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Abstract. The Impossible Boomerang Attack (IBA) has demonstrated
remarkable power in the security evaluation of AES and other block ci-
phers. However, this method has not received sufficient attention in the
field of symmetric cipher analysis. The existing search methods, namely
UB-method, ZWT-method, and BCL-method for Impossible Boomerang
Distinguishers (IBDs)-the core of IBAs, exhibit limitations in terms of
efficiency and applicability, very likely leading to the omission of critical
attacks. Therefore, this paper delves into a comprehensive and systematic
study on the construction theory and automatic search method of IBDs.
Theoretically, we establish a new framework for constructing a series of
IBDs from the aspects of differential propagation, state propagation, and
generalized BCTs in the single-key setting. Furthermore, we rigorously
prove the inclusion relations among these newly-defined IBDs, and re-
sult in critical conclusions indicating a type of tightest IBDs as well as
several types of efficient IBDs as supplements. We extend the theory into
related-key setting (RK-IBD) including two scenario: one involving two
related-keys under arbitrary key schedules and another involving four
related-keys under linear key schedules. Technically, we develop a gener-
al SAT-based automatic tool that enables us to search for IBDs for block
ciphers including SPN, Feistel-network and ARX designs with arbitrary
components under single/related-key settings. Additionally, we propose
several effective strategies to improve the search process. As application-
s, we search for the (RK-)IBDs of 8 block ciphers and get their IBDs or
RK-IBDs for the first time. In further comparison with impossible differ-
entials (IDs), all IBDs are no worse than IDs. Moreover, we get 1 round
more IBD on PRINTcipher48 than IDs in the single-key setting; 2-round
more RK-IBDs on AES-128, 1-round more RK-IBDs on SPECK-32/64
(and SPECK-48/72, SPECK-48/96), and 2-round more RK-IBDs on
SPECK-64/96 (and SPECK-64/128, SPECK-96/144, SPECK-128/192,
SPECK-128/256) than RK-IDs in the two related keys setting respec-
tively; 1, 1, 4, 2-round more RK-IBDs on DES, GIFT-64, CHAM-64/128
and CHAM-128/256 than RK-IDs respectively, as well as the full-round
RK-IBDs on GOST in the four related keys setting.
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1 Introduction

The differential attack, proposed by Biham and Shamir [1], is widely recognized
as one of the most crucial methods for analyzing the security of block ciphers.
Numerous cryptanalytic techniques have been developed based on it, including
two well-known approaches: impossible differential attacks proposed by Biham
et al. and Knudsen [2,3], and boomerang attacks simultaneously proposed by
Wagner [4]. Undoubtedly, these two attacks have played a pivotal role in the se-
curity analysis of block ciphers [5,6,7,8,9]. The combination of these two attacks
results in an impossible boomerang attack (IBA) proposed by J. Lu [10], which
fundamentally relies on an impossible boomerang distinguisher (IBD) treating
a block cipher E as two sub-ciphers E0 ◦ E1 and employing two (or more) dif-
ferentials for E0 and E1 each with a probability of 1 imposed on the non-zero
XOR of the intermediate differences of these four differentials. In [10,11], the
impossible boomerang attack was utilized to successfully break 6-round AES-
128, 7-round AES-192 and 7-round AES-256 in a single key attack scenario, as
well as 8-round AES-192 and 9-round AES-256 in a related-key attack scenario
involving two keys, based on a 4-round IBD.

Automatic search methods based on certain mathematical problems, such
as Boolean Satisfiability Problem (SAT)/Satisfiability Modulo Theories (SMT)
problem [12,13,14], Mixed Integer Linear Programming (MILP) problem [15,16],
and Constraint Programming (CP) problem [17,18], facilitates effective, thought-
ful, and precise search for distinguishers. On searching for the distinguisher of
impossible differentials (IDs), Cui et al. [19] proposed a MILP-based tool adapt
to lightweight block ciphers considering all the propagation details; Sasaki and
Todo [20] presented a further MILP-based tool adapt to SPN block ciphers by
introducing arbitrary S-box (AS) mode, which treat large S-boxes as only per-
mutations; Hu et al. [21] simultaneously presented a SAT/SMT-based tool by
introducing the state propagation, allowing for consideration of the specific key
schedule in the single-key scenario.

On constructing boomerang distinguishers (BDs), significant advancements
have been made in recent years. The original boomerang attack postulated that
the two sub-ciphers E0 and E1 were independent of each other, while Mur-
phy [22] highlighted that two independently chosen characteristics might lead to
a probability of zero for a right quartet of plaintext-ciphertext pairs. Further-
more, numerous improvements considering the dependence have been proposed,
such as the middle round S-box trick [23], ladder switch, S-box switch and Feistel
switch [7], which can be encapsulated within the framework of the sandwich at-
tack proposed by Dunkelman et al. [8,24]. It divides the block cipher E into three
parts E1 ◦Em ◦E0, where E0 and E1 are covered by ordinary differential distin-
guishers, while Em is subject to a small boomerang distinguisher that connects
the two parts by specified input difference and output difference considering the
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dependency between E0 and E1. Recently, new insights on what exactly hap-
pens in Em have been investigated. At Eurocrypt 2018, Cid et al. [25] presented
the Boomerang Connectivity Table (BCT), a tool facilitating the straightfor-
ward evaluation of BD’s probability of Em in the single-round scenario for SPN
network. Subsequently, Wang et al. [26] proposed the Boomerang Difference Ta-
ble (BDT) and its variant BDT’, enabling systematic evaluation of boomerang
switching effect in the multiple rounds involved scenario. Furthermore, in [27],
Boukerrou et al. generalized the BCT and BDT to feistel network and proposed
the concept of FBCT. Subsequently, Delaune et al. [28] proposed a CP-based
method to search for BDs, and renamed BDT and BDT’ as UBCT and LBCT for
upper BCT and lower BCT, respectively. Additionally, they defined the EBCT
for SPN network based on the definition of FBCT for Feistel-network . In [29],
a SAT-based tool was presented for discovering BDs in ARX ciphers.

On searching for IBDs, a direct reflection of the security level of block ciphers,
there are three existing methods currently.

- UB-method [30]. This method uses a miss-in-the-middle approach to construct
IBDs. The core idea is to transform differential propagation into the manipulation
of a matrix and seek contradictions by defining certain criteria. However, this
method is unable to take into account the details of the S-box and linear layer as
well as the key schedule.

- ZWT-method [31]. This method is proposed to search for related-key IBDs (RK-
IBDs) for SPN block ciphers. The core idea is to construct IBDs based on DBCT
and differential characteristics with a probability of 1. Given that this method de-
pends on DBCT, the linear layer of the block cipher must be byte- or nibble-based
and sparse; otherwise, constructing and modeling DBCT becomes challenging. In
parallel with our work, they also introduced the concepts of GUBCT, GLBCT, and
GEBCT, as well as a method for constructing IBDs utilizing BCT and GBCT.

- BCL-method [32]. This method is proposed by Bonnetain et al. to search for
RK-IBDs for SPN block ciphers and Feistel-network block ciphers with quadrat-
ic round functions. The BCL-method shares the same reliance on DBCT as the
ZWT-method. Moreover, Bonnetain et al. have also proposed a method for con-
structing IBDs based on BCT and FBCT. However, such construction necessitates
a differential characteristic with a probability of 1.

To sum up, previous methods have the following limitations.

- In the single-key setting.
– Unable to take into account the details of operations for constructing
IBDs with multiple rounds. The UB-method cannot take into account the
details of operations. Moreover, both the ZWT-method and the BCL-method
require a differential characteristic with a probability of 1, which is not feasible
for multiple rounds.

- Unable to take into account the key schedule. These method constructs
the IBDs through the differential propagation only, thereby the impact of the
key schedule is unable to be exploited since it is naturally counteracted in the
single-key setting.

- In the related-key setting.
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– The applicability is not universal. The ZWT-method and the BCL-
method can only be applied to SPN block ciphers with byte/nibble-based and
sparse linear matrices, as well as Feistel-network block ciphers with quadratic
round functions. However, these methods are not suitable for SPN block cipher-
s with MDS matrices (such as AES) and bit permutations (such as PRESENT),
or Feistel-network block ciphers with non-quadratic round functions (such as
DES).

- The related-key scenario is not comprehensively considered.At present,
automated methods usually search for RK-IBDs under four related keys by re-
stricting the two key’s differences of upper trail are same and the two key’s
differences of lower trail are same. Indeed, it is just sufficient to ensure that
these four differences satisfy a certain linear relationship, which is a more
generalized scenario that should be taken into account. Additionally, there is
no discussion on search methods for block ciphers that adopt nonlinear key
schedules.

- In both the single-key and related-key setting. The existing automatic search
methods do not fully capture the essential definition of (RK)-IBDs. That is, there
may be better (RK)-IBDs within the same search space.

Our contributions. Motivated by the strong threat posed by IBA method (e.g.
powerful attacks on AES), as well as its significant lack of systematic theory
and general search models, we initiate a comprehensive research work on its
core, constructing IBDs, synchronously related to the theoretical development
of boomerang attacks and impossible differential attacks.

Firstly, we establish a new theoretical framework for constructing IBDs. We
propose a series of construction methods of (RK)-IBDs from different perspec-
tives. Then, we prove the inclusion relationship among them and result in a
completeness conclusion theoretically that is crucial for the subsequent research
on (RK)-IBDs. We define two IBDs from the aspects of differential propagation.

T0-IBD: the IBD regarding a bijective S-box as only a permutation.
T1-IBD: the IBD constructed based on differential propagation purely, corresponding

to the method proposed in [10].

Furthermore, we define two IBDs from the aspects of state propagation.

T2-IBD: the IBD based on state propagation assuming independence of round keys .
T3-IBD: the IBD based on state propagation considering the key schedule.

We also study the construction method based on the tables defined for construct-
ing BDs, and define a series of IBDs based on the generalized BCTs.

TSP -IBD: the IBD constructed by a pre-defined propagation rule P based on a mixed
use of generalized tables including UDDT, LDDT, GBCT [33], GUBCT, GLBCT,
GEBCT for SPN block ciphers.

TFP -IBD: the IBD constructed by a pre-defined propagation rule P based on a mixed
use of generalized tables including UDDT, LDDT, GFBCT, GFUBCT, GFLBCT,
GEBCT for Feistel-network block ciphers.

TC-IBD: the IBD constructed based on GEBCT merely for both SPN block ciphers
and Feistel-network block ciphers in context with BD.
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We further prove the inclusion relations between these newly-defined IBDs. Let
STi

be the set containing all Ti-IBDs and SIBD be the set corresponding to the
essential definition of IBDs, and then we derive that

ST0
⊆ ST1

⊆ STS
P
(or STF

P
) ⊆ STC

= ST2
⊆ ST3

= SIBD.

- For 0 ≤ i ≤ 3, an r-round Ti-IBD is always an r-round Ti+1-IBD.
- TC-IBD is equivalent with T2-IBD for both SPN and Feistel-network block ciphers.
- Any construction method based on even mixed use of generalized DDTs and BCTs

cannot be superior to TC-IBD as well as T3-IBD.
- The definition of T3-IBD is equivalent to essential definition of IBD proposed in [10].

That is, the construction of T3-IBD is the tightest method for constructing IBDs.

Therefore, we result in a theoretical conclusion of paramount importance.

– A rough estimation (lower bound) of the number of rounds of IBDs can be given
based on T0-IBD, and a precise evaluation (upper bound) of the number of rounds
of IBDs can be given based on T3-IBD.

– It is unnecessary to construct IBDs based on BCTs used in BDs.
– If the solving time permits, we should construct and search for the T3-IBD; when

it encounters the efficiency bottleneck of solvers for searching T3-IBDs, T0-IBDs,
T1-IBDs and T2-IBDs can serve as a sufficient supplement and present an effective
estimation of the number of rounds of IBDs.

Henceforth, our search models and applications are mainly based on T0-IBDs,
T1-IBDs, T2-IBDs and T3-IBDs.

Secondly, we extend our study to the related-key setting. For encryption
Eki(xi) with the master key ki(0 ≤ i ≤ 3) under the key differences k0 ⊕ k1 =
κ0, k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3, where κ3 = κ0 ⊕ κ1 ⊕ κ2, we define
RT ij -IBDs for Tj-IBDs for j = 0, 1, 3 under i related-keys setting for i = 2, 4

- Under two related-keys: RK-IBDs under the key difference of (κ, κ, 0, 0).
- Under four related-keys: RK-IBDs under the key difference of (κ0, κ1, κ2, κ3) on block

ciphers with linear key schedule.

The above related-key setting scenarios allow us to search for RK-IBDs covering
more rounds, which benefits either from the offsetting of state input/output dif-
ferences within the initial/final rounds of RK-IBDs, or from the default/definitive
differences of round keys.

Thirdly, we develop our general automatic search models to create efficient
tools for searching for (RK-)IBDs based on our newly established theoretical
framework. Specifically, we propose a SAT-based automatic method to search for
Tj-IBDs for 0 ≤ j ≤ 3 and T ij -IBDs for i = 2, 4 and j = 0, 1, 3. Additionally, we
propose several search strategies including choosing the search space, speeding
up the search based on the related-key differentials with a probability of 1,
and verifying the (RK-)IBDs through computer-aid methods. The method we
propose is capable of surpassing all the limitations encountered in
previous automatic search methods, as previously discussed.

Finally, we apply our method to various block ciphers, including SPN, Feistel
network and ARX designs. These selections cover the common classifications of



6 Authors Suppressed Due to Excessive Length

block ciphers and serve to verify the effectiveness of our approach. In the single-
key setting, we apply our method on AES [34], a large S-box based block cipher
that utilizes an MDS matrix; DES [35], a Feistel-network block cipher with
non-bijective S-boxes; PRESENT-80 [36], a lightweight block cipher employ-
ing bit permutation; and PRINTcipher48 [37], which employs key-dependent
permutation. In the two related-keys setting, we apply our method on AES;
and SPECK [38], an ARX-based block cipher. In the four related-keys setting,
we apply our method on DES; GIFT [39], a lightweight block cipher utilizing
bit permutation; CHAM [40], an ARX-based block cipher; and GOST [41], a
Feistel-network block cipher. The results are presented in Table 1. The findings
presented here strongly indicate that our method outperforms the current three
existing search methods for IBDs. Moreover, specific results suggest that IBDs
offer an advantage over IDs. Considering the crucial role ID attacks play as a
fundamental analysis technique, it is imperative to acknowledge and employ IBA
seriously.
Outline. We introduce the notations and related work in Section 2. We estab-
lish our theoretical framework by presenting a series of IBD constructions and
investigate their relationship in both the single-key setting (Section 3) and the
related-key setting (Section 4). The automatic search method for (RK-)IBDs,
along with core strategies, are detailed in Section 5. In Section 6, we applied our
method to various block ciphers. We conclude this paper in Section 7.

2 Preliminaries

2.1 Notation

The primary notations used hereafter are detailed as follows.

- Let k and rki denote the master key and the i-th round key, respectively. The key
schedule is denoted as KS, which generates rki = KSi(k). Besides the generation
of round keys, denote the state updating algorithm of KS be UKS.

- Let Erk(x) represent a r-round block cipher, encrypting the input x ∈ Fn2 under
the master key k ∈ Fm2 to produce the output y = Erk(x) ∈ Fn2 .

- Let Ei,rki(xi) represent the i-th round of Erk(x), encrypting the input xi ∈ Fn2
under the round key rki ∈ Fmi

2 to produce the output xi+1 ∈ Fn2 . That is,
Erk(x) = Er−1,rkr−1 ◦ · · · ◦ E0,rk0(x). In unambiguous cases, Erk(x) and Ei,rki(xi)
are abbreviated as E (or Ek) and Ei,rki .

- Let S, SL, LL, and AddKey denote an S-box, an S-box layer, a linear layer and a
key-xor layer respectively.

2.2 Definitions

We revisit the definitions corresponding to boomerang attacks and impossible
boomerang attacks.

Definition 1. The basic definitions of differential analysis are as follows.
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Table 1: The IBDs on applications.

S
in
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le

-k
ey

se
tt

in
g

Block cipher Type Round Number Time (hours) Method Illustration
AES 1 ABT T0-IBDs 4 61440 149.04 our First: large S-boxes,

details of linear layers1 ABT T0-IBDs 5 none 203.44 our
IBDs 4 less - Manual [10]

1 ABT IBDs 2 none 1.6 UBa

1 ABT IBDs 2 61440 10.84 UBb

1 ABT IBDs 3 none 24.12 UBb
IDs 4 many - [34]
IDs 5 none - [42]

DES 1 Ab T1-IBDs 7 1904 327.64 our First: Feistel-network with
arbitrary round functions1 Ab T1-IBDs 8 none 372.38 our

1 Ab IDs 7 394 0.57 STa

1 Ab IDs 8 none 0.91 STa

PRESENT-80 1 AN T2-IBDs 6 58 7.13 our First: bit per- mutation1 AN T3-IBDs 7 none 24.52 our
IDs 6 many - [43]

1 AN IDs 7 none - [21]
PRINTcipher48 1 Ab T3-IBDs 5 2 14.75 our First: key-dependent

permutation1 Ab T3-IBDs 6 none 40.07 our
1 Ab ID 4 many - [21] IBD better than ID

by 1 more round1 Ab ID 5 none - [21]

T
w
o
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la

te
d
-k

ey
s

se
tt
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g

AES-128 1 ABT RT2
0 -IBDs 5 768 14.44 our First result

1 ABT RT2
0 -IBDs 6 none 18.68 our for AES-128

1 ABT RK-IDs 3 64 0.39 STa IBD better than ID
by 2 more round1 ABT RK-IDs 4 none 0.52 STa

SPECK-32/64 RT2
3 -IBDs 8 377 0.18 our

First: modular additions

RT2
3 -IBDs 9 none 0.97 our

SPECK-48/72 RT2
3 -IBDs 7 6 0.06 our

RT2
3 -IBDs 8 none 0.26 our

SPECK-48/96 RT2
3 -IBDs 8 6 0.09 our

RT2
3 -IBDs 9 none 0.60 our

SPECK-64/96 RT2
3 -IBDs 8 4 0.29 our

RT2
3 -IBDs 9 none 0.60 our

SPECK-64/128 RT2
3 -IBDs 9 4 0.28 our

RT2
3 -IBDs 10 none 0.99 our

SPECK-96/144 RT2
3 -IBDs 8 4 0.22 our

RT2
3 -IBDs 9 none 0.65 our

SPECK-128/192 RT2
3 -IBDs 8 4 0.33 our

RT2
3 -IBDs 9 none 1.18 our

SPECK-128/256 RT2
3 -IBDs 9 4 0.41 our

RT2
3 -IBDs 10 none 1.78 our

SPECK-2w/4w RK-IDs 7 many - [44] IBD better than ID
by 1 or 2 more round(w = 16, 24, 32, 64) RK-IDs 8 none - [44]

SPECK-2w/3w RK-IDs 6 many - [44]
(w = 24, 32, 48, 64) RK-IDs 7 none - [44]

F
o
u
r

re
la

te
d
-k

ey
s

se
tt

in
g

DES 1 ABi RT4
3 -IBDs 9 14 137.68 our First result

1 ABi RK-IDs 8 74 52.16 STa IBD better than ID
by 1 more round1 ABi RK-IDs 9 none 65.16 STa

GIFT-64 1 AN RT4
3 -IBDs 13 48 0.51 our First result

1 AN RT4
3 -IBDs 14 none 1.91 our

1 AN IDs 12 48 - [44] IBD better than ID
by 1 more round1 AN IDs 13-16 none - [44]

GIFT-128 1 AN RT4
3 -IBDs 10 373 3.71 our First result

1 AN RT4
3 -IBDs 11 none 32.15 our

1 AN IDs 10 96 - [44]
1 AN IDs 11-12 none - [44]

CHAM-64/128 RT4
3 -IBDs 30 3 0.15 our First result

RT4
3 -IBDs 31/32 none 0.22 our
IDs 26 many - [44] IBD better than ID

by 4 more roundIDs 27 none - [44]
CHAM-64/128 RT4

3 -IBDs 28 4 0.48 our First result
RT4

3 -IBDs 29/30 none 0.63 our
IDs 26 many - [44] IBD better than ID

by 2 more roundIDs 27 none - [44]
GOST-FB/PS RT4

3 -IBDs full-round 2 0.08 our First result: Full round

UB-methodb represents we add the MDS property to the UB-method. The method with a means we implemented
this method by ourselves. ABT: active byte truncated, Ab: active bit, AN: active nibble.
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1. For a function f : Fm2 × Fn2 → Fn2 , the probability that an input difference α propa-
gates to an output difference β under the key difference κ is given by Pf,κ(α, β) =
# {(k, x) ∈ Fm2 × Fn2 | f(k, x)⊕f(k ⊕ κ, x⊕α) = β} /2n+m. If Pf,κ(α, β) 6= 0, it is
denoted as α f,κ→ β. Define DPf,κ(α) = {β|α

f,κ→ β}. Particularly, in the single-key
setting, Pf (α, β) = # {x ∈ Fn2 | f(x)⊕f(x⊕α) = β} /2n, DPf (α) = {β|α

f→ β}.
2. For a composite function f : Fm2 × Fn2 → Fn2 , where f = fr−1 ◦ · · · ◦ f1 ◦ f0, an

r-round related-key differential characteristic is defined as a series of differences
Ω = (α0, . . . , αr) under the key difference Γ = (κ0, . . . , κr), where αi

fi,κi→ αi+1 for
0 ≤ i ≤ r−1, and the probability of Ω is given by Pf,Γ (Ω) =

∏r−1
i=0 Pfi,κi(αi, αi+1).

Moreover, the probability of differential defined by (α0, αr) is given by Pf,Γ (α0, αr) =∑
α1,...,αr−1

Pf,Γ (Ω). In the single-key setting, Γ is omit .

Definition 2. Given two differences γFn2 , θ ∈ Fm2 , the DDT for an n×m-bit function
is defined as DDT(γ, θ) = # {x ∈ Fn2 | f(x)⊕ f(x⊕ γ) = θ} .

Definition 3 ([25]). Given three differences γ, θ, δ ∈ Fn2 , the BCT for an n-bit S-box
are defined as BCT(γ, δ) = #

{
x ∈ Fn2 | S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
.

Definition 4. Let E = E1 ◦ Em ◦ E0 be an r-round SPN-network block cipher with
r = r0 + r1 + 1, where E0, Em and E1 denote the initial r0 rounds, middle 1 round

and final r1 rounds of E respectively. Suppose α E0

→ γ and δ E
1

→ β, then the probability

Pr(E−1(E(x)⊕ β)⊕ E−1(E(x⊕ α)⊕ β) = α) = (PE0(α, γ))2(PE1(δ, β))2Pm,

where Pm =
∏t
i=0 (BCT(γi, δi)/2

n) , assuming that there are t n-bit S-boxes in Em
with the input difference γi and output difference δi.

To apply boomerang switch in multiple rounds, more tables have been proposed.

Definition 5 ([26,28] ). Given four differences γ, θ, λ, δ ∈ Fn2 , the UBCT, LBCT and
EBCT for an n-bit S-box are defined as

UBCT(γ, θ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ γ) = θ
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
,

LBCT(γ, λ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ λ) = δ
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
,

EBCT(γ, θ, λ, δ) = #

x ∈ Fn2
S(x)⊕ S(x⊕ γ) = θ
S(x)⊕ S(x⊕ λ) = δ
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

 .

In addition to BCTs for SPN block ciphers, new tables are also defined for
Feistel-network block ciphers.
Definition 6 ([27]). Given four differences γ, θ, λ, δ ∈ Fn2 , the FBCT, BDT and F-
BET for an n-bit S-box are defined as

FBCT(γ, δ) = #
{
x ∈ Fn2 S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0

}
,

BDT(γ, θ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0
S(x)⊕ S(x⊕ γ) = θ

}
,

FBET(γ, θ, δ, λ) = #

x ∈ Fn2
S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0
S(x)⊕ S(x⊕ γ) = θ
S(x⊕ γ)⊕ S(x⊕ γ ⊕ δ) = λ

 .
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The properties present in one table have corresponding counterparts in the other
tables. In [28], Delaune et al. proposed a method for establishing a BD with
optimal probability using mixed tables.

The essential definition of IBD is defined as follows.

Definition 7 ([10]). Given a block cipher E : Fn2 × Fm2 → Fn2 under a key k ∈ Fm2 , if
for four differences α, α′, β, β′, any pair of plaintexts (x1, x2) cannot satisfy

Ek(x1)⊕ Ek(x2) = β, Ek(x1 ⊕ α)⊕ Ek(x2 ⊕ α′) = β′

simultaneously, then (α, α′, β, β′) is called an IBD for Ek, denoted by (α, α′) 9 (β, β′).

An IBD constructed in the related-key setting is called an RK-IBD. Given an
IBD or RK-IBD, an attacker can extend the number of rounds before and after
the distinguisher to launch a key recovery attack, known as IBA. This attack
poses new threats to block ciphers, particularly in certain scenarios where its
impact surpasses that of IDs [11,31,32].

3 New Theory for Constructing IBDs in the Single-Key
Setting

In this section, we establish a new theoretical framework for constructing IBDs
from the aspects of both differential propagation and state propagation, as well
as BCTs both for SPN and Feistel-network block ciphers, while proving the
interrelationships among all construction methods. The proofs of theorems in
this section are given in Appendix B.

3.1 Constructing IBDs from the aspect of differential propagation

We propose two IBD-definitions based on differential propagation. Firstly, we
present two boomerang trails based on DPf (α) and its relaxing variant.

Definition 8. Given an r-round block cipher E = E1 ◦ E0, for two input differences
α, α′ and two output differences β, β′,

– if there exist γ ∈ DPE0(α), γ′ ∈ DPE0(α′), δ ∈ DP(E1)−1(β), and δ′ ∈ DP(E1)−1(
β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′)

is called an r-round T0 boomerang trail, where DPf (α) is a relaxing variant of
DPf (α) by considering all the details of operations of f expect S-boxes.

– if there exist γ ∈ DPE0(α), γ′ ∈ DPE0(α′), δ ∈ DP(E1)−1(β), and δ′ ∈ DP(E1)−1(
β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′)

is called an r-round T1 boomerang trail.
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Accordingly, we present the following two IBD-construction methods: T0-IBD
and T1-IBD. T0-IBD is a new method, while T1-IBD is a generation of the existing
one proposed in [10]. Furthermore, we prove their inclusion relationship.

Construction 1 (T0-IBD). Given an r-round block cipher E, for two input differ-
ences α, α′ and two output differences β, β′, if there is no r-round T0 boomerang trail,
then ((α, α′) , (β, β′)) is an IBD, called an r-round T0-IBD.

Construction 2 (T1-IBD). Given an r-round block cipher E, for two input differ-
ences α, α′ and two output differences β, β′, if there is no r-round T1 boomerang trail,
then ((α, α′) , (β, β′)) is an IBD, called an r-round T1-IBD.

Theorem 1. An r-round T0-IBD ((α, α′) , (β, β′)) is an r-round T1-IBD.

T0-IBD is suitable for block ciphers with bijective S-boxes, as it treats the
S-box only as a permutation. Consequently, T0-IBD takes the advantage of effi-
ciently searching and assessing a lower bound on the number of IBDs’ rounds. T1-
IBD offers extensive applicability, within which the differential propagation rule
of each component can be characterized. The examples of T0-IBD and T1-IBD
are presented in Section 6.1, e.g. the applications to AES and DES respectively.

3.2 Constructing IBDs from the aspect of state propagation

Inspired by the concept proposed in [21] that utilizes the propagation of two
states to construct IDs, we extend it to construct IBDs using the propagation of
four states, which adapts to any block ciphers. Specifically, our method is able
to take into account both scenarios of independent keys and key relations in the
single-key setting.

Definition 9. Let E = Er−1,rkr−1 ◦ · · · ◦ E0,rk0(x) be an r-round block cipher. Given
four differences α, α′, β, β′, let I = {(x0, x1, x2, x3) | x0 ⊕ x1 = α, x2 ⊕ x3 = α′} and
O = {(y0, y1, y2, y3) | y1 ⊕ y2 = β, y0 ⊕ y3 = β′}. If there exist (x00, x

0
1, x

0
2, x

0
3) ∈ I,

(xr0, x
r
1, x

r
2, x

r
3) ∈ O and independent round keys (rk0, · · · , rkr−1), such that

xi+1
j = Ei,rki(x

i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4,

then (x00, x
0
1, x

0
2, x

0
3)→ · · · → (xr0, x

r
1, x

r
2, x

r
3) is called an r-round T2 boomerang trail.

This definition enables us to construct IBD in another way.
Construction 3 (T2-IBD). Given an r-round block cipher E, for two input differ-
ences α, α′ and two output differences β, β′, if there is no r-round T2 boomerang trail,
then ((α, α′) , (β, β′)) is an IBD, called an r-round T2-IBD.

To consider the relationship of round keys in the single-key setting according
to the key schedule, we further present the following definition.
Definition 10. Let E = Er−1,KSr−1(k) ◦ · · · ◦ E0,KS0(k)(x) be an r-round block cipher
with the key schedule KS. Given four differences α, α′, β, β′, let I = {(x0, x1, x2, x3) |
x0 ⊕ x1 = α, x2 ⊕ x3 = α′} and O = {(y0, y1, y2, y3) | y1 ⊕ y2 = β, y0 ⊕ y3 = β′}. If
there exist (x00, x01, x02, x03) ∈ I, (xr0, xr1, xr2, xr3) ∈ O and an master key k such that

xi+1
j = Ei,KSi(k)(x

i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4,

then (x00, x
0
1, x

0
2, x

0
3)→ · · · → (xr0, x

r
1, x

r
2, x

r
3) is called an r-round T3 boomerang trail.
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This definition allows us to consider the validity of round keys’ compactness
when constructing IBDs for the first time.
Construction 4 (T3-IBD). Given an r-round block cipher E, for two input differ-
ences α, α′ and two output differences β, β′, if there is no r-round T3 boomerang trail,
then ((α, α′) , (β, β′)) is an IBD, called an r-round T3-IBD.

The inclusion relationship between T2-IBD and T3-IBD is direct according to
their definitions.
Theorem 2. An r-round T2-IBD ((α, α′) , (β, β′)) is an r-round T3-IBD.

The examples of T2-IBD and T3-IBD are presented in Section 6.1, e.g. the ap-
plications to PRESENT and PRINTcipher respectively.

Furthermore, based on the definitions of T1-IBD and T2-IBD, an r-round
T1-IBD ((α, α′) , (β, β′)) is also an r-round T2-IBD. However, it should be noted
that these two definitions are not equivalent: e.g. the T2-IBD in the application
to PRESENT given in Section 6.1 is not an T1-IBD.

We further prove that Construction 4 is the tightest method for constructing
IBDs.
Theorem 3. T3-IBD is equivalent to the essential definition of IBDs given in Defi-
nition 7.

At this point, we have the following inclusion relationships4, which apply to
any block cipher including SPN, Feistel-network and ARX designs.

Summary 1 Let STi denotes the set containing all Ti-IBDs, then we have

(ST0 ⊆)ST1 ⊆ ST2 ⊆ ST3 .

3.3 Constructing IBDs based on generalized BCTs

BCTs have been widely proposed in the BD construction of SPN and Feistel-
network block ciphers. Theoretically, it is natural to extend BD to IBD and
construct IBDs based on BCTs. Therefore, in this section, we discuss construct-
ing IBDs based on generalized BCTs for SPN block ciphers and Feistel-network
block ciphers.

For SPN block ciphers, the original boomerang attack assumes that two sub-
ciphers E0 and E1 are independent. However, this assumption may not hold
true for two selected differential characteristics, as demonstrated in [22]. In
other words, it is possible that an r-round T1 boomerang trail does not exist
at all. As a result, this method may overlook certain IBDs. This issue can be
addressed by the concept of GBCT [33]. Here, for the purposes of this paper,
the following definition is slightly different in expression from the original one.

Definition 11. Given four differences µ, µ′, ϕ, ϕ′ ∈ Fn2 , the GBCT for an n-bit S-box
is defined as

GBCT(µ, µ′, ϕ, ϕ′) = #

 (x0, x1, x2, x3) ∈ {0, 1}4n
x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′

 .

4 The inclusion relationship for T0-IBD is valid for block ciphers with bijective S-boxes.
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Furthermore, as highlighted by Song et al. [45], it has been observed that the
dependence can exert a significantly greater influence over multiple rounds, e.g.
up to 6 rounds for SKINNY. While BCT cannot eliminate the incompatibility
in multiple rounds, a serious of tables such as UBCT, LBCT, and EBCT are
defined. We further introduce and generalize the concepts of these BCTs to IBDs.

Definition 12. Given eight differences µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′ ∈ Fn2 where ρ′ = µ⊕µ′⊕ρ,
ϕ′ = θ⊕ θ′ ⊕ϕ, the GUBCT, GLBCT and GEBCT 5 for an n-bit S-box are defined as

GUBCT(µ, µ′, θ, θ′, ϕ, ϕ′) = #


(x0, x1, x2, x3) ∈ F4n

2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

S(x0)⊕ S(x1) = θ
S(x2)⊕ S(x3) = θ′

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′


,

GLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′) = #


(x0, x1, x2, x3) ∈ F4n

2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

x1 ⊕ x2 = ρ
x0 ⊕ x3 = ρ′

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′


,

GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) = #


(x0, x1, x2, x3) ∈ F4n

2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

x1 ⊕ x2 = ρ
x0 ⊕ x3 = ρ′

S(x0)⊕ S(x1) = θ
S(x2)⊕ S(x3) = θ′

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′


.

The above tables are supplemented with two additional notations for the sake
of clarity:

UDDT(µ, µ′, θ, θ′) = #

 (x0, x1, x2, x3) ∈ F4n
2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

S(x0)⊕ S(x1) = θ
S(x2)⊕ S(x3) = θ′

 ,

LDDT(ρ, ρ′, ϕ, ϕ′) = #

 (x0, x1, x2, x3) ∈ F4n
2

x1 ⊕ x2 = ρ
x0 ⊕ x3 = ρ′

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′

 .

A schematic diagram for these generalized BCTs is shown in Figure 1.

Theorem 4. UDDT,LDDT,GBCT,GUBCT, GLBCT,GEBCT have the following
relations:
5 In [31], the authors proposed the similar definitions and they did not use those tables
to search for IBDs. Here, we emphasize that we have independent definitions.
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Fig. 1: The Generalized BCTs Fig. 2: The illustration of RK-IBD

1. ∃η, η′, s.t. GBCT(µ, µ′, ϕ, ϕ′) ⊆ UDDT(µ, µ′, η, η′),
2. ∃ω, ω′, s.t. GBCT(µ, µ′, ϕ, ϕ′) ⊆ LDDT(ω, ω′, ϕ, ϕ′),
3. GUBCT(µ, µ′, θ, θ′, ϕ, ϕ′) ⊆ UDDT(µ, µ′, θ, θ′),
4. ∃ω, ω′, GUBCT(µ, µ′, θ, θ′, ϕ, ϕ′) ⊆ LDDT(ω, ω′, ϕ, ϕ′),
5. ∃η, η′, s.t. GLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′) ⊆ UDDT(µ, µ′, η, η′),
6. GLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′) ⊆ LDDT(ρ, ρ′, ϕ, ϕ′),
7. GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ UDDT(µ, µ′, θ, θ′),
8. GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ LDDT(ρ, ρ′, ϕ, ϕ′),
9. GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ GBCT(µ, µ′, ϕ, ϕ′),
10. GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ GUBCT(µ, µ′, θ, θ′, ϕ, ϕ′),
11. GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ GLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′).

We consider a hybrid use of DDT, GBCT, GUBCT, GLBCT, and GEBCT to
construct IBDs, in a similar manner for achieving optimized BDs.

Definition 13. Let E be a block cipher with t S-boxes (S0, . . . , St−1) in total. Define
APSE = {(p0, . . . , pt−1)|pi ∈ {UDDT,LDDT,GBCT,GUBCT, GLBCT, GEBCT}} as
a set of propagation rules. Then P = (p0, . . . , pt−1) ∈ APSE denotes that the propagation
rule through the i-th S-box follows pi.

Definition 14. Let E = Er−1,rkr−1 ◦ · · · ◦ E0,rk0(x) be an r-round block cipher. Let
P = (P0, . . . , Pr−1) be a predefined propagation rule of E, where Pi ∈ APSEi,rki

de-
notes a propagation rule of Ei,rki for i ∈ {0, . . . , r − 1}. Let εi0, εi1, εi2, εi3 be the four
input differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output differences of Ei,rki for

i ∈ {0, . . . , r − 1}. For two input differences α, α′ and two output differences β, β′ of
the block cipher E, if there exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−−→ · · ·
Pr−1−−−→ (εr0, ε

r
1 = β, εr2, ε

r
3 = β′),

then it is called an r-round TSP boomerang trail. Here, Pi−→ represents that the propaga-
tion rule through S-boxes in Ei,rki follows Pi.

Accordingly, we have the following construction.

Construction 5 (TSP -IBD). Given an r-round block cipher E and a predefined rule
P ∈ APSE, for two input differences α, α′ and two output differences β, β′, if there
is no r-round TSP boomerang trail, then ((α, α′) , (β, β′)) is an IBD, called an r-round
TSP -IBD.
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Fig. 3: The equivalence between TC-IBD and T2-IBD in SPN

TSP -IBD corresponds to a serious of IBDs for different predefined propagation
rules P . T1-IBD is a special example of TSP -IBD.

Theorem 5. For any predefined rule P ∈ APSE, an r-round T1-IBD ((α, α′) , (β, β′))
is an r-round TSP -IBD.

Theorem 4 demonstrates that GEBCT is a table belonging to all other tables.
Thus we construct an IBD using only GEBCT.

Definition 15. Let E = Er−1,rkr−1 ◦ · · · ◦ E0,rk0(x) be an r-round block cipher. Let
εi0, ε

i
1, ε

i
2, ε

i
3 be the four input differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output

differences of Ei,rki for i ∈ {0, . . . , r − 1}. For two input differences α, α′ and two
output differences β, β′ of the block cipher E, if there exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

GEBCT−−−−→ · · · GEBCT−−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 = β′),

then it is called an r-round TC boomerang trail.

Construction 6 (TC-IBD). Given an r-round block cipher E, for two input differ-
ences α, α′ and two output differences β, β′, if there is no r-round TC boomerang trail,
then ((α, α′) , (β, β′)) is an IBD, called an r-round TC-IBD.

From the definitions, TC-IBD is also a special case of TSP -IBD.

Theorem 6. For any predefined rule P ∈ APSE, an r-round TSP -IBD ((α, α′) , (β, β′))
is an r-round TC-IBD.

In addition to the above relations, we can prove the equivalency in Theorem 7
based on the schematic diagram shown in Figure 3.

Theorem 7. Given an SPN block cipher, ((α, α′) , (β, β′)) is an r-round TC-IBD if
and only if it is an r-round T2-IBD.
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Similarly, for Feistel-network block ciphers, we explore the construction method
of IBDs based on generalized BCTs in Appendix A.1. We also firstly general-
ize the definition of FBCT and FBDT, and then define GFBCT and GFUBC-
T/GFLBCT accordingly. Subsequently, we define the TFP -IBD and study the
relations between TFP -IBD and Ti-IBD (0 ≤ i ≤ 3) as well as TC-IBD. All in all,
we get the following relations.

Summary 2 Let STi denotes the set containing all Ti-IBDs, then we have

(ST0 ⊆)ST1 ⊆ STS
P
⊆ STC = ST2 ⊆ ST3 , (ST0 ⊆)ST1 ⊆ STF

P
⊆ STC = ST2 ⊆ ST3 .

The inclusion relationship in Summary 2 and the equivalence in Theorem 3
indicate that we can provide a rough estimation (lower bound) of the number of
rounds of IBDs based on T0-IBDs, and a precise evaluation (upper bound) of the
number of rounds of IBDs based on T3-IBD. Furthermore, although constructing
IBDs based on BCTs used in BDs seems like a reasonable technical approach,
however, on the one hand, Summary 2 indicates that STS

P
(resp. STF

P
) and STC

are not the tightest; on the other hand, the modeling method of searching IBDs
based on BCTs is much more complex compared with T0/1/2/3-IBDs. Therefore,
through our theoretical study above, we have reached an important conclusion:
it is unnecessary to construct IBDs based on BCTs used in BDs. This further
paves the way for subsequent research on IBD constructions. Henceforth, our
subsequent search models and applications are based on T0/1/2/3-IBDs without
using IBDs based on BCTs. As no approach for constructing IBDs surpasses
Construction 4, searching for T3-IBDs becomes imperative. Additionally, when
it encounters the efficiency bottleneck of solvers for searching T3-IBDs, T0/1/2-
IBDs can serve as a sufficient supplement and present an effective estimation of
the number of rounds of IBDs.

4 New Theory for Constructing IBDs in the Related-Key
Setting

Let k0, k1, k2, k3 be four master keys of an block cipher E. Then an r-round IBD
((α, α′) , (β, β′)) of E is equivalent to that there exists no solution of the system

x1 = x0 ⊕ α, x3 = x2 ⊕ α′, Erk1(x1)⊕ E
r
k2(x2) = β, Erk0(x0)⊕ E

r
k3(x3) = β′,

when k0 = k1 = k2 = k3 in the single-key setting as stated in Section 3. Fur-
thermore, in the related-key setting, more relations between these keys can be
controlled by attackers, which may lead greater power to IBAs. Specifically, we
construct the RK-IBDs in the two related-keys setting and four related-keys set-
ting subsequently. Additionally, the definition of T0/1/3 boomerang trail given in
Section 3 can naturally extend to the related-key setting.

Definition 16. Given an r-round block cipher E = E1 ◦E0, for two input differences
α, α′, two output differences β, β′, and four key differences κ0, κ1, κ2 and κ3 = κ0 ⊕
κ1 ⊕ κ2,
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– if there exist γ ∈ DPE0,κ0
(α), γ′ ∈ DPE0,κ1

(α′), δ ∈ DP(E1)−1,κ2
(β), and δ′ ∈

DP(E1)−1,κ3
(β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′)

is called an r-round T0 related-key boomerang trail, where DPf,κ(α) is a relaxing
variant of DPf,κ(α) by considering all the details of operations of f expect S-boxes.

– if there exist γ ∈ DPE0,κ0
(α), γ′ ∈ DPE0,κ1

(α′), δ ∈ DP(E1)−1,κ2
(β), and δ′ ∈

DP(E1)−1,κ3
(β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′)

is called an r-round T1 related-key boomerang trail.

Definition 17. Let E = Er−1,KSr−1(k) ◦ · · · ◦ E0,KS0(k)(x) be an r-round block cipher
with the key schedule KS. Given two input differences α, α′, two output differences
β, β′, and four key differences κ0, κ1, κ2 and κ3 = κ0 ⊕ κ1 ⊕ κ2, let I = {(x0, x1,
x2, x3) | x0⊕x1 = α, x2⊕x3 = α′} and O = {(y0, y1, y2, y3) | y1⊕y2 = β, y0⊕y3 = β′}.
If there exist (x00, x01, x02, x03) ∈ I, (xr0, xr1, xr2, xr3) ∈ O and master keys kj such that

xi+1
j = Ei,KSi(kj)(x

i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 3,

under the key differences k0 ⊕ k1 = κ0, k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3, then
(x00, x

0
1, x

0
2, x

0
3) → · · · → (xr0, x

r
1, x

r
2, x

r
3) is called an r-round T3 related-key boomerang

trail.

The RK-IBDs in the two related-keys setting was first proposed by J. Lu [11],
which only focused on constructing RK-IBDs based on differential propagation
rather than state propagation. Thus we provide the following new definitions.

Construction 7 (RT 2
i -IBD). Given an r-round block cipher E, for two input dif-

ferences α, α′ and two output differences β, β′, if there is no r-round Ti related-key
boomerang trail under the key differences (κ, κ, 0, 0) where k0 ⊕ k1 = κ, k2 ⊕ k3 =
κ, k1 ⊕ k2 = 0, k0 ⊕ k3 = 0, then ((α, α′) , (β, β′)) is a two related-keys’ RK-IBD, called
an r-round RT 2

i -IBD, for i = 0, 1, 3.

Accordingly, the RK-IBDs in the four related-keys setting are defined as follows.

Construction 8 (RT 4
i -IBD). Given an r-round block cipher E, for two input d-

ifferences α, α′ and two output differences β, β′, if there is no r-round Ti related-
key boomerang trail under the key differences (κ0, κ1, κ2, κ3) where k0 ⊕ k1 = κ0,
k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3 = κ0 ⊕ κ1 ⊕ κ2, then ((α, α′) , (β, β′))
is a four related-keys’ RK-IBD, called an r-round RT 4

i -IBD, for i = 0, 1, 3.

It is worth noting that when the key schedule is linear, the key differences k0 ⊕
k1 = κ0, k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, implies{

KSi(k0)⊕KSi(k1) = KSi(κ0),KSi(k2)⊕KSi(k3) = KSi(κ1),

KSj(k1)⊕KSj(k2) = KSj(κ2),KSj(k0)⊕KSj(k3) = KSj(κ0 ⊕ κ1 ⊕ κ2),

for any round index i, j. That is, the differences of the round keys are all deter-
mined.
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Table 2: Modeling the differential propagation through Xor, Copy, KeyAdd.
Operation Input Diff Output Diff Modeling Method

Copy α ∈ F2 β0, β1 ∈ F2 β0 = α, β1 = α
Xor α0, α1 ∈ F2 β ∈ F2 β = α0 ⊕ α1

KeyAdd α ∈ F2 β ∈ F2 β = α

Discussions on RK-IBDs based on Generalized BCTs: As in the single-key setting,
we can also construct the RK-IBDs based on the G(U/L/E)BCT for SPN block ciphers
and GF(U/L/E)BCT for Feistel-network block ciphers. With the same technique as in
the single-key setting, in the same related-key setting, these RK-IBDs are superior
to RT i1-IBD but inferior to RT i3-IBD, for i = 2, 4 corresponding to the two related-
keys setting and four related-keys setting respectively. For the same reason as stated
Section 3, we mainly focus on the RT ij -IBD with i = 2, 4 and j = 0, 1, 3.

5 New Automatic Search Methods for (RK-)IBDs

In this section, we present our search method for (RK-)IBDs from the aspect
of the differential propagation and state propagation respectively, and further
propose key search strategies.

5.1 Searching for (RK-)IBDs from the aspect of differential
propagation

To search for (R)T0-IBDs and (R)T1-IBDs from the aspect of differential propa-
gation, firstly we propose a SAT-based method6 to model the differential propa-
gation through common operations such as Xor, Copy, KeyAdd, MatrixMultiply
and S-box, as well as the arbitrary S-box (AS) proposed in [20] by treating the
S-box as only a permutation.

Model 1. The method for modeling the differential propagation through the operations
Xor, Copy, KeyAdd is presented in Table 2.

Model 2. For the operation MatrixMultiply M = (mi,j)u×v, let αi for 0 ≤ i ≤
v − 1 and βi for 0 ≤ i ≤ u − 1 be the input and output differences of M , it holds
βi = ⊕v−1

j=0mi,jαj. Thus the differential propagation through MatrixMultiply can be
expressed according to that of Xor.

Model 3. For the operation S-box S, let αi for 0 ≤ i ≤ v−1 and βi for 0 ≤ i ≤ u−1
be the input and output differences of S. As the possible values of αi for 0 ≤ i ≤ v − 1
and βi for 0 ≤ i ≤ u − 1 are restricted by the DDT of S, the differential propagation

6 The SAT problem [46] involves determining the satisfiability of a given Boolean
function. A typical framework of SAT-based automatic search methods is to convert
the search for a distinguisher into a SAT problem, , subsequently solving this problem
by leveraging existing solvers. In this paper, we employ STP (https://stp.github.
io) and CryptoMiniSat (https://github.com/msoos/cryptominisat) as backends.

https://stp.github.io
https://stp.github.io
https://github.com/msoos/cryptominisat
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Fig. 4: The search model for (R)T0-IBD or (R)T1-IBD
†Here xij = xi ⊕ xj , denoting the difference variable of state variables xi and xj .

through S can be expressed as a set of logic expressions with the help of some third
party tool, such as Logic Friday7.

Model 4. For the operation AS S, let αi and βi for 0 ≤ i ≤ v−1 be the input and out-
put differences of S, then the following transitions are impossible: (0, 1), · · · , (0, 2v − 1),
(1, 0), · · · , (2v − 1, 0), which can be removed by the boolean expressions:

αv−1|| · · · ||α0||¬βi = 1, ¬αi||βv−1|| · · · ||β0 = 1 for 0 ≤ i ≤ v − 1.

Furthermore, based on above modeling method, given an r-round block cipher
E = E1 ◦ E0, and its KS state updating algorithm UKS = U1

KS ◦ U0
KS, we can

construct a model to determine whether a given D = ((α, α′), (β, β′)) qualifies
as an r-round (R)T0-IBD or (R)T1-IBD under key differences (κ0, κ1, κ2, κ3) by
describing the constraints of the differential propagation shown in Figure 4; if the
SAT-solver returns “no solution”, then ((α, α′), (β, β′)) is an IBD. Particularly in
the single-key setting, all four key differences are set to zero. The corresponding
algorithm is given in Algorithm 1 in Appendix C.

5.2 Searching for (RK-)IBDs from the aspect of state propagation

To search for T2-IBDs and (R)T3-IBDs from the aspect of state propagation,
firstly we revisit the method for modeling the state propagation via each opera-
tion proposed in [21].

7 Logic Friday (http://sontrak.com/) can be used to derive the minimum (or as small
as possible in a reasonable time) product-of-sum representation of a given Boolean
function from its truth table. This representation can be converted to a set of logic
expressions equivalently. For detailed usage instructions, please refer to [47].

http://sontrak.com/
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Fig. 5: The search model for T2-IBD or (R)T3-IBD

Model 5. The method for modeling state propagation through the operations Xor,
Copy, MatrixMultiply is identical to that of Model 1 and Model 2. The method
for modeling state propagation through operation KeyAdd is the same as that of Xor.

Model 6. For the operation S-box S, let αi for 0 ≤ i ≤ v−1 and βi for 0 ≤ i ≤ u−1
be the input and output states of S. As the possible values of αi for 0 ≤ i ≤ v − 1 and
βi for 0 ≤ i ≤ u−1 is restricted by the truth table of S, the state propagation through S
can be expressed as a set of logic expressions with the help of the third party tool Logic
Friday.

Furthermore, based on above modeling method, given an r-round block ci-
pher E, and its KS state updating algorithm UKS, we can construct a model to
determine whether a given D = ((α, α′), (β, β′)) qualifies as an r-round T2-IBD
or (R)T3-IBD under key differences (κ0, κ1, κ2, κ3) by describing the constraints
of the differential propagation shown in Figure 5; if the SAT-solver returns “no
solution”, then ((α, α′), (β, β′)) is an IBD. Particularly in the single-key setting,
all four key differences are set to zero. The corresponding algorithm is given in
Algorithm 2 in Appendix C.

5.3 The search strategies for (RK-)IBDs

Based on Algorithm 1 and Algorithm 2, we can efficiently search for (RK-)IBDs
within a given search space. Let n be the block size, s be the S-box size, then
there are t = n/s S-boxes in SL. For x = (xn−1, . . . , x0) ∈ Fn2 , wt(x) = ⊕mi=0xi,
x = (xn−1| · · · |xm×(t−1), · · · , xm−1| · · · |x0), where ‘|’ denotes bitwise-or. Similar
to ID, we mainly focus on searching for the three following types of (RK-)IBDs.

Type-1. li input active bits and lo output active bits IBDs: an (RK-)IBD D =
((α, α′), (β, β′)) with wt2(α) = wt2(α

′) = li and wt2(β) = wt2(β
′) = lo. Par-

ticularly, when li = lo, it is called an li active bits (RK-)IBD.
Type-2. li input active nibbles (resp. bytes) and lo output active nibbles (resp. bytes)

IBDs: an (RK-)IBD D = ((α, α′), (β, β′)) with wt(α) = wt(α′) = li and wt(β) =
wt(β′) = lo. Particularly, when li = lo, it is called an li active nibbles (resp. bytes)
(RK-)IBD.
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Type-3. li input active nibbles (resp. bytes) and lo output active nibbles (resp. bytes)
truncated IBDs: Given a, a′, b, b′ ∈ Ft2 with wt(a) = wt(a′) = li and wt(b) =
wt(b′) = lo, if for ∀D ∈ {((α, α′), (β, β′)) | α = a, α′ = a′, β = b, β′ = b′}, D is an
(RK-)IBD, then (a, a′, b, b′) is called an li input active nibbles (resp. bytes) and
lo output active nibbles (resp. bytes) truncated IBD. Particularly, when li = lo,
it is called an li active nibbles/bytes truncated (RK-)IBD. To search for Type-3
(RK-)IBD, we can simply modify Algorithm 1 and Algorithm 2 by adding the
relations between the bitwise input differences and output differences with (a, a′)
and (b, b′).

For RK-IBDs, the selection of key differentials involves greater technicality.
We discuss the selection strategy comprehensively considering the input-output
differences and the key differences in two cases.
In the two related-keys setting.We set the two input differences with α = α′.
A direct strategy is to set the key differences κ that can eliminate the input dif-
ference α, thereby allowing for several initial rounds of E without any differences.
Subsequently, for each (α, κ) pair, we search for the output differences (β, β′)
such that ((α, α), (β, β′)) is a r-round RT 2

i -IBD for i = 0, 1, 3 under key differ-
ences (κ, κ, 0, 0). The search space of ((α, α), (β, β′)) is discussed as above. This
allows the difference to propagate through the non-linear operations in a few
initial rounds with a probability of 1, thus thereby achieving the objective of
obtaining an RK-IBD covering more rounds.

An advanced strategy involves utilizing related-key differentials with a prob-
ability of 1. That is, given a block cipher E = E1 ◦E0, we control the differences
of round keys to eliminate the state differences before entering nonlinear opera-
tions in E0. In details, we firstly search for an r0-round related-key differential
(α, γ, κ) with a probability of 1, i.e., PE0,κ(α, γ) = 1. When searching, it is cru-
cial to ensure that the key difference does not undergo the nonlinear operations
of KS. Subsequently, we search for (β, β′) such that ((γ, γ), (β, β′)) is an r1-round
RT 2

i -IBD of E1 for i = 0, 1, 3 under the key differences (κ, κ, 0, 0). The search
space of ((γ, γ), (β, β′)) is also discussed as above. Consequently, ((α, α), (β, β′))
is an (r0 + r1)-round RK-IBD under the key differences (κ, κ, 0, 0).

In the four related-keys setting. Given a block cipher E = E2 ◦E1 ◦E0, the
search strategy for RT 4

i -IBD for i = 0, 1, 3 under the key differences κ0, κ1, κ2
and κ3 = κ0⊕κ1⊕κ2 are as follows. Firstly, we search for 2 r0-round related-key
differentials (α, γ, κ0) of E0 and (α′, γ′, κ1) of E2, and 2 r2-round related-key
differentials (β, δ, κ2) and (β′, δ′, κ3) with a probability of 1, i.e.,

PE0,κ0
(α, γ) = 1, PE0,κ1

(α′, γ′) = 1, P(E2)−1,κ2
(β, δ) = 1, P(E2)−1,κ3

(β′, δ′) = 1.
(1)

However,it proves to be challenging in practice when directly searching for E-
quation (1) while satisfying relation κ3 = κ0 ⊕ κ1 ⊕ κ2. To address this issue,
the linear key schedule offers definitive differences of round keys as KSi(κj) for
i = 0, . . . , r− 1 and j = 0, 1, 2, 3, which subsequently aids in managing the elim-
ination of state differences in E0. Therefore, in the four related-keys setting, we
focus exclusively on the block ciphers with linear key schedule.
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Subsequently, we verify whether ((γ, γ′), (δ, δ′)) is an r1-round RT 4
i -IBD for

i = 0, 1, 3 under the key differences (κ0, κ1, κ2, κ3) with κ3 = κ0 ⊕ κ1 ⊕ κ2; if so,
then ((α, α′), (β, β′)) is an (r0 + r1 + r2)-round RT 4

i -IBD for i = 0, 1, 3 under
the key differences (κ0, κ1, κ2, κ3) with κ3 = κ0 ⊕ κ1 ⊕ κ2.

Here, we also present some general techniques.

Searching strategy: When the search for (RK-)IBDs relying solely on state propa-
gation is extremely time-consuming, we can employ differential propagation (with
no longer a probability of 1) for a certain number of rounds in the beginning or end
of the distinguishers, that is, employing a mixture of state propagation and differ-
ential propagation. An example is given in Section 6.1 for searching for RK-IBDs
on DES.

Verifying strategy: To compensate for the limitations of manual verification, we
employ some techniques of computer-aided verification of (RK-)IBDs given in Ap-
pendix F, where the computer can play the roles of detecting the contradiction
location and traversing all possible trails for disproving the (RK-)IBDs.

Comparison of RK-IBDs and RK-IDs. A related-key ID (RK-ID) is a pair of differ-
ence (α, β) such that the input difference α cannot propagate to the output difference
β under the key difference κ. In comparison to RK-IDs, RK-IBDs present advantages
in two folds. Firstly, regarding the search for the distinguisher itself and considering
the two related-key setting illustrated in Figure 6, in the latter part of the distin-
guisher i.e. after the contradiction, the key difference for RK-IBD is 0. In contrast, the
key difference for RK-ID has undergone extensive diffusion through the KS algorithm
(particularly with respect to nonlinear KS algorithms), making it challenging to control
or eliminate. Consequently, RK-IBDs often accommodates more rounds than RK-IDs.
Secondly, regarding the extension of the distinguisher, the search strategies mentioned
above for RK-IBDs can also be applied to RK-IDs. However, for block ciphers with
linear key schedules, it is necessary to extend both E0 and E2 under the same key
difference within RK-IDs, whereas greater flexibility exists in terms of key differences
within RK-IBDs as show in Figure 7. In other words, equality is no longer required;
only the relation κ3 = κ0 ⊕ κ1 ⊕ κ2 needs to be satisfied. Consequently, it becomes
possible to extend more rounds within RK-IBDs than within RK-IDs.

6 Applications of (RK-)IBDs

In this section, we apply our method to search for (RK-)IBDs on 8 block ciphers
involving 3 main structures as follows:

SPN: AES (large S-box), PRESENT-80 (bit-permutation), PRINTcipher (Keyed per-
mutation), GIFT;

Feistel: DES (non-injective S-box), GOST;
ARX: SPECK, CHAM.

Specifically, we search for IBDs on AES, PRESENT-80, PRINTcipher and DES,
as well as search for RK-IBDs on AES, SPECK with nonlinear KS, and DES,
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Fig. 6: A schematic in the two
related-keys setting

Fig. 7: A schematic in the four related-
keys setting

†Here D denotes a related-key differential with a probability of 1.

GOST, GIFT, CHAM with linear KS. This is the first time that RK-IBDs
has been provided for other block ciphers except AES. We present brief
descriptions of these block ciphers in Appendix D, examples of searched IBDs
in Appendix E, and their verifications in Appendix F.

The experiments in this paper were conducted on the AMD(R) @2.60GHz
platform with 80.00G RAM, running a 64-bit Ubuntu18.04 system. All timing
is attributed to the spent on searching for a distinguisher using a single core.

6.1 Applications of IBDs in the single-key setting

-AES [34] (Description: Appendix D.1; Distinguisher Example 1)

Configurations. As AES is built with 8-bit S-boxes with excellent cryptographic prop-
erties, making the search for Ti-IBDs (i = 1, 2, 3) extremely time-consuming. Therefore,
our focus shifts to searching for T0-IBDs that treat the S-boxes as a permutation by
Algorithm 1. This allows us to evaluate truncated IBDs only (Type-3). Consequent-
ly, we search for 1 active byte truncated T0-IBDs on AES, in a search space size of
164 = 65536.
Results. We establish the absence of 5-round 1 active byte T0-IBDs, requiring about
203.44 hours. Thus, we turn to search for such 4-round 1 active byte T0-IBDs, and
result in all 61440 such IBDs in about 149.04 hours.
Comparison. (1) Currently, the only result for IBDs on AES is some 4-round IBDs
derived by manual derivation [10]. In contrast, our method enables the search for a large
number of 4-round IBDs automatically. (2) Among existing automatic search methods,
only UB-method [30] can be used to search for IBDs on AES. However, this original
UB-method treats the Mixcolumn operation merely as a permutation. We implement
this method and find that it returns truncated IBDs within above search space no more
than 2 rounds. Subsequently, we extend this method by incorporating the constraints
on the branch number of the MDS matrix. As a result, it returns 61440 3-round 1 active
byte T0-IBDs but fails to find any such IBDs beyond 3 rounds. The primary reason
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these tools do not achieve the same level of performance as we do is that our approach
is the first to enable the search for IBDs of block ciphers with large S-boxes
considering the details of linear layers. (3) On AES, the maximum number of
rounds of IDs is 4 [34], and no 5-round ID exists as proven in [42]. Thus, the number
of rounds of IBDs we found is the same as the maximum number of rounds of IDs.

-DES [35] (Description: Appendix D.2; Distinguisher Example 2)

Configurations. Our experimental results indicate that searching for T2-IBDs or T3-
IBDs for more than 7 rounds is excessively time-consuming. Therefore, our focus lies in
searching for 1 active bit T1-IBDs (Type-1) by Algorithm 1. As DES employs the Feistel
network, we restrict two input differences to be activated only in the left branch and
two output differences to be activated only in the right branch. This choice enables us
to propagate the difference forward and backward through one round with a probability
of 1. Additionally, either two input differences or two output differences are required
to be identical. The size of the search space is 2× 323 = 216.
Results. We establish the absence of 8-round 1 active bit T1-IBDs within above search
space, requiring about 372.38 hours. Thus, we turn to search for the 7-round 1 active
bit T1-IBDs, and result in 1904 such IBDs in around 327.64 hours.
Comparison. (1) Currently, BCL-method [32] is the only approach on IBDs for Feistel-
network block ciphers. However, this approach is limited to quadratic round functions
and is not applicable to DES. Consequently, our approach is the first to enable
the search for IBDs of block ciphers that employ the Feistel network with
arbitrary round functions. (2) To compare with IDs, we employ ST-method [20]
to search IDs by constraining input difference and output difference to 1 active bit
difference. As a result, we find 7-round IDs and ascertain the absence of 8-round IDs
within such search spaces. Consequently, the number of rounds of IBDs obtained aligns
with the maximum known number of rounds for IDs.

-PRESENT-80 [36] (Description: Appendix D.3; Distinguisher Example 3)

Configurations. We search for 1 active nibble T3-IBDs (Type-2) directly by Algo-
rithm 2, with the restriction that only the first S-box of the input two and output two
differences are active. The size of the search space is 154 = 50625.
Results. We establish the absence of 7-round T3-IBDs in above search space, requiring
about 24.52 hours. Thus, we turn to search for 6-round 1 active nibble T3-IBDs, and
result in 58 such IBDs in about 7.13 hours. To investigate the inclusion relationships
given in Summary 1 academically, we test whether these T3-IBDs are Ti-IBDs (0 ≤ i ≤
2), and result in that all of these T3-IBDs are T2-IBDs, but not T1-IBDs.
Comparison. (1) Since PRESENT utilizes bit permutation, the modeling of its D-
BCT, which includes four 4-bit S-boxes, is extremely challenging. Consequently, all
existing methods are not applicable for searching for IBDs on PRESENT. Our ap-
proach is the first to enable the search for IBDs of block ciphers that employ
bit permutation. (2) To our knowledge, the maximum number of rounds of IDs is
6 [43], and there are no 7-round 1 bit active nibble IDs [21]. Therefore, the number of
rounds of IBDs obtained is identical to the maximum number of rounds of IDs.
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-PRINTcipher48 [37] (Description: Appendix D.4; Distinguisher Example 4)

Configurations. Since PRINTcipher48 employs a key-dependent permutation, we
search for 1 active bit T3-IBDs (Type-1) directly by Algorithm 2. In particular, ei-
ther two input differences or two output differences are restricted to be the same. The
size of the search space is 2× 483 = 221184.
Results. We establish the absence of 6-round T3-IBDs in above search space, requiring
about 40.07 hours. Thus, we turn to search for 5-round 1 active bit T3-IBDs, and result
in 2 such IBDs in about 14.75 hours. To investigate the inclusion relationships given
in Summary 1 academically, we remove the relationship between round keys to test
whether those T3-IBDs are T2-IBDs, and the result is that they are not.
Comparison. (1) Since PRINTcipher48 employs the key-dependent permutation, al-
l existing methods are not applicable to searching for its IBDs. Our approach is
the first to enable the search for IBDs of block ciphers that employ key-
dependent permutation. (2) Hu et al. [21] proposed the 4-round IDs and demon-
strated that there are no 5-round IDs even considering the details of the key schedule.
Consequently, the number of rounds of IBDs is one round more than that of
IDs for PRINTcipher48.

6.2 Applications of RK-IBDs in the related-key setting

-AES-128 [34] (Description: Appendix D.1; Distinguisher Example 5)

Configurations. Since AES employs a non-linear KS, we search for RT 2
0 -IBDs by

Algorithm 1. Similar to the single-key setting, we focus on 1 active byte RT 2
0 -IBDs

(Type-3) with input-output differences ((α, α), (β, β′) where α, β, β′ are 1 active byte
truncated differences under the key differences (κ0, κ1, κ2, κ3) = (α, α, 0, 0). The size
of the search space is 163 = 212.
Results. First, we establish the absence of 6-round RT 2

0 -IBDs in above search space,
requiring about 18.68 hours. Thus, we turn to search for the 5-round 1 active byte
RT 2

0 -IBDs, and result in 768 such IBDs in about 14.44 hours.
Comparison. (1) In [10], J. Lu manually derived some 6-round RK-IBDs for AES-192
and AES-256. However, there have been no results of RK-IBDs for AES-128 until now.
Our method presents the first result of 5-round RK-IBDs for AES-128. (2)
As discussed in the single-key setting, none of the existing methods can match the effec-
tiveness of our approach to search for RK-IBDs on AES, since they cannot consider the
details of linear layers . (3) To compared with the RK-IDs, we use the AS mode in the
ST-method [20] to search for RK-IDs. Specifically, we search for r-round RK-ID with
the input-output difference (α, β) where α, β are 1 active byte truncated differences
under the key differences α. As a result, we find 3-round RK-IDs ascertain the absence
of such 4-round RK-IDs. Consequently, the number of rounds of RK-IBDs is 2
rounds more than that of RK-IDs for AES-128 .

-SPECK [38] (Description: Appendix D.5; Distinguisher Example 6)

Configurations. Since SPECK employs a non-linear KS, we search for the RT 2
3 -

IBDs by adopting the advanced strategy which utilizes related-key differentials with
a probability of 1, as described in Section 5.3. Specifically, we first search for the r0
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related-key differential with a probability of 1, i.e. (α, γ, κ). Then we search for the
β and β′ such that ((γ, γ), (β, β)) is an r1-round RT 2

3 -IBDs under the key differences
(κ0, κ1, κ2, κ3) = (κ, κ, 0, 0), where β, β′ ∈ Λ = {(µ, µ), (0, µ≫b), (µ, µ ⊕ (µ≫b))}.
In this context, ≫b represents circular shift right operation by b bits, where b = 2
for SPECK-32 and b = 3 for other versions; µ is an n/2-bit value for SPECK-n, with
its most significant bit being 1 and all other bits being 0. This choice allows us to go
through the modulo addition operation in the last round with a probability of 1. Then
we obtain r = r0 + r1-round such RT 2

3 -IBDs. The size of the search space is 9.
Results. First, we find SPECK-2w/4w(w = 16, 24, 32, 64) has 1 4-round related-key
differential characteristic with a probability of 1 and SPECK-2w/3w(w = 24, 32, 48, 64)
has 1 3-round related-key differential characteristic with a probability of 1, within a
very short time. Then, we run Algorithm 2 to search the RT 2

3 -IBDs. The results are
presented in Table 3.
Comparison. (1) Since SPECK employs the operation modular addition, all existing
methods are not applicable to searching for IBDs of it. our approach is the first
to enable the search for IBDs of block ciphers that employ modular addi-
tions. (2) To our knowledge, the maximum number of rounds of RK-IDs on SPECK-
2w/4w(w = 16, 24, 32, 64) is 7, as well as that on SPECK-2w/3w(w = 24, 32, 48, 64) is
6 [44]. Thus, the number of rounds of RK-IBDs is one or two rounds more
than that of RK-IDs for each version of SPECK.

Table 3: The RK-IBDs of SPECK in the two related-keys setting.
Block cipher Round (r) Number Time (hours) Compared with IDs
SPECK-32/64 8 6 0.18 1 round more

9 none 0.97 -
SPECK-48/72 7 6 0.06 1 round more

8 none 0.26 -
SPECK-48/96 8 6 0.09 1 round more

9 none 0.60 -
SPECK-64/96 8 4 0.29 2 rounds more

9 none 0.60 -
SPECK-64/128 9 4 0.28 2 rounds more

10 none 0.99 -
SPECK-96/144 8 4 0.22 2 rounds more

9 none 0.65 -
SPECK-128/192 8 4 0.33 2 rounds more

9 none 1.18 -
SPECK-128/256 9 4 0.41 2 rounds more

10 none 1.78 -

-DES [35] (Description: Appendix D.2; Distinguisher Example 7)

Configurations. Since DES employs a linear KS, we search for r-round RT 4
3 -IBDs

by adopting the strategy that utilizes related-key differentials with a probability of
1. Specifically, let F denoted the expand function of DES, we search for the input
differences (αL, αR) and (α′L, α

′
R) and output differences (βL, βR) and (β′L, β

′
R) such

that they are r-round RK-IBDs under the key differences (κ0, κ1, κ2, κ3), where αL =
α′L = βR = β′R = 0, αR, α′R and βL are 1 bit active differences, and β′L = αR⊕α′R⊕βL,
KSrb(κ0)⊕F (αR) = 0,KSrb(κ1)⊕F (α′R) = 0,KSrb+r(κ2)⊕F (βL) = 0, and κ3 = κ0⊕
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κ1⊕κ2, where rb denotes the beginning round of the distinguisher and is set as rb = 0
without loss of generality. Then KSrb+r(κ3) ⊕ F (β′L) = 0 for the linear key schedule.
This choice allows the input differences propagate 2 rounds in the forward direction and
the output differences propagate 2 rounds in the backward direction with a probability
of 1. Thus, we only need to verify whether (((αL, αR), (α

′
L, α

′
R)), ((βL, βR), (β

′
L, β

′
R)))

is (r − 4)-round RK-IBD under the key differences (κ0, κ1, κ2, κ3) by Algorithm 2.
However, direct search is still extremely time-consuming when r ≥ 9. To address this
issue, we propagate the differences (αL, αR) and (α′L, α

′
R) one round at round rb + 3,

an convert it to determine the (r − 5)-round RT 4
3 -IBDs.

Results. We get 14 9-round RK-IBDs in around 137.68 hours.
Comparison. (1) As discussed in the single-key setting, the effectiveness of our ap-
proach is unparalleled as it enables the search for IBDs of block ciphers employing
Feistel structure with arbitrary round functions, a capability not found in any existing
method. (2) In comparison with RK-IDs, we also make use of the ST-method [20],
which takes into account the details of the propagation of differences to search for RK-
IDs. Specifically, we search for the RK-ID ((θL, θR), (ηL, ηR)) under the key difference
κ′, where θ and η are 1 active bit differences and KSrb(κ′) ⊕ F (θR) = 0 accordingly.
Specifically, we just obtain 8-round RK-IDs and no 9-round RK-IDs exists in above
search space. Thus, the number of rounds of RK-IBDs is 1 round more than
that of RK-IDs on DES .

-GIFT [39] (Description: Appendix D.6; Distinguisher Example 8)

Configurations. Since GIFT employs a linear KS, we search for r-round RK4
3 -IBDs by

adopting the strategy that utilizes related-key differentials with a probability of 1 by Al-
gorithm 2. Specifically, for GIFT-64, we search for RK4

3 -IBDs under the key differences
(κ0, κ1, κ2, κ3) = (λ, λ, η, η) by setting the input differences (α, α′) = (KSrb(λ),KSrb(λ))
and output differences (β, β′) = (KSrb+r(η),KSrb+r(η)), where rb denotes the begin-
ning round of the distinguisher and is set as rb = 0 without loss of generality. This
choice allows the input differences propagate 4 rounds in the forward direction and the
output differences propagate 4 rounds in the backward direction with a probability of
1. Thus, we only need to verify whether ((0, 0), (0, 0)) is (r − 8)-round RK-IBD under
the key differences (λ, λ, η, η). Moreover, we set the value of λ such that only one S-box
is activated at round (rb+5), and the value of η such that only one S-box is activated
at round (rb+r−5), which facilitates the search for distinguishers with a large number
of rounds. The size of the search space is (16× 3)2 = 2034. We apply the same method
to GIFT-128 and the size of the search space is (32× 3)2 = 9216.
Results. The results obtained are presented in Table 4.
Comparison. (1) Similar to PRESENT, GIFT utilizes bit permutation, making it
challenging to search for RK-IBDs using previous methods. (2)In comparison with
IDs, Hu et al. [44] proposed 48 12-round RK-IDs and proved that no more round
distinguisher exists for GIFT-64, as well as proposed 96 10-round RK-IDs and proved
that no more round distinguisher exists for GIFT-128. To our knowledge, these are
currently the best results achieved for RK-IDs on GIFT. Thus, the number of rounds
of RK-IBDs is 1 round more than that of RK-IDs on GIFT-64. And for
GIFT-128, the number of rounds of RK-IBDs we obtained is the same as the maximum
number of rounds of RK-IDs; however, there are more instances of RK-IBDs compared
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Table 4: The RK-IBDs of GIFT in the four related-keys setting.
Block cipher Round(r) Number Time(hours) Compared with IDs
GIFT-64 13 48 0.51 1 round more

14 none 1.91 -
GIFT-128 10 373 3.71 same rounds, distinguishers more

11 none 32.15 -

to those RK-IDs.

-CHAM [40] (Description: Appendix D.7; Distinguisher Example 9)

Configurations. Since CHAM employs a linear KS, we search for the RT 4
3 -IBDs by

adopting a strategy that utilizes related-key differentials with a probability of 1. With-
out loss of generality, we assume that the distinguisher starts from round 0. We search
for (α0, αr0), an r0-round related-key differential characteristic with a probability of 1
under the key difference µ, and (αr0+r1+r2 , αr0+r1), an r2-round related-key differential
characteristic with a probability of 1 under the key difference ν, where αi denotes the
difference at round i. Subsequently, we verify whether ((αr0 , αr0), (αr0+r1 , αr0+r1)) is
an r1-round RT 4

3 -IBD under the key differences κ0 = κ1 = µ, κ2 = κ3 = ν by Algorith-
m 2; if so, then ((α0, α0), (αr0+r1+r2 , αr0+r1+r2)) is an r = r0 + r1 + r2-round RK-IBD
under the above key difference.
Results. The results obtained are presented in Table 5.
Comparison. (1) To date, no existing methods have been able to find the RK-IBDs on
CHAM due to its adoption of modular additions. (2) In comparison with RK-IDs, Hu
et al. [44] proposed 48 12-round RK-IDs and proved that no more-round distinguisher
exists for GIFT-64, as well as proposed 96 10-round RK-IDs and proved that no more-
round distinguisher exists for GIFT-128. To our knowledge, the maximum number of
rounds of RK-IDs of CHAM-64/128 and CHAM-128/256 are all 26 [44]. Thus, the
number of rounds of RK-IBDs is 4 rounds and 2 rounds more than that of
RK-IDs of CHAM-64/128 and CHAM-128/256 respectively.

Table 5: The RK-IBDs of CHAM in the four related-keys setting.
Block cipher Round(r) Number Time(hours) Compared with IDs
CHAM-64/128 30 3 0.15 4 round more

31/32 none 0.22 -
CHAM-128/256 28 4 0.48 2 round more

29/30 none 0.63 -

-GOST [41] (Description: Appendix D.8; Distinguisher Example 10)

Configurations. Since GOST employs a linear KS, we search for RT 4
3 -IBDs by adopt-

ing the strategy that utilizes related-key differentials with a probability of 1 by Al-
gorithm 2. Specifically, according the KS, the key difference κi can be write as κi =
κi,7|| . . . ||κi,0, where κi,j(0 ≤ j ≤ 7) is a 32-bit value. As shown in Figure 28, Figure 29,
Figure 30 and Figure 31, GOST has 24-round related-key differential characteristics
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and 7-round related-key differential characteristics with a probability of 1. To make
good use of this property, we position the distinguisher in rounds from 23 to 25 and
search for the value of κ2,7 with κ0,7 = 0x800000000, κ1,7 = 0x000000000, κ3,7 = κ0,7⊕
κ1,7⊕κ2,7, such that (((0x00000000, 0x80000000), (0x80000000, 0x00000000)), ((0x800
00000, 0x00000000), (0x00000000, 0x80000000))) is an 2-round RT 4

3 -IBDs. This enables
us to extend the distinguisher to the full rounds. Specifically, we impose a restriction
that only 1 bit is active in κ2,7. The size of the search space is 32.
Results. We found two 2-round RT 4

3 -IBDs for both GOST-FB and GOST-PS within
5 minutes. Specifically, it requires κ2,7 = 0x40000000 or κ2,7 = 0x20000000. These
two RT 4

3 -IBDs can be extended to full-round distinguishers for both GOST-FB and
GOST-PS.
Comparison. (1) To date, no existing methods have been able to find the RK-IBDs
on GOST due to its adoption of modular additions. To our knowledge, this is the
first full-round RK-IBDs on GOST . (2) Since our distinguisher is full-round, we
do not compare it with other distinguishers anymore.

7 Conclusion and Future Work

In this paper, we explore the construction theory of IBDs in both single-key
and related-key settings. Additionally, we develop a SAT-based tool with novel
strategies to automatically search for IBDs on various block ciphers, including
SPN, Feistel-network, and ARX designs. The results obtained for the first time
demonstrate that our approach overcomes all limitations of current search meth-
ods for IBDs and further reveals that the number of rounds of an IBD is more
than that of an ID in many block ciphers. Consequently, resistance against IBA
becomes a crucial consideration in block cipher design.

It should be noted that our work only focuses on the search method for basic
IBDs with two input differences and two output differences. A more general-
ized boomerang distinguisher can involve multiple input differences and output
differences; however, this aspect remains to be explored in future research.
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A Constructing IBDs Based on Generalized BCTs for
Other Structure Block Ciphers

A.1 Constructing IBDs based on generalized BCTs for
Feistel-network block ciphers

The incompatibility of boomerang distinguishers resulting from the dependence
in Feistel-network block ciphers was observed by Boukerrou et al. [27]. To address
this problem, they extended the BCT and BDT to Feistel-network and proposed
the concepts of FBCT, FBDT, and FBET. For constructing IBDs, we generalize
the definition of FBCT and FBDT, and define GFBCT and GFUBCT/GFLBCT
accordingly. Additionally, the generalized table of FEBCT is, in fact, defined
identically to that of GEBCT.
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Definition 18. Given nine differences µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′ ∈ Fn2 where ρ′ = µ⊕µ′⊕ρ,
ϕ′ = θ⊕ θ′⊕ϕ), the GFBCT, GFUBCT and GFLBCT for an n-bit S-box is defined as

GFBCT(µ, µ′, ρ, ρ′, η) = #

 (x0, x1, x2, x3) ∈ {0, 1}4n

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

x1 ⊕ x2 = ρ
x2 ⊕ x3 = ρ′

⊕3
i=0S(xi) = η

 ,

GFUBCT(µ, µ′, ρ, ρ′, θ, θ′, η) = #


(x0, x1, x2, x3) ∈ F4n

2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

x1 ⊕ x2 = ρ
x2 ⊕ x3 = ρ′

⊕3
i=0S(xi) = η

S(x0)⊕ S(x1) = θ
S(x2)⊕ S(x3) = θ′


,

GFLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′, η) = #


(x0, x1, x2, x3) ∈ F4n

2

x0 ⊕ x1 = µ
x2 ⊕ x3 = µ′

x1 ⊕ x2 = ρ
x2 ⊕ x3 = ρ′

⊕3
i=0S(xi) = η

S(x1)⊕ S(x2) = ϕ
S(x0)⊕ S(x3) = ϕ′


.

A schematic diagram for these generalized BCTs is shown in Figure 8. To il-

Fig. 8: The illustration of differential propagation rule through S-boxes in E
based on GFBCT

lustrate the relations of these generalized tables, we introduce some notations
accordingly.

Notation 1. For an n-bit Feistel-network block cipher E, let x = (xL‖xR) ∈ Fn2 be
E’s state, where xL (resp. xR) denotes the state of E’s left (resp. right) branch. Let
γ, γ′, η, η′ ∈ Fn2 be four input differences and ω, ω′, δ, δ′,∈ Fn2 be four output differences
of E. Then,
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1. (γ, γ′)
GFBCT−−−−−→ (δ, δ′) represents that the propagation rule through S-boxes follows

GFBCT. Specifically, for an E as shown in Figure 8, let γ = γL||γR, γ′ = γ′L||γ′R,
δ = δL||δR, δ′ = δ′L||δ′R, and LL1(γL) = (at−1, . . . , a0), LL1(γL′) = (a′t−1, . . . , a

′
0),

LL1(δR) = (bt−1, . . . , b0), LL1(δ
′
R) = (b′t−1, . . . , b

′
0), LL−1

2 (γR ⊕ γ′R ⊕ δL ⊕ δ′L) =
(ct−1, . . . , c0), where LLi for i = 1, 2 are linear layers and there are t S-boxes in
SL. Thus ai, a′i, bi, b′i and ci are the differences corresponding to GFBCT of the
i-th S-box for i = 0, . . . , t − 1. Then, (γ, γ′) GFBCT−−−−−→ (δ, δ′) is equivalent to that
there exists i ∈ {0, . . . , t− 1} such that GFBCT(ai, a

′
i, bi, b

′
i, ci) 6= 0.

2. (γ, γ′)
GFUBCT−−−−−−→ (ω, ω′, δ, δ′) represents that the propagation rule through S-boxes

follows GFUBCT, which is equivalent to that (γ, γ′) GFBCT−−−−−→ (δ, δ′) and (γ, γ′)
UDDT−−−−→

(ω, ω′).
3. (γ, γ′, η, η′)

GFLBCT−−−−−−→ (δ, δ′) represents that the propagation rule through S-boxes
follows GFLBCT, which is equivalent to that (γ, γ′) GFBCT−−−−−→ (δ, δ′) and (η, η′)

LDDT−−−−→
(δ, δ′).

4. (γ, γ′, η, η′)
GEBCT−−−−−→ (ω, ω′, δ, δ′) represents that the propagation rule through S-

boxes follows GEBCT, which is equivalent to that (γ, γ′)
GFUBCT−−−−−−→ (ω, ω′, δ, δ′)

and (γ, γ′, η, η′)
GFLBCT−−−−−−→ (δ, δ′).

Theorem 8. The table UDDT,LDDT,GFBCT,GFUBCT, GFLBCT,GEBCT have
the following relations:

1. If (γ, γ′) GFBCT−−−−−→ (δ, δ′), then ∃η, η′, ω, ω′, s.t. (γ, γ′) UDDT−−−−→ (ω, ω′) and (η, η′)
LDDT−−−−→

(δ, δ′).
2. If (γ, γ′) GFUBCT−−−−−−→ (ω, ω′, δ, δ′), then ∃η, η′, s.t. (γ, γ′) UDDT−−−−→ (ω, ω′) and (η, η′)

LDDT−−−−→
(δ, δ′).

3. If (γ, γ′, η, η′) GFLBCT−−−−−−→ (δ, δ′), then ∃ω, ω′, s.t. (γ, γ′) UDDT−−−−→ (ω, ω′) and (η, η′)
LDDT−−−−→

(δ, δ′).
4. If (γ, γ′, η, η′) GEBCT−−−−−→ (ω, ω′, δ, δ′), then (γ, γ′)

UDDT−−−−→ (ω, ω′) and (η, η′)
LDDT−−−−→

(δ, δ′), (γ, γ′) GFUBCT−−−−−−→ (ω, ω′, δ, δ′) and (γ, γ′, η, η′)
GFLBCT−−−−−−→ (δ, δ′).

We also consider a hybrid use of UDDT, LDDT, GFBCT, GFUBCT, GFLBCT
and GEBCT to construct IBDs.

Definition 19. Let E be a block cipher with t S-boxes (S0, . . . , St−1) in total. Define
APFE = {(p0, . . . , pt−1)|pi ∈ {UDDT,LDDT,GFBCT,GFUBCT, GFLBCT, GEBCT}}
as a set of propagation rules. Then P = (p0, . . . , pt−1) ∈ APFE, denotes that the propa-
gation rule through the i-th S-box follows pi.

Definition 20. Let E = Er−1,rkr−1 ◦ · · · ◦ E0,rk0(x) be an r-round block cipher. Let
P = (P0, . . . , Pr−1) be a predefined propagation rule of E, where Pi ∈ APFEi,rki

denotes
a propagation rule of Ei,rki for i ∈ {0, . . . , r − 1}. Let εi0, εi1, εi2, εi3 be the four input
differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output differences of the round function

Ei,rki for i ∈ {0, . . . , r− 1}. For two input differences α, α′ and two output differences
β, β′ of the block cipher E, if there exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−−→ · · ·
Pr−1−−−→ (εr0, ε

r
1 = β, εr2, ε

r
3 = β′),

then it is called an r-round TFP boomerang trail. Here, Pi−→ represents that the propaga-
tion rule through S-boxes in Ei,rki follows Pi.
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Accordingly, we have the following construction.
Construction 9 (TFP -IBD). Given an r-round block cipher E and a predefined rule
P ∈ APFE, for two input differences α, α′ and two output differences β, β′, if there is
no r-round TFP boomerang trail, then ((α, α′) , (β, β′)) is an IBD, called an r-round
TFP -IBD.

T1-IBD is a special example of TSP -IBD.
Theorem 9. For any predefined rule P ∈ APFE, an r-round T1-IBD ((α, α′) , (β, β′))
is an r-round TFP -IBD.

Theorem 8 demonstrates that GEBCT in Feistel-network block ciphers has a
similar status in SPN block ciphers. Additionally, the definition of TC-IBD is
also applicable to Feistel-network block ciphers, Furthermore, TC-IBD is also a
special case of TFP -IBD.
Theorem 10. For any predefined rule P ∈ APFE, an r-round TFP -IBD ((α, α′) , (β, β′))
is an r-round TC-IBD.

In addition to the above relationship, we can prove that the definition of TC-
IBD is equivalent with that of T2-IBD within Feistel-network block ciphers. A
schematic diagram is shown in Figure 10.
Theorem 11. Given an Feistel-network block cipher, ((α, α′) , (β, β′)) is an r-round
TC-IBD if and only if it is an r-round T2-IBD.

B Proofs

Theorem 1
Proof (proof by contradiction). If an r-round T0-IBD ((α, α′) , (β, β′)) is not an r-round
T1-IBD, there must exist one r-round T1 boomerang trail:

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′),

which is an r-round T0 boomerang trail. Thus, ((α, α′), (β, β′)) is neither an r-round
T0-IBD. ut

Theorem 2
Proof (proof by contradiction). According to the definitions, an r-round T2 boomerang
trail is also an r-round T3 boomerang trail. ut

Theorem 3
Proof. (Definition 7⇒ Construction 4) Let ((α, α′) , (β, β′)) be an r-round IBD, then
any pair of plaintexts (x0, x3) cannot simultaneously satisfy Ek(x0)⊕Ek(x3) = β and
Ek(x0 ⊕ α) ⊕ Ek(x3 ⊕ α′) = β′. If ((α, α′) , (β, β′)) is not an r-round T3-IBD. Let
x00 = x0, x01 = x0 ⊕ α, x03 = x3, x02 = x3 ⊕ α′, there exist an r-round T3 boomerang
trail (x00, x01, x02, x03)→ · · · → (xr0, x

r
1, x

r
2, x

r
3), where xr1⊕xr2 = β and xr0⊕xr3 = β′. Thus

Ek(x0)⊕ Ek(x3) = β and Ek(x0 ⊕ α)⊕ Ek(x3 ⊕ α′) = β′, which is a contradiction.
(Construction 4⇒ Definition 7) Let ((α, α′) , (β, β′)) be an r-round T3-IBD. then

there is not any r-round T3 boomerang trail (x00, x01, x02, x03) → · · · → (xr0, x
r
1, x

r
2, x

r
3).

Thus, any pair of (x00, x03) cannot simultaneously meet Ek(x00)⊕Ek(x03) = β and Ek(x00⊕
α)⊕ Ek(x03 ⊕ α′) = β′, which is according with Definition 7. ut
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Theorem 5

Proof (proof by contradiction). If ∃P ∈ APSE and an r-round T1-IBD ((α, α′) , (β, β′))
such that it is not an r-round TSP -IBD, there must exist at least one r-round TSP

boomerang trail: (ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−−→ · · ·
Pr−1−−−→ (εr0, ε

r
1 = β, εr2, ε

r
3 = β′). Based

on the relations of tables in Theorem 4, it is also an r-round T1-IBD boomerang trail.
Thus, ((α, α′) , (β, β′)) is neither an r-round TSP -IBD. ut

Theorem 6

Proof (proof by contradiction). If an r-round TSP -IBD ((α, α′) , (β, β′)) is not an r-round
TC-IBD, there must exist at least one r-round TC boomerang trail: (ε00, ε01, ε02, ε03)

GEBCT−−−−→
· · · GEBCT−−−−→ (εr00 , ε

r0
1 , ε

r0
2 , ε

r0
3 )

GEBCT−−−−→ (εr0+1
0 , εr0+1

1 , εr0+1
2 , εr0+1

3 )
GEBCT−−−−→ · · · GEBCT−−−−→

(εr0, ε
r
1, ε

r
2, ε

r
3). Based on the relations of tables in Theorem 4, it is also an r-round

TSP boomerang trail. Thus, ((α, α′) , (β, β′)) is neither an r-round TC-IBD. ut

Theorem 7

Proof. This is equivalent to prove that (ε00, ε
0
1, ε

0
2, ε

0
3)

AddKey→ (γ0
0 , γ

0
1 , γ

0
2 , γ

0
3)

GEBCT→
(δ00 , δ

0
1 , δ

0
2 , δ

0
3)

LL→ (ε10, ε
1
1, ε

1
2, ε

1
3)

AddKey→ · · · GEBCT→ (δr−1
0 , δr−1

1 , δr−1
2 , δr−1

3 ) is an r-round
TC boomerang trail if and only if (x00, x01, x02, x03)

AddKey→ (y00 , y
0
1 , y

0
2 , y

0
3)

SL→ (z00 , z
0
1 , z

0
2 , z

0
3)

LL→ (x10, x
1
1, x

1
2, x

1
3)

AddKey→ · · · SL→ (zr−1
0 , zr−1

1 , zr−1
2 , zr−1

3 ) is an r-round T2 boomerang
trail, where α = ε00, α

′ = ε02, β = εr−1
1 , β′ = εr−1

3 , and α = x00 ⊕ x01, α
′ = x02 ⊕ x03,

β = zr−1
1 ⊕ zr−1

2 and β′ = zr−1
0 ⊕ zr−1

3 . In particular, we prove this in the case
of r = 3. The other cases can be proved analogously. Suppose (ε00, ε

0
1, ε

0
2, ε

0
3)

AddKey→
(γ0

0 , γ
0
1 , γ

0
2 , γ

0
3)

GEBCT→ (δ00 , δ
0
1 , δ

0
2 , δ

0
3)

LL→ (ε10, ε
1
1, ε

1
2, ε

1
3)

AddKey→ · · · GEBCT→ (δ20 , δ
2
1 , δ

2
2 , δ

2
3)

is an 3-round TC boomerang trail. Since (γi0, γ
i
1, γ

i
2, γ

i
3)

SL, GEBCT→ (δi0, δ
i
1, δ

i
2, δ

i
3), there

exists (yi0, yi1, yi2, yi3) and (zi0, z
i
1, z

i
2, z

i
3), such that

yi0 ⊕ yi1 = γi0, y
i
1 ⊕ yi2 = γi1, y

i
2 ⊕ yi3 = γi2, y

i
0 ⊕ yi3 = γi3,

zi0 ⊕ zi1 = δi0, z
i
1 ⊕ zi2 = δi1, z

i
2 ⊕ zi3 = δi2, z

i
0 ⊕ zi3 = δi3.

Let x0i = y0i ⊕ rk0 (0 ≤ i ≤ 3) and rkj = LL(zj−1
x ) ⊕ yji (0 ≤ i ≤ 3, j = 1, 2),

then (x00, x
0
1, x

0
2, x

0
3)

AddKey→ (y00 , y
0
1 , y

0
2 , y

0
3)

SL→ (z00 , z
0
1 , z

0
2 , z

0
3)

LL→ (x10, x
1
1, x

1
2, x

1
3)

AddKey→
· · · SL→ (zr−1

0 , zr−1
1 , zr−1

2 , zr−1
3 ) is an 3-round T2 boomerang trail. The above process is

invertible. ut

Theorem 8

Proof. As shown in Figure 9, let li be the linear function of LLi(i = 1, 2), γ = γL||γR,
γ′ = γ′L||γ′R, δ = δL||δR, and δ′ = δ′L||δ′R. (at−1, . . . , a0) = l1(γL), (a′t−1, . . . , a

′
0) =

l1(γL′), (bt−1, . . . , b0) = l1(δR), (b′t−1, . . . , b
′
0) = l1(δ

′
R), and (ct−1, . . . , c0) = l−1

2 (γR ⊕
γ′R ⊕ δL ⊕ δ′L), where ai, a′i, bi, b′i and ci are the input or the output difference of the
S-box in SL and t is the number of the S-boxes in SL. For the input differences ai
and a′i, according to the definition of GFBCT, there exist output differences di and d′i,
such that ai propagates to di and ai propagates to di, and di ⊕ d′i = ci(0 ≤ i ≤ t− 1).
Let λ = l2((dt−1, . . . , d0)) and λ′ = l2((d

′
t−1, . . . , d

′
0)), then γR⊕γ′R⊕ δL⊕ δ′L = λ⊕λ′.

Therefore, there exist λ and λ′ with γR⊕γ′R⊕δL⊕δ′L = λ⊕λ′, such that the difference
γ can propagate to the difference (γR ⊕ λ)||γL, and the difference γ′ can propagate to
the difference (γ′R ⊕ λ′)||γ′L. That is, (γ, γ′) UDDT−−−−→ ((γR ⊕ λ)||γL, γ′R ⊕ λ′)||γ′L). For
other relations, we can prove them similarly.
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Fig. 9: The relation between GFBCT and UDDT

Theorem 9

Proof (proof by contradiction). If ∃P ∈ APFE and an r-round T1-IBD ((α, α′) , (β, β′))
such that it is not an r-round TFP -IBD, there must exist at least one r-round TFP

boomerang trail: (ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−−→ · · ·
Pr−1−−−→ (εr0, ε

r
1 = β, εr2, ε

r
3 = β′). Based

on the Theorem 8, the TFP boomerang trail is also an r-round T1-IBD boomerang trail.
Thus, ((α, α′) , (β, β′)) is neither an r-round TFP -IBD. ut

Theorem 10

Proof (proof by contradiction). If an r-round TFP -IBD ((α, α′) , (β, β′)) is not an r-round
TC-IBD, there must exist at least one r-round TC boomerang trail: (ε00, ε01, ε02, ε03)

GEBCT−−−−→
· · · GEBCT−−−−→ (εr00 , ε

r0
1 , ε

r0
2 , ε

r0
3 )

GEBCT−−−−→ (εr0+1
0 , εr0+1

1 , εr0+1
2 , εr0+1

3 )
GEBCT−−−−→ · · · GEBCT−−−−→

(εr0, ε
r
1, ε

r
2, ε

r
3). Based on the Theorem 8, it is also an r-round TSP boomerang trail.

Thus, ((α, α′) , (β, β′)) is neither an r-round TC-IBD. ut

Theorem 11

Proof. This is equivalent to prove that ((ε00, ε01, ε02, ε03), (ω0
0 , ω

0
1 , ω

0
2 , ω

0
3))

GEBCT→ · · · GEBCT→
· · · GEBCT→ ((εr0, ε

r
1, ε

r
2, ε

r
3), (ω

r
0 , ω

r
1 , ω

r
2 , ω

r
3)) is an r-round TC boomerang trail if and only

if ((x00, x01, x02, x03), (y00 , y01 , y02 , y03)) → · · · → · · · → ((xr0, x
r
1, x

r
2, x

r
3), (y

r
0 , y

r
1 , y

r
2 , y

r
3)) is an

r-round T2 boomerang trail, where (αL, αR) = (ε00, ω
0
0), (α

′
L, α

′
R) = (ε02, ω

0
2), (βL, βR) =

(εr1, ω
r
1), and (β′L, β

′
R) = (εr3, ω

r
3), and (αL, αR) = (x00 ⊕ x01, y00 ⊕ y01), (α′L, α′R) = (x02 ⊕

x03, y
0
2⊕y03), (βL, βR) = (xr0⊕xr2, yr0⊕yr2), and (β′L, β

′
R) = (xr1⊕xr3, yr1⊕yr3). In particular,

we prove this in the case of r = 3. The other cases can be proved analogously. Suppose
((ε00, ε

0
1, ε

0
2, ε

0
3), (ω

0
0 , ω

0
1 , ω

0
2 , ω

0
3))

GEBCT→ · · · GEBCT→ · · · GEBCT→ ((ε30, ε
3
1, ε

3
2, ε

3
3), (ω

3
0 , ω

3
1 , ω

3
2 , ω

3
3))

is an 3-round TC boomerang trail. For 0 ≤ i ≤ 2, since (γi0, γ
i
1, γ

i
2, γ

i
3)

SL, GEBCT→
(δi0, δ

i
1, δ

i
2, δ

i
3), there exists (ui0, ui1, ui2, ui3) and (vi0, v

i
1, v

i
2, v

i
3), such that

ui0 ⊕ ui1 = γi0, u
i
1 ⊕ ui2 = γi1, u

i
2 ⊕ ui3 = γi2, u

i
0 ⊕ ui3 = γi3,

vi0 ⊕ vi1 = δi0, v
i
1 ⊕ vi2 = δi1, v

i
2 ⊕ vi3 = δi2, v

i
0 ⊕ vi3 = δi3.

Let lj be the linear function of LLj(j = 1, 2), (zi0, z
i
1, z

i
2, z

i
3) = l−1

1 (ui0, u
i
1, u

i
2, u

i
3),

and (wi0, w
i
1, w

i
2, w

i
3) = l2(v

i
0, v

i
1, v

i
2, v

i
3). Then zi0 ⊕ zi1 = xi0 ⊕ xi1, zi1 ⊕ zi2 = xi1 ⊕ xi2,

zi2⊕zi3 = xi2⊕xi3, and zi0⊕zi3 = xi0⊕xi3. Let rki = xi0⊕zi0, then rki = xij⊕zij(0 ≤ j ≤ 3).
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Fig. 10: The equivalence between TC-IBD and T2-IBD in Feistel-network

Let xi+1
j = wij ⊕ yij(0 ≤ j ≤ 3), then ((x00, x

0
1, x

0
2, x

0
3), (y

0
0 , y

0
1 , y

0
2 , y

0
3)) → · · · → · · · →

((x30, x
3
1, x

3
2, x

3
3), (y

3
0 , y

3
1 , y

3
2 , y

3
3)) is an r-round T2 boomerang trail. The above process is

invertible. ut

C The Algorithm of Searching for (RK-)IBDs

C.1 The algorithm of searching for the (RK-)IBDs from the aspect
of differential propagation

A brief illustration to Algorithm 1 is provided as follows.

- As our experimental observations indicate that contradictions of IBDs may occur at
different rounds; hence we have made ru as a input parameter in Algorithm 1.

- Line 4-7: Function BuildUpDP(r, x, z, kx, kz) forms the relations of differential prop-

agation of x E0,kx−−−−→ z and kx
U0

KS−−−→ kz; Function BuildLowDP(r, y, z, kx, kz, ky)

forms the relations of differential propagation of y
(E1)−1,kx−−−−−−−→ z, kx

U0
KS−−−→ kz and

kx
UKS−−−→ ky according to the differential propagation rule, where x, z, y denote the

variables for state difference of E, and kx, kz, ky denote the variables for state
difference of KS.
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Algorithm 1: Identifying (R)T0-IBD or (R)T1-IBD
Input: input differences (α, α′), output differences (β, β′), key differences

(κ0, κ1, κ2, κ3), E’s round number r, E0’s round number ru
Output: Model C

1 Declare six variables of input differences x01, x23, kx01, kx23, kx12, kx03
and four variables of output differences y12, y03, ky12, ky03; Declare eight
intermediate variables of differences z01, z23, z12, z03 and
kz01, kz23, kz12, kz03

2 C0 = BuildUpDP(ru, x01, z01, kx01, kz01)
3 C1 = BuildUpDP(ru, x23, z23, kx23, kz23)
4 C2 = BuildLowDP(r − ru, y12, z12, kx12, kz12, ky12)
5 C2 = BuildLowDP(r − ru, y03, z03, kx03, kz03, ky03)
6 C4 = DiffConnectBD(z01, z23, z12, z03)
7 C5 = DiffConnectKey(kz01, kz23, kz12, kz03)
8 C6 = SetDiffIn(x01, x23, α, α′)
9 C7 = SetDiffOut(y12, y03, β, β′)

10 C8 = SetDiffKey(kx01, kx23, kx12, kx03, κ0, κ1, κ2, κ3)
11 C = [C0, C1, C2, C3, C4, C5, C6, C7, C8, C9]
12 return C

- Line 8: Function DiffConnectBD(z01, z23, z12, z03) sets z01 ⊕ z23 ⊕ z12 ⊕ z03 = 0
according to the definition of BD.

- Line 9: Function DiffConnectKey(kz01, kz23, kz12, kz03) sets kz01 ⊕ kz23 ⊕ kz12 ⊕
kz03 = 0 according to a trivial elimination.

- Line 10-13: Function SetDiffIn and SetDiffOut both assign the value of the third
parameter to the first parameter and the value of the fourth parameter to the
second parameter.

- For T0-IBD and T1-IBD, the relations between variables for state difference of KS
are all omitted.

Finally, Algorithm 1 returns Model C to SAT solver and identifies an IBD if
there exists no solution.

C.2 The algorithm of searching for the (RK-)IBDs from the aspect
of state propagation.

A brief illustration to Algorithm 2 is provided as follows.

- Line 2-5: Function BuildSP(r, xj , yj , kxj , kyj) forms the relations of state prop-
agation of UKS(kxj) = kyj with rkji = KSi(kx) for i = 0, . . . , r − 1, and
Er−1,rkr−1

◦ · · · ◦ E0,rk0(xj) = yj , according to the state propagation rule,
where xj , yj denote the variables for state of E, and kxj , kzj , kyj denote the
variables for state of KS, for j = 0, 1, 2, 3.

- Line 6: Function BuildKeyRelation(r, rk0, rk1, rk2, rk3) forms the relations of
round keys. For T2-IBD, rk0i = rk1i = rk2i = rk3i for i = 0, . . . , r − 1. For
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Algorithm 2: Model for determining the T2-IBD and (R)T3-IBD
Input: input differences (α, α′), output differences (β, β′), key differences

(κ0, κ1, κ2, κ3), E’s round number r
Output: Model C

1 Declare eight input variables x0, x1, x2, x3, kx0, kx1, kx2, kx3 and eight
output variables y0, y1, y2, y3, ky0, ky1, ky2, ky3

2 C0, rk0 = BuildStatePropagation(r, x0, y0, kx0, ky0)
3 C1, rk1 = BuildStatePropagation(r, x1, y1, kx1, ky1)
4 C2, rk2 = BuildStatePropagation(r, x2, y2, kx2, ky2)
5 C3, rk3 = BuildStatePropagation(r, x3, y3, kx3, ky3)
6 C4 = BuildKeyRelation(r, rk0, rk1, rk2, rk3)
7 C5 = SetStateIn(x0, x1, x2, x3, α, α′)
8 C6 = SetStateOut(y0, y1, y2, y3, β, β′)
9 C7 = SetStateKey(kx0, kx1, kx2, kx3, κ0, κ1, κ2, κ3)

10 C = [C0, C1, C2, C3, C4, C5, C6, C7, C8]
11 return C

(R)T3-IBD, rkji = KSi(kxj) for i = 0, . . . , r − 1 and j = 0, 1, 2, 3. Especially
for T3-IBD, kx0 = kx1 = kx2 = kx3.

- Line 7: Function SetStateIn(x0, x1, x2, x3, α, α′) sets x0⊕x1 = α, x2⊕x3 = α′.
- Line 8: Function SetStateOut(y0, y1, y2, y3, β, β′) sets y1⊕y2 = β, y0⊕y3 = β′.
- Line 9: Function SetStateKey(kx0, kx1, kx2, kx3, κ0, κ1, κ2, κ3) sets kx0⊕kx1 =

κ0, kx2 ⊕ kx3 = κ1, kx1 ⊕ kx2 = κ2, kx0 ⊕ kx3 = κ3.

Finally, Algorithm 2 returns Model C to SAT solver and identifies an IBD if
there exists no solution.

D Specifications of Block Ciphers

Only brief descriptions of block ciphers for applications are given here. For more
details, please refer to their corresponding references.

D.1 Specifications of AES

AES [34] is one of the most renowned block ciphers across the world. Its
design philosophy has had a profound impact on block ciphers. AES is a 128
bits block cipher that supports key sizes of 128, 192, and 256 bits, and the S-box
size is 8 bits. It is a SPN block cipher that employs the MDS matrix to achieve
excellent diffusivity. The internal state is regarded as a square array of bytes as
follows, where si ∈ F8

2 (0 ≤ i ≤ 15).
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S =

 s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

Fig. 11: One round of block cipher AES

One encryption round of AES is depicted in Figure 11, and it consists of the
following four operations:

- AddRoundKey(AK): The 128-bit round key which is derived from the key
schedule is XORed with the state.

- SubBytes(SB): Applying the -bit S-box to each byte in parallel to the cipher’s
internal state.

- ShiftRows(SR): The i-th rows (0 ≤ i ≤ 3) of the internal state is rotated by i
bytes form right to left.

- Mix-Column(MC): Each column of the internal state is multiplied with the
MDS matrix.

Fig. 12: The key schedule of AES-128

AES-128 is the block cipher AES with is 128 bits key. The key schedule of
AES-128 is shown as Figure 12. The function g is a 32-bit to 32-bit function
which consists of:

1. Perform a right rotation of the input by 1 byte.
2. Process all four bytes of this rotated input using the AES S-box.
3. Add a fixed round coefficient to the output of the first S-box.
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D.2 Specifications of DES

DES [35] is one of the earliest block ciphers to gain widespread adoption. It
was standardized for use in a variety of applications, thereby becoming a pioneer
in bringing encryption to a broader range of users, including those in commercial
and civilian sectors. DES is a 64-bit block cipher with a real key size of 56 bits.
It employs eight distinct non-bijective S-boxes where the input of each S-box is
6 bits, and the output is 4 bits. DES adopts the Feistel network.

One round of DES is depicted in Figure 13, the round function acts on a
32-bit branch at a time and is composed of four stages:

- Expansion (EX): The 32-bit half-block is expanded to 48 bits through the
expansion permutation by duplicating half of its bits.

- Key mixing: The result is XORed with a round key. Sixteen 48-bit round keys,
one per round, are derived from the main key via the key schedule.

- Substitution (SL): The eight 6-bit chunks of the state are non-linearly trans-
formed by eight distinct S-boxes. The output of each S-box is only 4 bits in
length.

- Permutation (P): This is a fixed permutation of the output of the substitution
layer, which guarantees diffusion.

Fig. 13: One round of block cipher DES

The key schedule divides the 56 effective bits of the key into two 28-bit halves.
The function responsible for partitioning the bits is named PC1. Each of these
two halves is cyclically rotated by a fixed amount in each round. The amount
of rotation is either one or two bits depending on the round. The sequence of
rotation amounts is irregular. Specifically, in rounds 1, 2, 9, and 16, the rotation
amount is one bit, while in all other rounds, it is two bits. From the two rotated
28-bit halves, 48 bits are selected, with 24 bits from each half, by using a fixed
function called PC2 to form the round key.

D.3 Specifications of PRESENT-80

PRESENT [36] is a notable lightweight block cipher. It is extremely crucial
for resource-constrained devices such as RFID tags and sensor nodes in the Inter-
net of Things (IoT). As of now, it acts as a benchmark for new lightweight ciphers
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in terms of security and efficiency. PRESENT-80 is one version of PRESENT.
It has a block size of 64 bits, a key size of 80 bits, a S-box size of 4 bits. It is a
SPN block cipher which makes use of the operation of bit permutation.

Table 6: The S-box of PRESENT
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

Fig. 14: One round of block cipher PRESENT.

One round of PRESENT is depicted in Figure 14, the round function of it
involves an XOR with the round key, the application of a 4-bit S-box (as shown
in Table 6) in parallel to the state and a bit permutation.

For the key schedule of PRESENT-80, the master key is stored in a register
K and is represented as k79k78 · · · k0. At round i, the round key Ki consists of
the 64 leftmost bits of the current content of the register Ki = k79k78 . . . k16.
Once the round key is extracted, the register K is updated in the following way:

[k79k78 . . . k1k0] = [k18k17 . . . k20k19]

[k79k78k77k76] = S [k79k78k77k76]

[k19k18k17k16k15] = [k19k18k17k16k15]⊕ round_counter.

D.4 Specifications of PRINTcipher48

PRINTcipher [37] enjoys a prominent status in the realm of lightweight cryp-
tography. It is elaborately designed for settings with intense resource constraints.
To date, it has rendered substantial contributions to the exploration and devel-
opment of security solutions specifically targeted at low-power devices. PRINT-
cipher48 is one version of PRINTcipher. It has a block size of 48 bits, a key size
of 80 bits, a S-box size of 3 bits. It is a SPN block cipher which makes use of the
operation of key-dependent bit permutation.

One round of PRINTcipher48 is shown in Figure 15, the round function of it
involves a XOR with the round key, a bit permutation, a XOR with the round
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Fig. 15: One round of block cipher PRINTcipher48

constant, the key-dependent bit permutation and the application of a 3-bit S-box
in parallel to the state.

The key schedule of PRINTcipher48 is rather simple, it uses the same key
for all rounds.

D.5 Specifications of SPECK

SPECK [38] is an important player in the field of lightweight cryptography.
It has emerged as a notable algorithm in the family of block ciphers. It has been
recognized for its suitability for use in resource-constrained environments, which
has given it a distinct place in modern cryptographic research and development.
The SPECK is usually denoted as SPECK-n/m where n, m are block size and
key size respectively in bits, and SPECK-n if the key length does not need to
be specified, where the parameters n and m are shown in Table 7. SPECK is an
add-rotate-xor (ARX) cipher with operations modular addition and so on.

Fig. 16: One round of block cipher
SPECK

block size n key size m
32 64
48 72

96
64 96

128
96 96

144
128 128

192
256

Table 7: The parameters n,m of
SPECK.



A Deep Study of The Impossible Boomerang Distinguishers 45

One round of SPECK is shown in Figure 16, the round function of it involves
a modular addition �, bitwise-xor ⊕, left circular shift ≪, and right circular
shift≫, where (a, b) = (7, 2) for SPECK-32 and (a, b) = (8, 3) for other versions.

For the key schedule, the master key k is written as k = (lt−2, . . . , l0, k0),
where t = 2m/n. The ki and li are defined by

li+m−1 = (ki + (li≫a)⊕ i,
ki+1 = ki≪b ⊕li+m−1.

The value ki is the i-th round key.

D.6 Specifications of GIFT

GIFT [39] has solidly positioned itself as a significant constituent in the realm
of lightweight cryptography. With its design focused on efficient resource usage,
it stands apart from a plethora of cryptographic algorithms. It has garnered ac-
claim as a contemporary and superbly crafted block cipher and is being seriously
considered for applications where both security and efficiency hold paramount
significance. GIFT comes in two versions: GIFT-64 and GIFT-128. GIFT-64 is a
64-bit block cipher with a 128-bit master key. GIFT-128 is a 128-bit block cipher
also with a 128-bit master key. For both of these versions, they are SPN block
ciphers that utilize the operation of bit permutation.

Fig. 17: One round of block cipher GIFT-64

One round of GIFT-64 is shown in Figure 17, the round function of it involves
the application of a 4-bit S-box in parallel to the state, a bit permutation and
an XOR with the round key. In particular, in i-th round, for the 64-bit state
sj(0 ≤ j ≤ 63), the 32-bit round key rki = u||v = u15 . . . u0||v15 . . . v0 is xored
to the state as b4j+1 ← b4j+1 ⊕ uj , b4j ← b4j ⊕ vj , (0 ≤ j ≤ 15).

One round of GIFT-128 is similar to GIFT-64, the round function of it in-
volves the application of a 4-bit S-box in parallel to the state, a bit permutation
and an XOR with the round key. In particular, in i-th round, for the 128-bit
state sj(0 ≤ j ≤ 128), the 64-bit round key rki = u||v = u31 . . . u0||v31 . . . v0 is
xored to the state as b4j+1 ← b4j+1 ⊕ uj , b4j+2 ← b4j+2 ⊕ vj , (0 ≤ j ≤ 31).
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For both versions of GIFT, the 128-bit master key k is donated as k =
k7||k6|| . . . ||k1||k0, the key is updated as follows,

k7 ‖k6‖ . . . ‖k1‖ k0 ← k1≫2 ‖k0≫2‖ . . . ‖k3‖ k2,

where ≫i is an i bits right rotation within a 16-bit word. For GIFT-64, the
32-bit round key rki = u||v is derived as u← k1 and v ← k0. For GIFT-128, the
64-bit round key rki = u||v is derived as u← k5||k4 and v ← k1||k0.

D.7 Specifications of CHAM

CHAM [40] is a family of block ciphers that is suitable for devices with limited
resources, such as Internet of Things (IoT) devices and embedded systems. Its
design has been optimized to have relatively low requirements for computational
power, memory, and energy consumption. Each cipher in this family is denoted
by CHAM-n/m, where n represents the block size and m represents the key size.
Table 8 presents the list of ciphers within the family along with their parameters.
Here, w denotes the bit length of a branch, and r represent the new number
of rounds, respectively. CHAM adopts the 4-branch generalized Feistel-network
with the operation modular addition.

Table 8: List of CHAM ciphers and their parameters.
Cipher n m w r

CHAM-64/128 64 128 16 88
CHAM-128/128 128 128 32 112
CHAM-128/256 128 256 32 120

Fig. 18: Two consecutive rounds of block cipher CHAM beginning with the even i-th
round

As shown in Figure 18, CHAM-n/k encrypts four w-bit words (x0, y0, z0, w0)
to four w-bit words (xr, yr, zr, wr). To be more specific, in the i-th round (0 ≤
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i < r)

(xi+1, yi+1, zi+1, wi+1)←
(
yi, zi, wi,

(
(xi ⊕ i)�

(
(yi≪ αi)⊕ rki mod 2k/w

))
≪ βi

)
,

where αi = 1 and βi = 8 when i mod 2 = 0 and αi = 8 and βi = 1 when
i mod 2 = 1, and rki mod 2k/w is the round key.

The key schedule of CHAM-n/k takes k/w secret keysK[0],K[1], · · · ,K[k/w−
1] and generates 2k/w w-bit round keys rk0, rk1, · · · , rk2k/w−1. The round keys
are generated in the following way:

rki ←− K[i]⊕ (K[i]≪ 1)⊕ (K[i]≪ 8),
rk(i+k/w)⊕1 ←− K[i]⊕ (K[i]≪ 1)⊕ (K[i]≪ 11),

where 0 ≤ i < k/w.

D.8 Specifications of GOST

Fig. 19: One round of block cipher GOST

GOST 28147-89 has been used in a variety of applications in Russia and
some other regions with historical or technological ties to Russia. It has been
implemented in government and military communication systems, as well as
in some financial and industrial applications where data security is of great
importance. GOST is a block cipher with a 64-bit block size and a 256-bit key
size. It consists of 32 Feistel rounds and adopts the operation modular addition.
As depicted in Figure 19, the i-th round is defined as follows:

FKi (XL, XR) = (XR, XL⊕≪11 (S (XR �Ki))) ,

where ⊕ denotes bit-wise XOR and � denotes modular addition modulo 232,
≪11 (A) denotes cyclic left-rotation of A by 11 bits for 32-bit word A, Ki
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denotes the round key, and S is an S-box layer of eight 4 bits S-boxes, these
S-boxes can be either public or secret and are not necessarily permutations.

In our work, we employ public S-boxes for automatic search. Particularly,
we search for IBDs in two of the most renowned versions, namely GOST-FB
and GOST-PS. GOST-FB indicates GOST that uses eight different S-boxes as
employed by the Central Bank of the Russian Federation (as following S0-S7),
and GOST-PS represents GOST with only the PRESENT S-box.

S0 = {4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3}
S1 = {14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9}
S2 = {5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11}
S3 = {7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3}
S4 = {6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2}
S5 = {4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14}
S6 = {13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12}
S7 = {1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12}

The key schedule is extremely simple. The 256-bit key is divided into eight
32-bit subkeys K0, . . . ,K7. These subkeys are employed in this particular order
three times during rounds 1− 24. In the last 8 rounds 25− 32, they are used in
the reversed order of K7, . . . ,K0.

E Example of (RK-)IBDs

Distinguisher 1 (AES). ((α, α′), (β, β′)) is an IBD of 4 rounds AES-128 without
the last SR and MC layer, where

α = 0xuv000000000000000000000000000000(0xuv ∈ F8
2/{0}),

α′ = 0xu′v′000000000000000000000000000000(0xu′v′ ∈ F8
2/{0}),

β = 0xpq000000000000000000000000000000(0xpq ∈ F8
2/{0}),

β′ = 0x00000000p′q′0000000000000000000000, (0xp′q′ ∈ F8
2/{0}).

Distinguisher 2 (DES). ((α, α′), (β, β′)) is an IBD of 7-round DES, where{
α = 0x4000000000000000, α′ = 0x4000000000000000,

β = 0x0000000040000000, β′ = 0x0000000010000000.

Distinguisher 3 (PRESENT). ((α, α′), (β, β′)) is an IBD of 6-round PRESENT-
80 without the last bit permutation, where{

α = 0x0000000000000001, α′ = 0x0000000000000001,

β = 0x0000000000000001, β′ = 0x0000000000000005.

Distinguisher 4 (PRINTcipher48). ((α, α′), (β, β′)) is an IBD of 5-round PRINT-
cipher48, where {

α = 0x000080000000, α′ = 0x400000000000,

β = 0x000100000000, β′ = 0x000100000000.
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Distinguisher 5 (AES). ((α, α′), (β, β′)) is an IBD of 5-round AES-128 without the
last MC layer under the key differences (κ0, κ1, κ2, κ3) = (α, α′, 0, 0), where

α = 0x0000000000000000uv00000000000000(0xuv ∈ F8
2/{0}),

α′ = 0x0000000000000000u′v′00000000000000(0xu′v′ ∈ F8
2/{0}),

β = 0x0000pq00000000000000000000000000(0xpq ∈ F8
2/{0}),

β′ = 0xp′q′00000000000000000000000000000000, (0xp′q′ ∈ F8
2/{0}).

Distinguisher 6 (SPECK). ((α, α), (β, β′)) is an IBD of r-round SPECK under
the key differences (κ0, κ1, κ2, κ3) = (κ, κ, 0, 0), where r, κ, α, β and β′ are shown in
Table 9.

Distinguisher 7 (DES). ((α, α′), (β, β′)) is an IBD of 9-round DES under the key
differences (κ0, κ1, κ2, κ3), where

α = 0x0000000002000000, α′ = 0x0000000004000000,

β = 0x0200000000000000, β′ = 0x0400000000000000,

κ0 = 0x02000000000000, κ1 = 0x00010000000000,

κ2 = 0x00000800000000, κ0 = 0x02010800000000.

Distinguisher 8 (GIFT). ((α, α), (β, β)) is an IBD of r-round GIFT under the key
differences (κ0, κ1, κ2, κ3) = (η, η, θ, θ), where r, α, β, η and θ are shown in Table 10.

Distinguisher 9 (CHAM). ((α, α), (β, β)) is an IBD of r-round CHAM under the
key differences (κ0, κ1, κ2, κ3) = (η, η, θ, θ), where r, α, β, η and θ are shown in Table 11.

Distinguisher 10 (GOST). ((α, α), (β, β)) is an IBD of full-round GOST under
the key differences κi,j(0 ≤ i ≤ 3, 0 ≤ j ≤ 7), where

α = 0x8000000000000000, α′ = 0x0000000080000000,

β = 0x0000000080000000, β′ = 0x8000000000000000,

κ0,0 = 0x00000000, κ1,0 = 0x80000000, κ2,0 = 0x00000000, κ3,0 = 0x80000000,

κ0,1 = 0x80000000, κ1,1 = 0x00000000, κ2,1 = 0x80000000, κ3,1 = 0x00000000,

κ0,2 = 0x00000000, κ1,2 = 0x80000000, κ2,2 = 0x00000000, κ3,2 = 0x80000000,

κ0,3 = 0x80000000, κ1,3 = 0x00000000, κ2,3 = 0x80000000, κ3,3 = 0x00000000,

κ0,4 = 0x00000000, κ1,4 = 0x80000000, κ2,4 = 0x00000000, κ3,4 = 0x80000000,

κ0,5 = 0x80000000, κ1,5 = 0x00000000, κ2,5 = 0x80000000, κ3,5 = 0x00000000,

κ0,6 = 0x00000000, κ1,6 = 0x80000000, κ2,6 = 0x00000000, κ3,6 = 0x80000000,

κ0,7 = 0x80000000, κ1,7 = 0x00000000, κ2,7 = 0x40000000, κ3,7 = 0xc0000000.

F Verification of Examples of (RK-)IBDs

For an automated method, the correctness of the results stems from two aspects.
Firstly, it is the correctness of the modeling approach. Secondly, it is the accuracy
of the code implementation. In our work, we employ the same modeling method
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Table 9: The example of RK-IBDs of SPECK in the two related-keys setting.
Block cipher params value
SPECK-32/64 r 8

κ 0x0040000000000000
α 0x00000000
β 0x80008002
β′ 0x80008000

SPECK-48/72 r 7
κ 0x000080000000000000
α 0x000000000000
β 0x800000800004
β′ 0x800000800000

SPECK-48/96 r 8
κ 0x000080000000000000000000
α 0x000000000000
β 0x800000800004
β′ 0x800000800000

SPECK-64/96 r 8
κ 0x000000800000000000000000
α 0x0000000000000000
β 0x8000000080000004
β′ 0x8000000080000000

SPECK-64/128 r 9
κ 0x00000080000000000000000000000000
α 0x0000000000000000
β 0x8000000080000004
β′ 0x8000000080000000

SPECK-64/96 r 8
κ 0x000000000080000000000000000000000000
α 0x000000000000000000000000
β 0x800000000000800000000004
β′ 0x800000000000800000000000

SPECK-128/192 r 8
κ 0x000000000000008000000000

0x000000000000000000000000
α 0x00000000000000000000000000000000
β 0x80000000000000008000000000000004
β′ 0x80000000000000008000000000000000

SPECK-128/256 r 9
κ 0x00000000000000800000000000000000

0x00000000000000000000000000000000
α 0x00000000000000000000000000000000
β 0x80000000000000008000000000000004
β′ 0x80000000000000008000000000000000
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Table 10: The example of RK-IBDs of GIFT in the four related-keys setting.
Block cipher params value
GIFT-64 r 13

α 0x0001000000000000
β 0x0000000000020000
η 0x00000000000000000000000000001000
θ 0x00000000000000000100000000000000

GIFT-128 r 10
α 0x00000000000000000002000000000004
β 0x00000000000000000000400000000000
η 0x00000000000000010000000000001000
θ 0x00000000000000000000000000008000

Table 11: The example of RK-IBDs of CHAM in the four related-keys setting.
Block cipher params value
CHAM-64/128 r 30

α 0x0000000000000000
β 0x0000000000000000
η 0x00006020000000000000000000000000
θ 0x6020c040000000000000000000000000

CHAM-128/256 r 28
α 0x00000000000000000000000000000000
β 0x00000000000000000000000000000000
η 0x78081828000000000000000000000000

0x00000000000000000000000000000000
θ 0x000000000000000078081828f0103050

0x00000000000000000000000000000000
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and call the same set of code interfaces to automatically search for distinguishers.
Therefore, verifying a portion of the distinguishers is sufficient to demonstrate
the correctness of our results.

Manual derivation is a common means of verifying the correctness of re-
sults obtained through an automated method. However, in some cases, manual
derivation is difficult and extremely time-consuming. Under such circumstances,
we can make use of computer-aided verification.

In computer-aided verification, the computer can play two roles.
- Detect the location where the contradiction takes place. Take Algorithm 1 as

an example, assume D = (α, α′, β, β′) is an IBD or an RK-IBD under key
differences (κ0, κ1, κ2, κ3), we can implement this feature by simply modi-
fying the Algorithm 1. In Line 6 of Algorithm 1, we implement the func-
tion DiffConnectBD(z01, z23, z12, z03) to set z01 ⊕ z23 ⊕ z12 ⊕ z03 = 0, i.e.
z01,i ⊕ z23,i ⊕ z12,i ⊕ z03,i = 0(0 ≤ i ≤ n− 1), where (v0, . . . , vn−1) is the bit
representation of v ∈ Fn2 and n represents the block size of a block cipher.
To locate where the contradiction occurs, we design a new function DiffCon-
nectD(z01, z23, z12, z03, p) (0 ≤ p ≤ n− 1) to set z01,i ⊕ z23,i ⊕ z12,i ⊕ z03,i =
0(0 ≤ i ≤ n − 1, i 6= p). Then, if D = (α, α′, β, β′) is still an (RK-)IBD
under the modified algorithm when p = j, j is a position unrelated to the
contradiction. Using this method, we can find all the positions unrelated
to the contradiction and then derive the contradiction from the remaining
positions.

- Traverse all possible trails and disprove them. When the computing power
of the computer permits, we can propagate the differences or states from
the input to the middle round in the forward direction and propagate the
differences or states from the output to the middle round in the backward
direction. Then, we can use GBCT, GEBCT and so on to disprove all possible
trails.
Now we present our verification of some examples of IBDs and RK-IBDs in

Appendix E as follows.
Distinguisher 1
Verification (verify by contradiction). Assume (α, α′) can propagate to (β, β′), as shown
in Figure 20. For X0, X1 = X0 ⊕ α,X2, X3 = X2 ⊕ α′, and Y0, Y1, Y2 = Y1 ⊕ β, Y3 =
Y0 ⊕ β′, let Zi be the value obtained by encrypting Xi after 2 rounds without the
last MC layer, and Wi be the value obtained by decrypting Yi after 2 rounds. Then
Z0 ⊕ Z1 = γ, Z2 ⊕ Z3 = γ′, W1 ⊕ W2 = δ, and W0 ⊕ W3 = δ′. On the one hand,
W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0 = δ0 6= 0 and W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1 = 0, since

W1,0 ⊕W2,0 = δ0 6= 0,W0,0 ⊕W3,0 = 0,

W1,1 ⊕W2,1 = 0,W0,1 ⊕W3,1 = 0.

On the other hand, since
W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0

W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1

W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2

W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3

 =M ·


Z0,0 ⊕ Z1,0 ⊕ Z2,0 ⊕ Z3,0

Z0,1 ⊕ Z1,1 ⊕ Z2,1 ⊕ Z3,1

Z0,2 ⊕ Z1,2 ⊕ Z2,2 ⊕ Z3,2

Z0,3 ⊕ Z1,3 ⊕ Z2,3 ⊕ Z3,3

 =M ·


γ0 ⊕ γ′0

0
0
0

 ,
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Fig. 20: One of 4-round IBDs of AES

W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0 = 0 and W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1 = 0, or W0,0 ⊕W1,0 ⊕
W2,0⊕W3,0 6= 0 and W0,1⊕W1,1⊕W2,1⊕W3,1 6= 0. Thus there is a contradiction. ut

Distinguisher 2

Verification (verify by contradiction). We propagate the input differences 3 rounds in
the forward direction, and the output differences 4 round in the backward direction.
The middle 5 rounds of the distinguisher are shown in Figure 21, where a and a′

are the two differences propagated from the input differences, b and b′ are the two
differences propagated from the output differences, and (x0, x1, x2, x3) is the states of
the right branch in round 4. Then x0 ⊕ x1 = P (a) ⊕ 1, x2 ⊕ x3 = P (a′) ⊕ 1, and
x1 ⊕ x2 = P (b) ⊕ 1, x0 ⊕ x3 = P (b′) ⊕ 3, where P denotes the permutation of DES.
Thus b ⊕ b′ = a ⊕ a′ ⊕ P−1(3). Let b′ = (b′0, . . . , b

′
7) where (b′i ∈ F4

2, 0 ≤ i ≤ 7). Then
according to the permutation P and the values of a, a′ and b, we have b′6 = b′0 = 0,
which implies the bit 0 and bit 3 of the output of the second S-box in round 6 must be
zero. However, the input difference of the S-box is 0x20, the first and fourth bit of the
output cannot be zero simultaneously. There is a contradiction.

Distinguisher 3
Our verification makes use of the definition of GEBCT. Thus we demonstrate some
basic properties of the S-box of PRESENT in the view of such table. The analysis
reveals some new properties of the S-box of PRESENT.

Property 1 (GEBCT). Let T and Tinv be the GEBCT of S-box and the invertible
S-box of PRESENT, then

(1, 1, ∗, ∗) T−→ (1, 1, 0, 0), (1, 1, 1, 1),

(∗, ∗, 1, 5) Tinv−−−→ (1, 0, 1, 0), (0, 1, 1, 0)
Tinv−−−→ (1, 0, 1, 0), (0, 1, 1, 0),

where (µ, µ′, ρ, ρ′) T−→ (θ, θ′, ϕ, ϕ′) means T (µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) 6= 0 for T ∈ {T , Tinv}
and ‘∗’ represents arbitrary 4-bit value.
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0100 0000
0000 0000
0000 0000
0000 0000

∗∗∗∗ 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
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∗∗∗∗ ∗∗∗∗
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(𝑎, 𝑎′)

(𝑏, 𝑏′)

round 2

round 3

round 4

round 5

round 6

(𝑥0, 𝑥1, 𝑥2, 𝑥3)

P SL EX

P SL EX

P SL EX

P SL EX

P SL EX

Fig. 21: The core of one 7-round IBDs of DES

Verification (verify by contradiction). As shown in Figure 22, let (θi,0, θ
′
i,0, ϕi,0, ϕ

′
i,0)

be the bit 0 of the output of the S-boxes layer in the round i (i = 0, 1, 2). Ac-
cording to Property 1, it holds that A0 = A1 = A2 = {(1, 1, 0, 0), (1, 1, 1, 1)}, and
(θ2,0, θ

′
2,0, ϕ2,0, ϕ

′
2,0) ∈ A2.

Analogously, let (µi,0, µ
′
i,0, ρi,0, ρ

′
i,0) be the bit 0 of the input of the S-boxes layer

in the round i(i = 3, 4, 5). According to Property 1, it holds that B0 = B1 = B2 =
{(1, 0, 1, 0), (0, 1, 1, 0)}, and (µ3,0, µ

′
3,0, ρ3,0, ρ

′
3,0) ∈ B2.

There is a contradiction, since (θ2,0, θ
′
2,0, ϕ2,0, ϕ

′
2,0) = (µ3,0, µ

′
3,0, ρ3,0, ρ

′
3,0), θ2,0 =

1, θ′2,0 = 1, and one value of µ3,0 and µ′3,0 is 0. ut

Distinguisher 4
To conduct this verification, we first give some properties of the S-box from the
perspectives of DDT and GBCT.
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(1, 1,∗,∗)

(∗,∗, 1,5)

𝐴0

𝐴1

𝐴2

𝐵2

𝐵1

𝐵0

Fig. 22: One of 6-round IBDs of PRESENT-80

Property 2 (DDT). Let T and Tinv be the DDT of S-box and the invertible S-box
of PRINTcipher48, then

001
T−→ ∗ ∗ 1, 010 T−→ ∗1∗, 100 T−→ 1 ∗ ∗,

001
Tinv−−−→ ∗ ∗ 1, 010 Tinv−−−→ ∗1∗, 100 Tinv−−−→ 1 ∗ ∗,

where ‘∗’ can be 0 or 1, and abc T−→ a′b′c′ means T (abc, a′b′c′) 6= 0 for T ∈ {T , Tinv}
and 3-bit values abc and a′b′c′.

Property 3 (GBCT). Let T be the GBCT of S-box of PRINTcipher48, then

(α, 0) 6 T−→ (β, β),

(γ, 0)) 6 T−→ (0, 0), (γ, δ)) 6 T−→ (0, 0),

(1, 2)
T−→ (4, 4), (1, 4)

T−→ (2, 2), (2, 4)
T−→ (1, 1),



56 Authors Suppressed Due to Excessive Length

where the weight of both α and β is 1, γ 6= 0, and δ 6= γ.

Fig. 23: One of 5-round IBDs of PRINTcipher48

Verification (verify by contradiction). We prove it as shown in Figure 23. In which,
blocks of the same color and the same symbol indicate that they are affected by the
same S-box. Let (x0i , x

1
i , x

2
i , x

3
i ) and (y0i , y

1
i , y

2
i , y

3
i ) be the four states before and after

the key-dependent layer at the round i, and (z0i , z
1
i , z

2
i , z

3
i ) be the four states after

the S-box layer at the round i, xti,j , yti,j and zti,j be the value of j-th nibble of xti,
yti and zti , xti,j,k, y

t
i,j,k and zti,j,k be the k-th bit value of j-th nibble of xti, yti and

zti(0 ≤ k ≤ 2, 0 ≤ j ≤ 15, 0 ≤ t ≤ 3).
We propagate the input two differences 3 rounds in the forward direction, and the

output two differences 2 rounds in the backward direction. According to the Property 3,
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Fig. 24: One impossible propagation trail of 5-round IBD of PRINTcipher48

the input differences and output differences of S-box i (i ∈ {0, 3, 5, 7, 9, 12, 14}) in
round 3 must be 0. Since z15,10,2 ⊕ z25,10,2 = 1, and z05,10,2 ⊕ z35,10,2 = 1, according the
Property 2, ∃k ∈ {0, 1, 2}, such that x15,10,j ⊕ x25,10,j = 1, and x05,10,j ⊕ x35,10,j = 1,
Similarly, ∃(j, k) ∈ {(1, 0), (2, 2), (4, 2), (6, 1), (8, 0), (10, 0), (11, 2), (13, 1), (15, 1)}, such
that z13,j,k ⊕ z23,j,k = 1, and z03,j,k ⊕ z33,j,k = 1.

Now we continue to discuss in different cases. When the key-dependent permutation
15 transform the bit 1 to bit 2 and the the key-dependent permutation 14 transform
the bit 2 to bit 2. As shown in Figure 24, ∃(j, k) ∈ {(4, 2), (6, 1), (13, 1), (15, 1)},
such that z13,j,k ⊕ z23,j,k = 1, and z03,j,k ⊕ z33,j,k = 1. If only z13,15,1 ⊕ z23,15,1 = 1, and
z03,15,1 ⊕ z33,15,1 = 1, then the S-box 14 in round 4 is active, and the key-dependent
permutation 14 transform the bit 2 to bit 0. This leads to a contradiction. Meanwhile,
x03,15,2 ⊕ x13,15,2 = 0, and x23,15,2 ⊕ x33,15,2 = 0, since the key-dependent permutation 15
transform the bit 1 to bit 2 already and cannot transform the bit 2 to bit 2. Thus,
x03,13,2⊕x13,13,2 = 1, and x23,13,2⊕x33,13,2 = 0 or x03,13,2⊕x13,13,2 = 0, and x23,13,2⊕x33,13,2 =
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1. According to the Property 3, z13,13,1 ⊕ z23,13,1 = 1, and z03,13,1 ⊕ z33,13,1 = 1 cannot
hold.

Now, only ∃(j, k) ∈ {(4, 2), (6, 1)}, such that z13,j,k⊕z23,j,k = 1, and z03,j,k⊕z33,j,k = 1.
Assume z13,4,2 ⊕ z23,4,2 = 1, and z03,4,2 ⊕ z33,4,2 = 1, then

z13,4,2 ⊕ z23,4,2 = 1, z03,4,2 ⊕ z33,4,2 = 1,

y03,4,2 ⊕ y13,4,2 = 0, y23,4,2 ⊕ y33,4,2 = 0,

z13,6,1 ⊕ z23,6,1 = a, z03,6,1 ⊕ z33,6,1 = a⊕ 1,

y03,6,1 ⊕ y13,6,1 = 0, y03,6,2 ⊕ y33,6,3 = 1,

z13,13,1 ⊕ z23,13,1 = b, z03,13,1 ⊕ z33,13,1 = b⊕ 1,

y03,13,1 ⊕ y13,13,1 = 1, y23,13,1 ⊕ y33,13,1 = 0,

must be hold, where a, b can be 0 or 1. Thus,{
x15,10 ⊕ x25,10 = 1||a||b, x05,10 ⊕ x35,10 = 1||a⊕ 1||b⊕ 1,

x05,10 ⊕ x15,10 = c||0||1, x25,10 ⊕ x35,10 = c||1||0,

where c can be 0 or 1. For any permutation of key-dependent permutation 10 in round
5, this is impossible according to the GEBCT of S-box and z15,10,2 ⊕ z25,10,2 = 1, and
z05,10,2 ⊕ z35,10,2 = 1. For other cases, we can verify similarly.

Distinguisher 5

Fig. 25: One of 5-round RT 2
0 -IBDs of AES-128

Verification (verify by contradiction). Assume (α, α′) can propagate to (β, β′), as shown
in Figure 25, for X0, X1 = X0 ⊕ α,X2, X3 = X2 ⊕ α′, and Y0, Y1, Y2 = Y1 ⊕ β, Y3 =
Y0 ⊕ β′, let Zi be the value obtained by encrypting Xi after 3 rounds without the
last MC layer, and Wi be the value obtained by decrypting Yi after 2 rounds. Then
Z0 ⊕ Z1 = γ, Z2 ⊕ Z3 = γ′, W1 ⊕W2 = δ, and W0 ⊕W3 = δ′.
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On the one hand, since

W1,0 ⊕W2,0 = 0,W0,0 ⊕W3,0 = δ′0 6= 0,

W1,1 ⊕W2,1 = 0,W0,1 ⊕W3,1 = 0,

W1,2 ⊕W2,2 = δ2 6= 0,W0,2 ⊕W3,2 = 0,

W1,3 ⊕W2,3 = 0,W0,3 ⊕W3,3 = 0.

we have W0,0 ⊕ W1,0 ⊕ W2,0 ⊕ W3,0 = δ′0 6= 0, W0,1 ⊕ W1,1 ⊕ W2,1 ⊕ W3,1 = 0,
W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2 = δ2 6= 0 and W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3 = 0.

On the other hand,
W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0

W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1

W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2

W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3

 =M ·


Z0,0 ⊕ Z1,0 ⊕ Z2,0 ⊕ Z3,0

Z0,1 ⊕ Z1,1 ⊕ Z2,1 ⊕ Z3,1

Z0,2 ⊕ Z1,2 ⊕ Z2,2 ⊕ Z3,2

Z0,3 ⊕ Z1,3 ⊕ Z2,3 ⊕ Z3,3

 =M ·


0
0

γ2 ⊕ γ′2
γ3 ⊕ γ′3

 .

If γ2 ⊕ γ′2 = γ3 ⊕ γ′3 = 0, then W0,i ⊕W1,i ⊕W2,i ⊕W3,i = 0(0 ≤ i ≤ 3). There exists
a contradiction. If γ2 ⊕ γ′2 6= 0 or γ3 ⊕ γ′3 6= 0, then according to the property of MDS
matrix, at least three of i(0 ≤ i ≤ 3) such that W0,i ⊕W1,i ⊕W2,i ⊕W3,i = 0. There
exists a contradiction. ut

Distinguisher 6
We choose the example of RK-IBD of SPECK-32/64 to verify.

Verification (verify by contradiction). We propagate the input differences 5 rounds
in the forward direction, and the output differences 3 rounds in the backward direc-
tion. The differential propagation of the last 4-round is shown in Figure 26, where the
ai, a

′
i, bi, b

′
i, ci, c

′
i can be 0 or 1 and b′11 = b′8 ⊕ 1.

On the one hand, since x0,9⊕x1,9 = a0 = y0,9⊕y1,9 and x2,9⊕x3,9 = a′0 = y2,9⊕y3,9,
x1,9⊕x2,9 = 1, y1,9⊕y2,9 = 0, x0,9⊕x3,9 = c′2, y0,9⊕y3,9 = 1, we have c′2 = 0. Meanwhile,
since x0,8 ⊕ x1,8 = 1 and x2,8 ⊕ x3,8 = 1, x1,8 ⊕ x2,8 = 0, we have x0,8 ⊕ x0,8 = c′1 = 0.
Similarly, it holds that c′0 = 0, b′11 = 1, b′7 = b′6 = 0.

On the other hand, for the second modular addition in the right of the Figure 26,
the least 3 bits of input of the modular addition is (000, 100), thus b′6 = 1. This is a
contradiction.

Distinguisher 8
We choose the example of RK-IBD of GIFT-64 to verify.

Verification (verify by contradiction). Let (γ, γ′) be the difference that propagates
(α, α′) 4-round in the forward direction, and (δ, δ′) be the difference that propagates
(β, β′) 4-round in the backward direction. Then, according the key schedule, (α, α′)
propagates to (γ, γ′) = (0, 0) under key differences (κ0, κ1) with probability 1, and
(β, β′) propagates to (δ, δ′) = (0, 0) under key differences (κ2, κ3) with a probability of
1. Now, we show that (γ, γ′) cannot propagate to the output differences (δ, δ′) under
the key differences (κ0, κ1, κ2, κ3) after 5 rounds of GIFT-64.

Let (x0i , x1i , x2i , x3i ) and (y0i , y
1
i , y

2
i , y

3
i ) be the four states before and after the S-box

layer at the round i. Let xti,j and yti,j be the j-th nibble value of xti and yti(0 ≤ j ≤
15, 0 ≤ t ≤ 3). First, we remove the constraints nibble by nibble in round 6 in our SAT
model to detect the necessary nibble for generating contradictions. The contradiction
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1000 0000 0000 0000 1000 0000 0000 0000

0000 0001 0000 0000
1000 0000 0000 0000

𝑎6𝑎5𝑎4𝑎3  𝑎2𝑎1𝑎01 0000 0000

𝑎6𝑎5𝑎4𝑎3  𝑎2𝑎1𝑎01 0000 0000 0000 0000 0000 0010

𝑎6𝑎5𝑎4𝑎3  𝑎2𝑎1𝑎01 0000 0000 𝑎6𝑎5𝑎4𝑎3  𝑎2𝑎1𝑎01 0000 0010

1000 0000 0000 0000

0000 0000 0000 0010

0000 0001 0000 0000
1000 0000 0000 0000

𝑎6
′ 𝑎5

′ 𝑎4
′ 𝑎3

′  𝑎2
′ 𝑎1

′ 𝑎0
′ 1 0000 0000

1000 0000 0000 0000

𝑎6
′ 𝑎5

′ 𝑎4
′ 𝑎3

′  𝑎2
′ 𝑎1

′ 𝑎0
′ 1 0000 0000

𝑎6
′ 𝑎5

′ 𝑎4
′ 𝑎3

′  𝑎2
′ 𝑎1

′ 𝑎0
′ 1 0000 0000 𝑎6

′ 𝑎5
′ 𝑎4

′ 𝑎3
′  𝑎2

′ 𝑎1
′ 𝑎0

′ 1 0000 0010

1000 0000 0000 0000 1000 0000 0000 0020

0000 0000 0000 0020

1000 0000 0000 00000000 0000 0000 0000

1000 0000 0000 0000

0010 0000 0000 0000

0010 0000 0000 0000
𝑏1𝑏010 0000 0000 0000

0000 0000 0𝑏1𝑏01 0000

0010 0000 0𝑏1𝑏01 0000

0000 1000  000𝑏1 𝑏0100

0000 0000 0𝑏1𝑏01 0000

𝑐12𝑐11𝑐10𝑐9 𝑐8𝑐7𝑐6𝑐5 𝑐4𝑐3𝑐2𝑐1 𝑐0100

𝑐5𝑐4𝑐3𝑐2 𝑐1𝑐010 0𝑐12𝑐11𝑐10 𝑐9𝑐8𝑐7𝑐6

1000 0000 0000 0000 1000 0000 0000 0000

0000 0000 0000 00000000 0000 0100 0000

1000 0000 0000 0000

0000 0000 0100 0000

0000 0000 0100 0000

0000 0000 0001 0000
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′ 𝑏7

′  𝑏6
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′ 𝑏4
′ 𝑏3

′  𝑏2
′ 𝑏1

′ 𝑏0
′ 1 0000

𝑏3
′ 𝑏2

′ 𝑏1
′ 𝑏0

′  1000 0𝑏10
′ 𝑏9

′ 𝑏8
′  𝑏7

′ 𝑏6
′ 𝑏5

′ 𝑏4
′

𝑏3
′ 𝑏2

′ 𝑏1
′ 𝑏0

′  1000 0𝑏10
′ 𝑏9

′ 𝑏11
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′ 𝑏6
′ 𝑏5

′ 𝑏4
′

𝑏5
′ 𝑏4

′ 𝑏3
′ 𝑏2

′  𝑏1
′ 𝑏0

′ 10  000𝑏10
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′ 𝑏11
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′
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′
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′
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(𝑧0, 𝑧3)

(𝑤0, 𝑤3)

Fig. 26: The core of one 8-round RT 2
3 -IBDs of SPECK-32/64

occurs in the nibble i (i ∈ {2, 3, 7, 15}). Then, we propagate the input two differences
2 rounds in the forward direction, and propagate the output two differences 2 rounds
in the backward direction, and whether those differences can be connected according
to the GBCT of the S-box, i.e. we check whether (x06,j ⊕ x16,j , x

2
6,j ⊕ x36,j)

GBCT−−−−→
(y16,j ⊕ y26,j , y06,j ⊕ y36,j) (j ∈ {2, 3, 7, 15}). Through a simple Python program, we can
remove most of the differential propagations.

The remaining differential propagation is ((y04⊕y14 , y24⊕y34), (x18⊕x28, x08⊕x38), where
y04,0⊕y14,0 ∈ {8, 9, 10, 11}, y24,0⊕y34,0 ∈ {8, 9, 10, 11}, and x18,8⊕x28,8 ∈ {5, 6, 7, 12, 13, 15},
x08,8 ⊕ x38,8 ∈ {5, 6, 7, 12, 13, 15}. Thus, the bit 3 of y04 ⊕ y14 and y24 ⊕ y34 must be 1, and
the bit 34 of x18⊕x28 and x08⊕x38 must be 1. That is, the differential propagation in the
Figure 27 must be hold, where κti denotes the key difference of κt in round i. For the
S-box 3 of round 6, if (x06,3⊕x16,3, x26,3⊕x36,3) = (1, 1)

GBCT−−−−→ (y16,3⊕ y26,3, y06,3⊕ y36,3) =
(8, 8), then x16,3 ⊕ x26,3, x06,3 ⊕ x36,3) = (1, 1). Thus, for the S-box 12 of round 5, it must
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Fig. 27: The core of one 13-round RT 2
3 -IBDs of GIFT-64

hold as follows:
(x05,12 ⊕ x15,12, x25,12 ⊕ x35,12) = (8, 8)

GBCT−−−−→ (y15,12 ⊕ y25,12, y05,12 ⊕ y35,12) = (1, 1),

y05,12 ⊕ y15,12 = 1,

y25,12 ⊕ y35,12 = 1.

However, the above formula does not hold. Thus, for the remaining differential propa-
gation, it still cannot hold. In conclusion, we have verified our distinguisher.

Distinguisher 10

Verification (verify by contradiction). As shown in Figure 28, Figure 29, Figure 30 and
Figure 31. The input differences (α, α′) can propagate to ((0x00000000, 0x80000000), (0x
80000000, 0x00000000)) with a probability of 1 after 23 rounds in the forward direction,
and the output differences (β, β′) can propagate to ((0x80000000, 0x00000000), (0x00000000,
0x80000000)) with a probability of 1 after 7 rounds in the backward direction. Thus, we
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⊞⋘11 𝑆⊕

𝑅0,0+8𝑖 = 0x80000000 𝐿0,0+8𝑖 = 0x00000000

𝜅0,0 = 0x00000000

⊞⋘11 𝑆⊕

𝑅0,1+8𝑖 = 0x00000000 𝐿0,1+8𝑖 = 0x80000000

𝜅0,1  = 0x80000000

⊞⋘11 𝑆⊕

𝑅0,2+8𝑖 = 0x80000000 𝐿0,2+8𝑖 = 0x00000000

𝜅0,2 = 0x00000000

⊞⋘11 𝑆⊕

𝑅0,3+8𝑖 = 0x00000000 𝐿0,3+8𝑖 = 0x80000000

𝜅0,3 = 0x80000000

𝑅0,4+8𝑖 = 0x80000000 𝐿0,4+8𝑖 = 0x00000000

⊞⋘11 𝑆⊕

𝑅0,4+8𝑖 = 0x80000000 𝐿0,4+8𝑖 = 0x00000000

𝜅0,4 = 0x00000000

⊞⋘11 𝑆⊕

𝑅0,5+8𝑖 = 0x00000000 𝐿0,5+8𝑖 = 0x80000000

𝜅0,5 = 0x80000000

⊞⋘11 𝑆⊕

𝑅0,6+8𝑖 = 0x80000000 𝐿0,6+8𝑖 = 0x00000000

𝜅0,6 = 0x00000000

⊞⋘11 𝑆⊕

𝑅0,7+8𝑖 = 0x00000000 𝐿0,7+8𝑖 = 0x80000000

𝜅0,7 = 0x80000000

𝑅0,8+8𝑖 = 0x80000000 𝐿0,8+8𝑖 = 0x00000000

Fig. 28: The 24-round related-key differential of GOST by iterating above 3 times

⊞⋘11 𝑆⊕

𝑅1,0+8𝑖 = 0x00000000 𝐿1,0+8𝑖 = 0x80000000

𝜅1,0 = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,1+8𝑖 = 0x80000000 𝐿1,1+8𝑖 = 0x00000000

𝜅1,1 = 0x00000000

⊞⋘11 𝑆⊕

𝑅1,2+8𝑖 = 0x00000000 𝐿1,2+8𝑖 = 0x80000000

𝜅1,2 = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,3+8𝑖 = 0x80000000 𝐿1,3+8𝑖 = 0x00000000

𝜅1,3 = 0x00000000

𝑅1,4+8𝑖 = 0x00000000 𝐿1,4+8𝑖 = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,4+8𝑖 = 0x00000000 𝐿1,4+8𝑖 = 0x80000000

𝜅1,4 = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,5+8𝑖 = 0x80000000 𝐿1,5+8𝑖 = 0x00000000

𝜅1,5 = 0x00000000

⊞⋘11 𝑆⊕

𝑅1,6+8𝑖 = 0x00000000 𝐿1,6+8𝑖 = 0x80000000

𝜅1,6 = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,7+8𝑖 = 0x80000000 𝐿1,7+8𝑖 = 0x00000000

𝜅1,7 = 0x00000000

𝑅1,8+8𝑖 = 0x00000000 𝐿1,8+8𝑖 = 0x80000000

Fig. 29: The 24-round related-key differential of GOST by iterating above 3 times
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⊞⋘11 𝑆⊕

𝑅2,24 𝐿2,24 = 0x80000000

𝜅2,7

⊞⋘11 𝑆⊕

𝑅2,25 = 0x80000000 𝐿2,25 = 0x00000000

𝜅2,6 = 0x00000000

⊞⋘11 𝑆⊕

𝑅2,26 = 0x00000000 𝐿2,26 = 0x80000000

𝜅2,5 = 0x80000000

⊞⋘11 𝑆⊕

𝑅2,27 = 0x80000000 𝐿2,27 = 0x00000000

𝜅2,4 = 0x00000000

𝑅2,28 = 0x00000000 𝐿2,28 = 0x80000000

⊞⋘11 𝑆⊕

𝑅2,28 = 0x00000000 𝐿2,28 = 0x80000000

𝜅2,3 = 0x80000000

⊞⋘11 𝑆⊕

𝑅2,29 = 0x80000000 𝐿2,29 = 0x00000000

𝜅2,2 = 0x00000000

⊞⋘11 𝑆⊕

𝑅2,30 = 0x00000000 𝐿2,30 = 0x80000000

𝜅2,1 = 0x80000000

⊞⋘11 𝑆⊕

𝑅2,31 = 0x80000000 𝐿2,31 = 0x00000000

𝜅2,0 = 0x00000000

𝑅2,32 = 0x00000000 𝐿2,32 = 0x80000000

Fig. 30: The 7-round related-key differential of GOST

⊞⋘11 𝑆⊕

𝑅3,24 𝐿2,24 =0x00000000

𝜅3,7

⊞⋘11 𝑆⊕

𝑅3,25 = 0x00000000 𝐿3,25 = 0x80000000

𝜅3,6  = 0x80000000

⊞⋘11 𝑆⊕

𝑅3,26 = 0x80000000 𝐿3,26 = 0x00000000

𝜅3,5 = 0x00000000

⊞⋘11 𝑆⊕

𝑅3,27 = 0x00000000 𝐿3,27 = 0x80000000

𝜅3,4 = 0x80000000

𝑅3,28 = 0x80000000 𝐿3,28 = 0x00000000

⊞⋘11 𝑆⊕

𝑅3,28 = 0x80000000 𝐿3,28 = 0x00000000

𝜅3,3 = 0x00000000

⊞⋘11 𝑆⊕

𝑅3,29 = 0x00000000 𝐿3,29 = 0x80000000

𝜅3,2 = 0x80000000

⊞⋘11 𝑆⊕

𝑅3,30 = 0x80000000 𝐿3,30 = 0x00000000

𝜅3,1 = 0x00000000

⊞⋘11 𝑆⊕

𝑅3,31 = 0x00000000 𝐿3,31 = 0x80000000

𝜅3,0 = 0x80000000

𝑅3,32 = 0x80000000 𝐿3,32 = 0x00000000

Fig. 31: The 7-round related-key differential of GOST
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⊞⋘11 𝑆⊕

𝑅0,23 = 0x00000000 𝐿0,23 = 0x80000000

𝜅0,7  = 0x80000000

⊞⋘11 𝑆⊕

𝑅1,23 = 0x80000000 𝐿1,23 = 0x00000000

𝜅1,7 = 0x00000000

⊞⋘11 𝑆⊕

𝑅2,25 = 0x80000000 𝐿2,25 = 0x00000000

𝜅2,7=0x40000000

⊞⋘11 𝑆⊕

𝑅3,25 = 0x00000000 𝐿3,25 = 0x80000000

𝑅0,24 = 0x80000000 𝐿0,24 = 0x00000000 𝑅1,24 = 0x00000000 𝐿1,24 = 0x80000000

𝐿2,24 = 0x80000000
𝜅3,7= 0xc0000000

𝐿3,24 = 0x00000000

(𝑥0, 𝑥1 )

(𝑥1, 𝑥2 )

(𝑥2, 𝑥3 )

(𝑥0, 𝑥3 )

(𝑦0, 𝑦1 )

(𝑦1, 𝑦2 )

(𝑦2, 𝑦3 )

(𝑦0, 𝑦3 )

(𝑧1, 𝑧2 ) (𝑧0, 𝑧3 )

(𝑘0, 𝑘1 ) (𝑘2, 𝑘3 )

(𝑘1, 𝑘2 ) (𝑘0, 𝑘3 )

Fig. 32: The core of one full-round RK-IBDs of GOST

just need to verify ((0x00000000, 0x80000000), (0x80000000, 0x00000000) cannot prop-
agate to ((0x800000 00, 0x00000000), (0x00000000, 0x80000000) after 2 rounds under
the key differences κ0,7, κ1,7, κ2,7, κ3,7.

As shown in Figure 32, we have x1 = x0, x2 = x0 ⊕ 0x80000000 and x3 = x0. On
the one hand, since y0⊕ y1⊕ y2⊕ y3 = 0x80000000, with the values of L2,25 and L3,25,
we have z0 ⊕ z1 ⊕ z2 ⊕ z3 = 0. On the other hand, we have k1,7 = k0,7 ⊕ 0x80000000,
k2,7 = k3,7 = k0,7 ⊕ 0xc0000000. For an 32-bit value v, let v′ be the most significant
4-bit, and S represents the S-box operate the most significant 4-bit. Then, we have{

z′0 = S(x′0 + k′0), z
′
1 = S(x′0 + k′0 ⊕ 0x8),

z′2 = S(x′0 ⊕ 0x8 + k′0 ⊕ 0xc), z′3 = S(x′0 + (k′0 ⊕ 0xc).

Then, z′0 ⊕ z′1 ⊕ z′2 ⊕ z′3 = 0 cannot hold for S-box of both GOST-FB and GOST-PS.
This is a contradiction.
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