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Abstract

Making the most of TFHE programmable bootstrapping to evaluate functions or
operators otherwise challenging to perform with only the native addition and multipli-
cation of the scheme is a very active line of research. In this paper, we systematize this
approach and apply it to build an 8-bit FHE processor abstraction, i.e., a software en-
tity that works over FHE-encrypted 8-bits data and presents itself to the programmer
by means of a conventional-looking assembly instruction set. In doing so, we provide
several homomorphic LUT dereferencing operators based on variants on the tree-based
method and show that they are the most efficient option for manipulating encryptions
of 8-bit data (optimally represented as two base 16 digits). We then systematically ap-
ply this approach over a set of around 50 instructions, including, notably, conditional
assignments, divisions, or fixed-point arithmetic operations. We then test the approach
on several simple algorithms, including the execution of a neuron with a sigmoid acti-
vation function over 16-bit precision. We conclude the paper by comparing our work
to the FHE compilers available in the state of the art. Finally, this work reveals that
a very limited set of functional bootstrapping patterns is versatile and efficient enough
to achieve general-purpose FHE computations beyond the boolean circuit approach.
As such, these patterns may be an appropriate target for further works on advanced
software optimizations or hardware implementations.

Keywords — FHE ⋅ TFHE ⋅ Programmable Bootstrapping ⋅ General Computations

1 Introduction
The key idea behind homomorphic encryption is to be able to perform any calculation directly over
ciphertexts. In the early years of FHE, the hope was to achieve this goal by executing boolean
circuits over ciphertexts encoding binary messages with both XOR and AND (homomorphic) gates.
Although this computing model is universal, it also leads to many efficiency bottlenecks: for ex-
ample, to merely perform a simple multiplication over Zt (t >> 2), one has to perform many
boolean operations, and even more so for more complex operations such as divisions. Because of
this, work on FHE has progressively departed from this paradigm to focus on running arithmetic
circuits over polynomial rings with a plaintext modulus much larger than 2. In doing so, FHE
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efficiency has greatly improved, allowing it to address concrete applications, for example, in the
field of Machine Learning, with reasonable latencies and overheads. However, this latter approach
comes with difficult challenges for applications in need of zero testing or other non-linear functions
despite several attempts using bivariate polynomial optimizations [IZ21] or polynomial approxi-
mations [LLKN21, CKK19] for implementing comparisons and zero-testing with schemes such as
BFV/BGV or CKKS. At the other end of the spectrum stands TFHE. On the downside, TFHE is
intrinsically an LWE scheme, meaning that it offers no batching (except for additions) and only al-
lows for small plaintext moduli (e.g., less than 32). On the bright side, TFHE has the most efficient
bootstrapping procedure, which is furthermore “programmable”. Indeed, TFHE bootstrapping re-
freshes ciphertext noise essentially by interpreting the input ciphertext as an encrypted index for
dereferencing a cleartext table encoding the identity function with some redundancy. When the
identity function is replaced by another function f ∶ Zt Ð→ Zt, the bootstrapping operation evalu-
ates f “for free”. As such, compared to the raw boolean-circuit approach, TFHE offers a toolbox to
mitigate its efficiency bottlenecks by supporting a non-binary (albeit still small) plaintext domain
Z2k , thus allowing to factor the evaluation of k-bit to k-bit boolean circuits in single bootstrapping
operations.

Natural questions to explore are then the following. Can we build on the TFHE functional boot-
strapping toolbox to achieve universal encrypted domain computations beyond the boolean circuit
approach? And at which computational cost? Can this be achieved from a restricted set of patterns
based only on functional bootstrapping, hence with a homogeneous algorithmic structure? In this
paper, we give a first answer to these questions by designing and implementing general-purpose
8-bit FHE processor abstraction working over encryptions of bytes represented by pairs of TFHE
ciphertexts encoding their most and least significant nibbles1. As one may intuit, however, the
resulting instruction set is quite different from that of a usual processor. Many instructions cannot
be straightforwardly performed in the encrypted domain, and new instructions must be provided
to work around these limitations. For example, the lack of conditional branching instructions (an
FHE “processor” can evaluate any condition but cannot access the resulting encrypted boolean to
branch) has to be worked around by providing a set of conditional assignment instructions.

Our approach relies heavily on TFHE programmable bootstrapping, one of the first uses of
which was calculating the sign function [BMMP18], notably for evaluating a new class of strongly
discretized neural networks over FHE encrypted inputs. However, this programmable bootstrapping
can only natively be used on a single input ciphertext. Thus, to overcome such limitations, we need
bootstrapping composition techniques to homomorphically evaluate functions on larger data types
represented by several encryptions of their basis B digits. A number of such methods have been
proposed and investigated in the literature in recent years, such as the tree-based and chain-based
methods [GBA21], the WoP-PBS [BBB+23] and the p-encoding method [BPR23]. We first review
these methods and select the most appropriate one along with the most suitable basis B to design a
small set of generic operators for dereferencing one or more LookUp Table (LUT) with 256 entries
in ZB using an encrypted index. We then systematically use these operators to build our set of
8-bit instructions.

1.1 Summary of Contributions
This paper’s contributions are as follows:
• We show that the most optimized approach for manipulating TFHE encryptions of 8-bit messages

consists of using the tree-based functional bootstrapping method regardless of the decomposition
B > 2. We further show that 8-bit messages are optimally represented and manipulated as two
basis 16 digit encryptions. This conclusion is valid for all operations except bitwise ones for
which basis 4 is optimal.
1“Nibble” is the cute name for 4-bits entities
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• We define a set of functionnal bootstrapping tools and optimal parameters to manipulate en-
cryptions of 8-bit data by means of LUT dereferencing by TFHE ciphertexts. We designed this
toolboox such that blind rotations and keyswitches (the most costly operations within TFHE
bootstrapping) can be factored as much as possible to improve efficiency. By analogy to a real
microprocessor, this can be seen as the micro-code level of a processor abstraction.

• We then define a complete set of over 50 instructions suitable for working with TFHE encryp-
tions of 8-bit data, including FHE-specific instructions as well as advanced operators such as
conditional assignment, division, or even fixed-point arithmetic operations among many others.
For each of these instructions, we provide strategies to efficiently instantiate them using our
LUT-dereferencing building blocks. To the best of our knowledge, we present the first ever con-
crete implementation of the Euclidean and decimal division operators over FHE not relying on
the boolean circuit approach.

• We test our approach over several higher-level simple algorithms (sorting, average computation,
finding the minimum or maximum of an array, ...) and provide extensive timing experiments.
To the best of our knowledge, we provide the first FHE instantiation of a fixed-precision sig-
moid function over 16 bits leading to the FHE instantiation of standard neurons which can be
seamlessly chained to enable the evaluation of larger (possibilty recurrent) neural networks over
encrypted data.

• We compare our approach to the state-of-the-art FHE compilers and related approaches, includ-
ing Cingulata [CDS15a], E3 [EOH+18], Concrete [Zam22] and Juliet [GMT24]. We demonstrate
performance improvements between 60% and 99% on most algorithms (except those inducing
very small Boolean circuits).

• As we essentially define the first FHE-oriented ISA, this work is a significant first step towards
defining virtual FHE machine architectures to bridge the gap with standard existing compilers
(e.g. gcc) and benefiting from their powerful code optimizations engines to both express more
complex programs and improve their execution performances over FHE.

• Lastly, as a matter of perspectives, we carefully analyze the computational hotspots in the
approach, providing cleanly defined candidate kernels of increasing complexity for low-level or
even hardware acceleration.

1.2 Paper Organization
This paper is organized as follows: Section 2 reviews the related works and Section 3 recalls the
basics of the TFHE cryptosystem and gives the necessary details of the tree-based method for
bootstrapping with multi-input ciphertexts and its optimization with multi-value bootstrapping.
Then, Section 4 details the rationale for the functional bootstrapping technique and associated
parameters selection. Sections B, 6 and 7 (unitary timings) subsequently focus on our instruction
set, which is then used in Section 8 to implement several algorithms. We then compare our ISA-
based approach to the FHE compilers in the state of the art in Section 9. Finally, Section 10
concludes this paper with some perspectives. We also provide a number of appendices: Appendix
A provides an exhaustive table giving the description and the unitary timings of all of our operators,
Appendix B gives a details on the optimized implementation for all the instructions we propose
and Appendix C includes more background details on TFHE.

2 Related Work
2.1 FHE virtual processors
To the best of our knowledge, previous attempts at building FHE-based virtual processors are
pretty scarce and, for the most part, date back to the first few years after Gentry’s breakthrough.
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By virtual processor or processor abstraction, we mean a software entity that works over FHE-
encrypted data and presents itself to the programmer by means of a conventional-looking assembly
instruction set. Perhaps the first attempt is that of Brenner et al. [BPS12]2, which was based on
the Smart-Vercauteren scheme [SV10]. This work proposes an abstract processor that executes an
encrypted program (over encrypted data). The processor has a minimal instruction set containing
only bitwise logical operations as well as load/store (with encrypted addresses, hence with an access
complexity linear in memory size) and three branching instructions. Each (encrypted) instruction
is fetched from the encrypted memory and then homomorphically interpreted (at an extra cost
equivalent to explicitly running all instructions in the set). Being more than twelve years old, from
an experimental point of view, this latter work is obsolete. Still, our approach departs significantly
from it because we run public programs over encrypted data, i.e., the stream of instructions is not
encrypted. The main consequence is that we restore constant-time memory access (because all the
addresses are public) but cannot perform any branching (conditioned on encrypted values), which
then has to be emulated using explicit conditional assignments at an extra cost equivalent to that
of explicitly running all branches. In that sense, our programming model somewhat resembles the
“constant time programming” model often used in embedded computing [ABB+16]. Also, we can
then afford to have a much more complete instruction set, which is tailored to the capabilities of our
modern functional bootstrapping toolbox. Another attempt is that of [FSF+13], which considers a
richer set of operators (rather than explicit instructions) and is boolean-circuit oriented. From an
experimental viewpoint, this latter work is also too old not to be obsolete. Other works include
experiments at building a one-instruction set processor abstraction working over FHE-encrypted
data [TM14, TM13, CS19], an approach which also achieves Turing completeness but leads to even
worse blow-ups in the number of instructions than the boolean circuit one. A more recent attempt
at supporting a subset of the ARM (v8) instruction set over TFHE is given in [GN20]. This
approach has two main drawbacks. First, it uses TFHE only in gate-bootstrapping mode and, as
such, does not work over a larger plaintext space as we do with functional bootstrapping techniques.
Second, it handles conditional branching in a client-aided fashion with the consequence of granting
the FHE processor access to a decryption oracle. This is likely to induce vulnerabilities in realistic
deployment scenarios since TFHE is trivially insecure against a CCA(1) adversary. By opposition,
we "handle” branching in a non-interactive way via conditional assignment instructions (but at
the extra cost of running all branches). Lastly, a few works [IMP18, CGRS14] propose to extend
the instruction set of existing processors with a small set of additional instructions for driving
FPGA-implementations of FHE operations (with [IMP18] also handling branching in a client-aided
fashion). On top of the above, there presently are many works on hardware implementation of FHE
building blocks without any focus on instruction sets.

2.2 FHE compiler approaches
Another relevant line of work to compare is the FHE compiler approach. Indeed, although they do
not explicitly attempt to build FHE-based virtual processors with an explicit instruction set, they
all come with a runtime environment capable of executing the FHE calculations derived from their
input programs. Such approaches, include Cingulata [CDS15a], E3 [EOH+18], Concrete [Zam22]
and the so-called Google Transpiler [GSPH+21]. Additionally, a more instruction-oriented approach,
Juliet [GMT24], has been proposed recently. All these approaches rely on TFHE. However, contrary
to ours, they do not leverage on multivariate functional bootstrapping techniques over multi-bit
inputs and essentially represent and execute an FHE calculation as a Boolean circuit to be run over
FHE binary-payload ciphertexts.

Let us emphasize that the ISA-based approach we develop in this paper is qualitatively different
from the (Boolean) circuit generation approach used by the aforementioned FHE compilers. Indeed,
while the compilers directly turn high-level programs into circuits (with some optimizations), our
ISA-oriented approach provides an optimized instruction set and relies on the programmer to use it

2github.com/hcrypt-project.
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as optimally as possible. In some sense, the two kinds of approaches thus rely on different assump-
tions depending on whether the human assembly programmer can do better than the compiler’s
circuit optimization heuristics. Of course, this does not means that the two kinds of approaches
cannot be meaningfully compared and we do so extensively in Section 9. This latter section also
provides additional details on the functioning and philosophy of each of the aforementionned FHE
compiler approaches.

3 Preliminaries
3.1 Notations
Let E = (KeyGen, Enc, Dec, Eval) denote an FHE scheme with key space K, plaintext domainM and
ciphertext domain C. For a message m ∈M, we denote JmK ⊂ C, the set of all its valid encryptions,
which we sometimes refer to as the ciphertext class of m. Let F be the function domain of Eval
i.e., Eval ∶ F × C∗ Ð→ C is such that for all (ek, dk) ∈ K, all f ∈ F and all m1,⋯, mK ∈MK ,

Eval(f, Enc(m1),⋯, Enc(mK))) ∈ Jf(m1,⋯, mK)K.

Unless otherwise stated, the (uppercase or lowercase) letter c always denotes a ciphertext. Other
(uppercase or lowercase) letters denote plaintexts.

Let T = R/Z be the real torus, that is to say, the additive group of real numbers modulo 1 (R
mod 1). We further denote by TN [X]n the set of vectors of size n whose coefficients are polynomials
of T [X] mod (XN + 1). N is usually a power of 2.

3.2 The TFHE Scheme
The TFHE scheme is a fully homomorphic encryption scheme [CGGI19] implemented in the TFHE
library3. TFHE defines three structures to encrypt plaintexts, which we summarize below as fresh
encryptions of 0:
• TLWE sample: A pair (a, b) ∈ Tn+1, where a is uniformly sampled from Tn and b = ⟨a, s⟩ + e.

The secret key s is uniformly sampled from Bn, and the error e ∈ T is sampled from a Gaussian
distribution with mean 0 and standard deviation σ.

• TRLWE sample: A pair (a, b) ∈ TN [X]k+1, where a is uniformly sampled from TN [X]k and b =
⟨a, s⟩+e. The secret key s is uniformly sampled from BN [X]k, the error e ∈ T is a polynomial with
random coefficients sampled from a Gaussian distribution with mean 0 and standard deviation
σ. One usually chooses k = 1; therefore, a and b are vectors of size 1 whose coefficient is a
polynomial.

• TRGSW sample: a vector of (k + 1)l TRLWE fresh samples.
Let M denote the discrete message space (M ∈ TN [X] or M ∈ T)4. To encrypt a message

m ∈M, we add what is called a noiseless trivial ciphertext (0, m) to a fresh encryption of 0. We
denote by c = (a, b) + (0, m) = (a, b +m) ∈ T(R)LWEs(m) the T(R)LWE encryption of m with key
s. A message m ∈ Z[X] can also be encrypted in TRGSW samples by adding m ⋅H to a TRGSW
sample of 0, where H is a gadget decomposition matrix. As we will not explicitly need such an
operation in this paper, more details about TRGSW can be found in [CGGI19]. To decrypt a
ciphertext c, we first calculate its phase ϕ(c) = b− ⟨a, s⟩ =m+e. Then, we need to remove the error,
which is achieved by rounding the phase to the nearest valid value in M. This procedure fails if
the error exceeds half the distance between two consecutive elements of M.

3tfhe.github.io/tfhe/
4In practice, we discretize the torus with respect to our plaintext modulus. For example, if we want to

encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as a value in M = {0, 0.25, 0.5, 0.75}.
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3.3 TFHE Bootstrapping and Programmable Bootstrapping
TFHE bootstrapping – Bootstrapping is the operation that reduces the noise of a ciphertext, thus
allowing further homomorphic calculations. It relies on three basic operations, which we briefly
review in this section (see [CGGI19] for details). The first operation, BlindRotate, rotates a plaintext
polynomial testv5 by a TLWE encrypted index c ∈ JmK. It returns a TRLWE encrypted polynomial
of testv ⋅Xϕ(c) mod (XN + 1), where ϕ(c) is the phase of c rescaled in Z2N . Then, one must apply
the TLWESampleExtract, which extracts a coefficient from an encrypted TRLWE polynomial and
converts it into a corresponding TLWE ciphertext. Finally, the PublicFunctionalKeyswitch enables
the switching of keys and parameters. It is used to switch the extracted TLWE ciphertext to an
encryption of the same message but with the initial key. In practice, the computation time of a
TFHE bootstrapping depends mainly on the efficiency of the BlindRotate [CBSZ23]. So, from now
on, we will denote by Nbr the number of BlindRotate required to evaluate a function on encrypted
data. Using Nbr as a criterion simplifies comparing instructions implemented with the same set of
TFHE parameters.
Programmable bootstrapping – Bootstrapping involves doing an indirection in a table using an
encrypted index while reducing noise. Indeed, if we set the coefficients of testv to the results of
the evaluation of a function f on elements of M, performing the bootstrapping on this new testv
outputs c′ ∈ Jf(m)K. That is to say, the bootstrapping gives an encryption of f(m) without any
additional cost and allows the implementation of a LUT of f . We refer to this bootstrapping as
programmable or functional. We note that the original bootstrapping (in [CGGI19]) is a particular
case of programmable bootstrapping with f set to the identity function. TFHE programmable
bootstrapping is natively well-suited but limited to implementing LUTs of negacyclic functions6

for two reasons. First, TFHE plaintext space is T, where [0, 1
2) corresponds to positive values and

[ 1
2 , 1) to negative ones. So, if c is a TLWE encryption of a positive value, its phase ϕ(c) lies in
[0, 1

2), and it satisfies ϕ(c) ∈ [0, N) after rescaling to Z2N . Conversely, if c is a TLWE encryption
of a negative value, its phase satisfies ϕ(c) ∈ [N, 2N) after rescaling to Z2N . Second, BlindRotate
outputs an encryption of testv mulitplied by Xϕ(c) mod (XN + 1)7. So, if testv coefficients are
set to the evaluation of a negacyclic function on the positive values of M (values in M ∩ [0, 1

2)), a
bootstrapping with an input TLWE ciphertext c encrypting m returns either f(m) if m ∈M∩[0, 1

2),
or −f(m − 1

2) if m ∈M ∩ [ 1
2 , 1).

3.3.1 Tree-based Method
Almost all of the functional bootstrapping methods from state of the art ([CJP21, KS22, YXS+21,
CLOT21, CBSZ23]) take as input a single ciphertext of a message in a relatively small set. In
2021, Guimarães et al. [GBA21] specified the tree-based and the chaining methods for performing
functional bootstrapping over several ciphertexts. Their idea is to decompose the encrypted input
message into a smaller basis B. Thus, the encryption of the initial plaintext value is a vector
of encryptions of its decomposition digits in basis B. Figure 1 illustrates the tree-based method
for the functional bootstrapping of the identity function. First, we create the test polynomials
that will be rotated during the BlindRotate step. In the example, the decomposition basis is B =
4, so we need to decompose the LUT of the identity function into four polynomials, each with
four distinct coefficients. Each coefficient is actually repeated consecutively N

B
times to fill the

polynomials. Then, we perform four BlindRotate, one on each cleartext polynomial with the first
input c0, followed by four TLWESampleExtract. We get four ciphertexts that we combine together
with PublicFunctionalKeyswitch to create a TRLWE encryption of a new test polynomial. Then, we
apply a BlindRotate to this encrypted test polynomial with the second encrypted input c1, and apply
a TLWESampleExtract followed by PublicFunctionalKeyswitch to get the final result. In practice, we

5We sometimes refer to this polynomial as the test polynomial or vector.
6Negacyclic functions are antiperiodic functions over T with period 1

2 , satisfying f(x) = −f(x + 1
2 ).7We remind that ∀α ∈ [0, N), Xα+N = −Xα mod (XN + 1).

6



Figure 1: Illustration of the tree-based method on the identity function with decomposition
in basis B = 4. The message is m = 9 = 1 ⋅ 40 + 2 ⋅ 41 and its corresponding encryption is
C = ([1], [2]). Red arrows indicate bootstrapping.

implement two different PublicFunctionalKeyswitch. The first allows the packing of many TLWE
ciphertexts into one TRLWE ciphertext. Meanwhile, the second switches the keys of a TLWE
sample. The first key switch has a non-negligible impact on the computation time of a tree-based
functional bootstrapping, as seen in Table 1. So, from now on, we will refer by Nks to the number
of calls to PublicFunctionalKeyswitch for TLWE ciphertexts packing into one TRLWE required to
evaluate a function on encrypted data. For the considered example, the tree-based method requires
five BlindRotate (Nbr= 5) and one PublicFunctionalKeyswitch (Nks= 1). For more details about the
tree-based functional bootstrapping, the reader is referred to [GBA21].

3.3.2 Multi-value Bootstrapping
Multi-Value Bootstrapping (MVB) [CIM18] refers to a method for evaluating k different LUTs on a
single input at the cost of a single bootstrapping. MVB factors the test polynomial Pfi associated
with the function fi into a product of two polynomials Pfi = v0 ⋅ vi, where v0 is a common factor to
all Pfi . This factorization allows computing multiple LUTs using a unique blind rotation. Indeed,
it is enough to initialize the test polynomial testv with the value of v0 during bootstrapping. Then,
we run BlindRotate to get a TRLWE encryption of the polynomial acc. We multiply acc by each
vi corresponding to the LUT of fi to get acci. Finally, we run a TLWESampleExtract for each acci,
followed by PublicFunctionalKeyswitch to output k TLWE samples. From now on, we refer to Npm
as the number of multiplications between the plaintext polynomial (vi) and the TRLWE ciphertext
(acc). So, an MVB requires one BlindRotate (Nbr= 1) and k plaintext/ciphertext multiplications
(Npm= k). More details about the MVB factorization are given in [CIM18]. As already noted in
[GBA21], the MVB can be applied to the first level of a tree evaluation, as several BlindRotate are
performed on different polynomials with the same encrypted input. For instance, regarding Figure
1, instead of requiring five BlindRotate and one PublicFunctionalKeyswitch (Nbr= 5 and Nks= 1),
the tree-based evaluation of the identity function with MVB will only cost two BlindRotate, one
PublicFunctionalKeyswitch and four plaintext/ciphertext multiplications (Nbr= 2, Nks= 1 and Npm= 4).
For example, for TFHE parameters associated to Z16 as plaintext space (Table 2), a BlindRotate
takes 29 ms, a PublicFunctionalKeyswitch runs in 70 ms and a plaintext/ciphertext multiplication
requires 0.1 ms.

7



4 Choosing the Right Toolbox
4.1 On the Choice of the Functional Bootstrapping Method
Univariate functional bootstrapping – Many works tackled the restriction of TFHE bootstrapping
to the evaluation of LUTs of negacylic functions (Sect. 3.3). The half-torus method works around
the negacyclic restriction by encoding all the plaintext space M on [0, 1

2) (i.e., on the positive
half of the torus). As no plaintext values are encoded on the negative half of the torus, any LUT
can be encoded within the coefficients of the test polynomial. Then, it is evaluated with only
one bootstrapping (Nbr= 1). Other methods, such as TOTA [YXS+21], FDFB [KS22], or ComBo
[CBSZ23], specify several solutions to work around the restriction of working only with half of
the torus as a plaintext space. They provide different ways for implementing any LUT with the
full torus as plaintext space at the cost of making at least two consecutive BlindRotate (Nbr≥ 2).
However, Clet et al. [CBSZ23] compared all of these methods for the same TFHE parameters and
levels of security and showed that the half-torus method achieves the best speed-to-error-rate ratio.
Multivariate functional bootstrapping – In 2021, Guimarães et al. [GBA21] proposed the tree-based
and chaining methods to evaluate LUTs over several encrypted inputs with bootstrappings. These
methods can be optimized by using the MVB as discussed in Section C.2. Given a message space of
size B, the chaining method requires using a plaintext space of size B2 with a full torus functional
bootstrapping technique or 2B2 with the half-torus functional bootstrapping. Meanwhile, the tree-
based method (Sect. 3.3.1) requires a plaintext space of size 2×B and is only meant to be used with
the half-torus method. As such, for the chaining method, the size of the parameters dramatically
increases with B. This parameter growth jeopardizes the other speed improvements that could
come with the chaining method compared to the tree-based method [TCBS23b]. A recent work
by Bon et al. [BPR23] proposes a method to evaluate boolean functions with several encrypted
inputs with one bootstrapping. However, their method is limited to binary plaintexts encoded on
a small ring Zp before encryption. In addition, it requires finding a non-trivial encoding set for
the function to be evaluated. Their approach further requires a plaintext domain size dependent
on the function’s truth table size, which makes it challenging to find an encoding, for example, for
adding or multiplying two encryptions of k-bit messages, where a carry must be propagated. Just
as recently, [BBB+23] proposed a new programmable bootstrapping operator (WoP-PBS), which
inputs several ciphertexts and permits the evaluation of any multivariate LUT. This new method
enables efficient bootstrapping of ciphertexts with up to 21-bit precision. However, a follow-up
study presented in [BBB+] shows that for 8-bit messages, the tree-based method is at least as
efficient as the new WoP-PBS independently of the chosen decomposition basis B. In this work,
we thus use the tree-based method over the half-torus to compute multivariate 8-bit instructions.

4.2 Optimal Basis Selection for LUT Evaluation
4.2.1 Decomposition Basis Choice
The plaintext space corresponding to 8-bit messages is the set P = {0, 1,⋯, 255}. Since we use the
half-torus bootstrapping method, we have to work on a 512-element discretized torus to match such
P. This requires very large TFHE parameters leading to a very slow bootstrapping (≈1.5 secs for a
single bootstrapping [TCBS23b]). Consequently, we need to break down our 8-bit data into a smaller
basis. For 8-bit plaintexts, several decompositions are available: we can decompose a message into
four 2-bit digits, into three 3-bit digits (with the most significant one only taking values in {0,⋯, 3}),
or into two 4-bit digits. For instance, basis 16 allows the decomposition of 8-bit messages into two
nibbles. Note that the smaller the decomposition basis, the smaller the parameters, and thus the
faster the bootstrapping evaluation. However, the smaller the decomposition basis, the greater the
number of digits, and so the greater the number of bootstrapping to be performed. A tradeoff
must, therefore, be achieved between the number of bootstrapping needed and the parameters’
size corresponding to the decomposition basis. We refer to the evaluation of the tree-based method
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(using MVB) on an 8-bit message decomposed into d digits in basis B as LUTeval, as opposed
to SimpleBoot, which is the usual bootstrapping operation taking only one encrypted input. The
bootstrapping cost of LUTeval is NBboot = 1+∑d−2

i=0 Bi, where 1 refers to the trick of computing the
output of the first level of the tree with MVB instead of running Bd−1 bootstrappings (Sect. C.2).
To obtain the d digits forming the result of evaluating a LUT from M to M, LUTeval must be
performed d times on the same inputs. That is why we further introduce MVLUTeval, which uses
the MVB optimization to reduce the number of BlindRotate Nbr. As seen in Table 1, when run under
TFHElib [CGGI16] with the parameters from Table 2, the SimpleBoot is the most efficient for basis
4. However, in the sequel, the most used operators are LUTeval and different flavors of MVLUTeval.
The best timings for these operations are obtained with decomposition basis 16. As a matter of
illustration, evaluating two LUTeval in basis 16 costs 0.26 seconds. So MVLUTeval⋆, which does the
same thing with one less BlindRotate, takes 0.23 seconds. However, MVLUTeval is less interesting in
other bases, where the initial number of BlindRotate is larger: MVLUTeval⋆ saves one BlindRotate,
i.e. 1

4 in basis 16, but only 1
10 in basis 8 and 1

22 in basis 4. Note that for binary operators, basis 16
is not optimal. Indeed, these operations can be implemented with depth-2 tree-based bootstrapping
regardless of the decomposition basis. For bases 2, 4, and 8, this respectively leads to 8, 8, and 6
blind rotations vs 4 for basis 16. On the other hand, for any operation requiring calls to LUTeval,
basis 16 remains the most efficient. For example, for the addition, which is the most straightforward
bivariate operation apart from bitwise ones, the number of bootstrappings required to propagate
the carry with decomposition basis 4 is such that the evaluation of the addition takes just as long
as for basis 16. For all other non-bitwise functions, basis 16 is the most efficient. So, despite the
better efficiency of basis 4 for bitwise operators, basis 16 is the optimal choice. †

Table 1: Execution times of SimpleBoot, LUTeval and MVLUTeval depending on the plaintext
decomposition basis. MVLUTeval⋆ stands for an evaluation of two different LUTs, and
MVLUTeval◇ for four different LUTs.

Decomposition basis Size of LUT Number
of output
digits

Corresponding
output basis

Nbr Nks Execution
Timings
(secs)

SimpleBoot 16 1 16 1 0 0.029
16 LUTeval 256 1 16 2 1 0.13

MVLUTeval⋆ 256 2 256 3 2 0.23
MVLUTeval◇ 256 4 256 5 4 0.43
SimpleBoot 8 1 8 1 0 0.015

8 LUTeval 256 1 8 10 9 0.47
MVLUTeval⋆ 256 2 64 19 18 0.93
MVLUTeval◇ 256 4 256 37 36 1.83
SimpleBoot 4 1 4 1 0 0.007

4 LUTeval 256 1 4 22 21 0.5
MVLUTeval⋆ 256 2 16 43 42 0.993
MVLUTeval◇ 256 4 256 85 84 1.98

4.2.2 LUT Dereferencing Operators
Now that we know the optimal decomposition basis for our 8-bit plaintext inputs, we can instantiate
our LUT dereferencing tools SimpleBoot, LUTeval, and MVLUTeval. The first is the basic TFHE
bootstrapping with a 4-bit ciphertext as an encrypted index. Let tab_16 be a cleartext LUT with
16 entries in Z16, given a ciphertext c ∈ JmK, SimpleBoot(c; tab_16) returns c′ ∈ Jtab_16[m]K. The
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second allows us to evaluate a 16 × 16 LUT on two ciphertexts c0 ∈ Jm0K and c1 ∈ Jm1K, with
m0, m1 ∈ M = {0, 1,⋯, 15}. We note it LUTeval(c0, c1; tab), with tab the 16 × 16 table that will
be used to instantiate the 16 test-vectors polynomials required for the tree-based bootstrapping.
LUTeval(c0, c1; tab) returns a 4-bit ciphertext c′ ∈ Jtab [16m0 +m1]K. Lastly, let us assume that
we want to evaluate k LUTeval on the following pairs of ciphertexts ((cα, c1),⋯,(cα, ck)) using the
tables (tab_1,⋯,tab_k). Each pair (cα, cj) is an encryption of Tj = 16mα +mj , where mα, mj ∈ Z16.
As cα is a common input for the k LUTeval, we can rely on only one MVB to compute the first level
of the k trees simultaneously instead of running k separate MVB for each LUTeval(cα, cj ; tab_j),
where j ∈ {1,⋯, k}. The second level of each tree is then computed separately on (c1,⋯, ck). As
such, we end up running k + 1 BlindRotate (Nbr= k + 1) instead of 2k ones for computing k LUTeval,
with k PublicFunctionalKeyswitch (Nks= k) and 16k plaintext/ciphertext multiplications (Npm= 16k).

From now on, we define MVLUTeval(cα; c1,⋯, ck; tab_1,⋯,tab_k) as the operation that com-
putes with a unique MVB the first level of the trees associated to LUTeval(cα, cj ; tab_j), and
outputs k encrypted 4-bit digits c′j ∈ Jtab_j [16mα +mj]K ∀j ∈ {1,⋯, k}. MVLUTeval can be further
optimized when provided with the same table tab_j twice (or more) by computing less PublicFunc-
tionalKeyswitch.

Table 2: Parameters set for the considered decomposition basis (λ ≈ 128). Bg and l denote
the basis and levels associated with the gadget decomposition, BKS and t denote the de-
composition basis and the precision of the decomposition of the PublicFunctionalKeyswitch,
r denotes the plaintext modulus, and ϵ is the error probability of one MVB tree-based eval-
uation. The unitary TFHE ciphertext size is given by n log2(q), leading for example to an
overall ciphertext size of 65600 bits to represent 2 basis-16 digits.

basis n q N l Bg BKS t r ϵ TRLWE noise TLWE noise
4 700 232 1024 5 16 1024 2 8 2−30 5.6 × 10−8 1.9 × 10−5

8 700 232 2048 2 2048 1024 2 16 2−23 9.6 × 10−11 1.9 × 10−5

16 1024 232 2048 3 256 1024 2 32 2−23 9.6 × 10−11 6.5 × 10−8

In summary, our toolbox mainly consists of LUTeval ∶ C2 × L Ð→ C (L being the set of all 256
4-bit entries tables) which, given (c0, c1) ∈ Jm0K × Jm1K, is such that

LUTeval(c0, c1; tab) ∈ Jtab[16m0 +m1]K.

and MVLUTeval ∶ C(k+1)×Lk Ð→ Ck, its optimization for running several LUTeval with one common
input cα ∈ JmαK and k other inputs cj ∈ JmjK,∀j ∈ {1,⋯, k}, which satisfies

MVLUTeval(cα; c1,⋯, ck; tab1,⋯, tabk) ∈ Jtab1[16mα +m1]K × ⋅ ⋅ ⋅ × Jtabk[16mα +mk]K.

5 An FHE-Optimized Instruction Set
5.1 Instruction Set Overview
In this paper, we propose an exhaustive set of some fifty 8-bit instructions that manipulate (T)FHE-
encrypted data. Some provided instructions are relatively standard, but others are more specific and
included because a smaller number of homomorphic operations are required to implement them. As
an example of this, for additions, we provide three instructions: ADD, ADDI, and ADDZ. The ADD
instruction takes two input ciphertexts (with an 8-bits cleartext payload) and, without surprise,
produces a third one whose decryption is expected to be the sum of the two input ciphertexts’
plaintexts. The ADDI instruction takes one input ciphertext and an immediate (public) value V .
This instruction can then be seen as a family of univariate instructions ADDIV (for V = 0,⋯, 255)
and, as we shall later see, can be much faster implemented than the previous general purpose ADD.
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Lastly, the ADDZ instruction also takes two input ciphertexts and performs an addition under the
assumption that at least one of the two input ciphertexts is an encryption of 0. This case occurs
recurrently in several algorithmic patterns, particularly when values must be selected based on
the results of conditions over encrypted data. Some examples are the computation of conditional
assignment instruction CSEL (Section 4.4), bubble sorting (Section 8, p. 19) array dereferencing,
and assignment (Section 8, p. 20)... For more details about ADDZ, see Section B.2.2). As a result,
this instruction also executes much faster than the general purpose ADD instruction. This first
example illustrates our design mindset, according to which we have proposed standard general-
purpose instructions for all usual operations found in typical processor ISA, as well as additional
variants providing better FHE evaluation when some (frequently occurring) assumptions are met.

In summary, we provide the following categories of instructions:
• Bitwise/arithmetic instructions (addition, multiplication, division, modulo, shift, rotation,

etc.), each coming in different flavors as discussed just above. These instructions’ names are
relatively conventional.

• Test instructions for testing equality and performing comparisons over encrypted data. These
instructions also come with different flavors and are expected to return either 0 or 1 encryp-
tions.

• Conditional assignment instructions (CDUP, NCDUP and CSEL, the latter being the only
trivariate instruction in the set). These instructions provide the building blocks to emulate
if-then-else or do-while statements with encrypted data-dependant conditions.

• Advanced instructions: support for multiplication with 16-bit results (i.e., computation of
the most significant byte of the product of two bytes), support for fixed-point arithmetic
(including decimal division), min/max operators, absolute value, to name a few.

• User defined univariate instructions: we further provide an XOP instruction which the pro-
grammer may arbitrarily configure.

For readability’s sake and due to space limitation, the following sections are intended only to
discuss the key difficulties we had to overcome and the optimization techniques we had to consider
to implement the complete set of instructions.

5.2 Notations for Homomorphic Operator Specifications
In this work, following Section 4 and most particularly Sect. 4.2, we manipulate 8-bit plaintexts
broken down into two 4-bit digits. Thus, to encrypt an 8-bit plaintext M decomposed into two
4-bit digits m0 and m1 such that M = 16m0+m1, we encrypt m0 and m1 separately under the same
scheme E to obtain C = (c0, c1) ∈ Jm0K × Jm1K as an encryption of M . We consistently denote 8-bit
plaintexts M ∈M2 and their corresponding ciphertexts C ∈ C2 with uppercase letters. Conversely,
4-bit plaintexts and their encryptions are denoted with lowercase letters. For instance, for h, l ∈M2,
C = (c0, c1) ∈ JhK × JlK ⊂ C2 denotes an encryption of the 8-bit cleartext value (h, l) ∈M2 which
encodes the 8-bit message M = 16h + l. We call h the most significant nibble of M . Similarly, l
is the least significant nibble of M . We denote these parts msn and lsn. With a slight abuse of
notation, as already done above, we will use T = (u, v) and T = 16u+v interchangeably. Sometimes,
a ciphertext C may have no msn and is denoted as (�, c1). This, for example, occurs for outputs
of test instructions, which are encrypted booleans (in that case, it can further be assumed that
c1 ∈ J0K ∪ J1K). Some instructions also result in a cleartext 0 value in the msn or lsn of a given
ciphertext, e.g., an unsigned right (respectively left) shift of C = (c0, c1) gives ciphertext (0, c0)
(respectively (c1, 0)). We can use this to perform cleartext/ciphertext operations on the fly.

As a "Hello world!" example of how we later use these notations to specify our operators and
instructions, let us consider the AND instruction which, given C = (c0, c1) ∈ JhK × JlK and C =
(c′0, c′1) ∈ Jh′K × Jl′K, is defined as

Eval(AND; C, C ′) = C̄ = (c̄0, c̄1) ∈ Jh&h′K × Jl&l′K
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To actually implement the above, we then proceed by evaluating

c̄0 = LUTeval(c0, c′0; tab_and) and c̄1 = LUTeval(c1, c′1; tab_and)

where tab_and is a table with 256 4-bit entries such that tab_and[16i + j] = i&j and where
LUTeval ∶ L × C2 Ð→ C (L being the set of all 256 4-bit entries tables) is the tree-based functional
bootstrapping operator instantiated in Section 4.2.

5.3 Implementing Univariate Instructions
Univariate instructions only take one input ciphertext (with an 8-bit cleartext payload). These
can correspond to univariate operators, such as the absolute value (ABS) or the negation (NEG)
of a signed 8-bit value, the bitwise inversion operator (INV), etc. They can also correspond to
cleartext-ciphertext operations such as the addition of a (public) immediate value (ADDi), left
shift, or rotation by a (public) number of positions (SHLi or ROLi), etc. With respect to our 8-bit
plaintext domain, all these operations can be implemented by simply dereferencing a table with
256 8-bits entries with an 8 bits plaintext input, i.e., any such instruction inst on input i ∈ Z256
can be implemented as tab_inst[i] with tab_inst[i] = f(i) (for i = 0,⋯, 255) and f the function
that inst performs. For instructions implementing cleartext-ciphertext operations, there is one such
table tab_instV for each of the 256 possible plaintext inputs, V , with the proper table selected
at runtime (and, even possibly generated on the fly). Then, to perform the instruction inst over
C = (c0, c1) ∈ JhK × JlK we simply have to evaluate

(c̄0, c̄1) =MVLUTeval(c0; c1, c1; tab_inst_msn, tab_inst_lsn) (1)

with tab_inst_msn[i] = ⌊tab_inst[i]/16⌋ and tab_inst_lsn[i] = tab_inst[i] (mod 16), for i = 0 to
255. To illustrate that this pattern allows implementing arbitrary complex univariate instructions,
we can consider the case of the divide-by-V (V ∈ Z256) operation8 which induces the instructions:
DIVI (quotient of the euclidean division by V with tab_diviV [i] = ⌊i/V ⌋), MODI (remainder of the
euclidean division by V with tab_modiV [i] = i mod V ).

Univariate test instructions are handled slightly differently in the sense that, with respect to the
plain domain, they output only encryption of a boolean 1-bit value (still contained in a single 4-bit
digit). As such, only an evaluation of LUTeval is needed to perform them. For example, the LT(C, v)
instruction, which outputs ciphertext C̄ = (�, c1) ∈ {�} × JbK from ciphertext C = (c0, c1) ∈ JhK × JlK
with b = 1 if 16h + l < v and b = 0 otherwise, is performed by evaluating only

c̄1 = LUTeval(c0, c1; tab_ltv). (2)

Note that some univariate instructions can be implemented more efficiently than by (1). For
example, for an addition by V (ADDi) we can proceed as follow:

c̄1 = SimpleBoot(c1, tab_add4V &15)
c̄0 = LUTeval(c̄0, c1, tab_fin4)

with tab_add4v[i] = (i+v) mod 16, tab_fin4V [16i+j] = tab_add4[16×tab_add4
⌊V /16⌋[i]+tab_car4V &15[j]],

tab_car4v[i] = ⌊(i+ v)/16⌋ and tab_add4[16i+ j] = (i+ j) mod 16. Following the notations in Sect.
5.2, this can further be optimized as

(c̄0, c̄1) =MVLUTeval(c1;�, c0; tab_add4V &15, tab_fin4)

which has the effect of factoring an additional blind rotation (resulting in 2 blind rotations vs.
3 if (1) is used). In a similar spirit, bitwise instructions, e.g. ANDi, can simply be implemented

8Division, even by a cleartext value, is a good example of an operation which is notoriously difficult to
perform efficiently over FHE (even when one of the two operands is cleartext). Here, with our techniques,
division by a cleartext value does not cost much more than a mere addition...
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with two calls to SimpleBoot leading, again, to 2 blind rotations vs 3 when (1) is used. We have
considered such optimizations case-by-case, resorting to (1) only when we found no better options.

†
Lastly, we provide an additional univariate XOP instruction taking a user-defined 256 × 8 bits

table rather than an immediate value V as input. For example, this instruction can perform special
operations such as the AES S-box or the six GF (256) multiplication-by-cleartext in that algorithm
[TCBS23b]. A variant of this latter instruction, XOPN(ibble) also takes a user-defined 256 × 4
bits table as input to evaluate custom conditions following (2). Table 3 provides a synthetic (yet
exhaustive) list of the univariate instructions we have implemented.

Arithmetic inst.

ADD(i) (addition of two bytes); SUB(i); MUL(i); MULM(i) (most sig. byte of the
product of two bytes); DIV4(i) (division of an encrypted byte by an encrypted nibble);
DIV(i) (division of an encrypted byte by another encrypted one); MOD4(i) (modulo
of an encrypted byte by an encrypted nibble); MOD(i) (modulo of an encrypted byte
by another encrypted byte)

Bitwise inst.
AND(i); OR(i); (U)SHL(i) (shift an encrypted byte (signed or unsigned) left by an
encrypted 8-bit index), ROL(i) (rotate an encrypted byte left by an encrypted 8-bit
index); (U)SHR(i); ROR(i)

Test inst.
EQ(i) (test if two ciphertexts encrypt the same byte); GT(i) (test if the first ciphertext
encrypts an 8-bit value greater than the one encrypted by the second ciphertext);
LT(i); GTE(i); LTE(i)

Other inst.

MIN(i) (minimum of two encrypted bytes); MAX(i); CDUP(i); NCDUP(i); CSEL (con-
ditionnal selection); ABS (absolute value of an encrypted signed byte); NEG (returns
the opposite of an encrypted signed byte); XOP; XOPN; DC (binary decomposition of
a ciphertext); RC (recomposition of a ciphertext)

Table 3: List of our instructions. For each instruction denoted by INSTR(i), INSTR is the
bivariate instruction taking two encrypted inputs, and INSTRi is the variant taking as inputs
an encryption of a byte and a cleartext one. Instructions denoted by (U)INSTR(i) have an
unsigned and a signed version.

5.4 Implementing Bivariate Instructions
5.4.1 Bivariate Instructions Basics
We now turn to bivariate instructions, which take two input ciphertexts (each with an 8-bit cleartext
payload). These correspond to additions (ADD), left shift or rotation by an encrypted number
of positions (SHL or ROL), etc. In Section 5.2, we have already seen how to perform bitwise
instructions. As another simple example, let us consider instruction ADD which turns C = (c0, c1) ∈
JhK×JlK and C′ = (c′0, c′1) ∈ Jh′K×Jl′K into C̄ = (c̄0, c̄1) ∈ Jh̄K×Jl̄K such that 16h̄+ l̄ = (16h+ l+16h′+ l′)
mod 256 leading to two calls to LUTeval and one call to MVLUTeval with two tables to produce C̄:

cs = LUTeval(c0, c′0, tab_add)
(c̄1, cc) =MVLUTeval(c1; c′1, c′1; tab_add, add_carry) (3)
c̄0 = LUTeval(cs, cc, tab_add).

with tab_add[16i + j] = (i + j) mod 16 and add_carry[16i + j] = ⌊ i+j
16 ⌋.

As for the univariate case (Section 5.3), bivariate test instructions output only a single (en-
crypted) nibble with a single-bit payload, i.e., ciphertexts of the form (�, c1) with c1 ∈ J0K ∪ J1K.
In FHE computations, we often have to sum two encrypted values where an unknown one of them
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encrypts 0. This does not make any difference on a cleartext processor, and special instructions are
usually not included in that case. However, when working over encrypted data, the lack of carry
propagation means we can save a call to MVLUTeval, (3) above. For this reason, we also provide
the ADDZ instruction, which thus "sums” two ciphertexts under the assumption that at least one
of them belongs to J0K by means of two independent calls to LUTeval.

As we shall see, the CDUP ("Conditional DUPplication") instruction plays an important role in
being able to perform a conditional assignment and, as such, is fundamental in the context of FHE
calculations. Given an encrypted boolean (�, c1) ∈ JlK and an input C′ = (c′0, c′1) ∈ Jh′K× Jl′K, CDUP
produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K with h̄ = h′ and l̄ = l′ when l = 1 (i.e. when the input
boolean is true) and h̄ = l̄ = 0 when l = 0 (we leave the instruction behavior unspecified when l > 1).
Essentially, CDUP can be implemented by a single call to MVLUTeval:

CDUP((�, c1), C ′) =MVLUTeval(c1; c′0, c′1; tab_sel1, tab_sel1),

with tab_sel1[16i+j] = j if i = 1 and 0 otherwise. Conversely, instruction NCDUP behaves similarly
except that it outputs (encryption of) 0 when the input boolean is true. As such, it is implemented
exactly as CDUP but using table tab_sel0[16i+ j] = j if i = 0 and 0 otherwise. Lastly, we provide a
single trivariate instruction CSEL (“Conditionnal SELection”) which, given an encrypted boolean
(�, c1) ∈ JbK (b ∈ {0, 1}) and two inputs C′ = (c′0, c′1) ∈ Jh′K × Jl′K and C′′ = (c′′0 , c′′1) ∈ Jh′′K × Jl′′K,
produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that h̄ = bh′ + (1 − b)h′′ and l̄ = bl′ + (1 − b)l′′.
Interestingly, even if it is a trivariate instruction, CSEL can be implemented rather efficiently by
factoring 4 blindRotate in a single call to MVLUTeval:

CSEL

(c̃0, c̃1, c̃2, c̃3) =MVLUTeval(c1; c′0, c′1, c′′0 , c′′1 ; tab_sel1, tab_sel1, tab_sel0, tab_sel0)
(c̄0, c̄1) = ADDZ((c̃0, c̃1), (c̃2, c̃3))

This gives us the conditional assignment instruction needed to emulate if-then-else constructs
on our FHE processor abstraction. Note that we also provide instructions CDUPi, NCDUPi, and
CSELi, which all take an encrypted boolean as input and either one or two cleartext values. We do
not detail them further. See Table 3 for a complete list.

5.4.2 A Homomorphic Division Operator
Using division as a yardstick, we now illustrate how our approach can be used to lead to a division
operator between two ciphertexts C = (c0, c1) ∈ JhK×JlK and C′ = (c′0, c′1) ∈ Jh′K×Jl′K. For simplicity’s
sake, we consider the unsigned division. This operator returns C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that
16h̄ + l̄ = ⌊(16h + l)/(16h′ + l′)⌋.

Let 16h̄ + l̄ = Q = ∑7
i=0 qi2i = ∑7

i=0 pi with qi ∈ {0, 1}. We then have

qi = { 1 if 2i(16h′ + l′) ≤ (16h + l) −∑7
j=i+1 qj × (16h′ + l′)2j ,

0 otherwise.

Then, Q can be naively obtained using a carryless summation of the pi = qi2i’s. But we note
that if h′ ≠ 0, the msn of 16h+l

16h′+l′
is always 0. If h′ = 0, then the msn of the quotient is

given by h
l′

. So instead of computing the qi’s for i ∈ {7, 6, 5, 4}, it is sufficient to compute
c̄0 = LUTeval(SimpleBoot(c′0,tab_is_zero), LUTeval(c0, c′1;tab_div);tab_mul). Then, to compute the
lsn of the quotient, we must follow the algorithm presented below, starting from Ct rather than
C. Indeed, after computing c̄0, the value that will be compared to obtain the lsn of the quotient
must be updated the following way. First, we need to compute cs = LUTeval(c̄0, c′1;tab_mul), and
then update c0 with the value ct = LUTeval(c0, cs,tab_sub).
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DIV

// the ciphertext Ct = (ct, c1) has been previously computed following the method presented
above
Ct = (ct, c1)
cq ∈ J0K
for i = 3 to 0

Cm = (cm0 , cm1) = SHLi(C′, i) // Shift Left by a cleartext index
cg = GTE(Ct, Cm) // Greater Than or Equal
cb = LUTeval(c′0, cg, tab_and_mulm_zero)
Cs =MVLUTeval(cb; cm0 , cm1 ; tab_mul_lsn, tab_mul_lsn)
Ct = SUB(Ct, Cs)
cq = LUTeval(cq, cb, tab_add_qi)

tab_and_mulm_zero is a 256-element table with tab_and_mulm_zero[16k + j] = (((k <<
i) >> 4) == 0)&(j == 1), that we use to test if the overflow produced by the multiplication
2i(16h′ + l′) is zero and if 2i(16h′ + l′) ≤ (16h + l) −∑7

j=i+1 qj2j . Indeed, the condition for
qi = 1 is satisfied if and only if the multiplication does not produce any overflow. tab_add_qi

is a 256-element table such that for k, j ∈ {0,⋯, 15}, tab_add_qi[16k + j] = k + (j ≠ 0) ⋅ 2i

that we use to add the new qi to cq. Finally, note that for i = 0, SHLi does nothing.

Let us further consider the case where it is known that h′ = 0 and let q0 = ⌊16h/l′⌋, q1 = ⌊l/l′⌋,
r0 = 16h mod l′ and r1 = l mod l′, then the division algorithm may be significantly simplified due
to the following relation, which holds ∀(h, l, l′) ∈ {0,⋯, 15}3,

⌊16h + l

l′
⌋ = ⌊16h

l′
⌋

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
q0

+ ⌊ l

l′
⌋

±
q1

+ ⌊16hr

l′
⌋

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ϵ0

+ ⌊ lr

l′
⌋

±
ϵ1

, (4)

with hr = ⌊ r0+r1
16 ⌋ and lr = (r0 + r1) mod 16. This simplified division requires 20 blind rotations

and 12 key switches versus 97 and 56 for a full-blown division. See Table 4. †

6 Other Types of Ciphertexts
6.1 Working with Signed Inputs
In this section, we consider 8-bit messages decomposed into two 4-bit digits, but in signed repre-
sentation using two’s complement. This way, we can encrypt messages in M− = J−128, 127K. This,
of course, requires the user to know whether they are using signed or unsigned representation to be
able to interpret the decrypted messages correctly. Note that the used TFHE parameters do not
change, as it is only a matter of semantics. This way, new tables are required to perform additions,
multiplications, shifts,... and new operations such as the negation NEG or the absolute value ABS.
For many operators, these operations are very similar to their unsigned variants. For instance,
the signed right logical shift (SHRi) is implemented by duplicating the sign bit instead of injecting
zeroes on the left. Thus, the only differences are in the tables tab_inst_msn and tab_inst_lsn (recall
Equation (1)) contents. Apart from this, we proceed similarly to the unsigned shift. For further
details on how we implement SHRi and SHR, see Section B.2.8. More generally, appendix B presents
all our instructions implementation details, including those instructions working over signed data.
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6.2 Support for Fixed-point Arithmetic
We can also apply this paper’s approach to ciphertexts encrypting values represented in fixed-point
arithmetic. To do so, we have to work with 16-bit data: 8 bits for the integer part and 8 bits for
the fractional part of a fixed point number. In addition, we need an encoding layer adapted to
the semantics of this representation on top of the encryption layer. We consider that the integer
part can be signed or unsigned and that the fractional part is always positive. For example, 4.6 is
represented as (4, ⌊256 × 0.6⌋ = 153) and −4.6 as (−5, ⌊256 × 0.4⌋ = 102). We note the ciphertexts
and associated plaintexts corresponding to encryptions of such 16-bit messages with bold capital
letters: C = (c0, c1, c2, c3) ∈ JhK × JlK × JoK × JkK is an encryption of the 16-bit message T encoding
16h+ l+ 16o+k

256 . For example, an encryption of 1
256 = 0.00390625 will be C ∈ J0K× J0K× J0K× J1K. This

approach enables the implementation of new functions, such as decimal division or a fixed-precision
sigmoid (Section 8). As an example, let us consider the decimal division by a cleartext 8-bit value
d (assuming unsigned input semantic for simplicity’s sake), an operation that is often used when
computing basic statistics when the sample size is known, which given C = (c0, c1) ∈ JhK×JlK outputs
C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K and (c̃0, c̃1) ∈ Jh̃K × Jl̃K such that

16h̄ + l̄ = tab_int[16h + l] = ⌊16h + l

d
⌋ and 16h̃ + l̃ = tab_dec[16h + l] = ⌊256(16h + l) mod d

d
⌋ .

With only 5 BlindRotate, we then compute

(c̄0, c̄1, c̃0, c̃1) =MVLUTeval(c0; c1, c1, c1, c1; tab_int_msn, tab_int_lsn, tab_dec_msn, tab_int_lsn)

6.3 Input/output
In this section, we consider the issue of getting data in and out of our processor abstraction in
the setting where it is deployed on a remote server and available to a client, which sends input
ciphertexts to the server (which we refer to as uplink input transmissions from the client to the
server) and expects output ciphertexts in return (which we refer to as downlink output transmissions
from the server back to the client), as the results of some valuable computations. We then wish
to avoid the naive approach, which consists of the client sending its encrypted input data by
transferring a full TLWE ciphertext for each payload nibble (similarly on the downlink).

Still, in this naive setting (and considering the parameters in Table 2), our approach is more
efficient than the “standard TFHE gate approach” as we require transmitting two TFHE ciphertexts
with a 4-bit payload (for a total size of 65600 bits) by opposition to eight ciphertexts with a single
bit payload (accounting for a total of 161536 bits using the default TFHELib parameters).

6.3.1 Uplink Input Data Transmission
On the uplink, a standard approach is to resort to transciphering to remove the transmission over-
head [CCF+16, BBS22, BCBS23, PJH23], at the cost of homomorphically running a symmetric
algorithm decryption function (which can then be easily “coded” using our instruction set). If
we accept a slightly higher transmission overhead, a computationally lighter approach consists of
simply synchronizing the client and server using a PRF to avoid sending the a term of the TLWE
pairs (i.e., both the server and the client are able to compute on their own the a vector associated
to a given b = ⟨a, s⟩ + q

16 m + e) and thus to transmit only the unique coefficient b. The uplink
expansion factor, therefore, becomes independent of the n parameter. Since the ciphertext and
plaintext moduli, respectively, are q = 232 and B = 16 in our TFHE parameter setting for basis-16
(Table 2), this leads to an expansion factor of only 32

4 = 8, which is reasonable by “FHE standards”.

16



6.3.2 Downlink Output Data Transmission
Remark that none of the above approaches are applicable to reduce the overhead of encrypted
results transmission from the server to the client. Indeed, transciphering allows the conversion of
data encrypted under some (usually symmetric) scheme towards an homomorphic scheme, but not
the other way around. Besides, for results of FHE computations, neither the server nor the client
can control the resulting a term, which, therefore, has to be transmitted somehow. Still, to decrease
as much as possible the burden of transmitting several encrypted outputs, under the form of TLWE
ciphertexts, the server can assemble them as much as possible in TRLWE ones. Thus, we want to
assemble K = 2L TLWE results into one or more TRLWE ciphertexts. More precisely, the server
assembles up to n TLWE samples into a single TRLWE sample using the usual keyswitch packing
whereby n TLWE messages m0,⋯, mn−1 maps to m(X) = ∑n−1

0 miX
i. Consider that K TLWE

ciphertexts have to be transmitted, then, when K mod n = 0, we have an expansion factor of

2 log2 q

log2 t
(5)

i.e., with n = 1024 and q = 232, this leads to an expansion factor of 16 (B = 16). So, the downlink
expansion factor is “only” twice that of the uplink (asymptotically). When, K mod n = r > 0,
expansion is given by

2⌊k/n⌋ log2 q + (n + r) log2 q

K log2 t
.

Expansion factor (5) is also valid in the asymptotic regime when K is large. Other techniques may
be used to further reduce the expansion factor on the downlink, e.g., [BDGM19].

6.4 Bit decomposition and recomposition
6.4.1 Decomposition (DC)
Let us consider that we have a ciphertext C = (c0, c1) with an 8-bit payload decomposed in two
nibbles. In some algorithms, it is more interesting for specific operations to work with bits. For
instance, the symmetric sponge-based cipher ASCON [DEMS21] requires switching from a binary
rows representation to a columns representation. Thus, we must decompose a ciphertext c into eight
encryptions of bits. To do so, it is sufficient to decompose c0 and c1 each into four ciphertexts. That
means one needs four tables: one per decomposition bit. These tables are easy to precompute as it
only requires calculating for i ∈ {0, 1,⋯, 15}, the LUTs corresponding to i & 0b0001, (i & 0b0010)>>
1, (i & 0b0100)>> 2, and (i & 0b1000)>> 3. Then, the user can perform an MVB bootstrapping
using the four test-vector polynomials given by the four 1 × 16 tables and extract the four values.
This operation is less expensive than a LUTeval call. Note that even if we now have encryptions of
0s and 1s, these ciphertexts are still manipulated with the parameters corresponding to a basis 16
encryption. This is a crucial principle for a cheap recomposition.

6.4.2 Recomposition (RC)
Once done working on a smaller basis, one should recompose their ciphertext into the initial basis
to continue their computations. In our specific case of ciphertexts of basis 16 decomposed 8-bit
data, that means that we want to obtain c′ = (c′0, c′1) from c = (c0, c1, c2, c3, c4, c5, c6, c7) encrypting
the same message m. As previously stated, the individual ciphertexts c0,⋯, c7, even encrypting
0s and 1s, are still in the 32-value discretized torus. This simplifies the recomposition into 4-bit
ciphertexts. Indeed, we have

c′0 = c0 + 2 ⋅ c1 + 22 ⋅ c2 + 23 ⋅ c3 and c′1 = c4 + 2 ⋅ c5 + 22 ⋅ c6 + 23 ⋅ c7.

As the multiplication by a power of 2 less than 16 will not result in an overflow, we can use a
call to SimpleBoot on each ci being multiplied. In these conditions, we can use the native TFHE
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TLWE addition to recompose each nibble. Still, this recomposition alone takes longer than a
SHLi instruction, so a decompose/shift-for-free/recompose approach is not competitive. Hence,
decomposing and recomposing ciphertexts is only efficient when many binary operations have to
be performed.

7 Instructions timings
We have fully implemented our proposed instruction set under TFHElib [CGGI16]. We summarize
the timings in Table 4 obtained on our test machine (a 12th Gen Intel(R) Core(TM) i7-12700H
CPU laptop with 64 Gib total system memory with an Ubuntu 22.04.2 LTS server), using only a
single core.

Instr. Nbr Nks ms Instr. Nbr Nks ms
ANDi/ORi/XORi 2 0 69 AND/OR/XOR 4 2 278

DC 2 0 81 RC 8 0 267
(U)SHLi/(U)SHRi 2 0 72 (U)SHL/(U)SHR 6 4 478

ROLi/RORi 4 0 125 ROL/ROR 9 6 714
EQi 2 0 88 EQ 6 3 393

LT(E)i/GT(E)i 2 1 126 LT(E)/GT(E) 9 5 623
(N)CDUP 3 1 159 CSEL 9 6 694
NEG/ABS 2 1 215 MIN/MAX 16 10 1176

ADDi/SUBi 2 1 137 ADD/SUB 7 4 493
ADDZ 4 2 271 MUL(M)i/DIV(4)i/MOD4i 2 1 133
MODi 3 2 267 MUL 10 6 725
MULM 32 20 2442 DIV4 21 14 1624

DIV 97 56 7711 MOD4 10 6 724
MOD 91 50 7584 (N)CDUPi 1 0 33
XOP 3 2 229 MINi/MAXi 2 1 135

Table 4: Mnemonics, blind rotations and keyswitches counts as well as execution times for
our (T)FHE processor abstraction instruction set.

8 From instructions to algorithms
To test our instruction set, we now use it to implement a number of (simple) algorithms. Note that
in certain cases, it might be more efficient to directly implement these algorithms at the functional
bootstrapping level. However, by analogy to a real microprocessor, that would mean coding at the
micro-code rather than at the ISA level. So, in this section, we only use instructions from our set.

8.1 Testing a few Elementary Algorithms
8.1.1 Bubble Sort
Bubble sorting consists of repeatedly comparing consecutive elements in an array and permuting
them when incorrectly ordered. One way to perform the conditional swap of two array elements
without resorting to an if-then-else construct can be, for example, done using MAX and MIN
computations. However, it is more efficient to use GT, CDUP, NCDUP and ADDZ as done in Algo
1). To give an order of magnitude for the execution time, sorting an array of five ciphertexts
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encrypting 8-bit values using this “sorting in place” algorithm takes around 15 seconds. Execution
timings can be found in Table 5.

Algorithm 1 BubbleSort
Input: A an array of n encryptions of 8-bit values
Output: A sorted from the smallest value to the largest.

for i = n − 1 to 0 do
for j = 0 to i − 1 do

cb ← GT(A[j], A[j + 1])
C̃ ← A[j + 1]
Cs ← CDUP(cb, A[j])
A[j + 1]← NCDUP(cb, A[j + 1])
A[j + 1]← ADDZ(Cs, A[j + 1])
Cs ← CDUP(cb, C̃)
A[j]← NCDUP(cb, A[j])
A[j]← ADDZ(Cs, A[j])

return A

8.1.2 Maximum/Minimum of an Array
As another simple example, it is easy to use our MIN and MAX homomorphic operators to find the
largest or smallest element in a table, as done by Algo 2. With this algorithm, finding the maximum
or minimum of an array composed of five 8-bit encrypted values takes less than 5 seconds (see Table
5).

Algorithm 2 Maximum
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the largest value in A

C̄ ← A[0]
for i = 1 to n − 1 do

C̄ ←MAX(C̄, A[i])
return C̄

8.1.3 Average
Thanks to our homomorphic decimal division operator, we are able to precisely compute the average
of an array in fixed-point arithmetic, including the final division. Algo 3 gives an implementation
with our instruction set. As shown in Table 5, this computation takes less than 4 seconds when
tried on a five-element array.

8.1.4 Array Dereferencing and Assignement
Note that dereferencing an array of 256 (or less) cleartext values (with an encrypted index) is just
an evaluation of our MVLUTeval operator. Further optimizations can be made on a case-by-case
basis, for example, if the array to be dereferenced contains fewer than 256 values. It is also feasible
to dereference an array of 256 (or less) encrypted values with an encrypted index. Indeed, we
can use a modified MVLUTeval running directly on encrypted test polynomials, as in the second
level of the evaluation of the tree-based method (Section 3.3.1), where we rotate a new encrypted
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Algorithm 3 Average
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the 16-bit value corresponding to the average of

the table A

Ca ← A[0]
for i = 1 to n − 1 do

Ca ← ADD(Ca, A[i])

Ci ← DIVi(Ca, n)
Cd ← DIV_DECi(Ca, n)
return C̄ = (Ci, Cd)

test polynomial by an encrypted index. Dereferencing arrays with more than 256 elements is also
possible but requires a slightly more complex machinery that we do not detail (indeed, as 256 is the
size of our plaintext domain we have tools to bootstrap over a 256-element table straightforwardly,
but when there are more than 256 elements in the table, a single tree-based bootstrapping is not
enough). Lastly, we can also obtain an operator for assigning an array of 256 (or less) encrypted
values, still with an encrypted index. That is to say, given an encrypted table tab of size n, an
encrypted index Ci = (ci0 , ci1) ∈ Ji0K × Ji1K and an encrypted value CV = (cv0 , cv1) ∈ Jv0K × Jv1K, the
operation affects the value V = 16v0 + v1 to tab[16i0 + i1]. See Algo 4. As seen in Table 5, the
sequential evaluation of this operator on an array of five 8-bit encrypted inputs takes 4.45 seconds.
Note that this approach to array dereferencing is not competitive with PIR approaches running
over RLWE schemes. However, these latter approaches are, by intent, only able to execute PIR
requests very efficiently and do not claim to achieve more than that.

Algorithm 4 Assignment
Input: A an array of n encryptions of 8-bit values, an encrypted index Ci and an

encrypted value CV

Output: A modified at index 16i0 + i1

for j = 0 to n − 1 do
(0, cb)← EQI(Ci, j)
C0 ← CDUP(cb; CV )

C1 ← CDUP(cb; A[j])
A[j]← ADDZ(C0, C1)

return A

8.1.5 Squares Sum
We propose a Squares Sum algorithm. It is a rather simple algorithm. However, taking a glimpse
at Section 9, it already induces a number of gates large enough such that the Boolean circuit
approaches are no more competitive with ours. By contrast, with our instruction set, it is (also)
straightforward to implement (see Algo 5) and more efficient. Indeed, as seen in Table 5, the
sequential evaluation of this operator on an array of five 8-bit encrypted inputs takes 5.66 seconds
when the best Boolean circuit-based approach takes 7.6 secs (Table 7).

8.1.6 Loops
For completion, we highlight a technique to perform (encrypted) data dependant loop termination
when a bound B is known on the total number of iterations. Let S denote the state of a program,
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Algorithm 5 SquaresSum
Input: A an array of n encryptions of 8-bit values
Output: C the encryption of the sum of the squares of the n values of A

Cs ←MUL(A[0], A[0])
for j = 1 to n − 1 do

Ct ←MUL(A[j], A[j])
Cs ← ADD(Cs, Ct)

return Cs

then a statement of form “while c(S) do S ∶= f(S)” can be rewritten as “for 0 ≤ i < B do if c(S)
then S ∶= S else S ∶= f(S)”. In essence, that latter form computes a fixed point after condition c(S)
reaches a true value, and the inner if-then-else statement can then be done via a CSEL instruction.

8.2 Evaluation of an elementary neuron
We now turn to the homomorphic evaluation of an elementary neuron, as usually found in convo-
lutional neural networks. Our simple neuron has two encrypted fixed-precision inputs representing
encryptions of numbers, F1 and F2, in [−1, 1] (each over 16 bits as in Sect. 6.2) and one encrypted
fixed-precision output of the same form. We emphasize that the output of our neuron can be fed to
another one, enabling the evaluation of larger networks over encrypted data. From an operational
viewpoint, the two encrypted inputs are first multiplied by fixed precision weights in [−1, 1] (W1
and W2, respectively), which may either be cleartexts or ciphertexts. The sum of these products is
then fed into an activation function, in this case, the sigmoid, noted σ, (which takes an encrypted
fixed-precision value as input and evaluates the sigmoid at that point). In summary, specified over
cleartext value, we have to evaluate

neuron(F1, F2) = σ(F1 ⋅W1 +F2 ⋅W2).

Let CF1 = (c0, c1, c2, c3) ∈ JhK × JlK × JoK × JkK, (meaning, as in Sect. 6.2, that CF1 encrypts the
value F1 = 16h + l + 16o+k

256 ) and CF2 = (c′0, c′1, c′2, c′3) ∈ Jh′K × Jl′K × Jo′K × Jk′K. This way, we have to
compute two cleartext-ciphertext decimal multiplications, one homomorphic decimal addition, and
the homomorphic evaluation of the sigmoid.

The most complicated part of that computation is the homomorphic evaluation of the sigmoid,
taking as input a ciphertext corresponding to a 16-bit fixed-point arithmetic value. To do so, we
evaluate a discretized sigmoid σ̃((i, j)) on several non overlapping intervals (−∞,−6), [−6,−5), ...,
[5, 6), [6,∞) as

σ̃((i, j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0, 0) if i < −6,
(0, tab_sigi[j]) if i ∈ {−6,−5, ..., 4, 5},
(1, 0) if i ≥ 6,

with tab_sigi[j] = σ(i+j/256) and then test the input to select the appropriate value among these.
However, because we do not have any way to branch on conditions over encrypted data, each of the
above (mutually exclusive yet collectively exhaustive) possibilities must be computed, multiplied
by an encrypted boolean, and then xored to obtain the final result. It follows that, for a ciphertext
C = (c0, c1, c2, c3) ∈ JhK×JlK×JoK×JkK, we compute the evaluation of the sigmoid SIG by computing:

C̄ = (C̄, C̃) = (GTEi((c0, c1), 6), ⊕
i∈{−6,⋯,5}

CDUP(EQi((c0, c1), i), SIGLUT(i)((c2, c3))))

with C̄ and C̃, the respective encryptions of the integer and decimal parts of the result. In the
above equation, the ⊕ operator corresponds to multiple calls to our XOR instruction and SIGLUT(i)
is the homomorphic evaluation of the LUT corresponding to the decimal values of σ (i + 16o+k

256 ).
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Note that from an instruction set perspective, SIGLUT(i) can be performed by means of the XOP
(user-defined) univariate instruction discussed in Sect. 5.3 using the above twelve tab_sigi tables.
This implementation of the sigmoid takes about 10 seconds to compute. With less precise encrypted
inputs and outputs, homomorphic sigmoid evaluation can be less costly [TCBS23a], but here, we
prioritize accuracy and the ability to feed a neuron output into another neuron without additional
conversion over faster execution. Based on this, we have been able to evaluate one neuron in about
16 seconds, so the evaluation of the sigmoid alone represents two-thirds of that cost. By comparison,
we have also implemented a homomorphic Heaviside function that operates on encrypted inputs
representing 16-bit fixed-point arithmetic values. Using this much simpler function, we can get the
execution timing from 16 seconds down to under 7 seconds. See Table 5.

Table 5: Execution times (in seconds) of different homomorphic algorithms on arrays of size
n, and expecting timings depending on n.

Algorithm n = 2 n = 5 n = 10 Expected timings
BubbleSort 1.51 15.22 68.47 n(n−1)

2 × (4 × 0.160 + 2 × 0.270 + 0.390)
Minimum/Maximum 1.20 4.71 11.14 (n − 1) × 1.176
Average 0.78 2.36 4.97 (n − 1) × 0.493 + 2 × 0.133
ArrayAssignment 1.37 4.45 6.88 n × (0.088 + 2 × 0.159 + 0.271)
SquaresSum 2.12 5.66 12.30 n × 0.725 + (n − 1) × 0.493

Times
Neuron with Sigmoid 15.42 - - -
Neuron with Heaviside 6.67 - - -

9 Comparison with Other Approaches
In this section, we compare the performance of our approach to the following projects: Juliet
[GMT24], E3 [EOH+18], Cingulata[CDS15a], and Concrete [Zam22]. We aim to compare the exe-
cution timings with ours on the set of algorithms from Section 8. An average timing is computed
on a hundred samples for each framework and algorithm. All the results are summarized in Table
7.

Juliet[GMT24] Juliet9 is a general-purpose homomorphic computation framework. It provides
C++ functions corresponding to instructions implemented as Boolean circuits over ciphertexts
using TFHElib. Juliet also supports GPU acceleration, but as we perform single-thread CPU
computations, we have not activated this feature for fair comparison. Juliet also gives a relatively
small set of around 20 instructions (working over encrypted data); it is then relevant to compare
our approaches on the instructions we have in common:

• ADD, SUB, MUL, MOD
• AND, OR
• EQ, GT, LT, GTE, LTE (These instructions are all packed in COMP in Juliet)
• SHL and SHR

Additionally, many of our instructions are not supported in Juliet, particularly DIV, MOD as well
as SHL and SHR (variants for shifting an encrypted value by an encrypted offset). Table 6 shows
that with the same parameters for TFHE, our approach is, on average, 84%

9https://github.com/TrustworthyComputing/Juliet
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Operation This work Juliet
AND 0.069 0.268
OR 0.069 0.254

ADD 0.137 1.012
SUB 0.137 1.231
MUL 0.725 5.334

EQ/COMP 0.088 2.195

Table 6: Average (over 100 runs) execution timings (in seconds) of different homomorphic
instructions on encrypted inputs using Juliet and the present work’s approach.

Cingulata[CDS15a, ACS20] Cingulata10, formerly known as Armadillo [CDS15b], is a toolchain
and run-time environment (RTE) for implementing applications running over HE. Cingulata pro-
vides high-level abstractions and tools to facilitate the implementation and execution of applications
running over encrypted data. Cingulata also includes many working examples of programs. In Cin-
gulata, programs are expressed in high-level C++ and automatically turned in optimized Boolean
circuit form. Its runtime environment then performs the homomorphic execution over the selected
FHE scheme, which, for this work, has been the gate-based variant of TFHE (Cingulata relies on
the same TFHElib that we are also using for TFHE implementation). Additionally, even if it is
not supported natively, we have implemented the homomorphic integer division given in 5.4.2 using
Cingulata for further comparisons (see Table 8).

As shown in Table 7, Cingulata sometimes outperforms our approach: For algorithms Maxi-
mum and BubbleSort, it is faster by an average factor of 60%, as for the SquaresSum and Sigmoid
algorithms, our approach is more efficient by an average factor of 70%. It turns out that Cingulata
performs very well on homomorphic calculations, which leads to small Boolean circuits (which it
executes with a faster bootstrapping). In contrast, our approach is more rapid when the size of the
underlying Boolean circuit increases, i.e., when the ratio between the Boolean circuit size and the
number of basis 16 operations is above the time ratio between basis 16 and basis 2 bootstrappings.

E3 [EOH+18] E3 (Encrypt-Everything-Everywhere)11 is a compilation framework similar in
spirit to Cingulata. Also, E3 supports bridging: homomorphic evaluation is performed by mixing
both arithmetic and binary circuits, which speed up the computation in certain cases. E3, however,
does not allow easy setting of the parameters for TFHE and presently uses the default TFHElib
parameters, achieving only 118 bits of security (this gives E3 a slight advantage over our approach,
which uses the larger fine-tuned parameters discussed in Section 4). To the best of our knowledge,
E3 is the only other framework that supports homomorphic division (hence, we can compare the two
approaches when computing the homomorphic average of an array). Like Cingulata, E3 outperforms
our approach for the same algorithms. During our tests, Cingulata consistently outperformed E3
(except on the Average algorithm, on which our approach outperforms both E3 and Cingulata). As
Sigmoid was complex to implement, we only implemented it for the most competitive approach to
ours: Cingulata. (see Table 7).

Concrete[Zam22] Concrete 12 by Zama is also an FHE compiler. It is built on an LLVM-based
compiler that can transform functions running over plaintexts into a mix of boolean circuits for
so-called leveled operations (addition, multiplication, linear application) and LUTs (that they call
TLU) for nonlinear operations that will eventually run over their custom implementation of TFHE.
Its Python interface makes it easy to use: we write functions over plaintexts, compile them, and

10https://github.com/CEA-LIST/Cingulata
11https://github.com/momalab/e3
12https://github.com/zama-ai/concrete
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run them over ciphertexts in a single Python script. As E3, Concrete does not let the user control
or even access the parameters of the TFHE scheme, meaning that we lack a complete visibility to
compare their parameters with ours (Section 4). However, as both parameter sets achieve 128-bit
security, we assume that the comparison remains fair.

As stated in Concrete’s documentation, the tool is most efficient for computations that can be
performed using leveled (in their terminology) operations rather than LUTs. This is confirmed in
Table 7 where Concrete is competitive on the SquaresSum algorithm.

Algorithm This work Juliet E3 Cingulata Concrete
Maximum 4.74 7.91 3.13 1.87 21.52
BubbleSort 15.22 31.62 12.70 6.18 78.07
SquaresSum 5.66 25.10 8.82 8.40 7.69

Average 2.36 - 3.57 10.31 -
Sigmoid 8.98 - - 969 -

Table 7: Average (over 100 runs) execution timings (in seconds) of different homomorphic
algorithms on arrays of 5 encrypted inputs using various approaches. Entries marked with
a ‘-’ are so due to lack of support of a unitary operation (e.g., division for Average).

Concluding Remarks Overall, Table 7 shows that the Boolean circuit-oriented approach is
more efficient than ours for algorithms that do not suffer from a significant expansion when rep-
resented as a Boolean circuit. When this is not the case, then our approach amortizes the higher
unitary bootstrapping cost and becomes competitive (this is, for example, the case for the Squares-
Sum algorithm which uses MUL (an operation which requires a larger number of Boolean gates).
This is further exemplified by the more complex DIVi and DIV instructions as well as the Sigmoid
algorithm (Table 8). Since Cingulata outperforms the other Boolean circuit-oriented approaches,
we have provided additional comparisons in Table 8, including timings and the number of blind
rotations. For Cingulata, the number of basis-2 blind rotations directly gives the number of gates
executed over TFHE ciphertexts.

10 Conclusion and perspectives
In this paper, we have essentially shown that a very limited set of functional bootstrapping pat-
terns is both versatile and optimal to build a complete conventional-looking assembly language
for manipulating (T)FHE encryptions of 8-bit data. In terms of perspectives, this reveals several
functional bootstrapping operators of increasing complexity which may be appropriate targets for
further works on advanced software optimizations or hardware implementations in an intent, e.g.,
to provide a wide range of higher level instructions to the user while maintaining a small number
of hardware operators (also leveraging on the fact that TFHE needs smaller parameters compared
to the RLWE schemes). Indeed, our approach would directly benefit from further efficiency im-
provements in the baseline TFHE bootstrapping but also in the higher-level LUTeval or MVLUTeval
operators. Beyond this, the approach can also benefit from an ability to run several such primitives
in parallel, ideally by exploiting the low-level SIMD instructions offered by modern processors or
dedicated HW.

Another important perspective is to further investigate several values for the bootstrapping
error probability to consider the recent attacks in [CSBB24, CCP+24]. Indeed, our parameters
achieve “only” a 2−40 bootstrapping error probability. Although parameters have been proposed
in [CSBB24] for a 2−128 bootstrapping error probability, showing a 20% overhead in the baseline
bootstrapping, they are valid only for B = 2. Finding a parameter set for basis B = 16 achieving
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This work Cingulata
Algorithm Nbr Nks Time(s) Nbr’ Time(s)

DIVi 2 1 0.13 700 7.38
DIV 97 56 7.71 1100 11.17
ADD 7 4 0.49 35 0.36
MUL 10 6 0.72 183 2.14
CSEL 9 6 0.69 0 0.001

Maximum 64 40 4.74 184 1.87
BubbleSort 260 110 15.22 620 6.18
SquaresSum 78 46 5.66 821 8.40

Average 32 18 2.36 1000 10.31
Sigmoid 156 60 8.98 106652 969

Table 8: Average (over 100 runs) execution timings and number of bootstrappings of dif-
ferent homomorphic algorithms on arrays of 5 encrypted inputs (when applicable) using
Cingulata and our approach. Note that the top part of the above table provides a com-
parison of our approach with one relying on “standard TFHE gates” (as Cingulata exactly
implements this approach with optimized Boolean circuits) over a set of representative in-
structions (implemented as small unitary programs in Cingulata).

such a low probability remains challenging (due to the necessary increase in polynomial degree
and ciphertext modulus), and in that regime, basis 4 might be the optimal choice. So achieving
immunity against these recent attacks may, therefore, have an impact that remains to be studied
in depth.

A Complete Instruction Listing and Timings

Instr. Description Nbr Nks Exec. (ms)
ABS Returns an encryption of the absolute value of

an encrypted input.
2 1 215

ADD/SUB Performs the homomorphic addition (or sub-
traction) of two encryptions of 8-bit values and
returns an 8-bit encrypted result.

7 4 493

ADDi/SUBi Performs the homomorphic addition (or sub-
traction) of one 8-bit plaintext to a ciphertext
encrypting an 8-bit value and returns the 8-bit
encrypted result.

2 1 137

ADDZ Perform the carryless addition of two 8-bit en-
crypted inputs. Returns an 8-bit encrypted
value.

4 2 271

AND Computes the logical AND of two 8-bit payload
ciphertexts.

4 2 278

ANDi Computes the logical AND of an 8-bit payload
ciphertext and an 8-bit plaintext.

2 0 69

(N)CDUP Given an encrypted Boolean cb and an 8-bit
payload ciphertext C, returns an encryption of
cb ×C.

3 1 159
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Instr. Description Nbr Nks Exec. (ms)
CSEL Given an encrypted Boolean cb and two 8-bit

payload ciphertexts C and C′, returns an en-
cryption of cb ×C + (1 − cb) ×C′.

9 6 694

DC Decomposition of an 8-bit payload ciphertext
into eight ciphertexts encrypting 0s and 1s.

2 0 81

(U)DIV4 Calculates the Euclidean division of an 8-bit
payload ciphertext by the encryption of a nibble
and returns encrypted the quotient.

21 14 1624

(U)DIV(4)i Calculates the Euclidean division of an 8-bit
payload ciphertext by an 8-bit (or 4-bit) plain-
text and returns the encrypted quotient.

2 1 133

(U)DIV Calculates the Euclidean division of an 8-bit
payload ciphertext by another 8-bit payload ci-
phertext and returns the encrypted quotient.

97 56 7711

EQ Equality test: homomorphically compares two
8-bit payload ciphertexts and returns an en-
crypted boolean corresponding to the evalua-
tion.

6 3 393

EQi Equality test: homomorphically compares one
8-bit payload ciphertext with one 8-bit plaintext
and returns an encrypted boolean correspond-
ing to the evaluation.

2 0 88

GT(E)/LT(E) Greater Than (or Equal to)/Less Than (or
Equal to): compares two 8-bit payload cipher-
texts and returns an encrypted boolean corre-
sponding to the evaluation.

9 5 623

GT(E)i/LT(E)i Greater Than (or Equal to)/Less Than (or
Equal to): compares one 8-bit payload cipher-
text with one 8-bit plaintext and returns an en-
crypted boolean corresponding to the evalua-
tion.

2 1 127

MAX/MIN Homomorphically computes the maximum (or
minimum) of two 8-bit payload ciphertexts and
returns the encrypted result.

16 10 1176

MAXi/MINi Homomorphically computes the maximum (or
minimum) of an 8-bit payload ciphertext and an
8-bit plaintext and returns the encrypted result.

2 1 133

MOD4 Homomorphically calculates the Euclidean divi-
sion of an 8-bit ciphertext by a 4-bit ciphertext
and returns the rest.

10 6 724

MOD4i Homomorphically calculates the Euclidean di-
vision of an 8-bit payload ciphertext by a 4-bit
plaintext and returns the encryption of the rest.

2 1 133

MOD Homomorphically calculates the Euclidean di-
vision of an 8-bit payload ciphertext by another
8-bit payload ciphertext and returns the encryp-
tion of the rest.

91 50 7584

MODi Homomorphically calculates the Euclidean divi-
sion of an 8-bit payload ciphertext by an 8-bit
plaintext and returns the encryption of the rest.

3 2 267
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Instr. Description Nbr Nks Exec. (ms)
MUL Multiplies two 8-bit payload ciphertexts and re-

turns the encrypted result (only returns the re-
sult modulo 256).

10 6 725

MUL(M)i Multiplies one 8-bit payload plaintext with an
8-bit payload ciphertext and returns the result
on 8 bits.

2 1 133

MULM Multiplies two 8-bit payload ciphertexts and re-
turns the overhead result on 8-bits.

32 20 2442

NEG Returns the negation of the input on a signed
8-bit payload ciphertext.

2 1 215

OR Computes the logical OR of two 8-bit payload
ciphertexts.

4 2 278

ORi Computes the logical OR of an 8-bit payload
ciphertext and an 8-bit plaintext.

2 0 69

RC Recomposition of eight binary ciphertexts into
two 4-bit payload ciphertexts encoding one 8-bit
payload ciphertext.

8 0 267

ROL/ROR Rotates an 8-bit payload ciphertext to the left
(or right) by an 8-bit payload encrypted index
and returns the rotated ciphertext.

9 6 714

ROLi/RORi Rotates an 8-bit payload ciphertext to the left
(or right) by an 8-bit payload plaintext and re-
turns the rotated ciphertext.

4 0 125

(U)SHL/(U)SHR Shifts an 8-bit payload ciphertext to the left (or
right) by an 8-bit encrypted index and returns
the shifted ciphertext.

6 4 478

(U)SHLi/(U)SHRi Shifts an 8-bit payload ciphertext to the left (or
right) by an 8-bit plaintext index and returns
the shifted ciphertext.

2 0 72

TZR Test Zero: Homomorphically tests if an 8-bit
payload ciphertext is an encryption of zero.

2 0 88

XOP User’s defined operator. 3 2 229
XOR Computes the logical XOR of two 8-bit paylaod

ciphertexts.
4 2 278

XORi Computes the logical XOR of an 8-bit paylaod
ciphertext and an 8-bit plaintext.

2 0 69

B Instruction Set Implementation Details
B.1 Univariate Operations
Cleartext-ciphertext operations are also called univariate operations, as they only take one en-
crypted input. Such operations can be cleartext-ciphertext multiplications in GF(256), cleartext-
ciphertext additions in GF(256), cleartext-ciphertext comparisons, ... In such cases, the generic use
of our LUT evaluation tools is as follows.

In order to homomorphically compute the evaluation of a univariate function f ∶M →M on
an 8-bit encrypted input C = (c0, c1) ∈ JhK × JlK, we have to create basis 16 tables from tabf , the
basis 256 LookUp Table corresponding to f . Indeed, we need one table tabmsn to compute the msn
of f(M) = f(16h + l) and one tablsn to compute its lsn part.
Such tables are easily defined by tabmsn[i] = ⌊ tabf [i]

16 ⌋ and tablsn[i] = tabf [i]%16 for i ∈ {0,⋯, 255}.
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Note that these tables can be efficiently generated on the fly. In fact, compared to the cost of
bootstrapping, this operation is free of charge and offers a good time-memory compromise.
Then the naive way to evaluate f on our ciphertext is to first compute c̄0 = LUTeval(c0, c1; tabmsn),
which gives us the encryption of the msn part of f(M). Then we can similarly obtain the en-
cryption of the lsn part of f(M) by computing c̄1 = LUTeval(c0, c1; tablsn). Thus, we obtain
C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K, such that f(M) = 16h̄ + l̄.
It is important to see that as the calls to LUTeval are applied on the same encrypted inputs, they
can be factorized in a single call to MVLUTeval, giving us an optimized execution of the homomor-
phic evaluation of f . In the rest of this Sect., we only present optimized version of our operators.
Following the same logic, we propose a user defined operation XOP allowing the user to homomor-
phically evaluate any univariate function on an 8-bit encrypted input of his choice.

XOP

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and a LUT tabf

// tabmsn and tablsn are created on the fly depending on tabf

(c̄0, c̄1) =MVLUTeval(c0; c1, c1; tabmsn, tablsn)

Almost all univariate instructions can be implemented using the structure of the optimized XOP
operation. For instance, we here further detail the cleartext-ciphertext addition (ADDi).
In the case of addition modulo 256 of C = (c0, c1) ∈ JhK×JlK with an 8-bit plaintext T = 16u+v ∈M,
we have to create the tables corresponding to the function

f ∶ M → M
M ↦ M + T

The one giving the most significant nibble of computation is tab_addmsn such that tab_addmsn[i] =
⌊ i+T

16 ⌋ for i ∈ {0,⋯, 255}. Similarly, the table giving the least significant nibble of the computation
is tab_addlsn such that tab_addlsn[i] = (i + T ) (mod 16) for i ∈ {0,⋯, 255}.
Using these tables (that can be computed on the fly), we can execute the ADDi operation following
the pattern of XOP. But, if we twist our MVLUTeval tool just a bit, we can obtain an even more
optimized version of these operators. To compute the lsn part of the homomorphic addition of
C = (c0, c1) ∈ JhK × JlK and T = 16u + v, the table tablsn such that for i ∈ {0,⋯, 15}, tablsn[i] =
i + v%16 is sufficient. That means that a call to SimpleBoot on c1 can give us the lsn part of the
computation (instead of a call to LUTeval). To factorize this bootstrapping with the one implied
by the computation of c̄0 we modify the MVLUTeval instruction: we create MVLUTeval2 so that
the MVB method is used with selector c1 on tabmsn and tablsn. Then we apply the extractions:
we get seventeen new ciphertexts. Sixteen of these ciphertexts (corresponding to the first part of
the evaluation of tabmsn are used to proceed to the final bootstrapping (giving an encryption of
tabmsn[16h + l]), and the last ciphertext is c̄1 ∈ Jl + u (mod 16)K. The generic implementation of
such optimized versions is as follows:

ADDi, SUBi, LT(E)i, GT(E)i, MULi, MULMi, DIV(4)i, MOD(4)i, MINi, MAXi, NEG, ABS, ...

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tabmsn and tablsn are created on the fly
(c̄0, c̄1) =MVLUTeval2(c1; c0, c0; tabmsn, tablsn)

This optimization saves us one bootstrapping and one TLWE to TRLWE keyswitch.

B.1.1 Shifts ((U)SHLi, (U)SHRi)
In logical shift, zeros are inserted to replace displaced bits as well in signed representation as in
unsigned representation. In the specific case of cleartext-ciphertext logical shift, one wants to shift
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an 8-bit encrypted input C = (c0, c1) ∈ JhK× JlK by a plaintext K ∈M. To be as efficient as possible
and avoid as many irrelevant FHE calculations as possible, we must proceed by considering different
cases based on the value of the plaintext index. Indeed, since we work with messages of only 8 bits,
an offset index greater than or equal to 8 would not require any homomorphic calculation: it would
suffice to return encryption of 0, that is to say C̄ = (c̄0, c̄1) ∈ J0K × J0K. Similarly, if the offset index
is K = 16 ⋅ 0 + 4, it is sufficient to simply return C̄ = (c̄0, c̄1) ∈ JlK × J0K or C̄ = (c̄0, c̄1) ∈ J0K × JhK
depending on the direction of the shift. Finally, if the index is K = 16 ⋅ 0+ 0, then the output is the
unmodified input (C̄ = C = (c0, c1) ∈ JhK × JlK). Now, if K ∈ {1, 2, 3, 5, 6, 7}, we have to use LUTs to
compute the new msn and lsn of the ciphertext. As the offset index K is known, the tables are
very easy to compute. For instance for the unsigned shift to the left (USHLi), for i ∈ {0,⋯, 15}, we
have tab_ushlimsn[i] = ((i<<K) >> 4) &0xf and tab_ushlilsn[i] = (i<<K) &0xf. This way, we can
compute USHLi(C, K) using SimpleBoot and native TFHE addition LweAdd:

USHLi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
c̄1 = SimpleBoot(c1, tab_ushlilsn)
ct = SimpleBoot(c0, tab_ushlilsn)
cu = SimpleBoot(c1, tab_ushlimsn)
c̄0 = LweAdd(ct, cu)

The final result is C̄ = (c̄0, c̄1) = USHLi(C, T ) ∈ Jtab_shlimsn[16h + l]K × Jtab_shlilsn[16h + l]K. Here
we can use the native TFHE addition for two reasons. First, the noise of ciphertext after a clas-
sic bootstrapping is small enough (regarding our parameters set designed especially to work for
ciphertexts obtained with a tree-based method), and second, this is a carryless addition, so there
will not be any carry to propagate, meaning that the result stays an encryption of a nibble value.
The cleartext-ciphertext logical shift to the right and arithmetic shift to the left are computed in a
similar way. In the case of signed right arithmetic shift (SHRi), the sign bit is replicated to fill in
all the vacant positions. The tables to use are thus the following:

• tab_shrilsn such that for i ∈ {0,⋯, 7}, tab_shrilsn[i] = (i<<4)>>K & 0xf
and for i ∈ {8,⋯, 15}, tab_shrilsn[i] = ((i&0xf0)<<4)>>K & 0xf

• tab_shrimsn such that for i ∈ {0,⋯, 7}, tab_shrimsn[i] = (i>>K) & 0xf
and for i ∈ {8,⋯, 15}, tab_shrimsn[i] = ((i&0xf0)>>K) & 0xf

• tab_ushrimsn such that for i ∈ {0,⋯, 15}, tab_ushrimsn[i] = (i>>K) & 0xf

SHRi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
c̄0 = SimpleBoot(c0, tab_shrimsn)
ct = SimpleBoot(c1, tab_ushrimsn)
cu = SimpleBoot(c0, tab_shrilsn)
c̄1 = LweAdd(ct, cu)

B.1.2 Rotations (ROLi, RORi)
With rotations, bits that are “shifted out” are reinserted at the end or beginning of the word,
depending on the shift direction (see Figure 2). To implement cleartext-ciphertext rotations, it is
sufficient to use the same tables as for the unsigned shifts. For instance, here is the left rotation
(ROLi).
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Figure 2: New msn and lsn of an 8-bit encrypted value rotated by three to the left (C ′ =
UROLi(C, 3)).

ROLi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value K
ct = SimpleBoot(c1, tab_ushlimsn)
cu = SimpleBoot(c0, tab_ushlilsn)
c̄1 = LweAdd(ct, cu)
ct = SimpleBoot(c0, tab_ushlimsn)
cu = SimpleBoot(c1, tab_ushlilsn)
c̄0 = LweAdd(ct, cu)

B.1.3 Univariate Bitwise Operations
All univariate bitwise operators can be homomorphically evaluated using the same tools LUTeval and
MVLUTeval as before. But in this specific case, it is not the most efficient way! Indeed, regarding
bitwise operands, msn and lsn parts are fully independent. Thus, two classic bootstrappings are
sufficient to compute the resulting msn and lsn, there is no need for a tree-based method.
For instance, to homomorphically compute the bitwise operation XORi of a ciphertext C = (c0, c1) ∈
JhK × JlK with an 8-bit immediate value T = 16u + v, we only need to create two 16-elements
tables. The first one, corresponding to the evaluation of the msn is tabXORiu such that for j ∈
{0,⋯, 15}, tabXORiu[j] = j ⊕ u. The second, corresponding to the lsn is tabXORiv such that for
j ∈ {0,⋯, 15}, tabXORiv [j] = j ⊕ v. Then, the evaluation of XORi is as follows.

XORi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tabmsn and tablsn are created on the fly depending on T
c̄0 = SimpleBoot(c0, tabmsn)
c̄1 = SimpleBoot(c1, tablsn)

The final result is C̄ = (c̄0, c̄1) = XORi(C, T ) ∈ Ju⊕hK×Jv⊕lK. All other univariate bitwise operations
(including CDUPi) are similarly implemented.

B.1.4 Other Exceptions
Other cleartext-ciphertext operations that have a different structure to XOP include EQi, which
tests whether a ciphertext C = (c0, c1) ∈ JhK × JlK is an encryption of a plaintext T = 16u + v. Only
one 256-element table, depending on the immediate value T and very straightforward to compute,
is needed. This table is tab such that for i ∈ {0,⋯, 255}, tab[i] = (i == T ). Then, the instruction is
implemented as follows:
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EQi

// takes a ciphertext C = (c0, c1) ∈ JhK × JlK and an 8-bit immediate value T
// tab is created on the fly depending on T
c̄1 = LUTeval(c0, c1, tab)

Depending on the programmer choice, c̄0 is either an encryption of 0, a plaintext value 0, or �. This
choice is left to the programmer’s discretion since the value of c̄0 will not be used in subsequent
calculations (the boolean result is encrypted in c̄1).

B.2 Bivariate Operations
Unlike univariate operators, there is no generic way of handling bivariate operators. The number
of tables and calls to LUTeval and MVLUTeval will depend on the type of operation required, which
is why we provide a large study detailing numerous types of operation.

B.2.1 Bitwise Operators
For clarity’s sake, let us denote ⊛ any bitwise operator (such as XOR, AND, NOR, etc.) or any
composition of these operators. All bitwise bivariate operators can be homomorphically evaluated
using one 256-element table and MVLUTeval. Indeed, the LUT table corresponding to the bitwise
operator ⊛ is tab⊛ such that for i, j ∈ {0,⋯, 15}, tab⊛[16i + j] = i ⊛ j. Note that the coefficients
of tab⊛ are in {0,⋯, 15}. Then, the homomorphic computation of the ⊛ bitwise operand on two
ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K only costs two calls to LUTeval. For
instance, the XOR instruction is computed as follows.

XOR

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K
c̄0 = LUTeval(c0, c′0; tabXOR)
c̄1 = LUTeval(c1, c′1; tabXOR)

The final result is C̄ = (c̄0, c̄1) = XOR(C, C ′) ∈ Jh⊕h′K×Jl⊕l′K. All other bivariate bitwise operations
are similarly implemented.

B.2.2 Addition (ADD, SUB)
With 8-bit messages decomposed into two nibbles, the addition over Z256 is not straightforward.
Indeed, to sum M = 16h+ l and M ′ = 16h′ + l′, we first have to sum the two least significant nibbles
of the messages. That is to say to compute L = l+ l′ = 16u+v. As the sum of l and l′ may be greater
than 15, we have to compute not only v, but also the carry u. Then we can compute H = h+h′ +u,
but in this case we do not compute the carry as we work modulo 256.
To proceed to these computations in the homomorphic domain, we thus need two tables:

• tab_add which compute the lsn part of the addition of two nibbles. That is to say for
i, j ∈ {0,⋯, 15}, tab_add[16i + j] = (i + j) (mod 16).

• add_carry which compute the carry corresponding to the addition of two nibbles. That is to
say for i, j ∈ {0,⋯, 15}, add_carry[16i + j] = ⌊ i+j

16 ⌋.
Using these two tables, we implement the homomorphic addition the following way:
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ADD

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K
(c̄1, cr) =MVLUTeval(c1; c′1, c′1; tab_add, add_carry)
cv = LUTeval(c0, c′0, tab_add)
c̄0 = LUTeval(cv, cr, tab_add)

The final result is C̄ = (c̄0, c̄1) = ADD(C, C ′) ∈ J⌊ 16h+l+16h′+l′

16 ⌋K × Jl + l′ (mod 16)K. Note that the
substraction modulo 256 (SUB) works similarly, only the LUTs are different.
The Case of the Addition by Zero (ADDZ) – If the user knows that at least one of the two
ciphertexts C = (c0, c1) ∈ JhK × JlK or C′ = (c′0, c′1) ∈ Jh′K × Jl′K is an encryption of zero, then
he should use a less expensive operator than the one described above. Indeed, if one of the two
ciphertexts encrypts zero, then the addition with any other ciphertext will not produce any carry.
It is thus more efficient to compute such an addition as follows:

ADDZ

// takes two ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K
c̄0 = LUTeval(c0, c′0, tab_add)
c̄1 = LUTeval(c1, c′1, tab_add)

This specific operator can be needed in several cases: for instance a homomorphic array assign-
ment (Algo 4), a bubble sort (Algo 1), or the computation of a non-trivial function such as the
Sigmoid (Section 8.2).

B.2.3 Multiplication (MUL)
The multiplication of two 8-bit messages each decomposed into two nibbles relies on the same
principle as the addition: we progress nibble by nibble and propagate the carry. We note C =
(c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K two ciphertexts respectively encrypting T = 16h + l
and T ′ = 16h′ + l′. Then, the following relation stands for all T, T ′ ∈M.

T × T ′ = (16h + l) × (16h′ + l′) = 162hh′ + 16(hl′ + lh′) + ll′

Since we work with 8-bit messages, we do not need to compute the term in 162. Thus, we only
have to compute 16(hl′ + lh′) + ll′, which involves 3 multiplications and two additions over Z256.
To compute the additions, we use the tables created in Section B.2.2. For the multiplication, we
create two new tables:

• tab_mul which compute the lsn part of the multiplication of two nibbles. That is to say for
i, j ∈ {0,⋯, 15}, tab_mul[16i + j] = (i × j) (mod 16).

• mul_carry which compute the carry corresponding to the addition of two nibbles. That is to
say for i, j ∈ {0,⋯, 15}, mul_carry[16i + j] = ⌊ i×j

16 ⌋.
Note that we only need to compte the lsn parts of hl′ and lh′, as well as the lsn of the sum of
these two terms (the msn parts will be factors of 162 modulo 256). For the same reason, the msn of
ll′ will be added with regards only to the least significant bits of the result. Finally, multiplication
can then be achieved as follows:
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MUL

(c̄1, ct, cu) =MVLUTeval(c1; c′1, c′1, c′0; tab_mul, mul_carry, tab_mul)
//ct encrypts the carry of ll′, cu encrypts the lsn of lh′

cv = LUTeval(c0, c′1; tab_mul)
cw = LUTeval(cu, cv; tab_add)
c̄0 = LUTeval(cw, ct; tab_add)

The final result is C̄ = (c̄0, c̄1) =MUL(C, C ′) ∈ J⌊ (16h+l)×(16h′+l′)

16 ⌋K × Jll′ (mod 16)K.
To Obtain the Most Sginificant Byte – When we multiply two 8-bit integers, we obtain a result on
16 bits. By working with an 8-bit processor, we need a different operation than the multiplication
modulo 256 to obtain the Most Significant Byte. To do so, we have no choice but to compute the
whole operation without using the ADD instruction, which only works modulo 256. That is to say,
to obtain the Most Significant Byte of the multiplication of a ciphertext C = (c0, c1) ∈ JhK×JlK with
a ciphertext C′ = (c′0, c′1) ∈ Jh′K × Jl′K, we have to homomorphically compute

T × T ′ = (16h + l) × (16h′ + l′) = 162hh′ + 16(hl′ + lh′) + ll′.

with T = 16h + l and T ′ = 16h′ + l′ the corresponding two 8-bit plaintexts. The only unnecessary
computation is the one giving the lsn of the term ll′. Indeed, all the other operations need
to be computed in order to propagate the carry. We can resume this method by the following
implementation:

MULM

(cu, cv, cw, cx) =MVLUTeval(c0; c′0, c′0, c′1, c′1; tab_mul, tab_mul, tab_mul, tab_mul)
(ct, cy, cz) =MVLUTeval(c1; c′0, c′0, c′1; mul_carry, tab_mul, mul_carry)
(cx, cy) =MVLUTeval(cx; cy, cy; add_carry, tab_add)
(ct, cw) =MVLUTeval(cw; ct, ct; add_carry, tab_add)
(cc, cs) =MVLUTeval(cx; cw, cw; add_carry, tab_add)
cz = LUTeval(cy, cz, add_carry)
(cs, cz) =MVLUTeval(cs; cz, cz, add_carry, tab_add)
cc = LUTeval(cc, cs, add_carry)
( ¯c0, c̄1) = ADD((cu, cv), (cc, cz))

The result is C̄ = (c̄0, c̄1) =MULM(C, C ′) ∈ J⌊(16h+l)×(16h′+l′)/4096⌋K×J⌊(16h+l)×(16h′+l′)/256⌋
(mod 16)K.

B.2.4 Minimum and Maximum (MIN, MAX)
Without loss of generality, we describe here the homomorphic computation of the minimum of two
ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K. The computation of the maximum
is very similar and can easily be inferred from that of the minimum.
To evaluate the MIN instruction with our MVLUTeval and LUTeval tools, several tables are needed:

• tab_min, such that for i, j ∈ {0, 1,⋯, 15}, tab_min[16i + j] =min(i, j)
• is_inf such that for i, j ∈ {0, 1,⋯, 15}, is_inf[16i + j] = (i < j).
• is_sup such that for i, j ∈ {0, 1,⋯, 15}, is_sup[16i + j] = (i > j).
• is_eq such that for i, j ∈ {0, 1,⋯, 15}, is_eq[16i + j] = (i == j).
Then, we can obtain cx = LUTeval(c0, c′0, is_inf) ∈ Jh < h′K ⊂ C, cy = LUTeval(c0, c′0, is_sup) ∈ Jh >

h′K ⊂ C, and cz = LUTeval(c0, c′0, is_eq) ∈ Jh == h′K ⊂ C with a factorized call to

MVLUTeval(c0; c′0, c′0, c′0; is_inf, is_sup, is_eq).
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Then, the result of the evaluation of the minimum of two ciphertexts C and C′ is

C̄ =MIN(C, C ′) = (LUTeval(c0, c′0, min_tab), cx ⋅ c1 + cy ⋅ c′1 + cz ⋅ LUTeval(c1, c′1, min_tab)).

Note that the required homomorphic multiplications always involve a ciphertext that encrypts 0 or
1 (because cx, cy, and cz are encryptions of booleans). This means that these multiplications will
not produce any carry. It is thus sufficient to only compute the lsn result of these multiplications.
The same goes for the required additions: only one of the three terms will be positive, and the
others will encrypt zero.

MIN

(cx, cy, cz, c̄0) =MVLUTeval(c0; c′0, c′0, c′0, c′0; is_inf, is_sup, is_eq, tab_min)
(cy, c̃1) =MVLUTeval(c′1; cy, c1, tab_mul, tab_min)
cz = LUTeval(cz, c̃1, tab_mul)
cx = LUTeval(cx, c1, tab_mul)
cxy = LUTeval(cx, cy, tab_add)
c̄1 = LUTeval(cxy, cz, tab_add)

B.2.5 Division by a 4-bit Ciphertext (DIV4)
Following the presentation of the homomorphic division in Section 5.4.2, we use the following tables
to implement the division by a ciphertext Ck ∈ J0K × JkK:

• divmsn1 such that for i, j ∈ {0,⋯, 15}, divmsn1[16i + j] = ⌊ 16i
j
⌋/16

• divmsn2 such that for i, j ∈ {0,⋯, 15}, divmsn2[16i + j] = ⌊ 16i
j
⌋%16

• divlsn such that for i, j ∈ {0,⋯, 15}, divlsn[16i + j] = ⌊ i
j
⌋

• modlsn such that for i, j ∈ {0,⋯, 15}, modlsn[16i + j] = i%j

• modmsn such that for i, j ∈ {0,⋯, 15}, modmsn[16i + j] = 16i%j

DIV4

(cu, cv, cw, cx, cy) =MVLUTeval(ck; c0, c0, c1, c0, c1; divmsn1 , divmsn2 , divlsn, modmsn, modlsn)
(ct, cz) =MVLUTeval(cx; cy, cy, add_carry, tab_add)
ct = LUTeval(ct, cz, tab_add)
cs = LUTeval(ct, cw, tab_add)
(cs, c̄1) =MVLUTeval(cv; cs, cs; add_carry, tab_add)
c̄0 = LUTeval(cu, cs, tab_add)

Details on division by an 8-bit encrypted value C′k = (ck0 , ck1) ∈ Jk0K × Jk1K are given in Section
5.4.2, as well as the pseudo code of DIV.

B.2.6 Modulo
(a) MOD4
Let us say that we want to compute the homomorphic modulo of one 8-bit encrypted value C =
(c0, c1) ∈ JhK×JlK corresponding to the encryption of T = 16h+l by the 4-bit encrypted value ck ∈ JkK
(note that if ck ∈ J0K, the instruction should return an error, but we choose to return encryptions
of 0). This means we have to homomorphically compute

16h + l (mod k) = (16h (mod k) + l (mod k)) (mod k).
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But, to do so, computing 16h (mod k)+ l (mod k) is not sufficient and could result in a ciphertext
encrypting a value superior to k. For instance, given k = 15, h = 14 and l = 14 we obtain 16h
(mod k) + l (mod k) = 28 > k. This example also highlights that 16h (mod k) + l (mod k) may
require two nibbles to hold the result.

However, we have:

16h (mod k) + l (mod k) ≤ k − 1 + k − 1
≤ 2k − 2

If we note 16h (mod k) + l (mod k) = 16h′ + l′ with h′, l′ ∈ {0, ..., 15}, then

16h′ (mod k) + l′ (mod k) ≤ k − 1

Indeed, if h′ = 0, then 16h′ (mod k) + l′ (mod k) = l′ (mod k) < k, and if h′ > 0, then 16h′ > k so
16h′ (mod k) ≤ 16h′ − k and 16h′ (mod k) + l′ (mod k) < 2k − 2 − k = k − 2. Thus computing 16h′

(mod k) + l′ (mod k) gives us a ciphertext encrypting a value inferior to k, that is the smallest
positive representative of the class of T (mod k).
To implement it with our LUT evaluation tools, we need two tables, mod16 and mod, defined by
mod16[16i + j] = 16i%j and mod[16i + j] = i%j with i, j ∈ {0, 1,⋯, 15}.

MOD4

(cr, cu) =MVLUTeval(ck; c0, c1; mod16, mod)
(ct, cz) =MVLUTeval(cr; cu, cu, add_carry, tab_add)
cs =MVLUTeval(ck; ct, cz, mod16, mod)
c̄1 = LUTeval(ct, cs, tab_add)

Depending on the user’s choice, c̄0 is either an encryption of 0, a plaintext value 0, or �.

(b) MOD
Now, let us say that a user wants to compute the homomorphic modulo of a ciphertext C =
(c0, c1) ∈ JhK × JlK by another ciphertext C′ = (c′0, c′1) ∈ Jh′K × Jl′K respectively encrypting the 8-bit
values T = 16h + l and T ′ = 16h′ + l′. This computation is similar to the computation of DIV, we
recall here how it can be computed.

MOD

cd = LUTeval(c0, c′1, divlsn)
cs = LUTeval(c′0, cd, tab)
ct = LUTeval(cs, c′1, mul_carry)
cd = LUTeval(c0, ct, tab_sub)
// Computation of the msn part of the result is over, we now compute the lsn
C̃ = (cd, c1)
For i = 3 to 0

Cm = (cl0, cl1) = SHLi(C′, i)
cg = GTE(C̃, Cm)
cb = LUTeval(c′0, cg, tab_and_mulm_zero)
Cs =MVLUTeval(cb; cl0, cl1; tab_mul, tab_tab_mul)
C̃ = SUB(C̃, Cs)

With C̃ the final result. tab is such that for i, j ∈ {0,⋯, 15}, tab[16i+ j] = (i == 0)× j. Other tables
are defined in Section 5.4.2.
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B.2.7 Comparisons
In this section, we discuss the case of several ciphertext-ciphertext comparisons that return an en-
crypted boolean. Depending on the programmer choice, c̄0 is either an encryption of 0, a plaintext
value 0, or �. This choice is left to the programmer’s discretion since the value of c̄0 will not be
used in subsequent calculations (the boolean result is encrypted in c̄1).

(a) Equality Test of Two Ciphertext (EQ)
To compute the homomorphic equality test of two ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ =
(c′0, c′1) ∈ Jh′K × Jl′K two methods are available. The first one is to homomorphically compute the
subtraction of one of the two 8-bit ciphertexts by the other and then homomorphically test if the
result ciphertext is an encryption of zero. We have already created all the tools required for these
operations (see previous sections). So, it is only a question of reusing what has already been made
rather than creating new tables. The other method involves creating a new table for evaluating
comparisons of 4-bit ciphertexts. Indeed, we have to precompute a 16 × 16 equality table tab_eq
such that for i, j ∈ {0,⋯, 15}, tab_eq[16i + j] = (i == j). Then we implement the EQ operator the
following way:

EQ

ct = LUTeval(c0, c′0, tab_eq)
cs = LUTeval(c1, c′1, tab_eq)
c̄1 = LUTeval(ct, cs, tab_mul)

(b) Greater/Less Than (GT(E)/LT(E))
Given two 8-bit ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K respectively
encrypting T = 16u + v and T ′ = 16u′ + v′, we want to homomorphically determine either if one of
them is greater or smaller than the other. To do so, we have to create new tables for evaluating
comparisons of 4-bit ciphertexts. Indeed, for instance, for the "Greater Than" operator, we have
T > T ′ if and only if h > h′ or h == h′ and l > l′. So we need a table that gives the evaluation "Greater
Than" and one that gives the evaluation "Equal To." The first one we call tab_greater_than, and
is computed such that for i, j ∈ {0,⋯, 15}, tab_greater_than[16i + j] = (i > j). Similarly, as seen in
the previous section, we create tab_eq such that for i, j ∈ {0,⋯, 15}, tab_eq[16i + j] = (i == j).

GT

(ct, cs) =MVLUTeval(c0; c′0, c′0; tab_greater_than, tab_eq)
cu = LUTeval(c1, c′1, tab_greater_than)
cb = LUTeval(cs, cu, tab_mul)
c̄1 = LUTeval(ct, cb, tab_mul)

Instructions GTE, LT and LTE are implemented in a similar way.

B.2.8 Rotations and Shifts
In this section, we treat logical and circular shifts as well as rotations. We propose methods to per-
form these operations in the homomorphic domain on any 8-bit encrypted value with an encrypted
offset.

(a) Shifts ((U)SHL, (U)SHR)
In the case of a shift of an 8-bit encrypted input C = (c0, c1) ∈ JhK × JlK by an encrypted 4-bit
index ck ∈ JkK,as the offset index is encrypted, one cannot proceed by considering different cases
based on the value of the offset to optimize the FHE calculations. We thus have to create LUTs
encoding the result of the shift and evaluate them with our LUTeval and MVLUTeval tools to be
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able to compute the operation. Without loss of generality, let us say that we want to compute a
homomorphic arithmetic signed shift to the right ASHR. Several tables are needed:

• shrmsn such that for i, j ∈ {0,⋯, 15}, shrmsn[16i + j] = (i>>j)&0xf

• ashrmsn such that for i ∈ {0,⋯, 7} and j ∈ {0,⋯, 15}, ashrmsn[16i + j] = shrmsn[16i + j] and for
i ∈ {8,⋯, 15} and j ∈ {0,⋯, 15}, ashrmsn[16i + j] = ((i&0xf0)>>j)&0xf

• ashrlsn such that for i ∈ {0,⋯, 7} and j ∈ {0,⋯, 15}, ashrlsn[16i+ j] = ((i<<4)>>j)&0xf and for
i ∈ {8,⋯, 15} and j ∈ {0,⋯, 15}, ashrlsn[16i + j] = (((i&0xf0) << 4)>>j)&0xf

Then, SHR can be implemented as follows:

SHR

(c̄0, cs, cu) =MVLUTeval(ck; c0, c0; c1ashrmsn, ashrlsn, shrmsn)
c̄1 = LUTeval(cu, cs, tab_add)

Other shifts are computed in a similar way with their corresponding tables.
(b) Rotations (ROL,ROR)

Rotations are computed using the same logic as the logical shift. The only difference is that instead
of inserting zeros (or signed bit) to fill the space left by the bits that have been pushed out, we
recover these bits and reinsert them. The LUTs are identical to the one needed for logical shift.

ROL

(ct, cs, cu, cx) =MVLUTeval(ck; c0, c0, c1; c1; shlmsn, shllsn, shlmsn, shllsn)
c̄0 = LUTeval(ct, cx, tab_add)
c̄1 = LUTeval(cu, cs, tab_add)

ROR instruction is computed in a symmetric way.

B.2.9 Conditionnal Assignment
We propose two conditional assignment operators that we call CDUP and NCDUP. They each take
two ciphertexts C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K as inputs. The first one is
an encryption of a boolean value (meaning h = 0 and l ∈ {0, 1}), and the second one can be the
encryption of any 8-bit value. We define these instructions so that CDUP(C, C ′) = C̄ ∈ Jh×l′K×Jl×l′K
and NCDUP(C, C ′) = C̄ ∈ Jh×(1−l′)K×Jl×(1−l′)K. To implement these, we either need the tab_mul
table used to compute the lsn of the multiplication of two encrypted nibbles (CDUP) or a modified
tab_mul called tab_mul_spe such that for i, j ∈ {0,⋯, 15}, tab_mul_spe[16i + j] = (j == 0) × i
(NCDUP).

(N)CDUP

//Depending on the instruction to be computed, we use tab which is either tab_mul or
//tab_mul_spe
(c̄0, c̄1) =MVLUTeval(c′1; c0, c1; tab, tab)

C Additional Background on TFHE Bootstrapping
C.1 Further Details on TFHE Gate Bootstrapping
TFHE bootstrapping relies on three building blocks:
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• BlindRotate: rotates a plaintext polynomial m encrypted with a TRLWE sample (a, b) and the
secret key k by a position p encrypted with a TLWE sample (a′, b′) with the secret key s. It takes
as inputs: the TRLWE ciphertext (a, b) ∈ JmKk, a rescaled and rounded vector of (a′, b′) ∈ JpKs

represented by (a′1,⋯, a′n, a′n+1 = b′) where ∀i, a′i ∈ Z2N , and n TRGSW ciphertexts encrypting
(s1,⋯, sn) where ∀i, si ∈ B. It returns a TRLWE ciphertext (a”, b”) ∈ (JX⟨a,s⟩−b ⋅mKk).

• TLWESampleExtract: takes as inputs both a TRLWE sample c ∈ JmKk and a position p ∈ J0, NJ,
and returns a TLWE ciphertext c′ ∈ JmpKk where mp is the pth coefficient of the polynomial m.

• PublicFunctionalKeyswitch: transforms a set of p ciphertexts ci ∈ JmiKk into the resulting TRLWE
ciphertext c′ ∈ Jf(m1,⋯, mp)Ks, where f() is a public linear morphism from Tp to TN [X]. Note
that N = 1 when keyswitching to a TLWE ciphertext. This algorithm requires 2 parameters: a
decomposition basis BKS and a precision of the decomposition t.
TFHE specifies a gate bootstrapping to reduce the noise level of a TLWE sample that encrypts

the result of a boolean gate evaluation on two ciphertexts, each of them encrypting a binary input.
TFHE gate bootstrapping steps are summarized in Algorithm 6. The step 1 consists in selecting a
value m̂ ∈ T which will serve later for setting the coefficients of the test polynomial testv (in step
3). The step 2 rescales the components of the input ciphertext c as elements of Z2N . The step 3
defines the test polynomial testv. Note that for all p ∈ J0, 2NJ, the constant term of testv ⋅Xp is
m̂ if p ∈K N

2 , 3N
2 K and −m̂ otherwise. The step 4 returns an accumulator ACC ∈ Jtestv ⋅X⟨ā,s⟩−b̄Ks′ .

Indeed, the constant term of ACC is −m̂ if c ∈ J0Ks, or m̂ if c ∈ J1Ks. Then, step 5 creates a new
ciphertext c by extracting the constant term of ACC and adding to it (0, m̂). That is, c either
encrypts 0 if c ∈ J0Ks, or m if c ∈ J1Ks (By choosing m = 1

2 , we get a fresh encryption of 1).

Algorithm 6 TFHE gate bootstrapping
Require: a constant m ∈ T, a TLWE sample c = (a, b) ∈ Jx ⋅ 12Ks with x ∈ B, a bootstrapping

key BKs→s′ = (BKi ∈ JsiKS′)i∈J1,nK where BKi is a TRGSW sample of si with the key
S′; the TRLWE interpretation of a secret key s′,

Ensure: a TLWE sample c ∈ Jx.mKs

1: Let m̂ = 1
2 m ∈ T (pick one of the two possible values)

2: Let b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉ ∈ Z,∀i ∈ J1, nK
3: Let testv ∶= (1 +X +⋯ +XN−1) ⋅X

N
2 ⋅ m̂ ∈ TN [X]

4: ACC ← BlindRotate((0, testv), (ā1,⋯, ān, b̄), (BK1,⋯, BKn))

5: c = (0, m̂) +TLWESampleExtract(ACC)
6: return PublicFunctionalKeyswitchs′→s(c)

C.2 Further Details on Multi-Value Bootstrapping
Multi-Value Bootstrapping (MVB) [CIM18] refers to the method for evaluating k different LUTs
on a single input with a single bootstrapping. MVB factors the test polynomial Pfi associated with
the function fi into a product of two polynomials v0 and vi, where v0 is a common factor to all
Pfi . In practice, we have:

(1 +X +⋯ +XN−1) ⋅ (1 −X) ≡ 2 mod (XN + 1)
Now by writing Pfi in the form Pfi = ∑N−1

j=0 αi,jXj with αi,j ∈ Z, we get from the previous
equation:

Pfi =
1
2 ⋅ (1 +X +⋯ +XN−1) ⋅ (1 −X) ⋅ Pfi mod (XN + 1)

= v0 ⋅ vi mod (XN + 1)
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where:

v0 =
1
2 ⋅ (1 +X +⋯ +XN−1)

vi = αi,0 + αi,N−1 + (αi,1 − αi,0) ⋅X +⋯ + (αi,N−1 − αi,N−2) ⋅XN−1

This factorization allows computing many LUTs using a unique bootstrapping. Indeed, it is enough
to initialize the test polynomial testv with the value of v0 during bootstrapping. Then, after the
BlindRotate operation, one has to multiply the obtained ACC by each vi corresponding to the
LUT of fi to get ACCi. Figure 3 illustrates the advantage of this method.

Figure 3: Illustration of the MVB optimization. (a) represents the classic method to process
several bootstrapping, while (b) represents the MVB optimization. As seen here, it reduces
the number of BlindRotate operations, which is the most expansive one of the bootstrap-
ping.

This optimization reduces the number of bootstrappings required for an operation and, thus,
the overall computation time.
The MVB can be applied on the first "round" of a tree-based method evaluation, as several boot-
strappings are performed on different polynomials but with the same encrypted input. For instance,
regarding Figure 1, instead of doing five bootstrappings to compute the evaluation of the identity
function on the encrypted message M = (1, 2), one can use the MVB and compute the same evalu-
ation at the cost of only two bootstrappings (and four multiplications).
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