither party knows.
Uniform secret sharing ensures that upon access neither party learns anything
about the value of the array entry they are retrieving; permuting ensures logical
index is hidden from B. Clearly, this initially (i.e. before any accesses) hides
array entries and their positions. With C’s help, this structure can be set up
cheaply.

Handling Repeated Accesses. Following the above initialization, A will access
JDK, possibly accessing the same logical index multiple times. Recall, only A is
allowed to learn the access pattern. C is oblivious by not participating in the
access protocol. The challenge is to preclude B from learning the access pattern.

As hinted above, if no logical index is accessed twice, B learns nothing, since
each entry JDiK is placed in a random physical position π(i). To access a logical
index more than once, each time the physical location must be different: the
value must be copied to a new random location.

We modify initialization to create the space for copied values. We extend the
working array D with space for k entries (shelter), and secret-share and permute
the extended D according to π : [n+ k] 7→ [n+ k]. This is cheap with C’s help.

We next show how to copy the read entry to a new index (corresponding
to the next available shelter entry) in JDK, obliviously to B. Then, at the next
access to this element, B is accessing a random share at a random-looking index.

read Access. To clarify and extend the previous discussion, we allow for read
in SOCS-ORAM as follows. Recall that A is allowed to learn the access pattern,
and hence she can be given π. A can then track the position of each element

10

in (extended) JDK in a position map pos, mapping logical indices i ∈ [n] to

physical indices j ∈ [n+k]. Initially posi := πi
∆
= π(i) for all i ∈ [n]. A uses pos

at each access to find her share of the sought entry i at position posi in JDKA
(i.e. JDposiKA). Since π is a random permutation, A simply gives B posi, and
B retrieves his share JDposiKB. A and B can now use Dposi inside MPC.

We now explain how to arrange that the read entry at logical index i, stored
at physical index Dposi , is prepared for a subsequent access. Intuitively, after the
qth access (out of total k provisioned), entry’s value is copied to position πn+q.
This is done as follows. A arranges that Dπn+q = Dposi solely by updating
her share JDπn+q

KA. A can do this because at initialization C will perform an
additional step: He generates a k-element random mask vector m and secret
shares it into the shelter positions JDπi

K (i.e. for i ∈ [n, n + k]). C sends m to
B. During the q-th access, where logical index i is read, B sends JDposiKB ⊕mq

to A, who then XORs it with her share JDposiKA and XORs the result into
JDπn+qKA. It is easy to see that this arranges for a correct sharing of Dposi in
physical position n+ q.

Finally, A updates her map posi := πn+q. Next access to logical index i is
set up to be read from Dposi , a new and random-looking location for B.

General read/write Access is an easy extension of read. For access, in addition
to opcode op = (read, write) known to A, both parties also input JxK, a sharing
of the element to be written. write differs from read only in that JxK, and
not JDposiK, is used to arrange JDπn+q

K. This extension is simple to achieve
with an oblivious transfer (OT), which we implement efficiently with correlated
randomness provided by C during initialization. One pedantic nuance we must
address is that write must return a value. We set it to be the value previously
stored in that location.

Reinitializing SOCS-ORAM to provision for k more accesses is straightforward
and reduces to invoking the initialization protocol. After the first k accesses,
A and B hold a modified working array JDK. JDK contains k outdated entries
as each access moves the accessed element to a new shelter entry. The goal is
now to transform D such that all k outdated entries are removed and only the
remaining array of size n is reinitialized. Luckily, both A and B know which
physical entries of JDK are output in the first k accesses, and hence can locally
remove them. Now, |D| = n and holds only the n entries of the latest d.

We next invoke the initialization protocol on JDKB (in a moment, we show
how to convert initialized JDKB to initialized JDK). As the input JDKB is per-
muted, we reconcile the (A-held) position map posprev from before the ini-
tialization call and pos output by the initialization. This is a straightforward
combination of pos and posprev, computed as pos := posposprev

.

Note, parties now hold the initialization of JDKB, not JDK. A locally resolves
this by XORing each JDprev,posprev,iKA (JDprevKA is A’s share before the initial-
ization) with the corresponding element JDposiKA (JDKA is A’s share output by
the initialization).

11

Reinitialization can be repeated arbitrary number of times; the procedure is
identical after the first initialization and the later reinitializations.

Optimizing Communication via PRG Seeds. Secret sharing and sending random-
ness are central in our constructions. We optimize their required communication
by sending and expanding PRG seeds. This must be done with care, especially
in our setting where the output of the computation is the secret shares of the
accessed array elements. Because the simulator of our ORAM is constrained by
the fixed and externally-provided array shares (the output of the SOCS-ORAM
functionality), we may not, for example, generate these shares from a PRG. We
are able to use PRG to significantly reduce communication and achieve simulata-
bility. For example, the helper server C, who does not have any output, receives
and expands PRG seed in its computation.

Note that this optimization is one of our key improvements over the original
SOCS-ORAM in [1]. While we get significantly better performance, we are no
longer unconditionally secure as we rely on a PRG. The original construction
relies only on OT, which is performed without cryptographic assumptions with
the help of C.

6 Our SOCS-ORAM

We now formally present our scheme. In Section 6.1, we define SOCS-ORAM’s
cleartext semantics. In Section 6.2, we specify Π -SOCS-ORAM, our protocol im-
plementing SOCS-ORAM, and present analytical costs. We prove Π -SOCS-ORAM
correct and secure in Section 6.3.

6.1 Cleartext Semantics: SOCS-ORAM

Definition 2. (Cleartext Semantics SOCS-ORAM) SOCS-ORAM(d)e,k,l,n is a
3-party stateful functionality executed between parties A, B, and C that consists
of e (dynamically determined) epochs. Each epoch comprises a sequence of k+1
instructions except for the last epoch which has at most k + 1 instructions. The
first epoch is special and treated separately from the remaining epochs. Its first in-
struction is init(d), where d is an array of n l-bit values and is input by B. init
sets D := d to initialize the working array D with the input array d and pro-
vision for k instructions. The remaining k instructions are accessD(op, i, JxK)
instructions. Unlike init, which is executed by A, B, and C, access is executed
between A and B only. A inputs op, i and both input JxK. Depending on op, they
read the value at index i or write JxK to the value at index i in D. After an
epoch is completed, A determines if another one is needed. A then requests k
more accesses for the next epoch. Additional epochs differ from the first in that
the first instruction is reinit(). Unlike init, which starts with array d input by
B, reinit starts with a working array D secret-shared between A and B. With
the help of C, A updates it to provision for k additional accessD instructions.
See Figure 1 for the init, reinit, and access functionalities.

12

init Functionality (3 Parties A, B, and C)

init(d):

– Input: Party B inputs an array d of length n s.t. di ∈ {0, 1}l. A and C input ⊥
– Set D := d s.t. ∀i ∈ [n], Di := di and D allows for k calls to access

reinit Functionality (3 Parties A, B, and C)

reinit():

– Input: Parties A, B, and C input ⊥.
– Update D s.t. it allows for k additional calls to access

access Functionality (2 Parties A and B)

read(i):

– Input: Party A inputs an index i ∈ [n]. B inputs ⊥
– Output: A and B output JDiK

write(i, JxK):

– Input: Party A inputs an index i ∈ [n]. A and B input an element JxK
– Set out := Di

– Set Di := x
– Output: A and B output JoutK

access(op, i, JxK):

– Input:
• Party A inputs operation op (read or write) and an index i ∈ [n]
• Parties A and B input additive sharing of an element JxK

– Output: {
JDiK← read(i) if op = read

JoutK← write(i, JxK) if op = write

Fig. 1. The init, reinit, and access functionalities for our SOCS-ORAM. d is the
input array used to initialize the SOCS-ORAM working array D, which is then used for
access and reinitialization.

Note that Figure 1 assumes each epoch (with the exception of the last one) has k
access instructions. This is not a limitation of our scheme; our scheme supports
arbitrary number of instructions in each epoch. We make this assumption for
notational convenience.

13

6.2 Protocol: Π - SOCS-ORAM

In this section, we formalize our protocol Π - SOCS-ORAM and discuss optimiza-
tion options based on using PRG expansion. We present a possible extension to
Π - SOCS-ORAM that hides the operation op from A. We show Π -SOCS-ORAM’s
analytical costs in Table 1.

Π - SOCS-ORAM securely implements the semantics of SOCS-ORAM (Defini-
tion 2):

Construction 1. (Protocol Π -SOCS-ORAM) Π -SOCS-ORAM(d)e,k,l,n imple-
ments SOCS-ORAM by executing init with Π - init (Figure 2), access with
Π - access (Figure 3), and reinit with Π - reinit (Figure 4).

Theorems in Section 6.3 imply the following:

Theorem 1. Construction 1 implements the functionality SOCS-ORAM (Defi-
nition 2) and is secure in the honest-majority semi-honest setting.

As Π -SOCS-ORAM consists of separate invocations to Π - init, Π - access,
and Π - reinit (see Construction 1), we describe Π -SOCS-ORAM by describing
each of these procedures separately.

Π - init. Π - init sets up Π -SOCS-ORAM working data structures used by A,
B to access d (see init in Figure 1). It is a 3-party protocol, where A, B are
aided by helper C.

B inputs array d of n l-bit entries, sets D := d, and secret shares D between
A and C: A receives JDKA; C receives a pseudo-random seed sdC that when input
to a pseudo-random generator (PRG) expands to JDKB. C now helps construct
the Π - SOCS-ORAM working data structures, used in Π - access, for A and B.

C samples two pseudo-random seeds sdA (sent to A) and sdB (sent to B).
C uses them to generate working data structures and help A and B obtain
correlated randomness. C expands from sdA array r of the same size as D. He
masks the share JDKB with r, i.e. he computes JDKB := JDKB⊕r. Simultaneously,
C expands from sdB arraym, which will hold shelter values, where array elements
will be written once they are accessed. m has k l-bit entries, where k determines
the maximum number of array accesses. C now secret-shares m by expanding
JmKA from sdA and computing JmKB := m ⊕ JmKA. Now C appends JDKB :=
JDKB||JmKB, draws a random permutation π : [n+ k] → [n+ k] from seed sdA,
and permutes JDKB according to π. C also samples a random 1-out-of-2 OT,
which will be converted into a chosen 1-out-of-2 OT using Beaver’s trick [28]
during access. This will help A obliviously retrieve the message corresponding
to either the read or write operation. Namely, C expands from sdB two arrays
s0, s1 of k l-bit entries. He also expands k-bit f from sdA and constructs sf such
that for all i ∈ [k] it contains s0,i or s1,i depending on fi.

At this point, C generated the correlated randomness necessary to construct
all working data structures for A and B. He sends them this correlated ran-
domness. First, C sends the seeds sdA to A and sdB to B. These will help A

14

locally reconstruct r, JmKA, π, f and B reconstruct m, s0, and s1. Additionally,
C also sends to A and B the data structures they cannot reconstruct from the
individual seeds. Namely, A receives sf and B receives JDKB. Recall JDKB was
masked and permuted, and hence now looks random to B.

Now both A and B have everything necessary to regenerate all working data
structures. First, both parties set a counter q := 0 that counts the number of
accesses. Then, B takes JDKB along with the masks m, s0, s1 and the counter
q and stores them for Π - access. A’s steps are a little more complicated. A
first masks her share of D with r, i.e. computes JDKA := JDKA ⊕ r, appends
JDKA := JDKA||JmKA, and permutes JDKA according to π. Then she computes a
position map pos that tracks the position of the original n entries across accesses
by setting posi := πi for all i ∈ [n]. A then stores JDKA, JmKA, π,pos, f, sf , and
q for Π - access.

Optimizing Π - init by Sending Randomness via Seeds. Our Π - init extensively
relies on sending short κ-bit pseudo-random seeds across parties, who locally
expand them with a pseudo-random generator (PRG) to construct intermediary
Π -SOCS-ORAM arrays. This saves a large amount of communication. Sending
the full arrays across the network for array d of n l-bit entries and k accesses
would require that Π - init communicates 4n + 6k l-bit array entries, k bits,
and a permutation (transferred as a table of length n+ k). With our seed-based
optimization, we reduce communication to 2n + 2k l-bit array entries and 3κ
bits.

As discussed in Section 5, sending randomness and secret shares via PRG
is difficult in our functionality. A subtle technical issue here is that the output
of Π -SOCS-ORAM is shares of the returned values. Because shares are explicit
output of the parties, simulating above optimized protocol would require that
the PRG output matches the fixed shares of the output. This can be solved
by using programmable primitives (such as programmable random oracle), or
considering the complete MPC problem, where the wire shares are not part of
the output. Instead, as outlined in Section 5, we arrange our protocol so that
using expanded PRG seeds for shares is simulatable.

One other important aspect of this optimization is that we no longer send
the permutation π across the network from C to A. I.e., the permutation can
be regenerated on A from the seed sdA instead of being sent as a table of size
(n+ k) log(n+ k) bits. While we save communication, generating a permutation
is one of the bottlenecks of Π -SOCS-ORAM. Depending on the network settings,
it can be preferable to send π as a table. Another option is to make system
optimizations to ensure the seed is sent to A as soon as C computes it so that
the permutation can be generated in parallel.

Π - access. Π - access implements access (see Figure 1). It is a 2-party protocol,
run between A and B, where A requests read or write to working array D.

Recall that A inputs logical index i and operation op (read or write). Both
input a sharing JxK. JxK is input even if op = read because B cannot learn op.

15

Fig. 2. Π - init is a subroutine of Π - SOCS-ORAM.

16

A retrieves posi, which represents the physical location of i in the shuffled D,
and computes bit b := fq⊕op, which will help A select B’s message corresponding
to op. She sends posi, b to B. A also retrieves her read share JDposiKA; her write
share JxKA is input to Π - access.

B now constructs two messages: the first is for op = read and the latter for
op = write. For op = read, B retrieves his read share JDposiKB. For op = write,
he already holds his write share JxKB from the Π - access input. He cannot send
his shares to A for security, and thus masks each with mq. A is only supposed
to learn (i.e. unmask) one of these messages and so B adds another mask. I.e.,
he adds sb,q to the read message and sb,q to the write message. Recall A holds
only one of sb,q and sb,q, and hence will be able to remove the mask only from
one of the messages. Then he sends both messages to A.

A now selects the message corresponding to op and adds sf,q to unmask it.
She then adds its read (or write) share along with the unmasked message to
the next free shelter position JDπn+qKA.

A and B now set their output share JoutK := JDposiK. A updates the position
map such that i points to the assigned shelter entry posi := πn+q. Then both
increment access counter q += 1 and output JoutK.

Π - reinit . Π - reinit (Figure 4) implements reinit defined in Figure 1. It is
a 3-party protocol, run between A, B, and C, and provisions for k additional
accesses to d. There is no restriction on how many times we can invoke reinit.
The protocol is the same after the first epoch, which starts with Π - init, and
after the following epochs, which start with Π - reinit.

Recall that at the end of each epoch A and B hold a secret-shared working
array D of size n+ k. k of these elements are inoperative (i.e. no element in the
position map pos points to them) as they were accessed during the epoch and
their values were moved to the shelter. Let idx represent the physical indices of
the elements accessed in D at this epoch. A and B remove Didxi , ∀i ∈ [k], from
their respective shares of D. Now they hold D of size n. Since the inoperative
elements are removed, A’s position map pos needs to be adjusted to account for
the removed elements. This is a simple local step done by A.

Next,A and B save the updatedD, pos arrays inDprev, posprev, respectively.
They treat JDprevKB as a new input array and invoke Π - init on it. This returns
new D, pos arrays, separate from Dprev, posprev. Parties then can use these
arrays to complete the reinitialization of D as follows. Note, the elements in
the input to the Π - init call are already permuted, and their order is saved in
posprev. ThusA needs to update pos (returned by Π - init) such that it accounts
for the initial order posprev of the input to Π - init. To do thisA simply composes
the two position arrays by setting each posi to posposprev,i

. Additionally, recall

we invoke initialization only for JDprevKB, not JDprevK. Hence, A needs to add her
JDprevKA into the corresponding positions in JDKA. As A holds both posprev and
the new and updated pos, this is straightforward. A retrieves, ∀i ∈ [n], JDposiKA
and XORs JDprev,posprev,i

KA into it.

17

Π - access Protocol

Parameters (from Π - init):

– Parties A and B hold an array JDK (processed in Π - init) of (n+ k) l-bit entries
– A and B access at most k elements; q ∈ [k] is the current access number
– A holds position map pos of length n
– A holds a random permutation π : [n+ k]→ [n+ k]
– B holds two random arrays s0, s1 of k l-bit masks
– A holds random k-bit array f and array sf of k l-bit masks
– B holds array m of k l-bit masks s.t. mq := Dπn+q

Input:

– A inputs op (read or write) and i s.t. i ∈ [n]; A and B input JxK

Π - access(op, i, JxK) :
A sets b := fq ⊕ op

A sends posi, b to B
B sets:{

md0 := mq ⊕ JDposiKB if op = read // mq masks JDposiKB. A cannot learn JDposiKB
md1 := mq ⊕ JxKB if op = write // Similarly, mq masks JxKB

B sets: // This step ensures A learns only the message corresponding to op{
ms0 := md0 ⊕ sb,q

ms1 := md1 ⊕ sb,q

B sends ms0,ms1 to A
A unmasks exactly one of md0 or md1 depending on op:

mdop := sf,q ⊕

{
ms0 if op = read

ms1 if op = write

A sets:

tmp := mdop ⊕

{
JDposiKA if op = read // tmp = Dposi ⊕mq

JxKA if op = write // tmp = x⊕mq

A sets JDπn+q KA := JDπn+q KA ⊕ tmp // Dπn+q now holds not permuted Di (or x)

A and B set JoutK := JDposiK
A sets pos(i) := πn+q // πn+q is the new location of not permuted Di (or x)

A and B increment q += 1

A and B return JoutK

Fig. 3. Π - access is a subroutine of Π - SOCS-ORAM.

Hiding Opcode op from A. We sketch here, but do not formalize in a protocol, an
optional extension of SOCS-ORAM that hides from A whether op is a read or a

18

Π - reinit Protocol

Public Parameters:

– n: length of array d
– k: max number of new accesses A can make to d
– l: bit-length of each array entry di

Private Parameters (prepared in Π - init and updated in Π - access):

– Parties A and B hold a secret-shared array JDK of (n+ k) l-bit entries
– A holds position map pos of length n
– A and B hold an array idx of indices in JDK s.t. idxi ∈ [n+ k] and |idx| = k.

idx holds the (oblivious) indices of all elements accessed in the previous epoch

Input:

– A, B, and C input ⊥

Π - reinit() :

A and B locally remove k elements at indices idx from JDK; save in JDprevK
A updates pos to adjust for entries removed in previous step; save in posprev

A, B, and C invoke Π - init (JDprevKB) // Rewrites JDK and pos

A rewrites posi := posposprev,i
// In parallel for i ∈ [n]

A adds in JDprevKA into JDKA: JDposiKA := JDposiKA ⊕ JDprev,posprev,iKA

Fig. 4. Π - reinit is a subroutine of Π - SOCS-ORAM.

write. That is, op is secret-shared between A and B, A still learns the positions
of all accessed elements, but does not learn whether they are read or new values
are written. Access without opcode hiding runs in 2 sequential communication
flows (i.e. 1 round trip) and communicates 2 array elements, a single entry in a
position map, and a single bit. By adding 1 communication flow and additionally
communicating 2 array elements and a bit, we can achieve access while hiding
op from A as well as B.

This extension is simple to achieve with one additional OT, which is cheap
with C’s help during initialization. At a high level, A and B use the first OT to
deliver to B either A’s read or write share masked by a random mask c. This can
be achieved by the classical OT trick where the sender A permutes her inputs by
JopKA and the receiver B asks for JopKB. B adds the received value to both inputs
of the next OT, which is already part of our protocol. This OT delivers to A the
read or the write value masked by the shelter element mq and additionally c.
A next removes c and proceeds as in the current protocol.

19

Algorithm Comm. (bits) # Comm. Flows Comm. Depth

Π - init 2nl + 2kl + 3κ 4 2
Π - reinit 2nl + 2kl + 3κ 4 2
Π - access 2l + log(n+ k) + 1 2 2

Table 1. Total communication cost across all parties, number of flows, and communi-
cation depth (number of consecutive flows). The costs are for input array d of size n
s.t. di ∈ {0, 1}l and we provision for k accesses in each Π - init/ Π - reinit.

Cost Analysis. We calculate the costs of Π -SOCS-ORAM in Table 1. We evalu-
ate each Π - init, Π - reinit, and Π - access separately and express the costs in
terms of total communication (# bits) across all parties, number of communi-
cation flows (e.g. A → B is a single flow), and communication depth (number of
consecutive flows). Note that the communication cost of Π - reinit is the same as
the cost of Π - init. This is because all operations of Π - reinit are local opera-
tions apart from the invocation of Π - init. We experimentally show in Section 7
that the Π - access wall-clock time is almost fully due to latency, as is expected
based on its low computational and communication complexity.

6.3 Π - SOCS-ORAM Proofs

Now that we introduced Π -SOCS-ORAM, we prove it correct and secure.

Proof of Correctness

Π - SOCS-ORAM implements the functionality SOCS-ORAM (Definition 2):

Theorem 2 (Π -SOCS-ORAM Correctness). Let e, k, l, n ∈ N. Let D be a
space of all arrays with n l-bit entries. For all arrays d ∈ D, for all number of
epochs e with k + 1 instructions (except for the last epoch with at most k + 1
instructions), with the first epoch starting with init/ Π - init and the subse-
quent epochs starting with reinit/ Π - reinit, followed by access/ Π - access
instructions not necessarily known a priori:

SOCS-ORAMe,k,l,n(d) = Π -SOCS-ORAMe,k,l,n(d)

Proof. We prove Π -SOCS-ORAM correct by inspection. We show that Π - init es-
tablishes a valid XOR sharing of each element in the input array d that Π - access
then uses for access. Importantly, Π - accessmaintains a valid XOR sharing when
it writes back the same read element (op = read) or a new element (op = write).
The same applies to Π - reinit when we set up the working array D for k more
accesses.

We start by showing that Π - init establishes a valid XOR sharing of all
di. Π - init first sets D := d and secret shares D. Each share is then XORed
with the same mask r, which does not change D. JDK is next extended with a

20

secret-shared shelter JmK, which also does not change any original element of D.
Next, JDK is permuted according to the same random permutation π. Hence,
elements in both shares are shifted to a same new position. Therefore, Di before
permutation equals Dπi after the elements are permuted.

We now show that Π - access can use the initialized JDK to access a valid
XOR sharing. As A knows π, she knows the position of each element in JDK.
She can share this position with B, and they both retrieve a correct share.

So far, we have shown that we retrieve a valid XOR sharing only the first
time any index is accessed. We also need to show that we maintain a valid XOR
sharing in repeated accesses to the same element. After each access, the retrieved
element (or a new element if op = write) get assigned to next available position
in the shelter, which was added and permuted within JDK during Π - init. A’s
knowledge of π implies the knowledge of position of all shelter elements. What
we need to show is that we maintain correct JDposiK if op = read and write JxK
if op = write.

Recall q represents the access number and pos the position map that tracks
the location of each array element di (initially posi := πi). In Π - init, shelter is
set to JmK. The next available shelter entry at πn+q must be updated after each
access to contain JDposiK or JxK (depending on op). Recall that during Π - init B
is given masks m. B takes mq and constructs two messages by masking both the
read share JDposiKB and the write share JxK with mq. I.e., he computes mq ⊕
JDposiKB and mq ⊕ JxKB, respectively. He needs to take one of these messages
corresponding to the operation op and send it to A. Now, assume that B knows
which message to send; we will handle the case when B does not know op later. A
receives the masked share and adds her own share. I.e., A holds mq⊕JDposiKA⊕
JDposiKB = mq ⊕ Dposi if op = read, and mq ⊕ JxKA ⊕ JxKB = mq ⊕ x if
op = write. As the shelter currently holds JmqK, adding these messages into A’s
share of the shelter cancels out mq, leaving JDposiK and JxK, respectively.

In the real execution B does not hold op, and hence does not know which
message to send. We now show that our technique sends the correct message
corresponding to op to A. Note that this is the classical trick for converting
random OTs to chosen OTs due to Beaver [28]. In Π - init, B receives two masks
s0,q and s1,q. A receives only one of those masks sf,q depending on a random bit
fq. I.e. A and B execute random OT with C’s help in Π - init. Now during access
they transform the random OT into chosen OT. The key idea is to give some
information to B that will allow him to mask the message corresponding to op
with sf,q, which A can then remove. A sends fq ⊕op to B. B then masks the first
(read) message with sfq⊕op,q and the second (write) message with sfq⊕op,q. If

op = read, then the read message is masked with sfq⊕op,q = sfq⊕0,q = sf,q, which
A can remove. If op = write, then the write message is masked with sfq⊕op,q =

sfq⊕1,q = s
fq,q

= sf,q, which A can also remove. A receives the right message,

uses it to update the next available element in the shelter, and maintains a valid
XOR sharing for both read and write.

We now show that Π - reinit re-establishes a valid XOR sharing for the next
k accesses. We have already shown that at the end of the previous k accesses, A

21

and B hold a valid sharing JDK. As a result of those k accesses, JDK contains k
outdated entries as each accessed element is moved to a next available position
in the shelter. The parties remove these entries and then invoke Π - init on JDKB
of size n. As we showed earlier, Π - init establishes a valid XOR sharing of its in-
put. Hence, the output is a valid XOR sharing of JDKB. Let JDprevK now refer to
the sharing held at the end of the previous epoch and JDK the sharing output by
Π - init (i.e. Π - init is invoked on JDprevKB). If A can XOR her share JDprevKA
into her Π - init’s output JDKA, A and B will hold a valid XOR sharing JDK.
Fortunately, A holds the position maps posprev for the previous epoch (note
that we adjust posprev in Figure 4 because we remove the k outdated elements)
and pos for the new epoch. The new pos is incomplete as it does not take into
account that JDprevKB input to Π - init is ordered according to posprev. A thus
needs to reconcile the two maps to obtain the correct pos for the new epoch.
I.e., she computes posi := posposprev,i

. With the reconciled pos and posprev, A
simply XORs JDprev,posprev,i

KA into JDposiKA for A & B to get a valid sharing
JDK.

Π - SOCS-ORAM is correct.

Proof of Security

We now prove Π - SOCS-ORAM secure.

Theorem 3 (Π -SOCS-ORAM Security). Π -SOCS-ORAM is secure against
semi-honest corruption of one party.

Proof. By construction of 3 simulators SA, SB, and SC that simulate the view of
each party A, B, and C, and an argument that the joint distribution of each sim-
ulator’s output and SOCS-ORAM’s output is indistinguishable from that party’s
real view and Π -SOCS-ORAM’s output. A key observation is that all messages,
except inputs and outputs belonging to each party, are indistinguishable from
uniform bits.

We first construct SA(op, i, JxKA, JoutKA) that for each access gets operation
op, index i, value JxKA, and output JoutKA. We start by showing how SA simu-
lates the first epoch (i.e. the first k accesses) and then show how she simulates
each following epoch. SA now simulates A’s view.

Simulating A’s view in the first epoch:

– Consider Π - init. A receives an XOR share JDKA from B. From C, A also
receives a seed sdA, which she uses to generate r, JmKA, π, & f, and she
receives sf, which helps her unmask the message corresponding to op upon
access. Note that all are indistinguishable from random bits. JDKA is gen-
erated by B uniformly secret sharing D. sdA is a seed uniformly sampled

22

by C. Depending on f, sf has entries from s0 or s1, which are both derived
from a uniformly sampled seed unknown to A. Thus, sdA and sf can be
simulated by uniformly drawing bits; JDKA is more complex to simulate as
it must result in JDKA that is consistent with Π - SOCS-ORAM’s output. We
thus need to simulate it alongside the calls to Π - access.

– Consider the first k calls to Π - access. Note that SA gets a list of indices as
input. Thus, SA knows which k entries of JDKA (combined with the shelter
JmKA) must match the protocol output. She goes through these entries one
by one, taking care that the simulation is consistent with the output.

Before going through these entries, observe that at each access, A receives a
2-part message ms0 and ms1 from B. Both parts are masked by mq, which is

derived from a uniformly drawn seed sdB unknown to A. Additionally, ms0
is masked by sb,q, ms1 by sb,q, which are both generated from a uniform

seed sdB only known to B, and A knows exactly one of them. Note that both
messages look uniform to A because even after removing sf,q (i.e. sb,q or sb,q)
from one of the messages, the message is still masked with mq. Similarly to
JDKA, the simulation is not a straightforward sampling of uniform bits. This
is because we add these messages into JmqKA (A’s shelter), which is sim-
ulated by expanding a uniformly drawn seed. We must ensure to simulate
the two messages such that the output is consistent with Π -SOCS-ORAM’s
output.

Hence, we observe that all messages received by A during Π - init and
Π - access are indistinguishable from random. We now go through the ac-
cesses one by one, simulate JDKA, and ms0, ms1 for each access:

• Consider the first access index i. SA sets the entry at this index in JDKA
such that after adding r, expanded from the simulated sdA, the two
XOR to the first Π -SOCS-ORAM output share. SA then checks if the
same index is accessed again in the first epoch:

∗ If yes, check if the nearest access (let it be jth access) corresponds
to a read or a write (recall that SA gets op as part of the protocol
input). If it is a read, draw ms1 uniformly at random and set ms0
such that it results in the right output share, i.e., ms0 ⊕ JDiKA ⊕
sf,0 ⊕ Jm0KA = JoutjKA at the next access when added to JDiKA ⊕
ms0 ⊕ sf,q. If it is a write, draw ms0 uniformly at random and set
ms1 similarly such that ms1 ⊕ JxKA ⊕ sf,0 ⊕ Jm0KA = JoutjKA.

∗ Otherwise, draw both ms0 and ms1 uniformly at random.

• Repeat this process until SA gets through all the first k accesses while
taking care that the next access may already be in the shelter JmKA (and
hence already simulated) rather than JDKA.

• Uniformly draw all the entries not accessed in JDKA and JmKA.

Simulating A’s view in any following epoch:

23

Simulating the following epochs is almost identical to the first. Instead of Π - init,
we start by invoking Π - reinit, which invokes Π - init as a subprocedure. In fact,
this is the only place where Π - reinit communicates. As in Π - init, we simulate
the seed sdA uniformly at random. With JDKA we need to be once again more
careful. In the first epoch, we simulate any accessed JDiKA by ensuring that
JDiKA⊕ ri equals to the corresponding output share. Now, we additionally need
to take care that any accessed JDiKA ⊕ ri ⊕ JDprev,iKA (we assume SA aligned
JDKA, r, and JDprevKA for the simulation) equals to the corresponding output
share. As before, the unaccessed elements of JDKA can be simulated with uni-
formly drawn bits. As for Π - access, we simulate ms0 and ms1 just as in the
first epoch.

Thus, SA simulates A’s view and SA’s output is consistent with A’s output.

We next construct SB(d, JxKB, JoutKB) that gets array d. For each access, he
also gets value JxKB and output JoutKB. We first show how SB simulates the first
epoch (i.e. the first k accesses) and then argue the messages in the following
epochs are simulated identically. SB now simulates B’s view:

Simulating B’s view in the first epoch:

– Consider Π - init. B receives from C a seed sdB, which he uses to generate
m, s0 & s1, and an array JDKB, which is the main SOCS-ORAM working
array, from which B accesses elements of d. As in A’s case, all are indistin-
guishable from uniform bits. sdB is uniformly sampled by C and we simulate
it by drawing uniform bits.

JDKB is a modified JDKB that B initially sends to C. C masks each entry
of JDKB with r that he generates from a uniformly drawn seed unknown to
B. He then extends JDKB with a share of m that is also indistinguishable
from uniform and is unknown to B. Although each entry of JDKB was now
masked with a mask or set to a value both indistinguishable from uniform, B
could still learn the access pattern as the entries of JDKB are not permuted.
Thus, A permutes JDKB according to a random permutation π generated
with randomness unknown to B before sending it to B. JDKB is now indis-
tinguishable from uniform.

Recall that JDKB contains shares of the entries that will be output by
Π -SOCS-ORAM. These entries must be consistent with the protocol’s out-
put; the remaining entries can be drawn uniformly at random.

– To simulate JDKB, consider Π - access. In each invocation of Π - access, B re-
ceives physical index posi to retrieve from JDKB and output. These physical
indices are determined by A inputting a logical index into a random permu-
tation π, which B does not know. If a logical index is requested more than
once, the entry at that index is moved to an unused location in the shelter

24

within the same array that is also permuted with π. Thus, each physical
index looks random and is unique across all accesses. Hence, B simulates
posi by uniformly drawing indices in [|JDKB|] without replacement.

Now that the accessed posi indices are sampled, SB simulates JDKB by:
• Setting entries at posi to Π -SOCS-ORAM’s output shares.
• Drawing the remaining entries uniformly at random.

In each call to Π - access, B also receives bit b from A, which is the opcode
op XORed with fq. fq is derived from a uniformly drawn seed unknown to
B, and hence SB simulates b by drawing a random bit.

Simulating B’s view in any following epoch:

Simulating the messages in the following epochs is identical to the first epoch.
As before, simulating Π - access is trivial. All messages in Π - access look ran-
dom; the challenge for SB is that JDKB, output by Π - reinit, is consistent with
Π - SOCS-ORAM’s output. Recall from our construction of SA that Π - reinit
communicates only when it invokes Π - init. Hence, to simulate Π - reinit, we
need to simulate only the messages sent to B by Π - init. The key difference from
constructing SA is that B’s state from the previous epoch does not modify the
messages output by Π - init (for A we XOR JDprevKA from previous epoch into
JDKA output by Π - init). Hence, we simulate the messages just as in Π - init in
the first epoch. Recall we do that in conjunction with Π - access as we need to
sample the positions posi that need to match the output shares JoutKB.

Thus, SB simulates B’s view and SB’s output is consistent with B’s output.

We now construct SC(⊥,⊥) that receives no input nor output. SC now simulates
C’s view:

– Consider Π - init. C receives a uniform seed sdC from B. B samples this seed
uniformly, and hence SC simulates it with uniform bits.

– Consider Π - reinit. As in Π - init, C receives a uniformly sampled seed.
Hence, SC simulates it with uniform bits.

– Consider Π - access. C is not involved in Π - access. Hence, C needs not
simulate any messages.

Thus, SC simulates C’s view and SC ’s output is consistent with C’s output (⊥).

Putting it all together, our simulators exhibited above produce output that is
indistinguishable from the corresponding party’s real view. Further, the output
of SA (resp. SB and SC) is equal to the expected output of party A (resp. B and
C). Hence, the joint distribution of each simulator’s output and SOCS-ORAM’s
output is indistinguishable from that party’s real view and Π -SOCS-ORAM’s
output.

25

Π - SOCS-ORAM is secure against semi-honest corruption of one party.

7 Experimental Evaluation

We now experimentally evaluate our construction.

Implementation. We implement our Π -SOCS-ORAM (i.e. we implement Π - init,
Π - reinit, and Π - access) in 525 lines of C++ and compile our code with the
CMake build tool. Our implementation is natural, but we note some of its inter-
esting aspects. For randomness, we use the PRG implementation of EMP [29].
We parameterize our construction over array entry types via function templates
and test our construction with native C++ types (e.g. uint32 t). We implement
a batched version of Π - access, and thus can execute multiple accesses in a sin-
gle round trip of communication. Our implementation runs on a single thread.
In our implementation, we send the seed sdA from C to A as soon as C samples
it. This is because generating a permutation π from sdA is the bottleneck of
Π - init, and hence we need A to start generating it as soon as possible.

Experimental Setup. We run all experiments on a machine with Ubuntu 22.04.1
LTS, Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, and 64GB RAM. All par-
ties run on the same laptop, and network settings are configured with the tc

command (bandwidth is verified with the iperf network performance tool and
round-trip latency with the ping command). Communication measurements rep-
resent the sum across all three parties; wall-clock time represents the maximum
among the three parties. We sample each data point over 10 runs and present
their arithmetic mean.

Experiments. We report on two experiments. The first evaluates our initialization
protocol Π - init and our reinitialization protocol Π - reinit (see Section 7.1)
while the second evaluates our access protocol Π - access (see Section 7.2). In
both experiments, we measure communication and wall-clock time as a function
of array size, which ranges from 220 to 230 with fixed 4B array entry size (i.e.
uint32 t) and 4B position map entry size. We measure wall-clock time on 2
different simulated network settings:

1. LAN 1: A low latency 1Gbps network with 2ms round-trip latency.
2. LAN 2: An ultra low latency network also with 1Gbps bandwidth but with

0.25ms round-trip latency.

7.1 Initialization and Reinitialization Protocols

We now demonstrate that our Π - init is efficient for both small and large ar-
ray sizes. We also show that Π - reinit has cost similar to Π - init. In this ex-
periment, we fix the number of array accesses to 220. Figure 5 plots the total
communication and the wall-clock time in each network setting.

26

Fig. 5. Π - init and Π - reinit performance. We fix the number of accesses to 220 and
plot the following metrics as functions of the binary logarithm of the array size: the
overall communication (left) and the wall-clock time to complete both protocols on
LAN 1 and LAN 2 (right). Note that the wall-clock time plots of Π - init are nearly
identical for the two network settings LAN 1 and LAN 2. The Π - reinit plots are also
nearly identical for the two LAN settings. The communication of Π - init and Π - reinit
protocols is the same; wall-clock time is moderately higher for Π - reinit for large array
sizes.

Discussion.

– Communication. For an array of 230 entries and for 220 accesses, our imple-
mentation of Π - init/Π - reinit communicates 8GB (our plaintext array is
4GB). As expected, the communication costs of Π - init and Π - reinit are
identical. For all runs of Π - init/Π - reinit, our implementation matches
exactly the number of bits incurred by the algorithms.

– Wall-clock time. For a large 230-entry array and for 220 accesses, initializa-
tion runs for ≈ 3.1 minutes3 and re-initialization runs for 3.7 minutes. The
cost difference between Π - init and Π - reinit is primarily due to additional
computation on the client, which becomes more pronounced in large arrays.
For a small 220-entry array with the same 220 number of accesses, both ini-
tialization and reinitialization take ≈ 0.25 second (≈ 0.004 minute in the
plot). The wall-clock time is almost identical for both network settings as
(re)initialization consist from algorithmic perspective of only 4 flows of com-
munication; the first 2 and last 2 can be executed in parallel (5 flows in our
implementation). Hence, initialization and reinitialization are not sensitive
to latency.

3 Generating permutation takes ≈ 81s. Remaining bottlenecks are ≈ 64s for sending
8GB on 1Gbps network and ≈ 24s for permuting array according to a permutation.

27

Fig. 6. Π - access performance. We consider two parameter regimes for the number of
accesses: (1024×1024) and (1024×1). Then we plot the following metrics as functions
of the binary logarithm of the array size: the overall communication (left) and the wall-
clock time to complete the protocol on LAN 1 and LAN 2 (right). For the wall-clock
time, we also plot cost because of latency on LAN 1 and LAN 2 to demonstrate our
technique incurs almost no overhead beyond latency. Note that LAN 2 latency almost
exactly overlaps with LAN 2 access (1024× 1).

7.2 Access Protocol

For our second experiment, we show that Π - access is fast and its performance
is (almost) independent of array size. On localhost, wall-clock time is less than
0.019ms per access for all runs and for all tested array sizes. Communication is
13B4 per access.

In this experiment, we consider 2 different parameter regimes for the num-
ber of accesses. The first (1024 × 1024) considers 1024 sequential accesses with
each sequential access containing 1024 batched accesses. The second (1024 × 1)
considers 1024 sequential accesses executed in batches of only 1 access. Figure 6
plots the total communication and the wall-clock time in each network setting.

Discussion.

– Communication. In Π - access communication is independent of array
size.5 In the (1024 × 1024) access number configuration, we use 12.125MB
of communication. This matches exactly the theoretical communication in
Figure 3. In the (1024× 1) setting, we communicate 13KB (i.e. 13B per ac-
cess). Note that in this configuration we are losing 7 bits per access on the
theoretical communication. This is because we send a single bit as one byte,
which we package with other bits in the batched setting.

4 Note that this applies only to 4B array entries and 4B position map entries. The
communication consists of sending two array entries (8B), a single entry in a position
map (4B), and a single Boolean (1B).

5 This is true as long as the array size stays small enough so that the entries in the
position map need not increase (e.g. to 8B i.e. uint64 t).

28

– Wall-clock time. First note that in the (1024 × 1024) configuration and
on a 2ms round-trip latency network, Π - access takes ≈ 2.24s on a 220-
entry array (2.19ms per 1024 parallel accesses) and ≈ 2.39s on a 230-entry
array (2.33ms per 1024 parallel accesses). We believe the difference between
the two experiments (and over the 2ms latency baseline) is due to low-level
costs such as effects of caching, system calls, interprocess communication,
precision of tc timing, etc. From algorithmic perspective, the performed
work is independent of array size.

Acknowledgments: Work of Vladimir Kolesnikov and Stanislav Peceny is sup-
ported in part by Visa research award, Cisco research award and NSF awards
CNS-2246354 and CCF-2217070. Work of Ni Trieu is supported in part by NSF
#2101052, #2200161, and #2115075. Work of Xiao Wang is supported in part
by NSF #2016240 and #2236819.

References

1. Kolesnikov V, Peceny S, Trieu N, Wang X. Fast ORAM with Server-Aided Prepro-
cessing and Pragmatic Privacy-Efficiency Trade-Off. In: Dolev S, Gudes E, Paillier
P, editors. Cyber Security, Cryptology, and Machine Learning. Cham: Springer
Nature Switzerland; 2023. p. 439-57.

2. Goldreich O, Ostrovsky R. Software Protection and Simulation on Oblivious
RAMs. J ACM. 1996;43(3):431-73. Available from: http://doi.acm.org/10.

1145/233551.233553.

3. Ostrovsky R, Shoup V. Private Information Storage (Extended Abstract). In: 29th
ACM STOC. ACM Press; 1997. p. 294-303.

4. Gordon SD, Katz J, Kolesnikov V, Krell F, Malkin T, Raykova M, et al. Secure
two-party computation in sublinear (amortized) time. In: Yu T, Danezis G, Gligor
VD, editors. ACM CCS 2012. ACM Press; 2012. p. 513-24.

5. Doerner J, shelat a. Scaling ORAM for Secure Computation. In: Thuraisingham
BM, Evans D, Malkin T, Xu D, editors. ACM CCS 2017. ACM Press; 2017. p.
523-35.

6. Faber S, Jarecki S, Kentros S, Wei B. Three-Party ORAM for Secure Computation.
In: Iwata T, Cheon JH, editors. ASIACRYPT 2015, Part I. vol. 9452 of LNCS.
Springer, Heidelberg; 2015. p. 360-85.

7. Jarecki S, Wei B. 3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch
Retrieval. In: Preneel B, Vercauteren F, editors. ACNS 18. vol. 10892 of LNCS.
Springer, Heidelberg; 2018. p. 360-78.

8. Pappas V, Krell F, Vo B, Kolesnikov V, Malkin T, Choi SG, et al. Blind Seer:
A Scalable Private DBMS. In: 2014 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press; 2014. p. 359-74.

9. Porras P, Shmatikov V. Large-scale collection and sanitization of network secu-
rity data: risks and challenges. NSPW. 2006. Available from: https://www.cs.
cornell.edu/~shmat/shmat_nspw06.pdf.

10. Stefanov E, Shi E, Song DX. Towards Practical Oblivious RAM. In: NDSS 2012.
The Internet Society; 2012. .

29

11. Zahur S, Wang XS, Raykova M, Gascón A, Doerner J, Evans D, et al. Revisiting
Square-Root ORAM: Efficient Random Access in Multi-party Computation. In:
2016 IEEE Symposium on Security and Privacy. IEEE Computer Society Press;
2016. p. 218-34.

12. Wang XS, Huang Y, Chan THH, shelat a, Shi E. SCORAM: Oblivious RAM for
Secure Computation. In: Ahn GJ, Yung M, Li N, editors. ACM CCS 2014. ACM
Press; 2014. p. 191-202.

13. Wang X, Chan THH, Shi E. Circuit ORAM: On Tightness of the Goldreich-
Ostrovsky Lower Bound. In: Ray I, Li N, Kruegel C, editors. ACM CCS 2015.
ACM Press; 2015. p. 850-61.

14. Shi E, Chan THH, Stefanov E, Li M. Oblivious RAM with O((logN)3) Worst-
Case Cost. In: Lee DH, Wang X, editors. ASIACRYPT 2011. vol. 7073 of LNCS.
Springer, Heidelberg; 2011. p. 197-214.

15. Bunn P, Katz J, Kushilevitz E, Ostrovsky R. Efficient 3-Party Distributed ORAM.
In: Galdi C, Kolesnikov V, editors. SCN 20. vol. 12238 of LNCS. Springer, Heidel-
berg; 2020. p. 215-32.

16. Falk BH, Noble D, Ostrovsky R. 3-Party Distributed ORAM from Oblivious Set
Membership. SN. 2022.

17. Lu S, Ostrovsky R. How to Garble RAM Programs. In: Johansson T, Nguyen
PQ, editors. EUROCRYPT 2013. vol. 7881 of LNCS. Springer, Heidelberg; 2013.
p. 719-34.

18. Heath D, Kolesnikov V, Ostrovsky R. EpiGRAM: Practical Garbled RAM. In:
Dunkelman O, Dziembowski S, editors. EUROCRYPT 2022, Part I. vol. 13275 of
LNCS. Springer, Heidelberg; 2022. p. 3-33.

19. Yang Y, Peceny S, Heath D, Kolesnikov V. Towards Generic MPC Compilers
via Variable Instruction Set Architectures (VISAs). In: Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security. CCS ’23.
New York, NY, USA: Association for Computing Machinery; 2023. p. 2516–2530.
Available from: https://doi.org/10.1145/3576915.3616664.

20. Chan THH, Chung KM, Maggs BM, Shi E. Foundations of Differentially Oblivious
Algorithms. In: Chan TM, editor. 30th SODA. ACM-SIAM; 2019. p. 2448-67.

21. Lu S, Ostrovsky R. Distributed Oblivious RAM for Secure Two-Party Compu-
tation. In: Sahai A, editor. TCC 2013. vol. 7785 of LNCS. Springer, Heidelberg;
2013. p. 377-96.

22. Abraham I, Fletcher CW, Nayak K, Pinkas B, Ren L. Asymptotically Tight Bounds
for Composing ORAM with PIR. In: Fehr S, editor. PKC 2017, Part I. vol. 10174
of LNCS. Springer, Heidelberg; 2017. p. 91-120.

23. Gordon SD, Katz J, Wang X. Simple and Efficient Two-Server ORAM. In: Peyrin
T, Galbraith S, editors. ASIACRYPT 2018, Part III. vol. 11274 of LNCS. Springer,
Heidelberg; 2018. p. 141-57.

24. Chan THH, Katz J, Nayak K, Polychroniadou A, Shi E. More is Less: Perfectly
Secure Oblivious Algorithms in the Multi-server Setting. In: Peyrin T, Galbraith
S, editors. ASIACRYPT 2018, Part III. vol. 11274 of LNCS. Springer, Heidelberg;
2018. p. 158-88.

25. Kushilevitz E, Mour T. Sub-logarithmic Distributed Oblivious RAM with Small
Block Size. In: Lin D, Sako K, editors. PKC 2019, Part I. vol. 11442 of LNCS.
Springer, Heidelberg; 2019. p. 3-33.

26. Chor B, Kushilevitz E, Goldreich O, Sudan M. Private information retrieval.
FOCS. 1995.

27. Gertner Y, Ishai Y, Kushilevitz E, Malkin T. Protecting Data Privacy in Private
Information Retrieval Schemes. In: 30th ACM STOC. ACM Press; 1998. p. 151-60.

30

28. Beaver D. Precomputing Oblivious Transfer. In: Coppersmith D, editor.
CRYPTO’95. vol. 963 of LNCS. Springer, Heidelberg; 1995. p. 97-109.

29. Wang X, Malozemoff AJ, Katz J. EMP-toolkit: Efficient MultiParty computation
toolkit; 2016. https://github.com/emp-toolkit.

31

