
Modular Reduction in CKKS

Jaehyung Kim1,2 and Taeyeong Noh1

1 CryptoLab Inc., Seoul, Republic of Korea
tynoh0219@cryptolab.co.kr

2 Stanford University, Stanford, United States of America
jaehk@stanford.edu

Abstract. The Cheon–Kim–Kim–Song (CKKS) scheme is renowned for
its efficiency in encrypted computing over real numbers. However, it lacks
an important functionality that most exact schemes have, an efficient
modular reduction. This derives from the fundamental difference in en-
coding structure. The CKKS scheme encodes messages to the least sig-
nificant bits, while the other schemes encode to the most significant bits
(or in an equivalent manner). As a result, CKKS could enjoy an efficient
rescaling but lost the ability to modular reduce inherently.
Our key observation is that at the very bottom modulus, plaintexts en-
coded in the least significant bits can still enjoy the inherent modular
reduction of RLWE. We suggest incorporating modular reduction as a
primary operation for CKKS and exploring its impact on efficiency. We
constructed a novel homomorphic modular reduction algorithm using
the discrete bootstrapping from Bae et al. [Asiacrypt’24] and a new
discretization algorithm from modulus switching. One of the key ad-
vantages of our modular reduction is that its computational complexity
grows sublinearly (O(log k)) as we increase the input range [0, k), which
is asymptotically better than the state-of-the-art with ≥ O(k).
We checked our algorithms with concrete experiments. Notably, our mod-
ulo 1 function for input range [0, 220) takes only 44.9 seconds with 13.3
bits of (mean) precision, in a single-threaded CPU. Recall that modular
reduction over such a large range was almost infeasible in the previous
works, as they need to evaluate a polynomial of degree > 220 (or equiva-
lent). As an application of our method, we compared a bit decomposition
based on our framework with the state-of-the-art method from Drucker
et al. [J.Cryptol’24]. Our method is 7.1× faster while reducing the failure
probability by more than two orders of magnitude.

Keywords: Homomorphic Encryption · CKKS · Modular Reduction

1 Introduction

Among the widely used fully homomorphic encryption (FHE) schemes, the
Cheon–Kim–Kim–Song (CKKS) scheme [CKKS17] provides efficient real num-
ber computation which is essential in many applications like machine learn-
ing [LLL+22,CBH+22]. This characteristic stems from the unique functionality
that CKKS provides called rescaling, which approximately divides the message

2 J. Kim and T. Noh

by a constant. However, this prevents CKKS from supporting intrinsic modular
reduction unlike other major schemes (BGV [BGV12], BFV [Bra12,FV12], CGGI
[CGGI16], and DM [DM15]). As a result, CKKS relies on polynomial approxima-
tions to handle discrete operations (e.g. in [CKK+19,CKK20,LLNK22,LLKN22]
for homomorphic comparison) and suffers from relatively low performance.

This paper mainly focuses on exploiting the inherent modular reduction
function on Rq = Zq[X]/(XN + 1), providing efficient discrete operations for
CKKS. Recall that we already have been using modular reduction in CKKS,
especially in rescaling where we subtract the remainder ([b]q, [a]q) from the orig-
inal ciphertext (b, a) to get an approximate division. In addition, some works
[KDE+24,CCKS23] partially used modular reduction for designing new features
in CKKS. However, none of the works regarded modular reduction as a new el-
ementary operation of CKKS and explored its impact. In this work, we suggest
incorporating modular reduction as part of primary CKKS operations and using
it to handle discrete computations.

1.1 Technical Overview

Given a power-of-two integer N and Q ∈ Z>0, let R = Z[X]/(XN + 1) and
RQ = R/QR. We observe that modular reduction on RQ is inherent: given
q | Q and p(X) ∈ RQ, [p(X)]q can be defined as taking modulo q for each
coefficient. Given an RLWE ciphertext ct = (b, a) ∈ R2

Q that decrypts to m ∈ R
(i.e. [ct · sk]Q = m for the secret key sk), we may define

[ct]q = ([b]q, [a]q) ∈ R2
q,

which decrypts to [m]q.
Recall that there are two types of encoding in CKKS, namely coefficients-

encoding and slots-encoding. Coefficients-encoding puts a real vector z ∈ RN
into R by scaling up and rounding. In other words, coefficients encoding CoeffEcd :
RN → R is defined as

CoeffEcd(z) =
N−1∑
i=0

⌊∆ · zi⌉ ·Xi ∈ R

where z = (z0, z1, . . . , zN−1) and ∆ ∈ R>0 is a scaling factor. On the other
hand, slots-encoding contains a canonical embedding (i.e. discrete Fourier trans-
form (DFT)) in addition, efficiently supporting single instruction multiple data
(SIMD) computations. Given z ∈ CN/2, the slots-encoding is defined as

Ecd(z) = ⌊∆ · iDFT(z)⌉ ∈ R

where iDFT : CN/2 → R[X]/(XN + 1) is an inverse DFT. The straightforward
observation is that the RLWE modular reduction gives a modular reduction for
coefficients-encoding but not for slots-encoding, as iDFT and modular reduction
do not commute.

Modular Reduction in CKKS 3

Despite its natural definition, the usage of modular reduction in CKKS has
been limited. There are two main reasons for this. First, CKKS ciphertexts are
usually in slots-encoded state which is not compatible with modular reduction.
They are in coefficients-encoded state only at the very bottom modulus right
before the ModRaise step in the context of bootstrapping3. Alternatively, one
may convert slots-encoded ciphertext to coefficients-encoded ciphertext, but it
involves an expensive homomorphic linear transform called slots-to-coefficients
(StC). Second, unless we decrypt right after the modular reduction, the out-
put of modular reduction requires bootstrapping to allow further computations.
However, the output ciphertext of [·]q could encrypt an arbitrary element of
the plaintext space Rq, which makes bootstrapping very difficult. Recall that
the conventional CKKS bootstrapping (first instantiated in [CHK+18]) does re-
quire a gap between underlying plaintext and ciphertext modulus, as it relies on
polynomial approximations to remove the error term coming from ModRaise.

To solve this problem, we incorporate bootstrapping into modular reduc-
tion and use what we call most significant bits (MSB) bootstrapping. Although
we bootstrap every time we need modular reduction, the efficiency of the new
method outperforms the typical approximation-based methods. For MSB boot-
strapping, we follow the framework of [BKSS24] and extend it by using iterative
algorithms and modulus switching. We first illustrate our MSB bootstrapping
framework and describe modular reduction for discrete and approximate data.

Iterative MSB bootstrapping. We introduce an iterative MSB bootstrapping
method which extends the MSB bootstrapping methods in [BGGJ20,BKSS24].
The main advantage of the iterative method is that it allows us to achieve ar-
bitrary precision (as in [BCC+22] for general CKKS bootstrapping) which is
essential in our modular reduction framework. Let ct = (b, a) ∈ R2

q0 be a
coefficients-encoded RLWE ciphertext encrypting a message m ∈ Rtℓ in the
most significant bits. To clarify, this means that [ct · sk]q0 = (q0/t

ℓ) ·m for the
secret sk. We sequentially extract the least significant digits as follows. In the
first step, we multiply ct by tℓ−1 and get a CKKS ciphertext encrypting [m]t in
the most significant bits. We bootstrap this ciphertext (using integers-to-integers
bootstrapping from [BKSS24]) and have ct′ ∈ R2

Q encrypting [m]t. Next, we put
it into coefficients (via StC) and subtract it from the original ciphertext ct. At
this stage, we have a slots-encoded CKKS ciphertext encrypting the least signif-
icant digit of m and a coefficients-encoded RLWE ciphertext encrypting all the
other digits (i.e. (m− [m]t)/t) in the most significant bits. Thus, we may extract
all the digits by repeating this and combining the extracted digits if necessary.

MSB bootstrapping for reals. Based on the high-precision MSB bootstrapping for
discrete data (described in the previous paragraph), we propose a novel reals-
to-reals MSB bootstrapping using modulus switching. The key observation is

3 Here one needs to use slots bootstrapping [BCC+22] rather than coefficients boot-
strapping [CHK+18]. In other words, StC should be the very first step of bootstrap-
ping.

4 J. Kim and T. Noh

that modulus switching to a small modulus converts a (not necessarily discrete)
CKKS ciphertext into a discrete CKKS ciphertext. That is, given a conventional
coefficients-encoded CKKS ciphertext ct = (b, a) ∈ R2

q0 encrypting a vector z ∈
[0, 1)N with a scaling factor ∆0 = q0, modulus-switching it to a modulus tℓ and
returning back to q0 can be regarded as discretizing the ciphertext while allowing
some errors in the least significant bits, which makes ciphertext compatible with
discrete bootstrapping. To be precise, the output ciphertext encrypts a plaintext
m ∈ Rtℓ that is approximately equal to tℓ · z, with a scaling factor ∆0 = q0/t

ℓ.
We then use the MSB bootstrapping to bootstrap the ciphertext. Since modulus
switching was an approximate identity, the result of the bootstrapping should
be a valid bootstrapping of the input ciphertext.

Homomorphic modular reduction. By using the (large-precision) MSB bootstrap-
ping as a subroutine, we construct a novel homomorphic modular reduction. Let
ct = (b, a) ∈ R2

q be a slots-encoded CKKS ciphertext encrypting a message
z ∈ CN/2. We choose the base level scaling factor (i.e. the scaling factor that
corresponds to the base modulus q0) as ∆0 = q0. The main observation is that,
performing [·]q0 on a coefficients-encoded ciphertext results in performing [·]1 on
the message. More precise, performing StC and [·]q0 , we obtain a coefficients-
encoded RLWE ciphertext encrypting a plaintext [z(X)]q0 ∈ R whose cofficients
belong to either [Re(z)]1 or [Im(z)]1. We apply the MSB bootstrapping to re-
cover the modulus and get the modular reduction as desired. This method works
both for discrete and approximate data. Note that this method is not applicable
to bootstrapping which requires a gap between the ciphertext and its modulus,
such as general CKKS bootstrapping methods.

1.2 Contributions

Efficient MSB bootstrapping for reals. In the conventional CKKS boot-
strapping methods, the underlying message of a ciphertext right before the
ModRaise step needs to have a gap with the base modulus, in order to ap-
proximate a modular reduction function homomorphically. Such a gap causes
extra modulus consumption during bootstrapping, as illustrated in [BCKS24].
To be precise, as the size of the underlying message enlarges through ModRaise
(i.e. from m to m+ q0I), one typically uses larger modulus per rescaling inside
bootstrapping (e.g. [Cry22, lat23]). This results in performance degradation as
modulus is a very limited resource in homomorphic encryption.

In this regard, finding an efficient MSB bootstrapping is an interesting re-
search question (and necessary for our modular reduction framework). Although
bootstrapping the most significant bits has been partially explored in [BGGJ20],
it did not specify the bootstrapping instantiation concerning the encoding struc-
ture of CKKS. In [BCKS24], the authors adapted the CKKS bootstrapping for
bits, providing an MSB bootstrapping for bits. This has been further improved
in [BKSS24], from integers to integers.

In this work, we efficiently extend the MSB bootstrapping to arbitrary preci-
sion and real numbers. One of the biggest limitations of discrete bootstrapping

Modular Reduction in CKKS 5

in [BKSS24] is that its computational complexity grows exponentially with re-
spect to the precision (in bits). To solve this problem, we introduce an iterative
method (as in [BCC+22,BZP+23]) to efficiently support high-precision discrete
bootstrapping. In addition, we introduce an extra modulus switching step at
the bottom modulus to extend the MSB bootstrapping to reals. With these two
improvements, we propose a full-fledged MSB bootstrapping framework for the
first time.

Asymptotically faster homomorphic modular reduction. All the exist-
ing approaches [CHK+18,LLL+21,JM22,LLK+22,HMWW24] for homomorphic
modular reduction (with CKKS) rely on polynomial approximations. In order to
approximate the modulo 1 function over the interval [0, k), the polynomial degree
for approximation is at least linear in k. To check this, one can simply count the
number of roots (i.e. the number of integer points) which is k. As homomorphic
polynomial evaluation of degree k needs O(k) constant ciphertext multiplica-
tions, the running time should also be O(k). As a result, homomorphic modular
reduction on large intervals has been extremely expensive and considered almost
impossible.

In contrast, our modular reduction method is far less dependent on the input
interval [0, k). Instead of approximating the modular reduction function over the
large interval [0, k), we just take the inherent modular reduction which is inde-
pendent from the input interval. As we increase k, we only need to increase the
precision of StC, leading to O(log(k)) bits of modulus consumption. Overall, the
running time of modular reduction should be at most O(log(k)), which is some-
what negligible in practice. To summarize, we provide a very efficient modular
reduction over large intervals, which is asymptotically better than the existing
methods.

Discretization for CKKS. As observed in the previous section, the modulus
switching at the bottom modulus enables a discretization from a coefficients-
encoded CKKS ciphertext into a coefficients-encoded discrete CKKS ciphertext.
This allows us to discretize a typical CKKS ciphertext, and to use discrete
CKKS afterwards. One of the most important advantages of discrete CKKS over
conventional CKKS is that it supports arbitrary function evaluation via look-
up tables [CKKL24]. In addition, we may bit-decompose a CKKS ciphertext
using the framework in [BKSS24], which provides an alternative solution for
comparison-like functions.

Look-up table-based approaches can accelerate many functions that are diffi-
cult to approximate. For instance, non-polynomial functions such as exponential,
inverse, square root, and ReLU can be evaluated in this manner. Recall that these
functions are essential in machine learning, which is one of the primary applica-
tions of homomorphic encryption. Furthermore, this approach can be considered
as an analogue of quantization in the context of machine learning, as we reduce
the computation cost by shrinking the data type of the underlying message.

6 J. Kim and T. Noh

Bit-decomposed CKKS ciphertexts can be used to accelerate comparison-
like functions such as argmax and sorting. Recall that the existing homomorphic
comparison approaches use polynomial approximations, and thus they require
large multiplicative depths and time for evaluation. Hence, functions that contain
homomorphic comparison as a subroutine have been considered very expensive.
On the other hand, comparisons for bit-decomposed ciphertexts are relatively
cheap, and we may use this comparison to build more complex functions like
argmax and sorting.

Concrete experiments. We experimented with our algorithms to support the
correctness and efficiency of our algorithm. All experiments are performed in a
single-thread CPU and implemented with ring degree N = 216. Table 1 and 2
summarizes the performance of iterative MSB bootstrapping and homomorphic
modular reduction for both integers and reals. The mean precision indicates
− log2 E(∥e∥1). We denote IntBoot (resp. IntMod) as the high-precision iterative
MSB bootstrapping (resp. homomorphic modular reduction) with input and
output are ciphertexts which encrypt 15 bits integers, and Boot (resp. Mod) as
the iterative MSB bootstrapping (resp. homomorphic modular reduction) with
real inputs.

Notably, our homomorphic modular reduction over an input range [0, 220)
achieved 13.3 bits of (mean) precision in 44.9 seconds. Note that this is the first
implementation of homomorphic modular reduction for such a large interval, as
the previous approaches require significantly large degree polynomials to approx-
imate the mod function. For application, we proposed a novel bit decomposition
method using our framework. We compared the performance to the state-of-the-
art method in Drucker et al [DMPS24] (see Table 3). In terms of running time,
our method is 7.1× faster for 10-bit decomposition while maintaining precision.
Please see Section 6 for further details.

Table 1. Performance of our integer MSB bootstrapping and homomorphic modular
reduction algorithms.

Input/Output bits Mean precision Total time Amortized time

IntBoot 15 28.5 42.6s 2.60ms
IntMod 15 28.1 43.3s 2.64ms

1.3 Related Works

We summarize the important related works to specify the works that are either
used as key building blocks or needed to better assess the efficiency of our work.
Some of them will be explained in more detail in Section 2 and 3.

Modular Reduction in CKKS 7

Table 2. Performance of our real MSB bootstrapping with input range [0, 1) and
homomorphic modular reduction algorithms with input range [0, 220).

Mean precision Total time Amortized time

Boot 13.3 43.7s 2.66ms
Mod 13.3 44.9s 2.74ms

Table 3. Comparing performance of our 10-bit extraction algorithm with [DMPS24].

Tavg (sec)

Ours 53.8
[DMPS24] 385

gain 7.1×

Discrete CKKS. The message space of the original CKKS [CKKS17] is CN/2,
which can be described as approximate data. In [DMPS24], the authors sug-
gested using discrete message space, by introducing an embedding to CN/2. For
instance, one may embed bits (i.e. {0, 1}) into CN/2 with an identity embed-
ding. One of the key differences between approximate and discrete CKKS is
that discrete CKKS has a notion of cleaning, which removes the noise of the
underlying plaintext. In order to improve the efficiency of look-up table eval-
uations, [CKKL24] introduced a roots-of-unity embedding and explored multi-
variate interpolations. Independently, some works [BCKS24, BKSS24] adapted
CKKS bootstrapping specific to discrete data, leading to greatly improving its
performance.

Modular Reduction. As one of the key steps of CKKS bootstrapping called
EvalMod is a modular reduction. Modular reduction has been extensively studied
throughout the CKKS literature [CHK+18, LLL+21, JM22,LLK+22]. However,
due to the limit of polynomial approximation (see [HMWW24]), these works
could only evaluate modular reductions for a small input range (e.g. 25 peri-
ods). On the other hand, our work uses an inherent modular reduction function-
ality that RLWE ciphertexts already have. Although several works [KDE+24,
CCKS23] used such a feature to build some advanced functionalities upon the
CKKS scheme, they did not explore the use of modular reduction as a primary
operation of CKKS. One of the key techniques we needed to enable efficient mod-
ular reduction can be described as Most Significant Bit (MSB) bootstrapping,
which bootstraps a ciphertext whose underlying message does not have a gap
with the modulus. MSB bootstrapping has been partially covered in [BCKS24,
BGGJ20,BKSS24], but none of these works provided an efficient bootstrapping
for reals that could allow modular reduction in a practical sense. To tackle the

8 J. Kim and T. Noh

problem, we follow the philosophy of iterative bootstrapping [BCC+22,BZP+23]
and rely on modulus switching.

Concurrent Work. The recent concurrent work [AKP24] also suggests a ho-
momorphic modular reduction based on RLWE modular reduction and discrete
bootstrapping4. In particular, their homomorphic floor function [AKP24, Algo-
rithm 2] significantly overlaps with our IntMod in Algorithm 5, and their multi-
precision sign evaluation [AKP24, Section 5.2] and multi-precision LUT [AKP24,
Section 5.3] work similarly as our iterative MSB bootstrapping in Algorithm 2
and arbitrary precision discussions in Section 4.2. Despite the similarities, they
lack some important ideas and discussions that we address in our paper. First,
we introduce a discretization from modulus switching at coefficients-encoded
state (see Section 3.3) which allows us to extend the modular reduction to real
numbers. Secondly, they did not sufficiently detail algorithmic and efficiency dis-
cussions (e.g. asymptotics regarding homomorphic modular reduction), which we
elaborate on throughout the paper.

2 Preliminaries

Given a power-of-two integer N > 1, let R = Z[X]/(XN + 1) and RQ = R/QR
for Q ∈ Z>0. For m ∈ Z, [m]q denotes the signed modular reduction whose
output lives in (−q/2, q/2].

2.1 CKKS Basics

Let m ∈ R be a plaintext. Given a secret key sk ∈ R, an RLWE ciphertext ct
that encrypts m is a pair (b, a) ∈ R2

Q such that [ct · sk]Q = m.

Encoding structure. Let m(x) ∈ R be a plaintext and ∆ ∈ R be a scaling
factor. Let DFT : R[X]/(XN + 1) → CN/2 be defined as

DFT(p(x)) = (p(ζi))0≤i<N/2

where ζi = ζ5
i

for a 2N -th root of unity ζ. The decoding map Dcd : R → CN/2
is defined as

Dcd(m) =
1

∆
DFT(m).

Let iDFT : CN/2 → R[X]/(XN + 1) be an inverse of DFT. The encoding map
Ecd : R → CN/2 is defined as

Ecd(z) = ⌊∆ · iDFT(z)⌉.
4 For discrete bootstrapping, the authors came up with a method based on trigono-

metric Hermite interpolation, very similar but independently from [BKSS24].

Modular Reduction in CKKS 9

Encoding and decoding give a correspondence between R and CN/2, allowing us
to use CN/2 as a message space of RLWE ciphertexts. Note that DFT and iDFT
are 2-norm isometry with constant factor:

∥DFT(p(x))∥2 =

√
N

2
· ∥p(x)∥2

for all p ∈ R.

Rescaling. Let ct = (b, a) ∈ R2
Q be a CKKS ciphertext encrypting z ∈ CN/2

with a scaling factor ∆. Rescaling of ct by q | Q is defined as

RSq(ct) =

(
b− [b]q
q

,
a− [a]q

q

)
which decreases the scaling factor from ∆ to ∆/q. Note that rescaling is not an
exact division by q, and it generates a small error (denoted as rescaling error)
in the least significant bits.

Inverse rescaling. Let ct = (b, a) ∈ R2
Q be a CKKS ciphertext encrypting

z ∈ CN/2 with a scaling factor ∆. Inverse rescaling of ct by q′ is defined as

Inv-RSq′(ct) = (q′ · b, q′ · a) ∈ R2
q′Q

which increases the scaling factor from ∆ to q′ ·∆.

Modulus switching. Let ct ∈ R2
Q be an RLWE ciphertext and Q′ > 0 be an

integer. We define modulus switching from Q to Q′ (denoted as ModSwitchQ
′

Q)
as first inverse rescaling to lcm(Q,Q′), followed by a rescaling to Q′. That is:

ModSwitchQ
′

Q (ct) = RSlcm(Q,Q′)/Q′(Inv-RSlcm(Q,Q′)/Q(ct)) ∈ RQ′

This reformulation is inspired from Rational Rescale in [CCKK24, Definition 1].

CKKS Bootstrapping. The modulus of a CKKS ciphertext decreases through
homomorphic computations. In order to recover the modulus, we need bootstrap-
ping which increases the modulus while approximately preserving the underlying
message. The conventional StC-first CKKS bootstrapping [BCC+22] works as
follows5:
5 Note that one can also use the bootstrapping that works in the order of ModRaise−
CtS−EvalMod− StC [CHK+18]. However, this type of bootstrapping is not directly
compatible with our framework because it does not have coefficients-encoded cipher-
texts during bootstrapping. For this reason, we stick to the bootstrapping that starts
with StC.

10 J. Kim and T. Noh

1. Slots-to-Coefficients (StC): We homomorphically evaluate DFT to convert
a ciphertext encrypting a message z to a ciphertext encrypting a plaintext
z(x) whose coefficients are the slots of z.

2. Modulus Raising (ModRaise): Given a coefficients-encoded ciphertext ct ∈
R2
q0 at the bottom modulus q0 encrypting a plaintext m(x) ∈ R, we embed it

to R2
Q for larger Q. That is, we first embed it to R2 with natural embedding

from Zq → Z and take modulo Q. In terms of underlying plaintext, it changes
from m to m+ q0I where I is a small integer polynomial in R.

3. Coefficients-to-Slots (CtS): We homomorphically evaluate iDFT to con-
vert a ciphertext encrypting a plaintext m(x) to a ciphertext encrypting a
message m whose slots are the coefficients of m(x).

4. Approximate Modular Reduction (EvalMod): In order to remove the
small multiple of q0 introduced during ModRaise, we approximate the mod-
ular reduction function and evaluate homomorphically. A typical choice is to
use a polynomial that approximates some trigonometric function. Since we
need some level of continuity to approximate modular reduction, one needs
a gap between the message m and the base modulus q0 during ModRaise.

2.2 Discrete Computations in CKKS

Recently, a sequence of works developed a different philosophy than the original
CKKS, which is to use CKKS for discrete (rather than approximate) data. As
these works are relatively new and have brought significant changes in many
building blocks of CKKS, we provide a detailed overview of the new philosophy,
namely discrete CKKS.

Discrete Encoding. In [DMPS24], the authors suggested the first concrete
framework to use CKKS for computing discrete data. The main idea of discrete
CKKS is very simple: we choose a finite set in C and restrict the message space
accordingly. One advantage is that we can use interpolation instead of approxi-
mation, allowing one to evaluate arbitrary functions. In this context, the specific
choice of representatives in C for computation is influential in terms of efficiency.

The most straightforward encoding is to encode using an inclusion Z ⊂ C as
in [DMPS24]. To be precise, any vector z ∈ ZN/2 is regarded as a complex vector
z ∈ CN/2 and go through CKKS encoding (i.e. canonical embedding) as usual.
The advantage of this encoding is that it naturally inherits arithmetic opera-
tions like addition and multiplication directly from the homomorphic property
of CKKS. Another type of encoding is the roots of unity encoding, as proposed
in [CKKL24]. Here they focus on primitive t-th roots of unity for some t, which
can be identified with Zt with the map x 7→ e2πix/t : Zt → C. As illustrated
in [CKKL24], roots of unity provide numerically stable look-up table evalua-
tion, which means that it provides a precise evaluation of an arbitrary function
φ : {1, ω, . . . , ωt−1} → C where ω = e2πi/t is a primitive t-th root of unity. We
denote a homomorphic evaluation of φ with interpolation as LUTφ.

Modular Reduction in CKKS 11

Cleaning. One of the key ingredients of discrete CKKS is cleaning [DMPS24],
which reduces the error via cleaning polynomials. Note that such a feature does
not exist in the original CKKS for approximate data, as one cannot identify the
true message hidden behind the RLWE errors. On the other hand, as the message
space of discrete CKKS is finite and discrete, the error-free message can easily
be identified as the nearest point among the representatives. This allows us to
have an interpolation that sends an underlying message closer to the real value,
reducing the error. For instance, h1 : R → R defined as h1(x) = 3x2−2x3 defined
in [DMPS24] has a cleaning functionality with respect to the points {0, 1}, as it
satisfies (1) h1(0) = 0, (2) h1(1) = 1, and (3) h′1(0) = h′1(1) = 0.

Discrete Bootstrapping In [BCKS24], the authors adapted CKKS bootstrap-
ping to bit encoding {0, 1}, enabling bootstrapping without a gap between mes-
sage and base modulus, thereby leading to a reduction in modulus consumption.
They modify ModRaise and EvalMod to achieve this.

– ModRaise: They set ∆ = q0/2 so that the bits are placed at the most signif-
icant bits of the ciphertext ct ∈ R2

q0 .
– EvalMod: They replace the approximate modular reduction function to a

trigonometric function f(x) = 1
2 (1− cos(2πx)) that gives f(b/2 + I) = b for

b ∈ {0, 1} and I ∈ Z.

They call this new bootstrapping BinBoot, and it turns out that this not only
bootstraps bits properly but also has some cleaning functionality [BCKS24, The-
orem 1].

In [BKSS24], the authors proposed an extension of [BCKS24] to small in-
tegers. The general framework is to combine the CGGI-to-CKKS conversion
in [BGGJ20] and the look-up table evaluation in [CKKL24]. To elaborate, [BGGJ20]
homomorphically computes a complex exponential x 7→ e2πix to remove the small
I introduced during ModRaise by mapping real line into a unit circle. Next, the
roots-of-unity look-up table evaluation in [CKKL24] ensures that we can stretch
the unit circle back to a real line in a numerically stable manner. It can be
described as follows:

m
ModRaise−−−−−→ m+ q0I

x 7→e2πix

−−−−−→ e2πim
LUT−−→ m.

The authors of [BKSS24] do not use [BGGJ20] and [CKKL24] as black boxes but
introduce further optimizations to improve efficiency. In our work, we just use
the fact that there is an efficient integer bootstrapping instantiation that does
not require a gap between message and modulus. It could be any instantiation
that satisfies the property.

3 Bootstrapping the Most Significant Bits

As noted in Section 2.1, conventional bootstrapping requires a gap between the
message and base modulus, for approximating modular reduction. In this section,

12 J. Kim and T. Noh

we revisit the existing (discrete) bootstrapping methods that do not require
such a gap and introduce an iterative bootstrapping algorithm that efficiently
increases the precision. Furthermore, we propose a bootstrapping that bootstraps
real numbers in the most significant bits.

3.1 Revisiting [BKSS24]

We revisit the bootstrapping framework in [BKSS24], which integrated the in-
teger MSB bootstrapping for the first time. For simplicity, we describe the very
primitive type of [BKSS24] which only concatenates [BGGJ20] and [CKKL24].
Note that the instantiation of integer MSB bootstrapping can further be opti-
mized by the techniques introduced in [BKSS24]. We refer to [BKSS24] for more
details. As we use integer MSB bootstrapping as a black box, any optimized
instantiation of it can be used as a component of our circuit. The outline of
(primitive) integer MSB bootstrapping can be described as follows.

0. Parameter Setting: The input and output ciphertexts both encrypt integer-
encoded messages in slots-encoded state. Each slot of the message belongs
to [0, t) to avoid overflow. We set the bottom-level scaling factor ∆0 = q0/t
so that the message is encoded in the most significant bits. Let ψ : Zt =
[0, t) → CN/2 be defined as ψ(x) = e2πix/t, which is exactly the map that is
associated to the roots of unity encoding in [CKKL24].

1. Slots-to-Coefficients: We put slots into coefficients.
2. Modulus-Raising: We increase the modulus as in the conventional CKKS

bootstrapping.
3. Coefficients-to-Slots: We put coefficients back to slots.
4. Homomorphic Exponential: We evaluate the complex exponential x 7→
e2πix homomorphically to send integers to roots of unity as in [BGGJ20].
We denote this step as EvalExp.

5. Homomorphic ψ−1: We homomorphically evaluate the inverse of ψ in order
to send roots of unity back to integers. This step can be denoted as LUTψ−1 .

We denote this bootstrapping as IntBoott and detail the algorithm in Algo-
rithm 1. The correctness of this bootstrapping is directly checked by its com-
ponents EvalExp and LUTφ−1 which were checked independently in [BGGJ20]
and [CKKL24], respectively. As an analogue of HalfBoot in [CHK+21], we de-
note IntBoott without the first step StC as HalfIntBoott.

3.2 Iterative bootstrapping

We construct an iterative bootstrapping based upon IntBoott. Note that we are
not the first ones to use bootstrapping as a black box and construct higher pre-
cision bootstrapping. Similar constructions can be found in [BCC+22,BZP+23].

To briefly describe the outline of the iterative bootstrapping, we extract the
least significant digit using IntBoott and repeat this ℓ times to get a bootstrap-
ping for plaintext space of size tℓ. The whole bootstrapping is called IntBootℓt
and the detailed algorithm is given in Algorithm 2.

Modular Reduction in CKKS 13

Algorithm 1: IntBoott
Setting: ∆0 = q0/t. ψ = x 7→ e2πix/t : Zt → C
Input : ct = Encsk ◦ Ecd(m) ∈ R2

q0 a slots-encoded ciphertext where m is a
vector of integers in [0, t) with small error..

Output: ctout ∈ R2
Q.

1 ctout ← LUTψ−1 ◦ EvalExp ◦ CtS ◦ModRaise ◦ StC(ct);
2 return ctout

Algorithm 2: IntBootℓt
Setting: ∆0 = q0/t

ℓ.
Input : ct = Encsk ◦ Ecd(m) ∈ R2

q0 a slots-encoded ciphertext where m is a
vector of integers in [0, tℓ).

Output: ctout ∈ R2
Q.

1 ct′ ← StC(ct);
2 for i← 0 to ℓ− 1 do
3 cti ← HalfIntBoott(t

ℓ−1−i · ct′);
4 if i ̸= ℓ− 1 then
5 ct′ ← ct′ − ti · StC(cti);
6 end if
7 end for
8 ctout ←

∑ℓ−1
i=0 t

i · cti;
9 return ctout

To be precise, we first start with sufficiently precise StC to put the message
in [0, tℓ) from slots to coefficients. The key observation is that multiplying by
tℓ−1 extracts the least significant digit. This allows us to use HalfIntBoott as a
subroutine, and output a slots-encoded ciphertext that encrypts the least signif-
icant digit. We then perform StC and subtract it from the coefficients-encoded
original ciphertext, resulting in a ciphertext with one less digit (tℓ → tℓ−1). This
allows us to repeat this until we extract all the digits and have them in the higher
modulus. Finally, we can recover the whole message by combining all the digits
with a linear combination. Note that IntBootℓt requires ℓ many HalfIntBoott and
ℓ many StC so it is almost as costly as ℓ many IntBoott.

3.3 Bootstrapping reals

Now we generalize IntBoot to construct bootstrapping for real numbers. The key
idea is that if the CKKS ciphertexts with the real (or complex) messages are in a
coefficients-encoded state, we can discretize the message by performing modulus
switching to tℓ for each polynomial in the ciphertexts. Note that the modulus
switching operation ModSwitchq

′

q : Rq → Rq′ can be extended to Rk
q → Rk

q′ for
k ≥ 1.

Let ct ∈ R2
q0 be a slots-encoded CKKS ciphertext encrypting a plaintext m

whose slots are in the interval [0, 1). After StC, we set the bottom level scaling

14 J. Kim and T. Noh

Algorithm 3: Bootℓt
Setting: ∆0 = q0
Input : ct = Encsk ◦ Ecd(m) ∈ R2

q0 a slots-encoded ciphertext where m is a
vector of real numbers in [0, 1).

Output: ctout ∈ R2
Q.

1 ctout ← HalfIntBootℓt ◦ModSwitchq0
tℓ
◦ModSwitcht

ℓ

q0 ◦ StC(ct);
2 return ctout

factor ∆0 = q0 so that m is now in the coefficients in the most significant bits.
Define discretizet

ℓ

q = ModSwitchq
tℓ
◦ ModSwitcht

ℓ

q : Rq → Rq, which discretizes
each coefficient of the polynomial as follows:

N−1∑
i=0

ci ·Xi 7→
N−1∑
i=0

⌊ q
tℓ
⌊ t
ℓ

q
· ci⌉⌉ ·Xi.

For properly chosen t, ℓ ≥ 1, we perform discretizet
ℓ

q to each polynomial in the
coefficients-encoded ciphertext6 which results in discretizing the scaled message
with some additional error. More precisely, the output of the discretization is a
ciphertext that encrypts ⌊tℓ ·z⌉ in its coefficients, thereby making the ciphertext
deliberately compatible with HalfIntBootℓt. Specifically, we have

[⟨discretizet
ℓ

q (ct), sk⟩]q = [discretizet
ℓ

q (⟨ct, sk⟩)]q + edis

where edis is the discretization error satisfying ∥edis∥∞ = O(
√
h), with h denotes

the hamming weight of the secret key. The error in the ciphertext polynomials
after discretization is essentially a rounding error and is therefore O(1). How-
ever, when decrypting with a secret key of hamming weight h, the error in the
coefficients of the decrypted plaintext can be attributed to the summation of up
to h independent rounding errors, each of order O(1). Thus in practice, we can
ensure that the discretization error is bounded by O(

√
h). Note that the cost of

discretization is negligible, as it is performed at the base level, which contains
only one prime.

We then apply HalfIntBootℓt to finish our bootstrapping7. Since modulus
switching is approximately an identity function, this results in a bootstrapping
for ct, with precision approximately tℓ. We denote this bootstrapping as Bootℓt,
and the detailed algorithm is given in Algorithm 3.

Note that Bootℓt works up to modulo 1. That is, 0 is identified with 1 and the
message near 0 can be bootstrapped to near 1 and vice versa. When constructing
homomorphic modular reduction and bit extraction in Section 4, it is okay to
6 A similar idea, to modulus switch and allow some contamination is proposed in

[LW24].
7 Here, HalfIntBootℓt needs to be normalized, as the original definition inputs and

outputs integers instead of real numbers in [0, 1).

Modular Reduction in CKKS 15

have bootstrapping modulo 1. If one needs exact bootstrapping that guarantees
correctness without the “up to modulo 1" condition, one can handle this by
recovering the error via subtraction and bootstrapping.

3.4 Bit extraction

We revisit Algorithm 2 and 3 to find different versions of IntBootℓt and Bootℓt. In
short, we add an extra bit extraction step for each cti for 0 ≤ i < ℓ.

We first discuss how to extract bits from the roots of unity. Let

ιj : {1, ω, . . . , ωt−1} → {0, 1}

be defined as extracting the jth least significant bit in the exponent, where
0 ≤ j < t. Evaluating LUTιj for each j gives all the bits of the roots of unity. Let
LUTι be defined as executing LUTιj for all j and outputting t ciphertexts each
encrypting bits of the initial ciphertext. We replace LUTψ−1 of Algorithm 1 with
this LUTι and get the bit extraction version of IntBoott. This naturally extends
to IntBootℓt and Bootℓt.

Bit extraction of a ciphertext could be very useful when computing discrete
functions, especially when we need to construct a complex discrete function that
involves simpler discrete functions as a subroutine. We discuss this in detail in
Section 4.

Note that a bit extraction of CKKS ciphertexts has already been proposed
in [DMPS24, Algorithm 3]. If we fix t and regard our parameter ℓ as an analogue
of N in their algorithm, their algorithm can be described as iterating O(ℓ) bit
precision homomorphic sign function O(ℓ) times. According to [CKK20, The-
orem 1], the O(ℓ) bit precision sign function of optimal depth consumes O(ℓ)
multiplicative depths. On the other hand, the depth consumption of IntBoott is
independent of ℓ, so our algorithm can be described as evaluating a depth O(1)
circuit ℓ times, which is asymptotically better than that of [DMPS24].

4 Modular Reduction

As illustrated in Section 1, modular reduction for RLWE ciphertexts is naturally
inherited to coefficients-encoded CKKS ciphertexts. That is, taking modular re-
duction on ciphertexts gives modular reduction for underlying plaintexts. Once
we apply modular reduction, the output no longer has enough space for ad-
ditional multiplications. Hence, we use the MSB bootstrapping methods from
Section 3 to recover the modulus. From now on we will denote q0 as the base
modulus, Q as the bootstrapping output modulus, and q as the arbitrary CKKS
modulus such that q0 | q and q | Q.

4.1 Main Algorithm

For simplicity, we propose an (unsigned) modulo 1 function for CKKS. Modular
reduction by arbitrary modulus can be easily constructed with proper constant

16 J. Kim and T. Noh

multiplications.
There are two key observations that make our new homomorphic modular re-
duction work. The first observation is that it is easy to perform [·]q0 to the
coefficients-encoded ciphertext of an arbitrary CKKS modulus. More precise,
given a coefficients-encoded ciphertext ct ∈ R2

q encrypting a message m ∈ Rq,
[ct]q0 ∈ R2

q0 encrypts the message [m]q0 ∈ R2
q0 . Secondly, we can compute the

modulo 1 function [·]1 using [·]q0 with a proper scaling factor. In more detail, for
z ∈ R, [z]1 = 1

q0
· [q0 · z]q0 + ϵ, where |ϵ| ≤ 1

2q0
. The second observation can be

extended to arbitrary modulus, which allows us to propose modular reduction
by an arbitrary positive real number using [·]q0 by adjusting the scaling factor.

Algorithm 4: Modtℓ (resp. Mod′tℓ)
Setting: ∆StC = q0 where ∆StC denotes the scaling factor after StC.
Input : ct = Encsk ◦ Ecd(z) ∈ R2

q.
Output: ctout ∈ R2

Q (resp. (R2
Q)

k).
1 ct′ ← [StC(ct)]q0 ;
2 ctout ← HalfBootℓt(ct

′) (resp. HalfBootℓt
′
(ct′));

3 return ctout

Let ct ∈ R2
q be a slots-encoded CKKS ciphertext at modulus q, encrypting

z ∈ CN/2. ∆StC, the scaling factor after StC, is set as q0. We first perform StC,
outputting a ciphertext that encrypts (the reordering of) q0 ·z in its coefficients.
Next, we take modulo q0 to ct′, outputting a ciphertext encrypting [z]1 in its
MSBs.8 Finally, we use HalfBootℓt to raise the modulus from q0 to Q, while
preserving the most significant bits of the message. You may find the details in
Algorithm 4.

Note that homomorphic computation of modular reduction has already been
extensively studied throughout the literature [CHK+18,LLL+21,JM22,LLK+22]
as EvalMod is a key subroutine of the conventional CKKS bootstrapping. How-
ever, such approaches suffer from small and restricted input range, as they rely
on polynomial approximations. Indeed, approximating modulo 1 function over
an interval [0,K) requires at least O(K) degree polynomial (or equivalent9),
leading to at least O(K) asymptotic complexity in terms of running time. Fur-
thermore, since modular reduction is a discontinuous function it is extremely
expensive to approximate it over the whole interval [0,K). This is one of the
reasons why most EvalMod instantiations approximate modular reduction only
near the integer points.

8 To be more precise, the entries of [Re(z)]1 and [Im(z)]1 are properly ordered, cre-
ating a vector in RN . Here we denoted as z for simplicity.

9 Alternative method in [HMWW24] called SgnToStep does not directly approximate
the target function. Instead, they write step function as a linear combination of sign
functions. However, this still has a linear asymptotic complexity O(K).

Modular Reduction in CKKS 17

On the other hand, our modular reduction solves both problems. First, the
efficiency of our modular reduction is sublinear to the input range, as we utilize
the inherent modular reduction functionality of RLWE. Note that increasing the
input range only leads to an increase in StC precision, leading to larger mod-
ulus consumption during StC. As the running time of StC is proportional to
the input modulus size (in bits), the input interval of [0,K) leads to O(logK)
time complexity. Recall that even a few bit target precision (e.g. 2-3 bits) on
messages already requires a lot of modulus consumption for StC (e.g. 20 bits
per level). In this regard, even if we deal with a large input range like [0, 220)
it should not be much more expensive than evaluating over [0, 1). In addition,
as we first discretize the data via modulus switching, our method does not suf-
fer from discontinuity issues - we use interpolation rather than approximation.
As a result, the modular reduction should output integers with negligible failure
property. Taking into account that the previous polynomial approximation based
approaches often output some intermediate results between two consecutive in-
tegers (e.g. 3.6 instead of 4), our approach reduces one type of failure probability
(defined as the probability that modular reduction outputs non-integer) greatly.

Algorithm 5: IntModtℓ (resp. IntMod′tℓ)
Setting: ∆StC = q0/t

ℓ where ∆StC denotes the scaling factor after StC.
Input : ct = Encsk ◦ Ecd(z) ∈ R2

q where each zi is a Gaussian integer
Output: ctout ∈ R2

Q (resp. (R2
Q)

k).
1 ct′ ← [StC(ct)]q0 ;
2 ctout ← HalfIntBootℓt(ct

′) (resp. HalfIntBootℓt
′
(ct′));

3 return ctout

As an integer adaptation of Modtℓ , we may also define IntModtℓ that takes
modulo tℓ for Gaussian integers using HalfIntBootℓt. See Algorithm 5 for de-
tails. By slightly modifying HalfIntBoot, one could generalize it to taking mod-
ulo t1 · · · tℓ as well. Instead of performing HalfIntBoott ℓ times, we could perform
HalfIntBootti for i = 1, ..., ℓ, and define IntMod{ti}i=1,...,ℓ

which takes modulo
t1...tℓ for Gaussian integers. This can be useful when computing integer modu-
lar reduction for modulus, which has many prime factors. Also note that Modtℓ
and IntModtℓ have bit-decomposition versions Mod′tℓ and IntMod′tℓ , respectively.

4.2 Arbitrary Precision

In Section 3, we discussed MSB bootstrapping methods for integers and reals.
As long as the ciphertext precision does not exceed the base modulus, these
bootstrappings can handle any message with a few iterations. In this section, we
extend our framework to arbitrary precision by relying on our modular reduction
framework. In particular, we bootstrap arbitrarily large ciphertexts on a fixed
MSB bootstrapping parameter set (consisting of Modtℓ and IntModtℓ). As MSB

18 J. Kim and T. Noh

bootstrapping suggested in Section 3 used as a building block of modular re-
duction in Section 4, the arbitrary precision bootstrapping leads to an arbitrary
precision modular reduction.

Algorithm 6: Bootktℓ
Input : ct = Encsk ◦ Ecd(z) ∈ R2

q.
Output: ctout ∈ R2

Q.
1 ct0 ← Modtℓ(ct);
2 ct′ ← ct− ct0;
3 for i← 1 to k − 1 do
4 cti ← IntModtℓ(ct

′);
5 if i ̸= ℓ− 1 then
6 ct′ ← ct′−cti

tℓ

7 end if
8 end for
9 ctout ← ct0 +

∑k−1
i=1 t

(i−1)ℓ · cti;
10 return ctout

The extended bootstrapping algorithm is described as follows. The key idea
is to first modular reduce the decimal part(s) with Modtℓ , and iteratively boot-
strap10 the remaining part using IntModtℓ , as it can be regarded as a large inte-
ger. This bootstrapping is denoted as Bootktℓ and the detailed algorithm can be
found in Algorithm 6. Although we only covered a CKKS ciphertext with ℓ log t
bits of decimal part and (k − 1)ℓ log t bits of integer part, one can normalize
properly to adjust the size of decimal and integer parts.

In addition, we also have a bit-decomposition analogue of Bootktℓ that outputs
all kℓ log t bits instead of the whole ciphertext. This kind of output format could
be useful in evaluating discrete functions, as using bits is often more efficient
than using approximations for general real numbers. Note that Bootktℓ requires
one Modt

l

1 and k−1 many IntModtl , and each algorithm both require one StC and
one HalfIntBootℓt. Therefore, Bootktℓ requires k many HalfIntBootlt and k many
StC, which is almost as costly as k many IntBootℓt or kℓ many IntBoott.

5 Applications

We suggest two applications based on our framework. One application is effi-
cient encrypted computation over modulo integers, which aims to outperform
BGV/BFV in certain circumstances. Another application is quantization, which
imitates quantization in the context of machine learning, but in a slightly differ-
ent manner.
10 Again, this follows the philosophy of [BCC+22].

Modular Reduction in CKKS 19

5.1 Zn arithmetic with CKKS

With efficient homomorphic modular reduction Modtℓ , we can naturally con-
struct a modulo n arithmetic for n ∈ Z>0 in CKKS. Computation over Zn in
CKKS has been constructed in [DMPS24, Section 8.1], but it relies on costly
bit decomposition suggested in [DMPS24, Section 6], making it extremely ineffi-
cient. However, our method utilizes the natural modular reduction of RLWE
ciphertexts and costs as much as several iterations of integer bootstrapping
in [BKSS24]. Another advantage of our instantiation over the previous works
is that our method allows lazy modular reduction. Since the cost of modular
reduction depends on the input range in the prior works, they cannot afford lazy
modular reduction. However, as our modular reduction has almost the same
cost regardless of the input range, we may modular reduce lazily after several
multiplications, leading to a huge improvement in terms of efficiency.

It is often considered that the exact schemes such as BGV/BFV are the
best option for arithmetic over integers. One may compare our approach with
the conventional exact schemes. Long story short, our method can be preferable
for the case where n is sufficiently small for an arithmetic over Zn. When n
is sufficiently small, the maximum number of slots for the exact schemes (=
the number of distinct factors of a cyclotomic polynomial ΦM (X) modulo n)
is much smaller than the ring dimension N = ϕ(M). On the other hand, our
method relies on the CKKS encoding which has full N/2 slots (or N slots for
coefficients-encoding). Hence, our method should be more efficient in terms of
throughput when dealing with relatively small n. Furthermore, our modular
reduction does not have to be very precise for a small n, which means that it
could be as costly as a few CKKS bootstrappings. Taking into account that
BGV/BFV bootstrapping is usually more costly than CKKS bootstrapping, our
integer arithmetic would be even more efficient. For the extreme case where
n = 2, one may refer to [BCKS24] on bits.

5.2 Quantization in CKKS

In the machine learning literature, a technique called quantization [NFA+21]
improves efficiency by sacrificing the data size and precision. For instance, in-
stead of using 16 bit floating point arithmetic, one may consider using 4 or 8 bit
integer arithmetic, greatly reducing memory footprint and computation cost. As
an analogue in FHE, we propose a quantization in CKKS.

Recall that our framework (modulus switching trick in particular) provides
an efficient way to discretize a message. That is, given a CKKS ciphertext en-
crypting a real number, we output a ciphertext encrypting an integer or a bit.
Computing over discrete space could sometimes be more efficient than computing
over approximate space, as we may use interpolation instead of approximation.
For instance, evaluation of discontinuous functions is often extremely difficult,
because there is no effective way to handle them with low cost. On the other
hand, interpolation enables look-up table evaluation (as in [CKKL24]), and its
cost is independent of the target function. Hence, we may rely on discretization

20 J. Kim and T. Noh

and interpolation to efficiently tackle the issue of discontinuity. Another advan-
tage of our framework is that the result of the discrete computation is always
discrete, while the conventional CKKS scheme suffers from non-discrete results.
For instance, the result of homomorphic comparison a ≥ b is expected to be 0 or
1, but there are often some intermediate results if a and b are sufficiently close.
This stems from the nature of polynomial approximations, and it is somewhat
unavoidable. However, since our method starts with discretization, the result
should also be discrete as long as we properly handle the deviation through the
cleaning framework in [DMPS24].

Note that the notion of quantization in CKKS is slightly different from quan-
tization in the context of machine learning. In machine learning, the main ad-
vantage is coming from reducing the data type. For instance, using 4 bit data
type instead of 16 could lead to saving 4 times a memory footprint which could
lead to a dramatic performance improvement. However, although we discretize
a real ciphertext into a discrete ciphertext and reduce precision, the ciphertext
size does not change a lot. This is mainly because there is a huge initial cost
in FHE. Even if one needs only p bits of precision for small p, scaling factors
in CKKS should be much larger than p (e.g. p + 20 bits), as the error enlarges
through several steps such as canonical embedding or decryption. Instead, the
gain is coming from utilizing smaller precision interpolation rather than a large
precision approximation.

6 Experiments

We provide some proof-of-concept implementations for our new methods. Our
implementation is developed upon the C++ HEaaN library [Cry22]. All the
experiments are conducted on an Intel Xeon Gold 6242 at 2.8GHz with 512 GB of
RAM running Ubuntu 20.04.5 LTS with a single-threaded CPU. For experiments,
we constructed a new CKKS parameter (see Table 4 for details) with 128 bits
of security according to the lattice estimator [APS15]. In terms of precision, we
used mean (i.e. − log2 E(∥e∥1)) and worst (i.e. − log2 max∥e∥∞) precision, where
e ∈ CN/2 is the difference between the decryptions (i.e. underlying messages) of
input and output ciphertexts. In terms of running time, we experimented > 100
iterations and took an average. In what follows, Tavg, Pm, and Pw denote average
running time, mean precision, and worst precision, respectively.

We specify the notations used for parameter descriptions (Table 4 and 9)
as follows. N denotes the degree of RLWE ciphertexts, h and h̃ denote the
hamming weights of dense and sparse secret keys [BTPH22]11, log2 (QP) denotes
the bit length of the maximum RLWE modulus, dnum denotes the gadget rank
of switching keys, and depth denotes the remaining multiplication capacity (i.e.
the number of available multiplications) after bootstrapping. In addition, log2(q)
11 The sparse secret encapsulation [BTPH22] allows one to use relatively small Ham-

ming weight during ModRaise, reducing the complexity of EvalMod with negligible
overhead. One uses the dense key most of the time, while temporarily using the
sparse key to enjoy a small Hamming weight.

Modular Reduction in CKKS 21

and log2(p) denote the bit length and number of RNS primes used for ciphertext
modulus and auxiliary modulus, respectively. For log2(q), we indicate the role
of primes as Base, StC, Mult, EvalMod, and CtS. A prime list written as X × Y
refers to Y many X bit primes12.

Table 4. Description of our parameter for the experiments. See the beginning of Sec-
tion 6 for the meaning of each notation

N (h, h̃) log2(QP) dnum depth

Param I 216 (192, 32) 1260 5 10

log2(q) log2(p)

Base StC Mult EvalMod CtS

42 42× 3 42× 10 42× 8 42× 3 42× 5

6.1 Iterative MSB bootstrapping

We implemented our iterative MSB bootstrapping (i.e. IntBoott and Bootℓt) pro-
posed in Section 3.2 and 3.3 for t = 32. We varied the number of iterations
(denoted as ℓ) from 1 to 3. For the integer bootstrapping (i.e. IntBoott), we
bootstrapped normalized integers (in [0, 1)) rather than integers (in Z). To be
precise, IntBootℓt bootstraps a ciphertext encrypting a vector

z ∈
{ n
tℓ

| n ∈ [0, tℓ) ∩ Z
}N/2

.

Thus, precision refers to the number of bits preserved and counted from the most
significant bits of the input message. On the other hand, the real bootstrapping
(i.e. Bootℓt) bootstraps a ciphertext encrypting a vector

z ∈ [0, 1)N/2.

Since Bootℓt works up to modulo 1, we measure errors after taking modulo 1 in
this case. The detailed results of the experiment are illustrated in Table 5.

The precision of IntBootℓt does not depend on ℓ and it is sufficiently high
in practice. This precision is dominated by the StC precision. On the other
hand, the precision of Bootℓt is approximately proportional to ℓ increases. Since
we discretize the input ciphertext via modulus switching, the precision cannot
exceed log tℓ. In addition, the discretization error reduces the precision, which
12 Here X bit refers to the integers close to 2X , instead of the bit size in the usual

sense.

22 J. Kim and T. Noh

Table 5. Bootstrapping time and precision for IntBootℓt and Bootℓt. Here t = 32 and ℓ
varies from 1 to 3.

IntBootℓt Bootℓt

ℓ Tavg (sec) Pm Pw Tavg (sec) Pm Pw

1 14.7 30.0 25.7 14.8 3.32 1.00
2 28.9 30.0 25.4 28.7 8.32 5.74
3 42.6 28.5 22.1 43.7 13.3 10.8

occurs when we discretize the ciphertext with modulus switching, having a scale
of O(

√
h). In these regards, the precision of Bootℓt is slightly lower than log tℓ

(about 1 to 2 bits in practice). The running time of both IntBootℓt and Bootℓt
are expected to be (an observed as) ℓ times the IntBoott and Boott, respectively,
since we perform halfIntBoott ℓ times during the algorithm.

6.2 Modular Reduction

In Section 4, we proposed a new modular reduction that utilizes the inherent
modular reduction of RLWE. We experimented Modtℓ and IntModtℓ with the
same t as in Section 6.1 using proper variants of IntBootℓt and Bootℓt as subrou-
tines. As the precision depends on the size of the integer part of an input vector
z, we denote its bit length as log2⌊z⌋. The experimental results of IntModtℓ ,
Modtℓ are illustrated in Table 6, 7 respectively.

The precision of IntModtℓ is limited by the precision of the StC operation.
We also observe that the precision drops sharply when log2⌊z⌋ varies from 10 to
20. This is because, as log2⌊z⌋ increases, the number of the preserved bits below
the decimal point decreases, which results in the input incompatible with the
halfIntBoot. Since halfIntBoot utilizes polynomial interpolation instead of polyno-
mial approximation for the halfIntBoot, it outputs completely unexpected value
if the inputs are not compatible with the polynomial interpolation it utilizes.
Even if this issue occurs in the lower bits of the ciphertext, it can still contam-
inate the higher bits of the message, leading to a sudden decrease in precision.
This also explains why the precision decreases when ℓ increases from 2 to 3, in
log2⌊z⌋ = 20.

Modtℓ has almost same precision with IntBoot, which is linear in ℓ but slightly
lower than log tℓ due to the modulus switching error. However, the precision is
stable with respect to log2⌊z⌋, in contrast to IntModtℓ , and doesn’t drop sharply
when log2⌊z⌋ = 20. This is based on the fact that the output after discretization
is always compatible with the HalfIntBoot, even if it is not correctly discretized.
That is, the message of the ciphertext after discretization is compatible with the
polynomial interpolation, which results in the message after HalfIntBoot remains
bounded. As a result, even if we lose precision in the lower bits before performing
halfIntBoot due to the precision of the StC operation, it doesn’t contaminate

Modular Reduction in CKKS 23

the higher bits, in contrast with the IntMod. This is also an important role of
discretization: to ensure the input ciphertext compatible with the polynomial
interpolation, leading output to be bounded even if it is not correct.

The running time of both IntModtℓ and Modtℓ are observed to be as ℓ times
the HalfIntBoott, respectively, as we expected in the section 4.1.

Table 6. Experimental results of IntModtℓ .

ℓ = 1 ℓ = 2 ℓ = 3

log2⌊z⌋ Tavg (sec) Pm Pw Tavg (sec) Pm Pw Tavg (sec) Pm Pw

0 14.5 30.0 25.1 28.7 30.0 25.2 42.8 28.5 22.9
10 14.8 30.0 25.1 29.2 29.9 25.6 43.3 28.1 23.0
20 15.3 20.1 15.5 29.2 14.9 9.17 45.3 3.24 1.00

Table 7. Experimental results of Modtℓ .

ℓ = 1 ℓ = 2 ℓ = 3

log2⌊z⌋ Tavg (sec) Pm Pw Tavg (sec) Pm Pw Tavg (sec) Pm Pw

0 14.4 3.32 1.00 28.5 8.32 5.69 43.2 13.3 10.7
10 14.0 3.32 1.00 27.3 8.32 5.73 41.9 13.3 10.8
20 15.1 3.32 1.00 30.1 8.32 5.55 44.9 13.3 10.6

6.3 Arbitrary precision

We implemented the arbitrary precision bootstrapping (i.e. Bootktℓ) that we have
proposed in section 4.2, using the same t as in section 6.1 and fixing k = 2. That
is, we first bootstrap the log tℓ bits in decimal with some modulus switching
error, utilizing Modtℓ as a subroutine, and then bootstrap the log tℓ bits of the
integer parts with sufficiently small error using IntModtℓ . Therefore, we achieved
approximately kℓ log t bit precision for ℓ ≥ 2. Notably, for ℓ = 3, we achieved a
real bootstrap with 23.3 bit mean precision.

However, for ℓ = 1, we obtained a precision lower than expected. This occurs
because the Modtℓ operation we use to bootstrap the decimal part is not suffi-
ciently precise when ℓ = 1. As a result, the message obtained after subtracting
the result of the Modtℓ from the original ciphertext is not close enough to an
integer. Consequently, the input of IntModtℓ is not compatible enough, leading
to a significant error during polynomial interpolation.

24 J. Kim and T. Noh

As we described in section 4.3, Bootktℓ is observed to be almost as costly as
k many IntBoottℓ or kℓ many IntBoott as we expected.

Table 8. Experimental results of Bootktℓ .

ℓ = 1 ℓ = 2 ℓ = 3

k Tavg (sec) Pm Pw Tavg (sec) Pm Pw Tavg (sec) Pm Pw

2 29.9 3.58 0.522 58.4 17.8 12.7 86.7 27.8 23.3

6.4 Bit Extraction

In Section 4, we proposed a novel bit decomposition method using our frame-
work. We compare our method with the state-of-the-art bit decomposition intro-
duced in [DMPS24], which utilizes an approximate sign function as a subroutine.

For k-bit extraction, both methods take a ciphertext ct encrypting a message
z ∈ [0, 1)N/2 as a input. They then output a vector of ciphertexts, (cti)0≤i<k,
where cti encrypts the bi, the vector of i-th bit of the z for each slot.
We compare the two methods using two different types of errors. The first error
indicates how close the output message is to either 0 or 1. We define

P 1
w = − log2 max∥e1,i∥∞, P 1

m = − log2 E(∥e1,i∥1)

where
e1,i = bi − ⌊bi⌉ (0 ≤ i < k).

In addition, we define the failure probability pfail as the probability that ele-
ments in vector e1,i exceed 2−k. This definition captures the notion of correctness
as an error in the MSB exceeding 2−k affects the extraction of the k-th bit, lead-
ing to incorrect extraction. The second error indicates how accurately the bit
extraction was performed. We define

P 2
w = − log2 max∥e2∥∞, P 2

m = − log2 E(∥e2∥1)

where
e2 = z −

∑
0≤i<k

⌊bi⌉
2i+1

.

Note that we compute the second error using the rounded results of the output
vectors, and hence we can ignore the first type error when computing the second
type error.

We compared the two methods with 10-bit decomposition. For [DMPS24],
we used a parameter with the same RLWE dimension and multiplicative depths
to ensure a fair comparison. More details of the parameter are provided in Ta-
ble 9. For the choice of homomorphic sign function, we utilized the homomorphic

Modular Reduction in CKKS 25

Table 9. Description of a parameter used to implement the bit decomposition in
[DMPS24]. See the beginning of Section 6 for the meaning of each notation.

N (h, h̃) log2(QP) dnum depth

Param II 216 (256, 32) 1508 4 10

log2(q) log2(p)

Base StC Mult EvalMod CtS

58 34× 3 42× 10 58× 7 56× 3 59× 6

sign function proposed in [CKK20]. Specifically, we used approximated the sign
function by composing a degree 7 polynomial

f3(x) = − 5

16
x7 +

21

16
x5 − 35

16
x3 +

35

16
x

six times.

Table 10. Performance Comparison of 10-bit decomposition methods.

Tavg (sec) P 1
m P 1

w P 2
m P 2

w pfail

Ours 53.8 31.0 25.6 9.46 11.0 <2−15

[DMPS24] 385 10.0 23.6 10.0 11.0 1.00%

Our method is 7.1× faster than the state-of-the-art method [DMPS24] while
maintaining precision. Furthermore, while the state-of-the-art method has a
1.00% failure probability due to the approximation errors of the homomorphic
sign function, our method does not fail for any slot, indicating a negligible failure
probability.

7 Conclusion

In this paper, we proposed a novel homomorphic modular reduction on CKKS
both for real and integer messages. We provided experimental results based
on an implementation of our method using the C++ HEaaN library [Cry22].
Our approach is asymptotically faster than the existing approaches based on
polynomial approximations [CHK+18,LLL+21, JM22,LLK+22,HMWW24]. An
additional advantage of our method is that it is less dependent on the input
interval compared to existing methods (O(k) versus O(log k)).

26 J. Kim and T. Noh

While proposing our homomorphic modular reduction method, we intro-
duced iterative MSB bootstrapping for real messages (Boot) and integer mes-
sages (IntBoot), thereby completing the MSB bootstrapping framework in CKKS
based on other approaches [BCKS24,DMPS24,BKSS24]. The bit extraction ver-
sion of our MSB bootstrapping method outperforms the state-of-the-art method
proposed in [DMPS24] by a factor of 7.1.

We also introduced a discretization method, which discretizes the ciphertext
encrypting a real message using modulus switching at the bottom modulus,
making general CKKS ciphertext compatible with discrete CKKS. This could
allow us to take advantage of discrete CKKS in general situations such as in
machine learning, by exploiting features such as look-up tables.

References

[AKP24] A. Alexandru, A. Kim, and Y. Polyakov. General functional bootstrapping
using CKKS. Cryptology ePrint Archive, Paper 2024/1623, 2024.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of
learning with errors. J. Math. Cryptol., 2015. Software available at
https://github.com/malb/lattice-estimator.

[BCC+22] Y. Bae, J. H. Cheon, W. Cho, J. Kim, and T. Kim. META-BTS: Boot-
strapping precision beyond the limit. In CCS, 2022.

[BCKS24] Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé. Bootstrapping bits with
CKKS. In EUROCRYPT, 2024.

[BGGJ20] C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: Com-
bining ring-LWE-based fully homomorphic encryption schemes. J. Math.
Crypt., 2020.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In ITCS, 2012.

[BKSS24] Y. Bae, J. Kim, D. Stehlé, and E. Suvanto. Bootstrapping small integers
with CKKS. In ASIACRYPT, 2024.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In CRYPTO, 2012.

[BTPH22] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux. Bootstrapping for
approximate homomorphic encryption with negligible failure-probability
by using sparse-secret encapsulation. In ACNS, 2022.

[BZP+23] S. Bian, Z. Zhang, H. Pan, R. Mao, Z. Zhao, Y. Jin, and Z. Guan. HE3DB:
An efficient and elastic encrypted database via arithmetic-and-logic fully
homomorphic encryption. In CCS, 2023.

[CBH+22] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou, J. Li,
and F. Wei. The-x: Privacy-preserving transformer inference with homo-
morphic encryption. arXiv 2206.00216, 2022.

[CCKK24] J. H. Cheon, H. Choe, M. Kang, and J. Kim. Grafting: Complementing
RNS in CKKS. Cryptology ePrint Archive, Paper 2024/1014, 2024.

[CCKS23] J. H. Cheon, W. Cho, J. Kim, and D. Stehlé. Homomorphic multiple
precision multiplication for CKKS and reduced modulus consumption. In
CCS, 2023.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-
ACRYPT, 2016.

Modular Reduction in CKKS 27

[CHK+18] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for
approximate homomorphic encryption. In EUROCRYPT, 2018.

[CHK+21] J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, S. Moon, and H. Yoon.
Transciphering framework for approximate homomorphic encryption. In
ASIACRYPT, 2021.

[CKK+19] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee. Numerical method
for comparison on homomorphically encrypted numbers. In ASIACRYPT,
2019.

[CKK20] J. H. Cheon, D. Kim, and D. Kim. Efficient homomorphic comparison
methods with optimal complexity. In ASIACRYPT, 2020.

[CKKL24] H. Chung, H. Kim, Y.-S. Kim, and Y. Lee. Amortized large look-up ta-
ble evaluation with multivariate polynomials for homomorphic encryption.
IACR eprint 2024/274, 2024.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, 2017.

[Cry22] CryptoLab. HEaaN library, 2022. Available at https://heaan.it/.
[DM15] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic en-

cryption in less than a second. In EUROCRYPT, 2015.
[DMPS24] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul. BLEACH: Cleaning

errors in discrete computations over CKKS. J. Cryptol., 2024.
[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic en-

cryption. Cryptology ePrint Archive, Paper 2012/144, 2012.
[HMWW24] T. Huang, S. Ma, A. Wang, and X. Wang. Approximate methods for the

computation of step functions in homomorphic encryption. Cryptology
ePrint Archive, Paper 2024/171, 2024.

[JM22] C. S. Jutla and N. Manohar. Sine series approximation of the mod function
for bootstrapping of approximate he. In EUROCRYPT, 2022.

[KDE+24] A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and D. Yoo.
General bootstrapping approach for RLWE-based homomorphic encryp-
tion. IEEE Transactions on Computers, 2024.

[lat23] Lattigo v5. Online: https://github.com/tuneinsight/lattigo, November
2023. EPFL-LDS, Tune Insight SA.

[LLK+22] J.-W. Lee, Y. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang. High-
precision bootstrapping for approximate homomorphic encryption by error
variance minimization. In EUROCRYPT, 2022.

[LLKN22] E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No. Optimization of homomorphic
comparison algorithm on RNS-CKKS scheme. IEEE Access, 2022.

[LLL+21] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No. High-precision boot-
strapping of rns-ckks homomorphic encryption using optimal minimax
polynomial approximation and inverse sine function. In EUROCRYPT,
2021.

[LLL+22] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi.
Low-complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions. In ICML, 2022.

[LLNK22] E. Lee, J.-W. Lee, J.-S. No, and Y.-S. Kim. Minimax approximation
of sign function by composite polynomial for homomorphic comparison.
IEEE TDSC, 2022.

[LW24] Z. Liu and Y. Wang. Relaxed functional bootstrapping: A new perspective
on bgv/bfv bootstrapping. Cryptology ePrint Archive, Paper 2024/172,
2024.

28 J. Kim and T. Noh

[NFA+21] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort. A white paper on neural network quantization. Arxiv
2106.08295, 2021.

