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Abstract. Top trading cycles (TTC) is a famous algorithm for trading
indivisible goods between a set of agents such that all agents are as happy
as possible about the outcome. In this paper, we present a protocol for
executing TTC in a privacy preserving way. To the best of our knowledge,
it is the first of its kind. As a technical contribution of independent interest,
we suggest a new algorithm for determining all nodes in a functional
graph that are on a cycle. The algorithm is particularly well suited for
secure implementation in that it requires no branching and no random
memory access. Finally, we report on a prototype implementation of the
protocol based on somewhat homomorphic encryption.

1 Introduction

Barter economies, where agents directly exchange goods amongst each other, are
one of the oldest forms of commerce. While historically barter was restricted to
physical goods or services, nowadays barter is gaining popularity as a form of
commerce in the context of cryptocurrencies and decentralized finance. In this
digital realm, the goods that are being traded are so-called tokens, which may
represent assets, intellectual property rights, equities, bonds, or services.

In our work, we consider one of the most archetypical forms of barter, known
as one-sided matching markets, introduced by Shapley and Scarf [SS74]. Here, we
have n agents, each holding one (indivisible) good as well as an ordered preference
list over the n goods. The agents are willing to engage in a joint trading protocol
and each agent would like to get their most preferred good. The protocol should
ensure that all agents are as “happy” as they could be, once trading has finished,
i.e., no subset of agents can still perform trades amongst each other that would
leave all agents in the subset better off. Shapley and Scarf [SS74] showed that,
for arbitrary preference lists, a sequence of trades that makes everybody happy
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always exists and presented an algorithm, known as the top trading cycles (TTC)
algorithm4, that efficiently computes the necessary trades.

The one-sided matching problem is not only a very intuitive game-theoretic
problem, but its instances can be found in several real-world scenarios, with the
TTC algorithm being used for effective solutions in many cases; for example,
assigning an optimal allocation of schools for pupils [APR09, Abd11, APRS05,
Jac19], public housing allocation [Tha16], and mutual housing exchange, etc.

The TTC algorithm has several attractive game-theoretic properties. Roth
and Postlewaite [RP77] showed that, if the preferences of each agent are strict5,
the algorithm finds the unique allocation of goods to agents. Later, Roth [Rot82b]
showed that all agents are incentivized to be truthful, i.e. that no agent can
obtain a better good by being dishonest about their claimed preference list.

The appealing game-theoretic features of the TTC algorithm make it a useful
tool for extending the potential of barter trading in the context of trading digital
tokens in decentralized finance. Let’s say that a particular token represents a
particular service, and a user in possession of a token x would like to exchange it
for y, and if not y, then for z. Traditionally, the bulk of digital tokens that are
exchanged are limited to exchange between a pair of users, and only for preference
over one token at a time. With TTC, users can post their preferences in the
beginning as a ranked preference list of all offers from all other participating
users 6, and receive the optimal exchange solution.

Unfortunately, a naive implementation of TTC would require all involved
agents to publicly reveal their preference lists, which in turn would also reveal
who is obtaining which good. When transaction privacy is required, this is not a
viable solution. However, there has been no prior work studying secure-TTC.

A first (naive) approach to implement a privacy preserving version of TTC
would be to simply convert the TTC algorithm to a circuit in a straightforward
way and evaluate it using a generic Multiparty Computation (MPC) engine.
This would result in a rather inefficient solution, typically requiring O(n2 log(n))
rounds of communication for n agents. One problem with the straightforward
approach is the large number of random memory accesses required, which is
notoriously difficult to implement in secure computation. We discuss this in
more detail in Sec. 1.3. A main contribution of this work, discussed in more
detail in the following, is to come up with a new equivalent formulation of the
TTC algorithm that is much better suited for secure computation because it is
algebraic in nature and requires no memory accesses.

1.1 Our Contribution

In this work, we present a protocol that allows n agents to efficiently compute
all the desirable trades in a given one-sided matching market, without revealing
any unnecessary private information. Our protocol hides each agent’s preference

4 Attributed to David Gale.
5 In the sense that no agent likes two goods equally.
6 A user can reject offers from other parties, by ordering its own offer above theirs.
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list and agents only learn about the trades they are personally involved in.
Surprisingly, our work is the first to address this question, as far as we are
aware of. Our protocol does not require any random memory accesses or any
expensive branching operations and for this reason it integrates well with secure
computation frameworks for arithmetic circuits.

As a technical building block that may be of independent interest, we construct
a simple and (asymptotically) highly efficient protocol for determining the nodes
that are part of a cycle on a hidden functional7 graph (Sec 3).

Our new secure TTC protocol can be realized from any MPC framework that
offers basic arithmetic in a prime field of cardinality larger than the number of
parties. We prove our protocol to be UC-secure in the semi-honest, dishonest
majority setting (Sec 4.1) and we show that each protocol subtask induces a
multiplicative depth that is logarithmic in the number of participants.8

We experimentally evaluate our TTC protocol by building a prototype im-
plementation9 based on somewhat homomorphic encryption (SHE), also known
as leveled-HE. Although our current implementation can still be optimized in
several ways, it already shows that the approach has the potential in practice,
e.g., the entire protocol can be done for 25 users in a few minutes. Such practical
runtimes are achieved by heavily exploiting purpose-built and general SIMD
(Same-Instruction Multiple-Data) techniques for SHE schemes that natively sup-
port SIMD operations. Our implementation is based on the OpenFHE [ABBB+22]
framework and the BGV cryptosystem [BGV12]. We provide benchmarks for
various parameter settings (Sec 5).

Our construction can be implemented based on any secure computation
framework offering basic arithmetic in finite fields. So an obvious question is
whether it would be more efficient to use a secret-sharing MPC protocol, like
SPDZ [DPSZ12], rather than SHE. However, secret-sharing based MPC incurs
a large number of communication rounds, which becomes the main bottleneck
as soon as the number of parties or the round trip time of the network is large
enough. While our objective in this work is not to compare secret-sharing and
FHE in general and for all parameter ranges, we provide a discussion on the two
implementation methods in Appx. H, targeted at our setting. We conclude that
secret-sharing based MPC will be slower as soon as the network roundtrip time
is large enough (40ms in our example setting).

Upgrading to malicious security can be done using standard techniques in a
relatively straightforward way. Although the resulting protocol would less efficient,
we expect that the overhead would not necessarily be prohibitive. We discuss
this extension in more detail in Appendix I.

1.2 Related Work

In the following, we discuss research domains closely related to our work.

7 A directed graph is said to be functional, if all vertices have out-degree at most one.
8 In comparison to a naive implementation that would require a multiplicative depth
linear in the number of parties.

9 Source code has been uploaded here.
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Matching Algorithms. Beyond one-sided matching markets, many other types of
matching problems have been studied in the literature. These include: The stable
marriage problem of Gale and Shapley [GS62], with its privacy-preserving variants
presented in [Gol06, FGM07, KS14, ZWR+16, DEs16, MPA+23]. The housing
allocation problem of Hylland and Zeckhauser [HZ79]. The kidney exchange
problem of Roth, Sönmez, and Ünver [RSÜ04], with the privacy-preserving
versions being recently proposed in [BHK+22, BHP+22, BMW22, BMW23]. From
a technical perspective, the ideas for computing stable marriages or performing
kidney exchange privately do not appear to be useful for solving the problem
considered in this work; the former is incomparable, while the latter is a more
restricted setting. On the other hand, we observe that the protocols in our work
can easily be adapted to solve the housing allocation problem as well. In Appx A
we provide a more detailed discussion about related matching algorithms.

Secure Graph Computations. Looking ahead, our protocol is based on the original
TTC algorithm which repeatedly interprets agents as graph vertices, preferences
as edges, and attempts to identify agents that are part of a graph cycle. While
there are many works [BSA13, ACM+13, WRD+17, MKNK15, AFO+21] on
secure computation of graph algorithms, such as determining the shortest path
between two nodes in a graph, for performing depth/breadth first search, and
computing the maximum flow of a graph, these tools, however, do not seem
amenable to securely and efficiently determining which agents are part of a cycle.
The difficulty of our task is best illustrated by considering the Floyd’s famous
cycle finding algorithm for functional graphs. While this algorithm has a simple
condition for checking whether a cycle exists, it is not obvious how to modify it,
such that it allows for efficiently listing all vertices that are part of the cycles.

1.3 Technical Overview

To understand the ideas behind our approach, let us first review the TTC
algorithm itself and see why naively using secure computation techniques is
unlikely to yield an efficient protocol.

The Top Trading Cycles Algorithm. Recall that we have n agents, each holding
a private preference list, sorting all n goods from most to least desirable. In the
TTC algorithm, in each round, every agent points at the agent with the good
they desire the most. Viewing the agents as vertices and who they point to as
edges, we get a functional graph with n vertices and n edges. Such graphs always
have at least one cycle. Any agent that is part of a cycle will trade their good, i.e.
they will receive the good they desire and they will give their good to whoever is
pointing at them. All agents that were involved in trades leave the procedure and
all remaining agents repeat this process by now pointing to their most preferred
good among those that are still available. Eventually the algorithm terminates
with all agents having performed trades, possibly with themselves.
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Demands to a privacy-preserving solution. We will aim to construct a protocol
that allows each party to only learn the trade she is involved in. In particular,
the protocol must not leak the round in which her trade was decided, nor ask
her to post new preference every round depending on the current availability.
Instead, all parties must supply a complete preference list up front, and then
the protocol must securely update the preferences between cycle finding steps
“inside” the secure computation.

A Naive Approach. Let us focus on just one round of the TTC algorithm, where
agents would like to determine whether they are part of a cycle or not. In the
following, implicitly assume that all computations are done either on secret shared
or encrypted values, depending on the precise secure computation framework
that is used.

First, every agent publishes the index of the agent with their most preferred
good, among those that are still present (ignoring for now how precisely this
would even be done). Interpret all those pointers as an array A of length n. Now
the agents will jointly perform n steps as follows: Initially, each agent i has an
associated value vi = 1 and is located at vertex i. At each step, each agent i
looks up the successor of the vertex they are currently at in A and move to that
vertex. Let j be this vertex, then agent i updates vi := vi · (i− j). If an agent i
is part of a cycle, then it will have returned to their initial node within n steps
at least once and thus vi = 0 after n steps.

While this solution does indeed allow each agent to determine whether they
are part of a cycle, it also requires each agent to perform n memory lookups
in array A securely. When implemented via a naive circuit, this would require
one linear scan of A per access per agent. A more intelligent approach is to use
secure computation protocols for RAM programs [GKK+12], which can perform
efficient memory accesses (as low as O(log(n))) access per RAM access). Many
protocols for secure RAM computation have already been proposed [ZWR+16,
Ds17, KY18, BKKO20, HV21, VHG23, BPRS23, SVG23, NFO24], but those
are either restricted to a constant number of parties, require an honest majority
among the parties, or are significantly less efficient than circuit-based secure
computation protocols. Consequently, it would be desirable to have a protocol
that does not require any random memory accesses and can be expressed nicely
as circuit.

In any case, for both naive RAM and circuit approaches, one round of TTC
would require O(n) sequential memory accesses, amounting to a multiplicative
depth of O(n) per round. As opposed to this, our solution only requires O(log(n))
multiplicative depth per round of TTC.

Our Solution. The main idea underlying our approach is to view the graph
through its adjacency matrix and to exploit certain structural properties of these
matrices that are specific to functional graphs. The adjacency matrixM of a graph
with n vertices is an n× n matrix, where entry (i, j) ∈ {1, . . . , n} × {1, . . . , n} is
one, if there is an edge from node i to node j and zero otherwise. It is well known
that for any k ∈ N, the entry (i, j) in Mk equals the number of walks from node
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i to node j of length k. Intuitively, this would already allow for checking whether
vertex i is on a cycle by computing all powers M1, . . . ,Mn of the adjacency
matrix M and checking whether in any of them, there is a non-zero entry at (i, i),
i.e. whether there is a walk of some length ℓ ∈ {1, . . . , n} from vertex i to itself.
This would work, but would require n separate matrix-matrix multiplications. In
this work, we build upon this basic idea, but reduce the number of matrix-matrix
multiplications to log(n).

What we prove in this work, is that computing u = Mn · 1, where 1 is the
column vector of length n with all entries being one, allows for determining the
vertices that are on cycles. Concretely, we prove that for each i ∈ {1, . . . , n},
the i-th value in u is non-zero if and only if vertex i is on a cycle, provided the
underlying graph is a functional graph. Note that computing Mn can be done
with log(n) matrix-matrix multiplications via repeated squaring. Furthermore,
note that that this approach does not require any random memory accesses at
all and is purely algebraic in nature.

While efficiently determining which vertices are on a cycle in a given functional
graph is one of the more difficult steps, there are several other technical difficulties
that need to be overcome, e.g., the secure updating of preferences, alluded to
above. We will highlight those and our corresponding solutions in detail in the
technical sections of this work.

2 Preliminaries

Notation. We denote scalars as x, vectors as v, matrices as A, and AT as the
transpose of A. We write 1 to denote the vector of length n, where all entries are
1. We write v ·w to denote hadamard product, i.e. element-wise multiplication
of vectors. We write v1 → v2 to denote a directed edge from vertex v1 to v2. For
a value a, we write [a] to denote the encryption of value a.

2.1 Secure Multiparty Computation

We prove security in the UC framework [Can01, CLOS02] with semi-honest and
static corruptions, and F ′-hybrid setting. The security requirement is captured by
showing indistinguishability between the real-world and ideal-world experiments,
where in the ideal-world all of the computation is done via an ideal functionality
F . For a brief summary and formal definition, see Appx. B.

2.2 Ideal Functionality: Top Trading Cycles

We describe the algorithm of Shapely and Scarf [SS74], as already discussed in
Sec 1.3, in the UC functionality FTTC in Fig. 1.

2.3 Leveled Homomorphic Encryption

To instantiate our TTC protocol we will use a leveled homomorphic encryp-
tion scheme (leveled-HE). The standard definition is reproduced in Appx. C.
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FTTC

FTTC is an n party functionality and runs with clients {C1, . . . , Cn}.

Input: For i ∈ {1, . . . , n}, receive preference list x(i) from client Ci.
Top Trading Cycle: Initialize the set of available clients C := {C1. . . . , Cn}.
While C ≠ ∅, do:
1. For each Ci ∈ C, let topi := Cj be its first preference such that Cj ∈ C.
2. Build a graph G := (V,E), where V := C, and (vi → vj) ∈ E if topi := Cj .
3. Find all cycles in G.
4. For each vi ∈ V , if vi lies on a cycle such that vi → vj , store (On Cycle, i, j),

and remove Ci from C.
Output: Output (On Cycle, i, j) to client Ci where tuple (On Cycle, i, j) is

stored internally.

Fig. 1: Functionality for Secure Top Trading Cycles

Specifically, our protocol is implemented with the BGV cryptosystem [BGV12],
which offers ciphertext slots over which “same instruction multiple data” (SIMD)
parallelism can be exploited without additional overhead (Sec. 4.2).

2.4 Ideal Functionality: Arithmetic Black Box

This functionality, called FABB (Appx. D, Fig. 8) provides an interface for doing
a series of basic arithmetic operations on secret values in a secure manner, and
to open the final output towards a particular participant. Trivially, by design, no
information about the intermediate values is leaked to participants.

At a high level, FABB receives commands from two types of computing devices:
from clients it receives an input vector of fixed length ℓ (via Input command), and
then it allows servers S1, . . . , Sm to securely perform element-wise additions (via
Add) and multiplications (via Mult) by making a single call to the functionality,
i.e., ℓ parallel additions or multiplications can be computed at the cost of a single
call. Additionally, the servers can securely cycle vector elements (via Rot) by
any number of slots and direction; this operation is called rotation. At last, the
participants can open the final output towards a particular client (via Open).

In the client-server setting, we can UC-realize FABB using an leveled-HE
encryption scheme in the FKeyGenDec hybrid (Appx. D, Fig. 9). FKeyGenDec allows
servers and clients to obtain a public-key for the leveled-HE scheme where the
associated secret-key is stored inside the functionality. Given the public-key, clients
can encrypt secret inputs and send them to a server S1, who then evaluates
homomorphic operations over ciphertexts locally with Eval algorithm of the
leveled-HE scheme.

We give the details of this realization in Appx. D, The security of this
realization can be formally stated in the following theorem. The proof is similar
to that in [DPSZ12], but for completeness we present the main ideas in Appx. D.
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Theorem 1. Let LHE := (KeyGen,Enc,Dec,Eval) be a leveled-HE scheme that is
correct, IND-CPA secure, and is circuit private. Then FABB can be UC-realized by
a protocol with LFHE in the FKeyGenDec-hybrid against any static, passive adversary
corrupting up to m− 1 servers and n− 1 clients.

3 Basic Algorithms

As part of our overall solution, we will require solutions for two smaller problems.
First, for each node in the graph, we need to decide if the node is on a cycle
or not. Second, after a round of cycle finding is over, we need to compute the
new preferences of all clients for the next round. Both of our solutions for these
sub-tasks are designed to be easy to implement within secure computation.

Cycle finding. For determining the parties that are on a cycle, we will exploit
properties of the adjacency matrix of the corresponding functional graph. Let
matrix M be the adjacency matrix, where entry Mi,j is 1, if the graph has a
vertex from node i to node j and 0 otherwise. It is well known that Mk

i,j is
the number of paths of length k from node i to node j. As explained earlier,
a simplistic way to exploit this would be to compute M2,M3, .. and for each
node i test, if any value Mk

i,i is non-zero. If we, however, exploit the fact that we
have a functional graph, i.e., all out-degrees are 1, then we obtain a significantly
more efficient solution: node i is on a cycle if the i-th index in the vector Mn1 is
non-zero.

Specifically, we show the following technical lemma (proof in Appx. E):

Lemma 1. Let M be the adjacency matrix of a functional graph with n nodes,
let 1 be a column vector where all entries are 1 and let u = Mn1. Then ui is
non-zero if and only if node i is on a cycle. Moreover, ui is a non-negative integer
and ui ≤ n.

Using this lemma, we can securely decide whether nodes are on cycles by
computing Mn1 and checking which entries are 0. We can do this efficiently with
leveled-HE, since matrix multiplications can be done using one layer of parallel
multiplications (and some additions), thus matrix exponentiation to power n can
be done using log n multiplicative depth via standard repeated squaring.

Preference Computation. Here, we assume that the preference list of client Ci is
given as an n× n permutation matrix Ni, such that multiplying a vector by Ni

will reorder the input entries in order of preference. We assume that the list of
available goods is given as a vector h, where hj = 1 if good number j is currently
available, and 0 otherwise. As we shall see, such a list is readily available, once a
cycle finding stage is done.

Our goal here is to compute the adjacency matrix of the graph for the next
cycle finding stage. That is, for each Ci, we want to compute vector w(i) where

w
(i)
j = 1 if house j is the one party i prefers among the available houses, and

0 otherwise. Viewing these individual vectors as a single matrix, we obtain our
desired adjacency matrix. We can compute these vectors as follows:
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1. Let vector a(i) = Nih.

2. Compute the vector b(i) as follows:

For j = 1 to n, set b
(i)
j = a

(i)
j

∏
k<j(1− a

(i)
k ).

3. Let w(i) = N−1
i b(i).

For correctness, note that in vector a(i), the first 1 corresponds to the good
Ci prefers the most among the available ones. The formula for computing b(i)

preserves the first 1 in ai but will zero out everything else. Thus, as desired, w(i)

will contain a 1 in the position of the good Ci prefers, and 0s elsewhere.

The reason for using this specific way of computing the adjacency matrix is
that it can be done in depth log n and that we can exploit known algorithms for
parallel prefix computation, such that the second step above only requires O(n)
multiplication, while still being logarithmic depth.

4 TTC Protocols: Generic and SIMD Optimized

In this section, we present two protocols for computing the TTC algorithm
securely. In Sec 4.1, we present our main and generic protocol (ΠTTC) using basic
secure arithmetic operations provided by FABB. We chose to first explain a simple
version of our protocol, without any optimizations, to expose the central ideas of
our TCC protocol. ΠTTC is generic since, to implement this, FABB can be realized
by different techniques such as an MPC, or computation over ciphertexts.

Later, in Sec 4.2, we improve upon this by exploiting SIMD operations offered
by leveled-HE schemes. Our optimised TTC protocol (ΠTTC−SIMD) utilizes the
SIMD interface of FABB to significantly reduce the number of multiplications
by up to a factor of n2, where n is the number of clients. This allows us to
demonstrate practical runtimes with our implementation in Sec. 5.

4.1 Generic TTC Protocol

In this section, we present our main protocol (ΠTTC in Fig. 2) for computing the
top trading cycles algorithm securely. We state correctness in Lem. 2, security in
Thm. 2, and state the multiplicative depth of ΠTTC in Thm. 3 (proofs are stated
in Appx. F).

Client-Server Model. We consider computations in the standard client-server
model with n clients and m servers. The clients own the input and initialize FABB

with it. The servers then do the computation over these inputs by repeatedly
calling FABB, without any further involvement of the clients. Only towards the
end, when the output is computed, the clients are again involved to learn the
output. In Appx. D, we show how to realize FABB using an leveled-HE scheme.
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Overview of Protocol ΠTTC. The protocol description appears in Figure 2. It
includes three sub-protocols: Exponentiate, NotEqualZero and PreserveLeadOne,
explained below.

Input: The clients first input their preference over goods in form of permu-
tation matrices (Ni), which order offered goods by their preference, and their
transpose to FABB. The clients also initialize vectors h and o, which record the
availability of goods, and the allocated goods, respectively. Once the client inputs
are stored in FABB, subsequent parts of the protocol are performed by the servers
calling arithmetic operations on the values stored in FABB.

Subsequently, one round of TTC algorithm consists of three steps: (i) compute
current preference matrix (M) according to the available clients and their available
preference, (ii) compute cycles and identify parties on the cycles, and (iii) update
goods’ availability and clients’ assignments. These steps are repeated n times,
since the TTC algorithm requires n rounds of cycle finding.

Preference computation: The client’s permutation matrix (Ni) is used
to reorder h by preference (Sec. 3). Then, PreserveLeadOne is used to isolate
the most preferred, available good. Finally, applying the transpose gives us the
i’th row of the adjacency matrix M . Recall from Sec. 3, given input sequence
x1, ..., xn, to preserve the first 1, we compute yj = xj

∏
k<j(1 − xk) for j = 1

to n. Here, note that
∏

k<j(1 − xk) for j = n represents the sequence of all
prefix multiplications on (1− x1), ..., (1− xn−1); prefix multiplication is known
to be computable in ⌈log(n)⌉ multiplicative depth [HSJ86], and we illustrate an
example of prefix multiplication in Fig. 11.

Compute cycles: Let M be the adjacency matrix obtained in the previ-
ous step. The servers evaluate Exponentiate to compute Mn. We apply square-
and-multiply to compute matrix exponentiation; to obtain Mn, first compute

M2,M4, ...M2k , where k = ⌊log(n)⌋. Given (ik, · · · , i0), the binary representation

of n, we then multiply terms M i0 ·M2·i1 . . . ·M2k·ik in binary tree fashion with
⌈log(⌊log2(n)⌋)⌉ depth. The resultant matrix is multiplied by a n-dimensional
vector of ones, obtaining vector u with non-zero values in the i’th position, if
the i’th client is on a cycle (as shown in Lem. 1).

Next, we map each non-zero element of u to 1 with NotEqualZero so that
the i-th index of u is 1 if the client Ci is on a cycle, and otherwise 0. To
compute NotEqualZero, we can exploit the fact that values in u never exceed n
(Lem. 1), and thus we simply compute NotEqualZero(ui) := 1−n! ·

∏j=n
j=1 (j−ui),

rather than exploiting Fermat’s little theorem: x ̸= 0 ⇐⇒ xp−1 = 1 and
x = 0 ⇐⇒ xp−1 = 0. Multiplying n terms only requires O(log(n)) multiplicative
depth.

Update availability of goods and client’s assignment: Lastly, after
each cycle finding round, we update clients’ output vector o and availability of
goods h. We recover the index of each client’s preferred good from the current
adjacency matrix (M) and assign it to the output, if the output is unassigned
oi = 0. Finally, the availability of goods is computed from the output vector.

Lemma 2. (Correctness) ΠTTC (Figure 2) implements the top trading cycle
algorithm (specified in FTTC).
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ΠTopTradingCycle

Parties C = {C1, . . . , Cn} interact with FABB to initialize their inputs. Then,
computing servers S = {S1, ..., Sm} interact with hybrid functionality FABB

exclusively to securely evaluate the top trading cycle algorithm. Values in FABB

are denoted by [·] for which a unique object identifier (id ) is known to all
servers. Servers execute stateless subroutines PreserveLeadOne, Exponentiate,
and NotEqualZero on values stored in FABB.

Input: On receiving a preference list x(i) ∈ Zn
p as input, each client Ci locally

computes the permutation matrix Ni ∈ Zn×n
p such that x(i) = Ni × (1, ..., n)T ,

and privately inputs Ni and N−1
i to FABB. Servers jointly initialize availability

[h]← 0n and output vectors [o]← 1n in FABB.

Cycle Finding: For round r ∈ (1, ..., n), servers jointly perform the following.

1. Update adjacency matrix:
(a) For i ∈ (1, ..., n):

i. Let
[
a(i)

]
← ([Ni] [h])

ii. Let
[
b(i)

]
← PreserveLeadOne(

[
a(i)

]
)

iii. Let
[
w(i)

]
←

[
N−1

i

]
×

[
b(i)

]
(b) Store matrix [M ] ∈ Zn×n with i’th row

[
w(i)

]T
2. Compute cycles:

(a) [u]← Exponentiate([M ] , n)× 1n

(b) [ui]← NotEqualZero([ui]) for i ∈ n.

3. Update assignments & availability:
(a) For i ∈ (1, ..., n) :

i. [ti]←
∑

j∈[n] j · [Mi,j ]

ii. [oi]← [ti] · [ui] + [oi] · (1− [ui])
(b) If round r ̸= n, i ∈ (1, ..., n):

i. [hi]← (1− NotEqualZero([oi]))

Open assignments: Clients call FABB to privately open [oi] to Ci for i ∈
(1, ..., n).

Fig. 2: Top trading cycle in the FABB-hybrid model.

Theorem 2. ΠTTC (Figure 2) UC-realizes FTTC (Figure 1) in the FABB-hybrid
model against a passive adversary corrupting up to m − 1 servers and n − 1
clients.

Multiplicative depth of ΠTTC. We have highlighted the multiplicative depth of
subroutines Exponentiate, Not Equal Zero and PreserveLeadOne. The following
theorem and proof states that given n client inputs, ΠTTC incurs a maximum
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Mults/Rots in each cycle finding round
Mult. Depth

(1) Adj Matrix (2) Cycle Comp (3) Avail Update

ΠTCC O(n3) O(n3 log(n) O(n2)
O(log(n))

ΠTCC-SIMD O(n2) O(n log(n)) O(n log(n))

Fig. 3: Asymptotic complexities of ΠTCC and ΠTCC-SIMD

multiplicative depth of O(log(n)), for a single round of TTC, and O(n log(n))
overall. We refer to Appx. F for the proof for all theorems.

Theorem 3. Protocol ΠTTC evaluated on n client preference lists privately input
to hybrid functionality FABB incurs a maximum multiplicative depth of O(n log(n))
on values output from FABB.

4.2 TTC Protocol with SIMD Optimizations

Whilst ΠTCC can be evaluated in O(log(n)) multiplicative depth per cycle finding
round, the concrete complexity remains high (Fig. 3). For example, NotEqualZero
and PreserveLeadOne all require secure multiplication of n values in FABB. These
operations are each repeated n times for each client, incurring O(n2) multiplica-
tions per cycle finding round. In each round, building the adjacency matrix and
matrix exponentiation incur O(n3) and O(n3 log(n)) total multiplications, resp.

Our ΠTTC−SIMD in Fig. 6 exploits the full SIMD interface of FABB to reduce
the total complexity of ΠTTC whilst retaining multiplicative depth of O(log(n)),
thereby enabling practical runtimes of secure TTC in our implementation (Sec.5).
In ΠTTC−SIMD, steps (1),(2), and (3) have improved asymptotic complexity over
ΠTTC by up to a factor of n2 (see comparison in Fig. 3). Here, it is important
to also consider rotations as “expensive” operations as these incur runtimes in
the same order of magnitude as multiplications when FABB is instantiated with
leveled-HE (Fig. 15).

In the rest of the section we focus on an overview of ΠTTC-SIMD, introducing
additional sub-protocols needed to exploit SIMD operations effectively. Since,
each sub-protocol retains the multiplicative depth of O(log(n)) of ΠTTC-SIMD,
we only discuss the total number of operations needed. In Fig. 5, we provide
the concrete number of addition, multiplication, and rotation operations needed
for each of the three main steps in ΠTTC−SIMD (steps (1),(2),(3)). We refer to
Appx. G for a more detailed description of ΠTTC-SIMD. In particular, we highlight
Fig. 14 which illustrates the cost for each SIMD-style sub-protocol; for these, we
now provide a brief overview of how practical efficiencies can be achieved with
SIMD optimizations.

PrefixAddL/R and PrefixMultL/R protocols compute the sum/product of all prefixes
of a vector with only log(n) additions/multiplications and rotations. Here, we
only explain PrefixAdd for left (and right) directions; computation for PrefixMult
is analogous. PrefixAddL (PrefixAddR) outputs a vector where index i stores the
sum of all input elements up to (starting from) index i.
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We adapt parallel prefix arithmetic from [HSJ86] to the setting of SIMD
operations in FABB. First, an n-length vector is padded with 0s (for PrefixMult
we pad with 1s) to length n′ ≥ 2k+1 − 1, where k = ⌈log2(n)⌉. For example, to
compute PrefixAddL for vector [1, 2, . . . , 8], we pad 0s to obtain [1, 2, . . . , 8, 07], and
then proceed in levels. For level i ∈ [0, ⌈log2(n)⌉ − 1], we rotate the intermediate
vector to the right by 2i slots (see left of Fig. 11). The unrotated vector from
the preceding level is then added element-wise in SIMD-fashion with a single
addition call to FABB. After ⌈log2(n)⌉ levels, we obtain the resultant vector where
each element holds the sum of all elements of the input vector with lower slot
indices. This requires only O(log2(n)) total additions, and rotations. These prefix
algorithms are essential to implement InnerProd and PreserveLeadOne in SIMD
with concrete efficiency.

InnerProd is a task needed to update assignments and availability. The InnerProd
over n-sized vectors [v], [w] can be computed with a single multiplication and
evaluating the additive prefix over the result:

PrefixAddR([v] · [w]) =

 ∑
i∈[m]

viwi,
∑

j∈[m−1]

vjwj , ...


The inner product scalar is then located in the first slot position, and if necessary
can be extracted by multiplying with a fresh encryption of [1, 0, ...]. This incurs a
total multiplicative complexity of 1 (or 2 if extraction is required).

PreserveLeadOne is adapted for SIMD operations by padding the input vector x
with 1s, and then executing SIMD operations on the following:

[x, 1, ..., 1] · rot(PrefixMultL([1]− [x, 1, ..., 1]), 1, right) (1)

Here, the padding with 1’s maintains the correctness of the prefix multiplication
following the rotation of vector elements. This incurs ⌈log2(n)⌉+2 multiplications,
and ⌈log2(n)⌉+ 1 rotations.

NotEqualZero is a pure SIMD algorithm, that computes element-wise only; it
does not call rotations in FABB. Each vector index represents a separate parallel
execution. NotEqualZero for all elements in input vector [v], is evaluated as;

NotEqualZeron([v]) = [1]− [n!−1]
∏
i∈[n]

([i]− [v]) (2)

Here, let [i] and [n!−1] denote [i, ..., i] and [n!−1, ..., n!−1] with the same dimension
as the input vector. By moving the factor −1 out of the product term and
considering cases of even or odd n, we rewrite as follows to avoid negation by
multiplication;

NotEqualZeron([x]) =

{
[1] + [−n!−1]

∏
i∈[n]([x] + [−i]) n even

[1] + [n!−1]
∏

i∈[n]([x] + [−i]) n odd
(3)
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NotEqualZero in SIMD-fashion and input range [0, n] incurs n+1 multiplications
and additions ⌈log2(n+ 1)⌉.
SIMD Matrix operations: For matrix-matrix products, we implement the
technique by Jiang et al. [JKLS18], which requires only O(n) multiplications for
multiplying two n×n-matrices. For matrix-vector products, we implement Halevi
and Shoup [HS14] which also exhibits O(n) multiplicative complexity. These
techniques encrypt entire matrices (or their diagonals) in a single ciphertext and
are reproduced in Appx. G.3 for the readers convenience.

5 Implementation

We benchmark the local running times of the servers performing the leveled-HE
computation, which ignores ciphertext refreshing. Here, running ΠTCC-SIMD for
5 clients takes 14 seconds, which increases to 2 minutes for 15 clients and 8
minutes for 25 clients. We provide estimates for ciphertext refreshing assuming
specific network conditions, which turn out to be very small compared to the
local computing time.

Benchmarking Computational Overheads. We illustrate the running times for
varying numbers of clients. In addition to SIMD parallelization, we implement
our protocol with hardware parallelization across threads on a single server.

Fig. 4 shows the total local runtime for varying number of clients. We empha-
size that the TTC protocol runs an additional round for every additional client,
whilst each individual round increases in complexity, which explains the increase
in runtimes with increasing number of clients. In Fig. 5, the running times are
depicted for each phase of a single TTC round (and different numbers of clients);
whilst updating the adjacency matrix appears quasi-linear in number of clients
with sufficient parallelisation, the matrix exponentiation in the cycle computation
phase is not, suggesting observable bottlenecks in memory bandwidth.

We implement our ΠTTC−SIMD protocol with the OpenFHE [ABBB+22] li-
brary with AVX2 support, using their implementation of the BGV cryptosys-
tem [BGV12]. The main parameters of ring-LWE variant of BGV are the plaintext
modulus p, ciphertext modulus q and ciphertext ring dimension N . Large cipher-
text moduli are required to accommodate the noise growth of ciphertexts during
homomorphic operations.

OpenFHE exposes automated parameter generation to derive parameters for
a given plaintext modulus which (1) achieve a desired multiplicative depth and
(2) a level of standardized security (e.g. equivalent to 128 bits) [ACC+21]. We
set p = 65537, a plaintext modulus recommended by library authors for general
applications over integers. This modulus allows for homomorphic computations
with a multiplicative depth of ∼11. Using this parameterization, we obtain up to
32768 plaintext slots in each ciphertext.

We assume that all computations are performed by three servers of which
at most two are corrupt. We ran our experiments on a PC with an 48-core
Intel CPU and 96 GB of RAM, and varying number of threads (Fig. 4). Our
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implementation of ΠTCC-SIMD already provides ciphertext level parallelisation;
remaining protocol steps which can be parallelised at the hardware level are
run with varying number of threads. We note that runtimes for n clients do not
measurably improve beyond n threads, as single-thread performance and memory
bandwidth become performance bottlenecks.

Refreshing intervals. Choosing the correct maximal depth for the encryption
scheme we use, is a non-trivial task. It requires finding a good balance between
computational overheads and round-trip latencies. Choosing a bigger maximal
depth significantly affects the computational overhead of performing a single
homomorphic multiplication, whereas a smaller maximal multiplicative depth,
would increase the number of communication rounds. We model the communica-
tion overhead for refreshing ciphertexts assuming BGV parameters chosen for
our implementation and various network conditions in Appx. H.

Comparison with secret-sharing based MPC. In SHE, the multiplicative depth
between ciphertext refreshing is a fixed constant; in asymptotic terms, our
communication overhead for re-freshing ciphertexts therefore grows linearly with
the multiplicative depth, as is the case for secret-sharing based MPC. In concrete
terms, however, we show in Appx. H that SHE is superior to secret-sharing based
approaches for realistic, public network conditions, where the roundtrip latency
exceeds ≈ 40 ms.

Conclusion. Our benchmarking results, using our new algorithmic insights, resolve
one-sided matching markets within secure computation in practice. We note that
deciding which trades to perform, may in practice often not be very time critical.
For this reason, it may be acceptable for the protocols to run on the order of
minutes.

An interesting future direction is to improve upon our implementation with
optimizations for specific hardware architectures. In particular, we suspect mem-
ory bandwidth to be a key performance bottleneck, and given recent investments
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to commercialize Application Specific Integrated Circuit (ASIC) designs for FHE
evaluation promise to improve runtimes by an order of magnitude. Another
direction of inquiry, which we leave for future works, is investigating whether
(and for what parameters) an alternate implementation via secret-shared MPC
techniques shows improvement.
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ΠTTC-SIMD

Clients C := {C1, . . . , Cn} and servers S := {S1, . . . , Sm} interact with function-

ality FABB. FABB is initialized to Zn2

p , implying SIMD operations over vectors
of length n2. Inputs of length less than n2 are padded with trailing 0s. Values
stored in FABB are denoted by [·] for which a unique object identifier (id) is
known to all parties.

Input: Each client Ci receives its preference list x(i) ∈ Zn
p as input and

performs the following:

1. Compute permutation matrix Ni ∈ Zn×n such that x(i) = Ni × [1, ..., n]T .
2. For ℓ ∈ [n], compute diagℓ(Ni) and diagℓ(N

−1
i ) (See eq. 7 for matrix

diagonals).
3. Initialize diagℓ(Ni), diagℓ(N

−1
i ) by calling FABB on Input.

All parties initialize h and o, where h← 12n and o← 0n.

Cycle Finding: For round r ∈ (1, ..., n) servers perform the following;

1. Update adjacency matrix:
(a) For client index i ∈ (1, ..., n):

i.
[
a(i)

]
←

∑
0≤l<n[diagl(Ni)] · rot([h], l, left)

ii.
[
a(i)

]
←

[
a(i)

]
· [(1n, 0n)] + [(0n, 1n)]

iii. Let
[
b(i)

]
← PreserveLeadOne(

[
a(i)

]
)

iv.
[
b(i)

]
←

[
b(i)

]
· [(1n, 0n)]

v.
[
b(i)

]
←

[
b(i)

]
+ rot(

[
b(i)

]
, n, right)

vi.
[
w(i)

]
←

∑
0≤l<n[diagl(N

−1
i )] · rot([b(i)], l, left)

(b) For i ∈ [n], pack [w(i)] as [w] := [w(1),w(2), . . . ,w(n)] by running
Pack Vector (Fig. 10).

2. Compute cycles:
(a) Copy [u]← [w]
(b) For r ∈ [1, ..., ⌈log(n)⌉] : [u] ←

∑
i∈[n−1] colShifti(lin([u])) ·

rowShifti(lin
′([u]))

(c) Unpack [u], and for l ∈ [n] initialize diagl(Flat
−1(u)) ∈ Zn by running

Pack Vectora.
(d) [u]← NotEqualZeron(

∑
0≤l<n[diagl(U)])

3. Update assignments and availability:
(a) For i ∈ [n], [c(i)]← innerProdR([w

(i)], [(1, 2, ..., n)])
(b) [t]←

∑
i∈[n] rot([(1, 0, ..., 0)] · [c

(i)], i− 1, right)

(c) [o]← [t] · [u] + [o] · (1− [u])
(d) If round r ̸= n: [h]← (1− NotEqualZeron([o]))
(e) [h]← [h] + rot([h], n, right)

a This requires steps similar to the Pack Vector sub-routine in Fig. 4.2. Hence,
we skip the details here.

Fig. 6: Protocol for secure top trading cycles with SIMD operations.
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Adjacency Matrix Cycle computation Update assignments

Additions 2n2 + 2n (2n− 2)⌈log2(n)⌉+ n+ 3 n⌈log2(n)⌉+ 2n+ 3

Rotations 2n2 + n(⌈log2(n)⌉+ 2) (6n− 4)⌈log2(n)⌉ n⌈log2(n)⌉+ n+ 1

Constant Multiplications 2n (5n− 3)⌈log2(n)⌉ 2n+ 2

Multiplications 2n2 + n(⌈log2(n)⌉+ 2) n(⌈log2(n)⌉+ 1) n+ 2

Mult. Depth ⌈log2(n)⌉+ 4 3⌈log2(n)⌉+ ⌈log2(n+ 1)⌉ ⌈log2(n+ 1)⌉+ 3

Fig. 7: Complexity measures of ΠTTC-SIMD.
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A Detailed Related Works

Here, we elaborate on some closely related problems and their privacy preserving
approaches.

Matching Algorithms. In the stable marriage problem of Gale and Shapley [GS62]
agents are divided in two groups. Each agent in one group has a preference list
over all agents in the other group and eventually all agents would like to be
matched with an agent from the other group. The original work of Gale and
Shapley presents a non-private algorithm for solving the stable marriage problem
and subsequently several works have presented privacy-preserving variants of this
algorithm [Gol06, FGM07, KS14, ZWR+16, DEs16, MPA+23]. On an intuitive
level, the stable marriage problem is harder than the problem we consider, as
evidenced by Roth [Rot82a], who showed that any mechanism that solves the
stable marriage problem incentivizes at least some of the agents to be dishonest
about their true preference list. On a technical level, the ideas for computing
stable marriages privately do not appear to be useful for solving the problem
considered in this work.

The housing allocation problem of Hylland and Zeckhauser [HZ79] is identical
to the one-sided matching markets we consider, with the only difference being that
initially nobody owns any of the goods. Abdulkadiroğlu and Sönmez [AS98] proved
that randomly assigning goods to agents and then resolving the corresponding
one-sided matching market has many appealing game-theoretic properties. Using
the above insight, the protocols in our work can easily be adapted to solve the
housing allocation problem as well.

In the kidney exchange problem of Roth, Sönmez, and Ünver [RSÜ04], we have
n agent-donor pairs. Each agent is in need and each donor provides one kidney,
but the individual agent-donor pairs may be incompatible with each other. The
goal of a kidney exchange is to trade kidneys in a way that agents receive kidneys
they are compatible with. Privacy-preserving kidney exchange protocols have
recently been proposed in several works [BHK+22, BHP+22, BMW22, BMW23].
From a technical perspective, these protocols are restricted and tailored to finding
very small cycles of trades, usually of length two or three, whereas one-sided
matching markets will require finding arbitrarily large cycles in graphs efficiently.
For this reason, it seems that the ideas from current privacy-preserving kidney
exchange protocols do not translate to our setting.

B Security Model

The real-world experiment is defined in terms of an external distinguisher called
the environment Z, an adversary A, parties P := {P1, . . . , Pn}, and the hybrid
functionality F ′. Z writes inputs to all the parties, reads outputs of all the parties,
and interacts with A throughout the experiment execution. When initiated, A
corrupts a subset of parties P∗ ⊆ P and from then on gets read-only access to
their internal state (i.e., it cannot make the corrupt party behave arbitrarily).
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A additionally gets to change the corrupt party’s inputs as: Z asks A for
corrupt party’s inputs, and on receiving them writes them on the party’s input
tape. Parties additionally have access to a local functionality F ′. We denote
RealΠ,F ′,A,Z as the output of Z when running the real-world experiment.

The ideal-world experiment is defined in terms of Z, an ideal-world adversary
called the simulator S, a functionality F and a set of dummy parties P̃. Here
too, Z interacts with the (ideal-world) adversary S throughout the experiment
execution. On initiation S first activates an instance of A internally and relays
communication between Z and A. As in the real-world experiment, A might
corrupt a subset of parties P̃∗. Since S intercepts and relays all communication
between Z and A, when Z decides the inputs for the corrupt parties via A, S
already knows them. On receiving inputs, each honest party (and S) sends them
to F to receive the output. S has an additional job of intercepting any call to F ′

made by a corrupt party P̃∗ and simulating F ′’s response. We denote IdealF,S,Z
as the output of Z when running the ideal-world experiment.

Definition 1. Let F ,F ′ be an n party functionality and Π be an n party protocol.
We say that Π securely realizes F in the F ′-hybrid model and in the presence of
passive and static corruptions if for all semi-honest adversaries A, there exists a
PPT simulator S, such that for all PPT Z, the following holds:

{Ideal{F,S,Z}(x, λ, z)}x,λ,z
c
≈ {Real{Π,F ′,A,Z}(x, λ, z)}x,λ,z

where Ideal and Real are the ideal and real-world experiment defined above,
x := {x1, . . . , xn} denotes the party’s inputs, λ is the security parameter, and z
is the auxiliary input.

C Leveled Homomorphic Encryption

A homomorphic encryption scheme [Gen09] is a set of algorithms (KeyGen,
Enc,Dec,Eval) for plaintext message space X and ciphertext space Y, where,

1. (sk, pk) ← KeyGen(1λ, ℓ): Takes the security parameter, and the plaintext
vector size ℓ as the input and outputs a (pk, sk) pair.

2. c← Enc(pk,m): Takes a vector of messages m ∈ X ℓ and outputs its encryp-
tion c ∈ Y.

3. c′ ← Eval(pk, f, c1, ..., cn): Takes as input a set of ciphertexts c1, . . . , cn
and an operation f ∈ {Add,Mult,Roti,dir}, and outputs a ciphertext
c′. Here, Add, Mult and Roti,dir denote point-wise addition, point-wise
multiplication, and rotation by i slots in the direction dir, resp.

4. m′ ← Dec(sk, c): Takes as input a ciphertext and outputs its decryption m′.

A homomorphic encryption scheme is said to be d-leveled (or somewhat
homomorphic) if the KeyGen algorithm takes an additional parameter d as input,
where d is the maximum allowed multiplicative depth of the arithmetic circuit
that can be evaluated over the ciphertexts.

We require that a leveled-HE (or SHE) scheme satisfies the standard notions
of correctness, IND-CPA security, and circuit privacy.
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D Ideal Functionality: Arithmetic Black Box

The functionality FABB (Fig. 8) receives commands from two types of computing
devices: from clients it receives an input vector of fixed length ℓ, and then it
allows servers S1, . . . , Sm to securely perform additions, multiplications, and
rotations over these inputs. Since the input is a vector of length ℓ, additions
and multiplications are then performed element-wise. Thus, ℓ parallel additions
or multiplications can be computed at the cost of a single call to FABB. Servers
can securely cycle vector elements by any number of slots and direction; this
operation is called rotation, and permits the computation over values stored at
different vector indices.

FABB

FABB interacts with client C = {C1, . . . , Cn} and servers S = {S1, ..., Sm}
and performs arithmetic operations over field domain Zp. The functionality is
parameterized by the length of input vectors ℓ.

Input: On receiving (Input, sid, id, X ∈ Zℓ
p) from a client Pi, and

(Input, sid, id) from all other clients, check if |X| = len. If yes, then store
(id, X).

Addition: On receiving (Add, sid, id0, id1, id2) from all servers in S, retrieve
(id1, X1) and (id2, X2). Store (id0 , X1 +X2)

a.
Multiply: On receiving (Mult, sid, id0, id1, id2) from all servers in S, retrieve

(id1, X1) and (id2, X2). Store (id0 , X1 ·X2).
Rotate: On receiving (Rot, sid, id0, id1, s, dir) from all servers in S, retrieve

(id1, X). Parse X := (x1, . . .). If dir := left, then rotate to the left by s
indices, i.e., X ′ := (xs+1, . . . , xs). Else, if dir := right, rotate to the right by
s. Store (id0, X

′).
Open-to-C: On receiving (Open, sid, id, C) from all clients in C and servers

in S, retrieve (id, X) and return X to the client C and (Opened) to all
other clients.

a Both Add and Mult operations are performed element-wise.

Fig. 8: Arithmetic black box functionality

Realizing FABB In this work we consider the client-server setting with n clients
and m servers. Specifically, we consider that one server (say, S1) performs the
homomorphic operations over ciphertexts, while the other servers participate in
decryption. In this setting, it is easy to see that an leveled-HE encryption scheme
UC-realizes FABB in the FKeyGenDec-hybrid world. The FKeyGenDec functionality
(Fig. 9) allows servers and clients to obtain pk for the leveled-HE scheme where
the associated sk is stored inside the functionality. Given pk, clients can encrypt
secret inputs and send them to S1, who then evaluates homomorphic operations
over ciphertexts locally with Eval algorithm of the leveled-HE scheme.
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Importantly, leveled FHE schemes permit a bounded number of homomorphic
operations only; concretely, the noise in ring-LWE based schemes grows with each
homomorphic operation, in particular with multiplications. The growth in noise
eventually prevents the correct decryption of ciphertext. When evaluating circuits
with higher multiplicative depth than what can be tolerated by the leveled-HE
scheme, ciphertexts must be refreshed. To refresh, servers initialize a random
mask and send its encryption to S1, who applies the mask to the ciphertext.
Servers jointly open it to S1 by calling FKeyGenDec (via Decrypt-to-S command).
S1 can then re-encrypt and remove the mask via one local addition operation,
and continue with the evaluation on a fresh ciphertext. Finally, when the clients
want to learn the outcome, they query FKeyGenDec (via Decrypt-to-C command)
which will decrypt the ciphertext and output the result to the respective client.

We restate the formal security theorem below (Thm 4). The proof for is
similar to that in [DPSZ12], but for completeness present the main ideas below.

Theorem 4. Let LHE := (KeyGen,Enc,Dec,Eval) be a leveled-HE scheme that is
correct, IND-CPA secure, and is circuit private. Then FABB can be UC-realized by
a protocol with LFHE in the FKeyGenDec-hybrid against any static, passive adversary
corrupting up to m− 1 servers and n− 1 clients.

Proof. We assume private communication channels between all the servers and
clients. We also assume that the environment issues consistent commands (as
expected by the functionality) to all the clients and servers. Otherwise, it would
be possible to account for inconsistent commands by adding additional checks as
a part of the honest protocol execution, and in FABB description.

Honest clients and servers behave as follows. On initialization, clients and
servers call FKeyGenDec and wait to receive pk. On receiving (Input, sid, id, X),
a client computes ciphertext c ← Enc(X, pk), stores (id, c), and sends (id, c) to
server S1 and (id) to the rest of the servers. From here on, for all operational
commands (Add, Mult, and Rot) received by the serves, S1 executes them
locally after checking if the corresponding ciphertexts and ids are stored. If a
ciphertext (id, c) needs to be refreshed, before evaluating on it, servers send an
encryption of a random mask to S1, who uses them to mask the ciphertext and
open it by calling FKeyGenDec (via Decrypt-to-S command). S1 can then freshly
encrypt and remove the mask with one local addition operation, store the new
ciphertext under the same (id) as before, and continue with the evaluation.

The simulator’s algorithm (Sim) is straight forward. Recall that in the semi-
honest UC setting, all inputs for the corrupt parties are forwarded via Sim.
This means that all Input commands for the corrupt clients are known to Sim,
and so it can call FABB on the corrupt clients’ behalf. Moreover, since we are
in FKeyGenDec-hybrid, Sim will intercept corrupt client and servers’ calls to this
functionality and simulate its responses. Sim behaves as follows.

– Initialization: On initialization the servers and the clients call FKeyGenDec

on init command. Sim receives all Init calls, sample pk, sk and outputs pk
to all. Sim invokes an instance of A internally and relays all communication
between Z and A. Let C̃∗ and S̃∗ be the clients and servers corrupted by A.
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– Simulating input command: When Z sends ((Input), ·, Xi) intended for
a corrupt client C̃∗

i , pass it to A. On receiving X ′
i in response from A, relay it

to Z. Note that the client C̃∗
i will now be initialized with input X ′

i. Forward
((Input), ·, Xi) to FABB, and send an encryption to the corrupt server. When
Z sends ((Input), ·) to the corrupt party (when the input is intended for an
honest party), encrypt 0ℓ and send it to the corrupt server on behalf of the
honest client.

– Simulating add,mult,rot command: On receiving an operation command
form Z on behalf of a corrupt server, forward it to FABB.

– Simulating Open-to-C command: On receiving (Open, ·, ·, C) command
where C is corrupt, forward (Open, ·, ·, C) to FABB on the corrupt client
and server’s behalf. Receive the opening X in response. Receive query to
FKeyGenDec on (decrypt-to-C) from the corrupt entities and forward X to
the corrupt client C.

– Simulating refreshes for a corrupt S1 server: Sim encrypts a random
mask vector on honest server’s behalf and send them to S1. Then, intercept
the Decrypt-to-S command made by the corrupt servers, and open a
random vector to S1.

Indisintguishability of the view generated by Sim follows from correctness and
IND-CPA properties: correctness ensures that the decryption of a ciphertext
obtained by applying the Eval algorithm (as in the real protocol execution) is
the same as the output of the evaluation over plaintext (as in the ideal protocol);
and IND-CPA ensures that ciphertexts for 0 vectors generated by Sim (as in the
ideal protocol) look indistinguishable from the real ciphertexts generated by the
honest parties (as in the real protocol). We would like to remark that since we are
in the UC-setting we must assume some setup, and we chose to rely on FKeyGenDec

functionality (see [DPSZ12] for a similar treatment).
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FKeyGenDec

FKeyGenDec interacts with clients C = {C1, ..., Cn} and servers S = {S1, . . . , Sm}
and is parameterized by the underlying leveled-HE encryption scheme
(KeyGen,Enc,Eval,Dec).

Init: On (Init, sid) from all clients and servers, compute (pk, sk)← KeyGen(1λ),
and send (sid, pk) to all. Ignore all future commands.

Decrypt-to-C: On (Decrypt-to-C, sid, c, Ci) from server S1, and
(Decrypt-to-C, sid, Ci) from all clients and all other servers, compute
m← Dec(sk, c) and output m to Ci and Opened to all other clients.

Decrypt-to-S: On (Decrypt-to-S, sid, c) from server S1, and
(Decrypt-to-S, sid) from all clients and all other servers, compute
m← Dec(sk, c) and output m to S1 and Opened to all other servers.

Fig. 9: Distributed key generation and decryption functionality

E Proof of Lemma 1

Lemma 3. Let M be the adjacency matrix of a functional graph with n nodes,
let 1 be a column vector where all entries are 1 and let u = Mn1. Then ui is
non-zero if and only if node i is on a cycle. Moreover, ui is a non-negative integer
and ui ≤ n.

Proof. Observe first that ui is the number of paths of length n that end in node
i. It is therefore of course a non-negative integer and since we have a functional
graph, for every node j, there can be at most one path of length n from j to i,
whence ui ≤ n.

As for the cycle property, note that if node i is on a cycle, we can construct a
path of length n ending in node i, by simply going n steps “backwards” in the
cycle. So this means ui > 0 in this case.

Finally, assume node i is not on a cycle and consider a node j where there is
a edge from j to i. Note that j cannot be on a cycle, as this would imply that
the out-degree of j would be greater than 1. We can repeat the same argument
for any node “pointing to” j. Continuing in this way, we conclude for every node
ℓ where there is a path from ℓ to i, that ℓ is not on a cycle. This means that no
path that ends in node i can contain the same node more than once, and hence
any such path has length at most n− 1, so that ui = 0 in this case.

F Correctness and Security of ΠTTC

Lemma 4. (Correctness) ΠTTC (Figure 2) implements the top trading cycle
algorithm (specified in FTTC).

Proof. Correctness of step (1) in ΠTTC (deriving the adjacency matrix from client
preferences) and step (2) (computing cycles from adjacency matrix) follow from
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Sec 3 and Lem 1 respectively. It remains to argue correctness of step (3) of ΠTTC

over n rounds, which updates the availability and assigned output for clients. We
must show that once a client is assigned to a cycle, its output is set and that its
good is no longer available for the remainder of the protocol.

For convenience, we reproduce protocol steps 3.a.ii. and 3.b.i. which update
output and availability of each client following cycle computation in each round.

– 3.a.ii. oi ← ti · ui + oi · (1− ui)
– 3.b.i. hi ← (1− NotEqualZero(oi))

Here, ui is a bit which is 1 if client i is on a cycle and 0 otherwise, and ti is
the index of client i’s most preferred available good at the onset of the round.
Outputs (o) are initialized to 0n and availability of clients (h) to 1n.

Cycle finding round 1. Following the first cycle computation, clients are either
on a cycle ui = 1 or not ui = 0 (Step 2). We distinguish these two cases:

– ui = 1: Client i has its output oi updated to its top preference ti (step 3.a.ii).
Further, its availability hi for the subsequent round is set to “0” (Step 3.b.i).
Therefore, client i’s good is never considered in subsequent updates of the
adjacency matrix; in graph representation, the client will have no inbound
edges.

– ui = 0: Client i’s output oi = 0 remains as initialized (step 3.a.ii) and its
availability hi remains “1” (step 3.b.i).

Cycle finding round 1 < r ≤ n. In each subsequent round, we distinguish between
two cases for each client i dependent on the value assigned to its output variable
oi at the onset of round r.

– oi ̸= 0 at onset of round r. In this case, the availability of client i must be
hi = 0 at the onset of the round, otherwise oi = 0 must hold according
to step 3.b.i. (contradiction). Naturally, client i cannot be assigned in the
cycle finding round without availability; it remains in case “oi ≠ 0” for all
subsequent rounds as its availability hi will always be assigned 0 for oi ̸= 0
in step 3.b.i.

– oi = 0 at onset of round r. In this case, the availability of client i must be
hi = 1 at the onset of the round. Otherwise oi must be non-zero according
to step 3.b.i. (contradiction). Following the cycle finding steps (1) and (2)
in round r in the case that client i’s good was available at the onset of the
round, we distinguish the following subcases following cycle computation in
round r.
• ui = 1. If client i is assigned to a cycle in round r, its output will
subsequently be updated oi ≠ 0, and its availability is set to hi = 0.
The client cannot be assigned to a cycle and its non-zero output oi is no
longer updated. It remains in case oi ̸= 0 for subsequent rounds.

• ui = 0. If client i is not assigned to a cycle in a round, its output remains
as initialized (oi = 0) and it remains available for the next round (hi = 1).
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Thus, once a client i has been assigned a cycle for the first time, its output
variable remains set until the end of the protocol and its good is removed from
the pool of available parties in all subsequent cycle computations.

Theorem 5. ΠTTC (Figure 2) UC-realizes FTTC (Figure 1) in the FABB-hybrid
model against a passive adversary corrupting up to m − 1 servers and n − 1
clients.

Proof. Note that the clients or the servers never interact with each other directly,
and FABB only produces a response for an Open-to-P commands. Hence the
view of Z in the real-world experiment consists of just the inputs and outputs of all
the parties. Thus, in the ideal-world, the simulator Sim’s job is simply to simulate
responses from FABB for the corrupt servers, and open the final output correctly
to a corrupt clients. The simulator Sim works as follows: On initialization, run A
internally and relay all communication between Z and A. Let C̃∗ and S̃∗ be the
clients and servers corrupted by A, resp. From Z, on receiving ((Input),xi) for
a corrupt client C̃∗

i , pass it on to A. On receiving x′
i from A, relay it back to

Z. Note that the client C̃∗
i will now be initialized with input x′

i. Sim sends x′
i

to FTTC on behalf of C̃∗
i to receive outputi. To simulate A’s view, receive calls

to FABB for all commands made by a corrupt server and respond with nothing.
Finally, receive call to Open from a corrupt client C̃∗

i and respond with outputi.
The view in the real-world experiment consists of just the input and the final
output (since all interaction is via FABB). Hence, indinstinguishability of the view
generated by Sim is implied by correctness (argued in Lemma 2).

Theorem 6. Protocol ΠTTC evaluated on n client preference lists privately input
to hybrid functionality FABB incurs a maximum multiplicative depth of O(n log(n))
on values output from FABB.

Proof. We illustrate the multiplicative depth complexity of ΠTTC for a single
round.

– Adjacency matrix (2 + ⌈log2(n)⌉). Steps (1.a.i) and (1.a.iii) represent
matrix-vector mulplications, each incrementing the maximum multiplicative
depth of values stored in FABB by 1. PreserveLeadOne incurs additional
multiplicative depth of ⌈log2(n)⌉.

– Cycle computation(⌈log2(n)⌉+⌊log2(n)⌋+⌈log2(⌊log2(n)⌋)⌉). Exponentiate
requires ⌊log2(n)⌋+ ⌈log2(⌊log2(n)⌋)⌉ and NotEqualZero incur multiplicative
depth of ⌈log(n)⌉.

– Assignment & availability (2 + ⌈log2(n)⌉). Step 3.a.i and 3.a.ii each
increment multiplicative depth by 1. Step 3.b incurs ⌈log(n)⌉ via NoEqualZero.

Thus, over n rounds, we incur a maximum of multiplicative depth of O(n log(n))
on values in FABB.

G Detailed TTC-SIMD protocol

In this section, using the SIMD-style operations exposed by FABB and realized
by the leveled-HE frameworks (Appendix D), we illustrate SIMD algorithms over
vectors for all sub-protocols in in ΠTTC-SIMD (Figure 6).
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The overall template of protocol ΠTTC-SIMD (Fig. 6) follows that of ΠTTC

(Fig. 2), but extends it by integrating various SIMD algorithms described in
Section. 4.2 to achieve improved concrete complexity over ΠTTC in Table 3.

Correctness of ΠTTC−SIMD is implied by that of ΠTTC; for example, we note
that parties in ΠTTC−SIMD only make calls to FABB and have no other communi-
cation directly with each other. Thus, the security arguments from ΠTTC apply
directly to ΠTTC−SIMD. Complexity measures of ΠTTC-SIMD are given in Fig. 7.

A concrete challenge addressed by ΠTTC-SIMD is to integrate various SIMD
algorithms introduced in Section ?? which operate over different vector domains,
whilst FABB must be initialized for a fixed vector domain. For example,

– NotEqualZero (Eq. 4) is evaluated element-wise, and can thus be applied to
vectors of any length.

– PrefixAdd/Mult (Fig. 11) computes prefix arithmetic over n leading values in
a vector of length n′ ≥ 2k+1− 1, where k = ⌈log2(n)⌉; the padding of 0s or 1s
following the n leading “active” vector elements can thus be extended for any
compliant n′. The same follows for InnerProduct, which is an element-wise
multiplication followed by PrefixAdd. Note that these operations result in a
vector with elements in indices i > n filled with intermediary values, which
must be accounted for in the full protocol.

– PreserveLeadOne (Eq. 6) also involves evaluating PrefixMult over n elements,
but requires a vector dimesion of n′ ≥ 2k+1 as a subsequent right rotation
requires that there is one trailing 1-element in the vector that is cycled into
the first vector index.

– Matrix-Vector Mult. (Eq. G.3) are over vectors of length n, where matrix
diagonals are encoded as separate vectors.

– Matrix-Matrix Mult. (Eq. 9) are over vectors of length n2, where all matrix
elements are encoded in a single vector.

G.1 Protocol overview

We now provide a step-by-step description of ΠTTC-SIMD in Fig 6, which forwards
calls to FABB parameterized over integer vectors of dimension n2. In the next
section, we will explain the details of each sub-protocol used ΠTTC-SIMD.

In update adjacency matrix, we first multiply the availability vector with the
permutation matrix of each client to obtain the availability of goods in order of
its preference; note that the matrix-vector multiplication in step 1.a.i. of Fig 6
is evaluated over the first n vector elements. Thus, the availability matrix h is
replicated once to the right (during initialization and its update in step 3.e.),
to emulate the cycling of elements over lower vector dimension n. In step 1.a.ii.
we isolate or mask the first n vector elements, since active elements in h are
replicated and now populate elements in indices outside of the leading n of a(i).
Furthermore, step 1.a.ii. pads the vector with trailing 1s, necessary for the correct
evaluation of PreserveLeadOne in 1.a.ii. The resulting vector bi with a single 1
must then be masked (1.a.iv) and replicated (1.a.v.) to emulate correct element
cycling of n elements in matrix-vector multiplication of step 1.a.vi.
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In compute cycles, each matrix is encoded as a single vector in FABB. Thus, it
is necessary to re-encode the rows of the adjacency matrix from step (1) into a
single flat-encoded vector in step 1.b. Matrix squaring in 2.b. is then evaluated
over vectors of dimension n2. We note that ⌈log2(n)⌉ squarings are sufficient
for cycle-finding; the proof argument of Lemma. 1 trivially holds. However,
subsequent multiplication of the squared adjacency matrix with the 1 vector will
require re-encoding of the matrix in diagonal form (step 2.c).

In update assignments and availability, we compute the index of the most
preferred available good of each party in step 3.a.; InnerProdR over w(i) and
[(1, 2, ..., n)] brings the desired index to the first element of the vector. We then
encode all preferred indices in a single vector in 3.b., permitting the update of
assignments and availability in purely element-wise fashion in 3.c-3.e.

G.2 SIMD on vectors of different lengths.

We note that FABB must be parameterized by a single vector length ℓ; all
subsequent arithmetic operation and rotation calls must then operate over vectors
of length ℓ. Subsequently described SIMD-style algorithms, however, are over
vector lengths of n, 2n and n2; different vectors must be carefully padded or
replicated to ensure correctness over ℓ, which is set to n2 in FABB initialized by
ΠTTC-SIMD (Figure 6). When we write that a client calls FABB with command
(Input, sid, id,v) and |v| ≤ ℓ then it is implicitly assumed that, before calling
FABB, the client pads v with appropriate number of zeros so that |v,0| = ℓ. For
simplicity, following SIMD-style algorithms will be described in their “native”
vector dimension; we refer to Appendix G for details on how they are realized in
Zn2

.

G.3 Sub-Protocols of ΠTCC-SIMD

Mask./Pad./Repl. of vector elements. ΠTCC-SIMD initializes FABB to securely
perform SIMD operations over vector lengths of n2; this requires careful masking,
padding and replication/copying of vector elements stored in FABB to ensure

correctness of PrefixMult, InnerProd, PreserveLeadOne, Matrix-Vect over Zn2

. In
general, all inputs are padded with 0’s to fill a vector of length n2.

Pack vectors. Protocol ΠTCC-SIMD encodes matrices row-wise (adjacency ma-
trix update), as diagonals (matrix-vector multiplication), and in flattened form
(matrix-matrix multiplication). To re-encode matrices from one form to another
whilst minimizing (expensive) multiplication and rotation calls to FABB, we sim-
ply mask matrix elements, and then open the masked values; subsequently, the
masked matrix elements are re-arranged and input again to FABB in the desired
encoding form, where they are unmasked inside FABB. We note that random
masks can be generated by aggregating randomness contributions from servers
prior to the client input phase, thereby not affecting the overall protocol runtime
for clients. When realizing FABB, the opening of masked values will naturally
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incur communication; in practice, this communication can be chosen to coincide
with ciphertext refreshing (Section 5), and thus does not incur any additional
communication complexity.

For example, to re-encode a matrix stored as separate vectors in FABB, where
each matrix row occupies leading n indices of each n2 vector, to a matrix with
all rows in a single vector of length n2, the protocol evaluates Pack Vectors
as shown in Fig. 10. To re-encode matrix rows [w1, 0, ..., 0], . . . , [wn, 0, ..., 0] as
[w] := [w1, . . . ,wn], the naive approach would be to rotate each vector by
the appropriate positions (i · n positions for the i-th vector) and then add
them up. This results in O(n) rotations. Instead, the parties initialize masks
([r1, 0, ..., 0], . . . , [rn, 0, ..., 0]), locally mask each [wi] (with ri) and open the
masked vector to one of the parties (say P1). Then P1 can locally rearrange all
masked vectors in the correct order and reinitialize it as one vector. To use this
further, the parties must remove the masks. This can be done easily if the parties,
while initializing ri (used to mask wi), also initialize a rotated version of it so
that it aligns with wherever wi lies in w after packing.

Pack Vectors: matrix rows

This sub-routine packs the first n slots of vectors ([w(1)], . . . , [w(n)]) as one
vector [w].

1. For each i ∈ [n],

(a) Each party Pj samples r
(i)
j ← Fn

p at random and computes R
(i)
j :=

{0j·n, r(i)
j , 0, . . . 0}. Pj initializes r

(i)
j ,R

(i)
j with FABB.

(b) [r(i)]←
∑n

i=1[r
(i)
j ] and [R(i)]←

∑n
i=1[R

(i)
j ].

(c) [m(i)]← [w(i)] + [r(i)].
(d) All parties call FABB with input (Open, ·, P1) to allow P1 to learn m(i).

2. Party P1 computes m := (m(1), . . . ,m(n)) and initializes it with FABB.
3. [R]←

∑n
i=1[R

(i)]
4. [w]← [m]− [R]

Fig. 10: Sub-routine to pack n matrix rows in one vector.

We note that the exponentiated matrix in the cycle computation step must
also be re-encoded in form of its diagonals (Eq. 7); here, we follow the same
approach as in Fig. 10, but omit an formal description for brevity.

NotEqualZero. We implement a mapping of positive integers in range [0, n] to 1
and note that all input values in our application satisfy this range (Lemma 1).
NotEqualZero is a pure SIMD algorithm, that computes element-wise only; it
does not call rotations in FABB. Each vector index represents a separate parallel
execution. To compute NotEqualZero for all elements in input vector [v], we
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evaluate;

NotEqualZeron([v]) = [1]− [n!−1]
∏
i∈[n]

([i]− [v]) (4)

Here, let [i] and [n!−1] denote [i, ..., i] and [n!−1, ..., n!−1] with the same dimension
as the input vector. Note that these two vectors can be precomputed locally and
initialized by a server. For correctness, consider vector element vj at index j and
observe that if vj > 0 in range [1, n], then the product term

∏
i∈[1,n](i− vj) is

0. Conversely, if vj is zero, then the product term will equal n!. The output of
NotEqualZero in the first case is 1, while in the latter case is 0. By moving the
factor −1 out of the product term and considering cases of even or odd n, we
rewrite as follows to avoid negation by multiplication;

NotEqualZeron([x]) =

{
[1] + [−n!−1]

∏
i∈[n]([x] + [−i]) n even

[1] + [n!−1]
∏

i∈[n]([x] + [−i]) n odd
(5)

NotEqualZero in SIMD-fashion and input range [0, n] incurs a total multiplicative
and additive complexity of n+ 1 and consumes multiplicative depth of ⌈log2(n+
1)⌉.

PrefixAdd/PrefixMult. PrefixAddL/R and PrefixMultL/R algorithms allows par-
ties to compute sum/product of all prefixes of a vector with only log(n) ad-
ditions/multiplications and rotations. These prefix algorithms are essential to
implement InnerProd and PreserveLeadOne with concrete efficiency.

We adapt parallel prefix arithmetic from [HSJ86] to the setting of SIMD
operations in FABB. Suppose we want to compute the prefix sum of the vector
[1, 2, ..., 8] shown in the upper left of Figure 11; PrefixAddL outputs a vector where
each element holds the sum of all input elements with indices that are equal or
lower. PrefixAddR outputs a vector where each element holds the sum of all input
elements with indices that are equal or higher.

The n-element input vector is padded with 0’s to length n′ ≥ 2k+1 − 1,
where k = ⌈log2(n)⌉; subsequent SIMD operations are over this extended domain
which accommodates the trailing 0s. Our example vector in Figure 11 is padded
to [1, 2, ..., 8, 07]. To then evaluate PrefixAddL, we proceed by levels. For level
i ∈ [0, ⌈log2(n)⌉ − 1], we rotate the intermediate vector to the right by 2i slots
(see left of Figure 11). The unrotated vector from the preceding level is then
added element-wise in SIMD-fashion with a single addition call to FABB. After
⌈log2(n)⌉ levels, we obtain the resultant vector where each element holds the
sum of all elements of the input vector with lower slot indices. This requires only
O(log2(n)) total additions, and rotations. PrefixAddR is evaluated in the same
manner with rotations to the left at each level.

Evaluating PrefixMultL/R requires extending the input vector of length n with

2⌈log2(n)⌉+1 − 1 trailing 1’s. The rest remains the same as in prefix addition,
albeit with multiplication operations instead of additions. Here too, the algorithm
incurs ⌈log2(n)⌉ total multiplications and rotations. In contrast, evaluating prefix
multiplication over individually encrypted values would incurO(n) multiplications.
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Fig. 11: PrefixAddL and PrefixMultL. The top row represents the padded input
vector - at each level i ∈ [0, log2(n) − 1], the vector is rotated by 2i steps and
added/multiplied with the preceding vector. Each element in the final vector
holds the aggregate sum/product of input vector elements with indices to the
left.

PrefixAddD∈{L,R}/PrefixMultD∈{L,R}

Input: For PrefixAdd, input [v] = [v1, . . . , vn=2k ] is extended to

[v1, . . . , vn, 0, ..., 0] ∈ Zn′
for n′ ≥ 2n − 1. For PrefixMult, trailing 1s are

appended.
Compute Prefix: For lvl ∈ [1, ⌈log(n)⌉], do:

1. If D = L, rotD← R. Else, rotD = L.
2. [u]← rot([v], 2lvl, rotD)
3. [v]← [v] + [u] (resp. [v]← [v] · [u])

Output: [v]

Fig. 12: Protocol for computing Prefix Sums.

InnerProduct. The InnerProd over n-sized vectors packed in ciphertexts [v] and
[w] can be computed with a single multiplication and evaluating the additive
prefix over the resulting ciphertext [v] · [w], namely

PrefixAddR([v] · [w]) =

 ∑
i∈[m]

viwi,
∑

j∈[m−1]

vjwj , ...


The inner product scalar is then located in the first slot position, and if necessary
can be extracted by multiplying with a fresh encryption of [1, 0, ...]. The InnerProd
operation over vectors thus incurs a total multiplicative complexity of 1 (or 2 if
extraction is required).

PreserveLeadOne. This algorithm takes as input a vector x ∈ {0, 1}n and
preserves the first 1, while zeroing out the rest of the vector. PreserveLeadOne
requires padding with 1s to the right such that [x, 1, ..., 1] is of dimension n′ ≥
2⌈log2(n)⌉+1; one additional trailing 1 is required for correctness due to the required
rotation by a single index. The following are therefore SIMD operations over
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vectors of length n′.

[x, 1, ..., 1] · rot(PrefixMultL([1]− [x, 1, ..., 1]), 1, right) (6)

Correctness follows from Section 3 on preference computation. PreserveLead-
One in SIMD-fashion incurs ⌈log2(n)⌉ + 2 multiplications, and ⌈log2(n)⌉ + 1
rotations.

Matrix-Vector Product. A naive approach for matrix-vector multiplication in
SIMD-fashion would be to encrypt the matrixM row-wise, i.e. [M row

i ] = [Mi,1, ...,Mi,n],
for i ∈ [n], and then evaluate InnerProd over the product of each matrix row
and vector [M row

i ] · [v], resulting in n separate vectors. To obtain a single vec-
tor that encodes [Mv] (which we require to update the adjacency matrix in
ΠTTC-SIMD), it becomes necesssary to individually extract the first element of
InnerProd([M row

i ], [v]) in each encryption of row i. This results in nmultiplications,
n rotations and a multiplicative depth of 2.

Instead, we avoid extraction and keep the multiplicative depth to 1 by
implementing a technique by Halevi and Shoup [HS14], which encodes the matrix
diagonals and results a single vector ([Mv]) after n multiplications and rotations,
while maintaining multiplicative depth of 1 (see Figure 13).

Let diagl(M) denote the l’th diagonal of n × n matrix M in vector form.
Concretely, let the element at index i ∈ [n] of the l’th diagonal be defined as

diagl(M)[i] = Mi,(l+i)%(n) (7)

A matrix-vector multiplication is then evaluated in SIMD-fashion with a single
(encrypted) output vector as follows;

[Mv] =
∑

0≤l<n

[diagl(M)] · rot([v], l, left) (8)

In our implementation, the matrix will be the encoding of a client’s priority list
as a permutation matrix (and its transpose). Thus, at the start of the protocol,
clients encode their preferences as permutation matrix diagonals. For an FABB

parameterized to operate over vectors of n2, as in ΠTTC-SIMD in Figure 6, we note
that the vector v can be replicated to the right, namely [v,v, 0, ..., 0] to maintain
correctness of Eq. G.3 over rotation operations.

Matrix-Matrix Product. We implement a technique by Jiang et al. [JKLS18]
for multiplication of n × n-matrices with multiplicative complexity O(n) (see
Figure 13). We sketch the main ideas below and refer the readers to [JKLS18] for
details on correctness. Matrices are encoded in flattened form as a single vector
by arranging all matrix rows in the order of their row index;

flat(M) = m = (M row
1 , ...,M row

n )

Subsequent SIMD operations are thus over vectors of n2 length. In [JKLS18], the
product of matrices A and B is considered as the sum of n element-wise products
of colShifti(lin(a)) and rowShifti(lin

′(b)) for i ∈ [n], where lin and lin′ represent
the following linear transformations on A and B in flat-encoded form.
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– lin(a) =
∑

−n<k<n(uk · rot(a, k))

where u−n<k<0[l] =

{
1 if− k ≤ l − (n+ k) · n < n

0 otherwise
and u0≤k<n[l] ={

1 0 ≤ l − n · k < (n− k)

0 otherwise

– lin′(b) =
∑

0≤k<n(u
′
k · rot(a, k))

where u′
0≤k<n[l] =

{
1 if l = k + n · i for 0 ≤ i < n

0 otherwise

The column and row shifting of flat-encoded matrix flat(M) = m can be expressed
as

– colShifti(m) = vi · rot(m, i) + vi−n · rot(m, i− d)

where vi[l] =

{
1 if 0 ≤ l mod n < (n− i)

0 otherwise
and vi−n[l] =

{
1 (n− i) ≤ l mod n < n

0 otherwise

– rowShifti(m) = rot(m, i · n)

Thus, the flat-encoded of the product of A and B is evaluated over their flat-
encoded form as follows, again over vectors of length n2.

[ flat(AB) ] =
∑

i∈[n−1]

colShifti(lin([a])) · rowShifti(lin′([b])) (9)

Matrix-matrix multiplication over flat-encoded matrices in vectors of n2 require
∼ 6n homomorphic multiplications and rotations (and a multiplicative depth of
3).

For an overview of how the various SIMD-algorithms described in this section
are integrated in ΠTTC-SIMD (Figure 6), we refer the reader to Appendix G.

Additions Rotations Multiplications Mult. Depth

Matrix-Vector Mult. [HS14] n− 1 n n 1

Matrix-Matrix Mult. [JKLS18] 2n− 2 6n− 4 6n− 4 3

Fig. 13: Complexity of SIMD-style matrix operations.
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Additions Rotations Multiplications Mult. Depth

NotEqZero n+ 1 n ⌈log2(n+ 1)⌉
PrefixAdd ⌈log2(n)⌉ ⌈log2(n)⌉
PrefixMult ⌈log2(n)⌉ ⌈log2(n)⌉ ⌈log2(n)⌉
InnerProduct ⌈log2(n)⌉ ⌈log2(n)⌉ 2

PreserveLeadOne ⌈log2(n)⌉+ 1 ⌈log2(n)⌉+ 2 ⌈log2(n)⌉+ 2

Fig. 14: Complexity of SIMD-style tasks in ΠTTC-SIMD.
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Refreshing intervals. Choosing the correct maximal depth for the encryption
scheme we use, is a non-trivial task. Choosing a bigger maximal depth signifi-
cantly affects the computational over-head of performing a single homomorphic
multiplication, whereas choosing a smaller maximal multiplicative depth, would
increase the number of rounds of interaction between the involved parties. Finding
an appropriate maximal depth essentially requires finding a good balance between
computational overheads and round-trip latencies.

Even for a fixed maximal multiplicative depth, the computational cost of a
homomorphic multiplication (or rotation) depends on the depth at which it is
performed. The more multiplicative depth has been “consumed”, the faster the
homomorphic multiplications become, as is illustrated in Figure 15.

For our parameterization of BGV, we observe an average multiplication
runtime of 21 ms over our 11 multiplicative levels, resulting in a computational
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runtime of 222 ms between ciphertext refreshes. Here, the final multiplicative
level is required for consolidating different ciphertexts into a single one for more
efficient transmission. Our estimated runtimes for a 10-depth circuit with BGV
including ciphertext refreshing over various network conditions are shown in
Figure 16; the estimated communication component incurred during refreshing
is obtained by subtracting the purely computational runtime of 222 ms. The
detailed assumptions behind this estimated communication overhead during
refreshing of BGV ciphertexts follow below.

Comparison to secret-sharing based MPC. Given that our implementation fixes
the multiplicative depth to be a constant, strictly speaking in asymptotic terms,
our communication overhead for refreshing ciphertexts grows linearly with the
multiplicative depth of the evaluated circuit. Nonetheless, we argue that prac-
tically speaking our approach using SHE is superior to a secret-sharing based
approach under realistic network conditions.

In Figure 16, we illustrate estimated runtimes for the evaluation of an arith-
metic circuit with a multiplicative depth of 10 using both our leveled-HE instan-
tiation and a generic secret-sharing-based MPC. The figure examines how the
total runtimes of the two approaches are affected by different network conditions.
Concretely, we estimate the network latency = round-trip-delay + transmission
delay, where round-trip-delay corresponds to “ping” times and the transmission
delay is given by data size / transmission rate. For the sake of simplicity, we
assume that all multiplications at the same depth level can be performed perfectly
in parallel in both approaches.

For secret-sharing based MPC, we only measure the time induced by network
latency, ignoring the transmission delay and assuming that local computations
take no time at all. These assumption heavily favours the secret-sharing based
approach.

For the leveled-HE approach, we use the same plaintext modulus p = 65537
as above and set the multiplicative depth to be 11. We measure the local
computation times as well as the transmission delay. We assume that each round
of communication requires sending a single ciphertext. This can be achieved by
locally packing all individual ciphertexts into one, assuming that sufficiently many
slots are available, which there are for all of our settings. The packing itself can
be done via one layer of rotations and some additions, which we conservatively
approximate with the cost of an additional layer of multiplications. For our
parameters, the ciphertext that is sent over the wire is of size 514KB .

As an exemplary data point from Figure 16, let us consider a 200 Mbit/s =
25 MB/s transmission rate. We estimate 0.041 s = 514 KB/(25 · 103/2 KBps)
transmission time from the HE evaluation server to the two other servers .
Assuming network round-trip delay ∆ = 40 ms, a ciphertext refresh will incur
25 + 35 ms in de-/encryption runtime, and 2 · (40 + 41) ms total network latency
for both the transmission of ciphertext copies to the servers and the receipt of
decryption shares, resulting in a ciphertext refresh runtime of 222 ms. Given that
one level of multiplications takes 21 ms on average, our estimated total runtime
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for leveled HE is 453 = 231 + 222 ms for the evaluation of an arithmetic circuit
of depth 10 and the subsequent ciphertext refresh.

I Upgrading to malicious security

In this section, we review the changes we would need in our protocols to get
malicious security and how they might affect efficiency. Our protocol for imple-
menting TTC based on FABB is already malicious secure, as it only consists of a
sequence of calls to FABB that all parties must agree on. Thus, the only change we
need is to verify the input that clients send. The input is given in the form of a
set of ciphertexts, so clients need to prove in zero-knowledge that they know the
corresponding plaintexts. Such proofs of plaintext knowledge have been studied
(and implemented) extensively in the literature (see [DPSZ12], for instance), and
they would add only a constant factor overhead. We also need to verify that a
client supplies a permutation matrix P and its inverse P−1. First, we can check
that all entries in (the encryption of )P are 0 or 1 using the standard trick of
checking that they are all roots of the polynomial X(X − 1). Then we can sum
all rows and all columns and open to check that the sums are all 1, which implies
that all rows and columns contain exactly one 1, i.e., P is a permutation matrix.
And finally we can transpose P , subtract from the alleged P−1 and open to check
that the result is 0. This all adds an overhead linear in the size of the input
and is anyway only needed for the inputs, not for the intermediate results of the
computation.

The major part of the protocol itself is a computation on ciphertexts. This is
a computation that all parties can do to make sure there is agreement on what
to decrypt. Although this is more computation than the semi-honest case where
only one party needs to compute, it will not add much to the wall-clock time, as
all parties can do it in parallel.

Some steps of the semi-honest protocol creates random ciphertexts by adding
a contribution from each party, in the malicious case we can do the same, but we
need to add proofs of plaintext knowledge, as discussed above.

Finally, the standard decryption protocol for BGV from [DPSZ12] is only semi-
honest secure. However, in [DPR16] a technique based on algebraic manipulation
detection codes is shown, that allows to verify the result of a decryption and abort
if a problem is found (since we are doing dishonest majority, aborting in case of
an error is the only option anyway). This technique needs a random ciphertext,
one extra multiplication on ciphertext and two additional decryptions.

In conclusion, we believe that upgrading to malicious security is relatively
straightforward and would not lead to a prohibitive overhead,
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