
Optimal Early Termination for Dishonest Majority Broadcast

Giovanni Deligios1, Ivana Klasovita2, and Chen-Da Liu-Zhang3

1 gdeligios@ethz.ch, ETH Zurich
2 ivanakl@ethz.ch, ETH Zurich

3 chen-da.liuzhang@hslu.ch, Lucerne University of Applied Sciences and Arts & Web3 Foundation

Abstract. Deterministic broadcast protocols among n parties tolerating t corruptions require min{f +
2, t + 1} rounds, where f ≤ t is the actual number of corruptions in an execution of the protocol. We
provide the first protocol which is optimally resilient, adaptively secure, and asymptotically matches
this lower bound for any t < (1− ε)n. By contrast, the best known algorithm in this regime by Loss
and Nielsen (EUROCRYPT’24) always requires O(min{f2, t}) rounds. Our main technical tool is a
generalization of the notion of polarizer introduced by Loss and Nielsen, which allows parties to obtain
transferable cryptographic evidence of missing messages with fewer rounds of interaction.

1 Introduction

1.1 Setting

A broadcast protocol allows a sender to transmit a message to all parties and guarantees that 1)
by the time it terminates, parties who follow the protocol instructions (honest parties) agree on a
common message (a guarantee often referred to as consistency, or agreement), and 2) if the sender
is among the honest parties, then the agreed-upon value is the intended sender’s message (mostly
referred to as validity). These guarantees must hold even if a subset of parties (the corrupted parties)
arbitrarily deviates from the protocol instructions.

Because broadcast protocols serve as basic building blocks for more advanced tasks like secure
computation protocols, significant efforts have been devoted to improving their efficiency under
a wide variety of assumptions. Arguably one of the most investigated metrics of efficiency in the
literature is round complexity, which is the maximum number of successive rounds of information
exchange required in any protocol execution.

It is known (and has been for more than four decades) that when all parties are required to
terminate after the same number of rounds of interactions, then any deterministic broadcast protocol
among n parties requires at least t + 1 rounds of interaction [DS83], where t is the upper bound on
the corruption threshold. This lower bound holds even when corrupted parties’ behavior is limited
to crashing at some point through the protocol execution [LF82] and optimal solutions are known
for any t < n [DS83]. However, if the simultaneous termination condition is relaxed, and parties
are allowed to terminate in different rounds, then the only known lower bound states that any
deterministic broadcast protocol requires at least f + 2 rounds of interaction, where f is the actual
number of parties deviating from the protocol in a specific execution [DRS90].

Protocols whose number of rounds is proportional to the actual number of corruptions are
referred to as early-stopping (or early termination) protocols [BGP92]. Round-optimal solutions
requiring min{t + 1, f + 2} rounds are known for t < n/3 [AD15] and asymptotically optimal
solutions exist for t < n/2 [PT84]. Round-optimal solutions exist for all t < n assuming corrupted
parties are only allowed to crash [Per85] or withhold messages [Ezh87] instead of arbitrarily deviating
from the protocol. Surprisingly, in the case of malicious misbehavior and in the dishonest majority



setting (for t ≥ n/2), little progress was made in almost forty years. Only recently, Loss and Nielsen
[LN24] have shown the first optimally resilient early-stopping protocol (tolerating any number
t < n of parties arbitrarily deviating from the protocol) under minimal assumptions. However,
their construction requires O(min{f2, t}) rounds of interaction. In this setting, the gap between the
best-known solution and the known lower bounds remained open.

1.2 Contributions

We present the first early-stopping broadcast protocol which tolerates any number t < n of malicious
corruptions and is asymptotically round optimal whenever t < (1 − ε)n for any constant ε > 0,
meaning that in this case, if f is the number of parties that actually deviate from the protocol
in a specific execution, our protocol runs in O(f) rounds. Our construction also matches the
communication complexity of [LN24] as well as its round complexity whenever n− t = o(n), and
is therefore strictly better than state of the art in this regime. Some form of setup is provably
necessary to achieve broadcast in the dishonest majority setting [LSP19]. Analogously to [LN24],
our construction only relies on a plain PKI setup, requires no number theoretic assumptions, and is
secure against strongly adaptive adversaries. Our contributions are summarized by the following
theorem, which is proven in Section 3.1.

Theorem 1 (Informal). For all n ∈ N and for all t < n, there exists a broadcast protocol Πbc
tolerating up to t corruptions and such that, if f is the actual number of corruptions in an execution
of Πbc:

– Πbc runs in O(min{f2, t}) rounds;
– Πbc runs in O(f) rounds if t < (1− ε)n for some ε > 0.

1.3 Technical Overview

In this section, we discuss the main technical challenges posed by early-stopping broadcast in the
dishonest majority setting, previous solutions, and new ideas to overcome their limitations.

Dealing with Missing Messages. In any distributed protocol, convincing others that a message
was not received is hard. While a missing message is proof to the recipient Pi of the sender’s
corruption, this proof is not transferable. A party Pi who does not receive a message from Pj might
send an accusation message towards Pj to all parties, but others cannot verify if Pj is withholding
messages or if Pi is falsely accusing Pi despite having received the message.

Transferable Evidence of Missing Messages. In honest majority broadcast (when t < n/2) the
solution is simple: each party that does not receive a message from the sender in the first round signs
an accusation message against the sender and forwards it to all parties. Because it is guaranteed
that n− t > t, any set of such accusations (a certificate) must include one from an honest party, and
is transferable evidence of the sender’s corruption. If after the second round no such certificate exists,
then at least one honest party has received the sender’s message. Although ensuring agreement
remains non-trivial, the problem explained in the previous paragraph is solved.

Unfortunately, in the dishonest-majority regime (when t ≥ n/2), such counting arguments no
longer work. A solution, introduced in [LN24], involves a weaker, context-dependent analog of a
certificate called a polarizer. The idea is that a set of signed accusations from all parties in subset
A towards all remaining parties in C = {P1, . . . , Pn} \ A serves the purpose of a certificate in any
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protocol that guarantees that honest parties never accuse each other. Party Pi accepts a polarizer as
valid evidence of P ∗’s corruption whenever Pi ∈ A and P ∗ ∈ C. If some honest Pi accepts a polarizer,
then any other honest Pj must also accept it, because if Pj ∈ C, this would imply Pi accused Pj

at some point in the protocol, and this is guaranteed not to happen. Therefore, analogously to
certificates in the honest majority setting, polarizers can be used as transferable evidence of some
party’s corruption.

Certificates vs. Polarizers. Still, certificates and polarizers differ in two major ways. The first is
that, when t < n/2, corrupted parties cannot produce n− t valid signatures against an honest party
(assuming honest parties do not accuse each other), but in the dishonest majority setting corrupted
parties can collude to produce polarizers with all honest parties in C and corrupted ones in A. From
the perspective of an external observer, there is no way to know which set contains honest parties.
However, honest parties in the protocol do not accept such a polarizer, so that within the protocol’s
context this creates no problem.

The second is that in the honest majority setting certificates against a sender withholding
messages can be constructed in just two rounds, while in the dishonest majority setting it is not
even clear how, in the same scenario, parties can produce a polarizer against the sender, let alone
how many rounds of interaction this requires.

Building Polarizers. Solving the latter problem is where most of [LN24] heavy lifting is done,
and in the following, we recap their construction. In the simplest terms, the goal is to design a
protocol that guarantees that honest parties obtain either 1) a polarizer against the sender, or 2)
some message with a valid signature from the sender.

The solution in [LN24] relies on digital signatures and works as follows. In the first round, the
sender P ∗ is required to transmit their signed message to all parties. In the second round, as in the
honest majority setting, each party who does not receive a signed message from P ∗ signs and sends
an accusation against the sender to all parties. Vice versa, each party who does receive a signed
message from P ∗ forwards it to all parties.

Consider the point of view of a party Pi who does not receive a message from P ∗ in the first
round. In the second round, Pi expects every other party Pj to either forward a message from the
sender or an accusation against the sender. If the sender happens to be the only corrupted party and
does not send any messages in the first round, then after the second round Pi has accusations from
all parties towards P ∗: this is a valid polarizer against P ∗. However, it might be that more parties
are corrupted in the second round, and a corrupted party Pℓ neither forwards a message from P ∗

nor an accusation against P ∗ to Pi. In this scenario, after the second round, Pi obtains neither a
signed message from P ∗ nor a valid polarizer, as they are missing the accusation from Pℓ to P ∗.
However, at this point, Pi knows that Pℓ is corrupted. Therefore, in a third round of the protocol
Pi signs and sends an accusation against Pℓ to all parties. The protocol proceeds recursively in this
fashion, by also forwarding all signed messages and accusations, until either a message from the
sender or a valid polarizer against the sender is obtained.

While it is clear that honest parties never accuse each other, it is not obvious why, if f is the
actual number of corruptions in an execution of this protocol, its round complexity is proportional
to f , making it an early-stopping protocol. Again, we remark that this protocol alone still does not
provide any agreement guarantees, but serves as a fundamental building block for early-stopping
broadcast.

To see this, suppose that an honest party Pi is still running after round r. This means that they
have not received a signed message from the sender, but also not obtained a polarizer against the
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sender. The latter implies that there exists no set C with P ∗ ∈ C such that Pi has accusations from
all parties in A = {P1, . . . , Pn} \ C towards all parties in C (otherwise, these accusations would be
considered a valid polarizer against the sender). Therefore, if C1 = {P ∗}, there exists some Pi2 /∈ C1
such that Pi2 does not accuse the sender in round 2. If C2 = C1 ∪ {Pi2}, again there exists a party
Pi3 /∈ C2 who does not accuse the sender in round 2 or does not accuse Pi2 in round 3. In this
fashion, we can obtain a set Cr = {P ∗, Pi2 , . . . , Pir} such that Pik

does not accuse at least one party
in Ck−1. Clearly, the sender P ∗ is corrupted, because they do not send a message to Pi in round
1. We can argue that party Pi2 is also corrupted: they do not accuse the sender but they do not
forward any valid message from the sender in round 2 (or Pi would receive a valid message from the
sender in round 3 and would not be running in round r). Simlarly, party Pi3 is corrupted, because
they neither accuse Pi2 in round 3, nor forward an accusation from Pi2 against the sender in round
3. By this reasoning, we can show that all parties {P ∗, Pi2 , . . . , Pir} are corrupted, and since there
are at most f corruptions in this protocol execution, we conclude that r ≤ f .

Building Polarizers, but Faster. The upper bound we have just shown on the number of rounds
required to build polarizers à la [LN24] is tight: meaning an adversary corrupting f parties has a
strategy that makes the protocol run for f +1 rounds. The strategy is simple: the sender is corrupted
and does not send any messages. All corrupted parties follow the protocol instructions but the i-th
corrupted party simply stops speaking in the i-th round. It is a good exercise to check understanding
of the polarizer-building protocol in [LN24] to verify that an execution of their protocol against
such an adversary requires f + 1 rounds.

We present a new, faster, polarizer-building protocol. We observe that the upper bound t on
the number of corruptions is never used in [LN24]. By leveraging this upper bound, we can build
polarizers in a constant number of rounds, whenever t < (1 − ε)n for some constant ε > 0. This
means that even the knowledge that a mere 0.01% of parties are guaranteed to be honest is enough to
build polarizers in a number of rounds independent of f . Our protocol borrows techniques from the
literature of dishonest-majority randomized broadcast protocols, and in particular from [WXSD20].

To begin, we observe that it is not necessary to collect signatures from all parties in A against
all parties in C to ensure the transferability of polarizers. To aid intuition, consider a setting where
a set of 7 parties P = {P ∗, P2, P3, P4, P5, P6} engages in the protocol explained above, and suppose
that it is guaranteed that t < 0.6n, so that 3 parties are honest in any execution. Suppose that
an honest party P6 observes, at some point in the protocol execution, the following set Acci of
accusations, where Acckℓ denotes a signed accusation from Pk against Pℓ:

Acci = {Acc3∗, Acc32, Acc4∗, Acc41, Acc5∗,

Acc51, Acc52, Acc6∗, Acc61, Acc62}.
(1)

It can be checked that the set of accusations Acci is not enough to constitute a valid polarizer
(for P6) against P ∗ in the sense of [LN24], because while P1 and P2 have not accused P ∗, the
accusations Acc42 and Acc31 are missing. To visualize the situation better, we can consider the
undirected graph whose set of nodes is P and where the edge {Pk, Pℓ} is in the graph if and only if
Acck,ℓ /∈ Acci:
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P4

P2P1

P3

P5 P6

P ∗

Because the protocol ensures that honest parties never accuse one another, honest nodes are
guaranteed to be part of a clique of size (at least) n− t = 7− 4 = 3 in the graph above. Therefore,
edges that are not part of any clique of size 3 do not connect honest nodes. In our protocol, whenever
party P6 observes new accusations, they mentally build the graph as explained above and then
repeatedly remove any edge which is not part of a clique of size 3 until no more such edges exist.4
When performed on the graph above, this process yields the following graph.

P4

P2P1

P3

P5 P6

P ∗

If after this pruning process, P6 is disconnected from P ∗ (as is the case in this example), they accept
the original set of accusations5 as a valid certificate of the sender’s corruption. If another honest
party (let’s say P5) receives the same set of accusations and builds the graph in the same way, then
P5 is also not connected to P ∗ in the resulting graph, because it is guaranteed that P5 and P6 are
connected (they are part of the honest clique which has size 3, so that the edge between them is not
removed), and a path from P5 to P ∗ would immediately give one from P6 to P ∗, a contradiction.
Therefore, our version of polarizers is also transferable within the protocol’s context.

This example demonstrates that our notion of polarizer requires fewer accusations to achieve the
same result. However, it is not immediately clear to what degree this affects the round complexity
of the protocol. Our asymptotic quadratic-to-linear speed-up in the actual number of corruptions is
due to the following observation.

If in round 1 the sender P ∗ fails to transmit a message to an honest Pi, then Pi accuses P ∗.
Therefore, in round 2, in a graph constructed as described above the distance (shortest path)

4 Deciding if a certain graph contains a clique of a given size is an NP-complete problem. We present our protocol
with this inefficient subroutine for simplicity, and discuss how to make the protocol efficient in Section 4.

5 We also refer to such a set of accusation as a polarizer, even though it is not a polarizer in the sense of [LN24]. In
Definition 9 and Remark 4 we explain how these notions are related.
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between Pi and P ∗ is at least 2. Similarly, if Pi does not receive a message from P ∗ in round 2 but
lacks sufficient accusations to disconnect them from the sender, they accuse all parties who did
not accuse P ∗ in the first round. This means that after round 2, any party is either: 1) not in Pi’s
neighborhood or 2) at distance at least 2 from P ∗. These two conditions ensure that the distance
between Pi and P ∗ is at least 3. By extending this reasoning, if Pi has not received a valid message
or enough accusations by round r to disconnect them from the sender, then the distance between Pi

and P ∗ is at least r.
However, any edge in a graph built as described above is part of a clique of size at least n− t,

and the diameter d of any such graph (the maximum distance between any two nodes) is at most
2n/(n − t). Thus, for n − t = O(n) (for example t = 0.99n), the diameter d of such a graph is
constant in n. By the reasoning above, after a constant number of rounds any honest Pi either
receives a message from P ∗ or is disconnected from them by the accusations it has observed (after
our pruning subroutine), and therefore obtains a valid polarizer against P ∗.

From Polarizers to Broadcast. A polarizer-building protocol as described so far seems like
a far cry from an early-stopping broadcast; in particular, it provides no agreement guarantees
whatsoever. However, turning this protocol into a broadcast protocol with O(f) rounds of overhead
mostly involves well-established techniques: first, from a polarizer-building protocol, one obtains
primitives providing increasingly strong agreement guarantees (weak-broadcast, 2-graded broadcast).
Then these primitives are run in succession, each time with a new sender, following the classic
king-phase paradigm [Rei85]. Some extra care is needed to avoid the running time of the protocol to
be asymptotically Ω(t) in some parameter regimes. However, since this construction only uses the
polarizer-building primitive in a black-box way, we do not duplicate the details here, and instead
refer the interested reader to [LN24].

1.4 Related Work

We first present an overview of deterministic early-stopping broadcast protocols, which is the
focus of our paper. Deterministic broadcast requires min{f + 2, t + 1} rounds of communication
[DS83, DRS90].

Plain Model Protocols (t < n/3). A classic result of Lamport, Shostak, and Pease showed that
any broadcast protocol in the plain model can tolerate at most t < n/3 corruptions [LSP19]. Most
work on early-stopping broadcast has been done in this setting. The first early-stopping protocol with
optimal resilience is due to Dolev, Reischuk, and Strong [DRS82], and requires min{2f + 5, 2t + 3}
rounds. Reischuk later proposed a protocol running in 2f + 3 rounds but with lower resilience
of t < n/6 [Rei85]. Toueg, Perry, and Srikanth improved on [DRS82] with a protocol running in
min{2f + 4, 2t + 2} rounds and optimal resilience [TPS87]. This result was further improved by
Berman, Garay, and Perry who presented a protocol running in min{f(1 + 1/d) + 5, t(1 + 1/d)} for
any constant d in [BGP92]. The first protocol tightly matching the lower bound of min{f + 2, t + 1}
rounds again appears in [DRS82], but only tolerates 2t2 + 3t + 5 < n corruptions [DRS82]. For
round-optimal solutions, the failure resilience was improved by Dolev to n > max{4t, 2t2 − 2t + 2}
in [DRS90] and again to n ≥

⌈√
t
⌉
·
⌊
4t +

√
t + 1

⌋
by Coan [Coa93]. Garay and Moses presented the

first protocol attaining optimal early termination with linear failure resilience of t < n/8 [GM98].
In [BGP92] the first optimally resilient protocol with optimal early termination was also presented,
but at the expense of exponential message complexity. Finally, Abraham and Dolev showed the first
optimal early-stopping protocol with optimal resilience and polynomial message complexity [AD15].
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Protocols with Setup (n/3 ≤ t < n). When t ≥ n/3, the lower bound of [LF82] can be
circumvented by assuming some form of setup. This usually translates into the possibility of
authenticating messages, for example, through computationally secure signature schemes [DS83]
or information-theoretically secure pseudosignatures [PW92]. In this setting, any number t < n
of corruptions can be tolerated, and much less work has been done on early-stopping protocols.
Perry and Toueg presented a protocol running in 2f + 4 rounds with suboptimal resilience of
t < n/2 [PT84]. Loss and Nielsen presented a broadcast protocol with optimal resilience of t < n
but suboptimal runtime of O(min{f2, t + 1}) [LN24].
Randomized Protocols. In contrast to deterministic protocols, if parties have access to local
randomness several works [FM88, KK06, Mic17, ACD+19, FLZL21] achieve an expected constant
number of rounds in the honest majority setting, and can be made to achieve simultaneous
termination after O(λ) rounds with a failure probability 2−λ. This is improved to λ−λ failure
probability in [GGLZ22]. Similarly, randomized protocols in the dishonest majority setting are
known with an expected constant number of rounds [WXSD20] for t = (1 − ε)n for constant ε,
and fixed number of rounds O(λ) with 2−λ probability of failure for t = (1 − ε)n. The works
[WXDS20, SLM+23, ALPT22] achieved higher levels of adaptive resilience assuming time-lock
assumptions.

2 Preliminaries

2.1 Model

Synchronous Deterministic Distributed Protocols. Informally, a synchronous protocol is a
distributed algorithm for a certain task in which communication among different processes happens
in rounds. In practice, such algorithms can be implemented over sufficiently reliable point-to-point
networks (meaning messages are delivered within some known time) and when the local clocks of
different processes are sufficiently synchronized. A variety of definitions have been proposed and
used in the literature to formally treat such objects. For the purposes of this work, we are only
concerned with deterministic protocols, and the following simple definition suffices.

Definition 1 (Distributed Protocol). An deterministic distributed protocol Π among n
parties is an n-tuple of function families({

NxtMsg(k)
1

}ℓ

k=1
, . . . ,

{
NxtMsg(k)

n

}ℓ

k=1
;
{

Out(k)
1

}ℓ

k=1
, . . . ,

{
Out(k)

n

}ℓ

k=1

)
(2)

where for all i ∈ [1, n] and all k ∈ [1, ℓ]

– The function NxtMsg(k)
i is an efficiently computable function called the k-th next message function

of player (or party) Pi,
–
(
m

(k)
i1 , . . . , m

(k)
in

)
← NxtMsg(k)

i

(
View(k−1)

i

)
,

– y
(k)
i ← Out(k)

i

(
View(k)

i

)
is called the output of player Pi in round k, and it is guaranteed that

y
(ℓ)
i ̸= ⊥.6

where, if xi is the input of party Pi, then View(k−1)
i is an inductively defined set, called the view of

party Pi in rounds [1, k − 1]:
6 We denote by ⊥ some fixed value in the codomain of function Out(k)

i .
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– View(0)
i = xi,

– For all k ∈ [1, ℓ] we have View(k)
i = View(k−1)

i ∪
{

m
(k)
1i , . . . , m

(k)
ni

}
.

Protocol Setup. Broadcast protocols tolerating a dishonest majority of parties provably require
some form of setup, meaning that parties have access to correlated randomness coming from a joint
distribution which is independent of the protocol inputs. We write SetUp = (SetUp1, . . . , SetUpn) to
improperly denote both the distribution or one specific sample from the distribution. Most known
protocols, including ours, adopt this setup in the form of a public key infrastructure (PKI) for
digital signatures.7

Adversary. By security of a protocol, we informally mean that the protocol provides certain
guarantees even when run in the presence of an adversarial entity that can corrupt a subset of the
parties participating in the protocol, observe their state, and influence their behavior. A central
adversary is used to model the scenario in which different dishonest parties collude and agree on a
common strategy to disrupt the protocol execution. We deal with the strongest type of efficient (PPT,
but the specific computational model is not relevant for the treatment of this paper) adversaries
considered in the literature:

– Active, meaning that the adversary can make corrupted parties arbitrarily deviate from the
protocol instructions, for example by withholding messages and/or sending wrong messages.

– Rushing, meaning that in each round, the adversary picks the corrupted parties’ messages after
having observed the messages sent by honest parties to corrupted parties in the same round.

– Adaptive,8 meaning that the adversary can corrupt parties based on information gathered during
the protocol execution.

To discuss security of a distributed protocol in a meaningful way, we must first define what it means
to run a distributed protocol in the presence of such an adversary.

Definition 2 (Protocol Execution). An execution

ExecA
Π(xIn, SetUp) (3)

of an n-party protocol Π with setup SetUp = (SetUp1, . . . , SetUpn) and inputs xIn =
(x1, . . . , xn) against an efficient (PPT) active, rushing, adaptive adversary A is a random
vector defined via the following random experiment involving A and a challenger CΠ . To begin, CΠ

initializes:

– An empty set of corrupted indices Corrupt(1) ← ∅,
7 Broadcast protocols based on signatures, including ours, can provide information-theoretic security if a PKI

is swapped for an appropriate setup for information-theoretic equivalents of signatures often referred to as
pseudosignatures.

8 We consider the strongest type of adaptive adversary, often referred to in the literature as strongly adaptive. This
type of adversary can observe messages from all honest Pi to all corrupt Pj in round k, based on these messages
decide to corrupt a subset S of the honest parties, and then change the messages from the (now corrupted) parties
in S towards the remaining honest parties in the same round k. This is in contrast to what is known in the literature
as a weakly adaptive adversary, that is not allowed to perform this type of message deletion attack. Restricting the
behavior of adaptive adversaries in this manner is equivalent to assuming an atomic send primitive, which allows a
party to input all its round messages and deliver all of them simultaneously to all parties.

8



– A set of currently running parties Alive(1) = [1, n].
– The view of party Pi as View(0)

i ← (xi, SetUpi) for all i ∈ [1, n].

For all k ∈ [1, ℓ] let Honest(k) = [1, n] \ Corrupt(k) The experiment proceeds in rounds, where in each
round k ∈ [1, ℓ] the following interaction takes place:

1. For all indices i ∈ Honest(k) ∩ Alive(k) the challenger CΠ computes(
m

(k)
i1 , . . . , m

(k)
in

)
← NxtMsg(k)

i

(
View(k−1)

i

)
(4)

and sends m
(k)
ij to A for all j ∈ [1, n].9

2. Then CΠ and A repeat up to
∣∣∣Honest(k) ∩ Alive(k)

∣∣∣ times:
(a) The adversary A selects any index i ∈ Honest(k) ∩ Alive(k) and sends (Corrupt, i) to CΠ ;
(b) The challenger CΠ sends View(k−1)

i to A.
3. The adversary A sends

(
m̂

(k)
i1 , . . . , m̂

(k)
in

)
to CΠ for all

i ∈ Corrupt(k) ∪ {i | (Corrupt, i) sent to CΠ in round k}. (5)

At the end of each round k the challenger CΠ updates:

– Corrupt(k+1) = Corrupt(k) ∪ {i | (Corrupt, i) received from A in round k}.
– The view

View(k)
i ← View(k−1)

i ∪
{

m̃
(k)
1i , . . . , m̃

(k)
ni

}
(6)

for all honest indices i ∈ Honest(k+1), where for all j ∈ [1, n] we define

m̃
(k)
ji =

m̂
(k)
ji if j ∈ Corrupt(k+1),

m
(k)
ji otherwise.

(7)

– The output y
(k)
i ← Out(k)

i

(
View(k)

i

)
for all honest indices i ∈ Honest(k+1) ∩ Alive(k).

– Alive(k+1) = Alive(k) \
{

i ∈ [1, n] | y(k)
i ̸= ⊥

}
.

In this random experiment, the following random variables are defined:

– The runtime of party Pi is

r(Pi) = min
{

k ∈ [1, ℓ] | y(k)
i ̸= ⊥

}
= max

{
k ∈ [1, ℓ] | i ∈ Alive(k)

}
.

(8)

– The output of party Pi is yi = y
(r(Pi))
i .

– The runtime of Π is defined as

r(Π) = max{r(Pi) | i ∈ [1, n] \ Corrupt}

= min
{

k ∈ [1, ℓ] | Alive(k+1) = ∅
}

.
(9)

9 The adversary also receives all messages sent among honest parties to capture that channels between honest parties
are authenticated, but not secure.
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– The number of corruptions is f =
∣∣∣Corrupt(r(Π)+1)

∣∣∣.
– The view ViewA of the adversary is( r(Π)⋃

k=1

{
View(k)

i | i ∈ Honest(k) ∧ i ∈ Corrupt(k+1)
}

,

r(Π)⋃
k=0

{
m

(k)
ij | j ∈ [1, n] ∧ i ∈ Honest(k+1) ∩ Alive(k+1)

})
.

(10)

Finally, we set ExecΠ
A (SetUp, xIn) to be the random vector collecting all random variables defined

by this random experiment.

Remark 1. When dealing with adaptive adversaries the expression honest party is in general am-
biguous, as the set of honest parties varies through the protocol execution. When not otherwise
specified, we say that Pi is honest in execution ExecΠ

A (SetUp, xIn) to mean that i ∈ Honest(r(Π)),
or in other words that Pi is honest throughout the whole protocol execution.

Remark 2. When we say that a property has to hold in all executions of a protocol Π, we mean
that it has to hold for ExecΠ

A (SetUp, xIn) for all input vectors xIn, for all well-formed setups SetUp,
and for all efficient (PPT) adversaries A.

The next definition captures the notion of all values that an efficient adversary B could produce if
they are given access to the view of adversary A in a given protocol execution, and also the outputs
of honest parties in the same execution.

Definition 3 (Adversarial Value). A value x is an adversarial value in ExecΠ
A (SetUp, xIn)

if and only if there exists an efficient (PPT) algorithm that given as inputs

1. The outputs of honest parties {yi}i∈Honest(r(Π)), and
2. The adversary view ViewA,

outputs x with non-negligible probability. A value x is called an honest value in ExecΠ
A (SetUp, xIn)

if x ∈ View(r(Pi)) for some i ∈ Honest(r(Π)).

Justifiers. A common way to define the security of a distributed protocol Π is to list predicates
that must be satisfied by all honest outputs in any execution of Π. It is less clear how to define
security properties that should hold even for maliciously crafted outputs, or why this is useful.
The main problem is that without further restrictions, an adversary A can choose the outputs of
corrupted parties arbitrarily (in fact, the notion of output of a corrupted party is not even defined),
so that only trivial security properties can be achieved.

One way to solve this problem is to require parties to collect evidence during the execution that
can be later provided as proof (a justifier) that a certain output was computed as prescribed by the
protocol. Security properties are then required to hold for all outputs with a valid proof.

To explain why this is useful, consider an interactive protocol Π consisting of two successive
subprotocols Π1 and Π2. Protocol Π instructs parties to take their output from Π1 and use it as
input to Π2. Protocol Π1 might provide some security guarantees that are needed for the security
of Π2, but with no restrictions in place, a corrupted party can provide an arbitrary input to Π2.
Justifiers allow to prevent this type of misbehavior: to provide input to Π2 parties must attach
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a valid proof certifying that this value was the output of Π1, and the security guarantees of Π1
hold for all outputs for which such a proof exists. This limits the ability of an adversary of undoing
the progress achieved by subprotocol Π1. We present the formal definition of justifier following the
formalism of [LN24].
Definition 4 (t-Transferable Justifier). Let Π be a distributed protocol among parties in P. A
justifier predicate for Π is an efficiently computable (PPT) predicate

J : P × {0, 1}∗ × {0, 1}∗ → {true, false} (11)

such that
– (t-Transferability) For any execution of protocol Π with f ≤ t corruptions, and for all honest

and adversarial values (m, π) with respect to this execution, it holds that if J(Pi, m, π) = true
for some honest Pi ∈ P, then J(Pj , m, π) = true for all honest Pj ∈ P.10

Remark 3. We write J(m, π) = true as an abbreviation of J(Pi, m, π) = true for all honest Pi ∈ P .

Clearly, an adversary can try to produce fraudulent justifiers for arbitrary outputs, even after
having observed the justifications for legitimate outputs of honest parties. This must be prevented
from the protocol design. The following definition formally captures this notion of fraudulent output.

Definition 5 (Adversarial Justified Outputs). Vector wOut = (w1, . . . , wn) is called a vector
of adversarial justified outputs with respect to execution ExecΠ

A (SetUp, xIn) if and only if

wi =
{

yi if Pi is honest,
ŷi if Pi is corrupted

(12)

where ŷi is any adversarial value for ExecΠ
A (SetUp, xIn) such that ŷi = (m, π) and J(m, π) = true,

or ŷi = ⊥.

2.2 Primitives
Signatures. For the purposes of this work, a signature scheme Σ is a triple of efficient algorithms

Σ =
(
Kgn, Sgn, Vfy

)
(13)

with the following syntax:
– (sk, pk)← Kgn()
– σ ← Sgnsk(m)
– b← Vfypk(m, σ)

such that Vfypk(m, Sgnsk(m)) = true for all m ∈ {0, 1}∗. Following the Dolev-Yao paradigm [DY83],
we treat signatures as ideal objects in all of our protocols, meaning that we assume that an adversary
simply cannot produce a signature σ such that Vfypk(m, σ) = true unless they know the secret
key sk. This is not entirely realistic, as regardless of how large the (finite) secret-key space is, an
adversary can always guess sk with non-zero probability. Still, this approach is widely adopted
in both the distributed computing and formal verification literature and in our specific case, it
is possible to explicitly reduce the security of our constructions to the security of an underlying
signature scheme. However, this introduces a significant overhead in the proofs and ultimately
detracts from the clarity of the exposition.
10 Transferability also holds for honest outputs in ExecΠ

A(SetUp, xIn), since these are trivial adversarial values.
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Send Transferable Message Protocol. The main focus of this work is to construct a round-
efficient version of the send transferable message (STM) protocol in [LN24] (the polarizer-building
protocol explained in Section 1.3). Such a protocol allows a designated party P ∗ (which we refer to
as the sender) to send a message to multiple recipients so that each party Pj obtains, together with
the message, a transferable proof of authenticity of the message. This could be easily achieved via
digital signatures, except that we require such a proof to exist even if P ∗ is corrupted and does not
send any message at all. Informally, the protocol provides the three guarantees below.

– If P ∗ is honest, all parties receive the intended sender’s input (validity) and what is more, even
dishonest recipients can only produce valid proofs for the intended sender’s value.

– Any honest Pj obtains a valid proof of whatever message a dishonest sender decides to send
them (justified outputs): this is true even when the sender fails to send any message at all. In
this case, Pj obtains a proof that can convince any other honest party of the fact that Pi did
not receive the intended message from P ∗.

– Finally, parties expect the sender’s message to satisfy certain properties specified by an appro-
priate predicate: only such messages will be accepted by honest parties, and messages failing to
satisfy the predicate can be ignored (justified message). This is more than a purely syntactic
check: for example proof that the input was produced as output from a different protocol.

These guarantees are formalized in the definition below.

Definition 6 (Send Transferable Message). A triple (Π, JIn, JOut) where Π is an interactive
protocol with a single designated input-holding party P ∗, and JIn and JOut are justifier predicates
for Π is a t-secure send transferable message protocol if the following properties hold in any
execution of Π with f ≤ t corruptions:

1. (Justified Outputs) The output of every honest party Pi is of the form (mi, πi) and it holds
that JOut(Pi, mi, πi) = true.

2. (Justified Message) For all adversarial justified outputs y = (y1, . . . , yn) with respect to JOut,
it holds that

- yi = ⊥, or
- yi = NoMsg, or
- yi = (mi, πi) with πi =

(
πIn

i , πOut
i

)
and JIn

(
mi, πIn

i

)
= true.

3. (Validity) If P ∗ is honest with input m∗, for all adversarial justified outputs y = (y1, . . . , yn)
with respect to JOut then

- yi = ⊥, or
- yi = (m∗, π).

Broadcast. We now provide a formal the classical definition for early-stopping broadcast: termina-
tion is relaxed and not all honest parties are required to terminate in the same round.

Definition 7 (Broadcast). An interactive protocol Π with a single designated input-holding party
P ∗ is a t-secure broadcast protocol if the following properties hold in any execution of Π with
f ≤ t corruptions:

1. (Validity) If P ∗ is honest with input m, then all honest parties output m.
2. (Agreement) All honest parties output the same value.
3. (Termination) Each honest party Pi terminates in a constant number of rounds, that is r(Pi)

is finite.
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3 Broadcast Protocol with Optimal Early Termination

3.1 Round Efficient Send Transferable Message Protocol

In this section, we present our round-efficient send transferable message protocol. We begin by
presenting a generalization of the notion of polarizer introduced in [LN24]. Polarizers are the
main technical tool that allows us to define sound justifier predicates for the outputs of our send
transferable message protocol.

Generalized Polarizers. Before introducing the notion of a polarizer, we introduce some notation
that will make the following definitions more compact. In the following, let Σ = (Kgn, Sgn, Vfy) be
a signature scheme. Let P = {P1, . . . , Pn} be set of parties and pki be the public key of party Pi.

Definition 8 (Σ-accusation). A Σ-accusation from party Pi against (or towards, or to) party
Pj is a tuple

((Acc, i, j), σ) . (14)

It is called valid if and only if Vfypki
((Acc, i, j), σ) = true, and in such cases denoted by Accij.

Polarizers can be understood as the equivalent of a digital signature on a “missing message”. Similar
to how a digital signature allows a Pi to prove to any other party Pj that they received a message m
from a third party S, a polarizer allows Pi to prove to Pj that they did not receive such a message
from S. Polarizers must satisfy two important properties of signatures: they are transferable and
cannot be forged by an adversary to incriminate honest parties. Unlike a digital signature, however,
they can only be generated through an interactive protocol involving the sender S and all possible
future witnesses, and the transferability of a polarizer is a context-dependent property that only
holds within a protocol execution. The formal definition is provided below.

Definition 9 (Σ-Polarizer). A Σ-polarizer is a 4-tuple

Pol = (A, C, Acc, MakeGraph) (15)

where

– A ⊆ P is called the set of alive parties;
– C ⊆ P is called the set of corrupt parties;
– Acc is a set of Σ-accusations among parties in P;
– MakeGraph is an efficient algorithm that on input a set of Σ-accusations among parties in P

outputs an undirected graph G = (P, E).

We say that Pol is valid if the following two properties hold:

– (Completeness) The sets A and C form a partition of P, that is A ∩ C = ∅ and A ∪ C = P;
– (Justifiability) If G← MakeGraph(Acc) then for all Pi ∈ A and all Pj ∈ C there is no path in

G between Pi and Pj.

Remark 4. A simple option for algorithm MakeGraph is to remove the edge between Pi and Pj in G
if and only if Accij ∈ Acc or Accji ∈ Acc. With this specialization, our definition coincides with
that given in [LN24]. However, with this choice of MakeGraph, a large set Acc is needed to guarantee
the justifiability property. We show that one can still obtain justifiability with fewer accusations by
employing a more involved MakeGraph algorithm.

13



The Send Transferable Message Protocol. We are ready to describe our main protocol. In the
following, let h = n− t and let d = 2n/h. We briefly introduce some notation used directly below.
Let G be an undirected graph and let u and v be nodes in G.

1. The distance between u and v in G, denoted by distG(u, v), is defined as the length of the shortest
path connecting u and v. We write distG(u, u) = 0 and if u and v are disconnected in G then we
write distG(u, v) =∞.

2. The neighborhood of u in G is defined as NG(u) = {v ∈ G | distG(u, v) ≤ 1}.
3. The closed ball of radius r centered in u is defined as BG(u, r) = {v ∈ G | distG(u, v) ≤ r}.
4. A clique is a complete subgraph of G, that is a set of nodes {u1, . . . , uℓ} in G such that for all

i, j ∈ [1, ℓ] it holds that ui ∈ NG(uj). The number ℓ is called the size of the clique.
5. The diameter of G is defined as max{distG(u, v) | u, v are nodes of G}.

When the graph in question is clear from the context, the subscript G is omitted. For clarity of
exposition, we describe a local subroutine that each party runs repeatedly during the protocol
execution. The subroutine is named MakeGraph and takes as input a set of valid Σ-accusations Acc
among parties in P. It is a simplified version of an algorithm used in the context of randomized
broadcast protocols from [WXSD20].

Algorithm MakeGraph(t,P; Acc)

Let KP denote the complete graph on P.
1: Initialize G← KP .
2: For each valid Σ-accusation Accij ∈ Acc remove edge {Pi, Pj} from G.
3: Find an edge e of G which is not part of any clique of size h and remove e from G. Repeat until no such

edge exists.a
4: Return G.
a Despite its conceptual simplicity, this step of MakeGraph is inefficient, as the problem of finding a clique of a

given size in a graph is NP-complete. We discuss an efficient variant of the algorithm in Section 4.

Lemma 1 (Antimonotonicity of MakeGraph). For two sets of valid Σ-accusations with Acc1 ⊇
Acc2 one has MakeGraph(Acc1) ⊆ MakeGraph(Acc2).

Proof. Let G1 = MakeGraph(Acc1) and G2 = MakeGraph(Acc2). Assume by contradiction that there
exists an edge e = (Pi, Pj) such that e ∈ G1 but e /∈ G2. There are two cases that lead to e /∈ G2:

1. Edge e is removed from G2 in step 2. This means Accij ∈ Acc2 and because Acc1 ⊇ Acc2 then
Accij ∈ Acc1. However, that means that e is removed from G1 in step 2 as well, a contradiction.

2. Edge e is not removed from G2 in step 2 but it is removed in step 3. Since e is not removed from
G1 this means e is an edge in a clique C of size h in G1. Therefore, for all nodes Pℓ and Pr in C
it holds that Accℓr ̸∈ Acc1 (or the edge {Pℓ, Pr} is removed from G1 in step 2, a contradiction).
Because Acc1 ⊇ Acc2 we get Accℓr /∈ Acc2 and hence all edges of clique C are in G2. This means
e is part of a clique of size h in G2, a contradiction.

⊓⊔

Next, we show that a graph with n nodes in which every edge is part of a clique of size h cannot
have diameter larger than 2n/h, and use this fact to provide an upper bound on the diameter of
any graph resulting from MakeGraph.
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This is helpful to provide an upper bound for the running time of our send transferable message
protocol. Our proof is a simplified version of one given in [WXSD20], where a slightly tighter bound
is proven, and due to space constraints, it can be found in Section A.

Lemma 2. Let G be a graph with n nodes in which every edge is contained in a clique of size h.
Then G has diameter at most d = 2n/h.

Lemma 3 (Diameter of MakeGraph(Acc)). For any set of valid Σ-accusations Acc, the diameter
of MakeGraph(Acc) is at most d = 2n/h.

Proof. By inspection of algorithm MakeGraph, for any set of valid Σ-accusations Acc it holds that
any edge in MakeGraph(Acc) is part of a clique of size h. Lemma 2 then directly implies the claim. ⊓⊔

The following protocol relies on setup in the form of a public key infrastructure SetUpPKI for a
signature scheme Σ. This means that for each party Pi a public key pki is agreed upon by everyone,
and if Pi is honest then they know the corresponding secret key ski such that (ski, pki) ← Kgn().
We do not impose further restrictions, meaning that the public keys of corrupted parties can depend
on the public keys of honest parties. Such a setup can be obtained via a public bulletin board, by
having each party sample their own keys and publish their public keys. As discussed in Section 1.1,
some form of setup is provably necessary for broadcast when t ≥ n/3.

Protocol Πstm (t, JIn, Σ, MakeGraph, SetUpPKI)

Round 0

1: The sender P ∗, with input x = (m, πIn) computes σ = Sgnsk∗ (m) and sends (IN, m, (πIn, σ)) to all parties.
2: Each party Pi initializes an empty set Acc(0)

i ← ∅.

Round r for r ≥ 1.

Each party Pi does:
1: Let Acc(r)

i ← Acc(r−1)
i ∪ {valid Σ-accusations Accjk received in round r} and forward all new valid

Σ-accusations to all parties.
2: Receive all messages (In, m′, π′) and if both

– π′ = (π′
1, π′

2) with JIn(Pi, m′, π′
1) = true,

– Vfypk∗ (m′, π′
2) = true,

then forward (In, m′, π′) to all parties, output (m′, π′), and terminate.
3: Compute G

(r)
i ← MakeGraph

(
Acc(r)

i

)
.

4: For all Pj such that
Pj ∈ N

G
(r)
i

(Pi) ∩B
G

(r)
i

(P ∗, r − 1) (16)

compute a valid Σ-accusation against Pj and send it to all parties.
5: If

dist
G

(r)
i

(Pi, P ∗) =∞ (17)

output (NoMsg, π) and terminate, where
– π =

(
A, C, Acc(r)

i

)
,

– C =
{

Pj | dist
G

(r)
i

(Pi, Pj) =∞
}

,
– A = P \ C.

In this section, the security of Πstm is proven with respect to the algorithm MakeGraph described
above, so that we never quantify over this specific parameter of Πstm. In Section 4 we describe how
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the proofs can easily be adapted when MakeGraph is substituted for a polynomial-time counterpart
EfficientMakeGraph.

The first lemma shows that honest parties never accuse each other in an execution of Πstm, and
as a consequence, no efficient adversary can produce valid accusations among honest parties.

Lemma 4 (Accusation Soundness). For all t < n, for all t-transferable justifier predicates JIn
for Πstm, for all executions of protocol Πstm with f ≤ t corruptions, for all honest and all adversarial
values x (in the sense of Definition 3), for all honest Pi and Pj, it holds that x is not a valid
Σ-accusation Accij.

Proof. First, we claim that if Pi and Pj are honest (meaning the adversary never corrupts Pi

or Pj throughout the entire execution of the protocol), then at no point in the protocol will Pi

produce a valid Σ-accusation against Pj . Suppose, by contradiction, that Pi produces the first valid
Σ-accusation against Pj in Round r for some r ∈ [1, d]. This means

Pj ∈ N
G

(r)
i

(Pi) ∩B
G

(r)
i

(P ∗, r − 1) (18)

in step 4 in the protocol. This implies that Pj has not received a valid message (In, x′, σ′) in round
r − 1 (or else Pj would forward such a message to Pi, who would terminate in step 1 of round r,
thanks to the t-transferability of JIn). Therefore, in round r − 1 party Pj sends valid Σ-accusations
against all parties

Pℓ ∈ N
G

(r−1)
j

(Pj) ∩B
G

(r−1)
j

(P ∗, r − 2). (19)

Let Âcc
(r−1)
j denote this specific set of Σ-accusations and consider

Ĝ
(r−1)
j = MakeGraph

(
Acc(r−1)

j ∪ Âcc
(r−1)
j

)
. (20)

Because all remaining neighbors of Pj in Ĝ
(r−1)
j are at distance at least r− 1 from P ∗, then it holds

that
dist

Ĝ
(r−1)
j

(P ∗, Pj) ≥ r. (21)

However, because Pj sends Âcc
(r−1)
j to Pi, and all valid Σ-accusations received by honest parties in

every round are forwarded to all other honest parties, it holds that

Acc(r)
i ⊇ Acc(r−1)

j ∪ Âcc
(r−1)
j (22)

From Equation (22), through Lemma 1 we obtain:

G
(r)
i ⊆ Ĝ

(r−1)
j . (23)

From this, together with Equation (21) we conclude that

dist
G

(r)
i

(P ∗, Pj) ≥ dist
Ĝ

(r−1)
j

(P ∗, Pj) ≥ r, (24)

which directly contradicts Equation (18). This concludes the proof of the claim, or in other words,
shows that honest values in an execution cannot be accusations among honest parties. To show

16



that adversarial values can also not be accusations among honest parties, notice that the view of
the adversary does not include the secret keys of honest parties. The lemma then follows directly
from the claim and the fact that an adversary cannot forge valid Σ-signatures on behalf of honest
parties.11 ⊓⊔

The next lemma shows that parties that are honest throughout the protocol execution form a clique
in the graph resulting via MakeGraph(Acc), and this holds for any set of valid accusations Acc that
an adversary can come up with during the protocol execution.

Lemma 5 (Honest Clique). For all t < n, for all t-transferable justifier predicates JIn for Πstm,
for all executions of protocol Πstm with f ≤ t corruptions, for all (sets of) honest and adversarial
values Acc (in the sense of Definition 3), for all honest parties Pi and Pj, it holds that if Acc is a
set of valid Σ-accusations and G = MakeGraph(Acc), then

Pj ∈ NG(Pi), (25)

or, in other words, honest parties form a clique in G.

Proof. By Lemma 4, for all honest parties Pi and Pj there is no valid Σ-accusation Accij ∈ Acc. This
means that the edge {Pi, Pj} is not removed from G in step 2 of algorithm MakeGraph. Therefore,
in step 3 of algorithm MakeGraph the edge Pi, Pj is part of the honest clique H whose nodes consist
of honest parties in this execution of Πstm. Because |H| ≥ h by definition (recall that h = n− t is
the minimum number of honest parties in any execution of Πstm), then {Pi, Pj} is not removed
from G is step 3 either, so that {Pi, Pj} ∈ G. ⊓⊔

Output Justification. Lemma 4 and Lemma 5 serve as technical tools to show that the following
is a valid justifier predicate (meaning transferable, in the sense of Definition 4) for protocol Πstm.
Define:

Jstm(Pi, m, π) = true (26)

if and only if one of the two mutually exclusive conditions hold.

1) m = NoMsg ∧ π = (A, C, Acc)
∧ (A, C, Acc, MakeGraph) is a valid Σ-polarizer
∧ P ∗ ∈ C
∧ Pi ∈ A.

2) m ̸= NoMsg ∧ π = (π1, π2)
∧ JIn(Pi, m, π1) = true

∧ Vfypk∗(m, π2) = true.

(27)

Lemma 6 (Transferability of Jstm). For all t < n, for all t-transferable justifier predicates JIn for
Πstm, for all executions of protocol Πstm with f ≤ t corruptions, it holds that if Jstm(Pi, m, π) = true
for some honest Pi ∈ P, then Jstm(Pj , m, π) = true for all honest Pj ∈ P.
11 It is possible to turn an efficient adversary that produces a valid accusation among honest parties with non-negligible

probability into an efficient one that breaks the unforgeability of the underlying signature scheme with non-negligible
probability. Our idealized treatment of signatures is discussed in Section 2.2.
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Proof. We distinguish two cases.

1. The first case is that m = NoMsg. Here, if Jstm(Pi, m, π) = true, then (A, C, Acc, MakeGraph)
is a valid Σ-polarizer and Pi ∈ A and P ∗ ∈ C. Then, by Definition 9 we know that, if
G = MakeGraph(Acc), it holds that distG(Pi, P ∗) =∞. By Lemma 5, for all honest Pj it holds
thay Pj ∈ NG(Pi). If by contradiction Pj /∈ A since by Definition 9 A ∪ C = P, this means that
Pj ∈ C. However, this means distG(Pi, Pj) = 1 <∞, which is a contradiction because Pi ∈ A.

2. The second case is m ̸= NoMsg. Here, JIn(Pi, m, π1) = true as well as Vfypk∗(m, π2) = true.
By transferability of JIn (Definition 4) we get that JIn(Pj , m, π1) = true for all honest Pj .

⊓⊔

We can now prove that for all t < n, the triple (Πstm, JIn, Jstm) is a t-secure send transferable message
protocol for all t-transferable justifier predicates JIn for Πstm. We split the proof into three lemmas,
one for each property (justified outputs, justified message, and validity).

Lemma 7 (Justified Outputs of Πstm). For all t < n, for all t-transferable justifier predicates
JIn for Πstm, for all executions of protocol Πstm with f ≤ t corruptions, for all honest parties Pi,
the output of Pi is of the form (x, π) and it holds that Jstm(Pi, x, π) = true.

Proof. By inspection of the protocol, the output of honest parties (assuming this honest party
produces output) in any execution is an ordered couple (x, π). We distinguish three cases:

1. If an honest party Pi produces output (x, π) in step 2 of any round r ∈ [1, d + 1], then this
means that π = (π1, π2) and that JIn(Pi, x, π1) = true and Vfypk∗(x, π2) = true, which means
that Jstm(Pi, x, π) = true.

2. If an honest party Pi produces output in round r < d + 1 in step 5, by inspection of the protocol
this output is of the form (NoMsg, π), where if the output is produced in round r we have that

π =
(
A, C, Acc(r)

i

)
,

C =
{

Pj | dist
G

(r)
i

(Pi, Pj) =∞
}

,

A = P \ C,

(28)

and it holds that
dist

G
(r)
i

(Pi, P ∗) =∞. (29)

From equations (28) and (29) it immediatly follows that P ∗ ∈ C. It is also clear that Pi ∈ A
because by definition dist

G
(r)
i

(Pi, Pi) = 0 ̸=∞. It only remains to prove that
(
A, C, Acc(r)

i , MakeGraph
)

(30)

is a valid Σ-polarizer according to Definition 9. The completeness property follows directly from
Equation (28). To prove the justifiability property, let Pk ∈ A and let Pℓ ∈ C. Since Pk ∈ A,
then

dist
G

(r)
i

(Pi, Pk) = dik <∞. (31)

Suppose by contradiction that

dist
G

(r)
i

(Pk, Pℓ) = dkℓ <∞. (32)
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Then it must hold that
dist(Pi, Pℓ) ≤ dik + dkℓ <∞, (33)

which contradicts Pℓ ∈ C.
⊓⊔

Lemma 8 (Justified Message of Πstm). For all t < n, for all t-transferable justifier predicates
JIn for Πstm, for all executions of protocol Πstm with f ≤ t corruptions, for all adversarial justified
outputs y = (y1, . . . , yn) with respect to Jstm, it holds that

- yi = ⊥, or
- yi = NoMsg, or
- yi = (mi, πi) with πi =

(
πIn

i , πOut
i

)
and JIn

(
mi, πIn

i

)
= true.

Proof. Suppose that yi ̸= ⊥ and yi ̸= NoMsg. Then, by Definition 5 it holds that yi = (m, π) and
Jstm(m, π) = true. The lemma follows directly from the definition of Jstm (Equation (27)). ⊓⊔

Lemma 9 (Validity of of Πstm). For all t < n, for all t-transferable justifier predicates JIn for
Πstm, for all executions of protocol Πstm with input (m, π) and f ≤ t corruptions, for all adversarial
justified outputs y = (y1, . . . , yn) with respect to Jstm, it holds that if P ∗ is honest then yi = ⊥ or
yi = (m, πi).

Proof. Suppose that yi ̸= ⊥. If Pi is honest, since P ∗ is honest, Pi receives a valid message
(In, (m, π), σ′) in round 1 and output yi = (m, πi) with πi = (π, σ′). If Pi is corrupted, suppose that
yi = (mi, πi). By the definition of adversarial justified output (Definition 5) it holds Jstm(mi, πi) =
true. We distinguish two cases:

1. The first case is mi = NoMsg. Then by Equation (27) it holds that

πi = (A, C, Acc) (34)

such that Pj ∈ A for all honest parties Pj and P ∗ ∈ C. However, because P ∗ is honest this
contradicts Lemma 5.

2. The second case is mi ̸= NoMsg. In this case, by Equation (27) we have πi = (πi, σ) with
Vfypk∗(mi, σ) = true. However, by inspection of the protocol, P ∗ only signs message m during
Πstm. Since A cannot forge signatures on mi ̸= m on behalf of an honest P ∗, it follows that
mi = m.

⊓⊔

We show that in any execution of Πstm where f is the actual number of corruptions, all honest
parties terminate within min{f + 2, d + 2} rounds. If t < (1− ε)n for any positive constant ε ≥ 1, we
get h = n− t ≥ ε · n and d ≤ 2/ε, so that the protocol terminates in a constant number of rounds.

Lemma 10 (Round Complexity of Πstm). For all t < n, all t-transferable justifier predicates
JIn for Πstm, for all executions of protocol Πstm with f ≤ t corruptions, we have r(Πstm) ≤
min{f + 2, d + 2}. In addition, honest parties terminate at most 1 round apart, that is, for all honest
Pi and Pj it holds that |r(Pi)− r(Pj)| ≤ 1.
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Proof. Consider an execution of Πstm with f ≤ t corruptions and suppose that no honest party Pi

has terminated in round f + 1. Because in round f all honest parties Pi send valid Σ-accusations
against all parties

Pℓ ∈ N
G

(f)
i

(Pi) ∩B
G

(f)
i

(P ∗, f − 1), (35)

this means that, for all honest Pj

dist
G

(f+1)
i

(Pj , P ∗) ≥ f + 1. (36)

Suppose that
dist

G
(f+1)
i

(Pi, P ∗) <∞. (37)

Then, there is a path of length at least f + 1 (with f + 2 nodes) connecting Pi and P ∗. Since the
number of corrupted parties is f , the path travels through an honest node Pj ̸= Pi, so that

dist
G

(f+1)
i

(Pj , P ∗) ≤ f, (38)

which contradicts Equation (36). Now, suppose that some honest party Pi terminates in round
r < d + 1, and consider the following two cases:

1. If Pi terminates upon receiving a valid (In, (m, π), σ′), the message is forwarded to all parties,
and by t-transferability of JIn, every other honest party terminates in round r + 1 at the latest.

2. If Pi terminates because
dist

G
(r)
i

(Pi, P ∗) =∞, (39)

because all valid Σ-accusations are forwarded by honest parties in all rounds, we have Acc(r+1)
j ⊇

Acc(r)
i for all honest Pj . From Lemma 1 it follows that G

(r+1)
j ⊆ G

(r)
i which in turn implies

dist
G

(r+1)
j

(Pi, P ∗) ≥ dist
G

(r)
i

(Pi, P ∗) =∞. (40)

If, by contradiction, parties Pj and P ∗ are connected in G
(r+1)
j , then by Lemma 5 parties Pi

and P ∗ are connected in G
(r+1)
j , which contradicts Equation (40).

We have shown that if an honest Pi terminates in round r, then all honest Pj terminate in round
r + 1 at the latest, and that some honest party terminates by round f + 1 at the latest. To conclude
the proof, we show that some honest party Pi terminates in round d + 1 at the latest. By inspection
of algorithm MakeGraph, for each r ∈ [1, d + 1] it holds that each node in Gi(r) is part of a clique of
size h. Lemma 3 then guarantees that the diameter of G

(r)
i is at most d. Suppose, by contradiction,

that no honest party has terminated in round d + 1. Then, arguing as above, we get

dist
G

(d+1)
j

(Pj , P ∗) ≥ d + 1, (41)

a contradiction. ⊓⊔

Corollary 1 (t-Security of Πstm). For all t < n and for all t-transferable justifier predicates JIn
for Πstm, the triple

(Πstm, JIn, Jstm)
is a t-secure send transferable message protocol.

Proof. Lemma 6 shows that Jstm is a t-transferable justifier predicate for Πstm for all t < n. Lemma
7, Lemma 8, and Lemma 9 show that justified outputs, justified message, and validity respectively
hold for all t < n.
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3.2 From Send Transferable Message to Broadcast

Following the construction in [LN24], our protocol Πstm directly yields a n-party broadcast protocol
that is optimally resilient (can tolerate t corruptions for all t < n) and asymptotically matches
the lower bound of min{f + 2, t + 1}) rounds for any constant fraction of honest parties, that is if
t < (1− ε)n for some ε > 0.

Lemma 11 (Broadcast from Send Transferable Message). Suppose that there exists a t-secure
send transferable message protocol Πstm with r(Πstm) = ℓ. Then there exists a t-secure broadcast
protocol Πbc with r(Πbc) = O(min{ℓ · f, t}), where f ≤ t is the actual number of corruptions in the
execution of the protocol.

Proof. Sections 6 and 7 of [LN24]. ⊓⊔

Theorem 1. For all t < n, there exists a t-secure broadcast protocol Πbc such that

– r(Πbc) = O(min{f2, t});
– r(Πbc) = O(f) if t < (1− ε)n for some ε > 0.

Proof. Corollary 1 shows that Πstm is a t-secure send transferable message protocol for all t < n.
Lemma 10 shows that r(Πstm) ≤ min{f + 2, d + 2}. Lemma 11 then implies the existence, for all
t < n, of a of a t-secure broadcast protocol Πbc with

r(Πbc) = O
(

min
{
f ·min{f + 2, d + 2}, t

})
= O(min{f2, t}). (42)

If t < (1− ε)n for some constant ε > 0, then

d = 2n

h
= 2n

n− t
= 2n

εn
= 2

ε
, (43)

which yields

r(Πbc) = O

(
min

{
f ·min

{
f + 2,

2
ε

}
, t

})
= O(min{f, t}) = O(f). (44)

⊓⊔

4 Efficient Graph Building Algorithm

In this section, we present algorithm EfficientMakeGraph, a polynomial time analogous of MakeGraph,
and we show that when the latter is replaced by the former in Πstm the security of the protocol is
preserved (Corollary 1). We do not claim the ideas of this algorithm, which we got from [WXSD20],
but in general follows from elementary graph-theoretic observations. Recall that for all t < n we
define h = n− t and d = 2n/h.

Algorithm EfficientMakeGraph(t,P; Acc)

Let KP denote the complete graph on P.
1: Initialize G← KP .
2: For each valid Σ-accusation Accij ∈ Acc remove edge {Pi, Pj} from G.

21



3: Find an edge e = {Pi, Pj} of G such that |NG(Pi) ∩ NG(Pj)| < h and remove e from G. Repeat until no
such edge exists.

4: Return G.

Lemma 12 (Antimonotonicity of EfficientMakeGraph). For two sets of valid Σ-accusations with
Acc1 ⊇ Acc2 one has MakeGraph(Acc1) ⊆ MakeGraph(Acc2).

Proof. Let G1 = MakeGraph(Acc1) and G2 = MakeGraph(Acc2). Assume by contradiction that there
exists an edge e = (Pi, Pj) such that e is an edge in G1 but e is not an edge in G2. There are two
cases:

1. Edge e is removed from G2 in step 2. This means Accij ∈ Acc2 and because Acc1 ⊇ Acc2 then
Accij ∈ Acc1. However, that means that e is removed from G1 in step 2 as well, a contradiction.

2. Edge e is not removed from G2 in step 2 but it is removed in step 3. Since e is an edge in G1
this means

|NG1(Pi) ∩NG1(Pj)| ≥ h. (45)

For all nodes Pℓ in NG(Pi)∩NG(Pj) it holds that Acciℓ ̸∈ Acc1 and Accℓj ̸∈ Acc1 (or the edges
{Pi, Pℓ} and {Pℓ, Pj} are removed from G1 in step 2, a contradiction). Because Acc1 ⊇ Acc2 we
get Acciℓ ̸∈ Acc2 and Accℓj ̸∈ Acc2 and hence

Pℓ ∈ NG2(Pi) ∩NG2(Pj), (46)

from which we can conclude that

|NG2(Pi) ∩NG2(Pj)| ≥ |NG1(Pi) ∩NG1(Pj)| ≥ h. (47)

Therefore, edge e is not removed from G2 is step 3, a contradiction.
⊓⊔

Unfortunately, we cannot directly use Lemma 2 to bound the diameter of the output of EfficientMakeGraph
(the equivalent of Lemma 3 for EfficientGraph), because in general it is not guaranteed that every
edge in the output of EfficientMakeGraph is part of a clique of size h, as the graph in Figure 1 below
shows.

Fig. 1. A graph with 6 nodes where every edge {u, v} satisfies |NG(u)∩NG(v)| ≥ 4 but the curved edge is not part of
any clique of size 4.

Below we show that the equivalent of Lemma 3 is true for EfficientMakeGraph as well, even
though the proof is more involved. Due to space constraints, the proof is presented in B.
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Lemma 13 (Diameter of EfficientMakeGraph(Acc)). For any set of valid Σ-accusations Acc, the
diameter of EfficientMakeGraph(Acc) is at most d = 2n/h.

If we replace algorithm MakeGraph with EfficientMakeGraph in protocol Πstm, Lemma 4 still holds, be-
cause its proof only relies on the antimonotonicity of MakeGraph (Lemma 1), and EfficientMakeGraph
still satisfies this property (as we show in Lemma 12). However, the same is not obvious for Lemma
5, as its proof relies on the specific structure of MakeGraph in addition to Lemma 4. Luckily, it is
not hard to show that an analogous of Lemma 5 still holds when we replace algorithm MakeGraph
with EfficientMakeGraph in protocol Πstm. We do so below.

Lemma 14. Consider step 3 of algorithm EfficientMakeGraph as an algorithm that takes as input a
graph G with node set P and outputs a subgraph G′ of G. Then, for all edges e of G which are part
of a clique of size h, it holds that e is an edge of G′.

Proof. Suppose that e = {Pi, Pj} is part of a clique C of size h in G. Then, for all nodes Pℓ of C, it
holds that Pℓ ∈ NG(Pi) and Pℓ ∈ NG(Pj), which in turn means |NG(Pi) ∩NG(Pj)| ≥ h, so that e is
not removed from G and e is an edge of G′. ⊓⊔

Lemma 15 (Honest Clique in Πstm with EfficientMakeGraph). For all t < n, for all t-transferable
justifier predicates JIn for Πstm, for all executions of protocol Πstm with f ≤ t corruptions, for all
(sets of) honest and adversarial values Acc (in the sense of Definition 3), for all honest parties Pi

and Pj, it holds that if Acc is a set of valid Σ-accusations and G = EfficientMakeGraph(Acc), then

Pj ∈ NG(Pi), (48)

or, in other words, honest parties form a clique in G.

Proof. By Lemma 4, for all honest parties Pi and Pj there is no valid Σ-accusation Accij ∈ Acc. This
means that the edge {Pi, Pj} is not removed from G in step 2 of algorithm MakeGraph. Therefore,
in step 3 of algorithm MakeGraph the edge Pi, Pj is part of the honest clique H whose nodes consist
of honest parties in this execution of Πstm. Because |H| ≥ h by definition (recall that h = n − t
is the minimum number of honest parties in any execution of Πstm), then by Lemma 14 the edge
{Pi, Pj} is not removed from G is step 3 either, so that {Pi, Pj} ∈ G. ⊓⊔

Therefore, when algorithm MakeGraph is substituted with its efficient version EfficientMakeGraph,
the proof of Corollary 1 follows by replacing every invocation of Lemma 1 with one of Lemma 12,
every invocation of Lemma 3 with one of Lemma 13, and every invocation of Lemma 5 with one of
Lemma 15.

References

[ACD+19] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine
Shi. Communication complexity of byzantine agreement, revisited. In Peter Robinson and Faith Ellen,
editors, 38th ACM PODC, pages 317–326. ACM, July / August 2019.

[AD15] Ittai Abraham and Danny Dolev. Byzantine agreement with optimal early stopping, optimal resilience
and polynomial complexity. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of
Computing, STOC ’15, page 605–614, New York, NY, USA, 2015. Association for Computing Machinery.

[ALPT22] Andreea B. Alexandru, Julian Loss, Charalampos Papamanthou, and Giorgos Tsimos. Sublinear-
round broadcast without trusted setup against dishonest majority. Cryptology ePrint Archive, Report
2022/1383, 2022.

23



[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Optimal early stopping in distributed consensus.
In Distributed Algorithms: 6th International Workshop, WDAG’92 Haifa, Israel, November 2–4, 1992
Proceedings 6, pages 221–237. Springer, 1992.

[Coa93] Brian A Coan. Efficient agreement using fault diagnosis. Distributed computing, 7:87–98, 1993.
[DRS82] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. ’eventual’is earlier than’immediate’. In 23rd

Annual Symposium on Foundations of Computer Science (sfcs 1982), pages 196–203. IEEE, 1982.
[DRS90] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine agreement.

Journal of the ACM (JACM), 37(4):720–741, 1990.
[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM

Journal on Computing, 12(4):656–666, 1983.
[DY83] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions on

information theory, 29(2):198–208, 1983.
[Ezh87] Paul D Ezhilchelvan. Early stopping algorithms for distributed agreement under fail-stop, omission, and

timing fault types. Computing Laboratory Technical Report Series, 1987.
[FLZL21] Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to achieve round-efficient byzantine

agreement. pages 355–362. ACM, 2021.
[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th ACM STOC,

pages 148–161. ACM Press, May 1988.
[GGLZ22] Diana Ghinea, Vipul Goyal, and Chen-Da Liu-Zhang. Round-optimal byzantine agreement. In Orr

Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
96–119, May / June 2022.

[GM98] Juan A Garay and Yoram Moses. Fully polynomial byzantine agreement for n¿ 3 t processors in t+ 1
rounds. SIAM Journal on Computing, 27(1):247–290, 1998.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462, August 2006.

[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit protocols. Unpublished,
April 1982.

[LN24] Julian Loss and Jesper Buus Nielsen. Early stopping for any number of corruptions. In EURO-
CRYPT 2024, Part III, LNCS, pages 457–488, June 2024.

[LSP19] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In Concurrency:
the works of leslie lamport, pages 203–226. 2019.

[Mic17] Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou, editor,
ITCS 2017, volume 4266, pages 6:1–6:1, 67, January 2017. LIPIcs.

[Per85] Kenneth J Perry. Early stopping protocols for fault-tolerant distributed agreement. Technical report,
Cornell University, 1985.

[PT84] Kenneth J Perry and Sam Toueg. An authenticated byzantine generals algorithm with early stopping.
Technical report, Cornell University, 1984.

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number of faulty
processors. In STACS 92: 9th Annual Symposium on Theoretical Aspects of Computer Science Cachan,
France, February 13–15, 1992 Proceedings 9, pages 337–350. Springer, 1992.
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Supplementary Material

A Proof of Lemma 2

Let d′ be the diameter of G. We show d′ ≤ d. Let v0 and vd′ be nodes of G such that distG(v0, vd′) = d′,
and let

e1 ={v0, v1},
e2 ={v1, v2},

...
ed′ ={vd′−1, vd′},

(49)

be a path of length d′ between v0 and vd′ . By assumption, for all i ∈ [1, d′] edge ei is part of a clique
Ci of size h. Any two cliques Ci and Cj with j − i ≥ 2 must have disjoint sets of nodes. If this is not
the case, and v′ is a node in both Ci and Cj , there exists edges {vi, v′} and {v′, vj+1} in G. This
means that the path

e1 ={v0, v1},
...

ei ={vi−1, vi}.
{vi, v′},
{v′, vj+1},

ej+1 ={vj+1, vj+2},
...

ed′ ={vd, v′
d},

(50)

is a path of length d′ − 1, a contradiction. Therefore, we can write12

2n ≥ |C2 ∪ C4 ∪ C6 ∪ . . . |+ |C1 ∪ C3 ∪ C5 ∪ ...|
= |C2|+ |C4|+ |C6|+ ... + |C1|+ |C3|+ |C5|+ ...

= |C1|+ |C2|+ ... + |Cd′ |
= d′ · h.

(51)

B Proof of Lemma 13

Let G = EfficientMakeGraph(Acc). By inspection of the algorithm, it is guaranteed that for any pair
of nodes u and v in G it holds that

|NG(u) ∩NG(v)| ≥ h. (52)

12 With a common abuse of notation, we improperly identify the clique Ci with its set of nodes.
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Assume, by contradiction, that the diameter of G is d′ > d. Let v0 and vd′ be nodes of G such that
distG(v0, vd′) = d′ and let

e1 ={v0, v1},
e2 ={v1, v2},

...
ed′ ={vd′−1, vd′},

(53)

be a path of length d′ connecting v0 and vd′ . Consider the set of nodes of G that are at distance
exactly i from v0:

Di = {w ∈ G | distG(v0, w) = i}. (54)

By definition of distG, for all i ̸= j it holds that

Di ∩Dj = ∅. (55)

It is also clear that for all i ∈ [1, d′] one has vi ∈ Di (so that Di ̸= ∅) and that

NG(vi) ⊆ Di−1 ∪Di ∪Di+1 (56)

for all i ∈ [0, d′ − 1].13 Now consider the graph G′ = (V ′, E′) defined as follows:

V ′ =
d′⋃

i=0
Di,

E′ =

 d′⋃
i=0

(Di ×Di)

 ∪
d′−1⋃

i=0
(Di ×Di+1)

 .

(57)

From Equation (55) it follows that distG′(v0, vd′) = d′, so that the diameter of G′ is at least d′. Also,
if e is an edge in G′, then from Equation (57) there exists i ∈ [0, d′ − 1] such that e = {a, b} with
a ∈ Di and b ∈ Di ∪Di+1. This means that each edge in E′ is part of the clique whose nodes are
Di ∪Di+1, whose size we can lower bound combining Equation (52) with Equation (56) as follows.
For all i ∈ [0, d′ − 1]:

h ≤ |NG(vi) ∩NG(vi+1)|
≤ |(Di−1 ∪Di ∪Di+1) ∩ (Di ∪Di+1 ∪Di+2)|
= |Di ∪Di+1|
= |Di|+ |Di+1|.

(58)

We have shown that very edge of G′ is part of clique of size h. Therefore, by Lemma 2, the diameter
of G is at most d, which contradicts our assumption that d′ > d.

13 We adopt the convention D−1 = ∅ and Dd′+1 = ∅.
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