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Abstract. Attribute-based signatures (ABS) allow users to simulta-
neously sign messages and prove their possession of some attributes
while hiding the attributes and revealing only the fact that they sat-
isfy a public policy. In this paper, we propose a generic construction
of ABS for circuits of unbounded depth and size, with optimal param-
eter size—meaning the lengths of public parameters, keys, and signa-
tures are all constant. Our construction can be instantiated from vari-
ous standard assumptions, including LWE and DLIN. This substantially
improves the state-of-the-art ABS scheme by Boyle, Goldwasser, and
Ivan (PKC 2014), which, while achieving optimal parameter size, relies
on succinct non-interactive arguments of knowledge that can only be
constructed from non-standard assumptions. Our generic construction is
based on RAM delegations. At a high level, we leverage the fact that the
circuit associated with the signature can be made public and compress it
using the power of RAM delegation. This allows us to achieve an overall
optimal parameter size while simultaneously hiding the user’s policy.

1 Introduction

1.1 Backgrounds

Attribute-based signatures (ABS), first proposed by Maji, Prabhakaran, and
Rosulek [40], allow users to simultaneously sign messages and prove their pos-
session of some attributes while hiding the attributes and revealing only that
they satisfy a public policy. In the typical scenario of using ABS, we consider
two entities: a key issuing authority and signers. The authority first generates a
master secret key together with some public parameter and issues a user secret
key associated with the user’s attribute. After receiving the user secret key, each
signer can generate a signature on a message with a policy. Such a signature
is publicly verifiable, and anyone can verify that a signer who generates the
signature has some attributes that satisfy the policy if the verification passes.
The important feature is that the signature hides the attributes used to satisfy
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Table 1: Comparison of efficiency among expressive ABS schemes.

Policy Param. Sig. Key Assumption

BGI14 [7] Unbounded circuits∗ O(1) O(1) O(1) zk-SNARKs

SAH16 [47] Unbounded circuits O(|x|) O(|C|) O(1) pairings

EK18 [22] Unbounded circuits O(|x|) O(|C|) O(1) lattices in ROM

SKAH18 [48] TM† O(1) O(T 2) O(|Γ |) pairings

DDK23 [16] TM O(1) O(1) O(|x|) iO

LNP+24 [39] Unbounded circuits O(|x|) O(|C|) O(1) codes in QROM

Ours Unbounded circuits O(1) O(1) O(1) pairings or lattices

∗ Unbounded circuits : Circuits of unbounded depth and size
† TM : Unbounded polynomial-time deterministic Turing machines of unbounded

input length and description size
|x| : Length of attributes
|C| : Length of policy circuits
T : Computational time of Turing machines
|Γ | : Length of policy descriptions

the policy and any information identifying the signer. ABS draws increasing at-
tention for its applications such as anonymous credentials [49], non-transferable
access controls [38], electronic medical records [30], etc.

Expressiveness and Efficiency. After Maji et al. [40] introduced the notion of
ABS and proposed ABS schemes for monotone span programs, earlier works [3,
12, 31, 38, 43, 44, 44, 49–51] proposed ABS for limited class of policies. The work
by Sakai, Attrapadung, and Hanaoka [47], who proposed an ABS for circuits
with unbounded depth and size, significantly broadened the class of policies. Af-
ter this work, several works proposed ABS schemes for quite expressive classes
of policies, including unbounded circuits [22, 39] and Turing machines [16, 48].
We summarized these schemes in Table 1. As shown in the table, no existing
ABS scheme dealing with circuits or more expressive class realizes optimal pa-
rameters, i.e., constant size of the public parameters, signatures, and secret keys
simultaneously. Only exception is the construction proposed by [7], but it re-
quires succinct non-interactive arguments of knowledge (SNARKs) as a building
block, whose instantiation is not known from standard assumptions. Given the
state of affairs, we pose the following natural question:

Can we construct an ABS for unbounded circuits with optimal parameter size
from standard assumptions?

1.2 Our Contribution

The main contribution of this paper is to propose a construction of an ABS
for circuits with unbounded depths and sizes that has optimal parameter size,
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answering the above question in the affirmative. As shown in Table 1, no existing
scheme but BGI14 [7] does not achieve the constant lengths. Moreover, our
construction can be constructed from any of the following assumptions: LWE,
DLIN over pairing groups, or simultaneously assuming QR and DDH over groups
without pairings. Namely, we are the first to propose such an optimal ABS from
standard assumptions.

1.3 Technical Overview

Here, we present an overview of our construction of ABS with constant-size pa-
rameters. Our construction is generic and based on several cryptographic prim-
itives that can be instantiated by standard assumptions.

For brevity, we consider a simpler variant of ABS, known as (message-policy)
constrained signature (CS) [6,51]. One can regard CS as a variant of ABS without
messages. More formally, in CS, a user signing key is associated with an attribute
x. Given the user signing key, one can generate a signature on policy C if C(x) =
1. As for the security, we require unforgeability, which stipulates that any PPT
adversary cannot forge a signature w.r.t policy C if it is only given user signing
keys for x such that C(x) = 0. We also require privacy, which stipulates that
any PPT adversary cannot distinguish a signature on C that is generated by a
signing key for x0 from that generated by a signing key for x1, provided C(x0) =
C(x1) = 1.

Näıve Construction. The challenge of constructing a succinct CS for unbounded
circuits lies in realizing constant lengths of user secret keys and signatures while
revealing no information other than the fact that a signer has some attribute x
satisfying the policy C, i.e., C(x) = 1. If we do not require the succinctness, we
can construct CS very easily:

– The public parameter consists of the common reference string (CRS) of an
NIZK and a verification key of a (plain) digital signature scheme. The master
secret key is the signing key for the signature.

– To generate a user signing key for attribute x, the key issuing authority
generates a signature σx on x. The user signing key is σx.

– A user with attribute x signs on a policy C by providing a NIZK proof Π
proving that (i) it has a pair (x, σx) such that σx is a valid signature on x
and (ii) the attribute x satisfies the policy C. Then, the user publishes the
proof Π as its signature.

– To verify the signature, we simply check whether the received proof Π is
a valid NIZK proof of the above statement, which is defined by C and the
public parameters.

In this näıve construction, the proof length depends on both the attribute and the
policy sizes, since so is the size of the verification circuit of the NIZK statement.
Therefore, our first goal is to compress the verification circuit of the underlying
NIZK statement. To simplify the following discussion, we will temporarily ignore
the privacy requirement for CS, thereby removing the need for NIZK.
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Compression Using RAM Delegation. The verification circuit in the näıve con-
struction consists of two parts: one to verify the signature σx on the attribute
x, and the other to check if the attribute x satisfies the policy C, i.e., C(x) = 1.
Our first insight is that the latter part can be compressed using RAM delega-
tion [9, 15,33–35], which allows a verifier to succinctly verify the veracity of the
result of heavy computation. More formally, in RAM delegation, a prover, given
a CRS crs, a RAM machine R, and an input x, produces a short proof that the
RAM machine R takes x as input and outputs y. The key property of RAM del-
egations is that anyone can check the validity of the proof with the short digest
of the input to the RAM machine. In addition, the proof length and the verifier
runtime are independent of the input size and the runtime of the RAM machine
R.3

Using a RAM delegation for a RAM machine R that takes (x,C) as inputs
and computes C(x) = b ∈ {0, 1}, we can construct a more efficient CS as follows
(we use the underline for the difference from the näıve construction for clarity):

– The public parameter consists of the CRS of RAM delegation and a verifi-
cation key of a (plain) digital signature scheme. The master secret key is the
signing key for the signature.

– To generate a user signing key for attribute x, the key issuing authority
generates a signature σx on x. The user signing key is σx.

– To signs on a policy C, a signer with attribute x computes a proof π of
the RAM delegation proving C(x) = 1. The ABS signature Σ consists of the
attribute x, the signature σx, and the RAM delegation proof π. The proof
π can be verified using a digest d of (x,C). Recall that we do not consider
privacy requirement here and x and σx are included in Σ in the clear.

– To verify the ABS signature Σ = (x, σx, π), we compute a digest d of (x,C)
and check if the signature σx on the attribute x is valid and the RAM delegation
proof π is valid using the digest d.

Due to the usage of the RAM delegation, the size of the verification circuit for
the signature is now independent of the size of the circuit C. However, its size
still depends on the attribute x. In the next step, we remove this dependency by
introducing additional ideas.

First Attempt for Removing the Dependency on Attribute Size. To remove the de-
pendency on the attribute size, a natural idea would be to compress the attribute
x using a hash function. More concretely, we change the above construction so
that the user signing key is replaced by the signature σdx on a digest dx of the
attribute x. We then modify the signing algorithm to output Σ = (dx, σdx , π),
where the RAM delegation proof π is generated for the same statement as be-
fore. As intended, the ABS signature is now compact. However, this introduces a

3 The proof length is polylogarithmically dependent on the runtime of the RAM ma-
chine. However, since we are only interested in polynomially bounded computation,
the proof length is bounded by a fixed polynomial, as log(poly(λ)) < λ asymptoti-
cally.
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problem with the verification algorithm: specifically, we cannot compute the di-
gest d of (x,C), which is required to verify π, because the verifier is not provided
with x in the clear, but only with dx.

Solution Using Flexible RAM SNARGs. We observe that the above problem
can be resolved if the digest d of (x,C) can be computed from dx and C, since
the verifier is given C as an input. This property is satisfied by hash functions
constructed by Merkle trees for example. The remaining question is whether a
RAM delegation scheme exists that is compatible with Merkle trees. Fortunately,
Kalai et al. [33] introduce the notion of RAM delegations, called flexible RAM
SNARGs, where the associated hash function used to compute the digest can
be chosen arbitrarily, provided it satisfies certain properties—which the Merkle
tree does.

To formalize the idea, we introduce a new notion called a Circuit SNARG.
There are two differences compared to RAM delegation. First, we consider the
delegation of circuit computation rather than RAM computation. This change
simplifies the exposition of our CS/ABS by using the same computational model
for both the delegation and CS/ABS. The second difference is that it incorporates
the flexibility in digest computation, as explained above, into the syntax. More
precisely, in Circuit SNARGs, a prover can generate a succinct proof π to show
that C(x) = 1. Verifiers, given the digest values dx and dC for x and C, along
with the proof π, can then verify the validity of the proof. Circuit SNARGs can
be easily obtained from the flexible SNARGs by instantiating the hash function
with the Merkle tree.

Our Final Construction. Using the Circuit SNARGs, we can compress the ver-
ification circuit for our CS scheme. The key issuer computes a signature σdx on
the digest dx of an attribute x to generate a user signing key for x, and the signer
generates the RAM delegation proof π showing that C(x) = 1, indicating that
the attribute x satisfies the policy C. Now, the ABS signature is Σ consisting of
the digest dx, signature σdx on it, and the proof π. Verifiers, given the ABS sig-
nature Σ = (dx, σdx , π) with respect to the policy C checks the validity of both
the signature σdx and the proof π. We observe that the size of the verification
circuit is of fixed polynomial size because (i) verifying the signature σdx on dx
can be done by a fixed-size circuit, as dx has a fixed size, and (ii) verifying π
can also be done by a fixed-size circuit, since π can be verified given dx and dC ,
both of which have fixed sizes.

The last remaining step is making the scheme satisfy the privacy requirement,
which is easily achieved by introducing NIZK again. The overview of our final
CS scheme is as follows (we use the underline for the different parts from the
simple construction for clarity):

– The public parameter consists of the CRS of circuit SNARG, CRS of NIZK,
and a verification key of a (plain) digital signature scheme. The master secret
key is the signing key for the signature.
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– To generate a user signing key for attribute x, the key issuing authority, given
some attribute x, computes the digest dx of x, generates a signature σdx on
the digest. The user secret key consists of (dx, σdx).

– To sign on a policy C, the signer with attribute x proceeds as follows:

1. Computes the Circuit SNARG proof π proving C(x) = 1 from C and x;

2. Generate a NIZK proof Π for the following statement defined by dC :

“There is a tuple (dx, σdx , π) such that (i) σdx is a valid signature on dx
and (ii) π passes the verification of the Circuit SNARG w.r.t the digests
dx and dC .”

Then, it publishes the ABS signature Σ := Π.

– To verify the ABS signature Σ = Π, the verifier simply checks the above
NIZK proof Π w.r.t the statement above, which can be recovered from dC .

In the above construction, it is easy to see that lengths of the all parameters are
fixed polynomial as desired. To extend the above construction of CS to ABS, we
use a simulation-sound NIZK. Essentially, this change is for binding the message
to the ABS signature. In addition, we make the NIZK proof-of-knowledge by
adding a PKE encryption of the witness. This change allows us to reduce the
unforgeability of ABS to that of the underlying (plain) signature. The formal
description and security analysis of our scheme will be provided in Section 4. As
a result, we obtain the following informal theorem.

Theorem 1.1 (Informal). If the PKE scheme, the signature scheme, the cir-
cuit SNARG, and the NIZK are secure, then the above construction of ABS with
constant-size parameters is secure.

In particular, each building block of our construction is known to be constructed
from assumptions either pairings or lattices, as described in Section 1.4. This
gives us the following corollary.

Corollary 1.1 (Informal). There is an ABS for unbounded circuits with constant-
size parameters based either on the DLIN (on pairings) or LWE (on lattices)
assumption.

1.4 Related Works

A Line of Work in ABS. Maji et al. [40] first proposed an ABS for monotone
span programs, in which each signature size depends on the policy size. Following
their work, several works have studied ABS for various classes of computations
including conjunction predicates [38,49], non-monotone span programs [3,44,50],
threshold policies [12, 31], bounded circuits [51], and deterministic finite au-
tomata [43]. The work by Sakai et al. [47], who proposed an ABS for unbounded
circuits, significantly broadened the class of policies. After this, several works
realized ABS schemes for quite expressive classes of policies as follows. El Kaa-
farani and Katsumata [22], and Ling et al. [39] proposed an ABS for unbounded
circuits, but its signatures size depends on the size of the circuits. Sakai et al. [48]
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proposed an ABS for Turing machines, but its signatures size is quadratic to the
running time of the Turing machines. Datta et al. [16] also proposed an ABS for
Turing machines with better parameters, but its length of keys stll depends on
the length of attributes.

ABS with Additional Functionalities and Security Requirements. In this paper,
we focus on the standard ABS, but there are also some variants of ABS. For
example, Escala et al. [23,39] proposed a revocable ABS that allows an external
judge to break the anonymity of signatures. Okamoto and Takashima [45] pro-
posed a decentralized ABS, in which there are multiple authorities to issue user
secret keys and is no central authority. Zhang et al. [53] recently proposed a regis-
tered ABS that allows any user to generate their own key pairs and register them
to the system. In addition to these, some works have considered traceability [18],
hierarchical variants [20,21,24,27], and the universal composability [4].

SNARGs and RAM Delegations. Existing works [8,10,13–15,17,26,28,33,35–37,
42,52] studied succinct non-interactive arguments (SNARGs) for efficiently ver-
ifying computations. Choudhuri, Jain, and Jin [15] and Kalai, Vaikuntanathan,
and Zhang [37] proposed a generic compiler from SNARGs for Batch-NP com-
putations (BARGs) with somewhere extractable succinct commitment schemes
with local opening (SECOM) to RAM delegations for deterministic polynomial-
time computations. Then, Kalai, Lombardi, Vaikuntanathan, and Wichs [33]
bootstrapped the efficiency of RAM delegations with succinctness poly(λ, log T )
constructed from any BARG and SECOM, where T is the computational time
of the RAM machine. This result implies that succinct RAM delegations can be
constructed from various computational assumptions since SECOM can be con-
structed from any of the following assumptions: LWE, QR, DDH, or DLIN [19],
and BARGs can be constructed from any of the following assumptions: LWE [15],
QR and DDH [32], or DLIN [52].

Independent and Concurrent Works on Homomorphic Signatures. Tsabary [51]
showed that ABS can be directly constructed from homomorphic signatures [5,
11, 29]. Recently, in independent and concurrent works, Anthoine, Balbás, and
Fiore [2] and Afshar, Cheng, and Goyal [1] respectively proposed constructions
of homomorphic signatures with constant public-parameter, signature, and key
sizes. It appears that we can easily obtain an ABS with optimal parameter sizes
by combining these approaches. However, their constructions face two challenges:
first, they achieve only weakly-hiding, meaning that a signature should not re-
veal the attribute of the signing key only for adversaries who do not know the
corresponding secret keys; second, the signature size depends on the policy size.
Nevertheless, these barriers could be overcome by employing NIZK and hash
functions, suggesting that their approach could also be extended to construct
an ABS for circuits with unbounded depth and size, achieving the same optimal
parameter size as our solution.
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2 Preliminaries

In this section, we review basic notations and formal definitions of primitives.

Notation. In this paper, we use the following notations. x← X denotes sampling
an element x from a finite set X uniformly at random. y ← A(x; r) denotes that
a probabilistic algorithm A outputs y for an input x using a randomness r, and
we simply denote y ← A(x) when we need not write an internal randomness
explicitly. For strings x and y, x||y denotes the concatenation of x and y. Also,
x := y denotes that x is defined by y, and |x| denotes the length of x. λ denotes
a security parameter. A function f(λ) is a negligible function in λ if f(λ) tends
to 0 faster than 1

λc for every constant c > 0. negl(λ) denotes an unspecified
negligible function. PPT stands for probabilistic polynomial time. ∅ denotes the
empty set. If n is a natural number, [n] denotes the set of integers {1, · · · , n}. If
x is a n bits string, xi denotes the i-th bit of the string x for any i ∈ [n]. If O is
a function or an algorithm and A is an algorithm, AO denote that A has oracle
access to O.

2.1 Public-Key Encryption

We recall a definition of a public-key encryption (PKE) scheme.

Definition 2.1 (Public-Key Encryption). A PKE scheme PKE with a plain-
text space M consists of the following three PPT algorithms.

KG(1λ)→ (ek, dk) : The key generation algorithm, given a security parameter
1λ, outputs an encryption key ek and a decryption key dk.

Enc(ek,m)→ c : The encryption algorithm, given an encryption key ek and a
plaintext m, outputs a ciphertext c.

Dec(dk, c)→ m : The (deterministic) decryption algorithm, given a decryption
key dk, and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪M.

Furthermore, we require a PKE scheme to satisfy the following standard prop-
erties.

Correctness. For all λ ∈ N and m ∈ M, we have Pr[(ek, dk) ← KG(1λ) :
Dec(dk,Enc(ek,m)) = m] = 1.

IND-CPA Security. For any PPT adversary A, the following advantage is
negligible:

Advind-cpaPKE,A(λ) :=

∣∣∣∣∣∣∣∣∣∣∣
Pr


b← {0, 1},

(ek, dk)← KG(1n),

(m∗
0,m

∗
1, st)← A(ek),

c∗ ← Enc(ek,m∗
b),

b′ ← A(c∗, st)

: b = b′

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
,

where A is required to output m∗
0 and m∗

1 satisfying |m∗
0| = |m∗

1|.
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2.2 Signature Scheme

Here we recall the definition of a signature scheme.

Definition 2.2 (Signature). A signature scheme SIG with a message space
M consists of the following three PPT algorithms.

KG(1λ)→ (vk, sk) : The key generation algorithm, given a security parameter
1λ, outputs a verification key vk and a signing key sk.

Sign(sk,m)→ σ : The signing algorithm, given a signing key sk and a message
m, outputs a signature σ.

Ver(vk,m, σ)→ 1/0 : The (deterministic) verification algorithm, given a verifi-
cation key vk, a message m, and a signature σ, outputs either 1 (accept) or
0 (reject).

Furthermore, we require a signature scheme to satisfy the following properties.

Correctness. For all λ ∈ N and m ∈ M, we have Pr[(vk, sk) ← KG(1λ) :
Ver(vk,m,Sign(sk,m)) = 1] = 1.

EUF-CMA Security. For any PPT adversary A, the advantage defined as
follows is negligible:

Adveuf-cma
SIG,A (λ) := Pr

 Lsig := ∅,
(vk, sk)← KG(1λ),

(m∗, σ∗)← AOsign(vk)

:
Ver(vk,m∗, σ∗) = 1

∧ m∗ /∈ Lsig

 ,

where the signing oracle Osign is defined as follows:

Signing Oracle. When A accesses the signing oracle Osign by making a
query m, it computes σ ← Sign(sk,m), returns σ to A, and appends m
to Lsig.

2.3 Non-Interactive Zero-Knowledge Proof

We define a non-interactive zero-knowledge proof (or simply NIZK). We require
NIZK to satisfy the simulation soundness, which is known to be constructed
from standard NIZK [25].

Definition 2.3 (NIZK Proof System). A non-interactive zero-knowledge
(NIZK) proof system NIZK for a NP relation ρ ⊆ X×W consists of the following
three PPT algorithms.

Setup(1λ)→ crs : The setup algorithm, given a security parameter 1λ, outputs a
common reference string crs.

Prove(crs,X,W)→ π : The prove algorithm, given a common reference string crs
and a pair of statement and witness (X,W) ∈ ρ, outputs a proof π.

Ver(crs,X, π)→ 1/0 : The verify algorithm, given a common reference crs, a
statement X, and a proof π, outputs either 1 (accept) or 0 (reject).
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Furthermore, we require a NIZK proof system to satisfy the following properties.

Correctness. For all λ ∈ N, (X,W) ∈ ρ, we have

Pr

[
crs← Setup(1λ),

π ← Prove(crs,X,W)
: Ver(crs,X, π) = 1

]
= 1.

Zero-Knowledge. Let Sim = (Sim0,Sim1) be a zero-knowledge simulator for
NIZK. For any PPT adversary A, the advantage defined as follows is negli-
gible:

AdvzkNIZK,A(λ) :=

∣∣∣∣Pr[crs← Setup(1λ) : AP(crs,·,·)(crs) = 1]

−Pr[(crs, td)← Sim0(1
λ) : AS(crs,td,·,·)(crs) = 1]

∣∣∣∣ ,
where P and S are oracles that on input (X,W) return ⊥ if (X,W) ̸∈ ρ and
otherwise return Prove(crs,X,W) and Sim1(crs, td,X), respectively.

Simulation soundness. Let Sim = (Sim0,Sim1) be a zero-knowledge simulator
for NIZK. For any PPT adversary A, the advantage defined as follows is
negligible:

Advsim-sound
NIZK,A (λ) := Pr

 Lπ := ∅,
(crs, td)← Sim0(1

λ),

(X, π)← AS(crs)

:

Ver(crs,X, π) = 1

∧ (X, π) /∈ Lπ

∧ X /∈ Lρ

 ,

where S is a oracle that on input (X,W) return π ← Sim1(crs, td,X) and add
(X, π) to Lπ, and Lρ is the NP language such that Lρ := {x | ∃w, (x,w) ∈ ρ}.

2.4 Hash Family with Local Opening

Here we recall the definition of a hash family with local opening [41]. The fol-
lowing definition refers to previous works [8, 33].

Definition 2.4. A hash tree HT consists of the following four PPT algorithms.

Gen(1λ)→ hk : The key generation algorithm, given a security parameter 1λ,
outputs a hash key hk.

Hash(hk, x)→ d : The hash algorithm, given a hash key hk and a message x,
outputs a hash value d.

Open(hk, x, i)→ (b, π) : The opening algorithm, given a hash key hk, an input
x, and an index i ∈ [N ], outputs a bit b and an opening π.

Ver(hk, d, i, b, π)→ 1/0 : The verification algorithm, given a hash key hk, a hash
value d, an index i, a bit b, and an opening π, outputs either 1 (accept) or 0
(reject).

Furthermore, we require a hash family with local opening to satisfy the following
properties.
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Completeness. For all λ ∈ N, all x ∈ {0, 1}poly(λ), and all i ∈ [|x|], there exists
a negligible function negl such that

Pr

 hk← Gen(1λ),

d← Hash(hk, x),

(b, π)← Open(hk, x, i)

:
Ver(hk, d, i, b, π) = 1,

∧ b = xi

 ≥ 1− negl(λ).

Efficiency. In the completeness experiment above, both the running times of
Gen and Ver are at most poly(λ).

Collision Resistance w.r.t. Opening. For any PPT adversary A, the ad-
vantage defined as follows is negligible:

AdvcolHT,A(λ) := Pr

[
hk← Gen(1λ),

(d, i, π0, π1)← A(hk)
:

Ver(hk, d, i, 0, π0) = 1,

∧ Ver(hk, d, i, 1, π1) = 1

]
.

2.5 flexible RAM SNARGs

Here we recall the definition of a flexible RAM SNARG proposed by Kalai, Lom-
bardi, Vaikuntanathan, and Wichs [33], which is a RAM delegation scheme [9,
15,34,35] in a specific model. In this scheme, we consider a read-only RAM ma-
chine that deterministically runs with random access to an external memory of
arbitrary size. It allows us to verify whether the RAM machine accepts an input
or not with a digest value of the initial external memory.

Definition 2.5. A flexible RAM SNARG RamS for machine R corresponding
to a hash family HT = (HT.Gen,HT.Hash,HT.Open,HT.Ver) consists of the fol-
lowing four PPT algorithms.

Setup(1λ)→ crs : The setup algorithm, given a security parameter 1λ, outputs a
common reference string crs.

Dig(hk, ximp)→ d : The digest algorithm, given a hash key hk which is generated
by HT.Gen(1λ) and an implicit string ximp, outputs a digest d.

Prove(crs, hk, (ximp, xexp))→ (b, π) : The prove algorithm, given a common ref-
erence string crs, a hash key hk, and a pair of implicit and explicit input
(ximp, xexp), outputs a bit b (indicating R(ximp, xexp)) and a proof π.

Ver(crs, hk, d, xexp, b, π)→ 1/0 : The verification algorithm, given a common ref-
erence string crs, a hash key hk, a digest d, an explicit input xexp, a bit b,
and a proof π, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a flexible RAM SNARG to satisfy the following proper-
ties.

Completeness. For all λ ∈ N, all RAM machines R, all x = (ximp, xexp) such
that R(x) accepts (i.e., R(x) = 1), there exists a negligible function negl
such that

Pr

 crs← Setup(1λ),

d← Dig(hk, ximp),

(b, π)← Prove(crs, hk, x)

:
Ver(crs, hk, d, xexp, b, π) = 1

∧ b = R(x)

 ≥ 1− negl(λ).
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Efficiency. In the completeness experiment above, the running time of Setup
is at most poly(λ, |xexp|, log |ximp|), and the length of a proof π is at most
poly(λ, |xexp|, log |ximp|).

Soundness. For any PPT adversary A, the advantage defined as follows is
negligible:

AdvsoundRamS,A(λ) := Pr

 crs← Setup(1λ),

(ximp, xexp, b, π)← A(crs),
d← Dig(hk, ximp)

:
Ver(crs, hk, d, xexp, b, π) = 1

∧ b ̸= R(x)

 .

Remark 2.1. Kalai, Lombardi, Vaikuntanathan, andWichs [33] proposed a RAM
SNARG scheme that satisfy a stronger definition of soundness, partial input
soundness, but a weaker definition defined as above is enough for our construc-
tion in the following. We also note that existing constructions [15,35] of a RAM
delegation satisfy the weaker soundness.

Remark 2.2. In the above definition, we omit a time bound T from an input to
the setup algorithm since we can set T as at most 2λ in the existing construc-
tions [15,33,35].

2.6 Attribute-Based Signature

Here we recall the definition of a attribute-based signature scheme from [40,46].

Definition 2.6. An attribute-based signature ABS scheme consists of the fol-
lowing four PPT algorithms.

Setup(1λ, 1ℓ)→ (pp,msk) : The setup algorithm, given a security parameter 1λ

and an attribute length 1ℓ, outputs a public parameter pp and a master secret
key msk.

KG(msk, x)→ skx : The key generation algorithm, given a master secret key msk
and an attribute x ∈ {0, 1}ℓ, outputs a user secret key skx.

Sign(pp, skx, x, C,m)→ Σ : The signing algorithm, given a public parameter pp,
a user secret key skx, an attribute x, a policy C, and a message m, outputs
a signature Σ.

Ver(pp, C,m,Σ)→ 1/0 : The verification algorithm, given a public parameter
pp, a policy C, a message m, and a signature Σ, outputs either 1 (accept)
or 0 (reject).

Furthermore, we require an attribute-based signature scheme to satisfy the fol-
lowing properties.

Correctness. For all λ ∈ N, all ℓ ∈ poly(λ), all attributes x, all policies C
satisfying C(x) = 1, and all messages m, we have

Pr

 (pp,msk)← Setup(1λ, 1ℓ),

skx ← KG(msk, x),

Σ ← Sign(pp, skx, x, C,m)

: Ver(pp, C,m,Σ) = 1

 = 1.
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Experiment ExptunfABS,A(λ)

Lcorr, Lsig, Lkey ← ∅
(pp,msk)← Setup(1λ, 1ℓ)
(C∗,m∗, Σ∗)← AOsig,Ocorr (pp)
if ∃ x ∈ Lcorr s.t. C∗(x) = 1 then return 0
if (C∗,m∗) ∈ Lsig then return 0
if Ver(pp, C∗,m∗, Σ∗) = 1 then return 1
return 0

Oracle Osig(x,C,m)

if C(x) = 0 then return ⊥
Lsig ← Lsig ∪ {(C,m)}
if (x, ·) /∈ Lkey then

skx ← KG(msk, x)
Lkey ← Lkey ∪ {(x, skx)}

otherwise find (x, skx) ∈ Lkey

Σ ← Sign(pp, skx, x, C,m)
return Σ

Oracle Ocorr(x)

Lcorr ← Lcorr ∪ {x}
if (x, skx) ∈ Lkey then return skx
skx ← KG(msk, x)
Lkey ← Lkey ∪ {(x, skx)}
return skx

Fig. 1: The experiment for defining unforgeability of ABS.

Privacy. For any PPT adversary A = (A1,A2), the advantage defined as fol-
lows is negligible:

AdvprivABS,A(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



b← {0, 1},
(pp,msk)← Setup(1λ, 1ℓ),

(st, x0, x1, C,m)← A1(pp,msk),

∀i ∈ {0, 1}, ski ← KG(msk, xi) ,

Σ ← Sign(pp, skb, xb, C,m),

b′ ← A2(st, sk0, sk1, Σ)

: b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where A1 is required to output x0, x1, and C satisfying C(x0) = C(x1) = 1.

Unforgeability. For any PPT adversary A, the advantage AdvunfABS,A(λ) :=

Pr[ExptunfABS,A(λ) = 1] is negligible, where the experiment is defined in Fig-
ure 1.

3 Circuit SNARGs

In this section, we introduce a new notion, Circuit SNARG, which will be a useful
tool for describing our construction in Section 4. Intuitively, this primitive allows
us to verify C(x) = b ∈ {0, 1} with digest values of an input x and a circuit C,
and a succinct proof π.

Definition 3.1. A Circuit SNARG CirS for circuits C consists of the following
five PPT algorithms.
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Setup(1λ, 1ℓ)→ crs : The setup algorithm, given a security parameter 1λ and an
input length 1ℓ, outputs a common reference string crs.

DStr(crs, x)→ dx : The (deterministic) string digest algorithm, given a common
reference string crs and a string x ∈ {0, 1}ℓ, outputs a string digest dx.

DCir(crs, C)→ dC : The (deterministic) circuit digest algorithm, given a com-
mon reference string crs and a circuit C, outputs a circuit digest dC .

Prove(crs, x, C)→ (b, π) : The prove algorithm, given a common reference string
crs, a string x, and a circuit C, outputs a bit b a proof π.

Ver(crs, dx, dC , b, π)→ 1/0 : The verification algorithm, given a common refer-
ence string crs, a string digest dx, a circuit digest dC , and a proof π, outputs
either 1 (accept) or 0 (reject).

Furthermore, we require a Circuit SNARG to satisfy the following properties.

Completeness. For all λ ∈ N, all strings x ∈ {0, 1}ℓ, all circuits C such that
C(x) = b, we have

Pr


crs← Setup(1λ, 1ℓ),

dx ← DStr(crs, x),

dC ← DCir(crs, C),

(b, π)← Prove(crs, x, C)

: Ver(crs, dx, dC , b, π) = 1

 = 1.

Efficiency. In the completeness experiment above, the running time of Ver is
at most poly(λ, log(|x|+ |C|)), and the lengths of both digests dx and dC are
O(λ), and the length of a proof π is at most poly(λ, log(|x|+ |C|)).

Collision Resistance w.r.t. the String Digest. For any PPT adversary A,
the advantages defined as follows is negligible:

Advcol-strCirS,A(λ) := Pr


crs← Setup(1λ, 1ℓ),

(x0, x1)← A(crs),
dx0
← DStr(crs, x0),

dx1
← DStr(crs, x1)

: dx0
̸= dx1

 .

Collision Resistance w.r.t. the Circuit Digest. For any PPT adversary A,
the advantages defined as follows is negligible:

Advcol-cirCirS,A(λ) := Pr


crs← Setup(1λ, 1ℓ),

(C0, C1)← A(crs),
dC0
← DCir(crs, C0),

dC1
← DCir(crs, C1)

: dC0
̸= dC1

 .

Soundness. For any PPT adversary A, the advantage defined as follows is
negligible:

AdvsoundCirS,A(λ) := Pr


crs← Setup(1λ, 1ℓ),

(x∗, C∗, b∗, π∗)← A(crs),
dx∗ ← DStr(crs, x∗),

dC∗ ← DCir(crs, C∗)

:
Ver(crs, dx∗ , dC∗ , b∗, π∗) = 1

∧ b∗ ̸= C∗(x∗)

 .
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3.1 Construction From flexible RAM SNARGs

We propose a construction of a Circuit SNARG for a circuit class C with input
length ℓ. Our construction is directly from a flexible RAM SNARG RamS corre-
sponding to a hash family HT′. Below we define a hash family HT′ and a RAM
machine R′.

Hash Family HT′. Let HT = (HT.Gen,HT.Hash,HT.Open,HT.Ver) be a hash
family introduced in Definition 2.4. We use a hash family HT′ = (HT′.Gen,
HT′.Hash,HT′.Open,HT′.Ver) defined as follows.

HT′.Gen(1λ) : It computes hk← HT.Gen(1λ) and outputs hk′ = hk.

HT′.Hash(hk′, x) : It first parses x ∈ {0, 1}N as (x0, x1), where x0 ∈ {0, 1}ℓ
and x1 ∈ {0, 1}N−ℓ. Then, it computes dx0

← HT.Hash(hk, x0) and dx1
←

HT.Hash(hk, x1). Finally, it outputs d = (dx0 , dx1).

HT′.Open(hk′, x, j) : If j ∈ [ℓ], then it sets ρ ← HT.Open(hk, x0, j). Otherwise,
it computes ρ← HT.Open(hk, x1, j − ℓ). Finally, it outputs ρ.

HT′.Ver(hk′, d, j, b, ρ) : It first parses d as (dx0
, dx1

). If j ∈ [ℓ], then it outputs
HT.Ver(hk, dx0 , j, b, ρ). Otherwise, it outputs HT.Ver(hk, dx1 , j, b, ρ).

It is easy to see that the above hash family HT′ satisfies all properties in Def-
inition 2.4.

Theorem 3.1. If HT is a hash family with local opening, then the above HT′ is
a hash family with local opening.

flexible RAM SNARG RamS for R. We use a flexible RAM SNARG RamS =
(RamS.Setup,RamS.Dig,RamS.Prove,RamS.Ver) for a RAM machine R, which is
corresponding to the above hash family HT′. A RAM machine R takes as input
(ximp, xexp) = (x||C,⊥) and outputs 1 if and only if C(x) = 1, where x ∈ {0, 1}ℓ
and C ∈ {0, 1}N−ℓ.

Our Construction. We show the construction of Circuit SNARG CirS =
(CirS.Setup,CirS.DStr,CirS.DCir,CirS.Prove,CirS.Ver). Note that the RamS.Dig
algorithm is deterministic and fixed by the corresponding HT′. Let hk′ be a
hash key generated by HT′.Gen(1λ). From the construction of HT′, two digests
(dx0 , dx1) are separately computable. More precisely, if a string ximp ∈ {0, 1}N
stored in the random access memory can be divided into two strings x ∈ {0, 1}ℓ
and C ∈ {0, 1}N−ℓ, then the digest value d = (dx, dC) ← RamS.Dig(hk′, ximp =
x||C) can be computed separately, i.e., there exist two algorithms RamS.Dig1
and RamS.Dig2 such that dx ← RamS.Dig1(hk

′, x) and dC ← RamS.Dig2(hk
′, C),

respectively.

CirS.Setup(1λ) : It generates a hash key hk′ ← HT′.Gen(1λ) and a common
reference string for RAM SNARG crsR ← RamS.Setup(1λ) and outputs
crs = (hk′, crsR).
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CirS.DStr(crs, x) : It computes dx ← RamS.Dig1(hk
′, x) and outputs dx.

CirS.DCir(crs, C) : It computes dC ← RamS.Dig2(hk
′, C) and outputs dC .

CirS.Prove(crs, x, C) : It generates a proof (b, π) ← RamS.Prove(crsR, hk′, (x||C,
⊥)) using RAM SNARG and outputs (b, π).

CirS.Ver(crs, dx, dC , b, π)→ 1/0 : It computes b′ ← RamS.Ver(crs, hk′, (dx, dC),
⊥, b, π) and outputs b′.

It is easy to see that the above construction satisfies completeness and effi-
ciency requirement if the RAM SNARG satisfies completeness and is efficient.

3.2 Security Analysis

In this section, we provide a security proof to show that our construction of a
Circuit SNARG satisfies the collision resistance w.r.t. the circuit digest and the
soundness. Although we omit a proof to show that our construction satisfies the
collision resistance w.r.t. the string digest, it is easy to see that ours also satisfies
it in the same way as proof of Theorem 3.2.

Theorem 3.2. If the hash family HT′ is collision-resistant w.r.t. opening, then
the above Circuit SNARG is collision-resistant w.r.t. the circuit digest.

Proof. Assume that there exists a PPT adversary A which breaks the collision
resistance w.r.t. the circuit digest of the Circuit SNARG with non-negligible
probability. Then, we can construct another PPT adversary B that breaks the
collision-resistant w.r.t. opening of the hash family with the same probability.
The description of B is as follows.

– B initially receives hk′, computes crsR ← RamS.Setup(1λ), sets crs := (hk′,
crsR) and runs A(crs).

– When A outputs (C∗
0 , C

∗
1 ) and terminates, B finds an index i such that

C∗
0,i ̸= C∗

1,i, where C∗
b,i denotes the i-th bit of C∗

b for b ∈ {0, 1}. Then,

B computes d ← HT′.Hash(hk′, C∗
0 ), π0 ← HT′.Open(hk′, C∗

0 , i), and π1 ←
HT′.Open(hk′, C∗

1 , i), outputs (d, i, π0, π1) if C∗
0,i = 0; otherwise, it outputs

(d, i, π1, π0).

The above completes the description of B. Since A breaks the collision resistance
w.r.t. the circuit digest, we have d = HT′.Hash(hk′, C∗

0 ) = HT′.Hash(hk′, C∗
1 ).

In addition, since each opening is correctly generated, we have HT′.Ver(hk′, d,
i, 0, π0) = 1 and HT′.Ver(hk′, d, i, 1, π1) = 1 if C∗

0,i = 0; otherwise, we have

HT′.Ver(hk′, d, i, 0, π1) = 1 and HT′.Ver(hk′, d, i, 1, π0) = 1. In both cases, B
breaks the collision-resistant w.r.t. opening of the hash family. Therefore, we
have Advcol-cirCirS,A(λ) = AdvcolHT′,B(λ). ⊓⊔ (Theorem 3.2)

Theorem 3.3. If the flexible RAM SNARG RamS is sound, then the above
Circuit SNARG is sound.
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Proof. Assume that there exists a PPT adversary A which breaks the soundness
of the Circuit SNARG with non-negligible probability. Then, we can construct
another PPT adversary B that breaks the soundness of the flexible RAM SNARG
with the same probability. Let us fix a hash key hk′ generated by HT′.Gen(1λ)
corresponding to the flexible RAM SNARG. The description of B is as follows.

– B initially receives crsR, sets crs := (hk′, crsR) and runs A(crs).
– When A outputs (x∗, C∗, b∗, π∗) and terminates, B sets x∗

imp = x∗||C∗ and
x∗
exp = ⊥, outputs ((x∗

imp, x
∗
exp), b

∗, π∗), and terminates.

The above completes the description of B. Let dx∗ = RamS.Dig1(hk
′, x∗) and

dC∗ = RamS.Dig2(hk
′, C∗). Since A breaks the soundness of the Circuit SNARG,

we have CirS.Ver(crs, dx∗ , dC∗ , b∗, π∗) = 1 and b∗ ̸= C∗(x∗). Thus, we now
have b∗ = RamS.Ver(crsR, hk′, (dx∗ , dC∗),⊥, b∗, π∗) while b∗ ̸= R(x∗||C∗,⊥) due
to the definition of the RAM machine R. Therefore, we have AdvsoundCirS,A(λ) =

AdvsoundRamS,B(λ). ⊓⊔ (Theorem 3.3)

4 Attribute-Based Signatures for General Circuits from
Circuit Delegations

In this section, we provide a construction of an attribute-based signature scheme
for every polynomial-size circuits with input length ℓ. Before showing our detailed
construction, we provide an intuition of the construction. To issue a user signing
key, the key issuer computes a digest dx of the user’s attribute x and signs the
digest. Each user receives a signing key that consists of an attribute digest dx
and its signature σdx and generates a proof π to show that his attribute satisfies
some policy C. In addition, for completing security proof, we require each user
to encrypt a witness consisting of a message m to be signed, the digest dx, its
signature σdx , and the proof π, and include a calculated ciphertext to a signature.
It also computes a NIZK proof to show that it has (i) an attribute x such that
C(x) = 1, (ii) a valid signature of its digest value, and (iii) a ciphertext of the
witness.

4.1 Our Construction

Here we provide our construction based on following building blocks:

– a PKE scheme PKE = (PKE.KG,PKE.Enc,PKE.Dec);

– a signature scheme SIG = (SIG.KG,SIG.Sign,SIG.Ver);

– a Circuit SNARG CirS = (CirS.Setup,CirS.DStr,CirS.DCir,CirS.Prove,
CirS.Ver);

– a NIZK NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Ver) where the NIZK rela-
tion ρ is defined as follows:

ρ := {((ek, vk, crsCirS,dC ,m, ctx), (dx, σdx , π, rand)) |
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CirS.Ver(crsCirS, dx, dC , 1, π) = 1

∧ SIG.Ver(vk, dx, σdx) = 1

∧ PKE.Enc(ek, (m, dx, σdx , π); rand) = ctx}.

Our Construction.Our construction of ABS = (ABS.Setup,ABS.KG,ABS.Sign,
ABS.Ver) is as follows.

ABS.Setup(1λ, 1ℓ) : It computes the followings:

– a key pair for PKE (ek, dk)← PKE(1λ),

– a key pair for signature (sk, vk)← SIG.KG(1λ),

– a common reference string for NIZK crsNIZK ← NIZK.Setup(1λ), and

– a common reference string for Circuit SNARG crsCirS ← CirS.Setup(1λ, 1ℓ).

Then, it outputs pp := (ek, vk, crsNIZK, crsCirS) and msk := (sk, crsCirS).

ABS.KG(msk, x) : It computes in the following steps:

1. Parse msk = (sk, crsCirS);

2. Compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx).

Then, it outputs skx := (dx, σdx).

ABS.Sign(pp, skx, x, C,m) : It computes in the following steps:

1. Parse pp = (ek, vk, crsNIZK, crsCirS) and skx = (dx, σdx);

2. Compute dC ← CirS.DCir(crsCirS, C) and (b, π) ← CirS.Prove(crsCirS, x,
C);

3. Randomly choose rand ← {0, 1}poly(λ) and compute ctx ← PKE.Enc(ek,
(m, dx, σdx , π); rand);

4. Compute Π ← NIZK.Prove(crsNIZK, (ek, vk, crsCirS, dC ,m, ctx), (dx, σdx , π,
rand)).

Finally, it outputs Σ := (ctx, Π).

ABS.Ver(pp, C,m,Σ)→ 1/0 : It computes in the following steps:

1. Parse pp = (ek, vk, crsNIZK, crsCirS) and Σ = (ctx, Π);

2. Compute dC ← CirS.DCir(crsCirS, C) and b ← NIZK.Ver(crsNIZK, (ek, vk,
crsCirS, dC ,m, ctx), Π).

Finally, it outputs 1 if b = 1; otherwise, it outputs 0.

It is easy to see that the above construction satisfies the correctness if each
building block is correct.

Efficiency. We show that the above construction achieves optimal parameter
sizes as follows: if the underlying Circuit SNARG is efficient,

– the length of the public parameter is poly(λ, log(|x|+ |C|));
– the length of the key is poly(λ) since |dx| = O(λ);

– the length of the signature is poly(λ, log(|x|+ |C|)) since we have |dx|, |dC | =
O(λ) and |π| = poly(λ, log(|x|+ |C|)), so the verification circuit of NIZK and
its proof are of lengths poly(λ, log(|x|+ |C|)).
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4.2 Security Analysis

Here we provide security proofs to show that our construction satisfies the pri-
vacy and unforgeability in Theorem 4.1 and Theorem 4.2, respectively. In the
following proofs of theorems and lemmata, we will use the underline to explicitly
show the parts where each reduction accesses to its challenge oracle for clarity.

Theorem 4.1. If the PKE scheme PKE is IND-CPA secure and the NIZK proof
system NIZK is zero-knowledge, then the above ABS scheme is private.

Proof. Let us fix a PPT adversary A = (A1,A2) attacking the privacy of the
ABS, the security parameter λ, and the attribute length ℓ. The attack game used
to define the privacy is in Definition 2.6. We define two games as follows:

Game0 : This game is the original attack game.

Game1 : This game is the game identical with Game0 except that we use modified
algorithms, in which some steps are replaced as follows:

– In the ABS.Setup(1λ, 1ℓ) algorithm, crsNIZK ← NIZK.Setup(1λ) is re-
placed by (c̃rs, td)← Sim0(1

λ).
– In the ABS.Sign(pp, sk = (dx, σ), x, C,m) algorithm, a NIZK proof Π ←

NIZK.Prove(crsNIZK, (ek, vk, crsCirS, dC ,m, ctx), (dx, σ, π, rand)) is replaced

by Π̃ ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx)).

For i = 0, 1, let Ti be the event that A = (A1,A2) wins the privacy experiment
in the game Gamei. We will show that the probability |Pr[T0]−Pr[T1]| ≤ negl(λ)
and Pr[T1] ≤ negl(λ) in the following lemmas.

We first show to have |Pr[T0] − Pr[T1]| ≤ negl(λ). Intuitively, any differ-
ence between these two games Game0 and Game1 yields a PPT algorithm that
distinguishes the real proof from the simulated proof.

Lemma 4.1. There exists a PPT algorithm B such that

|Pr[T0]− Pr[T1]| = AdvzkNIZK,B(λ).

Proof. Assume that there exists a PPT adversary A = (A1,A2) which makes the
probability |Pr[T0]−Pr[T1]| non-negligible. Then, we can construct another PPT
adversary B that breaks the zero-knowledge property of Π with non-negligible
probability, which implies the lemma. The description of B is as follows.

1. B initially receives crs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1ℓ), sets pp := (ek, vk, crs, crsCirS) and msk :=
(sk, crsCirS), and runs A1(pp,msk).

2. When A1 outputs (st, x0, x1, C,m) and terminates, B randomly chooses b←
{0, 1} and proceeds as follows, where ⋆ denotes that some value exists but
is being ignored:

(i) Compute dxi ← CirS.DStr(crsCirS, xi) for both i ∈ {0, 1}, dC ← CirS.
DCir(crsCirS, C), and (⋆, πb)← CirS.Prove(crsCirS, xb, C);
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(ii) Compute σdxi
← SIG.Sign(sk, dxi) for both i ∈ {0, 1};

(iii) Randomly choose rand← {0, 1}poly(λ) and compute ctx← PKE.Enc(ek,
(m, dxb

, σdxb
, π); rand);

(iv) Query ((ek, vk, crsCirS, dC ,m, ctx), (dxb
, σdxb

, π, rand)) to the challenge

oracle, and receive Π;

3. B sets Σ := (ctx, Π) and runs A2(st, (dx0
, σdx0

), (dx1
, σdx1

), Σ);

4. When A2 outputs b′ and terminates, B outputs 1 if and only if b′ = b;
otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup
(resp., Sim0) algorithm and B accesses the NIZK.Prove (resp., Sim1) oracle, then
B perfectly simulates Game0 (resp., Game1) for A. Therefore, we have |Pr[T0]−
Pr[T1]| = |Pr[b = b′ in Game0]− Pr[b = b′ in Game1]| = AdvzkNIZK,B(λ).

⊓⊔ (Lemma 4.1)

Next, we show to have Pr[T1] ≤ negl(λ). Intuitively, any algorithm that
makes the probability Pr[T1] non-negligible can distinguish two ciphertexts with
different messages.

Lemma 4.2. There exists a PPT algorithm B such that

Pr[T1] = Advind-cpaPKE,B (λ).

Proof. Assume that there exists a PPT adversary A = (A1,A2) which makes the
probability Pr[T1] non-negligible. Then, we can construct another PPT adversary
B that breaks the IND-CPA security of the PKE with the same probability, which
implies the lemma. The description of B is as follows.

1. B initially receives ek, computes (sk, vk)← SIG.KG(1λ), (c̃rs, td)← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1ℓ), sets pp := (ek, vk, c̃rs, crsCirS) and msk :=
(sk, crsCirS), and runs A1(pp,msk).

2. When A1 outputs (st, x0, x1, C,m) and terminates, B proceeds as follows:

(i) Compute dC ← CirS.DCir(crsCirS, C), (·, πi)← CirS.Prove(crsCirS, xi, C),
and dxi

← CirS.DStr(crsCirS, xi) for both i ∈ {0, 1};
(ii) Compute σdxi

← SIG.Sign(sk, dxi) for both i ∈ {0, 1};
(iii) Query ((m, dx0

, σdx0
, π0), (m, dx1 , σdx1

, π1)) to the challenge oracle,

and receive ctx;

(iv) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx);

3. B sets Σ := (ctx, Π) and runs A2(st, (dx0
, σdx0

), (dx1
, σdx1

), Σ);

4. When A2 outputs b′ and terminates, B outputs b′ and terminates.

The above completes the description of B. It is easy to see that B perfectly
simulates Game1 for A. Therefore, we have Pr[T1] = Advind-cpaPKE,B (λ).

⊓⊔ (Lemma 4.2)
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Theorem 4.1 now follows immediately from Lemmata 4.1 and 4.2.
⊓⊔ (Theorem 4.1)

Theorem 4.2. If the PKE scheme PKE is IND-CPA secure, the signature scheme
SIG is EUF-CMA secure, the NIZK proof system NIZK is simulation sound and
zero-knowledge, and the Circuit SNARG CirS is collision-resistant of the circuit
digest and sound, then the above ABS scheme is unforgeable.

Proof. Let us fix a PPT adversary A attacking the unforgeability of the ABS,
the security parameter λ, and the attribute length ℓ. The attack game used to
define the unforgeability is in Definition 2.6. We define three games as follows:

Game0 : This game is the original attack game.

Game1 : This game is the game identical with Game0 except that we use modified
algorithms, in which some steps are replaced as follows:

– In the ABS.Setup(1λ, 1ℓ) algorithm, crsNIZK ← NIZK.Setup(1λ) is re-
placed by (c̃rs, td)← Sim0(1

λ).
– In the ABS.Sign(pp, sk = (dx, σ), x, C,m) algorithm, a NIZK proof Π ←

NIZK.Prove(crsNIZK, (ek, vk, crsCirS, dC ,m, ctx), (dx, σ, π, rand)) is replaced

by Π̃ ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx)).

Game2 : This game is the game identical with Game1 except that the signing
algorithm is modified in some step as follows:

– In the ABS.Sign(pp, sk = (dx, σ), x, C,m) algorithm, ctx ← PKE.Enc(ek,
(m, dx, σdx , π)) is replaced by c̃tx← PKE.Enc(ek, 0t), where t is the total
length of (m, dx, σdx , π).

For i = 0, 1, 2, let Ti be the event that A wins the unforgeability experiment in
the game Gamei. We will show that the probability |Pr[T0]− Pr[T1]| ≤ negl(λ),
|Pr[T0]− Pr[T1]| ≤ negl(λ), and Pr[T1] ≤ negl(λ) in turn.

We first show to have |Pr[T0]−Pr[T1]| ≤ negl(λ). Similar to Lemma 4.1, any
difference between these two games Game0 and Game1 yields a PPT algorithm
that distinguishes the real proof from the simulated proof.

Lemma 4.3. There exists a PPT algorithm B such that

|Pr[T0]− Pr[T1]| = AdvzkNIZK,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T0]−Pr[T1]| non-negligible. Then, we can construct another PPT adversary
B that breaks the zero-knowledge property of NIZK with non-negligible proba-
bility, which implies the lemma. The description of B is as follows.

1. B initially receives crs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1ℓ), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
crs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:
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– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it
proceeds as follows:

(i) If ∃(x, ·) /∈ Lkey, then

(a) compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx);

(b) add (x, (dx, σdx)) to Lkey;

Otherwise, find (x, skx) ∈ Lkey and parse skx = (dx, σdx);

(ii) Compute dC ← CirS.DCir(crsCirS, C)
and (·, π)← CirS.Prove(crsCirS, x, C);

(iii) Randomly choose rand
$← {0, 1}poly(λ)

and compute ctx← PKE.Enc(ek, (m, dx, σdx , π); rand);

(iv) Query ((ek, vk, crsCirS, dC ,m, ctx), (dx, σdx , π, rand)) to the chal-
lenge oracle, and receive Π.

Then, B adds (C,m) to Lsig and returns (ctx, Π).

– For each query to Ocorr(x), B computes as follows:

- If ∃(x, ·) /∈ Lkey, then B computes dx ← CirS.DStr(crsCirS, x) and σdx ←
SIG.Sign(sk, dx), sets skx := (dx, σdx), and adds (x, skx) to Lkey;

- Otherwise, B finds (x, skx) ∈ Lkey.

Finally, B adds x to Lcorr and returns skx.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs 1 if C∗(x) = 0 for all x ∈ Lcorr,
(C∗,m∗) /∈ Lsig, and NIZK.Ver(crsNIZK, (ek, vk, crsCirS, dC∗ ,m∗, ctx∗), Π∗) =
1; otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup
(resp., Sim0) algorithm and B accesses the NIZK.Prove (resp., Sim1) oracle, then
B perfectly simulates Game0 (resp., Game1) for A. Therefore, we have |Pr[T0]−
Pr[T1]| = AdvzkNIZK,B(λ).

⊓⊔ (Lemma 4.3)

Secondly, we will show to have |Pr[T1] − Pr[T2]| ≤ negl(λ). Intuitively, any
difference between these two games Game1 and Game2 yields a PPT algorithm
that distinguishes two ciphertexts with different messages.

Lemma 4.4. There exists a PPT algorithm B such that

|Pr[T1]− Pr[T2]| = Advind-cpaPKE,B (λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T1]−Pr[T2]| non-negligible. Then, we can construct another PPT adversary
B that breaks the IND-CPA security of the PKE with non-negligible probability,
which implies the lemma. The description of B is as follows.

1. B initially receives ek, computes (sk, vk)← SIG.KG(1λ), (c̃rs, td)← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1ℓ), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
c̃rs, crsCirS), and runs A(pp).
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2. B responds to each of queries from A as follows:

– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it
proceeds as follows:

(i) If ∃(x, ·) /∈ Lkey, then

(a) compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx);

(b) add (x, (dx, σdx)) to Lkey;

Otherwise, find (x, skx) ∈ Lkey and parse skx = (dx, σdx);

(ii) Compute dC ← CirS.DCir(crsCirS, C)
and (·, π)← CirS.Prove(crsCirS, x, C);

(iii) Query ((m, dx, σdx , π), 0
t) to the challenge oracle, where t is the

length of message (m, dx, σdx , π), and receive ctx;

(iv) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx));

Then, B adds (C,m) to Lsig and returns (ctx, Π).

– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs 1 if C∗(x) = 0 for all x ∈ Lcorr,
(C∗,m∗) /∈ Lsig, and NIZK.Ver(crsNIZK, (ek, vk, crsCirS, dC∗ ,m∗, ctx∗), Π∗) =
1; otherwise, it outputs 0.

The above completes the description of B. If ctx is an encryption of a message
(m, dx, σdx , π) (resp., 0t), then B perfectly simulates Game1 (resp., Game2) for

A. Therefore, we have |Pr[T1]− Pr[T2]| = 2 · Advind-cpaPKE,B (λ).
⊓⊔ (Lemma 4.4)

Thirdly, we will show Pr[T2] ≤ negl(λ), so we focus on the game Game2 only.
We consider the winning condition for A in the game Game2. In the following, let
t be the fixed total length of a message m, an attribute digest dx, its signature
σdx , and a Circuit SNARG proof π. In addition, let (C∗,m∗, Σ∗ = (ctx∗, Π∗))
be the A’s output of the game.

In the following, we will use the notation ⋆ denoting that some value exists
but is being ignored. We consider two events in the game as follows:

Esig : is the event that there exists (C, ⋆) ∈ Lsig such that CirS.DCir(crsCirS,
C∗) = CirS.DCir(crsCirS, C) and C∗ ̸= C.

Eρ̄ : is the event that the statement (ek, vk, crsCirS, dC∗ ,m∗, ctx∗) is not in the lan-
guage corresponding to the NIZK relation ρ, where dC∗ = CirS.DCir(crsCirS,
C∗).

Ekey : is the event that there exists x ∈ Lcorr such that d∗ = CirS.DStr(crsCirS, x),
where (⋆, d∗, ⋆, ⋆) = PKE.Dec(dk, ctx∗).

We clearly have

Pr[T2] ≤Pr[T2 ∧ Esig] + Pr[T2 ∧ ¬Esig ∧ Eρ̄]
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+ Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ Ekey] + Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey].

In the following, we separate the winning condition in the game into four cases.

First, if the event Esig occurs, it is easy to see that if A wins in the game
Game2, then it breaks the collision resistance of the circuit digest of the Circuit
SNARG scheme.

Lemma 4.5. There exists a PPT algorithm B such that

Pr[T2 ∧ Esig] ≤ Advcol-cirCirS,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧ Esig] non-negligible. Then, we can construct another PPT adversary B
that breaks the collision resistance of the circuit digest of CirS with non-negligible
probability, which implies the lemma. The description of B is as follows, where
⋆ denotes that some value exists but is being ignored.

1. B receives crsCirS, computes (ek, dk) ← PKE(1λ), (sk, vk) ← SIG.KG(1λ),
and (c̃rs, td) ← Sim0(1

λ), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk, c̃rs,
crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:

– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it
proceeds as follows:

(i) Compute dC ← CirS.DCir(crsCirS, C);

(ii) Compute c̃tx← PKE.Enc(0t), where t is the fixed length in Game2;

(iii) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, c̃tx)).

Then, B adds (C,m) to Lsig and returns (ctx, Π).

– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B finds C such
that (C, ⋆) ∈ Lsig and CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C

∗). If B
cannot find such C, then it outputs ⊥; otherwise, it outputs (C,C∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Esig occurs, B can always find C such that (C, ⋆) ∈ Lsig, C ̸= C∗, and
CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C

∗). Therefore, we have Pr[T2 ∧ Esig] ≤
Advcol-cirCirS,B(λ).

⊓⊔ (Lemma 4.5)

Second, if the event Esig never occurs but the event Eρ̄ occurs, it is easy to
see that if A wins in the game Game2, then it breaks the simulation soundness
of the NIZK scheme.

Lemma 4.6. There exists a PPT algorithm B such that

Pr[T2 ∧ ¬Esig ∧ Eρ̄] ≤ Advsim-sound
NIZK,B (λ).
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Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2∧¬Esig∧Eρ̄] non-negligible. Then, we can construct another PPT adversary
B that breaks the simulation soundness of NIZK with non-negligible probability,
which implies the lemma. The description of B is as follows.

1. B initially receives c̃rs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1ℓ), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:

– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it
proceeds as follows:

(i) Compute dC ← CirS.DCir(crsCirS, C);

(ii) Compute c̃tx← PKE.Enc(0t), where t is the fixed length in Game2;

(iii) Query (ek, vk, crsCirS, dC ,m, c̃tx) to the simulation oracle, and
receive Π.

Then, B adds (C,m) to Lsig and returns (ctx, Π).

– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs ((ek, vk, crsCirS, dC∗ ,m∗, ctx∗), Π∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Eρ̄ occurs, we have X∗ /∈ Lρ, where Lρ := {x | ∃w s.t. (x,w) ∈ ρ}. On
the other hand, when A wins, we have NIZK.Ver(c̃rs,X∗, Π∗) = 1. In addition, X∗

is never queried to the simulation oracle from the following reason: if (⋆,m∗) /∈
Lsig, then X∗ is never queried; otherwise, there is no C such that (C,m∗) ∈ Lsig

and CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C
∗) since the event Esig never occurs

and we have (C∗,m∗) /∈ Lsig due to the winning condition for A. Therefore, we
have Pr[T2 ∧ ¬Esig ∧ Eρ̄] ≤ Advsim-sound

NIZK,B (λ).
⊓⊔ (Lemma 4.6)

Third, if the events Esig and Eρ̄ never occur but the event Ekey occurs, A
must generate a circuit SNARG proof that passes the verification of the Circuit
SNARG. However, we have C∗(x) = 0 for all x ∈ Lcorr when A wins the game.
Therefore, to win the game, A has to break the soundness of the CirS scheme.

Lemma 4.7. There exist PPT algorithms B such that

Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ Ekey] ≤ AdvsoundCirS,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧¬Esig ∧¬Eρ̄ ∧Ekey] non-negligible. Then, we can construct another PPT
adversary B that breaks the soundness of CirS with non-negligible probability,
which implies the lemma. The description of B is as follows, where ⋆ denotes
that some value exists but is being ignored.
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1. B receives crsCirS, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ), and
(c̃rs, td) ← Sim0(1

λ), and sets Lsig, Lcorr, Lkey = ∅, and pp := (ek, vk, c̃rs,
crsCirS), and runs A(pp).

2. B responds to each of queries from A in the same way as described in the
proof of Lemma 4.5.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B computes
(m∗, d∗, σd∗ , π

∗) ← PKE.Dec(dk, ctx∗) and finds x∗ such that (x∗, (d∗, ⋆)) ∈
Lkey. If B cannot find such x∗, then it outputs ⊥; otherwise, it outputs
(x∗, C∗, 1, π∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Ekey occurs, B can always find x∗ such that (x∗, (d∗, ⋆)) ∈ Lkey. On
the other hand, when A wins, we have C∗(x) = 0 for all (x, ⋆) ∈ Lkey since
{x | x ∈ Lcorr} = {x | (x, ⋆) ∈ Lkey} from the above description of B. We
also have CirS.Ver(crsCirS, d

∗, dC∗ , 1, π∗) = 1 since we have X ∈ Lρ and both d∗

and dC∗ are calculated deterministically. Therefore, we have Pr[T2 ∧¬Esig¬Eρ̄ ∧
Ekey] ≤ AdvsoundCirS,B(λ).

⊓⊔ (Lemma 4.7)

Finally, if all the events Esig, Eρ̄, and Ekey never occur, A must generate a
valid signature for dx∗ . Thus, if A wins, then it breaks the EUF-CMA security
of the signature scheme.

Lemma 4.8. There exists a PPT algorithm B such that

Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey] ≤ Adveuf-cma
SIG,B (λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey] non-negligible. Then, we can construct another
PPT adversary B that breaks the EUF-CMA security of SIG with non-negligible
probability, which implies the lemma. The description of B is as follows.

1. B initially receives vk, computes (ek, dk) ← PKE(1λ), (c̃rs, td) ← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1ℓ), and sets Lsig, Lcorr, Lkey := ∅, and pp :=
(ek, vk, c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows, where ⋆ denotes that some
value exists but is being ignored:

– For each query toOsig(x,C,m), B computes in the same way as described
in the proof of Lemma 4.5.

– For each query to Ocorr(x), B computes as follows:

- If ∃(x, ⋆) /∈ Lkey, then B proceeds as follows:

(i) Compute dx ← CirS.DStr(crsCirS, x);

(ii) Query dx to the signing oracle and receive σdx ;

(iii) Set skx := (dx, σdx), and add (x, skx) to Lkey.
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- Otherwise, B finds (x, skx) ∈ Lkey.

Then, B adds x to Lcorr and returns (dx, σdx).

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗, Π∗)) and terminates, B computes
(m∗, d∗, σd∗ , π

∗)← PKE.Dec(dk, ctx∗) and outputs (d∗, σd∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). Since
the event Ekey never occurs, B never queries d∗ to the signing oracle in the EUF-
CMA security experiment. On the other hand, when A wins, SIG.Ver(vk, d∗,
σd∗) = 1 since we have X ∈ Lρ. Therefore, we have Pr[T2∧¬Esig∧¬Eρ̄∧¬Ekey] ≤
Adveuf-cma

SIG,B (λ).
⊓⊔ (Lemma 4.8)

Theorem 4.2 now follows immediately from Lemmata 4.3 to 4.8.
⊓⊔ (Theorem 4.2)
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