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Abstract

Fully homomorphic encryption (FHE) schemes enable computations on encrypted data, mak-
ing them as a crucial component of privacy-enhancing technologies. Ducas and Micciancio intro-
duced the FHEW scheme (Eurocrypt ’15), which was further enhanced by Chillotti et al. with
TFHE (Asiacrypt ’17). These schemes support low-latency homomorphic evaluations of binary
(or larger) gates due to their small parameter size. However, the evaluation failure probability
in these schemes is highly sensitive to the choice of parameters, resulting in a limited range of
viable parameters and a trade-off between failure probability and runtime.

Recently, Cheon et al. proposed a key recovery attack on the FHEW/TFHE schemes based
on a novel security model for FHE, known as IND-CPAD security (CCS ’24). Mitigating this
attack requires achieving a negligible failure probability (e.g., 2−64). However, the limited
range of parameter options in FHEW/TFHE necessitates the adoption of parameter sets with
unnecessarily low failure probabilities, leading to inefficient runtime.

We propose a new bootstrapping method for the FHEW/TFHE shcemes that optimizes the
trade-off between runtime and failure probability while maintaining ease of implementation. The
proposed method allows selecting parameter sets that achieve the desired failure probabilities
at various security levels, thereby maximizing runtime efficiency.
Keywords. Homomorphic encryption, key recovery attack, bootstrapping, cutoff Blind Rota-
tion

1 Introduction

A Fully Homomorphic Encryption (FHE) scheme enables computations to be performed directly
on encrypted data, thereby preserving privacy during data processing. The Brakerski-Gentry-
Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV) schemes support arithmetic opera-
tions on integers [BGV14, Bra12, FV12], while the FHEW and TFHE schemes [DM15, CGGI17,
CGGI20] enable operations on logic circuits. These FHE schemes are categorized as Exact FHE. In
addition, the Cheon-Kim-Kim-Song (CKKS) scheme, introduced in [CKKS17], allows approximate
operations on complex numbers, thereby classifying it as Approximate FHE.

In privacy-preserving applications, FHE is typically used in a client-server architecture, where
a client encrypts their data and transmits it to a server for computation. The server performs

1



the requested operations on the encrypted data and returns the encrypted results to the client.
Designing an efficient FHE system requires selecting optimal parameters that balance security and
computational performance. The selected FHE scheme must also ensure security against chosen-
plaintext attacks (IND-CPA security) so that the server cannot learn any information about the
client’s data from the ciphertext.

Li and Micciancio extended the conventional notion of IND-CPA security by introducing in-
distinguishably under chosen-plaintext attacks with a decryption oracle (IND-CPAD) [LM21]. In
contrast to the traditional IND-CPA model, this variant allows an adversary to observe the results
of computations performed on the ciphertext. It has been shown that the IND-CPAD model ex-
poses Approximate FHE schemes, such as CKKS, to attacks. The standard countermeasure to this
vulnerability is a technique known as noise flooding, which involves increasing the noise level in the
ciphertext to render it statistically indistinguishable from random noise[LM21].

Cheon et al. [CCP+24] demonstrated that Exact FHE schemes, including BGV/BFV and
FHEW/TFHE, also fail to meet IND-CPAD security due to evaluation failure events. Moreover,
they conducted a key-recovery attack on widely used libraries such as TFHE-rs, emphasizing the
need to revise the current parameters.

Since Cheon et al.’s attack exploits evaluation failure events, the failure probability of homo-
morphic operations must be minimized to reduce the adversary’s advantage. The failure probability
is primarily determined by the parameters of the FHE scheme, such as the ciphertext modulus.
Although many bootstrapping methods have been proposed for FHEW-like schemes, the number
of viable parameter sets remains limited. Due to the inherent trade-off between performance and
failure probability, these restricted options often force the use of parameter sets with unnecessarily
low failure probabilities, leading to inefficient runtime.

There are three main bootstrapping methods in FHEW-like schemes. The first, introduced by
Ducas and Micciancio, builds on the Alperin-Sheriff and Peikert (AP) method [AP14], which they
incorporated into their FHEW scheme [DM15]. This method delivers consistent performance re-
gardless of the key distribution. The second method, used in the TFHE scheme [CGGI17] proposed
by Chillotti et al., employs the Gama-Izabachene-Nguyen-Xie (GINX) technique [GINX16], which
offers superior performance but is limited to binary key distributions. Although GINX/TFHE boot-
strapping can be generalized to support arbitrary secret keys [MP21, JP22], its performance signifi-
cantly degrades when larger key distributions are used. Lee, Micciancio, Kim, Choi, Deryabin, Eom,
and Yoo (LMKCDEY) proposed an efficient bootstrapping technique using ring automorphisms,
which achieves performance comparable to GINX/TFHE even with arbitrary secret keys [LMK+23].

1.1 Failure Probability of FHEW/TFHE and IND-CPAD Security

The FHEW/TFHE schemes are based on the Learning with Errors (LWE) problem and its ring
variant, Ring-LWE (RLWE)[LPR13]. Since ciphertexts inherently contain noise that accumulates
with each homomorphic operation, decryption will fail if the noise exceeds a certain threshold.
To date, FHEW/TFHE schemes have been designed to maintain a low failure probability (prefer-
ably less than 2−40-2−50 [DM15, CGGI17, MP21, LMK+23, BBB+23]) while ensuring acceptable
performance.

Cheon et al. proposed a key-recovery (KRD) attack, which is a relaxation of IND-CPAD, against
FHEW/TFHE schemes in the existence of a decryption oracle for the result of a homomorphic
operation model [CCP+24]. When an adversary can access the decrypted value of a resulting
ciphertext from a queried computation, it can detect homomorphic operation failures. There is a
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noticeable difference in the distribution of LWE ciphertext elements when the corresponding secret
key is 0 or 1 upon failure. The adversary can exploit this information to recover the secret key,
and a polynomial-time attack becomes feasible with a sufficient (but constant) number of failure
events.

Li et al. proposed a finer-grained definition of bit-security that distinguishes between a compu-
tational security parameter c and a statistical one s [LMSWS22]; a primitive achieves (c, s)-security
if for any adversary A, either A has statistical advantage bounded by 2−s (regardless of A’s run-
ning time or computational assumptions), or the running time of the attack is at least 2c times
larger than the advantage achieved. It is important to note that the choice of statistical security
parameter s should be application dependent [LMSWS22], while a commonly accepted value for
the computational security parameters in most applications is c = 128 bits. To meet (c, s)-security,
the bootstrapping failure probability should determined by considering both the statistical security
s and the number of queries made by the adversary.

Reducing the bootstrapping failure probability involves adjusting parameters such as ring di-
mension, LWE ciphertext dimension, and ciphertext modulus. However, there is a significant gap
between feasible values because the ring dimension must be a power of two for efficient number the-
oretic transformation (NTT) and modular arithmetic in the exponent. While the LWE dimension
does not need to be a power of two, it directly affects the security level and cannot be drastically
altered. Another and most flexible option is changing the digit of decomposition d, typically a
small integer such as 3 or 4 [LMK+23, MP21]. Unfortunately, even minor changes in d can signif-
icantly impact both the failure probability and computational complexity, thereby limiting viable
parameters. It is thus challenging to perfectly fit the bootstrapping failure probability to a specific
target such as 2−64 without uselessly losing efficiency.

1.2 Our Contribution

We propose a novel bootstrapping method for FHEW/TFHE that allows for smooth adjustment
of the failure probability, optimizing the balance between runtime and failure probability. In
FHEW/TFHE schemes, the range of adjustable parameters is inherently limited, and even minor
adjustments can drastically affect failure probability and computational complexity. As a result,
homomorphic operations can be performed using parameters that lead to unnecessarily low failure
probabilities, causing inefficiencies in both runtime and complexity.

To mitigate these inefficiencies, we introduce a novel blind rotation technique that optimizes
bootstrapping in FHEW-like HE schemes by omitting operations with minimal impact on noise.
Blind rotation involves the homomorphic execution of the decryption operation, f ·Xb−⟨a⃗,s⃗⟩, on a
given ciphertext (b, a⃗) ∈ Zn+1

q . In our proposed method, the operation corresponding to ⟨⃗a, s⃗⟩ is
performed for the secret key s⃗, introducing a cutoff value t. This cutoff omits operations for ai and
si when |ai| ≤ t, effectively reducing the number of expensive ciphertext multiplications required
during blind rotation.

Figure 1 illustrates how the failure probability and the number of multiplications change as
the cutoff value t is varied in the parameter settings used by OpenFHE [Ope22], an open-source
library for fully homomorphic encryption. We note that it is straightforward to apply the proposed
method to other FHEW/TFHE implementations as well [Zam22, BIP+22].

Although the introduction of the new parameter t may increase the probability of operation
failure, it significantly reduces computational complexity by omitting operations that contribute
minimally to the overall noise. Importantly, t can be freely adjusted within the range [0, q/2), and
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Figure 1: The number of unit operations and failure probability by cutoff parameter t. Note that
prior arts can only achieve failure probability and runtime marked in red squares. The parameter
set is borrowed from OpenFHE (LPF STD128).

its effect on failure probability is considerably less pronounced than that of other parameters, such
as decomposition digits. By expanding the set of viable parameters, the proposed method enables
the selection of parameters that achieve the desired failure probability (e.g., 2−64, 2−96, or even
2−128) while minimizing runtime.

As discussed in Section 3.2, the failure probability of bootstrapping in FHEW-like HE schemes
is critical not only for security but also for maintaining computational integrity. The total failure
probability scales with the number of gates in a given circuit, and certain applications, such as
robot control systems, require extremely low failure probabilities. Thus, it is essential to achieve
low failure probabilities while minimizing computational complexity to preserve the integrity of the
HE-based system.

Additionally, the proposed parameter t can be adjusted after key generation, providing flexibility
in parameter tuning without necessitating key regeneration, making it suitable for a wide range of
application scenarios.

We have implemented the proposed method in OpenFHE [Ope22], and our experimental results
demonstrate a reduction in runtime using this approach. Although the focus of this paper is
primarily on parameter sets for binary and ternary gates, the proposed technique is also applicable
to larger key spaces.

1.3 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the prior FHEW/TFHE
bootstrapping techniques are presented in Section 2. The IND-CPAD and key recovery attack pro-
posed on FHEW/TFHE are discussed in Section 3. In Section 4, we propose a new optimization
technique for FHEW/TFHE bootstrapping, which is especially efficient for IND-CPAD-secure pa-
rameters. Improvements to the proposed method are detailed in Section 5. Implementation results
and secure parameters are provided in Section 6. Finally, we conclude the paper with remarks in
Section 7.
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2 Preliminaries

We denote the inner product between two vectors as ⟨·, ·⟩. Let N be a power of two, and define the
2N -th polynomial ring as Z[X]/(XN + 1), while the corresponding quotient ring is represented as
RQ = R/QR.

Elements of RQ are represented in boldface, such as a(X), and X is omitted when the context
is clear. The i-th coefficient of ring element a is denoted as ai. Similarly, vectors are denoted using
boldface, such as v, and the i-th element of a vector v is denoted by vi. The L2 norm of ring
elements or vectors is represented as || · ||, and the infinity norm as || · ||inf . We use the notation
x ← χ to indicate that x is sampled from a distribution χ. When x is sampled uniformly from a
set S, this is denoted as x← S.

2.1 Lattice-based Encryption

Let q and n be positive integers. The LWE encryption of a message m ∈ Zq under a secret key s⃗
is defined as follows:

LWEs⃗(m) = (⃗a, b) = (⃗a, ⟨⃗a, s⃗⟩+m+ e) ∈ Zn+1
q

where the secret key is sampled as s⃗ ← χsk, the error term is sampled as e ← χerr, and the
public key component a⃗ is sampled uniformly from Zqn. Note that χerr typically represents a
discrete Gaussian distribution with zero mean and standard deviation σ. The decryption of LWE
ciphertext LWEs⃗(m) = (⃗a, b) is defined as taking the inner product with (−s⃗, 1). In other words,

⟨(⃗a, b), (−s⃗, 1)⟩ = ⟨⃗a, s⃗⟩+m+ e− ⟨⃗a, s⃗⟩ = m+ e ≈ m.

We define RLWE encryption of m with secret key z ← χsk as follows:

RLWEQ,z(m) = (a,a · z +m+ e) ∈ R2
Q,

where a← RQ, and e← χerr. The decryption of RLWE is defined as follows:

⟨(a, b), (−z, 1)⟩ = a · z +m+ e− a · z = m+ e ≈m.

2.1.1 Basic Operations for RLWE Ciphertext

The basic building block of FHEW bootstrapping is RLWE′ and Ring-GSW (RGSW) and their
multiplication with ring element and RLWE ciphertext [GSW13, DM15]. We follow the definitions
of RLWE′

z(m) and RGSWz(m) from [MP21]:

RLWE′
z(m) :=

(
RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdg−1 ·m)

)
∈ R2dg

Q

RGSWz(m) :=
(
RLWE′(−z ·m),RLWE′(m)

)
∈ R2dg×2

Q ,

where g = (g0, g1, · · · , gdg−1) is a gadget vector, which is used in gadget decomposition. We

say h(a) = (a0,a1, · · · ,adg−1) is gadget decomposition of a ∈ RQ if a ≈
∑dg−1

i=0 gi · ai, where

||a||inf < Bg andBg is base of gadget decomposition satisfyingBg
dg ≤ Q. The gadget decomposition

naturally extends to Zq and Zn
q .
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RLWE′ provides the following multiplication ⊙ : RQ × RLWE′ −→ RLWE:

a⊙ RLWE′ = ⟨(a0,a1, · · · ,adg−1),
(
RLWEz(g0 ·m), · · · ,RLWEz(gdg−1 ·m)

)
⟩

=

dg−1∑
i=0

ai · RLWEz(gi ·m) = RLWEz (h ·m) .

The multiplication between RLWE and RGSW (⊗ : RLWE × RGSW −→ RLWE) is defined as
follows:

RLWEz(m0)⊗ RGSWz(m1) = a⊙ RLWE′
z(−z ·m1) + b⊙ RLWE′

z(m1)

= RLWEz(m0 ·m1 + e1 ·m1).

This operation outputs an RLWE encryption of m0 ·m1+e1 ·m1. It is worth noting that the noise
term m1 · e1 remains small because m1 is usually selected as a monomial, and thus consecutive
RGSW multiplications primarily accumulate additive noise. The variance of the additive noise due

to ⊙RLWE′ and ⊗RGSW operations are given by dgN
B2

g

12 and 2dgN
B2

g

12 , respectively [MP21].

2.1.2 Ring Automorphism

We define the ring automorphism ψk : RQ 7→ RQ as ψk(m(X)) = m(Xk) using RLWE′. Given
RLWE ciphertext RLWEz(m) = (a, b), we can find RLWEz(Xk)(m(Xk)), by (a(Xk), b(Xk)).

However, its secret key is now z(Xk) rather than z(X). We can revert the secret key back to z(X)
when the automorphism key RLWE′

z(X)(−z(Xk)) is given using following equation:

(0, b(Xk)) + a(Xk)⊙ RLWE′
z(X)(−z(X

k)) = (0, b(Xk)) + RLWEz(X)(−a(Xk) · z(Xk))

= RLWEz(b− a(Xk) · z(Xk))

= RLWEz(m(Xk)).

The automorphism key RLWE′
z(X)(−z(Xk)) is typically provided as a public evaluation key for

automorphism operations, denoted as akk.

2.1.3 LWE Key Switching

LWE key switching is the process of converting an LWE encryption under a secret key z⃗ ∈ ZN
q into

an LWE encryption under another secret key s⃗ ∈ Zn
q . This operation introduces additional noise.

To perform key switching, one must define a key-switching key (ksk) as follows:

ksk =
{
kski,j,v = LWEs⃗

(
−v · zi ·Bj

ks

)
|i ∈ [0, N), j ∈ [0, dks), v ∈ [0, Bks)

}
,

where kski,j,v = LWEs⃗

(
−v · zi ·Bj

ks

)
and Bks and dks are the base and the digit length of the

gadget decomposition for key switching, respectively, satisfying Bdks
ks ≥ q.

The key-switching operation is defined as:

KeySwitch ((⃗a, b), ksk) = (⃗0, b) +
∑
i,j

kski,j,ai,j , (1)
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where the gadget decomposition of ai, denoted as h(ai), is given by (ai,0, ai,1, . . . , ai,dks−1). As the

sum of these terms can be expressed as
∑

i,j kski,j,ai,j =
∑

i,j LWEs(−ai,j ·Bj
ks ·zi) = LWEs (−⟨⃗a, z⃗⟩)

and (0, b) is a transparent ciphertext of b, (1) is equal to

LWEs (b) + LWEs (−⟨⃗a, z⃗⟩) = LWEs (b− ⟨⃗a, z⃗⟩) = LWEs (m) .

The total noise variance introduced by the key-switching operation is given as Ndks ·σ2, where the
noise in each kski,j,k is independent and has variance σ2.

2.1.4 Extraction of LWE Ciphertext from RLWE Ciphertext

An LWE ciphertext that contains only the constant term of the message can be extracted from an
RLWE ciphertext [DM15]. This operation, known as LWE extraction, is used in FHEW-like HE
to convert the resulting RLWE ciphertext from blind rotation into an LWE ciphertext. The LWE
extraction operation is defined as follows:

LWEExtract : R2
Q 7→ ZN+1

Q , LWEExtract ((a, b)) =
(
a′, b0

)
∈ ZN+1

Q ,

where a′ = (a0,−a1,−a2, · · · ,−aN−1). By definition, (a′, b0) is the LWE ciphertext containing the
constant term of the RLWE ciphertext (a, b).

2.2 Bootstrapping in FHEW/TFHE

Initially, the operation defined by the gate is performed on two LWE-encrypted ciphertexts. Subse-
quently, the process known as blind rotation is applied. Blind rotation involves multiplying the ring
element f and the monomial Xu, where u = −⟨⃗a, s⃗⟩ is determined by the input LWE ciphertext
(⃗a, b).

Blind rotation is performed on the accumulator RLWE ciphertext, which is initialized as:
Acc = RLWE

(
f ·Xb

)
, and is iteratively updated using RLWE ⊗ RGSW operations. Once the

blind rotation is completed, the following steps are applied to transform the result back: LWE ex-
traction, modulus switching, LWE key switching, and another modulus switching step. During LWE
extraction, the constant term of the RLWE polynomial is extracted, resulting in an LWE ciphertext
that encrypts the −u-th coefficient of f , i.e., LWEz(f−u). The first modulus switching operation

transforms: ZN+1
Q

mod switching−−−−−−−−−→ ZN+1
Qks

, which is followed by key switching: ZN+1
Qks

key switching−−−−−−−−→ Zn+1
Qks

,

and finally, the last modulus switching is performed: Zn+1
Qks

mod switching−−−−−−−−−→ Zn+1
q . The complete

bootstrapping procedure is illustrated in Figure 2.
This paper follows the procedure outlined in OpenFHE for noise analysis; however, various

modifications to this procedure exist [Ope22, MP21]. For instance, the conversion from RLWE
to LWE could be delayed as in [LMK+23], which helps reduce both noise and failure probability
with minimal computational overhead. Additionally, using Torus LWE [CGGI17], instead of LWE
defined over integers, allows for bypassing the first modulus switching. Another option is to employ
an LWE key-switching key with non-standard noise variance to bypass the initial modulus switching
step [DM15]. For enhanced efficiency, NTRU-based FHEW-like HE [BIP+22] may also be employed.

We note that the proposed method can be seamlessly applied to all of these variants, and the
specific approach adopted in this manuscript was chosen for clarity of explanation.
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... Previous bootstrapping

... Previous bootstrapping

LWEs⃗(
q
4 · m0)

LWEs⃗(
q
4 · m1)

+

*(⃗a, b) = LWEs⃗(
q
4 ·m0) + LWEs⃗(

q
4 ·m1) RLWEz

(
f ·Xb−⟨a⃗,s⃗⟩)

LWEz (Q/4 ·mres) LWEz(Qks/4 ·mres)

LWEs⃗ (Qks/4 ·mres) LWEs⃗(q/4 · mres)

Additi
on

Blind rotation

LWE extra
ction

Mod switching

Key switc
hing

Mod switching

Figure 2: FHEW-like bootstrapping procedure. It is noted that the relative noise is the greatest in
the block marked with a star.

2.3 Noise Analysis

Our noise analysis is based on the methodologies described in [DM15], [MP21], and [CGGI20].
The noise generated during bootstrapping can generally be categorized into three additive sources:
noise from blind rotation, noise from key switching, and noise from modulus switching. The failure
probability should be evaluated at the step where the noise is maximized. As shown in Figure
2, the noise level is highest after the addition of the two input ciphertexts and before the blind
rotation (indicated by a star).

2.3.1 Modulus Switching Noise

Modulus switching is an operation that converts the original modulus Q1 of an LWE ciphertext to
a new modulus Q2 using a rounding function. Modulus switching, denoted as [·]Q2

Q1
: ZQ1 −→ ZQ2 is

defined as:

[t]Q2

Q1
=

⌊
Q2 · t
Q1

⌉
.

The application of modulus switching to an LWE ciphertext LWEs⃗(m) = (⃗a, b) is given by:

[(⃗a, b)]Q2

Q1
=
(
([a0]

Q2

Q1
, [a1]

Q2

Q1
, · · · , [an−1]

Q2

Q1
), [b]Q2

Q1

)
.

The decryption of [(⃗a, b)]Q2

Q1
∈ Zn+1

Q2
yields:

[b]Q2

Q1
−
〈
[⃗a]Q2

Q1
, s⃗
〉
=
Q2

Q1
· b+ rn −

Q2

Q1
· ⟨⃗a, s⃗⟩ −

n−1∑
i=0

ri · si =
Q2

Q1
·m+ rn −

n−1∑
i=0

ri · si,

where ri denotes rounding errors; [ai]
Q2

Q1
= Q2

Q1
· ai + ri and [b]Q2

Q1
= Q2

Q1
· b+ rn. When the secret key

follows a uniform ternary distribution, the variance of the noise introduced by modulus switching

is given by: ||s⃗||2+1
12 .
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2.3.2 Blind Rotation Noise

Blind rotation involves performing the decryption operation on encrypted data, represented as
f · Xb−⟨a⃗,s⃗⟩. The blind rotation keys, denoted as brk, consist of RGSW-encrypted values. This
process decrypts the input ciphertext while separating the coefficients and exponents of polynomials,
resulting in a ciphertext whose noise is independent of that in the input ciphertext.

There are three primary blind rotation methods: AP/FHEW, GINX/TFHE, and LMKCDEY.
The performance of each method varies depending on the key distribution, and further details can
be found in [MP21, LMK+23]. The blind rotation keys for each method are defined as follows:

AP/FHEW:
{
brki,v,j = RGSW

(
Xv·Bj

r ·si
)
|v ∈ ZBr , 0 ≤ j < logBr

q
}

GINX/TFHE:

{
brki,u = RGSW(xi,u) |xi ∈ {0, 1}|U | s.t.

∑
u∈U

u · xi,u = si

}
LMKCDEY: {brki = RGSW(Xsi) |i ∈ [0, n)} , {ak−1, ak5k |1 ≤ k < w},

where w is a small integer, typically around log(n), and U ⊂ Zq. For example, U = {1,−1} is
suitable for ternary secret keys, while U = {1} is used for binary secret keys.

Using the defined blind rotation keys, the blind rotation is performed by accumulating Xaisi

into the accumulator (Acc) using the following operations:

AP/FHEW: Acc←− Acc⊗ brki,v,j for all 0 ≤ j < logBr
q

GINX/TFHE: Acc←− Acc + (Xu·ai − 1)(Acc⊗ brki,u),

where Acc is initialized as RLWE(f · Xb). In the AP/FHEW method, the ⊗ operation must be
repeated ndr times, where dr is an AP-specific parameter used to decompose the LWE input a⃗ such
that Bdr

r ≈ q. In the GINX/TFHE method, the operation needs to be repeated 2|U |n times, where
|U | is the size of U . 1

The LMKCDEY bootstrapping method, in contrast to the previous approaches, utilizes ring
automorphisms ψt and an automorphism key akt, where t is an odd number. In summary, the
LMKCDEY bootstrapping technique supports arbitrary secret key distributions and achieves a
runtime comparable to that of GINX/TFHE while generating less noise than both the AP and
GINX methods. This approach relies on two core operations: 1) performing constant multiplication
in the exponent using 2) adding si to the exponent by multiplying with RGSW(Xsi). For additional
information on this bootstrapping technique, readers are referred to [LMK+23].

The variance of noise introduced by blind rotation is thus given by:

AP/FHEW: 2ndr · dgN
B2

g

12
σ2

GINX/TFHE: 2|U | · 2n · dgN
B2

g

12
σ2

LMKCDEY: dgN
Bg

2

12

(
2n · σ2 +

(
k +

N − k
w

)
· σ2
)
,

where the factor of 2 is introduced because the RGSW scheme is composed of tuples, and the term
Bg

12 appears because the RGSW scheme represents the message in a gadget-decomposed form, which

1For a more generalized approach to GINX/TFHE bootstrapping, see [JP22].
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corresponds to uniform sampling from the interval
[
−Bg

2 ,
Bg

2

]
. Here, k represents the expected

number of non-empty index sets I±ℓ = {i : ai = ±gℓ} for g, where ⟨g,−1⟩ generates Z∗
2N , which is

expressed as min(N,n) in the worst-case and as N
(
1−

(
1− 1

N

)n) ≈ N (1− e−n/N
)
in the average-

case [LMK+23].

3 IND-CPAD and KRD Attack Exploiting Bootstrapping Failure

IND-CPAD, introduced by Li and Micciancio, is a more stringent security notion than IND-CPA,
taking into account scenarios in which an adversary can observe the results of computations per-
formed on ciphertexts [LM21]. Recently, Cheon et al. demonstrated that the current parameter
sets used in FHEW/TFHE exhibit a non-negligible failure probability, preventing these schemes
from achieving IND-CPAD security [CCP+24].

This section explains why the non-negligible failure probability leads to the failure of IND-CPAD

security and discusses the key recovery attack under decryption oracle (KRD) that exploits this
vulnerability, as well as the necessity of fine-tuning the failure probability to mitigate this issue.

3.1 IND-CPAD and KRD Attack

The KRD attack, proposed by Cheon et al., leverages computational failures induced by noise in
Exact FHE schemes [CCP+24]. Their study revealed that the parameters used in many libraries for
Exact FHE do not meet IND-CPAD security, highlighting the need to reduce the noise generated
during homomorphic operations. In this section, we briefly explore how KRD attacks are conducted
and why they fail to satisfy IND-CPAD. For a comprehensive analysis of the techniques involved,
we refer readers to [CCP+24].

In IND-CPAD, the attacker possesses an oracle not only for encryption and decryption but also
for evaluation. Each oracle is defined according to the following algorithms, where G represents
any binary circuit (such as NAND), DB is a database used to store oracle outputs, and I denotes
input wires as indices.

Algorithm 1: OENC (m0,m1; pk, b) [CCP+24]

1 ct←− ENCpk(mb)
2 DBi ←− {m0,m1, ct}
3 i← i+ 1
4 return ct

Algorithm 2: ODEC (i; sk) [CCP+24]

1 if DBi.m0 = DBi.m1 then
2 return m←− DECsk(DBi.ct)
3 end

10



Adversary Challenger

b← {0, 1}

ct0 ← ENCsk({0, 1}b)

ct1 ← ENCsk({1, 1}b)

ctres ← EVAL(OR, {ct0, ct1})

mb ← DECsk(ctres)

b′ := (mb = 0)?0 : 1

OENC({0, 1})

ct0

OENC({1, 1})

ct1

OEVAL(OR, {0, 1})

ctres

ODEC(2)

mb

Figure 3: IND-CPAD attacks on binary FHEW/TFHE

Algorithm 3: OEVAL (G, I) [CCP+24]

1 ct←− EVAL(G,DBi∈I .ct)
2 result0 ←− EVAL(G,DBi∈I .m0)
3 result1 ←− EVAL(G,DBi∈I .m1)
4 DBi ←− {result0, result1, ct}
5 i← i+ 1
6 return ct

Using these oracles, IND-CPAD attacks on FHEW/TFHE become feasible. Figure 3 illustrates
a generic IND-CPAD attacks on binary FHE. First, the adversary queries the challenger using
OENC({0, 1}) and OENC({1, 1}). The challenger then selects a challenge bit b and encrypts the
messages {0, 1}b and {1, 1}b, where {A,B}b = A if b = 0, and {A,B}b = B, otherwise. Now,
the adversary receives two ciphertexts, ct0, and ct1, where ct1 always represents the encryption of
1. Afterward, the adversary requests the evaluation oracle from the challenger to perform an OR
operation on the previously obtained ciphertexts. Since ct1 always represents the encryption of 1
(assuming correct execution), the result of the evaluation oracle will always yield 1. Finally, the
adversary queries the decryption oracle from the challenger to verify the result of ctres. In this
scenario, if all operations are executed correctly, the result of ctres will be 1, regardless of the value
of b. However, in cases where computational errors occur due to the inherent noise in Exact FHE
schemes, the result will be 0. This discrepancy reveals that the failure is attributable to the noise
affecting ct1.

In such a scenario, the adversary can say b′ = b with probability:

Pr[b = b′] = (1− p) · Pr[b = b|F̄ ] + p · Pr[b = b′|F ] = 1

2
+
p

2

where F represents the event of decryption failure, and p denotes the probability of event F .
Consequently, if p is sufficiently large, the adversary can obtain enough oracle queries to mount an

11



attack on Exact FHE. According to [CCP+24], the adversary can increase the success probability
of the attack to 1

2 + qp
2 using q oracle queries.

By exploiting this failure probability, the KRD attack can be extended to Exact FHE schemes.
To further increase the failure probability, operations are performed on the ciphertext after the final
modulus switch, as shown in Figure 2. Algorithm 4 describes the KRD attack on FHEW/TFHE,
where K represents the number of operations required to gather sufficient failed results, and cnt
denotes the number of observed failures. If a sufficient number of failed results caused by noise are
collected and analyzed, KRD attacks become feasible since the distribution of noise varies depending
on the secret key value.

Algorithm 4: KRD Attacks [CCP+24]

1 cnt = 0
2 for i = 0; i < K; i = i+ 1 do
3 ct0 ←− ENCpk(0)
4 ct1 ←− EVAL(OR, ct0, ct0)
5 ct2 ←− EVAL(OR, ct1, ct1)
6 m←− DECsk(ct2)
7 if m == 1 then
8 ecnt ←− evaluate noise from ct1
9 cnt = cnt + 1

10 end

11 end

12 e = 1
cnt ·

∑cnt−1
j=0 ej

13 if
(
ei >

α
2

)
?(si = 1) : (si = 0) for all i < n

14 return s

3.2 Smooth Failure Probability Requirements in FHEW-like HE

There are two primary reasons why smooth parameter sets are needed for each targeted failure
probability: first, to satisfy the security requirements of the IND-CPAD security requirement, and
second, to meet the diverse reliability requirements of HE applications in practical scenarios.

3.2.1 (c, s)-security

Li et al. extended the classical computational security definition discussed in [MW18] to the
(c, s)-security framework, as outlined in Theorem 1. Traditionally, the computational complexity
parameter c is chosen to be 128, 192, or 256 bits. However, it is important to note that the
appropriate choice of statistical complexity parameter s is application dependent [LMSWS22].

Theorem 1 ((c, s) − security [LMSWS22]). Let Π be a cryptographic primitive, and G be an
indistinguishable game. Let advA denote the advantage of an adversary A in breaking Π in G. We
say that Π is (c, s)-secure if for any adversary A, either

log2
T (A)

advA
≤ c, or log2

1

advA
≤ s,

12



where T (A) is the time complexity of A.

The advantage of the adversary in the attack proposed by Cheon et al. [CCP+24], as well
as other similar attacks, is directly proportional to both the failure probability and the number
of queries made. Therefore, achieving a sufficiently low failure probability is essential, and it is
necessary to have a method that can smoothly adjust the failure probability and performance
based on the targeted security requirements and the number of queries.

3.2.2 Hardness of Achieving Desired Failure Probability

For the Exact FHE scheme to satisfy IND-CPAD security, the probability of a successful attack
must be close to 1

2 + qp
2 ≈

1
2 . Therefore, the failure probability of the operation, p, should be

negligible and determined by statistical security parameter s.
To reduce the probability of operation failure, various parameters such as n, q, N , and Q can

be adjusted. However, since N must be powers of two, there is often a substantial gap between the
permissible values. Although n, q, and Q do not need to be powers of two, these parameters directly
influence the security level and, therefore, cannot be significantly decreased. The parameters that
can be more flexibly modified include the decomposition digits dg, dr, and dks. However, even
minor changes in these values can have a profound effect on the probability of operation failure,
making it challenging to achieve satisfactory parameter configurations.

Additionally, reducing the failure probability by adjusting the parameters will inevitably result
in increased runtime due to the associated rise in computational complexity. Given the limited
set of feasible parameters, there may be instances where it becomes necessary to use less efficient
parameters, compromising performance.

In Section 4, we introduce a blind rotation method that provides a fine-grained trade-off between
the bootstrapping failure probability and runtime. Figure 5 illustrates the spectrum of failure
probabilities achievable using our proposed blind rotation technique, which will be discussed in the
following section. Furthermore, as the failure probability increases, a corresponding improvement
in runtime can be expected due to a reduction in computational complexity.

3.2.3 Reliability Requirement

An additional advantage of making the failure probability independent of the key generation process
is that the computing party can avoid revealing information about the number of gates, which
could potentially disclose details about the circuit structure, to the key generation party. The
technique introduced in Section 4 incorporates a cutoff parameter that balances failure probability
and runtime. This parameter can be adjusted after key generation, provided a lower bound for the
failure probability is maintained. This flexibility enables the computing party to optimize either
runtime or failure probability for different circuits using the same set of keys, without disclosing
circuit structures or requiring key regeneration.

Moreover, the failure probability of homomorphic circuits scales with the number of gates in the
computation. For example, in large-scale computations, such as those required for large language
models, the number of gates can reach billions. Assuming each gate failure is independent and
results in complete computational failure, the overall failure probability becomes 1−(1−p)G, where
p is the failure probability per gate and G is the number of gates. Thus, for large computations, it
is essential to employ parameters with low failure probabilities.

13



Finally, certain applications, such as robotic control systems, demand exceptionally high re-
liability. In such cases, failure is not only a security risk but could potentially result in severe
accidents. For these scenarios, it is crucial to use parameters with extremely low failure probabil-
ities, making it necessary to have a mechanism that allows for smooth adjustment of the failure
rate.

4 New Blind Rotation Technique

As discussed in the previous section, a high probability of failure can provide the adversary with
excessive information, thereby increasing their advantage. To mitigate this risk, reducing the failure
probability during bootstrapping to a negligible level is essential. However, the current parameters
result in a sufficiently high failure probability, enabling successful attacks and necessitating updates
to the default parameter sets for FHEW/TFHE.

Adjustments to parameters such as N , Q, dg, and dks are imperative. However, the boot-
strapping failure probability is highly sensitive to these parameters, making precise adjustments
challenging.

To address this issue and achieve finer control over the failure probability while optimizing
computational complexity, we propose modifying the blind rotation technique, referred to as cutoff
blind rotation.

The proposed algorithm introduces a new parameter, the cutoff value t, to regulate the boot-
strapping process. This cutoff value enables the algorithm to bypass certain RLWE ⊗ RGSW
operations during blind rotation when |ai| ≤ t. While this modification may slightly increase the
failure probability, it offers a practical mechanism for fine-tuning the failure probability by reduc-
ing computational complexity, thereby minimizing performance loss while maintaining IND-CPAD

security.

4.1 The Cutoff Blind Rotation Algorithm

The detailed operation of cutoff blind rotation can be found in Algorithm 5. Although the algorithm
is currently illustrated for the AP method, it can also be applied to the GINX [CGGI17] and
LMKCDEY [LMK+23] methods.

As discussed in Section 2, the bootstrapping procedure enables homomorphic decryption. Specif-
ically, during bootstrapping, the term f ·X⟨a,s⟩ is computed homomorphically. The core concept
of the cutoff blind rotation technique is to disregard terms where ai is sufficiently small, such that
omitting (ai · si) does not substantially impact the overall value of ⟨a, s⟩. This approach results in
an approximate decryption, increasing the noise.

However, reducing the number of RGSW multiplications decreases the computational complex-
ity, and the additive noise generated from ⊛RGSW is also minimized. This implies that adjusting
the cutoff value can increase the failure probability in scenarios where the available parameter
choices result in a lower-than-required failure probability while simultaneously improving compu-
tational efficiency. This technique enhances the flexibility of parameter settings concerning failure
probability, enabling a broader range of parameter choices.

14



Algorithm 5: NAND with cutoff blind rotation

Data: ciphertext ct1, ciphertext ct2, blind rotation key ek, threshold value t
Result: ct←− ct1∧̄ct0 with small noise

1 (a, b)←− ct1 + ct2
2 for i ∈ [0, q/2) do
3 k ←− b− i
4 if k ∈ [3q/8, 7q/8) then
5 fi·2N/q = −Q/8
6 else
7 fi·2N/q = Q/8

8 end

9 end
10 Acc←− f
11 for i ∈ [0, n) do
12 if |ai| ≤ t then continue
13 for j ∈ [0, dr) do

14 cj ←− ⌊c/Bj
r⌋ mod Br

15 if cj ̸= 0 then
16 Acc←− Acc⊗ eki,j,cj

17 end

18 end

19 end
20 return LWEExtract(Acc) +Q/8

4.2 Noise Analysis

Our noise analysis follows the methodologies from [DM15], [MP21], and [LMK+23]. Using a cutoff
blind rotation affects the number of RLWE⊗RGSW operations during the blind rotation process.
The noise introduced by the cutoff blind rotation consists of two components: the reduced noise
from the fewer RGSW multiplication in blind rotation and the increased noise due to omitting
small ai values.

Before conducting noise analysis, the average number of ai that satisfies |ai| > t, which is
determined by the cutoff value, can be expressed as n · (1− 2t+1

q ). Here, we will denote (1− 2t+1
q )

as N from now on. The noise generated by ⊙ operation is represented as dgN
B2

g

12 σ
2 [MP21], and

we denote it as σ2⊙.

Theorem 2. Let (a, b) be an LWE encryption with the secret key s, and let a∗ be the vector whose
elements are defined as a∗i = ai if |ai| > t, and a∗i = 0 otherwise. Then, RLWE

(
f ·Xb−⟨a,s⟩) can

be found using the AP blind rotation, and the noise introduced by the cutoff blind rotation is

σ2ACC−AP = 2ndr

(
dgN

B2
g

12
σ2

)
· (1− 2t+ 1

q
).

Proof. Since (a, b) is an LWE ciphertext, the coefficients of a are uniformly distributed over the
interval [−q/2, q/2) [Reg09]. Therefore, the average number of zero elements in a∗ is n · 2t+1

q .
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Consequently, the probability of skipping RGSW multiplications in the AP blind rotation is 2t+1
q .

The values encrypted in the RGSW evaluation key are monomials, and the error variance is σ2.

Thus, the noise introduced by each RGSW multiplication is σ2ACC = 2Ndg
B2

g

12 σ
2 = 2σ2⊙, and it ac-

cumulates additively. Since the AP blind rotation for (a∗, b) requires ndrN RGSW multiplications,
the total noise introduced by the AP blind rotation is given by

σ2ACC−AP = 2ndr · σ2⊙ · N .

Corollary 1. The noise introduced during GINX cutoff blind rotation is given by:

σ2ACC−GINX = 2|U | · 2n · σ2⊙ · N .

According to [LMK+23], the maximum noise variance that a ciphertext can have in LMKCDEY
blind rotation is given as follows:

2n · σ2⊙ +

(
k +

N − k
w

)
· σ2⊙

where the left term corresponds to the multiplication of RGSW(Xsi) and the right term corresponds
to the key switching during automorphsim.

Our proposed technique only affects the blind rotation procedure. Specifically, it impacts the
value of σACC−LMK+ and results in a fixed variance depending on the cutoff value t.

Corollary 2. The noise introduced during LMKCDEY cutoff blind rotation is given as follows:

2n · σ2⊙ · N +

(
k′ +

N ′ − k′

w

)
· σ2⊙

where k′ = N ′
(
1−

(
1− 1

N ′

)n·N)
and N ′ = (N − t).

For operations other than blind rotation, the cutoff value does not have any impact. Therefore,
the noise variances for these operations are given by:

σ2MS1
=
||sN ||2 + 1

12
, σ2MS2

=
||s⃗n||2 + 1

12
, σ2KS = σ2Ndks,

where sN ∈ RQ and s⃗n ∈ Zn
q denote the RLWE and LWE keys, respectively. Here, σ2MS1

and σ2MS2

represent the noise generated by modulus switching operations before and after key switching,
respectively, and σ2KS represents the noise introduced by the key switching procedure. When
calculating the probability of failure, we consider ||sN ||2 and ||s⃗n||2 under the assumption that if
the secret key is binary or ternary, then ||s⃗n|| ≤

√
n/2 and ||sN || ≤

√
N/2, respectively.

Let a∗ be a vector such that a∗i = ai if |ai| > t, and a∗i = 0, otherwise. The noise introduced by
approximating a to a∗ given by:

σ2CUT =
t2

3
· ||s⃗n||2 · (1−N ).
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We can consider ai − a∗i as a random variable uniformly sampled from the interval [−t, t] given
that |ai| ≤ t. The variance of these omitted elements is t2

3 , and the probability of being omitted is
2t+1
q = 1−N . We note that this noise is not generated during blind rotation or modulus switching

operations. Instead, it is considered as noise that the ciphertext always inherently possesses.
The resulting total noise is expressed as follows:

σ2total = 2
q2

Q2
ks

(
Q2

ks

Q2
σ2ACC + σ2MS1

+ σ2KS

)
+ 2σ2MS2

+ σ2CUT

If the noise of LWEs

( q
4 ·m

)
exceeds q

8 , decryption failure occurs. Therefore, the failure probability

of (N)AND, (N)OR, and X(N)OR gate operations can be defined as 1 − erf
(

q/8√
2·σtotal

)
, where erf

denotes the error function..

4.3 Runtime Analysis

The number of ⊙ operations for blind rotation is given as follows [MP21, LMK+23]:

AP/FHEW: 2n · dr(1− 1/Br)

GINX/TFHE: 2n · |U |
LMKCDEY: 2n+ (1− 1/w)k +N/w + 2.

This computational complexity can be reduced by applying the cutoff blind rotation technique.
Since the ⊙ operation constitutes the majority of the computational workload in FHEW boot-
strapping, we measure the overall computational complexity based on the number of RLWE′ mul-
tiplications, as in [LMK+23].

The fundamental principle of cutoff blind rotation lies in omitting specific computations. Our
focus is on determining how many operations can be skipped. Given a cutoff value t, computations
are omitted for coefficients falling within the range [−t, t]. Consequently, the expected number of ⊙
operations during bootstrapping, considering the applied cutoff value, can be expressed as follows:

AP/FHEW: 2n · dr(1− 1/Br) · N
GINX/TFHE: 2n · |U | · N
LMKCDEY: 2n · N + (1− 1/w)k′ +N ′/w + 2.

5 Further Improvement and Application to Existing Optimization

Cutoff blind rotation operates by skipping ai ·si operations for ai values that satisfy |ai| ≤ t, making
it applicable to commonly used bootstrapping methods such as AP, GINX, and LMKCDEY, as well
as compatible with various other optimization techniques. For example, when combined with the
approximate gadget decomposition method introduced in [KLD+23], the bootstrapping runtime
can be significantly reduced with only a minimal increase in noise.

Additionally, with slight modifications to cutoff blind rotation, it is possible to further fine-tune
the trade-off between failure probability and computational complexity, achieving a lower failure
probability when the secret key distribution is binary.
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Figure 4: This figure shows the changes in bootstrapping runtime according to the number of ai
satisfying |ai| ≤ t. This is the average result obtained from performing the NAND gate operation
60,000 times. We used the AP method with the parameter LPF STD128 with cutoff value t = 9,
which is currently provided by OpenFHE.

6 Implementation Result and Expansion of Parameter Sets

In this section, we implement the cutoff blind rotation technique and analyze its performance.
By applying this technique, we demonstrate that there are now more diverse options for selecting
efficient parameters compared to previous methods. The cutoff blind rotation was implemented
using the open-source library OpenFHE [Ope22]. The parameters primarily covered in this sec-
tion are four specific configurations: LPF STD128, LPF STD128Q, LPF STD128 LMKCDEY, and
LPF STD128Q LMKCDEY. The evaluation was conducted using OpenFHE v.1.2.0 on an Intel(R)
Core(TM) i9-11900 @ 2.50GHz processor. The code was compiled with clang++ 14, using the
CMake flags NATIVE SIZE=32.

6.1 Bootstrapping Runtime

A significant number of iterations are necessary to observe how the bootstrapping runtime varies
with different cutoff values. Instead, we fixed the cutoff value and observed the difference in
bootstrapping runtime based on the number of omitted ai that satisfied the |ai| ≤ t. The results
are presented in Figure 4. It can be observed that as the number of omitted ai increases, the
bootstrapping runtime decreases. Note that while OpenFHE currently uses approximate gadget
decomposition in a rough manner, we set the parameter δ more precisely to minimize the noise
generated during the blind rotation process.

Table 2 shows the changes in failure probability and the number of ⊙ operations when applying
cutoff blind rotation to the parameters currently used in OpenFHE. In Table 2, the cutoff value
t is set to 9; however, the cutoff value can be adjusted freely depending on the failure probability
requirements of the specific application. As the cutoff value increases, the number of ⊙ operations
decreases linearly.
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Table 1: This table provides information about the parameter sets used in Table 2. In cases where
the cutoff blind rotation technique is not applied, t is set to 0.

n q N log2Q log2Qks Bg Bks Br δ t

LPF STD128 556 2048 1024 27 15 27 26 26 27 9

LPF STD128Q 645 2048 1024 25 16 27 26 25 27 9

LPF STD128 LMKCDEY 556 2048 1024 27 15 29 25 - 29 9

LPF STD128Q LMKCDEY 600 2048 1024 25 15 27 25 - 27 9

2 3 4 5

−300

−200

−100

0

2−128
2−96
2−64

dg

F
ai
lu
re

p
ro
b
a
b
il
it
y

LPF STD128
LPF STD128Q

LPF STD128 LMK
LPF STD128Q LMK

Figure 5: This figure illustrates the changes in failure probability as dg and cutoff value vary. The
dashed lines represent cases where the failure probability satisfies 2−128, 2−96, and 2−64. The points
marked with an empty shape represent the failure probability according to dg, i.e., parameters that
the previous method can achieve. The solid lines indicate the failure probability achievable by
applying the cutoff technique.

Table 2: This table shows the changes in failure probability and the number of ⊙ operations when
applying the cutoff blind rotation technique to the parameters currently used in OpenFHE. In the
case of LPF STD128(Q), the calculations were based on the AP method. Detailed parameter sets
can be found in Table 1.

without cutoff with cutoff

FP # of ⊙ FP # of ⊙
LPF STD128 2−185 2188 2−124 2168

LPF STD128Q 2−52 2538 2−47 2516

LPF STD128 LMKCDEY 2−77 1601 2−67 1592

LPF STD128Q LMKCDEY 2−58 1712 2−52 1701
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6.2 Diversity and Precision of Parameter Selection

The key advantage of the cutoff blind rotation technique is that, unlike previous parameters such
as dg and dks, it enables fine-tuning of the failure probability. At the same time, it provides
a favorable trade-off between failure probability and computational complexity, facilitating the
selection of more efficient parameters. For example, Figure 5 illustrates the changes in failure
probability resulting from changes to dg, as well as the changes in failure probability when the
cutoff technique is additionally applied.

The three failure probabilities, 2−128, 2−96, and 2−64 are the target failure probabilities that
we have set arbitrarily. As shown in Figure 5, it is challenging to configure all parameters to meet
the desired failure probability, e.g., FP ≤ 2−96 by merely changing dg. However, by applying the
cutoff technique, it becomes straightforward to modify the cutoff value to satisfy FP ≤ 2−96, while
simultaneously reducing computational complexity. For values of dg set to 4 or 5, the failure prob-
ability is smaller than 2−128. In this case, adjusting the cutoff value allows the failure probability
to be brought closer to 2−128 while also reducing computational complexity.

Table 3: This table presents the values of δ, Bg, and t for parameter sets that satisfy failure
probabilities of FP ≤ 2−64, FP ≤ 2−96, and FP ≤ 2−128. It also shows the theoretical failure
probability, FPth, the experimentally measured noise variance, VARexp, and the corresponding
experimentally derived failure probability, FPexp.

STD128(FP64) STD128(FP96) STD128(FP128) LPF STD128

AP GINX LMK+ AP GINX LMK+ AP GINX LMK+ AP GINX LMK+

δ 211 29 29 29 29 26 29 29 26 27 27 29

Bg 28 26 29 26 26 27 26 26 27 27 27 29

t 8 12 5 9 8 8 5 5 5 0 0 0

FPth 2−67 2−65 2−65 2−96 2−102 2−105 2−136 2−128 2−132 2−144 2−127 2−69

VARexp 486.199 392.215 377.1 307.982 264.603 270.829 232.261 244.538 231.259 212.476 203.114 343.736

FPexp 2−101 2−124 2−129 2−157 2−182 2−178 2−207 2−197 2−208 2−226 2−237 2−141

runtime 65.0 ms 49.7 ms 51.8 ms 65.5 ms 62.4 ms 62.1 ms 80.2 ms 62.9 ms 62.4 ms 80.9 ms 63.3 ms 52.8 ms

Table 3 presents the parameters that satisfy failure probabilities of FP ≤ 2−64, FP ≤ 2−96,
and FP ≤ 2−128, respectively. Note that all parameters, except for δ, Bg, and t are identical to
those used in OpenFHE. Additionally, the parameter δ has been finely adjusted to efficiently utilize
approximate gadget decomposition. The experimentally measured noise variance, VARexp, and the
unit bootstrapping runtime are based on the results obtained from 1000 NAND gate operations. The
difference between the experimental results and theoretical values arises because our experiments
focus on events involving very small noise. As a result, obtaining accurate values would require
extensive experimentation. Thus, we implemented a failure probability simulator [Noi24].

7 Conclusion

We propose a new optimization technique applicable to existing blind rotation methods with min-
imal changes to the underlying algorithm. By introducing the cutoff blind rotation, we enable
more flexible parameter settings, achieving an appropriate trade-off between failure probability
and computational complexity. Unlike conventional parameters, the cutoff value has a relatively
small impact on failure probability, allowing for precise parameter adjustments.
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This technique operates by partially omitting elements of the LWE ciphertext (⃗a, b), making it
applicable to various bootstrapping methods. We demonstrated the application of our technique
to three existing blind rotation methods—AP, GINX, and LMKCDEY—as well as its integration
with approximate gadget decomposition.

Previously, even slight changes to parameters such as dg and dks would significantly impact the
failure probability, making fine-tuning for very low failure probabilities particularly challenging. As
discussed in [CCP+24], FHEW/TFHE HE schemes are vulnerable against IND-CPAD adversaries.
However, achieving low failure probability, such as 2−96, 2−128 for security, would often result in
sparse parameter choices, leading to significant inefficiencies in runtime. Our proposed technique fa-
cilitates precise parameter tuning to achieve the desired failure probability while improving runtime
efficiency.

The proposed method can also be applied to Torus-based [CGGI17] and NTRU-based [BIP+22,
XZDF23] variants. While these algorithms have different parameter sets and are susceptible to at-
tacks such as the one described in [CCP+24], finding parameters with negligible failure probability
remains crucial. Additionally, our technique can be extended to blind rotations with higher bits,
as seen in [LMP22, BBB+23]. Future work could explore applying the proposed method to amor-
tized bootstrapping techniques [LW23a, LW23b, LW23c, MKMS23] to further optimize runtime
performance.
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[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In Advances in Cryptology - EUROCRYPT, pages 617–640.
Springer, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[GINX16] Nicolas Gama, Malika Izabachene, Phong Q Nguyen, and Xiang Xie. Structural lat-
tice reduction: Generalized worst-case to average-case reductions and homomorphic
cryptosystems. In Advances in Cryptology - EUROCRYPT, pages 528–558. Springer,
2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ad-
vances in Cryptology – CRYPTO 2013, pages 75–92. Springer, 2013.

[JP22] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption with
extended keys. In International Symposium on Cyber Security, Cryptology, and Ma-
chine Learning, pages 1–18. Springer, 2022.

[KLD+23] Andrey Kim, Yongwoo Lee, Maxim Deryabin, Jieun Eom, and Rakyong Choi. Lfhe:
Fully homomorphic encryption with bootstrapping key size less than a megabyte.
Cryptology ePrint Archive, 2023.

[LM21] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on
approximate numbers. In Advances in Cryptology – EUROCRYPT 2021, pages 648–
677. Springer, 2021.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin,
Jieun Eom, and Donghoon Yoo. Efficient FHEW bootstrapping with small evalua-
tion keys, and applications to threshold homomorphic encryption. In Advances in
Cryptology – EUROCRYPT 2023, pages 227–256. Springer, 2023.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic
sign evaluation using FHEW/TFHE bootstrapping. In Advances in Cryptology–
ASIACRYPT 2022, pages 130–160. Springer, 2022.

[LMSWS22] Baiyu Li, Daniele Micciancio, Mark Schultz-Wu, and Jessica Sorrell. Securing ap-
proximate homomorphic encryption using differential privacy. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages 560–589,
Cham, 2022. Springer Nature Switzerland.

22



[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013.

[LW23a] Feng-Hao Liu and Han Wang. Batch bootstrapping i: A new framework for simd
bootstrapping in polynomial modulus. In Advances in Cryptology – EUROCRYPT
2023, page 321–352, 2023.

[LW23b] Feng-Hao Liu and Han Wang. Batch bootstrapping ii: Bootstrapping in polynomial
modulus only requires o(1) FHE multiplications in amortization. In Advances in
Cryptology – EUROCRYPT 2023, page 353–384, 2023.

[LW23c] Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less than 7 ms,
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