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Abstract. Several cryptographic primitives, especially succinct proofs
of various forms, transform the satisfaction of high-level properties to
the existence of a polynomial quotient between a polynomial that in-
terpolates a set of values with a cleverly arranged divisor. Some exam-
ples are SNARKs, like Groth16, and polynomial commitments, such as
KZG. Such a polynomial division naively takes O(n logn) time with Fast
Fourier Transforms, and is usually the asymptotic bottleneck for these
computations.
Several works have targeted specific constructions to optimize these com-
putations and trade-off one-time setup costs with faster online compu-
tation times. In this paper, we present a unified approach to polynomial
division related computations for a diverse set of schemes. We show how
our approach provides a common abstract lens which recasts and im-
proves existing approaches. Additionally, we present benchmarks for the
Groth16 and the KZG systems, illustrating the significant practical ben-
efits of our approach in terms of speed, memory, and parallelizability.
We get a speedup of 2× over the state-of-the-art in computing all open-
ings for KZG commitments and a speed-up of about 2− 3% for Groth16
proofs when compared against the Rust Arkworks implementation. Al-
though our Groth16 speedup is modest, our approach supports twice the
number of gates as Arkworks and SnarkJS as it avoids computations at
higher roots of unity. Conversely this reduces the need for employing
larger groups for bigger circuits. For example, our approach can support
228 gates with BN254, as compared to 227 for coset-based approaches,
without sacrificing computational advantages.
Our core technical contributions are novel conjugate representations and
compositions of the derivative operator and point-wise division under the
Discrete Fourier Transform. These allow us to leverage l’Hôpital’s rule
to efficiently compute polynomial division, where in the evaluation basis
such divisions maybe of the form 0/0. Our techniques are generic with
potential applicability to many existing protocols.

1 Introduction

Polynomial divisions play a very important role in various cryptographic ap-
plications, especially in the domain of zero-knowledge proofs. With the advent
of succinct non-interactive arguments of knowledge (SNARKs), zero-knowledge



proofs have gained immense popularity due to their efficiency and scalability, en-
abling practical applications in blockchain technologies and privacy-preserving
computations.

A typical recipe for constructing a SNARK involves combining a polynomial
commitment scheme with an Interactive Oracle Proof (IOP). In this framework,
the prover and verifier engage in an interactive protocol where the prover sends
messages that the verifier can query at arbitrary positions, effectively treating
them as oracles. The IOP allows for checks on certain properties of the compu-
tation by querying these oracles, enhancing the efficiency and scalability of the
proof system.

Polynomial commitment schemes are essential in this setting because they
enable the prover to commit to polynomials used in the computation and later
prove properties about them without revealing the polynomials themselves. The
Kate, Zaverucha, and Goldberg (KZG) commitment scheme [KZG10] is widely
used for this purpose due to its succinctness and efficiency. The KZG scheme
leverages polynomial division to efficiently verify polynomial evaluations, making
it a critical component in SNARK protocols.

In these SNARK constructions, polynomial division plays a pivotal role. For
example, when a prover needs to prove that a committed polynomial f(x) eval-
uates to a certain value at a specific point, they often compute a quotient poly-
nomial q(x) = f(x)−f(z)

x−z . This operation inherently involves polynomial division
and is essential for generating the proof that the verifier can efficiently check.

Protocols such as Sonic [MBKM19], Marlin [CHM+20], and Plonk [GWC19]
follow this paradigm by combining polynomial commitment schemes with IOPs
to achieve efficient and scalable zero-knowledge proofs. The reliance on poly-
nomial divisions in these protocols underscores the importance of optimizing
polynomial division operations to improve the overall efficiency of SNARK sys-
tems.

Other Cryptographic Applications of Polynomial Division. Beyond zero-
knowledge proofs, polynomial division plays a significant role in other crypto-
graphic domains. For example, in error-correcting codes, such as Reed-Solomon
and Bose–Chaudhuri–Hocquenghem (BCH) codes, polynomial division is funda-
mental to encoding and decoding processes. These codes use polynomial division
to detect and correct errors in data transmission and storage. Notable works by
Forney [For65] and the Berlekamp-Welch algorithm [WB83] have refined these
techniques, influencing subsequent research in theoretical and applied cryptog-
raphy.

In secure multiparty computation (MPC), polynomial division is essential
for secret sharing schemes. Shamir’s secret sharing [Sha79] divides a secret into
shares using polynomials, and reconstructing the secret involves polynomial in-
terpolation and division. Subsequent MPC protocols [MGW87, BGW88] have
built upon these principles to enable secure computation among multiple par-
ties, ensuring privacy and correctness even in the presence of malicious actors.

Computation Complexity of Polynomial Division in Cryptography. In
cryptographic applications, polynomial divisions are often performed over finite
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fields and involve polynomials of high degrees. Traditional algorithms for poly-
nomial division have a computational complexity of O(n2) where n is the degree
of the polynomial. To improve efficiency, algorithms leveraging the Fast Fourier
Transform (FFT) have been adopted, reducing the complexity to O(n log n).
These FFT-based methods enable faster polynomial multiplication and division,
which are crucial for high-performance cryptographic protocols.

Despite these optimizations, polynomial division remains a computational
bottleneck, particularly in resource-constrained environments or when dealing
with very high-degree polynomials common in modern SNARK systems.

1.1 Our Contributions

Polynomial multiplications are efficiently performed by evaluating the multipli-
cand polynomials at roots of unity by using FFT, point-wise multiplying the
evaluations, and then reverting back to the coefficient form by an inverse FFT.
A similar recipe works for polynomial division as well. However, this approach
fails if the numerator and denominator polynomials are both 0 at some or all of
the evaluation points.
1. We provide a novel formal linear algebraic framework for doing polynomial

division efficiently. We comprehensively cover cases where the evaluation basis
may have a 0/0 form, by leveraging l’Hôpital’s rule. On the way to achieve this,
we derive novel conjugate representations of the derivative operator under the
discrete Fourier transform.

2. We provide novel algorithmic approaches for two widely used cryptographic
constructions: KZG vector commitments and Groth16 zkSNARKs. For both
constructions, we achieve more elegant representations than similar other
works in the literature. 4 We compare our algorithms against the best opti-
mizations in the literature that we know of and achieve competitive efficiency
in all cases. We also achieve qualitative advancement and substantial practical
benefits in some cases, including better amenability to parallelization.

3. These algorithmic advances are also applicable to several other proof systems
as well, such as STARK [BBHR18], Plonk [GWC19], Aurora [BCR+19], Mar-
lin [CHM+20], Spartan [Set20], and so on, which use polynomial divisions
extensively. We describe how to approach inner product arguments (IPA)
based on univariate sumchecks in our framework. We also briefly go over how
our framework can be utilized for STARK and PLONK.

1.2 Comparison with Previous Work

There have been many recent works that have shown efficient polynomial di-
vision in the above mentioned cryptographic applications. The most salient of
these that have performance comparable to our contribution are detailed be-
low. However, we emphasize that while the benchmarks we obtain offer practical
benefits, our main focus is on developing a comprehensive linear-algebraic, and
4 Our benchmarks are open-sourced here: https://github.com/MystenLabs/polydiv.

3

https://github.com/MystenLabs/polydiv


more precisely a linear-operator based theory for obtaining fast algorithms. We
now briefly describe two competing algorithms (in their respective cryptographic
applications):

KZG Commitments. Feist and Khovratovich [FK23] present a construction
to compute n KZG proofs in O(n log n) time. This is achieved by employing a
few well-known techniques in a clever and judicious manner: (a) the bi-variate
polynomial f(X)−f(Y )

X−Y has a representation such that the coefficients (arranged
in a matrix) is a Toeplitz matrix T formed from coefficients of f , (b) The Toeplitz
form is easily extended to be a circulant matrix, which then allows multiplication
of T into given powers of a secret X = s (hidden in the exponent of a hard group)
to be just a convolution, which can be computed in time O(n log n), (c) the
evaluations on different values of Y can be computed using known algorithms
for computing a polynomial at multiple points. More details can be found in
Section 4.4. While this is an innovative use of known techniques, our approach
allows for the possibility of further practical optimization as we obtain closed
form representations for evaluating all proofs simultaneously.

Groth16 SNARK. Popular implementations of the Groth16 SNARK, such as
SnarkJS [SNA] and Arkworks compute f(X)/t(X), where f(X) is a multiple of
t(X), and t(X) has roots at roots of unity, using a coset FFT [Ber07]. For more
details, see Section 5.3. We show that this can instead be computed using the
derivative operator, the main theme of this work. Polynomial division via coset
FFTs is performed using the 2n-th roots of unity to avoid encountering issues
with 0

0 form. The use of 2n-th roots of unity implies that the coset approach can
only support half the number of gates as our approach when instantiated with
the same bilinear group.

1.3 Paper Organization

We start with preliminaries in Section 2 to explain all the notations and back-
ground concepts. Then we give a technical overview and explain linear algebraic
tools and techniques in Section 3. Then we describe our approach and algo-
rithms, compare with existing works and provide evaluation and benchmarks for
two cryptographic constructions: KZG vector commitments in Section 4, and
Groth16 SNARKs in Section 5. Finally, we describe our approach for univariate
sumchecks in Section 6. We also briefly describe a couple of more applications
of our technique in Appendix E.

2 Preliminaries

Notations. In the subsequent sections λ is our security parameter. G1 and G2

are a group of prime order p, and e : G1×G2 → GT is a bilinear pairing [MVO91,
Jou00]. In this work, we present all group operations using additive notation i.e.,
[a]k represents a group element in Gk [EHK+13].
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The primitive n-th root of unity in (some finite extension field of) Z∗
p is

represented by ω. Typically, p and n are chosen so that this root of unity is
in Z∗

p itself. We denote DFT as the Vandermonde matrix with rows induced by
powers of ω. We will follow the convention that rows and columns start with the
index 0. The i-th entry of a vector v is denoted as (v)i, and the (i, j)-th entry
of a matrix M is denoted as (M)i,j . The transpose of a matrix M is denoted M⊤.
In particular (DFT)i,j = ωij . The Hadamard product, or entry-wise product of
two vectors a and b is denoted a ◦ b. The notation pow(x) denotes the vector
of powers of x: [1 x x2 · · ·xn−1]⊤. The notation 1 denotes a vector of all entries
equal to 1, that is, [1 1 1 · · · 1]⊤.

Fourier Transforms. The Discrete Fourier Transform (DFT) matrix is a struc-
tured n × n matrix that facilitates the transformation of vectors from the time
(or spatial) domain to the frequency domain. In the context of polynomials,
the DFT matrix can be used to evaluate polynomials at the roots of unity.
Given a polynomial p(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1 with coefficients

{a0, a1, . . . , an−1} multiplying by the DFT matrix effectively evaluates this poly-
nomial at the roots of unity ωi. This process converts the polynomial from its
coefficient representation to its point form, making subsequent operations like
multiplication more efficient. If one has the evaluations of a polynomial at the
roots of unity, then using the inverse DFT matrix (DFT−1), one can compute
the corresponding polynomial coefficients.

The operation Â = (DFT · A · DFT−1) is an example of a similarity trans-
form. We will call this resulting matrix Â as the conjugate of the matrix A. If A
represents a linear transformation acting on polynomial coefficients, then Â cor-
responds to how this transformation behaves when the polynomial is expressed in
its point-value form at these roots of unity. This change of basis is particularly
useful because certain operations, such as polynomial multiplication, become
much simpler (often element-wise) in the transformed domain. Therefore, the
conjugate matrix Â can be seen as the ‘frequency domain’ representation of A
capturing how A interacts with polynomials evaluated at these special points.

A square matrix will be called sparse if it has only O(n) non-zero entries.
We will leverage the fact that sparse matrices with closed form entries can be
multiplied with a vector in O(n) time. A sparse matrix will be called star-shaped
if its only non-zero entries are the diagonal, k-th row and k-th column, for
some k. We will also use the fact that, when n is a power of 2, multiplication
of a vector by DFT and DFT−1 matrices can be performed in O(n log n) time
by the Fast Fourier Transform (FFT) algorithm [CT65]. More precisely, the
Cooley-Tukey FFT algorithm is an in-place butterfly algorithm requiring log n
rounds, with each round requiring n/2 butterfly-steps. A butterfly step takes
two inputs a, b and outputs a + τ · b and a − τ · b, for some scalar τ . Note
that a, b can be in an elliptic-curve group of order p. Then τ is typically in the
multiplicative group of scalars Z∗

p. As can be seen, the total number of (elliptic-
curve) scalar-multiplications is then log n ∗ (n/2) (in addition to n log n group
additions/subtractions). The inverse FFT can also be computed in a similar
way, by just using ω−1 in place of ω. It’s worth noting that the Cooley-Tukey
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in-place algorithm produces the output in an index bit-reversed fashion. So, if
the same algorithm (i.e. using the butterfly-step mentioned above) is to be used
to compute the inverse, one must permute the input and output array when
computing the inverse FFT.

Polynomial and Vector Commitment Schemes. In a polynomial commit-
ment scheme [KZG10] the prover commits to a polynomial f and later opens it to
f(xi) for some xi. A polynomial commitment scheme consists of the following al-
gorithms: (Setup,Commit,Open,Verify). A polynomial commitment scheme can
be thought of as a vector commitment scheme where the vector committed to are
the evaluations of the polynomial. In this context there are two more algorithms
- UpdateCom and UpdateOpen. We present the syntax for vector commitments
below, since that is the focus of our work:
– Setup(λ)→ pp: generates public parameters for the commitment scheme.
– Commit(pp,v) → C: This algorithm takes as input the vector v and outputs

a commit C.
– Open(pp,v, i)→ πi: This algorithm takes as input the vector v and an index

i and outputs a proof πi that proves that the value at index i is (v)i.
– Verify(pp, C, πi, (v)i, i) → b: This algorithm takes as input the commitment

C, the value at position i and verifies if the proof of opening is valid. This
algorithm outputs a bit 1 if it verifies.

– UpdateCom(pp, C, i, v′i, vi) → C ′: This algorithm takes as input the commit-
ment C, the original value at index i and the new value at index i and outputs
a new commitment C ′ with the value at position i updated to v′i.

– UpdateOpen(pp, πj , j, i, v
′
i, vi) → π′

j : This algorithm takes as input the proof
πj , the original value at index i - vi and the new value v′i and outputs a new
proof π′

j . The algorithm to update the proof of opening in the case i = j and
i ̸= j may be different.

Succinct Non-Interactive Arguments of Knowledge - SNARKs. SNARKs
are non-interactive systems with short proofs that enable verifying NP compu-
tations with substantially lower complexity than that required for classical NP
verification. A SNARK is typically described by three algorithms:
– Setup(λ) → crs is a setup algorithm that is typically run by a trusted party.

This algorithm outputs a common random string crs.
– Prove(crs, x, w)→ π is run by the prover and takes as input a statement x, a

witness w and outputs a succinct proof π.
– Verify(crs, x, π) → b is run by the verifier and takes as input the crs, the

statement x and a proof π and outputs 1 if the proof is valid.
Most constructions and implementations of SNARKs [PHGR16, Lip13, DFGK14,

Gro16, GMNO18] make use of quadratic programs (introduced in [GGPR13]).
This framework allows to build SNARKs for statements that can be represented
as an arithmetic or boolean circuit. In this work we focus on the Groth16 [Gro16]
construction. We will present more details on the same in Section 5.1.

Linear Operators. A linear operator Φ : V → V on a vector space V over a
field F satisfies the following two properties: (i) Φ(v1 + v2) = Φ(v1) + Φ(v2),
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and (ii) for all c ∈ F, Φ(c · v) = c · Φ(v). In this work we will be interested in
linear operators on a vector space of fixed degree (say, n− 1) polynomials over
a field F. Thus, any such linear operator can be represented by a n× n matrix.
One interesting operator we analyze is CDiva, which transforms a polynomial
f to f(x)−f(a)

X−a . Let’s first check that this is indeed a linear operator by noting
that CDiva(f1 + f2) = (f1+f2)(x)−(f1+f2)(a)

X−a = CDiva(f1) + CDiva(f2), and also
CDiva(c · f) = c · CDiva(f).

The particular matrix representation of this linear operator depends on the
basis we choose for degree n− 1 polynomials, e.g. the power basis consisting of
1, x, x2, ..., or the FFT or evaluation basis consisting of the power basis trans-
formed by the vandermonde matrix V of n-th roots of unity (in some finite
extension field of F). We denote these roots of unity by ωk (k ∈ [0..n− 1]).

Of particular interest are the linear operators CDivωk , which by abuse of
notation we will just denote by CDivk. In the evaluation basis, this operator is
then just taking f(ωj) to f(ωj)−f(ωk)

ωj−ωk . For the special case of j = k the above
expression is 0/0, but by l’Hôpital’s Rule for polynomials over arbitrary fields
(see Theorem 2), this is same as f ′(ωj).

While in the power basis the linear operator’s matrix representation will be
called CDivk itself, in the evaluation basis the matrix representation will be called
EDivk. Thus, EDivk = ĈDivk = DFT · CDivk · DFT−1. A little calculation shows
that EDivk is a sparse star-shaped matrix, and moreover it is intimately related
to the derivative linear operator – see Theorem 1 for details.

3 Technical Overview

All polynomial operations, such as evaluation, addition, subtraction, multipli-
cation, and division can be represented as linear algebraic operations on both
the coefficient space, that is, the vector of coefficients, and the evaluation space,
that is, the vector of evaluations on a predefined vector of points.

Simple addition, subtraction, and scaling of polynomials have direct corre-
spondence between the coefficient space and the evaluation space. The standard
high-school method of multiplying two polynomials given in coefficient repre-
sentation is O(n2). However, it is much more straightforward in the evaluation
space, where the corresponding operation is just point-wise multiplication. This
observation is leveraged in the O(n log n) Fast Fourier Transform (FFT) algo-
rithm for multiplying two polynomials.

3.1 Division in the Evaluation Space

The point-wise multiplication method can be extended to division as well, with
a couple of remarks. Firstly, the point-wise division would correspond to poly-
nomial division only in the case the denominator polynomial exactly divides the
numerator polynomial. Secondly, the point-wise division fails to work if both the
numerator and denominator evaluations are 0 at least at one evaluation point.
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Under the assumption that the first condition holds, we extend the FFT-
based method of dividing polynomials using the l’Hôpital’s rule. While l’Hôpital’s
rule is well-known for functions over complex numbers, it also holds for polynomi-
als in arbitrary fields. Although this is also known, we give a proof in Appendix A
for completeness.

A high level template for division in this framework is as follows. First observe
that the derivative operation is a linear shift and scale operation in the coefficient
space, based on d

dxaix
i = iaix

i−1. Let D stand for the derivative operator, as
formally described in Table 1. Let the operation required be f(X)/g(X):
1. Compute f ′ = Df and g′ = Dg in O(n) time.
2. Compute v = DFTf , w = DFTg, v′ = DFTf ′, w′ = DFTg′, in O(n log n)

time.
3. Collect point-wise divisions of v with w. For points of 0/0 form collect the

corresponding point-wise division from the derivative evaluations v′,w′.
4. Apply DFT−1 to this synthesized vector to compute the quotient in coefficient

space.
Note that the above approach fails if (w)i = (w′)i = 0 at some index i. A

sufficient condition to prevent this is to ensure that g(X) is square-free. This is
because in the square-free case g(X) and g′(X) will not have a common root, in
particular, any ωi. For the applications we consider in this paper the denominator
polynomial will always be square-free.

Applying a linear algebra lens. Recall that pow(x) denotes the vector [1 x x2

· · ·xn−1]⊤ where n− 1 is an upper bound on the polynomial degrees. The eval-
uation of a polynomial f(X) at a point x can be represented equivalently as:

f(x) = pow(x)⊤f = pow(x)⊤DFT−1v

Now observe that if deg(f) ≤ (n−2), then Xf(X) is a polynomial that shifts the
coefficients from xi to xi+1 for each i. This is a linear transform in the coefficient
space, represented by the off-diagonal matrix M in Table 1. Equivalently:

xf(x) = pow(x)⊤Mf = pow(x)⊤M · DFT−1v

We can generalize this with the observation that multiplying powers of x cor-
responds to further applications of the M operator. For example, x2f(x) =
pow(x)⊤M2f , · · · , xif(x) = pow(x)⊤Mif , and so on, for suitable restrictions on
the degree of f . Carrying this to further generalization, we have that p(x)f(x) =
pow(x)⊤p(M)f , with the condition that deg(p) + deg(f) ≤ (n− 1).

Carrying this operation in reverse presents some problems. Observe that
M is not full-ranked. As a result, writing f(x)/x as pow(x)⊤M−1f doesn’t
work as M−1 does not exist. Instead let’s attempt to represent the quotient
f(X)−f(ωk)

X−ωk , which is guaranteed to be a polynomial. Note that we can write
f(ωk) = pow(x)⊤E0,k · DFTf , where E0,k is the single-entry matrix defined in
Table 1. This holds because the operator matrix E0,k ·DFT applies the k-th row
of the DFT matrix to f , thereby evaluating f at ωk. Thus we can write the
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operator for f(X)−f(ωk)
X−ωk as5:

CDivk = (M− ωkI)−1(I− E0,k · DFT)

For familiar readers, a straightforward representation of bivariate polynomial
f(X)−f(Y )

X−Y is well-known in terms of a Toeplitz matrix obtained from coefficients
of f (see e.g. [Con, Theorem 3.7] or [FK23]). Thus, CDivk · f is this polynomial
with Y = ωk. We discuss more details in Appendix D.

However, this does not give us a sparse matrix operator representation. Sur-
prisingly, its conjugate operator has a sparse representation. The conjugate of
this matrix is the corresponding operator in the evaluation space:

EDivk = ĈDivk = (M̂− ωkI)−1(I− DFT · E0,k)

To derive this expression, we use the fact that the conjugation operation dis-
tributes over additions, multiplications, and inversions of matrices.

We show that the matrix EDivk is a sparse matrix with a special structure
which is intimately related to the conjugate of the derivative D operator. The
structure enables O(n) computation of f(X)−f(ωk)

X−ωk in the evaluation space. This
novel result enables fast computation of openings of KZG vector commitments
as we will see in a later section. Moreover, we show how to “stack” all the sparse
EDivk matrices to result in matrices whose conjugates have a sparse structure,
thus enabling the computation of all openings in O(n log n) time.

3.2 Useful Matrices and Transforms

We list below some special matrices in Table 1 and a correspondence between
several polynomial operations in the coefficient space and evaluation space in
Table 2.

Some observations useful for the derivations are detailed in the following
theorem.

Theorem 1. In any field F which contains a primitive n-th root of unity ω, we
have:

(i) Let D be the derivative operator from Table 1. The derivative conjugate
matrix D̂ has the following explicit structure:

(D̂)ij =

{
ωj−i

ωi−ωj , for i ̸= j
(n−1)
2ωi , for i = j

(ii) The matrix EDivk is defined as EDivk = (M̂− ωkI)−1(I−DFT · E0,k). The
k-th row of EDivk is same as k-th row of D̂. That is, (EDivk)k,∗ = (D̂)k,∗.
Equivalently, E0,k · EDivk = E0,k · D̂.

5 Assume degree of f is at most n− 1.
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Matrix Explicit Form of Entry (i, j)
Example with n = 4 and

ω = ζ4 a primitive 4-th root of unity.

Ek,l

{
1 , (i, j) = (k, l)

0 , otherwise
E2,3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



DFT ωij DFT =


1 1 1 1

1 ζ4 −1 −ζ4

1 −1 1 −1

1 −ζ4 −1 ζ4



M

{
1 , i = j + 1

0 , otherwise
M =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0



M̂ = DFT · M · DFT−1

{
− 1

nωj , i ̸= j
n−1
n ωj , i = j

M̂ = 1
4


3 −ζ4 1 ζ4

−1 3ζ4 1 ζ4

−1 −ζ4 −3 ζ4

−1 −ζ4 1 −3ζ4



D

{
j , j = i + 1

0 , otherwise
D =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0



D̂ = DFT · D · DFT−1

{
ωj−i

ωi−ωj , i ̸= j
n−1
2 ω−i , i = j

D̂ = 1
4


6 2ζ4 − 2 −2 −2ζ4 − 2

2ζ4 − 2 −6ζ4 2ζ4 + 2 2ζ4

2 2ζ4 + 2 −6 −2ζ4 + 2

−2ζ4 − 2 −2ζ4 −2ζ4 + 2 6ζ4



J

{
1

ωi−ωj , i ̸= j
n−1
2 ω−i , otherwise

J = 1
4


6 2ζ4 + 2 2 −2ζ4 + 2

−2ζ4 − 2 −6ζ4 −2ζ4 + 2 −2ζ4

−2 2ζ4 − 2 −6 −2ζ4 − 2

2ζ4 − 2 2ζ4 2ζ4 + 2 6ζ4



Ĵ = DFT · J · DFT−1


n − i , j = i − 1

and i ∈ [1, n − 1]

0 , otherwise
Ĵ =


0 0 0 0

3 0 0 0

0 2 0 0

0 0 1 0


Table 1: Matrix Notations

Polynomial Operation Coefficient Basis Evaluation Basis

f(x) = pow(x)⊤f = pow(x)⊤DFT−1v f v

f(ωk) E0,k · DFTf DFT · E0,kv

f(x) + a f + ae0 v + a1

af(x) af av

xf(x), deg(f) ≤ n − 2 Mf M̂v

p(x)f(x), deg(p) + deg(f) ≤ n − 1 p(M)f p(M̂)v

d
dx f(x) Df D̂v

f(x)−f(ωk)

x−ωk

CDivkf =

(M − ωkI)−1(I − E0,k · DFT)f

EDivkv =

(M̂ − ωkI)−1(I − DFT · E0,k)v

Table 2: Representations of Polynomial Operations.
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(iii) EDivk is a star-shaped matrix with the following explicit form:

(EDivk)(i,j) =



1
ωi−ωk , i = j and i ̸= k
−ωj−k

ωj−ωk , i = k and j ̸= k

− 1
ωi−ωk , j = k and i ̸= k

n−1
2 ω−k , i = j = k

0 , otherwise

Proof. Theorem 1(i) is proved in Appendix C.
Observe that pow(x)⊤E0,kEDivkv is the evaluation of f(X)−f(ωk)

X−ωk at ωk,
which happens to have a 0/0 form. By l’Hôpital’s theorem, this evaluation is
also equal to f ′(ωk) = pow(x)⊤E0,kDFT ·Df = pow(x)⊤E0,kDFT ·D ·DFT−1v =

pow(x)⊤E0,kD̂v. This establishes Theorem 1(ii).
The other rows of EDivk induce the evaluation space computation of vi−vk

ωi−ωk ,
which do not have a 0/0 form. This is represented by the rest of the structure
of EDivk: 

1
ωi−ωk , i = j and i ̸= k

− 1
ωi−ωk , j = k and i ̸= k

0 , otherwise

This establishes Theorem 1(iii).

4 KZG Vector Commitments with Efficient Openings

Kate, Zaverucha, and Goldberg [KZG10] proposed a constant-sized commitment
scheme for polynomials, known as KZG commitments. A KZG commitment
allows one to commit to a polynomial f(x) such that the commitment C can be
opened to any value f(α) for a given α. Notably, if we have a vector of values v,
we can compute a vector commitment by first constructing a polynomial V (x)
such that V (αi) = vi for each vi ∈ v, and then using the KZG polynomial
commitment scheme to commit to the polynomial V (x).

4.1 Background

To create a KZG commitment, start with a polynomial V (x) = a0 + a1x+ · · ·+
an−1x

n−1. The commitment C is defined as [V (τ)]1, where τ is a secret, and the
powers of τ are generated during setup as [pow(τ)]1 = [[1]1 [τ ]1 . . . [τn−1]1].

To open the commitment at a point α and prove that V (α) = v, the proof π
is computed as follows. First, compute the quotient polynomial Q(x) = V (x)−v

x−α ,
and then evaluate it at τ to obtain [Q(τ)]1. Verification involves checking that
the provided proof π satisfies the equation

e(C − [v]1, [1]2) = e(π, [τ ]2 − [α]2),

where e is a bilinear pairing. This equation holds because V (τ)−v = Q(τ)(τ−α).
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To compute the proof of opening, π, the prover needs to first compute the
polynomial Q(x) and then compute [Q(τ)]1. Naively, this approach requires first
to compute the polynomial V which takes O(n2) time by Lagrange interpolation
and do the polynomial division which takes O(n2) time. One could optimize this
further by choosing the points of evaluation as the n-th roots of unity (denoted ω)
and then use FFT transforms to interpolate the polynomial in O(n log n) time.
In the following section we will present our approach to improve the efficiency of
computing the proofs of openings and also updating commitments and updating
the proofs of openings.

4.2 Our Approach

In this section we present our approach to improve the concrete running time
for computing the proof of opening. Moreover, we show how to compute all
openings in just O(n log n) time. The standard approach would have taken time
O(n2 log n).

Finally, we also present algorithms for updating the commitments and proofs
of opening. We refer the reader to Figure 1 for all complete algorithms.

– Setup: The setup algorithm first computes the powers of τ exactly as in the
original KZG commitment scheme. Along with that the algorithm also outputs
two vectors [w]1 ∈ Gn

1 and [u]1 ∈ Gn
1 . The vector [w]1 enables us to compute

the commitment with just the vector of elements v, without computing the
polynomial that is interpolated by these elements. The [w]1 is computed as

[w]1 = DFT−1 · pow(τ)

We also compute another vector [u]1 which will be used to support fast update
of openings, as we will see later. Let J be the matrix obtained by stacking all
the k-th columns of EDivk across all k:

J =

{
1

ωi−ωj , i ̸= j
n−1
2 ω−i , i = j

It turns out that the conjugate matrix Ĵ is a sparse matrix:

Ĵ =

{
n− i , j = i− 1 and i ∈ [1, n− 1]

0 , otherwise

Now we compute [u]1 in O(n log n) time as:

[u]1 = J · [w]1 = DFT−1 · Ĵ · DFT · DFT−1 · [pow(τ)]1

= DFT−1 · Ĵ · [pow(τ)]1

– Commit: As mentioned above, we do not need to interpolate the vector v,
since we compute the vector [w]1 in the setup. Thus the commitment Com
can be computed as

Com = v⊤[w]1

12



Setup(τ):
– Let (n = 2k) powers of τ : [pow(τ)]1 = ([1]1, [τ ]1, [τ

2]1, . . . , [τ
n−1]1) ∈ Gn

– Let [w]1 = DFT−1 · [pow(τ)]1
– Let [u]1 = DFT−1 · Ĵ · [pow(τ)]1, where Ĵ is the sparse matrix defined as in

Table 1.
– Output pp = ([τ ]2, [w]1, [u]1).

Commit (pp,v) : Output ComV = ⟨v, [w]1⟩

Open at index i (pp,v, i): Output:

πi = [w]⊤1 EDivkv =
∑
j ̸=i

vj − vi
ωj − ωi

[(w)j ]1 + {(D̂)(i,∗)v}[(w)i]1,

where D̂ is defined as in Table 1.

Open all indices (pp,v) : Output:

πall = [w]1 ◦ D̂v + (ColEDiv · [w]1) ◦ v + DiaEDiv · ([w]1 ◦ v).

This algorithm is explained in Section 4.3.

Verify opening (pp,ComV , vi, πi): Check:

e(ComV − [vi]1, [1]2) = e(πi, [τ ]2 − [ωi]2).

Update commitment (pp,ComV , i, v
′
i, vi): Output:

Com′
V = ComV + (v′i − vi)[(w)i]1.

Update opening (pp, πj , j, i, v
′
i, vi) :

– If j ̸= i, output π′
j = πj + (v′i − vi) · ( 1

ωi−ωj [(w)i]1 +
ωi−j

ωj−ωi [(w)j ]1)

– If j = i, output π′
j = πj + (v′i − vi)[(u)i]1.

Fig. 1: KZG commitments with efficient openings
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– Open at index i: To open at index i, the original KZG algorithm required
to compute the polynomial Qi(x) =

V (x)−vi

x−ωi and then compute [Qi(τ)]1. To
compute Qi we would first need to interpolate V using v. We observe that
we don’t actually need to calculate these polynomials. Recall that the proof
of opening is [Qi(τ)]1. This can be evaluated by using (n− 1) points ωj as

Qi(ω
j) =

vj − vi
ωj − ωi

and one more point at ωi. But note that the point at ωi which is Vi(ω
i)−vi

ωi−ωi

is in the 0
0 form. We therefore need to use l’Hôpital’s rule, and just need to

compute V ′
i (ω

i). Then the polynomial [Qi(τ)]1 can be computed as:

[Qi(τ)]1 =
∑
j ̸=i

vj − vi
ωj − ωi

[wj ]1 + V ′(ωi)[wi]1

As we have discussed before, we can compute V ′(ωi) directly in the evalu-
ation space, without interpolating the polynomial and then computing the
derivative. Given the explicit form of the derivative conjugate matrix D̂ =
DFT · D · DFT−1, we can compute the evaluations of the polynomial V ′ by
simply computing D̂v. Since (D̂)i,j has the form:

ωj−i

ωi − ωj
if i ̸= j and

n− 1

2ωi
, if i = j (1)

we can compute

V ′(ωi) =
∑
j ̸=i

vj ·
ωj−i

ωi − ωj
+ vi ·

(n− 1)

2ωi

Overall, this is just explicitly computing the action of the operator EDivk, by
noting that [Qi(τ)]1 = [pow(τ)]⊤1 EDivkv.

– Verify opening proofs: The verification algorithm is exactly as in the orig-
inal KZG construction with a single bilinear pairing check. This ensures full
compatibility between the original scheme and our optimized version.

e(ComV − [vi]1, [1]2) = e(πi, [τ ]2 − [ωi]2)

– Update commitment: When the value at index i, i.e. vi is updated to v′i,
then the naive approach to compute the updated commitment would be to
simply recompute ⟨v′, [w]1⟩, where v′ is the same as v except at position i.
We observe that using [w]i we can update the commitment simply as:

Com′
V = ComV + (v′i − vi)[wi]1

– Update proof of opening: Consider the case above where the value at
index i has been updated from vi to v′i. The proof of opening is now not valid
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anymore. To this end, one could recompute the proof of opening at index i
as in the opening algorithm, and this would cost O(n log n). We show a more
efficient O(1) algorithm to update the proof of opening.
Let us first consider the case when index i does not correspond to the index j
at which the proof of opening is to be updated, then the new opening π′

j can
be computed. Recall that the proof of opening is computed as

πj =
∑
k ̸=j

vk − vj
ωk − ωj

[wk]1 + V ′(ωj)[wj ]1

Substituting v′i instead of vi in the first half we get,∑
k ̸=j

vk − vj
ωk − ωj

[wk]1 +
(v′i − vi)

ωi − ωj
[wi]1

Substituting v′i instead of vi in the derivative polynomial V ′:

V ′(ωi)′ =
∑
j ̸=i

vj ·
ωj−i

ωi − ωj
+ v′i ·

(n− 1)

2ωi

= V ′(ωi) + (v′i − vi) ·
(n− 1)

2ωi

Combining these two equations we get:

π′
j = πj + (v′i − vi) ·

(
1

ωi − ωj
[(w)i]1 +

ωi−j

ωj − ωi
[(w)j ]1

)
Now let us consider the case when index i is the index at which the proof
must be updated. This is represented by the action of the i-th column of
EDivi, which we already incorporated as the i-th element of the setup vector
[u]1. In this case, the proof can be updated using the vector [u]1 as follows:

πi = πi + (v′i − vi)[(u)i]1

4.3 Computing all KZG Openings in O(n logn) time

Recall, we intend to compute [w]⊤1 · EDivk · v, for all k ∈ [0, n− 1]. Also, recall
the structure of EDivk from Theorem 1 (iii):

(EDivk)(i,j) =



1
ωi−ωk , i = j and i ̸= k
−ωj−k

ωj−ωk , i = k and j ̸= k

− 1
ωi−ωk , j = k and i ̸= k

n−1
2 ω−k , i = j = k

0 , otherwise

We now decompose and stack all the EDivk matrices as follows, leveraging their
star structure:
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1. The stacking of all the k-th rows of EDivk is just the derivative conjugate
matrix D̂ (by Theorem 1 (ii)).

2. Define ColEDiv as the stacking of all the k-th columns of EDivk, with the
diagonal entries set to 0, over all k:

ColEDiv =

{
− 1

ωj−ωi , i ̸= j

0 , i = j

(since for j = k, (EDivk)(i,j) = − 1
ωi−ωk ).

3. Define DiaEDiv as the stacking of all the diagonals of EDivk converted to
columns, with the diagonal entries set to 0:

DiaEDiv =

{
1

ωj−ωi , i ̸= j

0 , i = j
.

In fact, turns out that DiaEDiv = −ColEDiv.
To enable the reader to understand how we stack the rows, columns, and

diagonals of each EDivk we present an illustration with n = 4 in Appendix F.
The vector of all openings is a careful sum over the three operators defined

above:
1. The stacking of the rows operates on the evaluation vector. The resulting vec-

tor from this operation multiplies entry-wise to the powers-of-tau vector, that
is, as a Hadamard product. More precisely, we compute [w]⊤1 · diagonal(D̂v).
which is conveniently represented (as a columns vector) by [w]1 ◦ D̂v.

2. The stacking of the columns operates on the powers-of-tau vector. The result-
ing vector from this operation multiplies entry-wise to the evaluation vector as
a Hadamard product. This contribution is represented as (ColEDiv · [w]1) ◦v.

3. The stacking of the diagonals as columns operates on the Hadamard product
of the evaluation vector with the powers-of-tau vector. This contribution is
represented as DiaEDiv · ([w]1 ◦ v).
Given the above observations the vector of all KZG openings is:

[w]1 ◦ D̂v + (ColEDiv · [w]1) ◦ v + DiaEDiv · ([w]1 ◦ v) (2)

The DFT conjugates of D̂,ColEDiv,DiaEDiv are all sparse matrices. A bit of
algebra (see proof in Appendix C) shows that:

−(ĈolEDiv)i,j = (D̂iaEDiv)i,j =
n−1
2 , (i, j) = (0, n− 1)

i− n+1
2 , j = i− 1 and i ∈ [1, n− 1]

0 , otherwise

(3)

So the vector of all openings can be computed in O(n log n) time.
This summarizes our approach to achieve concrete efficiency in computing

openings and updates. We remark that in our construction the proof of opening
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can be computed with just multi-scalar multiplication operations and can be
parallelized. In the next section we will compare our approach with two other
approaches that also extend the KZG construction to achieve faster proofs of
openings.

4.4 Other Approaches

Feist and Khovratovich [FK23] present a construction to compute n KZG
proofs in O(n log n) time. They observe that the coefficients of the polynomial
Q can be computed with just n scalar multiplications in the following way:

Qv(x) =

n−1∑
i=0

qiXi, qn−1 = Vn, qj = Vj+1 + v · qj+1

Note that their approach requires a sequential computation of the coefficients
qi, whereas our approach is highly parallelizable using multi-scalar multiplica-
tions directly in the evaluation space. They also present a formula for computing
n KZG proofs in O(n log n) time. While we achieve the same asymptotic com-
putation time, our approach is more elegant, and simple.

Their technique leverages FFTs to handle polynomial evaluations efficiently.
The key innovation lies in constructing a polynomial h(X) whose evaluations at
specific points yield the required KZG proofs. This method ensures that for n
evaluation points, the proofs can be computed in O((n + d) log(n + d)) group
operations if the points are roots of unity, or O(n log2 n+ d log d) otherwise.

The coefficients of the polynomial h(X) are computed using a Toeplitz matrix
formed from the coefficients of the original polynomial V (X) and the evaluation
points. Multiplying a vector by a Toeplitz matrix can be efficiently performed
in O(n log n) time [FK23], reducing the complexity of the operations involved.
Specifically, the technique involves computing the Discrete Fourier Transform
(DFT) of the vector of polynomial coefficients and the vector of powers of the
evaluation points, followed by element-wise multiplication and an inverse DFT
to compute all the KZG proofs of openings.

Tomescu et al. [TAB+20] present a construction for an aggregatable sub-vector
commitment (aSVC) scheme. An aSVC scheme is a vector commitment that
allows aggregation of multiple subvector proofs into a single small subvector
proof. Specifically, they extend KZG commitments to allow for proving multiple
proofs of opening. Their setup algorithm is similar to ours in that they generate
ℓ = [gLiτ ]i∈[n], which is the same as our [w]1 (here Li is the Lagrange basis

polynomial) and also u = [g
Li(τ)−1

τ−ωi ] which is the same as our u. They require
another group element a = gA(τ) and another vector of group elements a =

g
A(τ)

τ−ωi . Thus their setup is larger than ours.
Computing the KZG commitment is done similar to our approach, by making

use of the vector ℓ. They present a construction to compute the opening for a
single point using n exponentiations and n scalar multiplications by making
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Cost to open Cost to open all
indices

Cost to
update
(j ̸= i)

Cost to
update
(j = i)

Setup
size

[FK23] seq O(n) mult O(n logn) - - n|G|
[TAB+20] O(1) exp + O(n)

mult
O(n logn) O(1) O(1) 4n|G|

Our approach O(n) mult O(n logn) O(1) O(1) 2n∗|G|
Table 3: Comparing different approaches to computing KZG commitments. (*)
If we precompute ColEDiv · [w]1 in the setup, our setup size is 3n|G|.

use of the public parameters u and a. The main idea here is that the quotient
polynomial Q(τ) = V (τ)−V (ωi)

τ−ωi can be rewritten as:

n∑
j=0

Lj(τ)vj − vi
τ − ωi

=

n∑
j=0,j ̸=i

Lj(τ)vj
τ − ωi

+
Li(τ)vi − vi

τ − ωi
=

n∑
j=0,j ̸=i

vj
Lj(τ)

τ − ωi
+vi
Li(τ)− 1

τ − ωi

Note that the right hand side of the expression can be computed in the exponent
by using u. Furthermore using ai and aj from a, they show how to compute

g
Lj(τ)

τ−ωi .
Our approach is simpler and faster due to the avoidance of computing La-

grange basis polynomials at commit, opening, as well as updates. Moreover, due
to the nature of explicit sparse matrices, the operations are highly parallelizable.
We highlight that [TAB+20] needs an extra vector of group elements (denoted
a) to compute their openings and updates to the openings. Our construction
does not need this, since we use a different approach of using n points (including
the point at index i) to compute an opening for i. Moreover, our characterization
in Theorem 1 shows a more elegant and parallelizable technique to compute all
openings in O(n log n) time. We provide a summary of comparisons in Table 3.

4.5 Applications of efficient computation of all openings

We present some concrete applications where all openings are required to be
computed efficiently. More details are available in Appendix B.

Data Availability Sampling (DAS): Light clients in blockchain networks use
DAS to verify data availability without storing full blocks. Ethereum’s proposed
DAS scheme employs KZG commitments [Res]. Integrating our algorithm en-
hances the efficiency of encoding and opening computations, making DAS more
practical for light clients.

Efficient Proofs in SNARKs and Decentralized Storage: Protocols like
Caulk [ZBK+22] and proof-of-replication schemes [ABC+23] require multiple
openings of KZG commitments. Our algorithm accelerates the precomputation of
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these proofs, enhancing efficiency in auditing and verification phases for SNARK-
based systems and decentralized storage. Similar techniques are also used in
Baloo [ZGK+22] and cq [EFG22]. The precomputation also finds applications in
Protostar [BC23], SublonK [CGG+24], improved lookup arguments [CFF+24,
DGP+24], cqlin [EG23], zero-knowledge location privacy [EZC+24], batching-
efficient RAM [DGP+24] etc.

Laconic Oblivious Transfer (OT): In laconic OT, receivers compress their
choice bits into a digest using KZG commitments [FHAS24]. Our algorithm
improves the efficiency of computing all necessary openings, reducing the com-
putational burden on receivers when handling large databases.

Non-Interactive Aggregatable Lotteries: Schemes like Jackpot [FHASW23]
involve participants computing proofs of openings to verify lottery outcomes. Our
efficient computation enables participants to precompute these proofs effectively,
enhancing the performance and scalability of the lottery system.

4.6 Implementation and Benchmarks

In this section we describe the implementation and evalutation of the different
KZG commitment schemes.
Hardware. All benchmarks were performed on a MacBook Pro with Apple M3
Max chip, with 16 cores and 64 GB RAM.
Code. All code is implemented in Rust, using the Arkworks [ac22] library. The
criterion-rs crate was used for all benchmarks.
Methodology. We implemented the constructions of [FK23], [TAB+20] and the
original KZG construction [KZG10] and compare the run times of setup, com-
mitting, opening one position, opening all positions and updating commitments
as well as updating a single proof of opening. We varied the size of the vector
from 16 to 8192 and measured the time taken for each operation.

Setup: To setup, the work of [FK23] is the only one that matches the origi-
nal KZG algorithm since they only need the powers of τ in setup. Our Setup
algorithm is faster than that of [TAB+20] by about 60% when we don’t pre-
compute ColEDiv, and about 70% slower when do the precomputation. This is
attributed to the fact that they need to compute extra vectors of group elements.
See Figure 3.

Commit: Since the algorithm to compute commitment is the same in all the
four constructions, the time taken to compute a commitment is exactly the same.

Open at index i: Our algorithms currently match the run times of the original
KZG and [FK23] algorithms and are about 30× faster than that of [TAB+20]
and is about 7% faster than [FK23] and original KZG [KZG10]. This is primar-
ily because [TAB+20] make efforts to enable proofs of batch openings at once.
Their algorithm for a single opening is therefore slower since it requires n field
operations and n exponentiations.
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(a) Comparing run times to compute
proofs of openings at all positions. Here
KZGDeriv represents our implementa-
tion and overlaps with the algorithm of
[TAB+20] and [FK23]

(b) Comparing run times to compute
proofs of openings at all positions for
smaller values n < 213.

(c) Comparing run times to compute
proofs of openings at all positions with
precomputation of ColEDiv.

(d) Comparing run times to compute
proofs of openings at all positions for
larger sizes of n ∈ [215, 220].

Fig. 2: Comparison of run times for computing proofs of openings at all positions.

Open all indices: The naive way of opening all indices would be to compute the
opening proof for each index. This will take O(n2) time. As mentioned earlier
through FFT transforms both [FK23] and [TAB+20] show how to compute all
proofs in O(n log n) time. For n = 214, their algorithms are 60× faster than
the naive algorithm. Asymptotically our constructions also achieve O(n log n)
computation time, but since we can compute the openings by multiplying sparse
matrices we can achieve better concrete numbers. See Figure 2a for a comparison
with the naive opening strategy. Our algorithms are about 2.13× faster for n =
214 and about 2.22× faster for n = 220 than that of the approaches by [FK23]
and [TAB+20] (See Figures 2b , 2c and 2d; in the latter two figures we use
an optimized approach where the ColEDiv matrix is pre-computed in the setup
phase). We estimate that as n grows larger and larger our algorithm will perform
better than that of [FK23].
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(a) With no optimizations for open-all
(b) Optimized version: ColEDiv is pre-
computed

Fig. 3: Comparing run times to do setup of public parameters. Note that since
we precompute ColEDiv in the setup, it is slower than previous work.

Fig. 4: Update Opening at index i ̸= j

Updating commitments and proofs: Since updating a commitment is the
same operation across all algorithms there is no difference in running times.
When considering updates to a proof of opening in the case i = j, (i.e. to update
a proof πi when vi has been updated), the algorithms of [TAB+20] and ours are
exactly the same, but on the other hand, our algorithm is twice as fast as that
of [TAB+20] for the case when the opening of index j is updated when index i
is updated. See Figure 4.

Verifying proofs of opening: Since the verification algorithm is the same
pairing check across all algorithms, the computation time is also the same.

5 Polynomial Division in Groth16

In this section we will present the necessary background on the Groth16 [Gro16]
scheme and Quadratic Arithmetic Programs. Then we explain our approach
leveraging l’Hôpital rule and provide implementation and benchmarks.
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5.1 Background

Quadratic Arithmetic Programs. Gennaro et al [GGPR13, PHGR16] pre-
sented a characterization of the complexity class NP called Quadratic Span Pro-
grams. They also defined Quadratic Arithmetic Programs, a similar notion for
arithmetic circuits.

A QAP Q over the field Fp contains three sets of m + 1 polynomials U =
{ui(x)},V = {vi(x)},W = {wi(x)} for i ∈ [0,m] and a target polynomial t(x).

This QAP defines a language of statements (a1, . . . , al) ∈ F l and witnesses
(al+1, . . . , am) ∈ Fm−l, such that with a0 = 1:

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X), where n is the degree of t(X),
F = Fp, l is the number of field elements in the public statement, m is the
number of total field elements in the public statement, private witness and wire
values together and n is the total number of gates in the arithmetic circuit.
These values constitute the public parameters pp.

Groth16 Overview. The Groth16 proof system is a zk-SNARK that enables
succinct and efficient verification of computations. It transforms a given compu-
tation into polynomial form, with constraints encoded as an R1CS. Polynomial
division plays a crucial role by ensuring that the witness polynomial is divisible
by a structured divisor polynomial representing the circuit’s constraints. This is
required to guarantee that the prover’s input satisfies the computation without
revealing private data. We present an overview of the Groth16 [Gro16] protocol
in Figure 5.

5.2 Our Approach

Rank-1 Constrained System (R1CS) [BCR+19] provides an alternate way to view
QAPs, by way of three R1CS matrices Ung×nv , V ng×nv and Wng×nv , where ng

is the number of gates and nv is the number of variables. A vector anv satisfies
the circuit iff:

Ua ◦ V a = Wa,

where ◦ is the Hadamard product. These matrices have entries in the field Fq,
where q is the order of the bilinear groups used for instantiating the the proof
system. Without loss of generality after sufficient padding, assume that n = ng

is a power of 2 that divides the order of F∗
q , that is, n | q−1. Let ω be a primitive

n-th root of unity in Fq.
Let t(X) =

∏ng

i=0(X−ωi) = Xng−1, where intuitively ωi is the x-coordinate
assigned to the i-th gate. We have the relations:

∀i ∈ [0, ng], j ∈ [0, nv] :
uj(ω

i) = (U)ij
vj(ω

i) = (V )ij
wj(ω

i) = (W )ij
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Setup(QAP, pp):
1. Sample α, β, γ, δ, τ ← Fp

2. Compute Prover Key pkzk:
(a) Compute [α]1, [β]1, [β]2, [δ]1, [δ]2
(b) Compute {[ζi]1 = [βui(τ)+αvi(τ)+wi(τ)

δ
]1}mi=l+1

(c) Compute {[θj ]1 = [ τ
jt(τ)
δ

]1}n−2
j=0

(d) Compute {[ψi]1 =
∑n−1

j=0 ui,j [τ
j ]1}mi=0

(e) Compute {[φi]2 =
∑n−1

j=0 vi,j [τ
j ]2}mi=0

(f) Output pkzk = ([ζi]1, [θj ]1, [ψi]1, [φi]2)
3. Compute Verifier Key vkzk:

(a) Compute [α]1, [β]2, [γ]2, [δ]2
(b) Output vkzk = {[χi]1 = [βui(τ)+αvi(τ)+wi(τ)

γ
]1}li=0

Prove(pkzk, QAP, ⟨ai⟩mi=0):
1. Sample r, s← Fp

2. Compute polynomial h(X) =
(
∑m

i=0 aiui(X))·(
∑m

i=0 aivi(X))−
∑m

i=0 aiwi(X)

t(X)

3. Compute:
(a) [A]1 = [α]1 + r[δ]1 +

∑m
i=0 ai[ψi]1

(b) [B]2 = [β]2 + s[δ]2 +
∑m

i=0 ai[φi]2
(c) [C]1 = s[α]1 + r[β]1 + rs[δ]1 +

∑m
i=l+1 ai[ζi]1 +

∑n−2
j=0 hj [θj ]1

4. Output π = [A]1, [B]2, [C]1

Verify(vkzk, ⟨ai⟩li=0 , π)
1. Compute [V ]1 =

∑l
i=0 ai[χi]1

2. Parse π as [A]1, [B]2, [C]1
3. Check: [A]1 · [B]2 = [α]1 · [β]2 + [C]1 · [δ]2 + [V ]1 · [γ]2

Fig. 5: Overview of Groth16

Typically the circuit frontend, the public statement, and witnesses are pro-
cessed to produce the vectors Ua, V a,Wa. Let’s denote the interpolated poly-
nomial of these evaluation vectors over the points ωi:

u(X) =
∑nv

j=0 ajuj(X)

v(X) =
∑nv

j=0 ajvj(X)

w(X) =
∑nv

j=0 ajwj(X)

The asymptotically most complex operation in the computation of a Groth16
proof is the computation of the polynomial quotient h(X):

h(X) =
fa(X)

t(X)
=

u(X) · v(X)− w(X)

t(X)
, (4)

where fa(X) = u(X) · v(X)− w(X).
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Note that both t(ωi) and fa(ω
i) are 0 for all i ∈ [0, ng]. For this reason we

cannot directly evaluate h(ωi) using the quotient equation (4). However we can
use l’Hôpital’s Rule (Theorem 2) and get

h(ωi) =
f ′
a(ω

i)

t′(ωi)

Now, we have:

f ′
a(X) =

d

dX
[u(X)v(X)− w(X)]

= u(X)v′(X)− u′(X)v(X)− w′(X)

Therefore, we can write for all i ∈ [0, ng]:

h(ωi) =
u(ωi)v′(ωi) + u′(ωi)v(ωi)− w′(ωi)

t′(ωi)

Denoting η ∈ Fng
q , such that (η)i = h(ωi), we can write:

η = Ua ◦ V ′a+ U ′a ◦ V a−W ′a, where:

(U ′)ij =
u′
j(ω

i)

t′(ωi) , (V
′)ij =

v′
j(ω

i)

t′(ωi) , (W
′)ij =

w′
j(ω

i)

t′(ωi)

Denoting DFT−1 as the inverse Vandermonde matrix with powers of ω, we
have DFT−1η = h, the coefficient vector of h(X). Then we could preprocess the
CRS as follows. Let t ∈ Fng

q be such that (t)i = [τ it(τ)/δ]1, and θ = (DFT−1)⊤t.
Then we have: [

h(τ)t(τ)

δ

]
1

= h⊤t = η⊤(DFT−1)⊤t = η⊤θ

This gives us a blueprint for an algorithm: We publish θ in the CRS, instead of t
and also publish matrices U ′, V ′,W ′ in addition to the R1CS matrices U, V,W .
Prover computes η = Ua ◦ V ′a+U ′a ◦ V a−W ′a and then adds η⊤θ to the C
component of the Groth16 proof, instead of computing h(X) and then computing[
h(τ)t(τ)

δ

]
1
.

However, typically U, V,W are sparse matrices due to the typically bounded
fan-in of practical circuit gates, whereas U ′, V ′,W ′ maybe dense matrices. So
computing U ′a, V ′a,W ′a might end up taking quadratic time. Hence we apply
our familiar transform of first going to coefficient space, taking derivatives, and
coming back to evaluation space for point-wise multiplications and divisions. We
summarize this in Algorithm 1.

5.3 Comparison with SnarkJS and Arkworks

Popular implementations as found in for example Arkworks and SnarkJS [SNA]
avoid the 0/0 form by computing the polynomials at evaluation points shifted by
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Algorithm 1 Compute ηi = (h/t)(ωi) for i = 0, . . . , n−1 using l’Hôpital’s Rule
Let the inputs be (u,v,w)← (Ua, V a,Wa)
u′ ← DFT · D · DFT−1u
v′ ← DFT · D · DFT−1v
w′ ← DFT · D · DFT−1w
invt′ ← n−1 · pow(ω) ▷ t(X) = Xn − 1 so t′(ωi) = nω−i

η ← (u ◦ v′ + u′ ◦ v −w′) ◦ invt′
return η.

Algorithm 2 Compute ηi = (h/t)(ζωi) for i = 0, . . . , n− 1 using coset FFT
Let the inputs be (u,v,w)← (Ua, V a,Wa)
Let ζ be a primitive 2n-th root of unity.
Let S be the n× n diagonal matrix with non-zero entries Si,i = ζi

u∗ ← DFT · S · DFT−1u
v∗ ← DFT · S · DFT−1v
w∗ ← DFT · S · DFT−1w
invt∗ ← (ζn − 1)−1 · 1
η ← (u∗ ◦ v∗ −w∗) ◦ invt∗
return η.

a 2n-the root of unity ζ, that is, at points of the form ζωi. This is summarized
in Algorithm 2 below.

Like SnarkJS, our protocol also needs to perform 3 inverse FFTs and 3 FFTs
to get U ′a, V ′a,W ′a, but we are avoiding computations at the 2n-th roots of
unity. We just use n-th roots of unity. This means we can take n to be the
highest number such that 2n divides p−1 for the derivative approach. Therefore
this approach can support upto 2n gates. In contrast, the coset approach can only
support upto 2n−1 gates. This gives us a more expansive choice for group orders.
That is, we can support twice as many gates as SnarkJS, while instantiating with
the same bilinear group.

5.4 Implementation and Benchmarks

The above algorithm has been implemented in a fork of the Groth16 implemen-
tation by Arkworks and has been compared with the existing implementation
which uses coset FFT’s to compute h. Our algorithm is slightly faster, about 2-
3%. This comparison was done using the most recent release of the ark-groth16
crate (version 0.4.0) on a demo circuit with 24320 constraints which proves
knowledge of a pre-image of a Blake2b hash. Our implementation of the com-
putation of h takes 1.06s to compute h compared to 1.09s using the baseline
implementation. Since the number of FFT’s and inverse FFT’s is the same in
the two implementation, the small difference in performance is due to the linear
operations being a bit faster.
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6 Inner Product Arguments

We apply our techniques to inner product arguments (IPA) based on univariate
sumchecks.

IPA. Given two vectors a and b, an IPA enables a prover to convince a verifier
that ⟨a, b⟩ = µ, where the verifier has access to only the commitment ca and cb
of a and b respectively.

Univariate Sum-check. A sumcheck protocol is an interactive protocol that
enables a prover to convince a verifier that

∑
a∈Hm f(a) = 0, where f is a given

polynomial in F[X1, . . . , Xm] of individual degree d and H is a subset of F. The
univariate analogue was developed in [BCR+19, CNR+22] that enables a prover
to convince a verifier that

∑
a∈H f(a) = 0 for a given polynomial f ∈ F[X] of

degree d and subset H ⊆ F.
Very recently, Das et al [DCX+23] present a threshold signature scheme from

a new and efficient IPA. This IPA is in turn based on the univariate sumcheck
protocols of [BCR+19, CNR+22]. Specifically, the protocol uses the following
observation: Let a, b ∈ Fn. Let a(X), b(X) ∈ F[X] be the unique degree ≤ (n−1)
polynomials, such that a(ωi) = (a)i and b(ωi) = (b)i.

This implies

µ = ⟨a, b⟩ =
∑
i∈[n]

a(ωi)b(ωi)

The vanishing polynomial Z(X) is defined as

Z(X) =
∏
i∈[n]

(X − ωi) = Xn − 1

Now the sumcheck lemma of [BCR+19] says that we must have:

a(X)b(X) = q(X)Z(X) +Xr(X) + µ/n, (5)

where Z(X) = Xn − 1 and as above µ = ⟨a, b⟩, for some q(X), r(X) which
are polynomials of degree n− 2. Also, denote:

p(X) = Xr(X) + µ/n

In their IPA protocol the CRS is set as [pow(τ)]1 and [pow(τ)]2. Note here
[1]1 and [1]2 are distinct generators of a symmetric bilinear group G. Then IPA
π for µ = ⟨a, b⟩ is finally output as

π = (π1, π2, π3) = ([q(τ)]1, [r(τ)]1, [p(τ)]2)

and the verification is done using the following pairing checks:

e(ca, cb) = e(π1, [Z(τ)]1) · e(π2, [τ ]1) · e([µ]1, [1/n]1)

and
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e(π3, [1]1) = e(π2, [τ ]2) · e([µ]1, [1/n]2)

Applying our polynomial division technique. Recall from Equation 5 that:

a(X)b(X) = q(X)Z(X) +Xr(X) + µ/n

Our goal is to compute the polynomials q and r efficiently by doing division
in the evaluation space without having to compute the polynomials explicitly.
To this end, first observe that

a(ωi)b(ωi) = q(ωi)Z(ωi) + ωir(ωi) + µ/n = ωir(ωi) + µ/n,

since Z(ωi) = (ωi)n − 1 = 0. Therefore:

r(ωi) = ω−i(a(ωi)b(ωi)− µ/n)

Now:
q(X) =

a(X)b(X)−Xr(X)− µ/n

Z(X)

Now observe that RHS has a 0/0 form at ωi. Let the numerator N(X) =
a(X)b(X)−Xr(X)−µ/n. We again apply l’Hôpital rule to evaluate q(X) at ωi.

N ′(X) = a′(X)b(X) + a(X)b′(X)−Xr′(X)− r(X)

Z ′(X) = nXn−1

Therefore,

q(ωi) =
N ′(ωi)

Z ′(ωi)
=

a′(ωi)b(ωi) + a(ωi)b′(ωi)− ωir′(ωi)− r(ωi)

nωi(n−1)

=
ωi

n

(
a′(ωi)b(ωi) + a(ωi)b′(ωi)− ωir′(ωi)− r(ωi)

)
Therefore we can compute the proof using evaluation vectors as:

p = a ◦ b, r = pow(ω−1) ◦ (p− µ/n · 1)

q =
1

n
pow(ω) ◦

(
D̂a ◦ b+ a ◦ D̂b− pow(ω) ◦ D̂r − r

)
The dominant computation above are the 6 DFTs in computing q. The IPA

protocol in [DCX+23] computes the proof by essentially computing vector com-
mitments of the above quantities, which as we have seen in the KZG section can
be performed by MSMs with DFT transformed powers of tau.

We can also compute q (evaluations at ζωi for this version) with the coset
strategy as follows:

q =
1

ζn − 1

(
Ŝa ◦ Ŝb− ζ · pow(ω) ◦ Ŝr − µ/n · 1

)
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Recall that Ŝ is defined as the DFT conjugate of S, which is an n×n diagonal
matrix with non-zero entries Si,i = ζi, where ζi is the 2n-th root of unity. Just
like the SnarkJS implementation of Groth16, this also has the dominant cost of
6 FFTs, but uses a higher root of unity. In addition, this needs an additional
O(n) setup elements to account for the shifted basis of q, with respect to r.
Concretely, this additional setup vector is (S−1)⊤(DFT−1)⊤[pow(τ)]1.
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A l’Hôpital’s Rule for polynomials over arbitrary fields

Recall that l’Hôpital’s Rule, named after the French mathematician Guillaume
de l’Hôpital (1661-1704), states that given c ∈ R and functions f, g : R → R
which are differentiable on a open interval around c but not necessarily in c, we
have

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

if limx→c f(x) = limx→c g(x) = 0. As stated here, this is only valid for real
functions, but it is also true over arbitrary fields if we restrict f and g to be
polynomials. Throughout the paper, we let F denote an arbitrary field and let
F[x] denote the polynomial ring over F. We define the formal derivative as follows.
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Definition 1. Let f ∈ F[x]. If we write f(x) =
∑n

i=0 aix
i for a0, . . . , an ∈ F,

we define the derivative of f as

f ′(x) =

n−1∑
i=0

ai+1(i+ 1)xi ∈ F[x].

Now, l’Hôpital’s Rule for polynomials over arbitrary fields can be stated as
follows:

Theorem 2. Let f, g, h ∈ F[x] such that f(x) = g(x)h(x). Let α ∈ F and
assume that f(α) = g(α) = 0. Then

f ′(α) = g′(α)h(α).

To prove this, we will first need a few basic results.

Lemma 1. Let f ∈ F[x] and assume f(α) = 0 for some α ∈ F. Then there is a
unique polynomial fα ∈ F[x] such that f(x) = fα(x)(x− α) for all x ∈ F.

Proof. Since F is a field, F[x] is a Euclidean domain, so there are q, r ∈ F[x] with
deg(r) < deg(x− α) = 1 such that

f(x) = q(x)(x− α) + r(x). (6)

Now, deg(r) = 0 so it is constant, and setting x = α in (6) implies that r(x) = 0.
Letting fα = q concludes the proof.

Lemma 2. Let f ∈ F[x] and assume that f(0) = 0. Then f ′(0) = f0(0).

Proof. If f is constant, the statement is true, so we may assume that f has
positive degree. Since f(0) = 0, the constant term of f is zero, so

f(x) = a1x+ · · ·+ anx
n

for some coefficients a1, . . . , an ∈ F. Using the definition of the derivative we get
that f ′(0) = a1. On the other hand, we see that f0(x) as defined in Lemma 1 is

f0(x) = a1 + · · ·+ anx
n−1,

so f0(0) = a1 = f ′(0) as desired.

Corollary 1. Let f ∈ F[x] and let α ∈ F be given such that f(α) = 0. Then
f ′(α) = fα(α).

Proof. Define g(x) = f(x+α). Now, g(0) = f(α) = 0 and from Lemma 2 we get
that g′(0) = g0(0). However, fα(α) = g0(0) and f ′(α) = g′(0) by the definition
of g, so we get

fα(α) = g0(0) = g′(0) = f ′(α)

which finishes the proof.
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We are now ready prove the main theorem.

Proof (Proof of Theorem 2). Let f, g and h be given as in the theorem. Since α
is a root for both f and g we get from Lemma 1 that

fα(x)(x− α) = gα(x)(x− α)h(x)

for all x ∈ F[x]. Since F[x] is an integral domain, this implies that

fα(x) = gα(x)h(x),

and applying Corollary 1 with both f and g we that

f ′(α) = g′(α)h(α)

as desired.

B Applications of efficient computation of all openings

Data Availability Sampling: In blockchain networks, participants can join
as full nodes or light clients. Full nodes store and verify all block data and
headers, while light clients only store block headers and rely on full nodes for
data verification through fraud proofs. However, fraud proofs only help detect
invalid data, not unavailable data. Data Availability Sampling (DAS) schemes,
formalized by Hall-Anderson et. al. [HASW23], allow a block proposer to encode
block content into a commitment and codeword. The light clients can then verify
data availability by sampling parts of the codeword, ensuring the entire data is
available if a sufficient number of light clients successfully probe it. The encoding
of this data entails computing all openings of the commitment scheme. Ethereum
has proposed to use the KZG commitment scheme for their DAS construction
[Res]. Using our scheme in conjunction with their DAS scheme will improve the
efficiency of the encoding function.
A related application is that of proof-serving nodes (PSNs), as described in
[SCP+22]. These nodes assist light clients by maintaining proofs of openings for
a commitment, which represents the state of a cryptocurrency. Any update to
the state reflects a change in the commitment, necessitating the update of the
proof of opening for all users. This process can impose a computational overhead
on light clients, as they need to update their openings with every change to the
commitment. PSNs alleviate this burden by updating each proof with every
state change. This incurs a computational cost of O(n) for each state change.
Using our scheme, however, PSNs can delay updating proofs until after a set
of changes, and then update all proofs in O(n log n) time, which may be more
efficient depending on the frequency of required proof updates.
A recent work by Ateniese et al [ABC+23] aim to improve the scalability of
decentralized storage by presenting efficient proof-of-replication protocols. In
their construction the prover is required to prove openings of vector commitment
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during the auditing phase. Using our scheme the prover can precompute all
proofs, and provide the corresponding proof accordingly.

Improving run time of Lookup arguments for SNARKs: Lookup ar-
guments such as Caulk [ZBK+22] present a scheme to prove membership of a
subset within a public set in zero-knowledge. The main idea here is to repre-
sent the set as KZG commitment, and then to prove knowledge of openings
efficiently. To prove a subset (that is multiple openings), the prover can precom-
pute all openings and thereafter batch the openings to compute a a constant
sized proof for the entire subset. Using our algorithm, we can improve the effi-
ciency of this pre-computation of all proofs. Similar techniques are also used in
Baloo [ZGK+22] and cq [EFG22]. The precomputation also finds applications in
Protostar [BC23], SublonK [CGG+24], improved lookup arguments [CFF+24,
DGP+24], cqlin [EG23], zero-knowledge location privacy [EZC+24], batching-
efficient RAM [DGP+24] etc.

Laconic OT: In laconic oblivious transfer, the receiver holds a database D ∈
0, 1n of n choice bits and publishes a digest digest ← H(D), whose size is in-
dependent of the size of D. The sender can then repeatedly choose a message
pair (m0,m1), an index i ∈ [n], and use the digest to compute a short mes-
sage for the receiver, which allows them to obtain mD[i]. The construction of
Fleischhacker et al [FHAS24] uses the KZG commitment scheme to compute the
digest. More specifically, receiver computes the digest (as a KZG commitment),
and all openings, and sends the digest to the sender. The sender witness encrypts
the messages using the digest, such that the receiver is able to decrypt using only
the proof of opening at the corresponding index. Since the receiver computes all
openings of the KZG commitment, it can be done efficiently using our scheme.

Non-interactive Aggregatable Lotteries: Fleischhacker et al [FHASW23]
present Jackpot, which is a lottery scheme based on vector commitments. More
specifically, they present a construction of a verifiable random function (VRF)
using the KZG vector commitment. In their scheme, each party Pj initially
commits to a random vector v(j) ∈ [k]T to participate in T lotteries. In the
i-th lottery round a per party challenge xj is derived from a random seed and
party Pj wins iff v(j) = xj . Each party can prove that they won by revealing
an opening for position i of their commitment. The authors note that the most
time-critcal part for the parties is in the computation of the proofs. But all
the openings can be computed immediately after key generation and before the
lotteries. Using our scheme the efficiency of this computation can be improved.

C Proofs of Equations

Theorem 1(i). (Restated) Let field F contain a primitive n-th root of unity ω,
Let D be the derivative operator from Table 1. The derivative conjugate matrix
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D̂ has the following explicit structure:

(D̂)ij =

{
ωj−i

ωi−ωj , for i ̸= j
(n−1)
2ωi , for i = j

Proof. Recall D̂ = DFT ·D ·DFT−1, where D is the off-diagonal derivative matrix
(D)i,i−1 = i and DFTij = ωij . Now we have,
1. (D)i,i+1 = i+ 1 and 0 elsewhere.
2. DFTij = ωij .
3. DFT−1

ij = 1
nω

−ij .
To start with, let’s compute

E′ = DFT · D, E′
ij =

n−1∑
k=0

DFTik · Dkj = DFTi(j−1)D(j−1)j = ωi(j−1) · (j)

Since, D̂ = E′ · DFT−1, we have:

D̂ij =

n−1∑
k=0

E′
ikDFT

−1
kj =

n−1∑
k=0

ωi(k−1) · (k) · 1
n
ω−kj =

1

n
ω−i

n−1∑
k=0

(k) · ωk(i−j)

Let ωi−j = a, then using geometric series and its derivative, for a ̸= 1, i.e.
i ̸= j, we have

D̂ij =
1

n
ω−i (n− 1)an+1 − nan + a

(a− 1)2

Since an = ω(i−j)n = 1, the above is same as:

1

n
ω−i (n− 1)a1 − n+ a

(a− 1)2
=

1

n
ω−i (na− n)

(a− 1)2
= ω−i 1

(a− 1)

Substituting a = ωi−j , the above becomes:

ωj−i

ωi − ωj

In the case that i = j, we have:

D̂ii =
1

n
ω−i

n−1∑
k=0

(k) · ωk(i−i) =
1

n
ω−in(n− 1)

2
=

(n− 1)ω−i

2

Thus,

(D̂)ij =

{
ωj−i

ωi−ωj , for i ̸= j
(n−1)
2ωi , for i = j
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Remark. Let

(D′)ij =

{
ωj−i·ωj

ωi−ωj , for i ̸= j
(n−1)

2 , for i = j

and let D′′ be the diagonal matrix with entries ω−j , so that D̂ = D′ ·D′′. It is not
difficult to see that D′ is a multiplication matrix of the polynomial d(X) = (n−
1)/2+

∑n−1
i=1

Xi

ω2i−ωi (set j = 0 in the above definition of D′). Hence, by Lemma 3,
DFT · D′ · DFT−1 is a diagonal matrix. However, the current lemma shows that
DFT−1 · D′ · D′′ · DFT is a shifted-diagonal non-full ranked matrix6, which is a
surprising result (note, the similarity transform is with DFT−1 instead of DFT).
While relationships between differential operators and Fourier transforms are
well known for functions over complete fields (such as complex numbers), to the
best of our knowledge the above characterization is new for finite extensions of
Q and finite fields.

Lemma 3. For any F (X), and its corresponding vandermonde matrix over Zq,
for any f(X) ∈ Rq = Zq[X]/(F (X)), VMfV

−1 = diagf , where diagf is the
diagonal matrix with entries f(wi) (i ∈ [0..n− 1]).

Theorem 3. Given the the following matrix J:

J =

{
1

ωi−ωj , i ̸= j
n−1
2 ω−i , i = j

we have that the conjugate matrix Ĵ is a sparse matrix of the following explicit
form:

Ĵ =

{
n− i , j = i− 1 and i ∈ [1, n− 1]

0 , otherwise

Proof. Recall that Ĵ = DFT · J · DFT−1. Alternatively,

J = DFT−1 · Ĵ · DFT

Let’s start with

E′ = DFT−1·Ĵ, E′
ij =

n−1∑
k=0

DFT−1
ik·Ĵkj = DFT−1

i(j+1) ·̂J(j+1)j =
1

n
ω−i(j+1)·(n−j−1)

Since J = E′ · DFT, we have:

Jij =
n−1∑
k=0

E′
ik·DFTkj =

n−1∑
k=0

n− k − 1

n
ω−i(k+1)·ωkj =

n− 1

n
ω−i

n−1∑
k=0

ω(j−i)k−ω−i

n

n−1∑
k=0

kω(j−i)k

Note that
∑n−1

k=0 ω
(j−i)k = 0, thus we have

6 Since D is singular, it must be the case that D′ is singular; indeed it can be checked
that the polynomial d(X) has X = 1 as a root, which is also a root of Xn − 1.
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Jij = −
ω−i

n

n−1∑
k=0

kω(j−i)k

Let ωj−i = a, and using the geometric series and its derivative as above we
have:

Jij = −
ω−i

n

n−1∑
k=0

kak = −ω−i

n

(n− 1)an+1 − nan + a

(a− 1)2

Since an = ω(j−i)n = 1, the above is same as:

− 1

n
ω−i (n− 1)a1 − n+ a

(a− 1)2
= − 1

n
ω−i (na− n)

(a− 1)2
= −ω−i 1

(a− 1)

Substituting a = ωj−i, the above becomes:

Jij = −
1

ωj − ωi
=

1

ωi − ωj

Moreover, when i = j, we have

Jij =
n− 1

n
ω−i

n−1∑
k=0

ω(i−i)k−ω−i

n

n−1∑
k=0

kω(i−i)k = ω−i(n−1)−ω−in− 1

2
= ω−in− 1

2

J =

{
1

ωi−ωj , i ̸= j
n−1
2 ω−i , i = j

Theorem 4. Given the following matrix ColEDiv:

ColEDiv =

{
− 1

ωj−ωi , i ̸= j

0 , i = j

we have the conjugate matrix ĈolEDiv is a sparse matrix with the following
explicit form:

(ĈolEDiv)i,j =
−n−1

2 , (i, j) = (0, n− 1)
n+1
2 − i , j = i− 1 and i ∈ [1, n− 1]

0 , otherwise

(7)

Proof. Recall that

ĈolEDiv) = DFT · ColEDiv · DFT−1
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To prove the theorem that the conjugate matrix ĈolEDiv = DFT · ColEDiv ·
DFT−1 has the specified explicit form, we will break down the multiplication
step by step. We will compute E′ = DFT ·ColEDiv and then compute ĈolEDiv =
E′ · DFT−1.

Lets start with computing E′ = DFT · ColEDiv
The element (E′)k,j is given by:

(E′)k,j =

n−1∑
i=0

(DFT)k,i · (ColEDiv)i,j .

Since (ColEDiv)i,j = 0 when i = j, we have:

(E′)k,j = −
n−1∑
i=0
i ̸=j

ω−ki · 1

ωj − ωi
= −

n−1∑
i=0
i̸=j

ω−ki

ωj − ωi
.

Next we compute ĈolEDiv = E′ · DFT−1

The element (ĈolEDiv)k,ℓ is given by:

(ĈolEDiv)k,ℓ =
n−1∑
j=0

(E′)k,j · (DFT−1)j,ℓ

=
1

n

n−1∑
j=0

(E′)k,jω
jℓ

= − 1

n

n−1∑
j=0

n−1∑
i=0
i ̸=j

ω−ki

ωj − ωi

ωjℓ

= − 1

n

n−1∑
i=0

ω−ki
n−1∑
j=0
j ̸=i

ωjℓ

ωj − ωi
.

Now we simplify the inner sum:
Observe that ωj − ωi = ωi(ωj−i − 1), and ωjℓ = ωiℓω(j−i)ℓ. Thus, the inner

sum becomes:
n−1∑
j=0
j ̸=i

ωjℓ

ωj − ωi
= ωiℓ

n−1∑
d=1
d ̸=0

ωdℓ

ωi(ωd − 1)

= ωi(ℓ−1)
n−1∑
d=1

ωdℓ

ωd − 1
.
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To compute the total sum, substitute back into the expression for (ĈolEDiv)k,ℓ:

(ĈolEDiv)k,ℓ = −
1

n

n−1∑
i=0

ω−ki

(
ωi(ℓ−1)

n−1∑
d=1

ωdℓ

ωd − 1

)

= − 1

n

(
n−1∑
i=0

ωi(ℓ−k−1)

)(
n−1∑
d=1

ωdℓ

ωd − 1

)
.

The sum over i simplifies using the orthogonality of roots of unity:

n−1∑
i=0

ωi(ℓ−k−1) =

{
n, if ℓ ≡ k + 1 mod n,

0, otherwise.

Let
n−1∑
i=0

ωi(ℓ−k−1) = nδℓ,k+1,

where δ is the Kronecker delta function.
Thus, the total sum simplifies to:

(ĈolEDiv)k,ℓ = −
1

n
· nδℓ,k+1

(
n−1∑
d=1

ωdℓ

ωd − 1

)
= −δℓ,k+1

n−1∑
d=1

ωdℓ

ωd − 1
.

We need to evaluate the sum:

Sℓ =

n−1∑
d=1

ωdℓ

ωd − 1
.

Case 1: ℓ = 0

When ℓ = 0, ωdℓ = 1, so:

S0 =

n−1∑
d=1

1

ωd − 1
.

Since ωd = e2πid/n, the terms are complex conjugates and sum to:

S0 =
n− 1

2
.

Case 2: 1 ≤ ℓ ≤ n− 1

For ℓ ̸= 0, we can use the identity:

n−1∑
d=1

ωdℓ

ωd − 1
=

n+ 1

2
− ℓ.
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Combining the results, we find that ĈolEDiv is a sparse matrix with entries:

(ĈolEDiv)k,ℓ =


−n− 1

2
, if k = 0, ℓ = n− 1,

n+ 1

2
− k, if ℓ = k − 1 and 1 ≤ k ≤ n− 1,

0, otherwise.

D Toeplitz Matrices

Let M be the following n-by-n Toeplitz matrix:

M =


f1 f2 · · · fn

f2
. . . fn 0

... fn
. . .

...
fn 0 · · · 0


i.e. where Mi,j = fi+j+1 if i+ j < n and Mi,j = 0 otherwise.

It is well known that [Con, Theorem 3.7], [FK23]:

pow(X)⊤ ·M · pow(Y ) =
f(X)− f(Y )

X − Y

Using this, and for X using τ and for Y using powers of ω, we get

pow(τ)⊤ ·M · DFT =

〈
f(ωi)− f(τ)

ωi − τ

〉n−1

i=0

(8)

= ⟨(CDivωi [f ]) (τ)⟩n−1
i=0 (9)

= pow(τ)⊤ · ⟨CDivωi⟩n−1
i=0 · f (10)

= pow(τ)⊤ · DFT−1 · ⟨EDivωi⟩n−1
i=0 · DFT · f (11)

Further, recall from (2) that the above in column form is same as (recalling
DFT · f = v, [w]1 = DFT−1 · [pow(τ)]1, and DFT⊤ = DFT, being vandermonde
matrix of roots of Xn − 1)

[w]1 ◦ D̂v + (ColEDiv · [w]1) ◦ v + DiaEDiv · ([w]1 ◦ v) (12)

The above also shows that [w]1 does not have to be DFT-inverse of powers of
a τ , but can be an arbitrary vector of groups elements. As remarked earlier the
conjugates of D̂, ColEDiv and DiaEDiv are all sparse, and in fact, if (ColEDiv·[w]1)
is given pre-computed as a vector of group elements, then the above can be
computed with just 3n + 2n log n scalar-multiplications7 (the 2n log n scalar-
multiplications coming from computing the last term, since DiaEDiv is not sparse,
but only its conjugate is sparse).
7 also referred as group exponentiations in mutiplicative group notation.
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Actually, if we use the remarks about Cooley-Tukey in Section 2, the total
number of scalar multiplications is only 1/2∗n log n (both for DFT and DFT−1).
Thus, the total number of scalar multiplications is n log n. Note, that this cost
is same whether the result is needed in evaluation basis or power basis.

We should also investigate if the Feist-Khovratovich [FK23] method de-
scribed in Section 4.4 itself can be improved to get n log n scalar multiplications.
Recall, they expand the matrix M to be a 2n×2n multiplication matrix M ′ mod-
ulo X2n − 1. Thus, M ′ · pow(τ) can be computed by polynomial multiplication
modulo X2n − 1. So, M ′ being a multiplication matrix of say polynomial f̃(X),
and pow(τ) extended to 2n elements by appending n zeroes, to be viewed as
another polynomial T (X), we need to compute f̃(X) ∗T (X). The DFT of T (X)
can be provided in the CRS, and further the DFT of f̃(X) can be computed as
a field DFT (of size 2n). At this point, one can do a Hadamard product of the
two DFTs, which would require 2n scalar multiplications.

In other words, so far we have computed DFT∗ · f̃ ◦ DFT∗ · T , where DFT∗

denotes discrete fourier transform w.r.t. X2n− 1, i.e. using 2n-th roots of unity.
This is same as DFT∗ · (f̃(X)∗T (X)) which is same as DFT∗ · (M ′ · [pow(τ) | 0]).
This may seem same as DFT∗ · (M · pow(τ)), but that is not true, as the first
n columns of M ′ have extra elements in the bottom n rows, and these are
contributing to the above. So, instead one needs to run DFT∗-inverse on the
above which would take 2n/2 ∗ log n scalar multiplications. Then, one would get
(M ′ · [pow(τ) | 0]). Now, the first n components of this is same as M · pow(τ).
One has to run a final DFT on this, to get the openings at the roots of unities.
This would require another n/2 ∗ log n scalar multiplications. So, the total cost
is 3n/2 ∗ log n scalar multiplications.

Thus, while for our method the cost is the same n log n (elliptic curve) scalar
multiplications whether we need the result in the evaluation basis or power basis,
for the modified Feist-Khovratovich [FK23] method described above, the cost
for computation in the evaluation basis is 3n/2 ∗ log n scalar multiplications
(while the cost in the power basis is n log n).

E Other systems

In this section, we briefly describe the applicability of our techniques to two
other systems: STARK and PLONK. We defer detailed technical descriptions
and benchmark evaluations to future work, while providing a high-level blueprint
here.

E.1 STARK

A STARK [BSBHR18] prover generates the execution trace of the program on
a given set of inputs and does the following8:
1. Interpolate the execution trace to obtain trace polynomials.

8 https://aszepieniec.github.io/stark-anatomy/stark
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2. Interpolate the boundary points to obtain the boundary interpolants, and
compute the boundary zerofiers along the way.

3. Subtract the boundary interpolants from the trace polynomials, and divide
out the boundary zerofier, giving rise to the boundary quotients.

4. Commit to the boundary quotients.
5. Get r random coefficients from the verifier.
6. Compress the r transition constraints into one master constraint that is the

weighted sum.
7. Symbolically evaluate the master constraint in the trace polynomials, thus

generating the transition polynomial.
8. Divide out the transition zerofier to get the transition quotient.
9. Commit to the transition zerofier.

10. Run FRI [BSBHR18] on all the committed polynomials: the boundary quo-
tients, the transition quotients, and the transition zerofier.

11. Supply the Merkle leafs and authentication paths that are requested by the
verifier.
We now use the observation that the transition polynomial evaluations and

the zerofier evaluations are all 0 at each row in the trace. Therefore, we can use
l’Hôpital’s rule again: instead of computing m(X)/z(X), we instead compute
m′(X)/z′(X). Just like as in Groth16, we can do much of this computation in
the evaluation space, and avoid division in the coefficient space altogether.
1. We additionally describe the derivative transition polynomials m′(X) in the

circuit setup.
2. We can optimize the description of z′(X) by having the evaluation domain

be a suitable subgroup of roots of unity, with padding if necessary.
3. The prover evaluates the transition derivatives while generating the trace.
4. Compute the derivative of the trace using FFT and the D matrix, as in our

Groth16 optimization.
5. Compute point-wise division in the derivative evaluation space
6. Finally, we use a DFT to migrate the division evaluations to the coefficient

space.
7. Now we can use FRI as usual over this quotient polynomial.
8. Analogous optimizations can be done for the boundary quotient evaluation

as well.

E.2 PLONK

PLONK [GWC19] has a general strategy similar to STARKs, but uses a dif-
ferent arithmetization. Instead of transition polynomials, PLONK uses selector
polynomials to specify circuits. In addition, PLONK uses prescribed permutation
checks to prove consistency of wire values between execution rows. The rough
blueprint is similar now:
1. Specify the derivative of the selector and permutation check polynomials at

circuit-based setup.
2. Precompute the derivative of the zerofier polynomial, again optimizing through

careful selection of subgroups of roots of unity.
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3. Compute the trace as usual.
4. Compute the derivative of the trace using FFT and the D matrix, as in our

Groth16 optimization.
5. Compute point-wise division in the derivative evaluation space using the cir-

cuit polynomial derivatives and trace polynomial derivative.
6. If KZG is used for polynomial commitments, then we can use our optimiza-

tions in this paper to compute proofs and openings in the evaluation space
itself.

F Example computation from EDivk

In this section, we will show how for n = 4 all KZG openings can be computed
by stacking the different EDivk matrices as described in Section 4.3.

We will first present the different EDivk matrices for k ∈ {0, 1, 2, 3}. First of
all note that each matrix is star-shaped with the center of the star being the
pink-colored intersection of all lines (column, row, and diagonal)

3
2

− ω
ω−1

− ω2

ω2−1
− ω3

ω3−1

− 1
ω−1

1
ω−1

0 0

− 1
ω2−1

0 1
ω2−1

0

− 1
ω3−1

0 0 1
ω3−1

(a) EDiv0

1
1−ω

− 1
1−ω

0 0

− ω3

1−ω
3
2ω

− ω
ω2−ω

− ω2

ω3−ω

0 − 1
ω2−ω

1
ω2−ω

0

0 − 1
ω3−ω

0 1
ω3−ω

(b) EDiv1

1
1−ω2 0 − 1

1−ω2 0

0 1
ω−ω2 − 1

ω−ω2 0

− ω2

1−ω2 − ω3

ω−ω2
3
2
ω−2 − ω

ω3−ω2

0 0 − 1
ω3−ω2

1
ω3−ω2

(c) EDiv2

1
1−ω3 0 0 − 1

1−ω3

0 1
−ω3+ω

0 − 1
−ω3+ω

0 0 1
−ω3+ω2 − 1

−ω3+ω2

− ω
1−ω3 − ω2

−ω3+ω
− ω3

−ω3+ω2
3

2ω3

(d) EDiv3

Fig. 6: The four matrices EDiv0, EDiv1, EDiv2, and EDiv3

Now let us consider the case when we stack all the k-th rows from each EDivk.
Note that this corresponds to just collecting the green-colored rows.
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3
2

− ω
ω−1

= ω−1
2

− ω2

ω2−1
= − 1

2
− ω3

ω3−1
= − 1+ω

2

− ω3

1−ω
= ω−1

2
3
2ω

= − 3ω
2

− ω
ω2−ω

= 1+ω
2

− ω2

ω3−ω
= ω

2

− ω2

1−ω2 = 1
2
− ω3

−ω2+ω
= ω+1

2
3

2ω2 = − 3
2

− ω
ω3−ω2 = ω+1

2

− ω
1−ω3 = ω−1

2
− ω2

−ω3+ω
= ω

2
− ω3

−ω3+ω2 = ω+1
2

3
2ω3 = 3ω

2

Fig. 7: Stacking the rows, i.e. the k-th row from EDivk forms the k-th row of the
new matrix.

One can also observe that indeed matrix described in Fig 7 matches the
values of D̂ described in Table 1.

The next observation is that upon stacking the k-th columns of EDivk, we
compute the ColEDiv matrix, that has the form:

ColEDiv =

{
− 1

ωj−ωi , i ̸= j

0 , i = j

This corresponds to stacking the violet-colored columns from each of the
EDivk, but replacing the diagonal elements with 0.

0 − 1
1−ω

− 1
1−ω2 − 1

1−ω3

− 1
ω−1

0 − 1
−ω2+ω

− 1
−ω3+ω

− 1
ω2−1

− 1
ω2−ω

0 − 1
−ω3+ω2

− 1
ω3−1

− 1
ω3−ω

− 1
ω3−ω2 0

Fig. 8: Stacking the columns with diagonal set to 0.

One can observe that this matrix has exactly the form of ColEDiv described
above.
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Finally, upon stacking the diagonals (yellow-colored cells) as columns but
keeping the diagonal of the new matrix as zeros, we get the DiaEDiv matrix

0 1
1−ω

1
1−ω2

1
1−ω3

1
ω−1 0 1

−ω2+ω
1

−ω3+ω

1
ω2−1

1
ω2−ω 0 1

−ω3+ω2

1
ω3−1

1
ω3−ω

1
ω3−ω2 0

We can see that DiaEDiv = −ColEDiv as was observed in Section 4.3.
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