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Abstract. Compressing primitives such as accumulators and vector commitments, allow to rep-
resent large data sets with some compact, ideally constant-sized value. Moreover, they support
operations like proving membership or non-membership with minimal, ideally also constant-
sized, storage and communication overhead. In recent years, these primitives have found nu-
merous practical applications, with many constructions based on various hardness assumptions.
So far, however, it has been elusive to construct these primitives in a strictly structure-preserving
setting, i.e., in a bilinear group in a way that messages, commitments and openings are all ele-
ments of the two source groups. Interestingly, backed by existing impossibility results, not even
conventional commitments with such constraints are known in this setting.
In this paper we investigate whether strictly structure-preserving compressing primitives can
be realized. We close this gap by presenting the first strictly structure-preserving commitment
that is shrinking (and in particular constant-size). We circumvent existing impossibility results
by employing a more structured message space, i.e., a variant of the Diffie-Hellman message
space. Our main results are constructions of structure-preserving vector commitments (SPVC)
as well as accumulators. We first discuss generic constructions and then present concrete con-
structions under the Diffie-Hellman Exponent assumption. To demonstrate the usefulness of our
constructions, we present various applications. Most notable, we present the first entirely prac-
tical constant-size ring signature scheme in bilinear groups (i.e., the discrete logarithm setting).
Concretely, using the popular BLS12-381 pairing-friendly curve, our ring signatures achieve a
size of roughly 6500 bits.

1 Introduction

Compressing primitives like accumulators, vector commitments or key-value commitments (key-value
maps) are cryptographic techniques to efficiently represent and manage large datasets in a space-
efficient form. They allow to represent large data sets with a compact, ideally constant-sized, value
and support operations like proving membership or non-membership with minimal storage and com-
munication overhead (ideally constant-size witnesses). These primitives have many interesting appli-
cations for blockchain privacy, e.g., Zcash3, and scalability, e.g., use of Verkle trees4, stateless clients
for blockchains5, data availability sampling [57]) or batching [25]. Moreover, they are extensively used
in privacy-preserving systems, such as anonymous authentication primitives, e.g., ring signatures [40]
or revocation in anonymous credentials [8, 11,36], or data outsourcing [17,27,81].

In this paper, we focus mainly on vector commitments [27] and accumulators [13, 18]. We recall
that a vector commitment (VC) scheme enables a user to commit to a vector m, with the ability
to later open the commitment at specific positions without being able to cheat (position binding).
Moreover, they might also support to update values committed at certain position. Crucially, both the
commitment size and the size of the opening must remain succinct, ideally of constant size. In recent
years we have seen significant advancements and growing interest in the development and applications
of vector commitments. Beginning with the foundational Merkle tree [70], which leverages collision-
resistant hash functions, the field has expanded to include a diverse array of algebraic constructions.
These include schemes based on pairing-based assumptions [27, 52, 59, 60, 65, 66, 82] as well as those
relying on assumptions over groups of unknown order, such as RSA groups or class groups [24,27,60]

3 https://z.cash
4 https://vitalik.eth.limo/general/2021/06/18/verkle.html
5 https://ethresear.ch/t/the-stateless-client-concept/172
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and post-quantum constructions based on lattices [10,62,78,83]. For an extensive overview of schemes,
see [76]. As we have already mentioned above, vector commitments have been widely utilized across
various applications. Moreover, generalizations of vector commitments and in particular polynomial
commitments [59] and functional commitments [65], have become foundational components in many
recent constructions of succinct non-interactive arguments of knowledge (SNARKs).

However, it is not clear how to apply this result to the SP setting. Moreover, when using a vector
commitment in this way, it often reveals the position of elements within the set, which may expose
sensitive information in certain contexts, e.g., when using them as a building block for privacy-
preserving primitives such as ring signatures. Therefore, we are interested in an approach where the
witness does not disclose any information about the elements.

We also recall that a (static) accumulator [13,18] is another type of compressing primitive, which
allows to represent a set of elements X = {x1, . . . , xn} in the form of a succinct accumulator value
accX . For each element xi ∈ X, a witness witxi can be efficiently computed to certify its membership in
the set, while ensuring that it is computationally infeasible to forge witnesses for non-members y /∈ X
(collision resistance). Universal accumulators in addition provide the functionality of non-membership
witnesses for values y /∈ X and dynamic accumulators supporting efficient additions and deletions
from the accumulated set. It is worth remarking that Catalano and Fiore have shown that any vector
commitment can be used to construct universal dynamic accumulators [27]. Unfortunately, it is unclear
whether this approach can be immediately applied to the SP setting or effectively hide the index, a
property often required in privacy-preserving applications. Like vector commitments, accumulators
have found wide-ranging applications and actually evolved into a foundational component in various
advanced cryptographic constructs. They are integral to revocation in anonymous credentials [8, 11,
36], membership revocation for group signatures [22] and the construction of ring signatures [38,40,61].

Over time, cryptographic accumulators have evolved through various instantiations. Initially based
on the RSA assumption [13], early schemes were later expanded upon [22, 40]. Nguyen introduced
pairing-based accumulators [74], sparking further advancements in this area [11, 12, 21, 35, 50]. More
recent developments include lattice-based accumulators [58,62,77].

Structure-Preserving Compressing Primitives. While, as outlined above, numerous construc-
tions exist for both vector commitments and accumulators, a significant challenge remains in develop-
ing such schemes that are structure-preserving (SP). We recall that a cryptographic scheme is called
structure preserving [3] if all public inputs and outputs consist of elements of the source groups G1

and G2 of a bilinear group (p,G1,G2,GT , e, P, P̂ ) and functional correctness can be verified only by
testing group membership, computing group operations, and evaluating pairing product equations
(PPEs) [1] of the form

∏
i

∏
j e(Ai, B̂j)

ci,j = 1, where Ai ∈ G1 and B̂j ∈ G2 are group elements and
ci,j ∈ Zp are constants. This domain is very rich in its constructions and allows for a modular design
of (advanced) cryptographic primitives, e.g., structure-preserving signatures (SPS) [3] (cf. [49] for a
recent overview on the large body of works), threshold SPS [33, 73], blind signatures [3, 46], group
signatures [3, 64], traceable signatures [2], homomorphic signatures [63] or delegatable anonymous
credentials [34, 45, 72]. Such constructions are highly desirable because they maintain the algebraic
structure of the committed values and proofs, ensuring compatibility with a broader range of cryp-
tographic protocols and in particular the Groth-Sahai [56] and related proof systems. Moreover,
especially for compressing primitives they are of concrete practical interest beyond modular protocol
design, as we will discuss in this paper.

Unfortunately, there are known impossibility results of Abe et al. [6] establishing that strictly
structure-preserving commitments to source-group elements cannot be smaller than the input message
size and thus scale linearly with the number of group elements. In order to be compressing though,
for conventional commitments, there are some approaches that relax the SP setting by allowing
elements from the target group GT in the commitment [5,6] (see Sec.2.1). Another approach by Abe
et al. [7] is to construct SP commitments that have a relaxed notion of binding, where the message
space and the verification space differ (e.g., being Zp and G1 respectively). Nevertheless, these are not
strictly structure-preserving commitments and in particular do not allow to commit to commitments, a
features that is interesting for practical applications. When it comes to accumulators, to the best of our
knowledge, the approach that conceptually comes closest is that of determinantal accumulators [67].
While they are in spirit of SP primitives and their combination with Groth-Sahai proofs [56], the
focus of determinantal primitives is on designing primitives that can be modularity combined with
algebraic NIZKs in the vein of Couteau and Hartmann [31] and Couteau et al. [32]. Consequently, they



are not structure-preserving. For vector commitments, there is an impossibility result for algebraic
vector commitments in pairing-free groups [28], but this does not rule out the existence of structure-
preserving ones. While [28] notes that the impossibility of strictly SP commitments [5, 6] rules out
constructing succinct vector commitments in this structure-preserving setting, we are not aware of
any work trying to bypass such an impossibility and thus this state of affairs is not satisfactory. This
leads us to the following question:

Can we design (vector) commitments and accumulators that retains algebraic structure, i.e., being
strictly structure-preserving, while being succinct?

Addressing this gap is crucial for advancing the field. Our aim is to close this gap.

1.1 Our Results

Our contributions can be summarized as follows:

– We present the first construction of group-to-group commitments that are shrinking and strictly
structure-preserving, i.e., messages, commitments and openings are all elements in the source
groups G1 and G2. We obtain this by bypassing known impossibility results due to Abe et al. [5,6]
as we require a more structured message space and in particular a Diffie-Hellman (DH) message
space [3, 44]. Such a message space has recently shown to be relevant for various applications
[33,71].

– We present the first structure-preserving vector commitments (SPVC’s). First we present a (prob-
ably folklore) construction of weak-binding WSPVC from any EUF-CMA secure SPS scheme.
Then, we turn to SPVC’s providing the conventional notion of position-binding and present a
construction of SPVC under the Diffie-Hellman Exponent (q-DHE) assumption with a message
space that is defined with respect to some global parameters (inspired by the recent work by
Griffy et al. [53] and q-DHE VC schemes [52,66]).

– We present the first constructions of structure-preserving accumulators SPA. First we discuss how
our weak-binding WSPVC naturally yields an accumulator. Second, we construct a randomizable
SP accumulator starting from the q-DHE based SPVC but for another and in particular DH-type
message space. Here we aim to achieve index hiding, i.e., it should be possible to give out a witness
and accumulated value such that they cannot be linked back to the accumulated value. This is
accomplished through a randomization technique that ensures the randomized accumulated values
do not reveal anything about the index of the original accumulated value and DH-type messages.

– Finally, we outline some applications that showcase the benefits of our schemes. Most notable, we
present the first entirely practical constant-size ring signature scheme in bilinear groups (i.e., the
discrete logarithm setting) and prove its security in the strongest model of Bender et al. [19]. It is
inspired by the key-homomorphic signature based ring signature construction in [39] but uses an
accumulator for the membership proof. We base our construction on our randomized SP accumu-
lator and a variant of BLS signatures that we call accumulator-compatible BLS, which ensures
that BLS public keys are compatible with the message space of our accumulator. Concretely,
using the popular BLS12-381 pairing-friendly curve, ring signatures are of size roughly 6500 bits.
Moreover, we discuss the applications of our SPVC to succinct data availability sampling and
algebraic Verkle trees.

2 Preliminaries

Notations. We use BG = (p,G1,G2,GT , e, P, P̂ )← BGSetup(1λ) to denote a bilinear group generator
for asymmetric type-3 bilinear groups, where p is a prime of bit length λ. We use [ℓ] to denote the set
{1, 2, . . . , ℓ}. When drawing multiple values from a set, we may omit notation for products of sets, e.g.
(x, y) ∈ Zp is the same as (x, y) ∈ (Zp)

2. For a map from the set Z to the set S, m : Z → S, we will
denote m[i] ∈ S as the output of the map in S with input i ∈ Z. We use bold font to denote a vector
(e.g. V). For brevity, we will sometimes denote the elements in a vector as V = (Vi)i∈[ℓ] = (V1, . . . , Vℓ).
Given a finite set S, we denote by x← S or x←$ S the sampling of an element uniformly at random
from S. For an algorithm A, let y ← A(x) be the process of running A on input x with access
to uniformly random coins and assigning the result to y. With AB we denote that A has oracle



access to B. We assume all algorithms are polynomial-time (PPT) unless otherwise specified and
public parameters are an implicit input to all algorithms in a scheme. We use [a, b] to denote the
range {a, a + 1, . . . , b}. Additionally, |N | represents the length of N . By the symbol ≈, we denote
indistinguishability between two distributions D1 ≈ D2.

Camenisch and Stadler Notation. We use the common notation due to Camenisch and Stadler [23]
for NIZK as follows:

NIZK
{
(α, β) : y = Pα ∧ z = P β · hα

}
,

which denotes an non-interactive proof of knowledge of discrete logarithms (α, β) (the witness) sat-
isfying the right-hand side statement about the public values y, P, z, h.

Diffie-Hellman Message Space. Over an asymmetric bilinear group, a pair (M, N̂) ∈ G1 × G2

is called a Diffie-Hellman (DH) message MDH [4, 44] if there exists m ∈ Zp s.t. M = Pm and
N̂ = P̂m. One can efficiently verify whether (M, N̂) ∈ MDH by checking e(M, P̂ ) = e(P, N̂). More
formally, the message space are elements of the subgroup of G1×G2 defined as the image of the map
ψ′ : Zp → G1×G2 as: ψ′ : x 7→ (P x, P̂ x). One can easily extend the message space to a vector of Diffie-
Hellman pairs (M, N̂) = (M1, . . . ,Mn, N̂1, . . . , N̂n) s.t. for all i ∈ [n], (Mi, N̂i) = (Pmi , P̂mi) ∈MDH

for mi ∈ Zp.
We note that related notations exist, such as equivalence classes [47]. Given the vector M, the

message M represents an equivalence class of all scaled messages Mµ. This allows for randomizing
the message vector by switching between M and Mµ for any non-zero µ. This concept extends to
Diffie-Hellman message spaces, including Indexed DH [33] and tag-based DH message spaces [71],
where randomized DH message vectors retain their validity with respect to their tags. Although
latter variants are not directly related to our primitives, it provides useful context.

2.1 Structure-Preserving Commitment

A structure-preserving commitment scheme was proposed by Abe et al. [4]. The public key consists
of n + 1 group elements (H,U1, . . . , Un) from G1. To commit to (M̂1, . . . , M̂n) ∈ Gn

2 , a random
element R̂ ∈ G2 is selected, and the commitment is computed as C = e(H, R̂)

∏n
i=1 e(Ui, M̂i). This

commitment scheme is computationally binding under the DBP assumption. Moreover, it is both a
length-reducing (constant-size) scheme and a homomorphic trapdoor commitment.

2.2 Zero-Knowledge Proofs of Knowledge

We define zero-knowledge proofs of knowledge (ZKPOK) and discuss non-interactive versions thereof
(NIZK).

ZKPoK. Let LR = {x | ∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal language, where R ⊆ {0, 1}∗×{0, 1}∗
is a binary, polynomial-time (witness) relation. For such a relation, the membership of x ∈ LR can
be decided in polynomial time (in |x|) when given a witness w of length polynomial in |x| certifying
(x,w) ∈ R. We assume an interactive protocol (P,V) between a prover P and a PPT verifier V and
denote the outcome of the protocol as (·, b)←

(
P(·, ·),V(·)

)
where b = 0 indicates that V rejects and

b = 1 that it accepts the conversation with P. We require the following properties completeness, zero
knowledge (ZK) and soundness. For the formal definitions, see e.g. [51].

Non-Interactive Zero-Knowedge Proofs (of Knowledge). One can use the Fiat-Shamir heuris-
tic to transform any Sigma protocol into a non-interactive zero-knowledge proof of knowledge (NIZK).
Whenever one requires multiple-extractions in a security proof, a standard measure is to opt for in-
teractive ZKPOK. We however note that when willing to pay some extra costs, one could instead use
straight-line extractable NIZK, e.g., obtained via Fischlin’s transformation [42].

2.3 Assumptions

Definition 1 (The Diffie-Hellman Exponent (q-DHE) [21]). Let G be a finite cyclic group of or-
der p, P be a generator of G. The q-DHE problem is, given a tuple of elements (P, P1, . . . , Pq, Pq+2, . . . ,

P2q) such that Pi = Pαi

for i = 1, . . . , q, q + 2, . . . , 2q and where α ←$ Z∗
p, to compute the missing

group element Pq+1 = Pαq+1

in the sequence.



As shown in [52,66], q-DHE can be modified so as to work in asymmetric pairing configurations i.e.,
given {Pα1

, . . . , Pαq

, Pαq+2

, . . . , Pα2q

; P̂α1

, . . . , P̂αq

; e(P, P̂ )α
q+1} it is hard to find Pαq+1

.

Definition 2 ((Double Pairing Assumption (DBP)) [4]). We say the double pairing assumption
holds relative to BG if for any probabilistic polynomial-time algorithm A

Pr

[
BG← BGSetup(1λ);hz ←$ G∗

1

(Ẑ, R̂)← A(BG, hz) : (Ẑ, R̂) ∈ G∗
2 and 1 = e(hz, Ẑ)e(P, R̂)

]
≤ ϵ(λ)

This assumption follows from the decisional Diffie-Hellman (DDH) assumption in G1. By swapping
G1 and G2 (assuming DDH in G2), we obtain a dual assumption. Hence, if DDH holds in both G1

and G2, DBP holds in both groups.

2.4 Vector Commitments

We give a more formal definition for Vector Commitments (VC) [27] as follows:

Definition 3 (Vector Commitment). A vector commitment is a tuple of algorithms defined as
follows:

– KeyGen(1λ, q): Given the security parameter λ and the size q of the committed vector, the key
generation outputs some public parameters pp (which implicitly define the message spaceM and
are input to all algorithms).

– Commit(m1, . . . ,mq): On input a vector of q messages (m1, . . . ,mq) ∈ M and the public pa-
rameters pp, the committing algorithm outputs a commitment com and auxiliary information
aux.

– Open(m, i, aux): This algorithm is run by the committer to produce a proof πi that m is the i-th
committed message. In particular, notice that in the case when some updates have occurred, the
auxiliary information aux can include the update information produced by these updates.

– Verify(com,m, i, πi): The verification algorithm accepts (i.e., it outputs 1) only if πi is a valid
proof that com was created for a vector (m1, . . . ,mq) such that m = mi.

In addition, some applications require an update property (to update the commitment and the cor-
responding openings), which is defined using two additional (and optional) algorithms:

– Update(com,m,m′, i): This algorithm is run by the committer who produced com and wants to
update it by changing the i-th message to m′. Takes as input the old message m, the new message
m′, and the position i. Outputs a new commitment com′ together with update information U .

– ProofUpdate(com, πj ,m
′, i, U): This algorithm is run by any user who holds a proof πj for the

message at position j with respect to com. It allows the user to compute an updated proof π′
j

(and an updated commitment com′), such that π′
j will be valid with respect to com′, where m′ is

the new message at position i. The value U contains the update information needed to compute
these updated values.

VC should satisfy the property of position binding as follows:

Position Binding: This property ensures that a PPT adversary (with knowledge of pp) cannot
produce two proofs for the same position in a fixed commitment com that open to different values.
There are two flavors of this property:

– Weak Position Binding: Holds only for honestly generated commitments.
– Position Binding: Holds even for adversarially generated commitments.

Weak binding suffices for stateless validation (e.g., in Byzantine agreement on updates [76]) and
can be easily achieved using accumulators. Strong binding is essential in adversarial scenarios, like
transparency logs, where commitments are generated by log servers.

Definition 4 (Position Binding [27]). A VC satisfies position binding if, ∀i = 1, . . . , q, and for
every PPT adversary A, the following probability (taken over all honestly generated pp) is at most
negligible:

Pr

 Verify(com,m, i, π) = 1∧
Verify(com,m′, i, π′) = 1∧

m ̸= m′

∣∣∣∣∣∣((com, aux),m,m′, i, π, π′)← A(pp)

 ≤ ϵ(λ)



If we relax the above definition to hold only for honestly generated commitments com, we obtain the
weak position binding notion.

Definition 5 (Weak Position Binding [26, 52]). A VC satisfies Weak position binding if ∀i =
1, . . . , q and for every PPT adversary A, the following probability (which is taken over all honestly
generated parameters) is at most negligible:

Pr

 Verify(com,m, i, π) = 1 ∧ Verify(com,m′, i, π′) = 1
∧ m ̸= m′, (pp)← KeyGen(1λ), (com, aux)← Commit(m)

(i,m, π,m′, π′)← A(pp, com)

 ≤ ϵ(λ).
Conciseness: This property requires that both the commitment and the opening for a position i are
of constant size, independent of the vectors length.

Hiding. VC can also be required to be hiding, meaning that one should not be able to distinguish
whether a commitment was created to a vector (m1, . . . ,mq) or to (m′

1, . . . ,m
′
q), even after seeing

some proofs. However, hiding is not a crucial property in the realization of VC and typically not
considered.

2.5 Accumulators

We provide a formal a definition of static accumulators based on the definition given by Derler et al.
in [37].

Definition 6 (Static Accumulator). A static accumulator is a tuple of algorithms defined as
follows:

– Setup(1λ, q): Take a security parameter λ and a parameter q. If q ̸=∞, then q is an upper bound
on the number of elements to be accumulated. Return a key pair (skacc, pkacc), where skacc = ∅ if
no trapdoor exists.

– Eval((skacc, pkacc),X ): This (probabilistic) algorithm takes a key pair (skacc, pkacc) and a set X
to be accumulated and returns an accumulator AccX together with some auxiliary information
aux.

– WitCreate((skacc, pkacc),AccX , aux, xi): This algorithm takes a key pair (skacc, pkacc), an accumu-
lator AccX , auxiliary information aux, and a value xi. It returns ⊥, if xi /∈ X , and a witness witxi

for xi otherwise.
– Verify(pkacc,AccX , witxi

, xi): This algorithm takes a public key pkacc, an accumulator AccX , a
witness witxi

, and a value xi. It returns true if witxi
is a witness for xi ∈ X and false otherwise.

The above definition focuses on static accumulators. In contrast, dynamic accumulators enable the ac-
cumulated value and witnesses to be publicly updated whenever an element is added or removed from
the set. Various properties, such as being trapdoorless, universal, or supporting subset queries, are
associated with this primitive. For a comprehensive list of definitions, functionalities, and properties,
we refer to [15,37]. Here, we only consider the basic properties.

Security. One requires collision resistance which states that it should be computationally infeasible
to find a witness for any non-accumulated value x /∈ X .

Definition 7 (Collision resistance [15, 37]). An accumulator scheme is said to satisfy collision
resistance if for all PPT adversaries A, the following advantage is negligible:

Pr

[
(skacc, pkacc)← Setup(1λ, q), (AccX , aux)← Eval((skacc, pkacc),X ),

(X , witxi
, xi)← AOW

(pkacc) : Verify(pkacc,AccX , witxi
, xi) = 1 ∧ xi /∈ X

]

where OW represent an oracle for the algorithm WitCreate. An adversary is allowed to query them
an arbitrary number of times. Note that if OW is queried for an element x /∈ X , the oracle outputs a
reject symbol ⊥.



2.6 Ring Signatures

Ring signature (RS) schemes [79] allow members of an ad-hoc group R (known as a ring) to anony-
mously sign messages on behalf of this group defined by their public keys. While it is possible to
verify a ring signature against the public keys associated with R, determining the actual signer
remains infeasible, thus guaranteeing unconditional anonymity. This characteristic makes ring signa-
tures particularly useful in various applications, especially in whistleblowing and ensuring transaction
privacy in cryptocurrencies.

Definition 8 (Ring Signature Scheme). A ring signature scheme RS is a tuple of the following
algorithms:

– Setup(1λ): Takes as input a security parameter λ and outputs public parameters pp.
– KeyGen(pp): Takes as input the public parameter pp and outputs a key pair (sk, pk).
– Sign(pp, ski,m,R): Takes as input the public parameters pp, a secret key ski, a message m ∈M,

and a ring R = (pkj)j∈[n] of n public keys such that pki ∈ R. It outputs a signature σ.
– Verify(pp,m, σ,R): Takes as input the public parameters pp, a message m ∈ M, a signature σ,

and a ring R. It outputs a bit b ∈ {0, 1}.

We formally define ring signature schemes in alignment with [19,39].

Unforgeability. This property requires that without any secret key ski that corresponds to a public
key pki ∈ R, it is infeasible to produce valid signatures with respect to arbitrary such rings R.

Definition 9 (Unforgeability [19, 39]). A RS scheme provides unforgeability if for all PPT ad-
versaries A, there exists a negligible function ε(·) such that:

Pr


pp← Setup(1λ),

{(ski, pki)← KeyGen(pp)}i∈[poly(λ)],
O ← {Sig(·, ·, ·),Key(·)},

(m∗, σ∗,R∗)← AO({pki}i∈[poly(λ)])

:
Verify(m∗, σ∗,R∗) = 1∧

(·,m∗,R∗) /∈ QSig∧
R∗ ⊆ {pki}i∈[poly(κ)]\QKey

 ≤ ε(κ),
where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)], and QSig records the
queries to Sig. Furthermore, Key(i) returns ski and QKey records the queries to Key.

Anonymity. This property ensures that it is computationally infeasible to determine which ring
member generated a particular signature, provided there are at least two honest members in the ring.
Our anonymity notion follows the one in [39] that is corresponds to the strongest definition in [19],
known as anonymity against full key exposure.

Definition 10 (Anonymity [19,39]). A RS scheme provides anonymity if for all PPT adversaries
A, there exists a negligible function ϵ(·) such that:

Pr


pp← Setup(1λ), b← {0, 1},

{(ski, pki)← KeyGen(pp)}i∈[poly(λ)],
O ← {Sig(·, ·, ·)},

(m, j0, j1,R, st)← AO({pki}i∈[poly(λ)]),
σ ← Sign(skjb ,m,R),

:
b′ ← AO(st, σ, {ski}i∈[poly(λ)])
b = b′ ∧ {pkj0 , pkj1} ⊆ R

 ≤ 1

2
+ ε(λ)

where Sig(i,m,R) := Sign(ski,m,R).

3 Shrinking SP Commitments for DH Messages

We begin by constructing constant-size and strict structure-preserving commitments for group ele-
ments using a variant of Diffie-Hellman (DH) messages. By strict, we refer to the definition provided
in [6], which means that the messages, commitments, and openings are all confined to the source
groups G1 and G2.

Our construction is notable for bypassing the impossibility result of Abe et al. [6], which establishes
that strictly structure-preserving commitments to source-group elements cannot be smaller than the
input message size and scale linearly with the number of group elements.



In contrast, in a relaxed structure-preserving setting, constant-size commitments to group elements
can be achieved by allowing elements from the target group GT in the commitment [5,6] (see Sec.2.1).
While including GT elements is acceptable when only witness indistinguishability is required for
accompanying Groth-Sahai (GS) proofs, it becomes problematic when zero-knowledge is necessary
(see [6]). Therefore, ensuring group-to-group commitments remain entirely within the source groups
is crucial for achieving zero-knowledge, and it also allows commitments to other commitments, latter
being very interesting for applications. Another way of bypassing this impossibility is done by Abe et
al. in [7], who construct SP commitments that are shrinking in a relaxed binding setting, e.g., where
the message space for committing is Zp and the one for verification is G1.

Our approach is inspired by circumventing impossibility results and lower bounds in SPS [48,49]
achieved by switching from arbitrary group elements in the message space to a more structured mes-
sage space and in particular a Diffie-Hellman (DH) message space [3,44]. This has also recently been
used to construct the first threshold SPS in [33]. In doing so we obtain shrinking strictly structure-
preserving (group-to-group) commitments. The so obtained SP commitment scheme in nature is
similar to the γ-binding commitment scheme in [7], but is is not trapdoor and strictly structure-
preserving, i.e., messages, commitments, and openings are all elements of the source groups G1 and
G2.

We first define a new DH message space MDH and then present a construction for shrinking
strictly structure-preserving (group-to-group) commitments based on this new DH message type.

New DH Message Space MDH. We slightly adapt the DH message technique (cf. Sec. 2) as:

Definition 11 (DH Message Space (Mnew
DH )). Let the public parameters be a vector X of random

elements in G1 (e.g., X = (P xi)i∈[k]). We then define MDH as a DH message space, if the following
property hold: For the message vector (M, N̂) = (M1, . . . ,Mk, N̂1, . . . , N̂k) there exist mi ∈ Zp (1 ≤
i ≤ k) s.t. Mi = Xmi

i and N̂i = P̂mi for all i.

Note that membership in this message space can be efficiently checked by e(Mi, P̂ ) = e(Xi, N̂i). We
can obtain the plain messages P̂mi in G1 as well by simply switching the vector X to reside in G2

and keeping the vector M = Pmi in G1.

Construction. We introduce our group-to-group commitments, where the messages, commitments
are all restricted to the source groups G1 and G2. Despite this, the construction remains concise and
compact, achieving a compactness property.

Scheme 1 (Shrinking Strictly Structure-Preserving Commitment)Our commitment scheme
is composed of the following PPT algorithms:

– KeyGen(1λ): Run BG = (p,G1,G2,GT , e, P, P̂ )← BGSetup(1λ), for i = 1, . . . , k, choose Xi ←$ G1.
Output commitment key pk := (BG, X1, . . . , Xk). Note that X does not need to have structure,
and therefore, no trusted setup is required. Indeed, we can use a random oracle to generate these
elements.

– Commit(pk,msg): Parse msg as ((M1, N̂1), . . . , (Mk, N̂k)) ∈ MDH (check if they are generated
correctly by e(Mi, P̂ ) = e(Xi, N̂i) for i ∈ [k]). Choose r ←$ Zp, and compute

com := P r ·
k∏

i=1

Mi ∧ Open := (R̂ = P̂ r).

– Verify(pk, com,msg,Open): Parsemsg as ((M1, N̂1), . . . , (Mk, N̂k)) ∈MDH, and Open as R̂. Check
for well-formedness of the messages by e(Mi, P̂ ) = e(Xi, N̂i) for i ∈ [k], and abort otherwise.
Output 1 if and only if:

e(com, P̂ ) = e(P, R̂)

k∏
i=1

e(Xi, N̂i) .

Theorem 1. Scheme 1 is perfectly hiding. Furthermore, it is binding under the DBP assumption.

Proof. We provide proofs of the hiding and binding properties as follows:

Hiding. The proof of hiding is straightforward. As r is uniformly random from Zp and P is a
generator, P r is a uniformly random group element, and so is com, independent of the committed
message.



Binding. For an adversary A breaking the binding property of the commitment scheme, consider
the following adversary B: on input a DBP challenge (BG, hz), B sets Xi := hxi

z for random xi ←$ Zp

for i ∈ [k]. B aborts if Xi = 1 for any i, but this happens only with negligible probability. B then
runs A on pk = (BG, X1, . . . , Xq). If A returns a commitment com together with two different valid
messages and openings (N̂1, . . . , N̂q, R̂) and (N̂ ′

1, . . . , N̂
′
q, R̂

′), then B computes

Ẑ∗ :=

k∏
i=1

(
N̂i

N̂ ′
i

)xi

, R̂∗ :=
R̂

R̂′
.

As it holds that e(com, P̂ ) = e(P, R̂)
∏k

i=1 e(Xi, N̂i) = e(P, R̂′)
∏k

i=1 e(Xi, N̂
′
i), it follows that

1 = e

(
P,

R̂

R̂′

)
k∏

i=1

e

(
hxi
z ,

N̂i

N̂ ′
i

)
= e

(
P, R̂∗

)
e
(
hz, Ẑ

∗
)
.

To see this, we first verify that the simulated inputs to A are correctly distributed. In KeyGen, each
Xi distributes uniformly over G1, whereas B distributes uniformly over G∗

1. Thus, the simulated
parameters are statistically close to the real ones.

Moreover, note that since a valid output from A satisfies msg ̸= msg′, there exists an index

i∗ ∈ [k] such that N̂i∗ ̸= N̂ ′
i∗ . Thus Ẑ∗ follows the distribution of

(
N̂i∗

N̂ ′
i∗

)x∗
i

. Since N̂i∗

N̂ ′
i∗
̸= 1 and xi∗ is

uniform over Z∗
p, we conclude that Ẑ∗ ̸= 1 with overwhelming probability.

Thus Ẑ∗, R̂∗ ∈ G∗
2 is a solution to the given DBP instance, and B succeeds with roughly the same

probability as A. ⊓⊔

4 Structure Preserving Vector Commitments

In this section, we introduce a Structure-Preserving Vector Commitment scheme SPVC over a message
space M ∈ G1 (or G2). As a preliminary step, we present a Weak Binding SPVC (WSPVC), where
commitments are generated honestly, akin to the concept of static accumulators. We demonstrate
that this can be realized through a generic construction based on any compact structure-preserving
signature (SPS) scheme, effectively yielding a structure-preserving accumulator.

More precisely, we present a simple compiler in which commitments are derived from signature
public keys, with auxiliary data including the corresponding secret keys and messages, while the
opening/proof is simply a signature. To bind a position to a message, we introduce public information
(U1, . . . , Un) ∈ M into the public parameters, where random elements Ui are signed together with
Mi as indices to the messages. This approach is compatible with any compact SPS. We propose
an instantiation of WSPVC using the FHS signature [47], noting that message randomization is not
required in this context. This message randomization can be prevented by fixing the first element of
the message vector to a predetermined element U , which needs to be verified during the verification.

In Sec. 4.2, we enhance our security model to present a structure-preserving vector commitment
with standard binding by incorporating message tags (identifiers). This ensures that messages will not
verify unless they are computed using a compatible setup with a Common Reference String (CRS).

4.1 Weak Binding Vector Commitments

We present our weak binding vector commitment WSPVC, which, as mentioned above, can be con-
structed from a structure-preserving (SP) signature, assuming the committer is honest and the com-
mitments are generated correctly.

Scheme 2 (Weak Binding VC) A WSPVC is a tuple of the following algorithms:

– KeyGen(1λ, q): Given the security parameter λ and the size q of the committed vector, the key
generation choose (U1, . . . , Uq) ∈ M (from the message space) and outputs public parameters
pp = (U1, . . . , Uq,BG).



– Commit(M1, . . . ,Mk): On input a vector of q messages as (M1, . . . ,Mq) ∈ M ∈ Gq
1 and the

public parameters pp, output a commitment com and auxiliary information aux as follows: Run
(sk, pk)← SPS.KeyGen(1λ, 2) and then set

com = pk ∧ aux = (r, σ1, . . . , σn)

Where σi is a SPS signature on (Mi, Ui). For random (r, y) ←$ Zp, and using the FHS SPS as
example:

pk = (X̂1 = P̂ x1 , X̂2 = P̂ x2) ∧ σi =
(
Z = (Ux1

i ·M
x2
i )1/y, Y = P y, Ŷ = P̂ y

)
– Open(M, i, aux): This algorithm is run by the committer to produce a proof πi that M is the i-th

committed message. Pick the related signature σi ← aux and output a proof πi = σi for Mi.
– Verify(com,M, i, πi): The verification algorithm accepts (i.e., it outputs 1) only if πi is a valid

proof that com was created for Mi by verifying SPS.Verify(pk = com,Mi, σi = π) = 1. For the
FHS signature scheme, this is defined as follows:

SPS.Verify : e(Z, Ŷ ) = e(Mj , X̂2)e(Uj , X̂1) ∧ e(Y, P̂ ) = e(P, Ŷ )

– Rand(com, πj): Randomize a proof for a message Mj as: Pick a random µ←$ Zp:

π′
j = (σ′

j = (Z1/µ.Y µ, Ŷ µ))

Theorem 2. If the SPS is unforgeable, then the WSPVC in Scheme 2 satisfies weak binding.

Proof (Sketch). The proof of binding is straightforward. If the signature is unforgeable, then the
commitment is position binding; specifically, a new proof requires a new signature on a different
message, which would violate the unforgeability of our signature scheme. ⊓⊔

Remark 1. Note that since the commitment serves as a public key and is independent of the message,
updating the commitments for a new message can be achieved simply by signing the new message.
Moreover, the message space for the commitment can be adapted by selecting a suitable SPS. Specif-
ically, we can configure the SPVC to handle unilateral messages, where messages are drawn solely
from either G1 or G2, or bilateral messages, which allow for a mix of elements from both G1 and G2.

4.2 Vector Commitment based on q-DHE

Now we introduce our SPVC scheme within the standard position-binding model based on the q-DHE
assumption, referred to as q-DHE SPVC. Before diving into the construction, we define a structured
message space built on the q-DHE parameters, which can be viewed as a CRS. This design of a
message structure on top of a CRS is inspired by [53] (Although their CRS and the way it is used
differ from ours). Indeed, this message space enables the construction of the SPVC based on the q-
DHE VC schemes [52,66] in the strong model, i.e., transforming these constructions for m ∈ Zp into a
structure-preserving commitment. Furthermore, it allows us to extract the discrete logarithm of the
messages in the proof (see Lemma 1), reducing the construction to q-DHE.

Message Structure. Each message consists of vectors with ℓ + 1 elements over G1, where each
vector includes two main message components and a tag vector with ℓ − 1 elements (e.g., Mi =
(M = (Mi0,Mi1),T = (Ti2, . . . , Tin−1))). The structure of the vector is determined by the q-DHE
parameters specified by

pp =

(
B1 = Pα1

, . . . , Bn = Pαℓ

, Bℓ+1 = Pαℓ+1

, . . . , B2ℓ = Pα2ℓ

;

B̂1 = P̂α1

, . . . , B̂ℓ = P̂αℓ

; gα
ℓ+1

t

)
(1)

The message spaceMpp,ℓ is defined according to these parameters.

Mpp,ℓ =


((M1,T1), . . . , (Mn,Tℓ)) | ∃m = (m1, . . . ,mℓ) ∈ Zℓ

p s.t.

∀1 ≤ i ≤ ℓ, Mi = (Mi0 = Pmi ,Mi1 = Pαi·mi , Tij = Bmi
j )

where |j| = ℓ− 1 ∧ j ∈ [i+ 1, 2ℓ] ∧ j ̸= ℓ+ 1

 (2)



In our scheme, the public parameters include additional bases B̂ = {B̂1, . . . , B̂2ℓ} that are used to
verify whether a vector is in the message space and also pp does not include B = Pαℓ+1

, meaning
that no index j = ℓ + 1 exist. Specifically, given a vector M = {(M1,T1), (M2,T2), . . . , (Mℓ,Tℓ)},
we use these extra bases to check that the pairing satisfies the relationship with respect to above i
and j:

e(Mi, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi1, P̂ ) = e(Mi0, B̂i) (3)

To clarify this process, let’s consider an example with ℓ = 3. For M1 and M2 we have

M1 = (Pα1·m1 , Pm1︸ ︷︷ ︸
main part

, (Bm1
2 , Bm1

3 )︸ ︷︷ ︸
tag

) ∧M2 = (Pα2·m2 , Pm2︸ ︷︷ ︸
main part

, (Bm2
3 , Bm2

5 )︸ ︷︷ ︸
tag

) =

M1 = (Pα1·m1 , Pm1 , (Pα2·m1 , Pα3·m1)) ∧M2 = (Pα2·m2 , Pm2 , (Pα3·m2 , Pα5·m2))

Construction. We now present a SPVC in a standard model which ensures that the commitment can
be generated even in the presence of malicious behavior. In this model, tags are used to generate the
proof/witness, while the main messages are used for verification and commitment. To highlight the
randomization property of our primitive, we define a new algorithm Rand designed for this purpose.
Our new construction is based on the q-DHE assumption (let us assume q = ℓ).

Scheme 3 (q-DHE SPVC) Our q-DHE SPVC scheme is defined as follows:

– KeyGen(1λ, ℓ): Given the security parameter λ and the size ℓ of the committed vector, the key
generation picks α ←$ Zp and outputs some public parameters pp = (BG, B1 = Pα1

, . . . , Bn =

Pαℓ

, Bℓ+2 = Pαℓ+2

, . . . , B2ℓ = Pα2ℓ

;Bℓ+1 = Pα2ℓ

, B̂1 = P̂α1

, . . . , B̂ℓ = P̂αℓ

; gα
ℓ+1

t ).

– Commit(M1, . . . ,Mℓ): On input a vector of ℓ messages parse msg as (M1, . . . ,Mℓ) ∈Mpp,l. Check
if messages are correctly generated via Equation (3) s.t. e(Mi, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi1, P̂ ) =

e(Mi0, B̂i) for all i ∈ [ℓ], pick r ←$ Z and output a commitment com and auxiliary information
aux:

com =

C1 = P r ·
∏
i∈[ℓ]

Mi1

 ∧ aux = r

– Open((M, i, aux)): This algorithm is run by the committer to produce a proof πi that M is the
i-th committed message:

πi =

Br
ℓ+1−i ·

∏
j ̸=i,k=ℓ+1−i+j

Tjk


– Verify(com,M, i, πi): The verification algorithm accepts (i.e., it outputs 1) only if the messages is

created correctly Mi ∈ Mpp,ℓ which means e(Mi1, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi, P̂ ) = e(Mi0, B̂i) for
all i, j in Equation(2) and also π is a valid proof that com was created for Mi:

e(C1, B̂ℓ+1−i) = e(πi, P̂ ) · e(Mi, B̂ℓ+1−i)

Additional (and optional) properties (update the commitment and randomization), which is defined
using the following algorithms:

– Update(com,M,M ′, i): This algorithm is run by the committer who produced com and wants to
update it by changing the i-th message to M ′

i = (M′ = (Mi0,Mi1),T
′). Check if the new message

is created correctly via Equation(3) then outputs a new commitment com′ as: C ′ = (C/Mi1) ·M ′
i1.

– Rand(com, πi,Mi) → (C ′, π′
i,M

′
i): Randomize the commitment and proof for a randomized mes-

sage M ′
i as: Pick a random µ←$ Zp and compute:

C ′ = Cµ ∧ π′
i = πµ,

which is valid for the randomized message M ′
i = (Mµ,Tµ). Update aux with µ, i.e., set aux′ =

µ · aux.



Correctness: We can check that if commitments are properly generated, then proofs always satisfy
the verification check. For the left hand side we have:

e(C1, B̂ℓ+1−i) = e(P r ·
∏
j∈[ℓ]

Mj , B̂ℓ+1−i) =

e(P r · P
∑

j∈[ℓ] α
j ·mj , P̂αℓ+1−i

) =

e(P r·αℓ+1−i

· (P
∑

j∈[ℓ] α
j ·mj )α

ℓ+1−i

, P̂ ) = e(Br
ℓ+1−i, P̂ )e(P

∑
j∈[ℓ] α

j ·mj )α
ℓ+1−i

, P̂ ) =

e(Br
ℓ+1−i, P̂ )e(P

∑
j∈[ℓ] mjα

ℓ+1−i+j

), P̂ )

For the right side we have

e((Br
ℓ+1−i ·

∏
j ̸=i

Mℓ+1−i+j), P̂ ) · e(Mi, B̂ℓ+1−i) =

e(Br
ℓ+1−i ·

∏
j ̸=i

Pmj ·αℓ+1−i+j

, P̂ ) · e(Pαi·mi , P̂αℓ+1−i

) =

e(Br
ℓ+1−i, P̂ )e(P

∑
j ̸=i mj ·αℓ+1−i+j

, P̂ ) · e(Pαi·mi(α
ℓ+1−i), P̂ ) =

e(Br
ℓ+1−i, P̂ )e(P

∑
j ̸=i mj ·αℓ+1−i+j

, P̂ ) · e(Pmiα
ℓ+1

, P̂ ) =

e(Br
ℓ+1−i, P̂ )e(P

∑
j∈[ℓ] mj ·αℓ+1−i+j

, P̂ )

This is equal to the left hand side so we have:

e(Br
ℓ+1−i, P̂ )e(P

∑
j mj ·αℓ+1−i+j

, P̂ ) = e(Br
ℓ+1−i, P̂ )e(P

∑
j∈[ℓ] mjα

ℓ+1−i+j

, P̂ )

Theorem 3. Scheme 3 is binding in the Generic Group Model (GGM) assuming the q-DHE assump-
tion.

Proof of Biding: To make our proof simpler, we will first prove a lemma (Lemma 1) that we use in
our proof. We can see that if αi are random, then, verifying messages and tags using pp allows us to
extract the mi values in the generic group model.

Assume we extract the mi and m′
i using the following lemma 1. Now we can reduce our scheme

to q-DHE assumption similar to the mercurial commitment. Lets A comes up with a commitment
(C, aux), an index i ∈ {1, . . . , ℓ}, a valid openings π and π′ to mi and m′

i at position i, such that
mi ̸= m′

i. We must have

e(πi, P̂ ) · e(Pαi

, P̂αℓ+1−i

)mi = e(π′
i, P̂ ) · e(Pαi

, P̂αℓ+1−i

)m
′
i

So that e(πi/π′
i, P̂ , ) = e(Pαi

, P̂αℓ+1−i

)m
′
i−mi and e((πi/π

′
i)

1/(m′
i−mi), P̂ ) = e(Pαi

, P̂αℓ+1−i

). Since
mi ̸= m′

i, the latter relation implies that Pαℓ+1

= (πi/π
′
i)

1/(m′
i−mi) is revealed by the collision, which

contradicts the q-DHE assumption.

Lemma 1 (Extraction of Discrete Logarithms from Valid Messages). Let pp be a public
parameter. If the messages satisfy the following conditions for all i ∈ [ℓ]:

e(Mi, B̂j−i) = e(Tij , P̂ ) and e(Mi, P̂ ) = e(Mi0, B̂i),

then the adversary is able to extract the discrete logarithms {mi}i∈[ℓ] such that:

mi = dlogBi
(Mi) = dlogBj

(Tij) for 1 ≤ i ≤ ℓ,

where |j| = n− 1, j ∈ [i+ 1, 2n], and j ̸= n+ 1.



Our main technical result is to prove that our scheme satisfies binding in the generic group model
(GGM) [80] for asymmetric (type-3) bilinear groups, for which there are no efficiently computable
homomorphism between P and P̂ . In this model, the adversary is only given handles of group elements,
which are uniform random strings. To perform group operations, it uses an oracle to which it can
submit handles and receives back the handle of the sum, inversion, etc., of the group elements for
which it submitted handles.

Proof. For a fixed i, consider the values Mi0,Mi1, {Tij}i+n
j=i+1,j ̸=n+1 output by an adversary. With P

and {Bu}2nu=1,u ̸=n+1 being the values specified in pp, these values must now have the form:

Mi0 = P b0 ·
2n∏
k=1

k ̸=n+1

Bbk
k , Mi1 = P c0 ·

2n∏
k=1

k ̸=n+1

Bck
k , and Tij = P aj0 ·

2n∏
k=1

k ̸=n+1

B
ajk

k ,

where all bu, cu, aju are known to the adversary. For the remainder of this proof, all sums and products
are over k = 1, . . . , 2n with k ̸= n+ 1, which will be omitted for notational convenience.

Using the structure of the Bj as defined in Section 4.2 and taking the discrete logarithm in P we
obtain:

mi0 = b0 +
∑

bkα
k (4)

mi1 = c0 +
∑

ckα
k (5)

tij = aj0 +
∑

ajkα
k ∀j = i+ 1, . . . , i+ n, j ̸= n+ 1 . (6)

Furthermore, by the verification equations e(Mi, Bj−i) = e(Tij , P ) and e(Mi, P ) = e(Mi0, Bi) we
obtain by a similar argument that:

mi1α
j−i = tij ∀j = i+ 1, . . . , i+ n, j ̸= n+ 1 (7)

mi1 = mi0α
i . (8)

c0, . . . , ci−1 = 0: By combining Equations (4), (5) and (8) we obtain:

c0 +
∑

ckα
k = b0α

i +
∑

bkα
k+i .

Given that the lowest degree on the right hand side is i, we directly obtain that c0 = · · · = ci−1 = 0.

ci+1, . . . , cn = 0: By combining Equations (5) to (7) we obtain for all j:

c0 +
∑

ckα
k+j−i = aj0 +

∑
ajkα

k . (9)

As αn+1 does not occur on the right hand side, the term cn+1−j+iα
n+1 on the left hand side must

be 0 for all j = i+ 1, . . . , i+ n satisfying j ̸= n+ 1. Thus, in particular for j = i+ 1, . . . , n, it follows
that ci+1 = · · · = cn = 0.

cn+2, . . . , cn+i−1, cn+i+1, . . . , c2n = 0: In (9), the highest degree on the right hand side equals 2n.
Thus, the coefficients of α2n+1 on the right hand side equals 0, i.e., c2n+1−j+i = 0 for all j =
i + 1, . . . , i + n satisfying j ̸= n + 1. This immediately yields cn+2 = · · · = c2n = 0 except for cn+i

corresponding to j = n+ 1.

cn+i = 0: In the case that i = 1, there is nothing to prove as there is no cn+1 in (5). For i > 1,
consider the term cn+iαn+ j in (9) for j = n+ 2. As α2n+2 does not exist on the right hand side, it
directly follows that cn+i = 0.

Combining the above observations we obtain that ck = 0 for all k ̸= i. Rewriting (9) now yields for
all j that:

ciα
j = aj0 +

∑
ajkα

k .

Comparing coefficients gives us that ajk = 0 for all k ̸= j and ajj = ci, such that tij = ciα
j .



Overall, this implies that Mi1 = P c0 ·
∏
Bck

k = Bci
i and Tij = P aj0 ·

∏
B

ajk

k = Bci
j , or equivalently

mi := ci = dlogBi
Mi = dlogBj

Tij for all j = i + 1, . . . , i + n with j ̸= n + 1. Thus, the adversary
must be able to extract the discrete log of the message, and thus by induction, must always know the
discrete logs of messages during the game. ⊓⊔

Remark 2. We note that in the context of vector commitments (VC), the commitments do not need
to be hiding, which makes the inclusion of randomness r seem unnecessary. Moreover, the randomness
r is not required for the binding proof. Nevertheless, we retain it here as it might be useful for other
applications in the future or for achieving properties like hiding, which are not directly required in
our current setting.

5 Structure-Preserving Accumulator

In this section, we introduce the concept of a structure-preserving accumulator (SPA) and demonstrate
how our vector commitment can be adapted into an accumulator, resulting in the first structure-
preserving accumulator of this kind.

Catalano and Fiore [27] proposed a black-box construction of accumulators based on vector com-
mitments. Their approach involves creating a succinct commitment C to a vector X = (x1, . . . , xn)
through a vector commitment. The commitment C ensures that it is computationally infeasible to
open any position i to a value x′i different from the original xi. In their construction, the accumulation
domain is represented by the set D = {1, . . . , t}, and the accumulator is modeled as a commitment
to a binary vector of length t. Each bit i indicates whether the element i ∈ D is included in the ac-
cumulator. Membership or non-membership of an element is verified by revealing the corresponding
position i of the commitment as either 1 or 0. However, it is not clear how to apply this result to the
SP setting. Moreover, when using a vector commitment in this way, it often reveals the position of
elements within the set, which may expose sensitive information in certain contexts, e.g., when using
them as a building block for privacy-preserving primitives such as ring signatures. Therefore, we are
interested in an approach where the witness does not disclose any information about the elements.

SPA from (signature-based) Weak Binding VC. A weak binding vector commitment can natu-
rally be expressed as an accumulator, as both schemes are essentially equivalent when the accumulator
and the vector commitment are honestly generated. In the signature-based accumulator, achieving
index-hiding is straightforward by omitting the index elements Ui associated with each message from
the scheme. Consequently, the witness becomes a signature for the element Mi only, which is in-
dependent of any specific public parameters. However, achieving accumulators from q-DHE vector
commitments is not trivial when focus on hiding the index. Thus, we need to slightly modify the VC
scheme to achieve an accumulator that allows to compute witnesses in a way that they do not reveal
the index of the message. We present our q-DHE type (randomizable) accumulator below.

5.1 (Randomizable) Accumulator based on the q-DHE VC

Here, we introduce a (randomizable) q-DHE Structure-Preserving Accumulator (q-DHE SPA) in which
the proof (or witness in this context) discloses no information beyond the message itself—not even
its index. By leveraging the vector commitment scheme outlined in Scheme 3, we can make minor
adjustments to the construction to hide indices i.e.,. by hiding the index, we mean that the message
is not bound or tied to any specific position or element in pp.

To achieve this, we randomize the elements that reveal the indices. Specifically, the message
Mi and the associated tags can disclose the index through the relations e(Mi, B̂j−i) = e(Tij , P̂ ) and
e(Mi, P̂ ) = e(Mi0, B̂i) (i.e., the message/tag verification needs public elements B̂j−i). To address this,
we use a random value y ∈ Zp and replace the verification equation with the following: e(Mi, Ŷ ) =

e(T y
ij , P̂ ) and e(Mi, P̂

y) = e(Mi0, B̂
y
i ), where B̂y

j−i is applied for all j, and Ŷ = (P̂ y, B̂y
i )i∈[q] is

included as part of the tag. In the subsequent step, the verification equation e(C1, B̂ℓ+1−i) = e(πi, P̂ ) ·
e(Mi, B̂ℓ+1−i) is initially designed to confirm the positions of the messages with respect to B̂ℓ+1−i. We
randomize this verification by picking a new random ρ ∈ Zp, modifying the equation to e(C1, Ŵ2) =

e(πi, P̂ ) · e(Mi, Ŵ2), where Ŵ2 = (B̂ℓ+1−i)
ρ is part of the witness. By using the bilinear pairing

property, we can appropriately randomize πi with ρ, thereby ensuring that the verification remains
valid as intended. We present the complete construction as follows:



Scheme 4 (q-DHE Accumulator) Our q-DHE SPA is defined as follows:

– Setup(1λ, q): Given a security parameter λ and a parameter q, run pp← SPVC.KeyGen(1λ, q) and
set pkacc = pp and skacc =⊥.

– GenTag(pkacc,X ): Given a public key pkacc and a set X . For each Mi ∈ X , where Mi = (Mi,Ti),
first check the following conditions hold for (i.e., the messages are correctly generated) for all i:

e(Mi, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi1, P̂ ) = e(Mi0, B̂i).

If the conditions hold, pick a random y ←$ Zp and update T = Ty. Then, compute Ŷ = (Ŷ0 =

P̂ y, Ŷi = B̂y
i )i∈[q] such that: e(Mi, Ŷj−i) = e(Tij , P̂ )∧ e(Mi1, Ŷ0) = e(Mi0, Ŷi). Finally, output the

updated messages/tags (M,T, Ŷ).
– Eval(pkacc,X ): Given a public key pkacc and set X it returns an accumulator accX together

with the aux as follows: Check Mi = (M,T, Ŷ) ∈ X s.t. e(Mi, Ŷj−i) = e(Tij , P̂ ) ∧ e(Mi1, Ŷ0) =

e(Mi0, Ŷi), then run (C, aux)← SPVC.Commit(M1, . . . ,Mℓ) and for a random ρ ∈ Zp set:

AccX = C =

P r ·
∏
i∈[q]

Mi1

 ∧ aux = (r, ρ)

– WitCreate(pkacc,AccX , aux,Mi): This algorithm takes a key pair pkacc, an accumulator AccX ,
auxiliary information aux, and a value Mi. It returns ⊥, if Mi /∈ X or e(Mi, Ŷj−i) ̸= e(Tij , P̂ ) ∧
e(Mi1, Ŷ0) ̸= e(Mi0, Ŷi), otherwise, compute a witness witMi for Mi: Pick ρ ∈ aux, run πi ←
SPVC.Open((M, i, aux)) and compute

witMi
=

W1 =

Br
ℓ+1−i ·

∏
j ̸=i,k=ℓ+2−i+j

Tjk

ρ

∧ Ŵ2 = (P̂αℓ+1−i

)ρ


– Verify(pkacc,AccX , witMi

,Mi): This algorithm takes a public key pkacc, an accumulator AccX , a
witness witMi, and a value Mi. It returns true (i.e., it out- puts 1) if the message and tag are
created correctly e(Mi, Ŷj−i) = e(Tij , P̂ )∧ e(Mi1, Ŷ0) = e(Mi0, Ŷi) and If witMi is a valid witness
for Mi ∈ X and false (i.e., it outputs 0) otherwise.

e(C1, Ŵ2) = e(W1, P̂ ) · e(Mi, Ŵ2)

– Rand(AccX , πi,Mi, (µ, β, γ)) → (Acc′X , π
′
i,M

′
i): On input an accumulator AccX , witness πi, mes-

sage Mi and randomness (µ, β, γ), compute a randomized accumulator and witness for a random-
ized message M ′

i with (β, µ, γ) ∈ Zp as:

Acc′X = AccµX ∧ π
′
i = (Wµγ

1 , Ŵ γ
2 ) ∧M ′

i = (Mµ,Tµβ , Ŷβ).

This is valid accumulator-witness pair for the randomized message. Finally, aux is updated with
(µ, β, γ).

Note that one can also randomize only the witness without randomizing the messages or the accu-
mulator, i.e., by computing Wµ

1 , Ŵ
µ
2 as randomized witnesses.

Reducing Trust in CRS. The bilinear pairing-based construction typically requires either public
parameters generated in a trusted setup, which are linear in the number of elements added to the
Acc, or a trusted party with a trapdoor to compute it. Trust in parameter generation can be reduced
or removed using MPC protocols, such as [16]. Alternatively, Groth et al. [55] proposed updatable
reference strings, which allow any party to update them securely, as demonstrated in Ethereum’s
’powers of tau’ ceremony [75].

Remark 3. We note that two additional properties, indistinguishability and zero-knowledge (ZK),
were introduced in [37] and [15], respectively. However, for the primary applications we are targeting,
these properties are not relevant, and thus we do not consider them in this work. In fact, in the
context of ring signatures, accumulators do not need to be hiding (indistinguishable), making the
inclusion of randomness r in the accumulator seem unnecessary. Nevertheless, we retain it here as it
might be useful for other applications in the future, or for achieving properties like ZK, which are not
directly required in our current setting. Moreover, if hiding the set is not a concern, the accumulator’s
randomness can always be provided alongside the set.



Theorem 4. If the q-DHE Vector Commitment in Scheme 3 is position-binding, then the q-DHE
Accumulator in Scheme 4 is collision resistant.

Proof. Let A be an adversary against the collision resistance property of Scheme 4. We show how to
build an equally efficient adversary B against the position-binding property of the vector commitment.
B receives as input the parameters pp, and sets pk = pp and sk =⊥ and send pk to A. Next, on input
of X , B first creates their tags using a random y as mentioned in GenTag: (M,T, Ŷ)) for all i. Then
B computes accumulator C = (P r ·

∏
i=1Mi). Notice that B can easily answer all witness queries by

computing πρ
i and Ŵ2 = (P̂αℓ+1−i

)ρ for the random ρ, where πi is the same as vector commitment
opening. Indeed both the accumulator C and π are the same as vector commitment and opening. At
some point, A halts and hands to B a tuple (wit′i = (W ′

1, Ŵ
′
2),M

′
i). Notice that, being wit′i valid in

order to break collision-resistance it must hold hat:

Acc.Verify(pkacc, wit
′, accX ,M ′

i) ∧M ′
i /∈ X ,

Now the reduction B can derandomize (Ŵ ′
2)

1/ρ, and this should be equal to P̂αn+1−i

; if not, it returns
⊥. Similarly, it derandomizes the tag as well, T = T′1/y, to obtain (M ′

i , Bj−i) = (Tij , P̂ ). It is clear
that (W ′

1)
1/ρ and M ′

i are now valid proofs for our vector commitment. Moreover, since AccX was
created by B, it knows πi = Witi for aMi. This means the tuple (accX = C, i, πi, π

′
i = Wit′i = (Ŵ ′

2)
1/ρ)

will contradict the position-binding property of the underlying vector commitment. ⊓⊔

Definition 12 (Perfect Randomization of Acc). An Acc scheme provides perfect randomization if
for all λ, for all pkacc ∈ Setup(1λ), for all (pkacc,Mi,AccX , aux, π), if Verify(pkacc,AccX , πi,Mi) = 1,
then (Acc′X , π

′
i,M

′
i)← Rand(Acc, πi,Mi) outputs uniformly random elements in the accumulator space

(Acc′X , π
′
i,M

′
i) ≈ (AccX , πi,Mi) such that Verify(pkacc,Acc

′
X , π

′,M ′
i).

Theorem 5. The q-DHE Vector Commitment in Scheme 3 is perfectly randomizable.

Proof. We provide proof of perfect randomization of accumulator as follows: Let (M,T, Ŷ) ∈ (G∗
1)

2×
(G∗

1)
q × (G∗

2)
q, pkacc ∈ (G∗

1)
2n−1 × (G∗

2)
q and α ∈ Z∗

p. An accumulator, witness and messages/tags
(Mi,AccX , wit) satisfy Verify(pkacc,AccX , πi,Mi) = 1 is of the form:

Acc =

P r ·
∏
i∈[q]

Mi

 , wit =

W1 = (Br
ℓ+1−i ·

∏
j ̸=i

k=ℓ+2−i+j

Tjk)
ρ, Ŵ2 = (P̂αℓ+1−i

)ρ


and (M,T, Ŷ)

For randomness (µ, β, γ) ∈ Z∗
p, Rand(Acc, πi,Mi, (µ, β, γ)) outputs:

Acc′ =

P rµ ·
∏
i∈[q]

Mµ
i

 , wit′ =

W1 = (Brµ·γ
ℓ+1−i ·

∏
j ̸=i

k=ℓ+2−i+j

Tµγ
jk )ρ, Ŵ2 = (P̂αℓ+1−i

)ρ·γ


and M ′

i = (Mµ,T′µβ , Ŷβ)

which are uniformly random elements conditioned on Verify(pkacc,Acc
µ
X , wit

′, (Mµ,T′µβ , Ŷβ)) = 1.
Indeed, each element is perfectly randomized with fresh randomness, so it is clear that Rand and Eval
are identically distributed for all (Acc′, wit′i,M ′

i). ⊓⊔

6 Applications

In this section, we describe how our SPVC and SPA primitives can lead to interesting applications.
As the main application, we present the first constant-size ring signature in the dlog setting. The
size of the signature consists of only a few group elements, and the computation involves only group
exponentiation operations along with an efficient Schnorr NIZK for a simple AND statement. We also
informally discuss some other potential applications for blockchains and demonstrate how these can
result in significant efficiency improvements in blockchain applications.



6.1 Constant-Size Ring Signatures

We take inspiration from the framework in [39], which employs a key-homomorphic signature and a
NIWI/NIZK for an OR relation (giving linear sized signatures), with the approach introduced in [40]
that employs an accumulator for the membership proof in the ring. In particular, [40] rely on an RSA
accumulator and so far no construction in the discrete logarithm setting following this approach is
known. Basically, the idea is to use an accumulator to compactly represent all public keys in the ring
and to use a NIZK proof to demonstrate knowledge of a membership witness in this accumulator as
well as the corresponding secret key, e.g., via an explicit signature.

We can achieve a constant-size ring signature in the discrete logarithm setting by integrating
these two approaches—using an accumulator with a key-homomorphic signature and leveraging NIZK
proofs.

We first show a variant of the BLS signature that seamlessly integrates with the message space of
our accumulator. Then by leveraging the key-homomorphic property of BLS, as demonstrated in [39],
we are able to construct highly efficient ring signatures. To make the scheme more compatible with
BLS, we assume Mi0 = pki and include Mi1 in the tag, i.e., Mi1 = Ti1.

Scheme 5 (Accumulator-Compatible BLS Scheme BLSacc) BLSacc with respect to q-DHE SPA
accumulator Acc is defined by the following algorithms:

– Setup(1λ): Run pkacc ← Acc.Setup(1λ, q = 2), choose a hash function H : M → G2, output
pp := (BG, H, Pα1

, Pα2

, Pα4

; P̂α1

, P̂α2

; gα
3

t ), where pkacc = (Pα1

, Pα2

, Pα4

; P̂α1

, P̂α2

; gα
3

t ).
– KeyGen(pp): Parse pp, choose x←$ Zp, set pk = P x, sk = x, and return (sk, pk).
– GenTag(pp, (sk, pk)): Choose random y ←$ Zp and output a tagged public-key (pk, τ = (T, Ŷ))

by computing: T = (B1
sk·y, B2

sk·y) ∧ Ŷ = (Ŷ0 = P̂ y, Ŷ1 = B̂y
1 ) such that e(T1, Ŷ1) = e(T2, P̂ ) ∧

e(T1, Ŷ0) = e(pk, B̂y
1 ).

– Sign(sk,m): Compute and return signature as σ ← H(m)sk.
– Verify(pk, τ,m, σ): Parse pk as (pk, τ = (T, Ŷ)). Return 1 if the following holds and 0 otherwise:

e(P x, H(m)) = e(P, σ) ∧ e(T1, Ŷ1) = e(T2, P̂ ) ∧ e(T1, P̂ y) = e(pk, B̂y
1 )

Theorem 6 (EUF-CMA Security of BLSacc). If the BLS signature scheme is EUF-CMA secure,
then the accumulator-based variant BLSacc is also EUF-CMA secure.

Proof (Sketch). To prove the EUF-CMA security of BLSacc, we obtain the public key pk from the
BLS challenger. Using the trapdoor α that we can freely choose, we generate the corresponding tag
and provide it to the adversary. For each of the adversary’s queries, we forward them to the BLS
challenger. Thus, any forgery in the BLSacc scheme corresponds directly to a forgery in the BLS
scheme.

Key-randomization and signature adaption BLSacc. We require a functionality to randomize
keys and adapt signatures to randomized keys akin to the key-homomorphic property of signatures
[39]. This ensures that a signature σ on m under pk can be adapted to a signature under pk′, with
a well-defined relationship between pk and pk′. We also need that adapted signatures are perfectly
indistinguishable from freshly generated ones. We can use the multiplicative approach for BLS in [30]
for randomizing keys/tags and adapting the signature:

– Adapt(pk,m, σ, (µ, β)): Let (µ, β) ∈ Zp and pk = P x. Return adapted key and signature (pk′ =

pkµ, σ′ = σµ) as well as tags (Ŷ′ = Ŷβ ,T′ = Tβµ).

It follows that the adapted signatures σ′ are indistinguishable from freshly generated signatures
under the public key pk′. Moreover, the randomized tags maintain identical distribution, such that
(Ŷβ ,Tβµ) ≈ (Ŷ,T). Now we are ready to present our ring signature:

Our Construction. In Figure 1, we present our construction of ring signatures based on the BLSacc
signature scheme as well as our q-DHE SPA accumulator Acc and a simulation-extractable non-
interactive zero-knowledge proof system NIZK, which we instantiate with Schnorr proofs made non-
interactive via the Fiat-Shamir heuristic [41].

The basic idea of the scheme is as follows: We first slightly modify the interface of GenTag(pp, (sk,
pk), i) and adopt an indexed approach where each user i is assigned the related part of pp. For each



user i, the corresponding public parameter Bi is used to generate their tag. Due to the use of our
accumulator, we impose an upper bound on the ring size, ensuring that each user takes a designated
portion of the CRS to generate their keys/tags (see Sec. 4.2 for how a message/tag, and in this case
a key/tag, can be generated). Second, the users generate an accumulator for the ring R denoted as
AccR and a witness for their public key pk ∈ R denoted as wit, along with a BLSacc signature on the
message m under the pk. They then randomize the signature and pk using the Adapt algorithm of
BLSacc with parameters (µ, β) to produce (pk, σ′) and also randomize the witness and accumulator
to obtain (Acc′R, wit

′). Next, they use the same (µ, β) along with an additional random value γ to
randomize the accumulator and witness. Finally, they utilize a non-interactive zero-knowledge proof
NIZK to demonstrate that the accumulator has been correctly randomized and that they possess the
secret key corresponding to their randomized public key pk′.

– Setup(1λ): Run pp← BLSacc.Setup(1
λ, q) and output public parameters pp.

– KeyGen(pp, i): Run (ski, pki) ← BLSacc.KeyGen(pp) and τi ← BLSacc.GenTag(pp, (ski, pki), i) and output
a keypair and its tag ((ski, pki), τi). For simplicity we assume that τi is included as part of the pki so
pki = (pki, τi).

– Sign(pp, ski,m,R): Choose randomness (µ, β, γ) ∈ Zp and do:
• δ ← BLSacc.Sign(ski,m||R) // BLSacc signature on m||R
• (AccR, aux)← Acc.Eval(pp,R) // q-DHE SPA accumulator
• witpki ← Acc.WitCreate(pp,AccR, aux, pki) // witness for pki
• (δ′, pk′i, τ

′)← BLSacc.Adapt(pki,m, δ, (µ, β)) // randomization
• (Acc′R, wit′, pk′i)← Acc.Rand(AccR, wit, pki, (µ, β, γ)) // randomization
• π = NIZK{(sk′ = sk · µ, µ) : Acc′R = AccµR ∧ pk′ = P sk′} // NIZK proof

Finally, output σ = ((AccR, r),Acc′R, wit′, δ′, pk′, π).
– Verify(pp,m, σ,R): Given pp, message m ∈M, signature σ = (δ, wit,AccR), and ring R, output 1 if the

following holds and 0 otherwise:

Acc.Verify(pp′,Acc′R, wit′, pk′) = 1 ∧ BLSacc.Verify(pk
′, τ ′,m||R, δ′) := 1∧

Acc.Eval(pp,R, r) == Acc ∧ π is correct

Note that a verifier might also recompute the accumulator locally with the knowledge of r and one can
then omit to send it explicitly.

Fig. 1. Constant size ring signature in dlog setting (Σ is BLSacc and Acc is the accumulator in Sec. 5.1)

Theorem 7. Let BLSacc be unforgeable, and providing adaptability of signatures, NIZK be simulation
extractable, and q-DHE SPA provide collision resistance and perfect randomization, then Scheme 1 is
unforgeable (Def. 9), and anonymous (Def.10).

Roughly, unforgeability holds because, given a valid forgery of a ring signature, one can always extract
a valid BLSacc signature from one of the ring members by extracting randomness form the NIZK proof
which represents a valid BLSacc forgery. Anonymity is ensured by the perfect randomization of the
accumulator, combined with perfect adaptation of BLSacc, which guarantees that signatures from
different ring members (or the same member) are indistinguishable.

Proof. We now present the formal proof of unforgeability and then anonymity.

Unforgeability. We construct a reduction B against BLSacc using A against our ring signature
construction. Note that we can extract the witness (sk′ and µ) from the NIZK proof and assume this
will only fail with negligible probability. The challenger of BLSacc will be denoted by C.

Initially, B receives from C values (pp) and the challenge public-key (pk, τ). We now guess an
index j ∈ [n] where n = poly(λ) is the number of users in the system. We set pkj := pk and generate
all the other remaining BLSacc keys pki for i ∈ [n], i ̸= j on our own. In the following we assume
that A does not query the oracle Key(·) for index j. Otherwise, we abort the game and this happens
with probability 1/n. Now B gives pp and {pki}i∈[n] to A. In the following we discuss how B handles
queries from A.

Key(i): return ski and set QKey := QKey ∪ {i}.



Sig(i,m,R): if i ̸= j we just compute the signature as in Sign. Otherwise we querym||R to C.Sign and
obtain a δ. We run (AccR, aux)← Acc.Eval(pp,R) and witpki ← Acc.WitCreate(pp,AccR, aux, pki).
Then randomize the accumulator and signature (δ′, pk′i, τ

′)← BLSacc.Adapt(pki,m, δ, (µ, β)) and
(Acc′R, wit

′, pk′i)← Acc.Rand(AccR, wit, pki, (µ, β, γ)) for uniform randomness (µ, β, γ) ∈ Zp and
finally we simulate the proof such that: π = NIZK{(sk′, µ) : Acc′R = AccµR ∧ pk′ = P sk′}, where
sk′ = sk · µ. It sets QSig := QSig ∪ (i,m,R) and outputs σ = ((AccR, r),Acc

′
R, wit

′, δ′, pk′, π).

Eventually,A outputs a forgery (m∗, σ∗,R∗) and now by the validity criteria we know that (·,m∗,R∗) /∈
QSig. Now, we extract (sk′, µ) and check whether pkµ = pk′

∗, i.e., whether the forgery is with respect
to the j’th user. Otherwise, we abort the game and this happens with probability 1/n. If we do not
abort we note that we can compute (δ, pkj , ·) ← BLSacc.Adapt(pk

′∗,m∗, δ′, (µ−1, 1)) and output δ as
a forgery for message m∗||R∗ to C, which completes the proof. ⊓⊔
Proof of Anonymity. We show that a simulation of the anonymity game for b = 0 is indistinguish-
able from a simulation of the anonymity game with b = 1.

– Game 0: The anonymity game Anonb (Def. 10) with b = 0.
– Game 1: As in Game 0, except that the experiment runs Anonb as follows: NIZK proofs in Sign

are simulated.
[Game 0 → Game 1] : By the perfect zero-knowledge property of NIZK, we have Pr[S1] =
Pr[S0].

– Game 2: As in Game 1, but we now sample µ by choosing µ′ uniformly at random and use
µ = µ′·sk1

sk0
. µ′ is stored internally.

[Game 1→ Game 2] : This is a perfect hop, as µ is still uniformly random.
– Game 3: We now switch to the (public and secret) keys for b = 1. Furthermore, we use µ′ on

behalf of µ.
[Game 2→ Game 3] : Looking at BLSacc.Adapt, we have that:

BLSacc.Adapt (pk0,m||R,BLSacc.Sign(sk,m||R), (µ, β)) =
(pkµ0 , H(m||R)sk0µ, Ŷβ

0 ,T
βµ
0 ) ≈

(pkµ
′

1 , H(m||R)sk1µ
′
, Ŷβ

1 ,T
βµ′

1 )

BLSacc.Adapt(pk1,m||R,BLSacc.Sign(sk,m||R), (µ′, β))

To see the second equation, note that the second and the last element (corresponding to the
signatures and T) are uniquely determined by the other two elements, and thus do not need to be
considered when arguing the closeness of the distributions. For the first element (corresponding
to the public keys), it is easy to see that the change is purely syntactical, as pkµ0 = pkµ

′

1 . For the
third element (corresponding to the Ŷ), the distribution is identical for Ŷ0 and Ŷ1. Given that µ
and β are independent, this also holds true for the joint distribution. The argument for Acc.Rand
is identical to that of BLSacc.Adapt and is as follows:

Acc.Rand (AccX , π0, pk0, (µ, β, γ)) =

(AccµX , (W
µγ
10 , Ŵ

γ
20), (pk

µ
0 ,T0

µβ , Ŷβ
0)) ≈

(Accµ
′

X , (W
µ′γ
11 , Ŵ γ

21), (pk
µ′

1 ,T1
µ′β , Ŷβ

1)) ≈
Acc.Rand(AccX , π1, pk1, (µ

′, β, γ))

Thus together we obtain:
Pr[S3] = Pr[S2].

– Game 4: Same as Game 3, except that we switch back to the honest computation of NIZK.
This now corresponds to the anonymity game for b = 1. Again using the perfect zero-knowledge
property, we get:

Pr[S4] = Pr[S3].

Putting the individual game hops together, we obtain a transition which is valid and preserves the
probabilities of success:

Pr[S4] = Pr[S0].

⊓⊔



Comparison with Related Work. Looking at the recent systematization of knowledge (SoK) by
Chator et al. [29], we observe several constant-size ring signatures. The work in [20], which is based
on composite order groups, remains inefficient at around 100 group elements and with computations
being a factor of roughly 50 times slower than in prime oder groups [43].6 The approach by Malavolta
and Schröder in [69] for building ring signatures from signatures with re-randomizable keys, when
instantiated with their variant of Hofheinz and Kiltz signatures secure under the q-strong Diffie-
Hellman assumption and the Groth16 zk-SNARK [54], yields constant size signatures of size 4G1 +
2G2+Zp. A popular pairing-friendly curve for the type-3 setting with 128 bit security is the BLS12-381
curve [14], where elements in Zp, G1, G2 and GT require 32, 48, 92, and 576 bytes, respectively. For
the construction in [69] this would give around 3300 bits. However, while the size is very low, using a
zk-SNARK and in particular constant-sized ones such as Groth16 (or the recent Polymath [68], which
is even more compact) comes with drawbacks. First they are non-universal and thus require a trusted
setup per circuit (here ring size, unless one fixes an upper bound) and the concrete proving times
will be significant. The signer needs to prove the verification equation of the signature scheme among
|R| keys, involving the evaluation of a programmable hash function. In the non discrete-logarithm
setting, the RSA-accumulator based ring signatures by Dodis et al. in [40] gives the most efficient
solution in the factorization setting and requires around ≈ 38, 500 bits - significantly larger than in
the dlog setting.

The Concrete Size of Our RS: The efficiency of our scheme can be evaluated in terms of communi-
cation costs and the bit size of the involved elements. The total communication cost is approximately
8G1+4G2+2Zp, which corresponds to about 6500 bits for the BLS12-381 curve (without using point
compression). Specifically, the elements in G1 consist of two elements for T, one element for the public
key pk, two for the accumulator (Acc′,Acc), one for witness W1, and two G1 and Zp elements for the
NIZK proof. In addition, the elements in G2 include two elements for Ŷ, one element for signature δ,
and one for witness Ŵ2.

Thus, our construction provides the first entirely practical and concretely efficient constant-size
ring signature in the dlog setting without using heavy machinery such as SNARKs to prove bilinear
group arithmetic.

6.2 Succinct Data Availability Sampling

Data availability sampling addresses a major blockchain challenge—scalability [9,57]. This approach
allows light clients to verify the availability and integrity of block data using multi-dimensional Reed-
Solomon codes within an erasure coding strategy. Ethereum has shifted from fraud proofs, as high-
lighted in [9], to validity proofs based on polynomial commitments, leveraging their homomorphic
properties. As a result, Ethereum aims to integrate this mechanism into its sharding protocol7. In
this setting, each blockchain validator, similar to light clients, only needs to store the commitment
instead of the full dataset and proof. However, within this multi-dimensional structure, clients with
limited resources must store a tuple com = (C1, . . . , Cn), where each Ci is a KZG commitment [59] to
a Reed-Solomon code (tensor code) [57]. We think this application can benefit from our SPVC schemes
by reducing the commitment size (and, consequently, the communication size) from 256 elements per
block to just one, allowing client storage to decrease from 256 KZG commitments per shard to a
single commitment. This is achieved by treating the commitment com of a block of data as a single
SPVC commitment.

In our approach, one can create a commitment to these KZG commitments for a more succinct
representation. Using our weak binding SPVC, this can be achieved without significant modifications
to the KZG scheme or the SPVC itself. Also for q-DHE PSVC, we can easily extend the public
parameters of KZG with those received from the q-DHE PSVC to compute KZG commitments in
different bases. For example, assume we have (B1, B2, B̂1, B̂2) alongside (P xi

)i∈[q], where x is the
KZG trapdoor. We need to compute (Bxi

1 )i∈[q] and (Bxi

2 )i∈[q] to derive a KZG commitment with
respect to our SPVC message space.

6 While there are approaches to convert such constructions to prime-order bilinear groups [43], this will not
yield to anything near practical.

7 https://notes.ethereum.org/@vbuterin/protodankshardingfaq
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6.3 Algebraic Verkle Trees

In a stateless blockchain client model, nodes do not store the entire state but rely on “witness”—compact
proofs that verify the necessary state for transaction validation. Verkle Trees8, which improve upon
Merkle Trees by using VCs at the leaf nodes, enable smaller witness sizes and more efficient verifica-
tion.

From a theoretical point of view, a key challenge has been the inability to commit to commitments
within the same algebraic structure due to the lack of structure-preserving VCs. Algebraic Verkle Trees
(AVTs) with the WSPVC resolve this issue, enabling seamless commitment to commitments without
switching between cryptographic primitives like hash functions. As already mentioned, WSPVC is
sufficient for stateless validation as commitments are always honestly produced through (Byzantine)
agreement on a sequence of updates. This can potentially simplify verification and reduce witness sizes.
AVTs also expand the Verkle Tree in both depth and width while maintaining constant-size proofs
by incrementally committing to VC commitments. Moreover, we can efficiently prove knowledge of a
message without needing to prove the pre-image of a hash in a SNARK.

We believe that the use of SPVC in AVTs can pave the way for future research, particularly in
optimizing scalability by integrating structure-preserving VCs into frameworks, which could lead to
more efficient techniques in stateless blockchain.

7 Conclusion and Future Work

In this paper, we demonstrate that strictly structure-preserving compressing primitives can be real-
ized. We present the first strictly structure-preserving commitment that is shrinking, and in particular,
constant-size. By employing a more structured message space—specifically, a variant of the DH mes-
sage space—we circumvent existing impossibility results. As our main contribution, we construct
structure-preserving vector commitments (SPVC) and accumulators (SPA). We begin by discussing
generic constructions and then provide concrete implementations under the Diffie-Hellman Exponent
assumption. Finally, to showcase the practicality of our constructions, we present various applications.
Our main application is the first entirely practical constant-size ring signature scheme in bilinear
groups (i.e., the discrete logarithm setting).

We consider our work a significant first step toward developing structure-preserving compressing
primitives, serving as a foundation for further exploration in this area. While our scheme offers
valuable insights, the development of a fully-featured, unrestricted solution remains an open challenge
for future research. One interesting direction for future work is designing a vector commitment scheme
that utilizes a more natural message space—such as messages as simple as Pm —instead of relying
on a CRS. Moreover, further exploration of applications for our schemes appears to be a promising
research direction.
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