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Abstract. Delegatable anonymous credentials (DACs) enable a root issuer to delegate credential-
issuing power, allowing a delegatee to take a delegator role. To preserve privacy, credential
recipients and veri�ers should not learn anything about intermediate issuers in the delegation
chain. One particularly e�cient approach to constructing DACs is due to Crites and Lysyan-
skaya (CT-RSA '19). In contrast to previous approaches, it is based on mercurial signatures
(a type of equivalence-class signature), o�ering a conceptually simple design that does not re-
quire extensive use of zero-knowledge proofs. Unfortunately, current constructions of �CL-type�
DACs only o�er a weak form of privacy-preserving delegation: if an adversarial issuer (even
an honest-but-curious one) is part of a user's delegation chain, they can detect when the user
shows its credential. This is because the underlying mercurial signature schemes allows a signer
to identify his public key in a delegation chain.

We propose CL-type DACs that overcome the above limitation based on a new mercurial
signature scheme that provides adversarial public key class hiding which ensures that adversarial
signers who participate in a user's delegation chain cannot exploit that fact to trace users. We
achieve this introducing structured public parameters for each delegation level. Since the related
setup produces critical trapdoors, we discuss techniques from updatable structured reference
strings in zero-knowledge proof systems (Groth et al. CRYPTO '18) to guarantee the required
privacy needs. In addition, we propose a simple way to realize revocation for CL-type DACs
via the concept of revocation tokens. While we showcase this approach to revocation using our
DAC scheme, it is generic and can be applied to any CL-type DAC system. Revocation is a
vital feature that is largely unexplored and notoriously hard to achieve for DACs, thus providing
revocation can help to make DAC schemes more attractive in practical applications.

Keywords: Anonymous credentials · delegatable credentials · mercurial signatures · revocation
· public key class-hiding.

1 Introduction

Anonymous credentials (ACs) allow an authority (the issuer) to issue user credentials that can then
be used for anonymous authentication. This primitive was envisioned by Chaum in [Cha85] and
later technically realized by Camenisch and Lysyanskaya in [CL01]. Importantly, in an AC scheme,
a veri�er and a user (also called a �credential holder�) engage in a showing (also called a �proof�
or �presentation�) which proves to the veri�er that the user has a valid credential. The scheme is
anonymous if a user can show their credential multiple times in an unlinkable fashion. Intuitively,
anonymity means that after verifying the credentials of two users, an adversary should not be able
to tell if the credentials are both from a single user or from two di�erent users.

Delegatable anonymous credentials (DACs) were introduced by Chase and Lysyanskaya [CL06]. As
the name suggests, DAC schemes allow a root issuer to delegate their credential-issuing power to other
�intermediate� issuers. This delegation allows any intermediate issuer to issue credentials on behalf
of the root issuer (or possibly, re-delegate their issuing power), creating a delegation chain between
the root issuer, the intermediate issuers, and the credential holder. Belenkiy, Camenisch, Chase,
Kohlweiss, Lysyanskaya and Shacham showed how to realize DACs for arbitrarily long delegation
chains [BCC+09].
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Delegation alleviates the burden on the root issuer without revealing the root issuer's secrets to any
other issuer, similar to a key hierarchy in a public key infrastructure (PKI) system. Unlinkability
of DACs ensures the anonymity of credential holders, as well as the anonymity of any issuers who
participated in that credential's delegation chain. The anonymity of intermediate issuers implies that
given the showing of two credentials, an adversarial veri�er cannot determine if they were issued
by the same intermediate issuer or di�erent intermediate issuers. Hiding the intermediate issuer is
important for a DAC scheme as revealing the identities of these intermediate issuers might reveal
information about the end user. The root issuer is always identi�ed in a showing as the veri�er must
trust some key for unforgeability.

An important property when practically using (D)ACs is non-transferability. This property ensures
that users cannot easily share their credentials with other users. One way of providing this is to
ensure that a user cannot share one of her credentials without sharing all of her credentials (and
corresponding secrets). This is known as the �all-or-nothing� approach [CL01] and should disin-
centivize sharing of credentials by users' fear of losing control over their credentials. Another fea-
ture that is particularly important for the practical application of (delegatable) anonymous cre-
dentials is revocation. Unfortunately, this property is often neglected. It is quite clear that when
preserving user's privacy, standard approaches to recovation known from classical PKI schemes
do not work. While there are various di�erent approaches to revocation of anonymous creden-
tials [CKS10, CKS09, DHS15, CKL+16, CL01, BDG+23, CL02], in the delegatable setting this seems
much harder to achieve and the topic is largely unexplored [AN11].

1.1 Previous Work on DAC and Motivation for our Work

As in the recent work of Mir, Slamanig, Bauer, and Mayrhofer [MSBM23], we are particularly inter-
ested in developing practical DAC schemes. For a broader understanding, readers are directed to their
comprehensive overview. The �rst practical DAC was proposed by Camenisch, Drijvers, and Dubovit-
skaya [CDD17], but unfortunately they do not support an anonymous delegation phase. This, how-
ever is a crucial privacy requirement. The DACs by Blömer and Bobolz [BB18] as well as [MSBM23]
represent two relevant and e�cient DAC candidates as they have anonymous delegations and addi-
tionally, compact credentials. Unfortunately, [MSBM23] does not provide the important property of
non-transferability, and for both [BB18] and [MSBM23] the delegated credential is distributed inde-
pendently of any of the previous delegators. Consequently, it seems very hard to e�ciently achieve
revocation of delegators for those schemes.

Crites and Lysyanskaya [CL19] came up with a simple architecture (which we will call �CL-type
DAC�) for delegatable anonymous credentials that uses mercurial signatures (MS). These CL-type
DACs bring the use of equivalence class signatures, extensively used in anonymous credentials [HS14,
DHS15, FHS19, HS21, CLPK22, MSBM23], to the DAC setting (with numerous follow up works
[CL21, MBG+23, PM23, NKTA24] on various aspects). In CL-type DACs, the �links� in a delegation
chain are signatures; this chain includes the root's signature on the �rst intermediate issuer's public
key; then for i ≥ 1, the ith intermediary's signatures on the i + 1st intermediary's public key, and
�nally the last intermediate issuer's signature on the credential holder's public key. In order to ensure
unlinkability, mercurial signatures allow randomization of both the signer's public key to an equivalent
but unlinkable public key, and the randomization of the message to an equivalent but unlinkable
message. As an example delegation chain in a CL-type DAC, would �rst require a root (or certi�cation)
authority (CA) which holds a signing key of an MS scheme and to issue a credential to a user, Alice.
To do this, the root authority produces a signature σCA,A on an MS public key pkA of Alice. By
demonstrating knowledge of the corresponding secret key to pkA along with the root's signature on
pkA, Alice can authenticate herself. Now if Alice wants to delegate a credential to Bob, she uses
her corresponding secret key to produce a signature σA,B on Bob's MS public key pkB , where the
signature acts as a credential for Bob. Now Bob can authenticate himself by demonstrating knowledge
of the corresponding secret key (to pkB) and showing the signatures from both the root (σCA,A) and
from Alice (pkA, σA,B). This principle can be applied to an arbitrarily long delegation chain. Now
assume that Bob wants to show in a privacy-preserving way that he has been delegated a credential
by CA. He can do this by demonstrating (pkCA, pkA

′, pkB
′), (σ′

CA,A, σ
′
A,B) where pkA

′ and pkB
′ are

new representatives of the respective key classes (and by the properties of MS, they are unlinkable
to the previous ones) and the signatures (σ′

CA,A, σ
′
A,B) are adapted to the new messages and public
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keys respectively (which are similarly unlinkable). In the concrete CL construction [CL19], the MS
scheme works in a bilinear group setting where w.l.o.g. the public key of the CA lives in the second
source group, G2, and the public key of Alice in G1. Consequently, since the public keys of the MS
scheme on the next level need to live in the message space of the MS scheme of the previous level,
one always needs to switch the groups for the MS scheme on every level, which is an important detail
to keep in mind.

One important limitation of existing DAC approaches [CL19, CL21, PM23, MSBM23], besides not
yet supporting revocation, is that they only satisfy a weak notion of privacy. In particular it is not
possible to guarantee anonymity even in the case of an honest-but-curious delegator in the credential
chain (or when the root authority and a single delegator on the delegation chain collaborate, in the
case of [MSBM23]). In prior constructions of CL-type credentials [CL19, CL21, PM23] this is because
public keys in these constructions are traceable (using the secret key) regardless of how they have
been randomized. Thus, a malicious delegator can identify itself on a chain and break anonymity.

When it comes to revocation in DAC, the only work so far is by Acar and Nguyen [AN11], which is
based on the generic DAC template in [BCC+09] from randomizable NIZK proofs and in addition
uses homomorphic NIZK proofs. While this can be instantiated from the Groth-Sahai [GS08] proof
system, this is not very attractive from a practical perspective due to signi�cant costs. So having
practical DACs with revocation is an open problem.

Consequently, there exists a gap in that we do not have practical DAC schemes with strong privacy
guarantees that support practical revocation of delegators. Our aim is to close this gap.

Our work can be seen as the continuation of the research initiated by Crites and Lysyanskaya in [CL19],
closing these existing gaps for practical DAC schemes. To do this, we create a mercurial signature
scheme with a stronger privacy property called adversarial public key class-hiding. An overview of
this approach is outlined in the technical overview in Section 1.3. Ensuring that maliciously created
public keys in mercurial signatures are not traceable by their owners after being randomized has been
an open problem since their introduction in [CL19]. A very recent work introduced the notion of
interactive threshold mercurial signatures [NKTA24] to overcome said limitation, but it requires an
interactive signing protocol that computes a signature from shares of a secret key that are distributed
among parties. While such an approach is satisfactory for anonymous credentials and can also be used
to distribute trust of the root authority in DAC schemes, it's unclear how it can be used to e�ciently
manage delegations. Instead, we introduce structured public parameters which we carefully glue
over the delegation levels to enable strong privacy features (and without requiring any interaction).
Since the setup of these parameters also produces trapdoors that endanger privacy, we show how to
overcome this problem by using techniques well-known from updatable structured reference string in
zero-knowledge proof systems [GKM+18]. For revocation in DAC, we introduce a new and practical
approach that is applicable to any CL-type DAC scheme.

1.2 Our Contributions

Subsequently, we summarize our contributions:

New mercurial signatures. First, as our core building block, we de�ne a new �avor of a mercurial
signature scheme which satis�es a stronger class hiding property, namely adversarial public-key class
hiding (APKCH). Unlike in the mercurial signature de�nition of Crites and Lysyanskaya [CL19], here
the adversary comes up with a public key and signs a message of its choice; the challenge for an
adversary is to distinguish between a randomized version of his own public key and signature and a
fresh, unrelated public key and a signature on the same message under that fresh public key. We give
a construction of an APKCH signature scheme in the generic group model. Adversarial public-key
class hiding is su�cient to construct a DAC scheme with strong privacy.

New technique for revocation in DAC. We introduce a new revocation approach for DACs. The
basic idea is that a revocation authority maintains a public deny list, which veri�ers can use to ensure
that a credential shown to them does not contain any revoked delegators. Thereby any user who
wants to receive a credential or obtain delegation rights (while still supporting later revocation) must



4 Scott Gri�y , Anna Lysyanskaya , Omid Mir , Octavio Perez Kempner , and Daniel Slamanig

�rst register their key with the revocation authority. This registration is anonymous and neither a
veri�cation of the user's identity is needed nor a proof of knowledge of their key needs to be performed.
This gives a simple privacy-preserving way for revocation in DAC, can be used for any CL-type DAC
and does so without resorting to heavy tools such as malleable NIZKs as done in [AN11].

Model and instantiation of DAC with strong privacy and revocation. We introduce a con-
ceptually simple model for revocable DAC schemes with strong privacy using game-based security
de�nitions. We believe that this notion is easier to use than the simulation-based security notions pro-
vided in [AN11]. Then, using our mercurial signature scheme with ℓ = 2, we construct a conceptually
simple DAC scheme with delegator revocation and without requiring extensive use of zero-knowledge
proofs. We stress that this gives a CL-type DAC scheme, where privacy holds even when the adversary
is allowed to corrupt the root and all delegators simultaneously.

1.3 Technical Overview

Public keys in the mercurial signature from [CL19] are ℓ-length vectors of group elements and are
constructed as pk = {X̂i}i∈[ℓ] = {P̂ xi}i∈[ℓ] where the secret key is sk = {xi}i∈[ℓ] ∈ (Z∗

p)
ℓ and P̂ is the

generator the second source group of a bilinear pairing. Anyone can randomize a public key pk to a
new representative of the equivalence class to get pk′ = pkρ = {X̂ρ

i }i∈[ℓ] for ρ ∈ Zp. Unfortunately,
such public keys are immediately recognizable to an adversary who holds the corresponding secret
key. For an adversary to recognize a public key, it su�ces to exponentiate each element in the public
key by the inverse of the corresponding element in the secret key and check that the result has the
form: {P̂ ρ}i∈[ℓ] (a vector of equal elements).

One approach to overcome the above limitation is to ensure that each element in a public key is
computed over a distinct generator of the group where the discrete logarithms between these genera-
tors are random and not known. For example, if we add a trusted setup to the scheme from [CL19]:

Setup(1λ)→ pp = {P̂1, P̂2, ..., P̂ℓ} where P̂i = P̂ b̂i for ℓ randomly sampled b̂i scalars in Zp and public

keys are computed as pk = {X̂i = P̂ xi
i }i∈[ℓ] then it can be shown that under the DDH assumption

that an adversary cannot distinguish a randomization of their public key from a freshly sampled key.

This appears promising, especially since these P̂i values are all distinct and can be e�ciently sampled
in the ROM. But, if an honest user receives a public key, it is not immediately clear how to ensure that
it wasn't created maliciously so that they are recognizable (e.g., ensure the adversary did not compute
the public key independent of the public parameters as pk = {P̂ xi}i∈[ℓ] which would be recognizable).
To ensure that maliciously created public keys are computed over these bases without the need for zero
knowledge proofs, we add what we call �veri�cation bases� to the public parameters. The veri�cation
bases are structured so that they can be paired with the key to prove that it was computed using the
trusted public parameters. To accomplish this, we need to expand the size of the public key vectors to
double their length (2ℓ). This extra half of the public key will be the result of exponentiating di�erent
bases in the public parameters with the same secret key as in the �rst half. Speci�cally, our public

parameters (w.r.t. public keys) consist of B̂ = {B̂i}i∈[2ℓ] = {P̂ b̂1 , . . . , P̂ b̂ℓ , P̂ b̂1d̂1 , . . . , P̂ b̂ℓd̂ℓ} such that

dlogB̂i
(B̂ℓ+i) = d̂i. We then include the veri�cation bases in the public parameters which are computed

as: V = {Vi}i∈[ℓ] = {P v1d̂1 , . . . , P vℓd̂ℓ , P v1 , . . . , P vℓ} (for randomly sampled scalars, {vi}i∈[ℓ]) such

that ∀i ∈ [ℓ], e(Vi, B̂i) = e(Vℓ+i, B̂ℓ+i). Then, key pairs are computed as sk = {xi}i∈[ℓ] ←$ Zp,

pk = {X̂i}i∈[ℓ] = {B̂xi
i }i∈[ℓ]∥{B̂xi

ℓ+i}i∈[ℓ]. We can see now that ∀i ∈ [ℓ], e(Vi, X̂i) = e(Vℓ+i, X̂ℓ+i).
Thus, a veri�er can take this length 2ℓ public key and use the veri�cation bases (V) to verify it by
computing these pairings. If these pairing equations hold, then, because the elements in the upper half
of B̂ are the only elements in the second source group that are exponentiated with d̂i, the adversary
must have computed the upper half of the public key with these bases. Through a similar argument,
the lower half of the public key must be computed over the lower half of the public key bases in
the public parameters. Thus, if these pairing equations hold for a public key, then randomizations of
that public key are unrecognizable to the adversary. Because we need correlated randomness in the
trapdoors (e.g. both Vi and B̂ℓ+i are computed using d̂i) we can no longer use the ROM to generate
these parameters and instead must use the common reference string (CRS) model.

We quickly run into a second problem as with these modi�ed public keys as correctness falls apart
when we attempt to sign messages. In [CL19], signatures are computed as σ = (Z, Y, Ŷ ) with
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Z = (
∏

i∈[ℓ] M
xi
i )y, Y = P 1/y, and Ŷ = P̂ 1/y. Veri�cation is done via a pairing product equa-

tion: e(Z, Ŷ ) =
∏

i∈[ℓ] e(Mi, X̂i), which will not verify with the new structure of public keys that
we've introduced in this section. Therefore, we expand the message space to vectors of 2ℓ elements

instead of ℓ elements and include ∀i ∈ [ℓ], Pi = P b̂i in the public parameters. Messages then have
the form: M = {Pmi}i∈[ℓ]||{Pmi

i }i∈[ℓ] for some vector {mi}i∈[ℓ] ∈ Zℓ
p. In this modi�ed scheme, the

structure of Y and Ŷ remains unchanged, but we then use the upper half of the message vector in our
Sign function and the lower half of the message vector in our Verify function. This modi�cation leads

to a correct veri�cation, now given by: e(Z, Ŷ ) = e(P, P̂ )
∑

i∈[ℓ] mixib̂i
=

∏
i∈[ℓ] e(Mi, X̂i). We also have

to add more structure to achieve a signature that yields DAC as the lower half of the message (which
will be another public key in a DAC credential chain) is recognizable. We add this extra structure in
Section 3.

Constructing a strongly private DAC. As previously mentioned, [CL19] works by alternating
the use of two signature schemes so that even delegation levels are signed with one of the schemes
and the odd ones with the other. This way, the message space in one of the schemes is the public key
space of the other.

Our approach is to build a structured random string so that each scheme can sign public keys for the
next level of the credential chain using unique blinding factors taken from the CRS for each level.
This poses a challenge as we need to correlate the structure of both schemes for messages and public
keys. To this end, the keys used in our scheme are twice the size of the keys in [CL19]. Fortunately,
for CL-type DACs ℓ = 2 and typical applications that use delegation do not require long delegation
chains (e.g., driving licenses or o�cial identity documents), making this approach entirely practical.
To illustrate it, we consider a DAC scheme for L = 3. We can generate the public parameters, pp =

{P b̂0 , P b̂1}, pp′ = {P̂ b̂′0 , P̂ b̂′1 , P̂ b̂0b̂
′
0 , P̂ b̂1b̂

′
1}, pp∗ = {P b̂∗0 , P b̂∗1 , P b̂′0b̂

∗
0 , P b̂′1b̂

∗
1}. We can see that the bases

from pp and pp′ have a structure that satis�es: e(P b̂i , P̂ b̂′i) = e(P, P̂ b̂ib̂
′
i) and similar for pp′ and

pp∗. Hence, such public parameters can be used to build public keys for the credential chain as:

pk = {P b̂0x0 , P b̂1x1}, pk′ = {P̂ b̂′0x
′
0 , P̂ b̂′1x

′
1 , P̂ b̂0b̂

′
0x

′
0 , P̂ b̂1b̂

′
1x

′
1}, pk∗ = {P b̂∗0x

∗
0 , P b̂∗1x

∗
1 , P b̂′0b̂

∗
0x

∗
0 , P b̂′1b̂

∗
1x

∗
1}. It

follows from inspection that if we use sk = {x0, x1} to sign the third and fourth elements of pk′, the
signature will verify using the �rst and second elements from pk′. Similarly, if we use sk′ = {x′

0, x
′
1}

to sign the third and fourth elements in pk∗, the signature will verify under the �rst half of pk′ with
the �rst half of pk∗ as the message. Because these trapdoors are shared across schemes, we need the
security properties of our signature scheme to hold when multiple correlated copies of the scheme are
generated. We describe this requirement of our signature scheme further in Sec. 3.3 where we present
the above example with more detail in Fig. 5.

Removing trust in the parameter generation. As it is apparent from our above discussion,
the generation of parameters in setup involves a number of exponents that must not be available
to any party. Putting trust in the party running this setup to discard these values is typically not
desirable, especially in a DAC setting where there are numerous parties involved. One way to deal with
this issue is to run speci�c multi-party computation protocols to generate the parameters [BCG+15,
BGG19], e.g., running distributed key generation protocols. In order to avoid interaction among
many parties, one particularly appealing approach was proposed by Groth et al. [GKM+18] in the
context of zk-SNARKs, i.e., so called updatable reference strings. This means that some (potentially
malicious) party can generate a reference string and any (potentially malicious) party in the system
can update the reference string. Thereby every party outputs a proof that the computation was
performed honestly and when the chain of proofs from the generation until the last update of the
reference string veri�es and at least one of the involved parties is honest, it is ensured that no one
knows the trapdoors. Since this process can be done strictly sequentially this seems much more
interesting for practical application, as for instance demonstrated by the powers of tau ceremony
recently run by Ethereum5, with around 95k contributors (cf. [NRBB24]). We note that in our case
this can be done very e�ciently using Fiat-Shamir transformed Schnorr proofs for discrete logarithm
relations. In Appendix A.1 we present the concrete relations for the updates. In brief, the costs are 5ℓ
Pedersen commitments for the trapdoors, 8ℓ group elements for the Schnorr proofs for the base group
elements in pp and 10ℓ Zp elements for the Schnorr proofs which include the trapdoors. Concretely,

5 https://github.com/ethereum/kzg-ceremony-specs
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for ℓ = 2 this amounts to 26 group elements and 20 Zp elements per level (where for usual applications
L ≤ 5) being several orders of magnitude smaller than the one run by Ethereum. We also note that
the computation and veri�cation of these Schnorr proofs is highly e�cient.

Revoking intermediate issuers and users in a DAC scheme. Conceptually (but not techni-
cally) our approach to revocation shares similarities with veri�er local revocation kown from group
signatures [BS04]. In particular, to revoke these credentials, we generate revocation tokens that verify
with a given public key and can later be provided to a trusted revocation authority (TRA). The TRA
adds these tokens to a deny list. To achieve this, the TRA �rst creates the ephemeral secret and
public keys. The TRA then registers the user by signing the user's public keys with the correspond-
ing ephemeral secret key. This forms a signature chain similar to the mercurial scheme described
in [CL19].

When a user needs to prove their credentials, they present a revocation token for each public key
in their chain. Since this revocation method mirrors the credential chain approach in [CL19], i.e.,
mercurial signatures on public keys, the tokens can be randomized to maintain user anonymity during
the presentation.

To revoke a user or issuer in a credential chain (perhaps if the credential chain is used to perform
some illegal action) these revocation tokens can be supplied from the veri�er to the TRA who can
then look through all the secret ephemeral keys they generated to recognize the credential chain and
add the respective ones to a deny list.

Later, any veri�er can verify the TRA's signature in the revocation token and iterate through the
deny list, using each secret key to attempt to match each public key in the chain. More speci�cally,
the veri�er exponentiates the ephemeral public key in the revocation token with the inverses of the
secret keys in the deny list (as described earlier in Sec. 1.3). If a match is found, the veri�er can
con�rm that the credential has been revoked (cf. Sec. 4 for details).

2 Background

Notation. We use [ℓ] to denote the set, {1, 2, . . . , ℓ}. We use the notation x ∈ Func to mean that x
is a possible output of the function, Func. When drawing multiple values from a set, we may omit
notation for products of sets, e.g. (x, y) ∈ Zp is the same as (x, y) ∈ (Zp)

2 where only the latter is
formally correct. For a map from the set Z to the set S, m : Z → S, we will denote m[i] ∈ S as
the output of the map in S with input i ∈ Z. We use bold font to denote a vector (e.g. V). For
brevity, we will sometimes denote the elements in a vector as V = {Vi}i∈[ℓ] = {V1, . . . , Vℓ}. For a
vector, V = {V1, . . . , Vℓ}, of group elements, we denote the exponentiation of each element by a scalar
(ρ ∈ Zp) with the notation: Vρ = {V ρ

1 , . . . , V
ρ
ℓ }. We use �wildcards� (∗) in equations. For example,

the equation (a, b) = (a′, ∗), holds if a = a′ no matter what the value of b is. By (m, ∗) ∈ S we mean
there is a tuple in the set S such that the �rst element of the tuple is m and the second element is
another value which could be anything. {(m, ∗) ∈ S : A(m)} is the set of all tuples in S with m as
their �rst element meeting condition A. For two distributions, A and B, we use the notation, A ∼ B,
to denote that they are computationally indistinguishable.

2.1 Bilinear Pairings

A bilinear pairing is a set of cyclic groups G1,G2,GT of prime order p, along with a pairing function,
e (where e : G1 × G2 → GT ) which preserves structure. We call GT the �target group� and call G1

and G2 the �rst and second �source groups� respectively. In this work, we use Type III pairings,
which means that there is no e�cient, non-trivial homomorphism between G1 and G2. The pairing
function is e�ciently computable and has a bilinearity property such that if ⟨P ⟩ = G1 and ⟨P̂ ⟩ = G2,
then for a, b ∈ Z∗

p, e(P
a, P̂ b) = e(P, P̂ )ab. In our pairing groups, the Di�e-Hellman assumptions hold

in the related groups, such that for a, b, c ←$ Zp, (P
a, P b, P ab) ∼ (P a, P b, P c). Also, given (P a, P b)

it is di�cult to compute P ab. We'll use hats to denote elements in the second source group, e.g.
X̂ ∈ G2, X ∈ G1. We also use the generic group model in the bilinear pairing setting [Sho97].
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2.2 Mercurial Signatures

The original scheme from [CL19] comprises the following algorithms: Setup, KeyGen, Sign, Verify,
ConvertPK, ConvertSK, ConvertSig, and ChangeRep. The scheme is parametrized by a length, ℓ, which
determines the upper bound on the size of messages that can be signed. A mercurial signature scheme
is parameterized by equivalence relations for the message, public key, and secret key spaces: RM , Rpk,
Rsk. These relations form equivalence classes for messages and keys and de�ne exactly how messages
and signatures can be randomized such that their corresponding signatures can correctly be updated
to verify with the updated keys and messages. Allowing the keys and messages to be randomized
is what gives this signature scheme its privacy-preserving properties. In this work, we introduce
auxiliary algorithms to verify the correctness of messages and public keys with respect to the scheme
parameters. These are VerifyMsg and VerifyKey, respectively. Thus, the syntax of mercurial signatures
used in this work is given by:

� Setup(1λ, 1ℓ) → (pp, td): Outputs public parameters pp, including parameterized equivalence re-
lations for the message, public key, and secret key spaces: RM , Rpk, Rsk and the sample space
for key and message converters. This function also outputs a trapdoor (td) that can be used (in
conjunction with the corresponding secret key) to recognize public keys.

� KeyGen(pp)→ (pk, sk): Generates a key pair.

� Sign(pp, sk,M)→ σ: Signs a message M with the given secret key.

� Verify(pp, pk,M, σ)→ (0 or 1): Returns 1 i� σ is a valid signature for M w.r.t. pk.

� ConvertPK(pp, pk, ρ)→ pk′: Given a key converter ρ, returns pk′ by randomizing pk with ρ.

� ConvertSK(pp, sk, ρ) → sk′: Randomize a secret key such that it now corresponds to a public key
which has been randomized with the same ρ (i.e. signatures from sk′ = ConvertSK(pp, sk, ρ) verify
by the randomized pk′ = ConvertPK(pk, ρ)).

� ConvertSig(pp, pk,M, σ, ρ)→ σ′: Randomize the signature so that it veri�es with a randomized pk′

(which has been randomized with the same ρ) and M , but σ′ is otherwise unlinkable to σ.

� ChangeRep(pp, pk,M, σ, µ)→ (M ′, σ′): Randomize the message-signature pair such that Verify(pk,M ′, σ′) =
1 (i.e., σ′ and σ are indistinguishable) where M ′ is a new representation of the message equivalence
class de�ned by M .

� VerifyKey(pp, pk) → {0, 1}: Takes a public key and veri�es if it is well-formed w.r.t the public
parameters pp.

� VerifyMsg(pp,M)→ {0, 1}: Takes a message and veri�es if it is well-formed w.r.t the public param-
eters pp.

Along with de�ning the functions above, a mercurial signature construction also de�nes the equiva-
lence classes that are used in the correctness and security de�nitions. In the construction of [CL19],
relations and equivalence classes for messages, public keys, and secret key are de�ned as follows:

RM = {(M,M ′) ∈ (G∗
1)

ℓ × (G∗
1)

ℓ|∃r ∈ Z∗
p s.t. M ′ = Mr}

Rpk = {(pk, pk′) ∈ (G∗
1)

ℓ × (G∗
1)

ℓ|∃r ∈ Z∗
p s.t. pk′ = pkr}

Rsk = {(sk, sk′) ∈ (Z∗
p)

ℓ × (Z∗
p)

ℓ|∃r ∈ Z∗
p s.t. sk′ = r · sk}

Equivalence classes are denoted as [M ]RM
, [pk]Rpk

, [sk]Rsk
for messages, public keys, and secret keys

respectively, such that: [M ]RM
= {M ′ : (M,M ′) ∈ RM}, [pk]Rpk

= {pk′ : (pk, pk′) ∈ Rpk}, [sk]Rsk
=

{sk′ : (sk, sk′) ∈ Rsk}. E�ectively, this means that two messages (M , M ′) are in the same equivalence
class if there exists a randomizer, µ ∈ MC, such that M ′ = Mµ with a similar de�nition for public
keys and secret keys. Because of the properties of equivalence classes (re�exivity, symmetry, and
transitivity), the following relations hold: [M ]RM

= [M ′]RM
i� (M,M ′) ∈ RM , [pk]Rpk

= [pk′]Rpk
i�

(pk, pk′) ∈ Rpk, and [sk]Rsk
= [sk′]Rsk

i� (sk, sk′) ∈ Rsk.

Besides the usual notions for correctness and unforgeability, security of mercurial signatures requires
message class-hiding, origin-hiding and public key class-hiding. We recall the original de�nitions and
provide some intuition.
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De�nition 1 (Correctness [CL19]). A mercurial signature for parameterized equivalence rela-
tions, RM, Rpk, Rsk, message randomizer space, sampleµ, and key randomizer space, sampleρ, is

correct if for all parameters (λ, ℓ), ∀(pp, td) ∈ Setup(1λ, 1ℓ), and ∀(sk, pk) ∈ KGen(1λ), the following
holds:

� Veri�cation. ∀M ∈ M, σ ∈ Sign(sk,M) : Verify(pk,M, σ) = 1 ∧ VerifyMsg(pp, M) = 1 ∧
VerifyKey(pp, pk) = 1.

� Key conversion. ∀ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ)) ∈ KGen(1λ), ConvertSK(sk, ρ) ∈
[sk]Rsk

, and ConvertPK(pk, ρ) ∈ [pk]Rpk
.

� Signature conversion. ∀M ∈M, σ, ρ ∈ sampleρ, σ
′, pk′ s.t Verify(pk,M, σ) = 1, σ′ = ConvertSig(pk,M, σ, ρ),

and pk′ = ConvertPK(pk, ρ), then Verify(pk′,M, σ′) = 1.

� Change of message representation. ∀M ∈M, σ, µ ∈ sampleµ,M
′, σ′ such that Verify(pk,M, σ) =

1 and (M ′, σ′) = ChangeRep(pk,M, σ;µ) then Verify(pk,M ′, σ′) = 1 and M ′ ∈ [M ]RM
.

Unforgeability rules out forgeries on the same equivalence class for messages that have been queried
to the signing oracle and public keys as these �forgeries� are actually guaranteed to be computable
by correctness. Thus, only forgeries on new equivalence classes are accepted as valid forgeries.

De�nition 2 (Unforgeability [CL19]). A mercurial signature scheme for parameterized equiv-
alence relations RM, Rpk, Rsk, is unforgeable if for all parameters (λ, ℓ) and all PPT adversaries A,
having access to a signing oracle, there exists a negligible function negl such that:

Pr

 pp← Setup(1λ, 1ℓ)

(pk, sk)← KeyGen(pp)

(pk∗,M∗, σ∗)← ASign(sk,·)(pk)

∣∣∣∣∣∣∣
Verify(pk∗,M∗, σ∗) = 1

∧ [pk∗]Rpk
= [pk]Rpk

∧ ∀M ∈ Q, [M∗]RM
̸= [M ]RM

 ≤ negl(λ)

Where Q is the list of messages that the adversary queried to the Sign oracle.

Message class-hiding provides unlinkability in the message space, and it's implied by the DDH as-
sumption in the original scheme from [CL19].

De�nition 3 (Message class-hiding [CL19]). For all λ, ℓ and all PPT adversaries A, there exists
a negligible function negl such that:

Pr

 pp← Setup(1λ, 1ℓ)

M1 ←M;M0
2 ←M;M1

2 ← [M1]RM

b←$ {0, 1}; b′ ← A(pp,M1,M
b
2)

∣∣∣∣∣∣∣ b′ = b

 ≤ 1

2
+ negl(λ)

Importantly, converted signatures should look like freshly computed signatures in the space of all
valid ones. This notion is captured with the origin-hiding de�nitions as shown below.

De�nition 4 (Origin-Hiding for ConvertSig [CL19]). A mercurial signature scheme is origin-
hiding for ConvertSig if, given any tuple (pk, σ,M) that veri�es, and given a random key randomizer
ρ, ConvertSig(σ, pk, ρ) outputs a new signature σ′ such that σ′ is a uniformly sampled signature in the
set of verifying signatures, {σ∗|Verify(ConvertPK(pk, ρ),M, σ∗) = 1}.

De�nition 5 (Origin-Hiding for ChangeRep [CL19]). A mercurial signature scheme is origin-
hiding for ChangeRep if, given any tuple (pk, σ,M) that veri�es, and given a random message ran-
domizer µ, ChangeRep(pk,M, σ, µ) outputs a new message and signature M ′, σ′ such that M ′ is a
uniform sampled message in the equivalence class of M , [M ]RM

, and σ′ is uniformly sampled verify-
ing signature in the set of verifying signatures for M ′, {σ∗|Verify(pk,M ′, σ∗) = 1}.

For anonymous credentials such as the attribute-based credential (ABC) scheme from [FHS19], the
notion of message class-hiding is su�cient to provide unlinkability alongside origin-hiding. This is
because in ACs the adversary doesn't know the Di�e-Hellman coe�cients of the message vector that

https://orcid.org/0009-0000-6016-5163
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is signed to produce a credential (these coe�cients are only known to the honest user who created
the message). In DAC's schemes from mercurial signatures the messages to be signed are public keys,
which may be provided by the adversary. Since the adversary knows the corresponding secret key,
achieving a class-hiding notion for public keys is much harder. The de�nition below only considers
honestly generated keys for which the adversary doesn't know the secret key. This is similar to the
case of message-class hiding but it clearly restricts applications.

De�nition 6 (Public key class-hiding [CL19]). For all λ, ℓ and all PPT adversaries A, there
exists a negligible function (negl) such that:

Pr


pp← Setup(1λ, 1ℓ); (pk1, sk1)← KGen(pp);

(pk02, sk
0
2)← KGen(pp, ℓ(λ)); ρ←$ (pp);

pk12 = ConvertPK(pk1, ρ); sk
1
2 = ConvertSK(sk1, ρ);

b←$ {0, 1}; b′ ← ASign(sk1,·),Sign(skb
2,·)(pp, pk1, pk

b
2)

∣∣∣∣∣∣∣∣∣∣
b′ = b

 ≤ 1

2
+ negl(λ)

Mercurial Signature Construction CL19 [CL19]. We review the mercurial signature construc-
tion from [CL19] in Fig. 1, so that the di�erences are clear when we present our construction in
Sec. 3.

Setup(1λ, 1ℓ)→ (pp): Generate a description of a cryptographic bilinear pairing, BP . Output pp = BP .
KGen(pp): Sample sk = {xi}i∈[ℓ] ←$ Zp and let pk = {X̂i}i∈[ℓ] where ∀i ∈ [ℓ], X̂i = P̂ xii .

Sign(sk,M)→ σ: Sample y ←$ Z∗
p and compute a signature: σ =

(
Z = (

∏ℓ
i=1M

xi
i )y, Y = P 1/y, Ŷ = P̂ 1/y

)
.

Verify(pk,M, σ)→ (0 or 1): Accept i�
ℓ∏
i=1

e(Mi, X̂i) = e(Z, Ŷ ), and e(Y, P̂ ) = e(P, Ŷ ).

ConvertSig(pk,M, σ, ρ) → σ′: Sample ψ ←$ Zp. Compute: Z′ = Zψρ, Y ′ = Y 1/ψ, and Ŷ ′ = Ŷ 1/ψ. Output
σ′ = (Z′, Y ′, Ŷ ′).

ConvertPK(pk, ρ)→ pk′: Compute: pk′ = pkρ.
ConvertSK(sk, ρ)→ sk′: Compute: sk′ = ρsk.
ChangeRep(M,σ, µ) → (M ′, σ′): Sample ψ ←$ Zp and compute: σ′ = (Z′ = Zψµ, Y ′ = Y 1/ψŶ ′ =
Ŷ 1/ψ), valid for M ′ =Mµ.

Fig. 1. CL19 Mercurial Signature Construction [CL19]

We note that a function (RecognizePK shown in Def. 7) can be added to this scheme to recognize any
randomization of a public key given a secret key [GL24]. We use this in our DAC construction to tell
if users have been revoked.

De�nition 7 (Recognize function for CL19 public keys [GL24]).

� RecognizePK(pp, sk, pk) → {0, 1} Parse pk as pk = {X̂i}i∈[ℓ]. Parse sk = {xi}i∈[ℓ]. Check if ∀i ∈
[ℓ− 1], X̂

xi+1/xi

i = X̂i+1.

3 New Mercurial Signature Construction

In this section we present our core mercurial signature scheme satisfying a stronger notion of adver-
sarial public key class-hiding (APKCH), which will then build the basis for our DAC construction
with strong privacy.

3.1 Modi�ed Security De�nitions

Subsequently, we present security de�nitions for our mercurial signature scheme that are modi�ed (or
added) when compared to previous work and before going into details we discuss their generality.
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On the generality of our de�nitions. Since our main focus in this work is the construction of
DAC, we include in our basic de�nitons (adversarial public-key class hiding and unforgeability) a
�levels� parameter L, which tells the challenger how many correlated schemes to construct (i.e., how
many levels there will be in the delegation chain of the DAC). In our de�nitions, after receiving the
public parameters for every level, the adversary picks a level, i, and the challenger generates a public
key for that level to complete the game with. This allows the reductions in our proofs to ensure that
the DAC scheme appears correct to the adversary while reducing APKCH to the anonymity of the
DAC scheme. To reduce to unforgeability, we need a similarly modi�ed de�nition for unforgeability
where the challenger generates a number of levels and the adversary chooses which level to continue
the game with. Clearly, by setting L = i = 1 we obtain versions of the de�nitions for a standalone
mercurial signature scheme. In our de�nitions, Setup outputs a set of correlated parameters of di�erent
signature schemes (pp) and we use ppi to refer to the parameters that de�ne level i.

First, we formalize the APKCH notion in Def. 8. In this de�nition, �rst the challenger generates the
public parameters and a public key and gives these to the adversary. The adversary then constructs
a message, a key pair and a signature and returns these to the challenger. The challenger then either
randomizes the adversary's public key and signature or creates a new signature on the same message
from a randomization of the challenger's key. The randomizers are drawn from the �key converter
space�, KC, which is de�ned by the construction (commonly, Z∗

p). The adversary is then challenged
to determine if the returned key/signature pair is randomized from their own key/signature that
they supplied, or if it is a signature from the randomized challenger key. Looking ahead, this property
ensures that in a DAC scheme, an adversary cannot determine if they themselves provided a credential
to the prover (user) or if another issuer created the credential.

De�nition 8 (Adversarial public key class-hiding). A mercurial signature, Γ , has adversarial
public key class-hiding if for all parameters (λ, ℓ, L), the advantage of any PPT set of algorithms
A = {A0,A1,A2}, (labeled as AdvAPKCHΓ,A (λ)) is negligible,

AdvAPKCHΓ,A (λ) :=
∣∣∣Pr [ExpAPKCH,0

Γ,A (λ) = 1
]
− Pr

[
ExpAPKCH,1

Γ,A (λ) = 1
]∣∣∣

where ExpAPKCH,b
Γ,A (λ) is the experiment shown in Figure 2.

1: pp← Setup(1λ, 1ℓ, 1L)
2: (i, st)← A0(pp)
3: (sk, pk)← KGen(ppi);

4: (pkA, σA,M, st)← ASign(ppi,sk,·)
1 (ppi, pk, st)

5: σ ← Sign(ppi, sk,M)
6: ρ0 ←$ KC; pk0 ← ConvertPK(ppi, pk, ρ0);σ

0 ← ConvertSig(ppi, σ, ρ0)
7: ρ1 ←$ KC; pk1 ← ConvertPK(ppi, pkA, ρ1);σ

1 ← ConvertSig(ppi, σA, ρ1)
8: if Verify(ppi, pkA, σA,M) = 1 ∧ VerifyMsg(ppi, pp,M) = 1 ∧
9: VerifyKey(ppi, pp, pkA) = 1, return ASign(ppi,sk,·)

2 (ppi, pp, st, pk
b, σb)

10: else return ASign(ppi,sk,·)
2 (ppi, pp, st,⊥,⊥)
Fig. 2. Adversarial public key class-hiding experiment ExpAPKCH,b

Γ,A (λ).

Finally, we provide the unforgeability de�nition that also considers multiple levels in Def. 9.

De�nition 9 (Unforgeability). A mercurial signature scheme for parameterized equivalence rela-
tions RM, Rpk, Rsk, is unforgeable if for all parameters (λ, ℓ, L) and all PPT adversaries A, having
access to a signing oracle, there exists a negligible function negl such that:

Pr


pp← Setup(1λ, 1ℓ, 1L)

(i, st)← A0(pp)

(sk, pk)← KGen(ppi);

(pk∗,M∗, σ∗)← ASign(ppi,sk,·)
1 (pk)

∣∣∣∣∣∣∣∣∣∣
Verify(ppi, pk

∗,M∗, σ∗) = 1

∧ [pk∗]Rpk
= [pk]Rpk

∧ ∀M ∈ Q, [M∗]RM
̸= [M ]RM

 ≤ negl(λ)

Where Q is the list of messages that the adversary queried to the Sign oracle.
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3.2 Construction

In Fig. 3, we construct a mercurial signature (MS) scheme which in particular provides adversarial
public key class-hiding (APKCH) as de�ned in Def. 8. We �x L = 1 for this construction and explain
how we can set correlated parameters while still achieving APKCH in Sec. 3.3.

As in prior MS constructions, our equivalence classes will be parameterized by the public parameters
consisting of a description of the bilinear group (G1,G2,GT , e, p, P, P̂ ). Unlike prior constructions,
they will also be parameterized by several length-2ℓ vectors that are part of the public parameters
of the system. Speci�cally, the public parameters will include the vectors B = (B1, . . . , B2ℓ), B̂ =
(B̂1, . . . , B̂2ℓ), and V̂ = (V̂1, . . . , V̂2ℓ), V = (V1, . . . , V2ℓ). These public parameters have trapdoors

which include b = (b1, . . . , bℓ), b̂ = (b̂1, . . . , b̂ℓ), and d̂ = (d̂1, . . . , d̂ℓ) which are vectors in Zℓ
p and

sampled uniformly randomly by Setup. The vector B will be used to de�ne the message space (and
construct messages), while the vector B̂ de�nes the public key space and allows users to create valid
public keys. These public parameters are structured based on the trapdoors, such that ∀i ∈ [ℓ], Bi =

P bi , Bℓ+i = Bi
b̂i , ∀i ∈ [ℓ], B̂i = P̂ b̂i and B̂ℓ+i = B̂d̂i

i . To verify that keys and messages are computed

over these bases, we include the veri�cation bases (shown above as V̂ and V) in the public parameters

which are constructed as: ∀i ∈ [ℓ], V̂i = P̂ v̂ibi , V̂ℓ+i = P̂ v̂i , ∀i ∈ [ℓ], Vi = P vid̂i and Vℓ+i = P vi . The
vector V̂ is used to verify messages while the vector V is used to verify keys as described in Sec. 1.3.
Structuring the parameters in this way ensures that our construction achieves adversarial public key
class-hiding as discussed in Sec. 1.3 and de�ned in Def. 8. Let pp denote the public parameters.

Our message space will consist of vectors of 2ℓ dimensions over G1 that have certain structure deter-
mined by pp; i.e., not every 2ℓ-dimensional vector will be a valid message. Speci�cally, our message
space,Mpp,ℓ is de�ned as:

Mpp,ℓ = {(M1, . . . ,M2ℓ) | ∃m = (m1, . . . ,mℓ) ∈ Zℓ
p such that

∀1 ≤ i ≤ ℓ Mi = Bi
mi ∧Mℓ+i = Bℓ+i

mi}.

Note that, using pp, it is possible to verify that a 2ℓ-dimensional vector is in the message space. In
our scheme, the public parameters will include extra bases V̂ = {V̂1, . . . , V̂2ℓ} to pair with messages
to verify them, i.e. ensuring that e(Mi, V̂i) = e(Mi+ℓ, V̂i+ℓ)). Moreover, they include extra bases
V = {V1, . . . , V2ℓ}, to pair with public keys in the same manner, i.e. e(Vi, X̂i) = e(Vi+ℓ, X̂i+ℓ). We
label messages as M = {M1, . . . ,M2ℓ} and public keys as pk = {X̂1, . . . , X̂2ℓ}. We are now ready to
de�ne our equivalence class over the message space, which is the same as in prior work [CL19]:

Rpp,ℓ
M = {(M,M′) : ∃µ ∈ Zp s.t. M,M′ ∈Mpp,ℓ ∧M′ = Mµ}.

Our public key space will be de�ned similarly to our message space, but de�ned over vectors B̂ =

(P̂ b̂1 , . . . , P̂ b̂ℓ , P̂ b̂1d̂1 , . . . , P̂ b̂ℓd̂ℓ) included in pp as well. Like messages, our public key space is a strict
subset of the space of 2ℓ-dimension vectors in G2ℓ

2 , de�ned below:

PKpp,ℓ = {(X̂1, . . . , X̂2ℓ) | ∃x = (x1, . . . , xℓ) ∈ Zℓ
p such that

∀1 ≤ i ≤ ℓ X̂i = B̂xi
i ∧ X̂ℓ+i = B̂xi

ℓ+i}.

We de�ne our equivalence classes over the public key space (similarly to [CL19]):

Rpp,ℓ
PK = {(pk, pk′) : ∃ρ ∈ Zp s.t. pk, pk′ ∈ PKpp,ℓ ∧ pk′ = pkρ}.

We will see in the construction that the related structure of these messages and public keys (i.e. the
fact that they both use the values b and b̂) ensures that randomized keys and signatures are not
linkable even when the adversary holds the secret key {x1, . . . , xℓ}, while also ensuring that signatures
still correctly verify.

Our secret key space takes up the entire space of ℓ-dimensional vectors in SKpp,ℓ = (Zp)
ℓ and is

de�ned identically to [CL19] as:

Rpp,ℓ
sk = {(sk, sk′) : ∃ρ ∈ Zp s.t. sk, sk′ ∈ skpp,ℓ ∧ sk′ = ρsk}
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In the sequel, when clear from the context, we will omit the superscript pp, ℓ. In our construction,
the key and message converter spaces are KC = Z∗

p andMC = Z∗
p.

Our construction. We are now ready to present our MS construction in Fig. 3 which achieves
our APKCH de�nition for L = 1. In Sec. 3.3, we will discuss modi�cations to the public parameter
generation, allowing the scheme's extension for constructing DAC. While verifying the message or
public key is not required for unforgeability, we include it in the Verify function as it is needed for
public key class-hiding and message class-hiding.

Setup(1λ, 1ℓ)→ (pp): Sample {bi, b̂i, d̂i, v̂i, vi}i∈[ℓ] ←$ Zp and compute

B = {Bi}i∈[2ℓ], where ∀i ∈ [ℓ], Bi ← P bi ,Bℓ+i ← P bi b̂i

B̂ = {B̂i}i∈[2ℓ], where ∀i ∈ [ℓ], B̂i ← P̂ b̂i ,B̂ℓ+i ← P̂ b̂id̂i

V̂ = {V̂i}i∈[2ℓ], where ∀i ∈ [ℓ], V̂i ← P̂ v̂i b̂i , V̂ℓ+i ← P̂ v̂i

V = {Vi}i∈[2ℓ], where ∀i ∈ [ℓ], Vi ← P vid̂i , Vℓ+i ← P vi

Output: pp = (B, B̂, V̂,V)
KGen(pp): Sample sk = {xi}i∈[ℓ] ←$ Zp and let pk = {X̂i}i∈[2ℓ] where ∀i ∈ [ℓ], X̂i = B̂xii , X̂i+ℓ = B̂xiℓ+i.

VerifyKey(pp, pk): Accept i� ∀i ∈ [ℓ], e(Vi, X̂i) = e(Vi+ℓ, X̂i+ℓ).
VerifyMsg(pp,M): Accept i� ∀i ∈ [ℓ], e(Mi, V̂i) = e(Mi+ℓ, V̂i+ℓ).
Sign(pp, sk,M)→ σ: If VerifyMsg(pp,M) = 1, sample y ←$ Z∗

p and compute a signature:

σ =
(
Z = (

∏ℓ
i=1M

xi
ℓ+i)

y, Y = P 1/y, Ŷ = P̂ 1/y
)
.

Verify(pk,M, σ)→ (0 or 1): Accept i� VerifyMsg(pp,M) = 1, VerifyKey(pp, pk) = 1,
ℓ∏
i=1

e(Mi, X̂i) = e(Z, Ŷ ),

and e(Y, P̂ ) = e(P, Ŷ ).
ConvertSig(pp, pk,M, σ, ρ)→ σ′: Sample ψ ←$ Zp. Compute: Z′ = Zψρ, Y ′ = Y 1/ψ and Ŷ ′ = Ŷ 1/ψ. Output
σ′ = (Z′, Y ′, Ŷ ′).

ConvertPK(pp, pk, ρ)→ pk′: Compute: pk′ = pkρ.
ConvertSK(pp, sk, ρ)→ sk′: Compute: sk′ = ρsk.
ChangeRep(pp,M, σ, µ) → (M ′, σ′): Sample ψ ←$ Zp and compute: σ′ = (Z′ = Zψµ, Y ′ = Y 1/ψŶ ′ =
Ŷ 1/ψ), valid for M ′ =Mµ.

Fig. 3. Our Mercurial Signature Construction.

Theorem 10 (Correctness). The mercurial signature construction in Fig. 3 is correct as described
Def. 1.

Theorem 11 (Unforgeability). The mercurial signature construction in Fig. 3 meets the unforge-
ability de�nition in Def. 2 assuming that the mercurial signature construction in [CL19] is unforgeable
in the generic group model.

We prove Theorem 11 by noting that the CL19 construction [CL19] is unforgeable in the generic group
model, and thus, by showing that our construction's unforgeability relies solely on the unforgeability
of the construction of CL19, our construction is also unforgeable in the generic group model.

Theorem 12 (APKCH). The mercurial signature construction in Fig. 3 meets the APKCH de�nition
in 8 in the generic group model.

Theorem 13 (Origin-hiding of signatures). The mercurial signature construction in Fig. 3
meets the Origin-hiding of signatures de�nition in Def. 4.

Theorem 14 (Origin-hiding of ChangeRep). The mercurial signature construction in Fig. 3 meets
the Origin-hiding of ChangeRep de�nition in Def. 5.

Theorem 15 (Message class-hiding). The mercurial signature construction in Fig. 3 meets the
Message class-hiding de�nition in Def. 3.

The proofs of theorems 13, 14, and 15, follow directly from those of CL19, and are thus omitted here.
The proofs of unforgeability (Theorem 11) and APKCH (Theorem 12) are provided in Appendix B.
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3.3 Extending our Construction to Multiple Levels

In a CL-type DAC scheme, we need chains of public keys that can sign each other. In [CL19], this
is achieved by alternating the source groups of the mercurial signature scheme for each level in the
chain. For example, to sign public keys in the highest level of the delegation chain L, if the public
keys in level L are in source group G2, then, in the level L− 1, a scheme with public keys in G1 will
be used to sign the public keys of level L.

This approach works in [CL19] because the scheme is symmetric, meaning the public parameters are
the same whether public keys are in G2 or G1. Unfortunately, our scheme is not symmetrical. Looking
at the Setup function in Fig. 3, we see that if we split our message bases and public key bases into
halves, B = Bl∥Bu and B̂ = B̂l∥B̂u, the second half of the bases for messages includes the trapdoors

b̂i, being formed as Bu = {P bib̂i}i∈[ℓ]. This trapdoor is included in the �rst half of the bases for public

keys (B̂l = {P̂ b̂i}i∈[ℓ]). But, the upper half of the bases for public keys includes the trapdoors, d̂i

(B̂u = {P̂ b̂id̂i}i∈[ℓ]). The trapdoors d̂i are not seen in the lower bases for messages (Bl = {P bi}i∈[ℓ]).
Due to this asymmetry, we cannot simply invert the groups to start signing public keys from higher
levels. At �rst glance, it appears we could �x this by setting d̂i = bi (thus allowing messages to be used
to sign public keys by computing the signatures on the second half of the public key). Unfortunately,

this solution would break the APKCH property of our scheme as computing public keys over P̂ bib̂i

permits a recognition attack using the bases P bib̂i . This forces us to choose a more involved solution.

We can solve this problem using the Setup function in Fig. 4. This function produces L − 1 levels
where the message space of each scheme is exactly the public key space of the subsequent scheme
(with the equivalence classes matching as well). To better explain this solution (and simplify our
proofs) we discuss the notion of �extending� schemes in this rest of this Section.

Setup(1λ, 1ℓ, 1L)→ (pp): Sample {b̂i,j , vi,j}i∈[ℓ],j∈[L] ←$ Zp, {d̂i}i∈[ℓ] ←$ Zp and compute the following bases:

B̂0 = {B̂i}i∈[2ℓ], where ∀i ∈ [ℓ], B̂i ← P b̂i,0 , B̂ℓ+i ← P b̂i,0d̂i

V0 = {Vi}i∈[2ℓ], where ∀i ∈ [ℓ], Vi ← P̂ vi,0d̂i , Vℓ+i ← P̂ vi,0

For j ∈ [L] \ {0}, if j mod 2 = 0, G = P̂ , G′ = P and if j mod 2 = 1, G = P,G′ = P̂ ,

B̂j = {B̂i}i∈[2ℓ], where ∀i ∈ [ℓ], B̂i ← Gb̂i,j , B̂ℓ+i ← Gb̂i,j b̂i,j−1

Vj = {Vi}i∈[2ℓ], where ∀i ∈ [ℓ], Vi ← (G′)vi,j b̂i,j−1 , Vℓ+i ← (G′)vi,j

For j ∈ [L − 1]: ppj = {B̂j+1, B̂j ,Vj+1,Vj} such that B̂j ,Vj are for keys and B̂j+1,Vj+1 are for
messages.
Output pp = {ppj}j∈[L−1].

Fig. 4. Parameter generation for multiple levels

We will use the terms �lower� and �higher� to refer to di�erent levels of signature scheme that will be
used to construct DAC. The root key is at level 0 which is the lowest level of the delegation chain and
user's keys are messages in the L − 1 (highest) level. In order to sign higher-level public keys with
lower-level public keys, starting from our construction in Fig. 3, we need to create multiple levels
of the signature scheme so that lower level public key bases can be used to sign public keys from
higher levels scheme. To do this, we need to create a new scheme (with public keys in the opposite
source group, G1) with similar structure as in our original scheme in Fig. 3. We recall that in this

scheme the message bases and public key bases share the b̂i trapdoor values as described in the
above paragraph. This can be imagined as �extending� a scheme to lower levels. When extending a
scheme to enable signatures on the public keys, we'll treat d̂i as this shared value, setting b̂i for the
lower scheme to be equal to d̂i in the higher scheme (remember, d̂i is used in the upper half of the
public key bases, B̂ in the public parameters). For example, say we have a higher scheme (with bases
B̂ = {B̂i}i∈[2ℓ]) with key pair (sk, pk), where sk = {xi}i∈[ℓ], pk = {X̂i}i∈[2ℓ] = {B̂xi

i }i∈[ℓ]∥{B̂xi

ℓ+i}i∈[ℓ],

∀i ∈ [ℓ], B̂i = P̂ b̂i , B̂ℓ+i = P̂ b̂id̂i and b̂i and d̂i are randomly sampled as a trapdoor of the public
parameters. We can create a lower scheme (with bases B̂′ = {(B̂′

i)}i∈[2ℓ]) and key pair (sk′, pk′) where

sk′ = {x′
i}i∈[ℓ], pk

′ = {X ′
i}i∈[2ℓ] = {(B̂′

i)
x′
i}i∈[ℓ]∥{(B̂′

ℓ+i)
x′
i}i∈[ℓ] and ∀i ∈ [ℓ], (B̂′

i) = P d̂i , (B̂′
ℓ+i) =

P d̂id̂
′
i and d̂′i is randomly sampled as a trapdoor of the public parameters. We can now use this lower
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level scheme to sign the keys in the higher level. We can see that if we form signatures as we did in
Fig. 3, these signatures still verify. In Fig. 3, (if we swap the source groups) signatures are formed as
σ = (Z, Y, Ŷ ) where Z = (

∏
i∈[ℓ](X̂ℓ+i)

x′
i)y, Y = P̂ 1/y, Ŷ = P 1/y and y is randomly sampled. We see

that e(Ŷ , Z) = e(P, P̂ )
∑

i∈[ℓ] d̂ib̂ixix
′
i =

∏
i∈[ℓ] e(X̂i, X

′
i) which means that this signature veri�es. We

provide Fig. 5 to make multi-level signature schemes more clear. In Fig. 5, we can see that when the
lower level bases of levels 1 and 2 are paired together, they are equal to the pairing of the higher level

bases of level 2, i.e. e(B̂2,i, B̂1,i) = e(P b̂2,i , P̂ b̂1,i) = e(P, P̂ )
b̂2,ib̂1,i

= e(B̂2,ℓ+i, P̂ ). This structure is
what ensures that our signatures verify (as described in Section 1.3). We've pointed out this structure

by highlighting b̂1,i in orange and b̂2,i in blue in Fig. 5. This relation holds for levels 2 and 3 as well.

Note that in Fig. 5, the source groups for level 2 are �ipped, meaning that the B̂2,i elements are in

G1 and the Z2 element is in G2. For clarity, we keep the notation of the generators, P and P̂ , correct
with respect to levels 1 and 3.

Level 1
MS scheme

pp1 = {B1, B̂1, V̂1,V1}
where B̂1 = {B̂1,i}i∈[2ℓ]

= {P̂ b̂1,i}i∈[ℓ]∥{P̂ b̂1,id̂1,i}i∈[ℓ]

Level 1
sk1 = {x1,i}i∈[ℓ],

pk1 = {X̂1,i}i∈[2ℓ] = {B̂
x1,i
1,i }i∈[ℓ]∥{B̂

x1,i
ℓ+i,1}i∈[ℓ]

= {P̂ b̂1,ix1,i}i∈[ℓ]∥{P̂ b̂1,id̂1,ix1,i}i∈[ℓ]

Level 2
MS scheme

pp2 = {B2, B̂2, V̂2,V2}
where B̂2 = {B̂2,i}i∈[2ℓ]

= {P b̂2,i}i∈[ℓ]∥{P b̂2,ib̂1,i}i∈[ℓ]

Level 2
sk2 = {x2,i}i∈[ℓ],

pk2 = {X̂2,i}i∈[2ℓ] = {B̂
x2,i
2,i }i∈[ℓ]∥{B̂

x2,i
ℓ+i,2}i∈[ℓ]

= {P
b̂2,ix2,i
i∈[ℓ]

}∥{P b̂2,ib̂1,ix2,i}i∈[ℓ]

Level 3
MS scheme

pp3 = {B3, B̂3, V̂3,V3}
where B̂3 = {B̂3,i}i∈[3ℓ]

= {P̂ b̂3,i}i∈[ℓ]∥{P̂ b̂3,ib̂2,i}i∈[ℓ]

Level 3
sk3 = {x3,i}i∈[ℓ],

pk3 = {X̂3,i}i∈[2ℓ] = {B̂
x3,i
3,i }i∈[ℓ]∥{B̂

x3,i
ℓ+i,3}i∈[ℓ]

= {P̂ b̂3,ix3,i}i∈[ℓ]∥{P̂ b̂3,ib̂2,ix3,i}i∈[ℓ]

σ1 = (Z1, Y1, Ŷ1) where

Z1 = (
∏

i∈[ℓ](X̂2,ℓ+i)
x1,i )y1

= (
∏

i∈[ℓ] P
b̂2,ib̂1,ix2,ix1,i )y1 ,

Y1 = P 1/y1 , Ŷ1 = P̂ 1/y1 )

σ2 = (Z2, Y2, Ŷ2) where

Z2 = (
∏

i∈[ℓ](X̂3,ℓ+i)
x2,i )y2

= (
∏

i∈[ℓ] P̂
b̂3,ib̂2,ix3,ix2,i )y2 ,

Y2 = P̂ 1/y2 , Ŷ2 = P 1/y2 )

.
.
.

.
.
.

pk2 signs pk3

pp1 used

to make pk1

pp2 used

to make pk2

pp3 used

to make pk3

pk1 signs pk2

B2 = B̂3

B1 = B̂2

Fig. 5. A series of compatible mercurial signature schemes and a credential chain.

In Appendix A.2, we introduce the formal de�nition of extending parameters. This eases the read-
ability of our proof as a generic group model proof for L− 1 sets of public parameters simultaneously
might be di�cult to comprehend. Instead, we prove the APKCH security of a scheme for a sin-
gle level that reveals enough secrets about the parameters so that the scheme can be extended to
match the distribution of the parameters in Fig. 4. A simple hybrid arugment can then be used to
prove that our multi-level scheme achieves APKCH as described in Def. 8. More speci�cally, in the
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proof of APKCH in the full version, we use a Setup function (similar to Fig. 3) that also reveals

D = {Di}i∈[ℓ] = {P d̂i}i∈[ℓ] such that if the keys for this scheme live in G2, then Di is in G1. This
allows a second setup to be run to create a lower level scheme that is compatible with the �rst scheme

by computing: ∀i ∈ [ℓ], (B̂′
i) = Di, (B̂

′
ℓ+i) = D

d̂′
i

i . We can see that this is exactly how the extended

scheme computed their public parameters, (B̂′
ℓ+i) (explained earlier in this section) but now the

second scheme does not know d̂i, which prevents attacks on class-hiding. Further, because D lives
in G1 instead of G2, the adversary cannot use it to create malicious public keys that verify for the
original scheme. While the real setup (in Fig. 4) will not reveal D to an adversary, it is important that
the signatures retain their security properties even when this is revealed. Intuitively, this is because

schemes built on top of a signature scheme requires some correlated structure. Revealing Di = P d̂i in
our security games ensures that this correlated structure cannot be leveraged to defeat the security
of the schemes at other levels.

4 Delegatable Anonymous Credentials

In this section, we introduce a new DAC construction, showcasing advanced features as strengthened
privacy, revocation capabilities, and non-transferability, all while preserving e�ciency.

4.1 DAC Functionality

In contrast to non-revocable DAC schemes, our approach integrates a Trusted Revocation Author-
ity (TRA) to e�ciently revoke malicious users and maintain a deny list. We outline the high-level
functionality of our DAC scheme in Def. 16. This consists of the algorithms: Setup which initializes
the scheme, TKeyGen which generates the TRA's keys, RootKeyGen which generates the root's keys,
UKeyGen which generates a user's or issuer's keys, RegisterUser which allows the TRA to distribute
revocation tokens, and RevokeUser which allows the TRA to revoke users. The scheme also consists of
the interactive protocols to issue and show credentials: (Issue↔ Receive) and (Prove↔ Verify). This
scheme begins with a trusted Setup6. Then, the TRA generates an opener secret key and public key
using TKeyGen. A root authority (who can be malicious for the sake of anonymity) generates the root
key using RootKeyGen and distributes the root public key to users. A user who wishes to receive a
credential runs UKeyGen and then interacts with the TRA to receive a revocation token by providing
their public key to the TRA so that the TRA can run RegisterUser on it. Subsequently the user inter-
acts with the root (or an issuer that the root has delegated to) using (Issue ↔ Receive) and receives
a credential (which includes their revocation token). The user then uses their credential and secret
key in an interactive protocol (Prove↔ Verify) with any veri�er. These veri�cations can occur at any
level within [L] (i.e. for some level, L′ such that L′ ≤ L). The veri�er can check if the user has been
authorized and has not been revoked using the TRA's public key tpk . More speci�cally, the veri�er
receives a revocation token for each level in the credential chain from the credential presentation. If
the veri�er discovers that the prover was malicious through an out-of-band method, they can submit
these tokens to the TRA. The TRA will then update their deny list (this deny list is included in the
TRA public key for the sake of simplifying the presentation), preventing any future showings that
include the user or issuer corresponding to the revocation token from being veri�ed.

We note that our scheme supports a strong model for anonymity where the holder of the root key
(colluding with intermediate issuers) cannot de-anonymize users. To model this, we allow the adver-
sary in the anonymity game to choose the root public key along with the corruption of any users of
their choice. This allows the adversary to choose any honest user's delegation path from a malicious
root with all malicious delegations.

De�nition 16 (Delegatable Anonymous Credentials). A DAC scheme includes the following
algorithms and protocols:

� Setup(1λ, 1L)→ (pp, td): Initializes the scheme, outputting public parameters and a trapdoor td .

6 Note that as already discussed in practice this can be done by multiple parties in a sequential way by using
ides from updatable common reference strings and only a single party among the set of all parties needs
to be trusted.
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� TKeyGen(pp)→ (tsk , tpk): Takes pp and outputs a keypair (tsk , tpk) for the TRA. The tpk includes
a deny list of revoked users and is continously updated.

� RootKeyGen(pp) → (skrt , pkrt): Generates a key pair used for the root key pkrt (i.e. for level 0)
which is trusted for integrity but does not need to be trusted for anonymity.

� UKeyGen(pp, L′)→ (sk, pk): Generates a user's key pair for a speci�ed level.

� RegisterUser(pp, tsk , pk) → (tok): Creates a revocation token on the given public key so that the
public key can be revoked later with a deny list.

� (Issue(skI , credI , L
′)↔ Receive(skR, tok, L

′))→ credR: An interactive protocol to receive a signature
on a pseudonym. It is run between the two users distinguished by I for issuer or R for receiver. If
L′ = 1 (issuing from the root) then credI = ⊥.

� (Prove(skP , credP , L
′)↔ Verify(pkrt , L

′, tpk))→ (b, {tok i}i∈[L′]): A user proves they know a creden-
tial on a pseudonym that veri�es under the given root key, pkrt . If the veri�cation is successful, the
veri�er outputs 1 along with a list of revocation tokens for the prover and the chain of credentials.
If the veri�cation is unsuccessful, the veri�er outputs 0.

� RevokeUser(pp, tsk , tpk , tok)→ tpk ′: Takes in the TRA's key pair (tsk , tpk) as well as the token for
a registered public key and outputs an updated public key tpk ′ that can be used to recognize any
showings in which this public key is part of the chain. For security reasons, this can fail, outputting
⊥. As an example, we want this function to fail if a malicious tok is provided.

4.2 DAC Security De�nitions

In Fig. 6 we formally de�ne the oracles used in our security games. Any formal outputs of oracles are
received by the adversary and any modi�ed internal state of the challenger is listed in the description.
When calling interactive functions from the DAC scheme (such as Prove(·)↔ Verify(·)), the challenger
records the transcript of the interaction in addition to the output of the function. For example, in
the VerifyCred oracle in Fig. 6, we have the challenger interact with the adversary using the Verify
function, and in addition to outputting the result of the veri�cation (b) and the list of revocation
tokens, {tok i}i∈[L′], the protocol also outputs a transcript (τ) of the interaction between the prover
and the veri�er. Throughout the game, the challenger maintains some state to keep track of honest
users and credentials that were given to the adversary. This global state is used in the unforgeability
game. Speci�cally, the challenger keeps track of one set, DELA to keep track of what has been delegated
to the adversary. Moreover, the challenger initializes three maps to keep track of honest user state, SK
holds user secret keys, CRED holds user credentials, and LVL records what level a user's credential is
for. They are as follows: SK : H → SK, CRED : SK → CRED and LVL : SK → [L], where H is the set
of all honest user handles (which the adversary uses to refer to honest users), SK is the set of all secret
keys, and CRED is the set of all credentials. The root key is included in SK with handle id = 0 where
LVL[SK[0]] = 0 and CRED[SK[0]] =⊥. The challenger also keeps track of what keys have been added
to the deny list with the list SKDL ⊂ SK. At the start of any game, the challenger initializes all sets
to the empty set and initializes all maps to be degenerate, such as mapping ∀i ∈ H,SK[i] =⊥. In the
unforgeability game, we give the adversary access to all of the oracles. In the OCreateHonestUser oracle,
the adversary speci�es two users with one issuing a credential to the other. We initialize users at the
same time that they are issued a credential to simplify the scheme. As an example use of this oracle,
the adversary can specify idI = 0 at the start of a game to have a credential be issued from the root.
We do not allow the adversary to issue to a user multiple times, and thus if the speci�ed user already
exists when the adversary calls OCreateHonestUser, then the challenger aborts. We allow the adversary
to issue credentials to honest users using the OReceiveCred oracle. In this oracle, the adversary speci�es
a user to receive a credential at a speci�ed level. If the adversary was never issued a credential that
would allow them to delegate this credential to the honest user, the challenger set a forgery �ag in
the global state (labeled forgery) which is checked in the unforgeability game. In the OIssueFrom oracle,
the adversary receives a credential from an honest user and the challenger records which adversarial
key received this credential at which level. In the OProveTo oracle, the adversary acts as the veri�er for
a user. In the ORegisterUser oracle the adversary can receive a revocation token for one of their public
keys. In the ORevokeUser oracle, the adversary can add a user to the deny list.
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OCreateHonestUser(idI , idR, L
′)→ (pk)

if SK[idR] ̸=⊥, return ⊥
if SK[idI ] =⊥, return ⊥
if LVL[SK[idI ]] ̸= L′ − 1, return ⊥
(sk, pk)← KGen(pp)

SK[idR] = Epk(pk)†

LVL[SK[idR]] = L′

tok = RegisterUser(pp, tsk , pk)

(cred, τ)← (Receive(pp, SK[idR], tok , pkrt , L
′)

↔ Issue(pp,SK[idI ],CRED[idI ], L
′))

CRED[idR] = cred

return (pk)

OReceiveCred(idR, L
′)↔ A

if SK[idR] ̸=⊥, return ⊥
(sk, pk)← KGen(pp)

SK[idR] = Epk(pk)†

LVL[SK[idR]] = L′

tok = RegisterUser(pp, tsk , pk)

(cred, τ)← (Receive(pp, SK[idR], tok , pkrt , L)

↔ A(pk))
if cred ̸=⊥ ∧∀i ∈ [L′], (∗, i) ̸∈ DELA,

forgery = 1

CRED[idR] = cred

return ⊥

OIssueFrom(idI)↔ A

if SK[idI ] =⊥, return ⊥
if CRED[idI ] =⊥, return ⊥
(cred, τ)← (Issue(SK[idI ],CRED[idI ])

↔ A)
DELA = DELA ∪ {(Epk,R(τ),

LVL[SK[idI ]])}
return cred

OProveTo(id)↔ A

if SK[id ] =⊥, return ⊥
if CRED[id ] =⊥, return ⊥
Prove(pp,SK[id ],CRED[id ], pkrt)

↔ A
return ⊥

ORegisterUser(pk)→ tok

return RegisterUser(pk)

ORevokeUser(pk)

tpk ′ = RevokeUser(pp, tsk , pk)

if tpk ′ ̸=⊥,
tpk ′ = tpk

SKDL = SKDL ∪ {Esk(pk)}
return tpk ′

Fig. 6. De�nition of Oracles.
† The oracle uses Epk to ensure SK[id ] holds a canonical representation of the secret key.

We de�ne correctness for our strongly private DAC scheme in Def. 17. If the probability for delegator
issuance holds, we know that the scheme is correct for issuance to all levels, 1, ..., L as the probability
only relies on the fact that the previous level veri�es and thus by induction intermediate delegators
can re-delegate to level L.

De�nition 17 (DAC correctness). A DAC scheme is correct if for all security parameters, λ,
L = O(λ), L′ ∈ [L], L∗ ∈ [L′ − 1], (pp, td) ∈ Setup(1λ, 1L), (tsk , tpk) ∈ mathsfTKeyGen(pp),
(skrt , pkrt) ∈ RootKeyGen(pp), (sk1, pk1) ∈ UKeyGen(pp, L′), (sk2, pk2) ∈ UKeyGen(pp, L′) it holds
that:
Root issuance:

Pr

Prove(sk1, cred1, L
′)

↔
Verify(pkrt , L

′, tpk)
c

 = (1, ∗) | cred1 ∈ (Issue(skrt ,⊥,⊥)↔ Receive(sk1, tok, L
′))

∧L′ = 1

 = 1

Delegator issuance:

Pr

Prove(sk2, cred2, L
∗)

↔
Verify(pkrt , L

∗, tpk)

 = (1, ∗) |
cred2 ∈ (Issue(sk1, cred1, L

′)↔ Receive(sk2, tok, L
∗))

∧(Prove(sk1, cred1, L′)↔ Verify(pkrt , L
′, tpk)) = (1,_)

∧L∗ = L′ + 1

 = 1

Anonymity: Our anonymity de�nition is shown in Def 18. The anonymity game involves the ad-
versary and the challenger. The adversary controls all participants, including the root credential
authority (but does not control the TRA). The game proceeds as follows: The challenger generates
the public parameters, which are given to the adversary along with the registrar's public key and ac-
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cess to a registration and revocation oracle. The adversary creates two credential chains of the same
length and provides the secret keys of the end users of these chains to the challenger. The challenger
ensures that they are valid credential chains. The challenger randomly selects one of the users and
proves possession of the corresponding credential chain to the adversary. The adversary wins if it
can correctly identify which user the challenger picked. No honest users are created in this game, as
the adversary controls all aspects except for the registration and revocation oracles. To model issuer
privacy and showing privacy, the adversary outputs a bit, j, to indicate whether the challenger should
act as the issuer or the shower. We formalize this game in Def. 18.

De�nition 18 (Anonymity). A DAC scheme is anonymous if the advantage any PPT adversary
(A = {A0,A1}) in the following anonymity game, de�ned by the chance that the game outputs 1, is
1/2 + negl(λ):

1: pp← Setup(1λ, 1L)
2: (tsk , tpk)← TKeyGen(pp)

3: (st , j, pkrt , sk0, cred0, sk1, cred1, L
′)← AORegisterUser(·),ORevokeUser(·)

0 (pp, tpk)
4: ∀i ∈ {0, 1} :
5: if (Prove(pp, ski, credi, L

′)↔ Verify(pkrt , L
′, tpk)) ̸= (1, ∗), return ⊥

6: b←$ {0, 1}
7: if j = 0, b′ ← (Prove(pp, skb, credb, L

′)↔ A1(st))
8: if j = 1, b′ ← (Issue(pp, skb, credb, L

′ + 1)↔ A1(st))
9: return b′ = b

Unlike the anonymity de�nition in [CL19], we allow the adversary to participate in the challenge
credential chain. Therefore, we do not need to control the state of the game with the challenger;
in the anonymity game, the challenger only performs the role of the TRA and the challenge user.
In addition, we aim to maintain the anonymity of honest users even when the anonymity of some
adversarial users is revoked. This new de�nition represents a simpli�ed and more comprehensive
anonymity model, which we present as a novel contribution.

Unforgeability: Our unforgeability game is simpler than [CL19], even though it is conceptually
similar. We remove oracles that reveal pseudonyms of honest users. Revealing pseudonyms alone has
no real-world use-case in DAC and the adversary e�ectively reveals pseudonyms during a showing
anyway. Also, we integrate user creation with credential issuance, as a user's key pair is not used until it
is associated with a credential. Otherwise, our unforgeability de�nition (Def. 19) is mostly unchanged
from [CL19], but we add the RegisterUser and RevokeUser functions that facilitate revocation.

Moreover, our unforgeability de�nition ensures that the adversary was correctly delegated a credential
on line 10 in Def. 19, and that none of the keys in the adversary's credential are on the deny list, on
line 11.

To ensure that the challenger can check the key classes, we parameterize the de�nition with the
extractor, Epk, which takes in a public key and extracts a secret key from it. If Epk is run on the
transcript of a showing, it extracts the secret key of the credential holder. If Epk is run on the
transcript of an issuing, it extracts the secret key of the issuer. We denote these by Epk,R for receiver
and Epk,I for issuer. This extractor must extract the same secret key no matter how the public key has
been randomized. For mercurial signatures, this means that the extractor extracts a canonical secret
key which is constant over any representation of the equivalence class of secret keys. We also assume
an extractor Ecred that can take in a credential or the transcript of a showing of a credential and
output the canonical secret keys used in the delegation chain including the end user of the credential.

De�nition 19 (Unforgeability). A DAC scheme is unforgeable if any PPT adversary's advantage
in the following game, de�ned by the chance that the game outputs 1, is negligible in λ. A is given all
the oracles from Fig 6 labeled as O.
1: (pp, td)← Setup(1λ, 1L)
2: (tsk , tpk)← TKeyGen(pp)
3: (sk, pk)← RootKeyGen(pp)
4: SK[0] = sk; pkrt = pk
5: (st , L)← AO

0 (pp, pk)
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6: ((b, ∗), τ)← (Verify(pkrt , L, tpk)↔ A1(st)
7: {ski}i∈[L′] ← Ecred(τ)
8: if forgery = 1, return 1
9: if sk0 ̸= skrt , return b
10: if ∀i ∈ [L′], (ski, i) ̸∈ DELA, return b
11: if ∃i ∈ [L′], s.t. ski ∈ SKDL, return b
12: return 0

4.3 DAC Construction

Our DAC construction uses a function MultiSetup which builds L sets of public parameters for our
underlying mercurial signature scheme with ℓ = 2 such that the schemes have the structure described
in Sec. 3.3. We note that for the root authority we use the CL19 scheme [CL19] instead of our scheme
as this is su�cient for the root. This function is described in Appendix A.

To simplify our DAC construction, we add a function TracePK, which takes in a �linker� and a
revocation token and returns if this linker is associated with the revocation token. These linker values
will be stored in the deny list in the TRA's public key tpk .

De�nition 20 (DAC construction).

� Setup(1λ, 1L) → (pp, td): Call the setup function described in Appendix A which generates L
correlated parameters for our signature scheme in Fig. 3, {ppi}i∈[L] = MultiSetup(1λ, 1ℓ=2, 1L).
Then initialize extra bases for the revocation authority and the root authority using the CL19
scheme, (ppCL19)← SetupCL19(1

λ, 1ℓ=2). Output pp = ({ppi}i∈[L], ppCL19), td = ({td i}i∈[ℓ]).

� RootKeyGen(pp)→ (skrt , pkrt): Generate a CL19 key pair using ppCL19.

� UKeyGen(pp, L′)→ (sk, pk): Create a secret key for the corresponding scheme, (sk, pk)← KGen(ppL′).
The user initializes their credential chain as chain =⊥.

� TKeyGen(pp)→ (tsk , tpk): Create a CL19 key (sk, pk) of length ℓ = 2, (tsk sk, tpkpk)← KGen(ppCL19).
Initialize a set of linkers, tsk link = ∅. Initialize a deny list, DL = ∅. Let tsk sk = sk, tsk =
(tsk sk, tsk link ), and tpk = (tpkpk,DL).

� RegisterUser(pp, tsk , pk) → (tok): Generate a new key pair (skrev , pkrev ) using ppCL19. Sign pkrev
using tsk sk where tsk = (tsk sk, tsk link ) yielding σ0. Then, use skrev to sign pk, yielding σ1. This
yields the revocation token, tok = (pkrev , σ0, σ1). The secret key, skrev , will serve as the linker
for this revocation token and it is denoted as link . Save this linker in the TRA's state, tsk ′

link =
tsk link ∪ {link} and update the state: tsk ′ = (tsk sk, tsk

′
link ). Output revocation token tok .

� RevokeUser(pp, tsk , tpk , tok) → tpk ′: Iterate through the linkers (link i) in tsk link and check if
TracePK(pp, link i, tok) = 1 for each of them. If this holds for a linker, link i, concatenate link i

to the linkers in tpk (the deny list) and output this new public key as tpk ′.

� TracePK(pp, link , tok)→ {0, 1}: Parse tok as tok = (pkrev , σ0, σ1). Check if RecognizePK(ppCL19, link , pkrev ) =

1 (cf. Sec. 2), i.e., parse pkrev as pkrev = (X̂1, X̂2). Parse link = (x1, x2). Check if X̂
x2/x1

1 = X̂2. If
this holds, output 1. Otherwise, output 0.

� (Issue(skI , credI , L
′) ↔ Receive(skR, tok, L

′)) → credR: The receiver samples ρ ← KC (from the
set of key converters) and generates a randomized public key from their secret key, pk′, using
the randomization factor, ρ. They also randomize their revocation token, tok , yielding, tok =
(pk′rev , σ

′
0, σ

′
1), such that VerifyCL19(ppCL19, tpk , pk

′
rev , σ

′
0) = 1 and VerifyCL19(ppCL19, pk

′
rev , pk

′, σ′
0) =

1. The receiver sends over pk′. The issuer then randomizes all public keys in their credential chain
along with the signatures, randomizing their secret key to match. They also randomize all revocation
tokens in their chain as described above. They then sign pk′ yielding a signature, σ. They send
their randomized credential chain, chain, along with σ to the receiver. The receiver computes the
chain, chain ′ = chain∥(pk′, σ, tok ′). The receiver stores their credential as cred = (chain ′, ρ). The
randomizer is also stored to ensure the receiver can correctly randomize their secret key to match
their public key in the chain.
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� (Prove(skP , credP , L
′) ↔ Verify(pkrt , L

′, tpk)) → (b, {tok i}i∈[L′]): The prover randomizes all public
keys and signatures in their credential cred using ρ∗ = ρ∗ρ′ where ρ is the randomizer found in their
credential and ρ′ is randomly sampled. They send over their randomized credential chain, chain,
and perform an interactive proof of knowledge that they know the sk that corresponds to the last
public key in the chain. The veri�er then veri�es each public key with the signatures. The veri�er
also iterates through the revocation tokens in the credential chain checks that for each public key
pki and tok i = (pkrev ,i, σi,0, σi,1) in the chain it holds that VerifyCL19(tpk , pkrev ,i, σi,0) = 1 and
VerifyCL19(pkrev ,i, pki, σi,1) = 1. They then also iterate through each link j ∈ tpk and ensure that
TracePK(pp, link j , tok i) = 0 for each level i in the length of the chain. If all these checks hold, the
veri�er outputs 1 and if any checks fail, the veri�er outputs 0. The veri�er also outputs all of the
tok i values received from the prover.

Theorem 21 (Correctness of the construction in Def. 20). Our construction in Def. 20 is
correct as de�ned in Def. 17.

Theorem 22 (Unforgeability of the construction in Def. 20). If the underlying signature
scheme is unforgeable with respect to Def. 2, our construction in Def. 20 is unforgeable with respect
to Def. 19.

Theorem 23 (Anonymity of the construction in Def. 20). If the underlying signature scheme
has origin-hiding and has adversarial public key-class hiding, the DAC scheme in Def. 20 is anony-
mous with respect to de�nition 18.

We prove these theorems in Appendix B.3.

5 Conclusion and Future Work

In this paper, we constructed mercurial signatures with stronger security properties than seen in the
literature, which could potentially be used for many privacy-preserving schemes just as the �rst such
signatures in [CL19]. We use it as a basis for an e�cient DAC scheme with strong privacy guarantees
and delegator revocation functionality. Our DAC construction could be further adapted to support
attributes extending its functionality, where the technique from [PM24] seems promising. We leave
this extension to future work.
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Appendix

A Extendable Mercurial Signatures with an Updatable CRS

A.1 Updating the CRS

While we rely on a trusted setup (i.e. our construction is secure in the common reference string
model) we describe a process to update the CRS which is very e�cient. As described in [GKM+18],
an updatable CRS has the functions: Setup, which generates the CRS, Update which updates the
CRS and produces a proof of consistency, and VerifyCRS which takes in a proof and ensures that
the CRS is correctly updated. Using these functions ensures that an e�cient sequential setup can be
performed and if only one of the users who include a proof in the setup is honest, the resulting CRS
is secure (i.e. no party knows a full trapdoor that would allow them to break any security properties
of the scheme). By �sequential� we mean that the parties that update the CRS do not have to be
online at the same time, any updater can take an existing CRS and add their own trapdoors to it.
We de�ne these functions for our scheme below:

� (pp, π)← Setup(1λ): Generate the public parameters as normal:

� Setup(1λ, 1ℓ)→ (pp, π):

Sample {bi, b̂i, d̂i, v̂i, vi}i∈[ℓ] ←$ Zp.
Compute:

B = {Bi}i∈[2ℓ], where ∀i ∈ [ℓ], Bi ← P bi ,Bℓ+i ← P bib̂i

B̂ = {B̂i}i∈[2ℓ], where ∀i ∈ [ℓ], B̂i ← P̂ b̂i ,B̂ℓ+i ← P̂ b̂id̂i

V̂ = {V̂i}i∈[2ℓ], where ∀i ∈ [ℓ], V̂i ← P̂ v̂ib̂i , V̂ℓ+i ← P̂ v̂i

V = {Vi}i∈[2ℓ], where ∀i ∈ [ℓ], Vi ← P vid̂i , Vℓ+i ← P vi

Output: pp = (B, B̂, V̂,V). As the proof, π, commit to each of the trapdoors and produce a proof
that each of the trapdoors is known (i.e. a proof of equality of discrete logarithm representation
over the generators of the bilinear pairing). This can be done e�ciently with Pedersen commitments

https://orcid.org/0009-0000-6016-5163
https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0003-1691-5291
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561
https://eprint.iacr.org/2024/625
https://eprint.iacr.org/2024/625


Delegatable Anonymous Credentials From Mercurial Signatures With Stronger Privacy 23

and Schnorr proofs [CS97] (in the ROM), using only 1 group element for the commitment and 2
elements in Zp for each proof base with constant computation cost.

� Update(1λ, pp, (πi)i∈[n])→ (pp′, π′): Sample {b′i, b̂i, d̂i, v̂i, vi}i∈[ℓ] ←$ Zp and compute:

∀i ∈ [ℓ],Bi
′ ← Bi

b′i , Bℓ+i ← Bℓ+i
b′ib̂

′
i

B̂′
i ← B̂b̂i

i , B̂′
ℓ+i ← B̂

b̂′id̂
′
i

ℓ+i

V̂ ′
i ← V̂

v̂′
id̂

′
i

i , V̂ℓ+i ← V̂
v̂′
i

ℓ+i

Vi
′ ← Vi

v′
id̂

′
i ,Vℓ+i

′ ← (Vℓ+i
′)v

′
i

Output: pp′ = (B′, B̂′, V̂′,V′). Commit to each trapdoor and prove that the resulting bases pp′

were computed correctly over pp (using techniques similar to Setup). Output the Schnorr proofs
and commitment as the proof, π. Include the old pp in the proof as well. This can be represented
using Camenisch-Stadler notation: πR = NIZK [{bi, b̂i, d̂i, v̂i, vi}i∈[ℓ], {Obi , Ob̂i

, Od̂i
, Ov̂i

, Ovi}i∈[ℓ] :

∀i ∈ [ℓ], Cbi = Com(bi, Obi), Cb̂i
= Com(b̂i, Ob̂i

), Cd̂i
= Com(d̂i, Od̂i

), Cv̂i = Com(v̂i, Ov̂i), Cvi =

Com(vi, Ovi)}i∈[ℓ], Bi
′ = Bi

b′i , Bℓ+i = Bℓ+i
b′ib̂

′
i , B̂′

i = B̂b̂i
i , B̂′

ℓ+i = B̂
b̂′id̂

′
i

ℓ+i , V̂
′
i = V̂

v̂′
id̂

′
i

i , V̂ℓ+i =

V̂
v̂′
i

ℓ+i, Vi
′ = Vi

v′
id̂

′
i , Vℓ+i

′ = (Vℓ+i
′)v

′
i ]. Thus, πR using Schnorr proof with Fiat-Shamir applied con-

sists of the 5ℓ Pedersen commitments to the trapdoors, ∀i ∈ [ℓ], Cbi , Cb̂i
, Cd̂i

, Cv̂i , Cvi , as well as 4ℓ

commitments to the multiplications of those trapdoors, ∀i ∈ [ℓ], bib̂i, b̂ib̂i, v̂ib̂i, vid̂i, which makes up
9ℓ group elements. The Schnorr proof itself then consists of 8ℓ �rst message �commitments� (which
are group elements), for each base in the public parameters, as well as 9ℓ �rst message commitments
to each of the commitments to the trapdoors (including the multiplications of trapdoors). We then
need 18ℓ �nal messages for the Schnorr proof, one for each trapdoors, and one for each opening of
a commitment to a trapdoor.

A.2 Extending the scheme to multiple levels

Extendability was an implicit property in [CL19] but was much simpler as the scheme was symmetric.
Our scheme's parameters are structured in a way that we must have explicit functions to extend the
scheme such that public keys at one level in the resulting DAC scheme can sign public keys from
another level. To that end, we include algorithms, ExtendSetup and FinalizeSetup, which are needed
by the proof of our DAC scheme to ensure the scheme can be extended to multiple levels. We also
update each of our security de�nitions to include an interactive setup which invokes these functions.
The syntax of our extendable mercurial signature scheme is thus given by the functions in Def. 24.
In Section Sec. A.3, we construct these functions which extend our scheme from Fig. 3.

To explain why we need such functions and properties for our proof, let's attempt to construct a
reduction from APKCH to DAC anonymity where the APKCH challenger generates a single set of
public parameters for one mercurial signature scheme, but the DAC scheme requires multiple levels
of mercurial signature schemes such that public keys in the schemes can sign public keys from the
next higher scheme. This reduction receives pp from the APKCH challenger. In the anonymity game,
the reduction will need to make the credential depend on the APKCH challenger's secret bit. In our
proof of anonymity, we'll create hybrids (shown in Def. 38) which replace each public key in the
credential chain with a random public key (which, in our reduction is the APKCH challenger's public
key). Thus, in our reduction, we need to replace one of the signatures in the credential chain with the
signature which is returned by the APKCH challenger (σb in Fig. 2). To ensure that the adversary
won't simply abort, we need this signature to appear as though it came from the DAC scheme. Thus,
if this is some intermediate signature in the credential chain, σb must come from some public key, pki,
be signed by some public key, pki−1, and sign another public key, pki+1 to continue the chain. The

natural public key for the reduction to use in place of pki is the pk
b returned by the PKCH challenger

as this veri�es with σb as this lets the reduction use the adversary's guess to guess b. But, if this
signature is in the middle of a credential chain, we'll need to sign pkb = pki with some pki−1. But, pk

b

is valid only for the public parameters that the APKCH challenger generated. Thus, this reduction
must somehow include the pp generated by the APKCH challenger into the public parameters for
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the DAC scheme. The public key bases for pp are B̂ = {B̂i}i∈[2ℓ] where ∀i ∈ [ℓ], B̂i = P̂ b̂i , B̂ℓ+i =

P̂ b̂id̂i . Let's assume the reduction has the secret key for the higher level scheme (whose public keys
are in G1), ski−1 = {xj}j∈[ℓ]. If our reduction computes the signature on pkb in the normal way,

σ = (Z, Y, Ŷ ) where Z = (
∏

i∈[ℓ] X̂
xi

ℓ+i)
y, Y = P 1/y, Ŷ = P̂ 1/y, and pkb = {X̂i}i∈[ℓ], we can see that

e(Z, Ŷ ) =
∏

i∈[ℓ] P̂
b̂id̂ix̂ixi where {x̂i}i∈[ℓ] is the secret key for pkb. Thus, to create public key bases

for the signature scheme at level i−1, we would need to know d̂i as we need to compute bases for the
public key in G1 for ppi−1. Unfortunately, the trapdoor, d̂i, is only known to the APKCH challenger,
and thus, our reduction cannot generate these bases. In Section Sec. 3.3 we modi�ed our scheme to

output P d̂i (which is part of our solution for this problem), but then we run into a similar problem
when we attempt to generate a pki+1 (which is considered a message in the APKCH challenger's
scheme) that veri�es with the APKCH challenger's public parameters, pp, while still allowing the
reduction to generate the public parameters for levels i + 1, . . . , L. This is because the scheme for
ppi+1 must use the bi trapdoors in its public key bases, but the APKCH challenger does not reveal

P̂ bi (which would allow the higher scheme to extend), but instead reveals P bi . De�ning ExtendSetup
and FinalizeSetup solves this problem and allows our proof of APKCH to focus on a single set of
parameters.

De�nition 24 (Extendable mercurial signatures).

� Setup(1λ, 1ℓ) → (pp, td): Outputs public parameters pp, including parameterized equivalence rela-
tions for the message, public key, and secret key spaces: RM , Rpk, Rsk and the sample space for key
and message converters. This function also outputs a trapdoor (td) that can be used (in conjunction
with the corresponding secret key) to recognize public keys.

� ExtendSetup(pp′) → (pp, td): Extends a scheme (described by pp′) such that the outputted scheme
de�ned by pp can be used to sign the public keys of the scheme de�ned by pp∗ where pp∗ ←
FinalizeSetup(pp′, td , td ′) where td ′ is the trapdoor for pp′.

� FinalizeSetup(pp, td , td ′)→ (pp∗, td∗): Finalize a previously generated scheme, (pp, td), after it has
been extended, where td ′ is the trapdoor from the extension.

� KeyGen(pp)→ (pk, sk): Generates a key pair.

� Sign(sk,M)→ σ: Signs a message M with the given secret key.

� Verify(pk,M, σ)→ (0 or 1): Returns 1 i� σ is a valid signature for M w.r.t. pk.

� ConvertPK(pk, ρ)→ pk′: Given a key converter ρ, returns pk′ by randomizing pk with ρ.

� ConvertSK(sk, ρ)→ sk′: Randomize a secret key such that it now corresponds to a public key which
has been randomized with the same ρ (i.e. signatures from sk′ = ConvertSK(sk, ρ) verify by the
randomized pk′ = ConvertPK(pk, ρ)).

� ConvertSig(pk,M, σ, ρ) → σ′: Randomize the signature so that it veri�es with a randomized pk′

(which has been randomized with the same ρ) and M , but σ′ is unlinkable to σ.

� ChangeRep(pk,M, σ, µ)→ (M ′, σ′): Randomize the message-signature pair such that Verify(pk,M ′, σ′) =
1 (i.e., σ′ and σ are indistinguishable) where M ′ is a new representation of the message equivalence
class, [M ]RM

.

� VerifyKey(pp, pk)→ {0, 1}: Takes a public key and veri�es if it is well-formed w.r.t public parameters
pp.

� VerifyMsg(pp,M)→ {0, 1}: Takes a message and veri�es if it is well-formed w.r.t public parameters
pp.

De�nition 25 (Correctness). A mercurial signature for parameterized equivalence relations, RM,
Rpk, Rsk, message randomizer space, sampleµ, and key randomizer space, sampleρ, is correct if for all

(λ, ℓ), ∀(pp, td) ∈ Setup(1λ, 1ℓ), and ∀(sk, pk) ∈ KGen(1λ), the following holds:

� Veri�cation. ∀M ∈ M, σ ∈ Sign(sk,M) : Verify(pk,M, σ) = 1 ∧ VerifyMsg(pp, M) = 1 ∧
VerifyKey(pp, pk) = 1.
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� Key conversion. ∀ρ ∈ sampleρ, (ConvertPK(pk, ρ),ConvertSK(sk, ρ)) ∈ KGen(1λ), ConvertSK(pk, ρ) ∈
[sk]Rsk

, and ConvertPK(pk, ρ) ∈ [pk]Rpk
.

� Signature conversion. ∀M ∈M, σ, ρ ∈ sampleρ, σ
′, pk′ s.t Verify(pk,M, σ) = 1, σ′ = ConvertSig(pk,M, σ, ρ),

and pk′ = ConvertPK(pk, ρ), then Verify(pk′,M, σ′) = 1.

� Change of message representation. ∀M ∈M, σ, µ ∈ sampleµ,M
′, σ′ such that Verify(pk,M, σ) =

1 and (M ′, σ′) = ChangeRep(pk,M, σ;µ) then Verify(pk,M ′, σ′) = 1 and M ′ ∈ [M ]RM
.

� Extension. ∀ (pp, td) ∈ Setup(1λ, 1ℓ), (pp′, td ′) ∈ ExtendSetup(pp), (pp∗, td∗) ∈ FinalizeSetup(pp, td , td ′),
it holds that (pp∗, td∗) ∈ Setup(1λ, 1ℓ). Further, M′ = PK∗ where M′ and PK∗ are the message
and public key space for pp′ and pp∗.

To ensure our scheme stays secure when extended, we de�ne an interactive setup protocol with an
adversary (Setupext in Fig. 7) which either generates a scheme with Setup then interacts with the
adversary to extend it, or extends the parameters that an adversary generates. This is used by the
unforgeability and class-hiding properties in De�nitions 2 and 8

(Setupext(1λ, 1ℓ)↔ A)→ (pp, td)
1: pp0 ← A(1λ, 1ℓ)
2: if pp0 =⊥,
3: (pp1, td1)← Setup(1λ, 1ℓ)
4: td ′ ← A(pp1)
5: (pp, td)← FinalizeSetup(pp1, td1, td

′)
6: else ,
7: (pp1, td1)← ExtendSetup(pp0)
8: return (pp1, td1)

Fig. 7. An interactive setup extension function for security games

De�nition 26 (Unforgeability under extension). A mercurial signature scheme for parameter-
ized equivalence relations RM, Rpk, Rsk, is unforgeable if for all parameters (λ, ℓ) and all probabilistic,
polynomial-time (PPT) algorithms, A, having access to a signing oracle, there exists a negligible func-
tion negl such that:

Pr

 Verify(pk∗,M∗, σ∗) = 1

∧[pk∗]Rpk
= [pk]Rpk

∧∀M ∈ Q, [M∗]RM
̸= [M ]RM

∣∣∣∣∣∣∣
PP← (Setupext(1λ, 1ℓ)↔ A);

(pk, sk)← KeyGen(pp);

(pk∗,M∗, σ∗)← ASign(sk,·)(pk)

 ≤ negl(λ) (1)

Where Q is the list of messages that the adversary queried to the Sign oracle.

De�nition 27 (Adversarial public key class-hiding under extension). A mercurial signature,
Γ , has adversarial public key class-hiding if the advantage of any PPT set of algorithms A = {A1,A2},
the following advantage AdvAPKCHΓ,A (λ) is negligible,

AdvAPKCHΓ,A (λ) :=
∣∣∣Pr [ExpAPKCH,0

Γ,A (λ) = 1
]
− Pr

[
ExpAPKCH,1

Γ,A (λ) = 1
]∣∣∣

where ExpAPKCH,b
Γ,A (λ) is the experiment shown in Figure 8.

A.3 Construction of Extendable Mercurial Signatures

We now complete our construction from Sec. 3.3. As described in Appendix A.2, we need to de�ne
functions to extend and �nalize parameters, i.e., we need to ensure that our signature scheme is
secure when accepting a Di from the higher level scheme. This requires extra work, as for the lower
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1: pp← (Setupext(1λ, 1ℓ)↔ A);
2: (sk, pk)← KGen(pp);

3: (pkA, σA,M, st)← AOSign(sk,·)
1 (pk, pp)

4: σ ← Sign(sk,M)
5: ρ0 ←$ Z∗

p; pk
0 ← ConvertPK(pk, ρ0);

6: σ0 ← ConvertSig(σ, ρ0)
7: ρ1 ←$ Z∗

p; pk
1 ← ConvertPK(pkA, ρ1);

8: σ1 ← ConvertSig(σA, ρ1)
9: if Verify(pkA, σA,M) = 1 ∧ VerifyMsg(pp,M) = 1 ∧ VerifyKey(pp, pkA) = 1

10: return AOSign(sk,·)
2 (pp, st, pkb, σb)

11: else return AOSign(sk,·)
2 (pp, st,⊥,⊥)

Fig. 8. Adversarial public key class-hiding under extension experiment ExpAPKCH,b
Γ,A (λ).

level scheme to remain secure, we need to inject new unknown trapdoors into B̂′. We describe this
process in the ExtendSetup function in Fig. 9. To ensure the higher scheme is then correct after this
modi�cation, we also have to update the B̂ vector in the higher level scheme using the trapdoor from
the lower level scheme, which we describe in the FinalizeSetup function in Fig. 9. We use a Setup

function similar to the one for L = 1 we described in Fig. 3 but which also outputs Di = P d̂i . This
change explains why the pp′ passed to ExtendSetup in Fig. 9 includes Di.

We now describe the function, MultiSetup, in Def. 28 used to generate multiple correlated mercurial
signature schemes. This function will output parameters identical to Fig. 4 but calls our ExtendSetup
and FinalizeSetup functions. These functions can then be replaced with our challenger in Fig. 8 in
order to prove it secure. We can see by correctness in Def. 1 that because we've called ExtendSetup and
FinalizeSetup, with the correct values, by the Extension correctness property our resulting parameters
will be in the possible output of Setup(1λ, 1ℓ) and thus they satisfy the rest of the properties in the
correctness de�nition and their message and public key spaces will be correctly linked to create
delegation chains.

De�nition 28 (Generating multiple levels of correlated mercurial signatures with AP-
KCH).

� MultiSetup(1λ, 12, 1L) → {ppi}i∈[L]: Compute: (pp′L, td
′
L) = Setup(1λ, 1ℓ=2) and then call ∀i ∈

[L], (pp′i−1, td
′
i) ← ExtendSetup(pp′i). To compute ExtendSetup correctly, an implementation will

work backwards from i = L. Next, call ∀i ∈ [L], (ppi, td i) ← FinalizeSetup(pp′i, td
′
i, td

′
i−1) to �nish

the parameters and trapdoors, {ppi, td i}i∈[L] (the �nal level of parameters, pp0, do not need to be
�nalized as they have not been extended). The mercurial signature schemes are extended as described
in Sec. 3.3.

Correctness. We can see that the ExtendSetup function will exponentiate the public key bases from
the higher scheme, B̂′

i and B̂′
ℓ+i with new trapdoors, bi and b̂i. Thus, during FinalizeSetup, the setup

must exponentiate with these trapdoors to ��x� the scheme, making the two schemes work together
again.

How extension impacts our security proofs. After the scheme is extended, the higher scheme which
this was extended from will use the bases for public keys attained from the lower scheme as long
as they were generated honestly (we model this by having the lower parameter generation function
output the discrete logs used to update the bases so that the higher scheme can inspect them).
When proving our construction with extension secure in Appendix B, our reduction receives these
trapdoors, b̂′i, d̂

′
i, v̂

′
i from the adversary (either in ExtendSetup or FinalizeSetup) and because each of

them is multiplied with a random scalar, the resulting b̂∗i , d̂
∗
i , v̂

∗
i are e�ectively random, and thus

our reduction can proceed as if it had generated the trapdoors itself. We're also able to keep the
generation of Di out of any of our generic group model proofs by �rst proving Lemma 36 without
these Di values and then reducing to this lemma in the standard model while generating Di values
while proving Thm. 12. We can see that while most of the parameters are e�ectively random in our
reduction using the extension functions, our ExtendSetup function outputs exactly ∀i ∈ [ℓ], Bi = (B̂′

i).
This is not a problem since it just invalidates message class hiding. We only use message class hiding
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� ExtendSetup(1λ, pp′)→ (pp, td):
Parse pp′ = {Di, (B′

i), (B
′
ℓ+i), (B̂

′
i), (B̂

′
ℓ+i), V

′
i , V̂

′
i }.

Sample: b′i, b̂i, d̂i, vi, v̂i ←$ Zp

∀i ∈ [ℓ],

Bi ← (B̂′
i), Bℓ+i ← (B̂′

ℓ+i)
b̂i

B̂i ← (D′
i)
b̂i , B̂ℓ+i ← (D′

i)
b̂id̂i

V̂i ← P v̂id̂i , V̂ℓ+i ← P v̂i

Vi ← (V̂ ′
i )
vid̂i ,Vℓ+i ← (V̂ ′

ℓ+i)
vi

Bl = {Bi}i∈[ℓ],B
u = {Bℓ+i}i∈[ℓ],

B̂l = {B̂i}i∈[ℓ],B̂
u = {B̂ℓ+i}i∈[ℓ],

V̂l = {V̂i}i∈[ℓ], V̂
u = {V̂ℓ+i}i∈[ℓ],

Vl = {Vi}i∈[ℓ],V
u = {Vℓ+i}i∈[ℓ],

Output: pp = (Bl,Bu, B̂l, B̂u, V̂l, V̂u,Vl,Vu)
and td = {b̂i, d̂i, vi, v̂i}i∈[ℓ]

� FinalizeSetupi(1
λ, pp, td , td ′)→ (pp∗):

Parse pp = {Di, Bi, Bℓ+i, B̂i, B̂ℓ+i, Vi, V̂i}i∈[ℓ].

Parse td = {b̂i, d̂i, vi, v̂i}i∈[ℓ].

Parse td ′ = {b′i, b̂′i, d̂′i, v′i, v̂′i}i∈[ℓ].

Compute pk∗ = {Bl∗,Bu∗, B̂l∗, B̂u∗,Vl∗,Vu∗, V̂l∗, V̂u∗} where:
Bl∗ = {Bi}i∈[ℓ]

Bu∗ = {Bℓ+i}i∈[ℓ]

B̂l∗ = {B̂i}i∈[ℓ]

B̂u∗ = {(B̂ℓ+i)b̂
′
i}i∈[ℓ]

Vl∗ = {(Vi)b̂
′
i}i∈[ℓ]

Vu∗ = {(Vℓ+i)}i∈[ℓ]

V̂l∗ = {(V̂i)}i∈[ℓ]

V̂u∗ = {(V̂ℓ+i)}i∈[ℓ]

Output pp∗

Fig. 9. Setup that can sign public keys from another scheme.

for the highest level in our DAC scheme and thus, we do not need if for the intermediate levels (which
are generated from the ExtendSetup).

B Proofs

We �rst prove (in Sec. B.1) properties where the public parameters generated in the games are simply
outputted by Setup instead of being outputted by Setupext as described in Fig. 7 in Sec. A. We then
prove that our properties still hold when Setupext is used in Sec. B.2.

B.1 Proofs for L = 1

Correctness of the mercurial signature scheme in Fig. 3. Veri�cation. We can see that
if M ∈ M, then VerifyMsg(pp,M) = 1, and the message has the structure, M = (B1

m1 , B2
m2 , ...,

Bℓ
mℓ , Bℓ+1

m1 , ..., Bℓ+ℓ
mℓ) = (P b1m1 , P b2m2 , ..., P bℓmℓ , P b1b̂1m1 , ..., P bℓb̂ℓmℓ), then when the message is

signed with sk = (x1, .., xℓ), then it will verify with the lower half of pk: pkl = (X1, ..., Xℓ) = (P b̂1m1 ,

P b̂2m2 , ..., P b̂ℓmℓ) i.e.: e(Z, Y ) = e(
∏

i∈[ℓ] P
bibimixi , P ) =

∏
i∈[ℓ] e(Mi, X̂i). Key conversion. We can

see that because keys are de�ned by the discrete log between elements, when we raise them all to
the same power, they are in the same equivalence class. Signature conversion. We can see that
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raising Z by ϕ as well as Y, Ŷ by 1/ϕ, this e�ectively translates the y value but the signature remains
correct. Raising Z by ρ e�ectively makes it as though it were signed by ρsk instead of the original
sk as when we look at the discrete log of Z,

∏
i∈[ℓ] P

bibimixi the exponent is a sum of monomials,
each of which contains exactly one distinct part of the secret key, xi. Thus, raising Z to the ρ power
multiplies each of these, exactly how ρsk operates. Change of message representation. Similar to
our proof of correct signature conversion, raising by ϕ e�ectively change the y used for the signature
and we see the discrete log of Z is a sum of monomials with each having exactly one distinct element
of the message, mi. Thus, raising Z to the µ power multiplies each mi making it verify with Mµ.

Unforgeability of the mercurial signature scheme in Fig. 3

Proof of Thm. 11 (Unforgeability of the construction in Fig. 3). This proof reduces the unforgeability
of our scheme to that of the original mercurial signature construction in [CL19]. To prove this, we
give a reduction that, given a forger for our scheme, outputs a forgery for the Crites-Lysyanskaya
mercurial signature scheme. Intuitively, this reduction works for two reasons: (1) the signature and
veri�cation algorithms of our scheme are identical to that of [CL19] (ignoring veri�cation, which
makes our construction stricter on what is accepted) and (2) the public parameters will be generated
by the reduction, and thus, the reduction will be able to transform public keys and signatures from
either scheme so that they appear as though they were generated from the other scheme.

Our reduction takes as input a public key pk = {X̂1, . . . , X̂ℓ} from its unforgeability challenger
and needs to form a public key pk′ to forward to the adversary for our scheme. It forms pk′ =

{X̂ b̂1
1 , X̂ b̂2

2 , ..., X̂ b̂ℓ
ℓ , X̂ d̂1b̂1

1 , X̂ d̂2b̂2
2 , ..., X̂ d̂ℓb̂ℓ

ℓ } where pk = {X̂1, ..., X̂ℓ} is the public key from the chal-
lenger.

The reduction is now ready to receive signature queries from the adversary, and respond to them.
When the adversary queries the reduction on message M, the �rst step is to verify that the messages
is in the message space using VerifyMsg(pp,M). Next, the reduction will parse the message M =
(M1, . . . ,M2ℓ) into the lower half Ml = (M1, . . . ,Mℓ) and upper half Mu = (Mℓ+1, . . . ,M2ℓ). It
queries the Crites-Lysyanskaya mercurial signature challenger on the message Mu and receives the
signature σ = (Z, Y, Ŷ ), and returns it to the adversary. We can see by inspection of the this signature
computed the same way as our signature for the public key pk′.

Finally, the adversary outputs its forgery: a message M∗ and a signature σ∗ under public key pk∗.
For the forged message, M∗, the reduction will use the upper half of the message vector output by
the adversary, the lower half of the public key vector exponentiated with the inverse of the trapdoor
(b̂i), and will output the adversary's signature unchanged. Because the signature veri�cation of our
scheme is identical to that of [CL19], this is guaranteed to verify under [CL19] without changing the
σ∗ outputted by the adversary. To formalize this proof, we show the reduction in Fig. B.1 and analyze
it.

Analysis. We know that the adversary's outputted message, public key, and signature will all ver-
ify. Thus, we have that e(ZA, Y A) = e(MA

i , X̂A
i ), e(MA

i , V̂i) = e(MA
ℓ+i, V̂ℓ+i), and e(Vi, X̂

A
i ) =

e(Vℓ+i, X̂
A
ℓ+i). We also know that pkA is in the same equivalence class as pk′ and thus, ∃ρ such that

(pk′)ρ = pkA. Because e(MA
i , V̂i) = e(MA

ℓ+i, V̂ℓ+i), we know that Mℓ+i = M b̂i
i . Thus, we can see that

the modi�ed public key, pk∗ veri�es with M∗: e(Mℓ+i, (X̂
A
i )1/b̂i) = e(M

1/b̂i
ℓ+i , (X̂

A
i )) = e(Mi, (X̂

A
i )) =

e(Z, Ŷ ). We can see that because the lower half of pk′ is simply the challenge public key from CL19

raised pair-wise to the b̂i power, then because pk∗ is raised to the inverse of b̂i power, then if pkA is in
the same equivalence class as pk′, then pk∗ is in the same equivalence class as pk. Thus, our reduction's
outputted forgery, M∗, pk∗, σA, is valid and pk∗ is in the same equivalence class as pk. Furthermore,
if MA doesn't belong to the equivalence class of any message submitted to the reduction's signature
oracle by the adversary, it's also not in the equivalence class of any message submitted to the CL19
signature oracle, making it a valid forgery.

Proof of Thm. 12 (APKCH of the construction in Fig. 3). We show an overview of the
proof structure in Fig. 11. We will �rst prove that we can extract the discrete logs of messages and
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RA,OSign,CL19

(ppCL19, pk)→ (π∗,M∗, σ∗):

1: b = {bi}i∈[ℓ] ←$ Zp
2: b̂ = {b̂i}i∈[ℓ] ←$ Zp
3: d̂ = {d̂i}i∈[ℓ] ←$ Zp
4: v̂ = {v̂i}i∈[ℓ] ←$ Zp
5: v = {vi}i∈[ℓ] ←$ Zp
6: pp = {Di, Bi, Bℓ+i, B̂i, B̂ℓ+i, Vi, Vi+ℓ, V̂i, V̂i+ℓ}i∈[ℓ] where ∀i ∈ [ℓ], Bi = P bi , Bℓ+i = P bi b̂i , B̂i =

P̂ b̂id̂i , Di = P d̂i , B̂ℓ+i = B̂d̂ii =, Vi = P vid̂i , Vi+ℓ = P vid̂i , V̂i = B̂vii , and V̂i+ℓ = P vi

7: Parse pk = {X̂1, . . . , X̂ℓ}
8: pk′ = {X̂ b̂1

1 , X̂ b̂2
2 , ..., X̂

b̂ℓ
ℓ , X̂

d̂1 b̂1
1 , X̂ d̂2 b̂2

2 , ..., X̂
d̂ℓ b̂ℓ
ℓ }

9: (pkA, σA,MA)← AOSign(·)(pp, pk′)
10: Parse pkA = {X̂A

1 , . . . , X̂
A
2ℓ}

11: Parse MA = {MA
1 , . . . ,M

A
2ℓ}

12: pk∗ = {(X̂A
1 )1/b̂1 , . . . , (X̂A

ℓ )1/b̂ℓ}
13: M∗ = {MA

ℓ+1, . . . ,M
A
2ℓ}

14: return (pk∗,M∗, σA)

OSign(M)→ σ

1: Parse M = {M1, . . . ,M2ℓ}
2: σ ← OSign,CL19({M1, . . . ,Mℓ})
3: return σ

Fig. 10. Unforgeability proof reduction

secrets keys from the adversary's message vectors and public keys, thus proving Lemmas 33 and
35. We will then prove that the construction in [CL19] satis�es a modi�ed version of public key
class-hiding (Lemma 36). We will then use these extractor of messages and keys in a reduction to a
challenger of this modi�ed public key class-hiding game, using an adversary from our strong public
key class-hiding game to show that our construction achieves strong public key class-hiding if the
construction in [CL19] satis�es this modi�ed public key class hiding, and thus, by Lemma 36, will
prove that our scheme is secure in the generic group model (GGM). This modi�cation of [CL19] works
similarly to the game in Def. 6, but reveals the public key in the �rst source group (as well as the
second source group). This allows our reduction to construction its public parameters in a certain way,
such signatures from the [CL19] construction will either be well-formed on keys that our reduction
chooses, or random keys, depending on the challenge bit. We then use this to have our strong public
key class-hiding adversary distinguish these two cases.
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Fig. 11. Overview of the proof of Thm. 12

To make our proof simpler, we will �rst prove a lemma (Lemma 32) that we use in our proof.

Before we begin to write generic group model proofs, we �rst create a framework for proofs in the
generic group model. We �rst de�ne a generic group adversary in Def. 29 and informally de�ne the
GGM heuristic in Remark 30.

De�nition 29 (A generic group model adversary). A generic group model adversary is an
adversary that receives a �group operation oracle� instead of knowing the exact parameters of the
group which would allow the adversary to perform these operations itself. Instead, a challenger (or
reduction) handles queries made to this oracle. Instead of returning group elements, the challenger
returns encodings of elements. We de�ne this oracle as Oggm(elt, s) where elt is an encoding of an
element and s is a scalar in Zp that the adversary wishes to scale that element to (where p is the
size of the generic group). If we are working with bilinear pairings, the adversary gets access to the
oracles, Oggm,1(elt, s), Oggm,2(elt, s), Oggm,e(elt1, elt2), and Oggm,t(elt, s), for the �rst source group,
second source group, pairing operation, and target group, respectively. The pairing operation takes in
two encodings instead of a scalar.

Remark 30 (The GGM heuristic (informal)). A scheme proven to have certain properties against a
generic group adversary has those properties in practice.

Remark 30 is false but generally holds for non-contrived schemes.

To ensure that the adversary's view is correct, the challenger will usually maintain a map from group
elements to encodings which we label ϕ. At the beginning of the game, the challenger initializes
this map with the parameters given to the adversary, which generally includes the generators of the
bilinear pairing, P and P̂ . Thus, to begin, the challenger samples the encodings, e1,P ← {0, 1}λ
and e1,P̂ ← {0, 1}λ, and then sets ϕ(1, P ) = e1,P and ϕ(1, P̂ ) = e1,P̂ . If the adversary queries

Oggm,1(P, α), the challenger will sample and return eα,1 and set ϕ(α, P ) = eα,1. If the adversary then
samples Oggm,1(P, 1/α), the challenger �nds that it must return e1,P in order to create a valid view
for the adversary.

A challenger using a generic adversary can choose not to sample values in the scheme. Instead, the
challenger can leave these values as indeterminate. For example, for DDH, instead of sampling a, b,
and c, the challenger can set the maps ϕ(1, P a) = e1,Pa , ϕ(1, P b) = e1,P b and ϕ(1, P c) = e1,P c without
de�ning a, b, and c.
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The usual proof strategy with the GGM is to leave all trapdoors of the scheme unde�ned until the end
of the game and then use the Schwartz-Zippel lemma to prove that there's only a negligible chance
that challenger created an invalid view.

If DDH is secure in the generic group model (which it is) our challenger can create a map, ϕ, that
�works� for both cases (where c = ab or c ←$ Zp) i.e. the encoding is a valid view of both schemes
with high probability. In other words, a generic adversary cannot distinguish the case where c = ab
or c ←$ Zp (the two experiments) without �nding some query to the oracle that returns a di�erent
encoding in one of the games. We call this the �distinguishing query�. This allows us to state Lemma
Lemma 31.

Lemma 31 (Distinguishing polynomial). For any bit-guessing security game against a generic
adversary (as de�ned in Def. 29), either the generic adversary cannot defeat the game or there exists
an extractor that can extract a �distinguishing polynomial� such that the polynomial is identically zero
in one experiment and identically non-zero in the other. A bit-guessing game is de�ned as a game
where the adversary outputs a bit and their advantage wins if they guess the challenger's random bit
with greater than 1/2 + negl(λ) chance.

Proof of Lemma 31. We observe that any query the adversary makes to a single oracle could instead
be made to a 'polynomial' oracle. We de�ne this polynomial oracle as such: Oggm(η, α, β, κ) where η
refers the the scalar the adversary wishes to exponentiate P by, α refers to the scalar the adversary
wishes to exponentiate P a by, β for P b, and κ for P c.

We call this the polynomial oracle because a reduction can represent queries as polynomials. For
example, in the above query, the reduction can represent the adversary's query as P (η, α, β, κ) =
η + αa+ βb+ κc. The reduction can then map these polynomials to encodings.

If the adversary has an oracle in the experiment, we can update this GGM oracle. Perhaps the
adversary has a signature oracle which returns a single element (σ) as the signature. We can update
this oracle as the adversary makes more and more queries. After the adversary makes one signature
query, the challenger updates the oracle to accept Oggm(η, α, β, κ, δ1) where δ1 is the scalar the
adversary wishes to exponentiate the �rst signature by. After q queries, the adversary has access to
the oracle, Oggm(η, α, β, κ, δ1, . . . , δq).

Further, we see that this distinguishing query must be equal to a polynomial that the adversary
previously queried in one experiment, and distinct from that query in the other experiment. If this is
not the case, the reduction could update the map, ϕ, to make the adversary's view the same in both
games.

Thus, if the adversary makes this distinguishing query to distinguish the two experiments, we �nd two
polynomials in experiment 1, p1,1 and p2,1 such that p2,1(K2)−p1,1(K1) = 0 where K1 and K2 are the
sets of scalars the adversary used in these queries. But, in the second experiment, p′2,1(K2)−p′1,1(K1) ̸=
0.

Thus, we see that if the adversary can distinguish the two experiments, the challenger must be able to
sift through the adversary's queries to �nd a polynomial in one of the experiments that is identically
zero, while in the other experiment, the polynomial is not identically zero.

We use this observation in our proofs by proving that there is no such polynomial that is identically
zero in one experiment while being non zero in the other. Thus, the adversary must not have been
able to distinguish the two games.

As an extra note, we can see that because we only increase the options of the GGM oracle as the
adversary makes new queries, any distinguishing query the adversary could've made during the game
could've instead been made at the end of the game, after they've �nished querying the oracles. This
observation simpli�es our proofs.

Lemma 32 (Extraction of mi values from valid messages). In the APKCH hiding game,
before the challenge, because the message satis�es ∀i ∈ [ℓ], e(Mi, V̂i) = e(Mi+ℓ, V̂i+ℓ), the adversary
must know the discrete logs, {mi}i∈[ℓ], such that mi = dlogBi

(Mi) = dlogBℓ+i
(Mℓ+i) for 0 < i ≤ ℓ.
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Proof intuition for Lemma 32. We can see that if bi, b̂i, v̂i are independently random, then, verifying
messages using V̂i allows us to extract the mi values in the generic group model. As a quick example
to give the reader intuition as well as a review of the generic group model, we'll show this holds for
messages when ℓ = 2. Suppose an adversary supplies M = (M1,M2,M3,M4) such that e(M1, V̂1) =
e(M3, V̂3) and e(M2, V̂2) = e(M4, V̂4). We want to prove that we can extract m1 = dlogB1

(M1) =
dlogBℓ+1

(M3) and m2 = dlogB2
(M2) = dlogBℓ+2

(M4). By �extract� we mean that the adversary must
query these values into the GGM oracle. A generic adversary in the GGM cannot compute the group
operations themselves and instead must query an oracle with scalars and encodings of group elements
to perform group operations. The adversary receives encodings of the generators of the generic group,
as well as encodings of any elements that the challenger creates. Thus, for pp generated for ℓ = 2,
the adversary has encodings of P,B1, B2, Bℓ+1, Bℓ+2. Ignoring the signature oracle, the adversary
must construct M1 from known encodings, i.e. the public parameters. This means they can choose

a set of scalars: K(1) = (γ(1), α
(1)
1 , α

(1)
2 , κ

(1)
1 , κ

(1)
2 ) ∈ Zp, and query the group operation oracle for

G1 to compute: M1 = P γ(1)

B1
α

(1)
1 B2

α
(1)
2 Bℓ+1

κ
(1)
1 Bℓ+2

κ
(1)
2 . Let us also label their computation of M3

as M3 = P γ(3)

B1
α

(3)
1 B2

α
(3)
2 Bℓ+1

κ
(3)
1 Bℓ+2

κ
(3)
2 . Because e(M1, V̂1) = e(M3, V̂3) (and dlogP (V̂1) = (v̂1b̂1)

and dlogP (V̂3) = (v̂1)) we know that:

(γ(1) + b1α
(1)
1 + b2α

(1)
2 + (b1b̂1)κ

(1)
1 + (b2b̂2)κ

(1)
2 ) ∗ v̂1b̂1

= (γ(3) + b1α
(3)
1 + b2α

(3)
2 + (b1b̂1)κ

(3)
1 + (b2b̂2)κ

(3)
2 ) ∗ v̂1 (2)

We can simplify this by dividing both sides by 1/(b1b̂1):

(γ(1) + b1α
(1)
1 + b2α

(1)
2 + (b1b̂1)κ

(1)
1 + (b2b̂2)κ

(1)
2 ) ∗ v̂1/b1

= (γ(3) + b1α
(3)
1 + b2α

(3)
2 + (b1b̂1)κ

(3)
1 + (b2b̂2)κ

(3)
2 ) ∗ v̂1/(b1b̂1) (3)

Distibuting Eq. 3 we get Eq 4:

(γ(1)v̂1/b1 + α
(1)
1 v̂1 + b2α

(1)
2 v̂1/b1 + b̂1κ

(1)
1 v̂1 + b2b̂2κ

(1)
2 v̂1b̂1)

= (γ(3)v̂1/(b1b̂1) + α
(3)
1 v̂1/b̂1 + b2α

(3)
2 v̂1/(b1b̂1) + κ

(3)
1 v̂1 + b2b̂2κ

(3)
2 v̂1/(b1b̂1)) (4)

This implies that when you subtract the right side of Eq. 4 from the left, it equals 0. The general
proof strategy in the GGM is to leave values that the adversary does not know unde�ned and instead
have the oracle remember algebraic relations between encodings to return encodings such that the
adversary will not notice that the challenger has not initialized the unde�ned variables. We call these
unde�ned variables �indeterminate�. The oracle then samples the indeterminate after the game is
complete and proves that there is a negligible chance that the adversary's scalar operations resulted
in winning the security game (e.g. creating a forgery). We can see that every term on the right side

of Eq. 4 includes indeterminate 1/b̂1 except for v̂1κ
(3)
1 . On the left side, every term has 1/b1 or b̂1

except for v̂1α
(1)
1 . Thus, because b̂1 and b1 are indeterminate, the only way for the adversary to satisfy

this relation in the GGM after the GGM oracle instantiates variables b1 and b̂1 randomly is to set

κ
(3)
1 = α

(1)
1 and leave all other chosen values 0. This gives us M1 = B1

α
(1)
1 and M3 = Bℓ+1

κ
(3)
1 ,

allowing a reduction to extract an m1 value that satis�es M1 = B1
m1 and M3 = Bℓ+1

m1 . While the
v̂1 and v̂2 values seem unnecessary here, they ensure that an adversary that knows m1,m2 cannot
use the bases (V̂i) to recognize a message after it has been randomized. We now introduce the formal
proof of Lemma 32.

Proof of Lemma 32. To prove this, we'll �rst show that using the public parameters alone, a generic
adversary cannot produce a message where they do not know the correct discrete log.

The adversary sees pp = {Bi, B̂i, Bℓ+i, B̂ℓ+i, Vi, Vi+ℓ, V̂i, V̂i+ℓ}i∈[ℓ], where ∀i ∈ [ℓ], Bi ← P bi , B̂i ←
P̂ b̂i , Bℓ+i ← P bib̂i , B̂ℓ+i ← P̂ b̂id̂i , V̂i = P̂ v̂i/bi , V̂i+ℓ = P̂ v̂i/bib̂i , Vi = P vi/b̂i , Vi+ℓ = P vi/bib̂i .
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The adversary sees {Bi, Bℓ+i, Vi, Vi+ℓ}i∈[ℓ] in G1 and can exponentiate these values to create a mes-
sage. Thus, we can represent any element in G1 that the adversary can create with the following
polynomial: Q({αi, κi, νi, νi+ℓ}i∈[ℓ]) =

∑
i∈[ℓ] αibi+

∑
i∈[ℓ] κibib̂i+

∑
i∈[ℓ] νivi/b̂i+

∑
i∈[ℓ] νi+ℓvi/(bib̂i),

where {αi, κi, νi, νi+ℓ}i∈[ℓ] can be chosen by the adversary. We'll look at one veri�cation equa-
tion for Mj and Mj+ℓ and label Q(K) where K = {αi, κi, νi, νi+ℓ}i∈[ℓ] as the computation of Mj

and Q′(K ′) where K ′ = {α′
i, κ

′
i, ν

′
i, ν

′
i+ℓ}i∈[ℓ] as the computation for Mj+ℓ. We see that because

e(Mj , V̂j) = e(Mj+ℓ, V̂j+ℓ), we must have that v̂jQ(K)/bj = v̂jQ
′(K ′)/(bj b̂j). We can multiply this

equation on either side by bib̂i to we see that Q(K)b̂j = Q′(K ′). Thus, it must be that:∑
i∈[ℓ] αibib̂j+

∑
i∈[ℓ] κibib̂ib̂j+

∑
i∈[ℓ] νivib̂j/b̂i+

∑
i∈[ℓ] νi+ℓvib̂j/(bib̂i) =

∑
i∈[ℓ] α

′
ibi +

∑
i∈[ℓ] κ

′
ibib̂i+∑

i∈[ℓ] ν
′
ivi/b̂i +

∑
i∈[ℓ] ν

′
i+ℓvi/(bib̂i)

We can quickly see that these polynomials will certainly not be equal if we have any αi, κi, νi, νi+ℓ ̸= 0
where i ̸= j since in this case, the left equation would have some bib̂j or b̂j/b̂i term which the right
equation does not. From this, we can deduce that for all i ̸= j, α′

i, κ
′
i, ν

′
i, ν

′
i+ℓ = 0, since we established

that for any term where i ̸= j, the left side must be zero and thus including any non-zero indeterminate
on the right side of the equation would unbalance the equation.

Thus, we have that only the bases, {Bj , Bℓ+j , Vj , Vℓ+j} are used in the computation of Mj ,Mj+ℓ for
any j (critically, {Bi, Bℓ+i, Vi, Vℓ+i}i∈[ℓ]\{j} are excluded from the computation). Thus, we have the
following equation for the veri�cation of Mj and Mj+ℓ:

αjbj b̂j + κjbj b̂
2
j + νjvj + νj+ℓvj/(bj) = α′

jbj + κ′
jbj b̂j + ν′jvj/b̂j + ν′j+ℓvj/(bj b̂j)

From this, we can see that this is only satis�ed when αj = κ′
j and all other values chosen by the

adversary are 0. Thus, we can extract mi = αj = κ′
j = dlogBi

(Mi) = dlogBℓ+i
(Mi+ℓ).

Next, we need to show that even after seeing signatures, the adversary cannot include secrets from
the signatures in their messages. Since the adversary cannot create a message without knowing the
discrete log using the parameters, and the public key is in G2, we know the message in the �rst query
to the signing oracle is independent of any of the challenger's secret. Now, we'll assume this for query
n and show that for n+ 1 this holds (proof by induction).

For query j, the adversary chooses a message, {µi,j}i∈[ℓ], and the challenger signs it, yielding Zj =∏
i,j P

µi,jbib̂ixiyj , Yj = P 1/yj in G1. After query n, the adversary has seen {Zj , Yj}j∈[n] in G1 along
with the public parameters. LetK be the set of the adversary's choices.K = {µi,j , γj , αi, κi, νi, νi+ℓ}j∈[n],i∈[ℓ]

where αi, κi, νi, νi+ℓ are de�ned similar to their previous de�nition in this proof, µi,j is the choice of
message, and γj is the scalar for Yj . We can update the polynomial representing any of the adversary's
evaluations in G1 from the last proof (when the adversary only had pp). We'll split this polynomial
(R) into the sum of two polynomial: Q (from the last proof) and S using signatures (new to this
proof). R(K) = Q(KQ) + S(KS) where KQ = {αi, κi, νi, νi+ℓ}i∈[ℓ] and KS = {µi,j , γj}i∈[ℓ],j∈[n]. S is

de�ned as S(KS) =
∑

j∈[n](
∑

i∈[ℓ] µi,jbib̂ixiyj) +
∑

j∈[n] γj/yj . We do not include a direct scalar for
exponentiating Zj values because any scaling of Zj by the adversary can be countered by multiplying
with µi,j , as the relation is proportional.

Again, focusing on one veri�cation equation for index k:

If e(Mk, V̂k) = e(Mk+ℓ, V̂k+ℓ) we see that b̂kR(K) = R′(K ′) (where R(K) is the adversary's com-
putation of Mk and R′(K ′) is the computation of Mk+ℓ). Because S is dependent on yj which does
not appear in Q, no term in Q can be used to cancel these terms out. Thus, it must be that:
b̂kS(KS) = S′(K ′

S). This means that:∑
j∈[n](

∑
i∈[ℓ] µi,j b̂kbib̂ixiyj) +

∑
j∈[n] γj b̂k/yj =

∑
j∈[n](

∑
i∈[ℓ] µ

′
i,jbib̂ixiyj) +

∑
j∈[n] γ

′
j/yj

Where K ′
S = {µ′

i,j , γ
′
j}i∈[ℓ],j∈[n] are the adversary's choices from K ′ used in the computation of

Q′(K ′
S) used to compute Mk+ℓ. We can see that all terms on the left side of the equation include the

indeterminate b̂k whereas on the right side, only one includes b̂k. Thus, it must be that:∑
j∈[n](

∑
i∈[ℓ] µi,j b̂kbib̂ixiyj) +

∑
j∈[n] γj b̂k/yj = (

∑
i∈[ℓ] µ

′
i,jbib̂kxiyk) + γ′

k/yk

We can see that on the left side, each term includes some yj when j ̸= k and thus it must be that:
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(
∑

i∈[ℓ] µi,j b̂kbib̂ixiyk) + γk b̂k/yk = (
∑

i∈[ℓ] µ
′
i,jbib̂kxiyk) + γ′

k/yk

We can see that terms on the left side include either b̂k b̂i or b̂k/yk while indeterminate of this form
are absent on the right side. Thus, it must be that ∀i ∈ [ℓ], j ∈ [n], µi,j = 0, γj = 0.

Thus, after n queries to the oracle, the adversary must still know the discrete log of the message, and
thus by induction, must always know the discrete logs of messages during the game. □

Recall (see Fig. 2) the security game. After the adversary interacts with the signing oracle for pk for
a while, it is ready to receive its challenge: a public key pkb that is either in the same equivalence
class as pk or in the same class as pkA chosen by the adversary; as well as the signature σb under
pkb on the message M of the adversary's choice. The adversary may continue making further queries
to the signing oracle for the original public key pk. After receiving (pkb, σb), the adversary may be
able to use the fact that, in case b = 1, the signature σb will include the adversary's own secrets. For
example, the adversary can incorporate these secrets into the messages they choose to query to the
signing oracle. Thus, we need to prove a second lemma to ensure that the adversary does not include
elements of previous signatures in their queries after receiving the challenge.

Lemma 33 (Extraction of mi values from valid messages after the challenge). In the
APKCH hiding game, because the message satis�es ∀i ∈ [ℓ], e(Mi, V̂i) = e(Mi+ℓ, V̂i+ℓ), the adversary
must know the discrete logs, {mi}i∈[ℓ], such that mi = dlogBi

(Mi) = dlogBℓ+i
(Mℓ+i) for 0 < i ≤ ℓ.

Proof of Lemma 33. We can apply our logic from the proof of Lemma 32 to ensure that when b = 0
the adversary cannot make their messages depend on secrets from the signature since the returned
challenge will be distributed identically to other queries. This is because the challenge signature
comes from the same oracle that the adversary has already been receiving signatures on, it is just
randomized. Thus, �xing b = 0, if an adversary exists that can break key extraction with the challenge,
we can reduce to a reduction that does not receive this challenge, but instead simply queries one more
signature, randomizes it, and hands it to this adversary as the challenge.

When b = 1, the adversary gains a values in G1 which are distinct from previous signatures. Speci�-
cally, they learn: Zc = P

∑
i∈[ℓ] µi,cρcχiyc and Yc = P 1/yc where {χi}i∈[ℓ] is the adversary's secret key,

{µi,c}i∈[ℓ] is the adversary's submitted message, ρc is the randomization that the challenger computes,
and yc is the randomizer used in the signature. As in the proof of Lemma 32, we split the polynomials
representing Mk and Mk+ℓ into sums of polynomials Q and S. But, we include Zc in the computation
of S such that for KS = {µi,c, γc, µi,j , γj}i∈[ℓ],j∈[n], S(KS) =

∑
j∈[n](

∑
µi,jbib̂ixiyj)+

∑
j∈[n] γj/yj +

(
∑

µi,cbib̂iρcyc)+γc/yc. Again, because the adversary could simply compute µ′
i,c = χiµi,c, we do not

include χi in this polynomial WLOG.

Again, we see that all terms in S(KS) include yc or yj and thus, no term in Q(KQ) can cancel these

indeterminate out. Thus it must be that S(KS)b̂k = S(K ′
s)∑

j∈[n](
∑

µi,j b̂kbib̂ixiyj) +
∑

j∈[n] γj b̂k/yj + (
∑

µi,cb̂kbib̂iρcyc) + γcb̂k/yc

=
∑

j∈[n](
∑

µ′
i,jbib̂ixiyj) +

∑
j∈[n] γ

′
j/yj + (

∑
µ′
i,cbib̂iρcyc) + γ′

c/yc

Using similar logic from the proof of Lemma 32 we can see that ∀i ∈ [ℓ], j ∈ [n], µi,j = 0, µi,c = 0, γj =
0 and γc = 0. The logic from the proof of Lemma 32 holds because it only relies on the presence of
b̂k and not on xi which is the only di�erence that the challenge signature has. □

Before we continue, we need to prove that we can extract the secret key from the adversary's public
key in the experiment in Fig. 2. We de�ne this property in Def. 34.

De�nition 34 (Key extractability). For all parameters λ, ℓ and any PPT algorithm, A, there
exists an e�cient extraction algorithm, Esk and negligible function, negl such that:

Pr

[
VerifyKey(pp, pkA) = 1∧
(skA, pkA) ̸∈ KGen(pp)

∣∣∣∣∣ pp← Setup(1λ, 1ℓ); (sk, pk)← KGen(pp);

pkA ← ASign(sk,·)(pp); skA ← Esk(pkA)

]
≤ negl(λ)

Lemma 35 (Extraction of the secret key (xi) values from valid public keys). The mercurial
signature construction in Fig. 3 has key extraction as de�ned in Def. 34.
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Proof of Lemma 35. Intuitively, in the APKCH hiding game, because the public key satis�es ∀i ∈
[ℓ], e(Vi, X̂i) = e(Vi+ℓ, X̂i+ℓ), the adversary must know the discrete logs, {xi}i∈[ℓ], such that xi =

dlogB̂i
(X̂i) = dlogB̂ℓ+i

(X̂ℓ+i) for 0 < i ≤ ℓ.

More formally, the adversary sees pp = {Bi, B̂i, Bℓ+i, B̂ℓ+i, Vi, Vi+ℓ, V̂i, V̂i+ℓ}i∈[ℓ], where ∀i ∈ [ℓ], Bi ←
P bi , B̂i ← P̂ b̂i , Bℓ+i ← P bib̂i , B̂ℓ+i ← P̂ b̂id̂i , V̂i = P̂ v̂ib̂i , V̂i+ℓ = P̂ v̂i , Vi = P vid̂i , Vi+ℓ = P vi .

After q queries to the signature oracle, the GGM adversary will create the following polynomials in
G2:

P (K) =
∑

βib̂i +
∑

βℓ+ib̂id̂i +
∑

γjyj + νiv̂ib̂i +
∑

νiv̂i

Where K is a set of the adversary's choice of βi, γj , and νi.

Because the adversary's public key veri�es, i.e. e(Vi, X̂i) = e(Vℓ+i, X̂ℓ+i), we know that:

d̂iP (Ki) = P (Kℓ+i)

Thus, P (Kℓ+i) must contain d̂i or P (K) must be zero, which can be easily detected and rejected. We

can see that the only term in P (K) that includes d̂i is βℓ+ib̂id̂i. Thus, the adversary must use this
term in the computation of P (Kℓ+i).

We can see that this includes the indeterminate b̂i. Thus, the adversary must include the terms βib̂i
or νiv̂ib̂i in the computation of P (Ki). If the adversary were to include νiv̂ib̂i in the computation of

P (Ki), we can see that no other term includes d̂iv̂ib̂i. Thus, there would be no way for the adversary

to balance this equation. Therefore, the adversary must only use the term βib̂i for P (Ki) and βℓ+ib̂id̂i
for P (Kℓ+i), meaning we can extract these values as the correct secret key.

After the challenge, the adversary only learns a single additional element in G2, Ŷ = P̂ 1/y. The
discrete log of this element is independent of any other elements that the adversary saw in G2 so it
does not help the adversary incorporate it into their computation of any verifying public key.

Proof of Thm. 12. In proving Thm. 12, we'll see that Lemma 36 will become useful. This game in
this lemma is similar to PKCH of the construction in [CL19] but does not give the adversary oracles
and instead generates a signature on a single message (where the adversary knows the message itself).
This game is similar to the public key class-hiding game in [CL19], but the adversary receives some
structured bases as Bl,Bu, and B̂l are related in a DDH type of way. They also e�ectively can only
query the oracle once, which is modeled by having the adversary output the message that they want
signed and then calling them with the signature later. Later, our reduction will play the role of the
adversary in this experiment.

Lemma 36. For any PPT generic adversary, A = {A1,A2}, we have that∣∣Pr [ExpPKCH−Prf,0
A = 1

]
- Pr

[
ExpPKCH−Prf,1

A = 1
] ∣∣ is negligible. Where the experiment ExpPKCH−Prf,b

A
is described in Fig. 12.
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{bi, b̂i, ei}i∈[ℓ], ρ, y ←$ Zp
Bl = {Bi}i∈[ℓ] where Bi = P bi

Bu = {Bℓ+i}i∈[ℓ] where Bℓ+i = P bi b̂i

B̂l = {Bi}i∈[ℓ] where B̂i = P̂ b̂i

Ê0 = {E0
i }i∈[ℓ] where Ê

0
i = P̂ ρb̂i

Ê1 = {E1
i }i∈[ℓ] where Ê

1
i = P̂ ei

m← A1(B
l,Bu, B̂l, Êb)

Z0 = (
∏
Pmiρb̂i)y, Y 0 = P 1/y, Ŷ 0 = P̂ 1/y

Z1 = (
∏
Pmiei)y, Y 1 = P 1/y, Ŷ 1 = P̂ 1/y

b′ ← A2(Z
b, Y b, Ŷ b)

return b′

Fig. 12. Experiment ExpPKCH-Prf,b
A used in Proof of Thm. 12.

Proof of Lemma 36. We will prove this in the generic group model. In the generic group model, the
goal of any adversary is to �nd a computation that is equivalent to e(P, P̂ ) when b = b′ but is not
equal to e(P, P̂ ) when b = 1− b′.

Lemma 37. If the adversary does not use Bℓ+i values in their distinguishing polynomial in Fig. 12,
we can reduce to PKCH of the mercurial signature construction in [CL19] (distinguishing polynomials
are de�ned in Lemma 31).

Proof of Lemma 37. Intuitively, this Lemma holds because Bℓ+i is the only element that di�ers from
the PKCH game and everything else, a reduction can generate. This can be seen by looking at com-
putations that the adversary can create without these elements (disregarding Z for now):

e(P, P̂ )η
∏

e(P, B̂i)
βl
i
∏

e(P, Êb
i )

ϵi
∏

e(Bi, P̂ )α
l
i
∏

e(Bi, B̂j)
γα,i
β,j

∏
e(Bi, Ê

b
j )

γα,i
ϵ,j

This polynomial appears as:
Q(K) = η +

∑
b̂i ∗ βl

i +
∑

ei ∗ ϵi +
∑

bi ∗ αl
i +

∑
bi ∗ b̂j ∗ γα,i

β,j +
∑

bi ∗ ej ∗ γα,i
ϵ,j

We can create a reduction playing the PKCH game with the CL19 construction which generates
these trapdoors, bi itself. Because we are assuming that Bℓ+i is never included in any distinguishing
polynomial, our reduction does not need to know b̂i to create encoding when the adversary expo-
nentiates it. Instead, the reduction simply leaves the discrete log of each Bℓ+i as an indeterminate
and maps any encoding of this element to be the same as e(Bi, B̂j). After this adversary �nds a
distinguishing polynomial, our reduction removes their own trapdoors from the polynomial, leaving:
Q′(K) = η +

∑
b̂i ∗ βl

i +
∑

ei ∗ ϵi +
∑

αl
i +

∑
b̂j ∗ γα,i

β,j +
∑

ej ∗ γα,i
ϵ,j

We can see that if Q(K) is a distinguishing polynomial in the game in Fig. 12, then Q′(K) is a
distinguishing polynomial in the CL19 game when we replace B̂ℓ+i with elements from the pk1 from
the CL19 challenger and replace Êb

i with elements from the pkb2 challenger. Thus, the adversary must
include one of these elements (Bℓ+i or Z) in their distinguishing polynomial, otherwise, we break the
PKCH of the construction in CL19. We have a similar argument to Lemma 37 for proving that the
distinguishing polynomial cannot be independent of Bℓ+i as our reduction can generate Zb using the
CL19 challenger. □

Thus, we �nd that the distinguishing polynomial must include Bℓ+i (Lemma 37).

The only elements that have bi in them are Bi and Bℓ+i. Thus, for the adversary to win, they must
be able to cancel out the Bℓ+i that they include in their computation with one of these elements.

The adversary must also include the Z or Êb
i elements as these are the only elements that di�er in

the two games.

We can see that (without using Zb) any computation with Y or Ŷ will only add the indeterminate
1/y to the computation, any these could simply be replaced with P with the same result. So, we can
ignore these for now.

Because the Zb values are independent of the bi values, they cannot be used to cancel out the given
Bℓ+i. These might still be useful if the adversary is able to �rst cancel out the bi present in their
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computation of Bℓ+i. Thus, if we can �rst prove that the adversary cannot cancel out the bi in their
computation without the Zb values, there's nothing the adversary can do to use these Zb values to
obtain an equation that results in e(P, P̂ ).

In a similar argument, no computation without Bi or Bℓ+i can be used to cancel out the bi values.

Thus, the part of the adversary's computation that cancels out bi appears as the following equation
where the adversary can choose to include or remove speci�c pairings:∏

e(Bi, P̂ )γ
α,i ∏

e(Bi, B̂j)
γα,i
β,j

∏
e(Bi, Ê

b
j )

γα,i
η,j

∏
e(Bℓ+i, P̂ )γ

κ,i ∏
e(Bℓ+i, B̂j)

γκ,i
β,j∏

e(Bℓ+i, Ê
b
j )

γκ,i
η,j

In order to cancel out an bi, there must be some division of elements with this value. For any Bi or
Bℓ+i used in the numerator of the computation, there must be another in the denominator.

Thus, ∀i, γα,i + γα,i
β,j + γα,i

η,j + γκ,i + γκ,i
β,j + γκ,i

η,j = 0

Let's look at the discrete log of this equation:

If b = 0:∑
γα,ibi +

∑
γα,i
β,jbib̂j +

∑
γα,i
η,j biρb̂j +

∑
γκ,ibib̂i +

∑
γκ,i
β,jbib̂ib̂j +

∑
γκ,i
η,jbib̂iρb̂j

If b = 1:∑
γα,ibi +

∑
γα,i
β,jbib̂j +

∑
γα,i
η,j biej +

∑
γκ,ibib̂i +

∑
γκ,i
β,jbib̂ib̂j +

∑
γκ,i
η,jbib̂iej

We can see that if the adversary sets γα,i > 0, they have a e(P, P̂ )
bi
term. Because each other term

has b̂i, this cannot be removed from the polynomial. Thus, it must be that γα,i = 0.

Thus, we have the two computations:

If b = 0:∑
γα,i
β,jbib̂j +

∑
γα,i
η,j biρb̂j +

∑
γκ,ibib̂i +

∑
γκ,i
β,jbib̂ib̂j +

∑
γκ,i
η,jbib̂iρb̂j

If b = 1:∑
γα,i
β,jbib̂j +

∑
γα,i
η,j biej +

∑
γκ,ibib̂i +

∑
γκ,i
β,jbib̂ib̂j +

∑
γκ,i
η,jbib̂iej

It must be that some γα,i
η,j , γ

κ,i
η,j must be non-zero otherwise the equation would always look the same

in both games.

These contain either ρ or ej which are not included in the other terms. Thus, they can only be
canceled out by each other and thus, the adversary must be able to cancel them out with the following
computations:

If b = 0:
∑

γα,i
η,j biρb̂j +

∑
γκ,i
η,jbib̂iρb̂j

If b = 1:
∑

γα,i
η,j biej +

∑
γκ,i
η,jbib̂iej

We can see that the second term in b = 0 contains b̂ib̂j , which the �rst term does not. Thus, this

polynomial must be zeroed out on its own. Similarly for when b = 1, the second term contains b̂i
while the �rst term does not. Thus, these terms must zero out independently of one another. Thus,
we can analyze them independently.

Case 1:

If b = 0:
∑

γα,i
η,j biρb̂j

If b = 1:
∑

γα,i
η,j biej

Case 2:

If b = 0:
∑

γκ,i
η,jbib̂iρb̂j

If b = 1:
∑

γκ,i
η,jbib̂iej

We'll deal with case 1 �rst. We see that any bi cannot be cancelled out for any term that includes a
di�erent bj . Thus, the computation for a �xed i must be equal to e(P, P̂ ). We can see that
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Thus, for a given i,

If b = 0:
∑

j γ
α,i
η,j biρb̂j = e(P, P̂ )

If b = 1:
∑

j γ
α,i
η,j biej = e(P, P̂ )

We can see that each of these terms have a distinct b̂j or ej and thus they can only be zero when

γα,i
η,j = 0 for all j.

Moving on to case 2, we can use the same logic from case 1 to �x an i value.

For a given i,

If b = 0:
∑

j γ
κ,i
η,jbib̂iρb̂j

If b = 1:
∑

j γ
κ,i
η,jbib̂iej

We can see in the second game that each term has a distinct ej in them and thus will never cancel

out. In the �rst game, we see that either there is a distinct b̂j in the term, or a (b̂i)
2 when i = j. In

both cases, the polynomial does not zero out.

Thus, the adversary cannot zero out one polynomial in one game without zeroing out the other game
and due to Lemma 31, the adversary has no chance at distinguishing in the generic group model.□.

Proof of Thm. 12 using Lemma 36. We can now reduce to Lem. 36 to ensure that our scheme in Fig.
3 satis�es APKCH.

To do this, we'll create three hybrids. The �rst hybrid is where the challenge signature (σb) returned
in the APKCH game (Fig. 2) is the same one used in the signature oracle in this game (pk0). The
second hybrid is where the challenge signature returned is from a new random key, independent of
pk0 and pkA. The third hybrid is where the returned challenge secret key is from a randomization of
the adversary's public key pkA.

We'll �rst prove that the �rst two hybrids are indistinguishable. The reduction will generate the sk
used in (Fig. 2). To �rst prove that this reduction secret key is indistinguishable from random in the
challenge key/signature, the reduction will specially craft the public parameters from the challenger

in the ExpPKCH-Prf experiment. The reduction uses P x1
i given from the challenger in experiment

ExpPKCH-Prf to construct the public parameters. This is done by treating x1
i as b̂i in the parameters,

i.e., the reduction samples bi, v̂r, vi ←$ Zp and computes: Bi ← P bi , B̂i ← X̂1
i , Bℓ+i = (X1

i )
bi , B̂ℓ+i =

(X̂1
i )

bi ∀i ∈ [ℓ]. The reduction then computes the veri�cation bases as: ∀i ∈ [ℓ], V̂i = (X1
i )

v̂i , V̂i+ℓ =

P v̂i . We can see that while the reduction does not receive any element like P 1/b̂i , the reduction
can still create veri�cation bases that are distributed identically to an honestly generated scheme
as dlogV̂i

(V̂i+ℓ) = 1/(x1
i ) = 1/(b̂i) exactly like Setup would generate normally. The reduction then

computes the rest of the veri�cation bases as follows: ∀i ∈ [ℓ], Vi = P vi , Vi+ℓ = P vi/bi . This ensures
that the veri�cation bases, {Vi}, are computed correctly as well.

The reduction then generates its challenge key pair, (sk, pk), and gives the public key and parameters
to the adversary.

The reduction then answers signature queries with the public parameters and challenge secret key.

The adversary then submits an adversarial public key and signature. The reduction then �presigns�
the lower half of the message {Mi}i∈[ℓ] with its challenge secret key (computing M ′ = {Mxi

i }) and
passes this message to the challenger in the proof experiment, ExpPKCH-Prf . If the challenger's bit
is b = 0, the challenger exponentiates this message M ′ with its secret key and forms a signature.
We can see that because the reduction presigned the message with the reduction's secret key, this is
distributed identically to a signature from the reduction's secret key as we treat the challenger's secret
key as the b̂i values in the parameters. If the challenger's bit, b, is 1, then this signature appears to
be from a random secret key. To ensure the returned public key from the proof challenger veri�es, we
exponentiate it with bi and concatenate the resulting ℓ dimension vector to the end of the returned
public key.
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We then have a second reduction that operates exactly like the last, but instead of using the reduction's
secret key to presign the message to query to the challenger, it uses the adversary's extracted secret
key. Our reduction must extract the secret key from the adversary. To do this, we leverage Lemma 35
to show that if the public key veri�es, then we can extract the secret key in the GGM (thus ensuring
that the extractor Epk is e�cient).

We formalize this reduction in Fig. 14. This reduction is split into the two algorithms necessary for
the ExpPKCH-Prf experiment and takes in a generic hybrid distinguisher, A, along with the input from
the experiment. We use i = 1 to denote the reduction that distinguishes between hybrids 1 and 2
and i = 2 to denote the reduction that distinguishes between hybrids 2 and 3. We can see that pk′ is
a valid public key because (X̂ ′

i)
bi = X̂i+ℓ, which veri�es when substituted into the verifying pairing

equation: e(Vi, X̂i) = e(Vℓ+i, X̂ℓ+i). Because we used the lower half of the message to pass to the
PKCH-Prf challenger after exponentiating it with sk, this message has the form M′ = {Bi

xi}i∈[ℓ]. If
the PKCH-Prf's secret bit is b = 0, then they exponentiate with their secret key and form the signature
Z, Y, Ŷ . Because we've included the challengers public key elements in our public parameters, the
challenger's secret key is e�ectively equal to {b̂i}i∈[ℓ] for our reduction's public parameters. Thus,

the computation of Z will be: (
∏
(Bi

xi)b̂i)y = (
∏
(Bℓ+i

xi))y, which is distributed identically to a
signature from the reduction's secret key. If b = 1, this Z value will instead be: (

∏
(Bi

xi)x2i)y. This
key e�ectively looks random to the hybrid distinguishing adversary, thus appearing as the second
hybrid. While this signature and public key may not appear to verify as it does not depend on b̂i,
we see that if this signature veri�es in the [CL19] scheme, it will also verify in our scheme as the
construction in [CL19] implies that e(Z, Ŷ ) =

∏
i∈[ℓ] e(M

′
i , X̂i) = 1. We see that our veri�cation

is instead e(Z, Ŷ ) =
∏

i∈[ℓ] e(Mi, X̂
′
i) = 1 where X̂ ′

i = X̂xi
i and M ′

i = Mxi
i (or X̂ ′

i = X̂
xi,A
i and

M ′
i = M

xi,A
i if i = 2). Thus, because of the properties of bilinear pairings, the veri�cation of the

signature holds in our scheme and thus the adversary's view is identical to the real game.

Fig. 13. Hybrid i
Hybrid i(1

λ)
1: pp← Setup(1λ)
2: (sk, pk) = KGen(pp)
3: (pkA, σA,M, stA)← A1(pp, pk)
4: skA ← EAsk (pkA)
5: ρ←$ Zp
6: if i = 0,
7: pk† = ConvertPK(pk, ρ)
8: σ = Sign(ConvertSK(sk, ρ),M)
9: if i = 1,
10: (sk†, pk†) = KGen(pp)
11: σ = Sign(sk†,M)
12: if i = 2,
13: pk† = ConvertPK(pkA, ρ)
14: σ = Sign(ConvertPK(skA, ρ),M)
15: b′ ← A2(stA, pk

†, σ)
16: return b′

Thus, because the �rst hybrid is identical to the APKCH game when b = 0 and the third hybrid
is indistinguishable from the APKCH game when b = 1, we've proven that these two cases are
indistinguishable. □

B.2 Proofs of the extendable construction in Fig. 9

To show that any property of a non-extended scheme still holds for an extended scheme, observe
that ExtendSetup will exponentiate each element in the public parameters with random scalars and
that the resulting public parameters have the same distribution as the extended ones. Thus, our
adversary cannot distinguish between these two cases (where ExtendSetup is called and when Setup is
called). Thus, a reduction to any game on our original construction can be reduced by our extended
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Fig. 14. APKCH proof reduction

Ri,A1 (Bl,Bu, B̂l, Êb)→ (st,M′)
1: d = {d̂i}i∈[ℓ] ←$ Zp
2: r = {v̂i}i∈[ℓ] ←$ Zp
3: o = {vi}i∈[ℓ] ←$ Zp
4: pp = {Di, Bi, Bℓ+i, B̂i, B̂ℓ+i, Vi, Vi+ℓ, V̂i, V̂i+ℓ}i∈[ℓ] where Bi, Bℓ+i, B̂i are drawn from the reduction's in-

put, and Di = P d̂i , B̂ℓ+i = B̂d̂ii =, Vi = P vid̂i , Vi+ℓ = P vid̂i , V̂i = B̂vii , and V̂i+ℓ = P vi

5: (sk, pk) = KGen(pp) such that sk = {xi}i∈[ℓ] and pk = {B̂xii }i∈[ℓ]||{B̂xiℓ+i}i∈[ℓ]

6: (pkA, σA,M, stA)← A1(pp, pk)
7: skA ← EAsk (pkA)
8: if i = 1,M′ = {Mxi

i }i∈[ℓ]

9: if i = 2,M′ = {MxAi
i }i∈[ℓ]

10: return (st,M′)

Ri,A2 (st, σ)→ b
11: if i = 1, pk′ = {(Êbi )xi}i∈[ℓ]

12: if i = 2, pk′ = {(Êbi )x
A
i }i∈[ℓ]

13: pk† = pk′||(pk′)d̂i
14: b′ ← A2(stA, pk

†, σ)
15: return b′

construction by simply a reduction that simply ignores the pp′ given by an adversary and instead
using the pp from the challenger. This works because the ExtendSetup scheme e�ectively chooses a
random set of valid public parameters and thus the one from the challenger is just as likely as any
other set of public parameters. This works because the structure of public parameters can be veri�ed
by performing the following checks: ∀i ∈ [ℓ], e(Vi, B̂i) = e(Vℓ+i, B̂ℓ+i), e(Bi, V̂i) = e(Bℓ+i, V̂ℓ+i) and
e(Bi, B̂i) = e(Bℓ+i, P̂ ). These checks ensure that the public parameters are structured correctly.

When calling FinalizeSetup, for any of the games, we can create a reduction that simply uses td to
exponentiate elements from the challenger with bi and b̂i or exponentiate elements with 1/bi and 1/b̂i
from the adversary. This poses a non-trivial challenge as the adversary submits a signature which
already has these b̂i or bi values in it which our reduction cannot do a pair-wise exponentiation to �x.
But fortunately, if we simply update the veri�cation bases of the public key with 1/b̂i or 1/bi, we can
see that it veri�ed with the un�nalized public parameters and the rest of the public key, signature,
and message are distributed correctly. This makes our reduction valid for the unforgeability game,
but in the APKCH game, the challenger will then return a randomized public key and signature. We
can see that after receiving the public key from the APKCH challenger, this reduction can simply
exponentiate it with bi and b̂i to make it look right for the adversary and thus, our reduction works
for any of the games.

Thus, because we can replace the output of ExtendSetup with fresh parameters, and also, we can
translate messages and public keys between the schemes after using FinalizeSetup to win the security
games with our reduction, our proofs hold when using Setupext instead of Setup □

B.3 DAC proof

Proof of Thm. 21 (Correctness). Root issuance: Because our signatures verify when honestly cre-
ated, we can see that a credential issued from the root will verify. Because our mercurial signatures
are correct, this is true even after the signature and message (delegator key) have been randomized.
Delegator issuance: We can see that if cred1 veri�es, then cred2 will contain that chain, which still
veri�es even when randomized. Because the key space for level L∗ is the message space for L′ (with
equivalence classes matching as well) when we randomize the key for level L′, it matches the message
space of the last signature from cred1 and thus veri�es due to correctness (similarly for keys/signatures
for all L† < L′).

Proof of Thm. 22 (Unforgeability). From the game in Def. 19, we know that if the adversary wins with
non-negligible probability, then one of three cases occurred, either (1) sk0 ̸= skrt , (2) ∀i ∈ [L′], (ski, i) ̸∈
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DELA, or (3) ∃i ∈ [L′], s.t. ski ∈ SKDL. We'll start with the �rst case, where sk0 ̸= skrt . We can see
that our construction checks to ensure that the �rst public key is the root's key so this cannot occur.
In the second case, we have that ∀i ∈ [L′], (ski, i) ̸∈ DELA. In this case, we have that no key in the
credential chain was actually delegated to that adversary. In this case, we can either reduce to the
unforgeability of the scheme, or recover a secret key of an honest user through the adversary's proof
of knowledge of the end user. In the third case, we have that ∃i ∈ [L′], s.t. ski ∈ SKDL. Because
the TRA reveals the secret keys of any blacklisted user, and recognizing public keys succeeds with
probability 1, we see that this cannot happen. Thus, our DAC scheme is unforgeable.

Proof of Thm. 23 (Anonymity). We can see in the anonymity game that the only di�erence is between
b = 0 and b = 1 is when the adversary receives the anonymity challenge. We will construct hybrids
that replace the non-root public keys with random public keys starting from the lowest level and
working up. We can create hybrids that replace public keys and signatures from the bottom up to
prove that either credential that the challenger picks is indistinguishable from a random chain.

De�nition 38 (Hybridb,j).

1: pp← Setup(1λ, 1L)
2: (tsk , tpk)← Setup(pp)

3: (st , pkrt , sk0, cred0, sk1, cred1, L
′)← AORegisterUser(·),ORevokeUser(·)

0 (pp)
4: ∀i ∈ {0, 1}, if (Prove(pp, ski, credi, L

′)↔ Verify(pkrt , L
′,DL)) ̸= 1, return ⊥

5: {(pki, σi, tok i)} ← credb
6: skj−1 = Epk(pkj−1)
7: ∀i ∈ [L′ − j],
8: (skj+i−1, pk

∗
j+i−1)← PK(pp),

9: tok∗
j+i−1 ← RegisterUser(pp, tsk , pkj+i−1)

10: σ∗
j+i−1 ← Sign(pp, skj+i−2, pkj+i−1)

11: cred∗ = {(pki, σi, tok i)}i∈[j]∥{(pk∗j+i−1, σ
∗
j+i−1, tok

∗
j+i−1)}

12: Prove(pp, sk∗L′ , cred∗, L′)↔ A1(st)→ b′

To create these hybrids, the challenger in these hybrids will extract the secret keys from the public
keys in the chains. We construct our reduction from an adversary that can distinguish hybrid j and
j + 1 to APKCH in Def. 39.

After we've proven that Hybrid0,0 is indistuiguishable from Hybrid0,L, we can again create hybrids
that instead use the public keys in cred1 in the anonymity challenge, thus proving that Hybrid1,0 is
indistinguishable from Hybrid1,L. We then observe that Hybrid0,L is identical to Hybrid1,L as all keys
have been replaced with random ones. Thus, at either end of our hybrids, we'll have either case of
the anonymity challenge and thus prove that they are indistuighuishable.

De�nition 39 (Reduction of distinguishing Hybridb,j from Hybridb,j+1 to APKCH).

ROSign(sk,·)
1 (pk, pp)→ (pk∗, σ∗,M∗, st)

1: If j = L − 1, the reduction interacts with Setupext in the APKCH game by �rst supplying ⊥ (as
pp0 on line Line 1 of Setupext in Fig. 7) to make the challenger generate the parameters using
Setup. The reduction receives the public parameters from the challenger which they label pp′L
(these parameters are generated by the challenger on line Line 3 of Fig. 7 in Setupext and in that
function they are labeled pp1). The reduction then generates (pp′L−1, td

′
L−1)← ExtendSetup(pp′L)

and returns tdL−1 to the challenger (on line Line 4 of Setupext as td ′) which allows the challenger
to �nalize their setup parameters. The challenger then returns the �nalized parameters, which the
reduction labels ppL. The reduction then generates ∀i ∈ [L− 1](pp′i−1, td

′
i−1)← ExtendSetup(pp′i)

and ∀i ∈ [L − 1] \ {L}, (ppi, td i) ← FinalizeSetup(pp′i, td
′
i, td

′
i−1). The reduction then computes

ppDAC = {ppi}i∈[L].

2: If j ̸= L − 1, the reduction generates (pp′L, td
′
L) = Setup(1λ, 1ℓ=2) and then calls ∀i ∈ [L −

j], (pp′j+i, td
′
j+i)← ExtendSetup(ppj+i+1). The reduction then interacts with Setupext in the APKCH

game by supplying pp′j+1 as the parameters labeled pp0 in Setupext in Fig. 7. The reduction

labels these parameters as pp′j. The challenger then extends this computing (pp′j−1, td
′
j−1) =

ExtendSetup(pp′j) and returns td ′
j−1 to the challenger (labeled td ′ in Fig. 7). The challenger then
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returns public parameters which the reduction labels as ppj. The reduction then �nishes initializ-

ing the scheme by computing ∀i ∈ [j−2], (pp′i, td
′
i ← ExtendSetup(pp′i+1). The reduction then calls

∀i ∈ [j−1], (ppi, td i)← FinalizeSetup(pp′i, td
′
i, td

′
i−1) to �nish the parameters, ppDAC = {ppi}i∈[L].

3: (tsk , tpk)← TKeyGen(ppDAC)

4: (st , pkrt , sk0, cred0, sk1, cred1, L
′)← AORegisterUser(·),ORevokeUser(·)

0 (ppDAC)
5: ∀i ∈ {0, 1}, if (Prove(pp, ski, credi, L

′)↔ Verify(pkrt , L
′, tpk)) ̸= (1, ∗), return ⊥

6: {(pki, σi, tok i)} ← credb
In the next line, the reduction returns their public key pkj, signature σj, and message, pkj+1 to
the APKCH challenger.

7: return (pkj , σj , pkj+1, st = (tsk , ppDAC))

ROSign(sk,·)
2 (pp, st, pkb

∗
, σb∗)→ b′

Here, the reduction has received pkb
∗
, σb∗ from the APKCH challenger which is either a random-

ization of pkj , σj or a new signature form an unrelated key.

8: tok∗ ← RegisterUser(pp, tsk , pkb
∗
)

9: cred∗ = {(pki, σi, tok i)}i∈[j]

∥{(pkb
∗
, σb∗ , tok∗)}

∥{(pkj+i, σj+i, tok j+i)}i∈[L′−j]

10: Prove(ppDAC, sk
∗
L′ , cred∗, L′)↔ A1(st)→ b′

Analysis. We can see that if the APKCH challenger's bit, b, is 0, this appears identical to Hybridb,j .
This is because the challenger returns a pkb in the same equivalence class as pkj . Because our scheme
achieves perfect origin-hiding, this means that this appears exactly as if a real user had randomized
it. If b is 1, then pkb is a random public key, and we appear exactly as Hybridb,j+1. This is because
the pkb returned is now a random public key.

For issuing, we can see that the proof is similar, except that the issuer produces a credential chain
on a message from the adversary as long as that message veri�es.
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