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ABSTRACT
Distributed point functions (DPF) are increasingly becoming a foun-

dational tool with applications for application-specific and general

secure computation. While two-party DPF constructions are readily

available for those applications with satisfiable performance, the

three-party ones are left behind in both security and efficiency.

In this paper we close this gap and propose the first three-party

DPF construction that matches the state-of-the-art two-party DPF

on all metrics. Namely, it is secure against a malicious adversary

corrupting both the dealer and one out of the three evaluators, its

function’s shares are of the same size and evaluation takes the same

time as in the best two-party DPF. Compared to the state-of-the-art

three-party DPF, our construction enjoys 40 − 120× smaller func-

tion’s share size and shorter evaluation time, for function domains

of 2
16 − 240, respectively.
Apart from DPFs as a stand-alone tool, our construction finds

immediate applications to private information retrieval (PIR), writ-

ing (PIW) and oblivious RAM (ORAM). To further showcase its

applicability, we design and implement an ORAM with access policy,
an extension to ORAMs where a policy is being checked before

accessing the underlying database. The policy we plug-in is the one

suitable for account-based digital currencies, and in particular to

central bank digital currencies (CBDCs). Our protocol offers the

first design and implementation of a large scale privacy-preserving

account-based digital currency. While previous works supported

anonymity sets of 64-256 clients and less than 10 transactions per

second (tps), our protocol supports anonymity sets in the millions,

performing {500, 200, 58} tps for anonymity sets of {216, 218, 220},
respectively.

Toward that application, we introduce a new primitive called

updatable DPF, which enables a direct computation of a dot product

between a DPF and a vector; we believe that updatable DPF and the

new dot-product protocol will find interest in other applications.

1 INTRODUCTION
A point function 𝑓𝛼,𝛽 is a function that evaluates to zero everywhere,

except for one point, 𝛼 , at which it evaluates to a (possibly) non-zero

value 𝛽 . A distributed point function (DPF), introduced by [6, 28],

is a cryptographic technique to share a point function to multiple

receivers, such that each receiver can locally obtain a share of the

evaluation of the function at the point of interest. In the two receiver

setting, a DPF scheme allows one to generate two additive shares

of 𝑓𝛼,𝛽 , called 𝑓0 and 𝑓1, such that for every 𝑥 in the domain it holds

that 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥). The performance of a DPF scheme is

measured by the size of the shares (also known as ‘keys’) 𝑓𝑖 given to

the receivers and the incurred computational complexity to evaluate

𝑓 (𝑥) for some 𝑥 in the domain. In the two-party case (i.e., when

the point function is shared toward two receivers) the shares size

as well as the time to evaluate are logarithmic in the domain size.

The DPF primitive is increasingly recognized as a fundamental

tool in various applications, including private information retrieval

(PIR), anonymous communication, privacy-preserving machine

learning (PPML) and even as a building block for general secure

computation for RAM programs [4, 17, 18, 31, 39, 42, 46, 50, 54].

Having said that, the DPF constructions today are practical in the

setting of two receivers, therefore, most of the applications men-

tioned above were demonstrated efficient when employing a two-

party construction of a DPF; leaving the challenge of extending

them to a larger number of parties unlocked.

A natural and important milestone is to efficiently extend DPFs

to three receivers with honest majority. While several works have

addressed this setting, none of them reached performance that

matches that of the two receivers.
1
In this work we present the first

DPF construction with three-receivers that accomplishes that goal,

and as shortly explained, even surpasses the performance of the two

receivers setting.

Database operations via DPFs. Most of the applications that use

DPFs as building blocks focus on either reading from or writing to

a database. Specifically, consider the ‘replicated database’ private

information retrieval (PIR) setting with a (public) database 𝐷 . In

that setting, a client may privately read the 𝛼-th database entry by

sharing a point function 𝑓𝛼,1, and sending the shares 𝑓0 and 𝑓1 to

the PIR servers. Then, the 𝑖-th server computes 𝑑𝑖 =
∑
𝑥 𝑓𝑖 (𝑥) ·𝐷 [𝑥]

and hands 𝑑𝑖 back to the client. Finally, the client can reconstruct

the result by computing 𝑑 = 𝑑0 + 𝑑1. Note that evaluating 𝑓 (𝑥)
over the entire domain |𝐷 | creates a shared one-hot-vector, so 𝑑

correctly encodes 𝐷 [𝛼]. Obviously, this procedure does not work
when the database itself is secret shared.

On the other hand, when the database is secret shared among

the two servers, i.e., there are two databases 𝐷0 and 𝐷1 s.t. 𝐷 [𝑥] =
𝐷0 [𝑥] + 𝐷1 [1], a DPF can be used in order to privately update an
entry in that database (also known as private information writing,

or PIW). Specifically, a client sends the shares 𝑓0 and 𝑓1 for some

point function 𝑓𝛼,𝛽 , and then the 𝑖-th server adds 𝑓𝑖 (𝑥) to the value

at 𝐷 [𝑥], for all 𝑥 in the domain. This way, the client can privately

add 𝛽 to the 𝛼-th entry of the shared database.

Supporting both private information retrieval and writing oper-

ations, however, is more challenging, as privately reading an entry

requires multiplication between the shared entries of the one-hot

vector to those of the database, which is achieved via communica-

tion in the information theoretic setting, or via expensive public-key

1
The works in [48, 56] achieve a three-party protocol with a matching performance,

however, we still consider it in the two receivers domain as one of the parties plays as

a non-colluding server.



Conference’17, July 2017, Washington, DC, USA Guy Zyskind, Avishay Yanai, & Alex "Sandy" Pentland

primitives; both approaches limit the size of the databases that a

system may support. For example, the FLORAM system by Do-

erner and Shelat [23] requires𝑂 (
√︁
|𝐷 |) communication per private

operation (read or write).

In contrast, given a DPF construction for three receivers, where

sharing 𝑓𝛼,𝛽 results in 𝑓1, 𝑓2, 𝑓3 s.t. 𝑓1 (𝑥), 𝑓2 (𝑥) and 𝑓3 (𝑥) form a

2-out-of-3 sharing of 𝑓 (𝑥), we can efficiently achieve both private

retrieval and update operations. This is due to the fact that the

shares now have redundancy and have one degree of multiplicative

homomorphism. The only work that proposed such a construc-

tion is [10], where the resulting shares form a replicated sharing.

However, their construction achieves sub-optimal performance,

both concretely and asymptotically. That is, their shares size as

well as the computational complexity per evaluation is𝑂 (log2 |𝐷 |).
Furthermore, it does not protect against a malicious adversary. In

this work, we propose the first three party DPF construction that

matches (and even concretely improves) the two party one; addi-

tionally, it offers security against a malicious adversary. On its own,

our three party DPF lends itself as the main tool for our efficient

three-server ORAM, which has state-of-the-art performance com-

pared to previous DPF-based ORAM constructions. Also, to the best

of our knowledge, ours is the only maliciously secure construction.

Revisiting private and account-based digital currencies. The UTXO
(Unspent Transaction Output) model (as used by Bitcoin) tracks

individual unspent coins from previous transactions. In contrast,

the account model (as used by Ethereum) resembles traditional

banking, with each user having an account and a clear balance.

Transactions adjust these balances directly, simplifying operations

for complex programs like smart contracts.

Existing works on account-based privacy-preserving digital cur-

rencies have typically been constrained by a limited anonymity set

size [12, 14, 15, 22, 26, 41]. Consequently, the focus has predomi-

nantly been on the UTXO model, as evidenced by the plethora of

works ([3, 5, 38, 47, 52, 53] to name a few). However, the UTXO

model has several significant shortcomings. For example, it limits

programmability and auditability [34, 35], which are crucial for

building financial applications and fraud-prevention. Additionally,

in the privacy-preserving setting, the UTXO set infinitely grows,

which poses scalability issues.

In light of this, using our DPF-based ORAM construction, we

aim to rekindle interest in account-based privacy-preserving dig-

ital currencies, addressing its inherent limitations and proposing

a viable alternative to private UTXO-based systems. We place a

particular emphasis on the application of our techniques to Central

Bank Digital Currencies (CBDCs). Given their rising prominence

[9, 35, 44, 53, 59] and the ongoing debate around their privacy

[2, 3, 52, 58], our goal is to demonstrate the potential of our meth-

ods in developing a privacy-centric CBDC. Such a system would

not only safeguard individual privacy but also remain conducive to

necessary auditability.

1.1 Our Contributions
We summarize our main contributions below.

• We present a novel three-party verifiable DPF (VDPF) construc-

tion in the honest majority setting that is secure against a mali-

cious server who may collude with the client. Our construction

maintains the same asymptotic and concrete overheads (share

size and evaluation time) as the state-of-the-art two-party DPF of

Boyle et al. [7]. Compared to the state-of-the-art three-party DPF,

our construction improves the DPF’s shares size and evaluation

by a factor of 𝑂 (log𝑛) asymptotically, translating to 48 − 120×
improvement for domains between 2

16 − 240.
• As the lion share of the overhead in a three-server ORAM is

incurred by the DPF, we get the most efficient DPF-based three-

server ORAM construction, in both communication and compu-

tation. We analytically compare ourselves against state of the art

three-party protocols using DPF and ORAM [10, 11, 20, 48, 55].

We analyze all with respect to a semi-honest ORAM application

and observe that we have better client-server communication,

overall computation and storage costs, and our model does not

have the limitations of [48, 56] (server-aided), and [20] (writes

are not supported; only appends). Our comparison results are

summarized in Table 1
23
.

• Expanding on our main construction, we introduce a three-party

VDPF with semi-honest servers security, that uses a sublinear

amount of PRF calls in full-domain evaluation. This construc-

tion is ∼ 2.2× faster than the leading two-party DPF during

full-domain evaluation, with potential for further improvement

using GPU acceleration due to CPU-optimized AES instructions.

However, similar to two-party DPFs, this construction is confined

to separate read or update operations and is not suitable as a

complete ORAM construction.

• Motivated by the need for privacy-preserving account-based

digital currencies [2, 3, 52, 58], we apply our DPF-based ORAM

to a three-party private CBDC protocol. Our implementation

demonstrates substantial improvements in throughput over prior

works in the account model. Specifically, our implementation

supports 500, 200 and 58 (resp. 825, 300 and 105) transactions per

second (tps) for anonymity sets of 2
16, 218, and 220 accounts, with

protection against a malicious adversary (resp. a semi-honest

adversary). We compare to the previous state-of-the-art, Solidus

[14], and find that for these settings our protocol’s throughput is

11 − 141× higher.

• One building block in our maliciously secure DPF construction is

a newly introduced primitive we call updatable VDPF (or UVDPF).
An efficient UVDPF construction is used in order to directly com-

pute a dot-product between (the compressed) full-domain evalu-

ation of a point function and a vector (or of two point functions).

Our dot-product protocol is constant-round and incurs commu-

nication overhead that is sub-linear in the functions’ domain

(compared to linear in a naive implementation). We believe that

the UVDPF primitive and the DPFs dot-product protocol will find

interest in other applications as well.

1.2 Related Work
DPF Constructions and three-party ORAM. As observed by previ-

ous works [10, 11, 20], (2, 3)-DPFs are better suited for applications
that combine PIR with PIW (ORAM), as they offer one degree of

2
For readability, we ignore constants related to the security parameter or the output

group size.

3
We estimate our results generalize to DORAM as well, but we leave exploring that to

future work.
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Protocol Key Size Read Update DB Copies Malicious Model
[10] 3

√
𝑛 4𝑛 4𝑛 2 No 3-party

[11] 12 log
2 𝑛 𝑂 (𝑛 log𝑛) 𝑂 (𝑛 log𝑛) 2 No 3-party

[20] 3 log𝑛 2𝑛 Appends only 2 Yes 3-party

[48, 56] 3 log𝑛 2𝑛 + Interaction 3𝑛 3 No Server-aided

Ours 2 log𝑛 2𝑛 2𝑛 1 Yes 3-party

Best Neutral Poor Worst

Table 1: Comparison of three-party ORAM protocols using DPFs. Key Size captures client-server communication, Reads and Updates are
non-interactive (except for [48, 56]) and focus on overall computation costs. Results are for semi-honest, but we remark that we and [20]
provide malicious implementations.

multiplicative homomorphism. Also, all (3, 3)-DPFs (withstanding
two corruptions) are significantly less efficient, as they require

𝑂 (
√
𝑛)-sized keys, and either have much higher constants or re-

quire public-key (or lattice-based) operations [1, 7, 10, 18, 42].

The state-of-the-art for (2, 3)-DPF [11, 20, 48, 56] combines repli-

cated secret sharing (RPSS) with (2, 2)-DPFs, and then uses these

to build different ORAM-related applications. Bunn et al., [11] pro-

poses a (2, 3)-DPF similar to us, but their construction has asymp-

totically larger keys and evaluation time, which makes it 48 − 120×
less efficient, in both computation and communication, for domains

between 2
16 − 240 (and this gap widens further for larger domains).

Alternatively, Waldo, Duoram and PRAC [20, 48, 56] take a different

approach and use (2,2)-DPFs to construct their ORAM application

(a private time-series database and DORAM respectively), but their

solutions are more limited as they do not develop new dedicated

three-party DPFs. Waldo cannot do writes or updates (only ap-

pends), while Duoram and PRAC operate in the server-aided model.

OnlyWaldo offers malicious security as we do, but they rely on pub-

lic access control, rather than the privacy preserving authentication

that our protocol offers.

A different line of work focused on verifiable DPFs, essentially
achieving security for DPFs against potentially malicious clients

(dealers). [4, 7] suggested to use sketching techniques, and more

recently [21] presented a lightweight solution based on hashing.

Similarly, [42, 49] show how to do private access-control for DPFs.

We similarly build verifiability and access-control capabilities into

our (2,3)-DPF construct. Our construction protects against both

malicious clients and servers, whereas prior work only protected

against semi-honest servers.

Privacy-preserving digital currency. A large body of work has

been dedicated to ensuring transaction-privacy in blockchains. The

majority of works [5, 13, 27, 38, 40, 45, 47, 53] focused on the UTXO-

model, which offers limited programmability and auditability [34],

add end-user and developer complexity [35, 47], and cause an in-

finite growth of the permanent database (the nullifiers). This led

to the transition into the account-based model (e.g., Ethereum),

which we follow in this paper. Solutions in this model mostly build

upon general MPC techniques that enable the addition of addi-

tional layers on top of it (like smart contracts, auditability, etc.)

[24, 33, 61, 62].

The challenge for account-based ledgers with private transactions.
Solving privacy for account-based cryptocurrencies remains a chal-

lenge, and prior work has significant limitations compared to UTXO-

based solutions. QuisQuis [26] and Zether [12, 22] operate in the

account-model but are limited to extremely low k-anonymity sets

(64-256)
4
. Very recently, [37] presented a theoretical solution using

Fully Homomorphic Encryption (FHE), but they neither provide an

implementation or an evaluation. The heavyweight cryptography

used indicates it might not be concretely efficient.

An increasing body of research is focused on constructing CB-

DCs [3, 9, 35, 44, 52, 53, 59]. Yet, to the best of our knowledge, we

are the first to provide a private account-based solution. Most simi-

lar to our research, several works have proposed building private

bank-to-bank cryptocurrencies (e.g., [14, 15, 41]). In these works,

banks transact with each other on behalf of users, but the number

of banks in all of these models is very small (10-100). While Solidus

is more scalable, zkLedger and MiniLedger are geared more towards

auditability. We compare against Solidus which is the state-of-the-

art and show that our work has 11 − 141× higher throughput up to

an anonymity set of 2
20
. Additionally, while our protocol provides

full anonymity, the rest of these works only provides bank-level

anonymity, which is orders of magnitude smaller (equal to the total

number of banks). Conversely, compared to these other systems,

our system is not publicly verifiable and relies on MPC assumptions.

2 PRELIMINARIES
Basic notation. We use 𝜅 as a computational security parameter.

For 𝑥,𝑦 ∈ {0, 1}∗ the expression 𝑥 | |𝑦 is the concatenation of 𝑥 and

𝑦. Uniformly sampling a random value 𝑥 from a set 𝑋 is denoted

by 𝑥
$← 𝑋 . The result of a probabilistic algorithm 𝐴 on inputs

𝑥1, 𝑥2, . . . is written by 𝑥 ← 𝐴(𝑥1, 𝑥2, . . .); in addition, when we

want to explicitly mention the randomness used in the algorithm

we write 𝑥 = 𝐴(𝑥1, 𝑥2, . . . ; 𝑟 ). Vectors are formatted in bold, e.g., 𝒙 ,
and the 𝑖-th index is denoted by 𝑥 (𝑖 ) . The identity vector 𝒆𝑖 has zero
in all coordinates except in its 𝑖-th coordinate, which equals one.

Also, for better readability, when describing our CBDC construction,

we denote vectors in uppercase, e.g., 𝑋 instead.

2.1 Distributed Point Functions
We start off by presenting a definition for DPFs.

4
Estimates from [37]
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Definition 2.1. Let 𝛼 ∈ {1, . . . , 𝑛} and 𝛽 ∈ F, a (2, 2)-Distributed
Point Function (DPF), denoted 𝐹 (2,2)

𝛼,𝛽
is defined by algorithms:

• (𝑓0, 𝑓1) ← DPF.Gen(1𝜅 , 𝛼, 𝛽).
• 𝑦𝑏 = DPF.Eval(𝑏, 𝑓𝑏 , 𝑥), where 𝑏 ∈ {0, 1}.

Correctness. It must hold that DPF.Eval(0, 𝑓0, 𝛼) + Eval(1, 𝑓1, 𝛼) =
𝛽 and DPF.Eval(0, 𝑓0, 𝑥) + DPF.Eval(1, 𝑓1, 𝑥) = 0 for all 𝑥 ≠ 𝛼 .

Privacy. For every 𝑏 ∈ {0, 1} there exists a simulator S such that

𝑓𝑏
𝑐≡ S(1𝜅 , 𝑏, 𝑛)

where (𝑓0, 𝑓1) ← DPF.Gen(1𝜅 , 𝛼, 𝛽) and the distribution is over the
coin tosses of algorithms DPF.Gen and S.

Evaluation can also be defined on a vector 𝒙 = (𝑥1, . . . , 𝑥𝑛), by:

𝒚𝑏 = DPF.Eval(𝑏, 𝑓𝑏 , 𝒙)
= (DPF.Eval(𝑏, 𝑓𝑏 , 𝑥1), . . . ,DPF.Eval(𝑏, 𝑓𝑏 , 𝑥𝑛)).

By the correctness of the DPF, it holds that 𝒚 = 𝒚0 + 𝒚1 =

𝒆𝛼 · 𝛽 . When 𝒙 covers the entire domain of 𝛼 this is called a full
domain evaluation. The computational complexity of a full domain

evaluation is better than an individual evaluation on each 𝑥𝑖 ∈ 𝒙 in

isolation.

The most efficient (2, 2)-DPF was developed by Boyle et al. [7].

It has keys (𝑓0 and 𝑓1) of length 𝑂 (log𝑛), where 𝑛 is the size of the

domain and a full domain evaluation incurs 𝑂 (𝜅 · 𝑛) computation.

We note that the scheme in [7] describes the DPF over a general

group G whereas in the constructions presented in this paper we

use either the binary field F
2
𝑙 where 𝑙 = 𝜅 or a prime field F𝑞 defined

with the prime 𝑞 ≈ 2
𝜅
. For simplicity we denote the prime field by

F, leaving the prime parameter implicit. Addition of 𝑥,𝑦 ∈ F
2
𝑙 is

computed by 𝑥 ⊕ 𝑦 and addition of 𝑥,𝑦 ∈ F is computed by 𝑥 + 𝑦
mod 𝑞.

We continue with a definition of verifiability, which enables the

key holders to verify the validity. Formally:

Definition 2.2. A verifiable DPF (VDPF) is a DPF (as per Defini-
tion 2.1) with the following additional procedures:

• 𝜋𝑏 = VDPF.Prove(𝑏, 𝑓𝑏 ), where 𝑏 ∈ {0, 1}.
• {accept,reject} ← VDPF.Verify(𝜋0, 𝜋1)
Correctness is the same as in Definition 2.1; Privacy is enhanced to
include the proof generated by the other key, that is, there exists a
simulator S such that

(𝑓𝑏 , 𝜋1−𝑏 )
𝑐≡ S(1𝜅 , 𝑏, 𝑛)

where (𝑓0, 𝑓1) ← VDPF.Gen(1𝜅 , 𝛼, 𝛽) and 𝜋𝑏 = VDPF.Prove(𝑏, 𝑓𝑏 ),
where 𝑏 ∈ {0, 1} and the distribution is over the coin tosses of algo-
rithms VDPF.Gen and S.

Verifiability. This ensures that the two keys arewell formed, that is:
Let 𝒚𝑏 = VDPF.Eval(𝑏, 𝑓𝑏 , 𝒙), then accept = VDPF.Verify(𝜋0, 𝜋1)
if and only if 𝒚0 +𝒚1 = 𝒆𝛼 ′ · 𝛽′ for some 𝛼 ′, 𝛽′.

2.2 Shamir Secret Sharing
Secret sharing enables a dealer to split a secret 𝑥 into 𝑛 shares,
such that only a sufficiently large subset of shares can be used to

recover the secret. Due to space considerations we only focus on

the notation here.

• [𝑥] = SS.Share(𝑥 ; 𝑟 ). Given a secret 𝑥 ∈ F and a random tape

𝑟 , pick 𝑎1, . . . , 𝑎𝑡 ∈ F and output [𝑥] = {[𝑥]1, . . . , [𝑥]𝑛}, where
[𝑥]𝑖 = 𝑃 (𝑖) for a degree-𝑡 polynomial 𝑃 (x) = x + 𝑎1x + 𝑎2x2 +
. . . + 𝑎𝑡x𝑡 (note the difference between 𝑥 , the secret, and x, the
polynomial variable).

• 𝑥 = SS.Reconstruct( [𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 ). Given 𝑡 + 1 shares
[𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 , where 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑡+1 ≤ 𝑛, interpolate
a polynomial 𝑃 such that 𝑃 (𝑖 𝑗 ) = [𝑥]𝑖 𝑗 for all 𝑗 ∈ [1, 𝑡 + 1] and
output 𝑥 = 𝑃 (0) if interpolation succeeds, otherwise output ⊥.

2.3 ORAM with Policy Verification
ORAM, introduced by Goldreich and Ostrovsky [29] and followed

by many works ([36, 51, 57, 60] to name a few), is a cryptographic

protocol between a client and a server. Such a protocol enables

the client to upload its database to a server and access specific

records in that database while being protected from the server.

Besides the usual confidentiality guarantees (which are typically

enabled by encryption schemes) an ORAM guarantees the client

that nothing about the access pattern is being leaked to the server;

that is, the server learns nothing about the entries being accessed

or the actions being applied to those entries (either read or update).

As shown time and again (e.g., [30]), such access pattern leakage

may be devastating for a system that strives to preserve the client’s

privacy. Over the years, there were protocols that proposed to

distribute the server’s role into multiple (distrustful) entities in

order to improve efficiency and to support more than one client

(where sections of the database may be accessed by many clients).

Such solutions are known as multi-client multi-server ORAM. In

this work we propose a multi-client three-servers ORAM with an

extended functionality we call policy verification. Specifically, the
ORAM is parameterized with a policy function that is triggered

whenever an access is requested by a client, and returns ‘accept’

or ‘reject’. The access request is executed only if the policy returns

‘accept’.

In Figure 1 we present our extended functionality for an ORAM

with access-policy, called FAP−ORAM. Notice that in many appli-

cations (including the one in this work) it is required to hide the

content of a request, but not its type, and so the FAP−ORAM func-

tionality exposes different commands to these two types: read and

update. Typically, when the operation type itself is to be hidden,

protocols apply a ‘read-then-update’ mechanism, where both com-

mands are invoked one after the other (with a ‘dummy’ read or a

‘dummy’ update argument), which preserves obliviousness for that

too. This is not required for the application presented in this paper

and so it remains out of scope.

The functionality exposes a ‘register’ command, in which the

client is assigned with an index of a record that it can access. In the

realization of that functionality, after a client has registered it may

access the functionality without being identified; namely, whether

a client’s request is approved for execution or not depends only on

the content of the request, which may include some hidden authen-

tication information. Further notice that the functionality reflects

the fact that when considering a malicious adversary it grants the

adversary with the ability to abort the execution of requests. The

parts related to a malicious adversary are colored in gray. The read

and update commands exposed by the functionality support a read
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Setting: The functionality interacts with servers 𝑆1, 𝑆2, 𝑆3 , clients 𝑐1, . . . , 𝑐𝑛 ,

and an adversary S.
Parameters: The functionality is initialized with a zero-initialized array 𝐷 =

(𝐷1, . . . , 𝐷𝑁 ) ∈ F𝑁 , and is parameterized with a policy verification function:

PVerify that is given the request’s arguments and returns accept or reject.
Parameter𝑚 refers to the number of entries read/update commands support.

• On input (𝑐𝑖 , register) from client 𝑐𝑖 , mark 𝑐𝑖 as ’registered’.

• On input (𝑐𝑖 , read, (ℓ1 . . . , ℓ𝑚 ) ) from a registered client 𝑐𝑖 :

– Send (read,𝑚) to S and wait to its response; if S returns abort then
send ⊥ to S and all servers, otherwise (if S returns continue) continue.

– If accept = PVerify(𝑐𝑖 , read, (ℓ1 . . . , ℓ𝑚 ) ) then output (𝐷ℓ
1
, . . . , 𝐷ℓ𝑚 )

to 𝑐𝑖 .

• On input (𝑐𝑖 , update, (ℓ1, 𝑣1 ), . . . , (ℓ𝑚, 𝑣𝑚 ) ) from a registered 𝑐𝑖 :

– Send (update,𝑚) to S and wait to its response; if S returns abort then
send ⊥ to S and all servers, otherwise (if S returns continue) continue.

– If accept = PVerify(𝑐𝑖 , update, ( (ℓ1, 𝑣1 ), . . . , (ℓ𝑚, 𝑣𝑚 ) ) ) then, update
𝐷ℓ𝑗

= 𝐷ℓ𝑗
+ 𝑣𝑗 for every 𝑗 ∈ {1, . . . ,𝑚}.

Figure 1: Functionality FAP−ORAM

and update of𝑚 entries in bulk, where𝑚 is a parameter. For the

update command we assume that the locations ℓ1, . . . , ℓ𝑚 to update

are distinct.

2.4 Basic Functionalities
We use of the following ideal functionalities:

• F .Rand(),F .DRand(), andF .Zero(), which return a shared
random value, shared random with degree 𝑡 and 2𝑡 , and a

sharing of zero, respectively.

• F .A2B( [𝑥]). Converts an arithmetic shamir sharing to a

binary Shamir sharing.

• F .Mult( [𝑥], [𝑦]). Returns a (𝑡, 𝑛)-Shamir sharing of the prod-

uct 𝑥 · 𝑦.
• F .SoP( [𝒙], [𝒚]). Returns a (𝑡, 𝑛)-Shamir sharing of the dot-

product ⟨𝒙,𝒚⟩. Note that this functionality is semi-honest,

and in the malicious case, the adversary can add an additive

error to the output.

• F .CheckZero( [𝑥]). Returns 1 if [𝑥] = 0, or 0 otherwise.

• F .LTE( [𝑥], [𝑦]). Returns 1 if [𝑥] ≤ [𝑦] and 0 otherwise.

These functionalities are well established in the literature and

so we omit further implementation details. These can be found in

the full version of this paper.

In addition, we define a procedure, 𝑂𝑝𝑒𝑛( [𝑥]) as a one-round
(assuming broadcast) protocol where all parties send their shares

to each other and reconstruct a secret.

3 (2, 3)-VERIFIABLE DPF
In this section, we formally define the notion of a (2, 3)-VDPF, and
provide our construction as well as a security proof. To this end,

we move away from additive shares and require that the individual

evaluations by keys 𝑓1, 𝑓2, 𝑓3 on input 𝛼 form a valid Shamir sharing

of the target value 𝛽 . This is in contrast to other works [11, 20]

where those values form a replicated secret sharing. We start by

defining a (2,3)-VDPF:

Definition 3.1. A (2, 3)-VDPF, denoted 𝐹 (2,3)
𝛼,𝛽

, is defined by algo-
rithms:
• (𝑓1, 𝑓2, 𝑓3) ← VDPF.Gen(1𝜅 , 𝛼, 𝛽) and

• 𝑦𝑏 ← VDPF.Eval(𝑏, 𝑓𝑏 , 𝑥) (𝑏 ∈ {1, 2, 3}),
• 𝜋𝑏 = VDPF.Prove(𝑏, 𝑓𝑏 , 𝑟 ), (𝑏 ∈ {1, 2, 3}),
• {accept,reject} ← VDPF.Verify(𝜋1, 𝜋2, 𝜋3)

such that:
Correctness. Similar to the (2, 2) case, except that we use Shamir’s

reconstruction rather thanmere group addition. Let𝑦𝑏 (𝑥) = Eval(𝑏, 𝑓𝑏 , 𝑥),
then:
• SS.Reconstruct(𝑦1 (𝑥), 𝑦2 (𝑥), 𝑦3 (𝑥)) = 𝛽 for 𝑥 = 𝛼 , and
• SS.Reconstruct(𝑦1 (𝑥), 𝑦2 (𝑥), 𝑦3 (𝑥)) = 0 for all 𝑥 ≠ 𝛼 .

Privacy. For every 𝑏 ∈ {1, 2, 3} there exists a simulator S such that

(𝑓𝑏 , 𝜋𝑏′ , 𝜋𝑏′′ )
𝑐≡ S(1𝜅 , 𝑏, 𝑛)

where {𝑏, 𝑏′, 𝑏′′} = {1, 2, 3}, (𝑓1, 𝑓2, 𝑓3) ← VDPF.Gen(1𝜅 , 𝛼, 𝛽) and
the distribution is over the coin tosses of algorithms VDPF.Gen and
S.

Verifiability. Let 𝒚𝑥 = SS.Reconstruct(𝑦1 (𝑥), 𝑦2 (𝑥), 𝑦3 (𝑥)), then
accept = VDPF.Verify(𝜋1, 𝜋2, 𝜋3) iff 𝒚 = 𝒆𝛼 ′ · 𝛽′ for some 𝛼 ′, 𝛽′.

We note that in the above definition 𝛽 as well as the outputs of

algorithm Eval are drawn from a prime field F.
In Section 3.2 we present our construction for (2, 3)-VDPF, which

uses (2, 2)-VDPF+ from Section 3.1 as a building block. In Section

3.3 we provide a security proof for our VDPF construction.

3.1 Building Block: (2, 2)-VDPF+
One tool we use in order to construct our (2, 3)-VDPF is a (2, 2)-
VDPF

+
(or an enhanced VDPF); its non-verifiable version was intro-

duced in [11] and our addition of verifiability is straightforward,

assuming we use (2,2)-VDPFs of [21] internally.

Definition 3.2. A (2, 2)-VDPF+, denoted 𝐹 (2,2)
𝛼,𝛽0,𝛽1

, is a (2, 2)-VDPF,
as defined in Section 2.1, with the following additional constraint: It
must hold that VDPF.Eval(𝑏, 𝑓𝑏 , 𝛼) = 𝛽𝑏 for 𝑏 ∈ {0, 1}.

The additional constraint ensures that at the special point 𝛼 ,

party 𝑏 = 0 receives 𝛽0 and party 𝑏 = 1 receives 𝛽1. In Figure 2

we provide the construction for 𝐹
(2,2)
𝛼,𝛽0,𝛽1

from [11], given a ‘normal’

DPF construction. Note that the resulting VDPF is a normal VDPF

for parameters 𝛼, 𝛽 , where all individual evaluations are shifted by

𝑧. Then, obviously since both parties XOR their evaluation with 𝑧,

this does not change the combined evaluation on any point (as it

simply adds 𝑧 ⊕ 𝑧 = 0
𝑙
; while on point 𝑥 = 𝛼 , it causes 𝑓0’s (resp.

𝑓1’s) evaluation be 𝛽0 (resp. 𝛽1), which is easy to verify.

3.2 Our (2, 3)-VDPF Construction
Our (2, 3)-VDPF construction is formally given in Figure 3.

We use two independent instantiations of a (2, 2)-VDPF+ (Section
3.1) and output three keys 𝑓1, 𝑓2, 𝑓3 where 𝑓𝑖 is a pair of (2, 2)-VDPF+
keys, one from each instance. Specifically, denote the first and

second (2, 2)-VDPF+ keys by (𝑔0, 𝑔1) and (𝑘0, 𝑘1), respectively, then
our three (2, 3)-VDPF keys are 𝑓1 = (𝑔0, 𝑘0), 𝑓2 = (𝑔1, 𝑘0) and
𝑓3 = (𝑔1, 𝑘1). Evaluating 𝑓𝑖 on input 𝑥 is done by first interpreting

it as the keys 𝑔 and 𝑘 of a (2, 2)-VDPF+; then, evaluating 𝑔 and 𝑘
independently on 𝑥 and adding the results (over F

2
𝑙 ).

The (2, 2)-VDPF+ instances above are adjusted so that evaluat-

ing 𝑔0 and 𝑔1 on 𝛼 results with 𝑣0 and 𝑣1, respectively; similarly,

evaluating 𝑘0 and 𝑘1 on 𝛼 results with 𝑣2 and 𝑣3, respectively. It
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VDPF+.Gen(1𝜅 , 𝛼, 𝛽0, 𝛽1)

(1) 𝛽 ← 𝛽0 ⊕ 𝛽1

(2) (𝑓0, 𝑓1 ) ← VDPF.Gen(1𝜅 , 𝛼, 𝛽 )
(3) 𝑧 ← 𝛽0 ⊕ VDPF.Eval(0, 𝑓0, 𝛼 )
(4) 𝑓𝑏 ← (𝑧, 𝑓𝑏 ) for 𝑏 ∈ {0, 1}
(5) Output: (𝑓0, 𝑓1 ) .

VDPF+.Eval(𝑏, 𝑓𝑏 , 𝑥 )
(1) (𝑧, 𝑓 ′

𝑏
) ← 𝑓𝑏 .

(2) 𝑦 ← VDPF.Eval(𝑏, 𝑓 ′
𝑏
, 𝑥 ) ⊕ 𝑧.

(3) Output: 𝑦

VDPF+.Prove(𝑏, 𝑓𝑏 )
(1) (𝑧, 𝑓 ′

𝑏
) ← 𝑓𝑏 .

(2) 𝜋 ′
𝑏
← VDPF.Prove(𝑏, 𝑓 ′

𝑏
) .

(3) Output 𝜋𝑏 = (𝜋 ′
𝑏
, 𝑧 )

VDPF+.Verify(𝜋0, 𝜋1)

(1) Output accept iff 𝜋0 = 𝜋1.

Figure 2: Protocol for (2, 2)-VDPF+

is required that the three values (1) 𝛽1 = 𝑣0 ⊕ 𝑣2, (2) 𝛽2 = 𝑣1 ⊕ 𝑣2
and (3) 𝛽3 = 𝑣1 ⊕ 𝑣3 be valid Shamir sharing of the target value

𝛽0 = 𝛽 ; namely, that there is a degree-1 polynomial 𝑃 s.t. 𝑃 (𝑖) = 𝛽𝑖
for 𝑖 ∈ {0, 1, 2, 3}. Fixing a random Shamir sharing (𝛽1, 𝛽2, 𝛽3) of
𝛽 , equations (1)-(3) above always have a solution (assignments to

𝑣0, 𝑣1, 𝑣2, 𝑣3); moreover, since the sharing is random, by drawing a

random 𝑣0 we get that the two values obtained by evaluating 𝑓𝑖 (i.e.,

(𝑣0, 𝑣2), (𝑣1, 𝑣2) and (𝑣1, 𝑣3)) are distributed uniformly in F
2
𝑙 × F

2
𝑙 .

A subtle issue in the construction is that the shares 𝛽1, 𝛽2, 𝛽3
are from a prime field F whereas 𝑣0, 𝑣1, 𝑣2, 𝑣3 are from F

2
𝑙 , thus,

equations (1)-(3) above do not ‘compile’. To reconcile that, we define

the operation ⊞ that takes an element 𝑥 from a prime field F and

an element 𝑦 from a binary field F
2
𝑙 , ‘embeds’ 𝑥 into F

2
𝑙 by simply

using its binary representation to form 𝑥 ′, and outputs 𝑥 ′ ⊕ 𝑦. In
addition, for 𝑥 and 𝑦 as above, we define the operation ⊙ that

embeds 𝑦 into F to form 𝑦′ and outputs 𝑥 · 𝑦′ over F.
For these operations to work as expected, and to not raise a

security concern, we must have that the binary representation of

an element in F be well defined over F
2
𝑙 and that the arithmetic

representation of an element in F
2
𝑙 be well defined over F. This is

not true in general, however, we can pick a prime and binary fields

for which the above almost always holds. Concretely, using 𝑙 = 𝜅

and F with a prime very close to 2
𝜅
will achieve the desired result.

In this manner, we get
2
𝜅−|F |
2
𝜅 ≈ 2

−𝜅
and so values are drawn (either

at random or as a result of a computation) from the gap between

the fields only with negligible probability.

The above establishes that evaluation of keys 𝑓1, 𝑓2, 𝑓3 on input

𝑥 = 𝛼 results with a Shamir sharing of the target value 𝛽 . For

completeness, we now show that evaluation on every other input

(i.e., 𝑥 ≠ 𝛼) results with a Shamir sharing of zero. Since the (2, 2)-
VDPF

+
is defined over a binary field F

2
𝑙 , evaluation of 𝑔0 and 𝑔1

(respectively of 𝑘0 and 𝑘1) on 𝑥 ≠ 𝛼 results with the same value

(so adding them results with 0
𝑙
). Thus, evaluation of 𝑓𝑖 = (𝑔𝑖𝑔 , 𝑘𝑖𝑘 )

(𝑖 ∈ {1, 2, 3}, 𝑖𝑔, 𝑖𝑘 ∈ {0, 1}) results with the same value for all

Parameters: A prime field F and a hash function 𝐻 . Inverses are

computed over the prime field F.

VDPF.Gen(1𝜅 , 𝛼, 𝛽)

(1) (𝛽1, 𝛽2, 𝛽3 ) ← SS2,3 .Share(𝛽 )
(2) 𝛽 ′

𝑖
← 𝛽𝑖 · (𝑖 )−1, for 𝑖 ∈ {1, 2, 3}.

(3) 𝑣0
$← F

2
𝑙

(4) 𝑣2 ← 𝛽 ′
1
⊞ 𝑣0

(5) 𝑣1 ← 𝛽 ′
2
⊞ 𝑣2

(6) 𝑣3 ← 𝛽 ′
3
⊞ 𝑣1

(7) (𝑔0, 𝑔1 ) ← VDPF+ .Gen(1𝜅 , 𝛼, 𝑣0, 𝑣1 )
(8) (𝑘0, 𝑘1 ) ← VDPF+ .Gen(1𝜅 , 𝛼, 𝑣2, 𝑣3 )
(9) Set 𝑓1 = (𝑔0, 𝑘0 ), 𝑓2 = (𝑔1, 𝑘0 ) and 𝑓3 = (𝑔1, 𝑘1 )
(10) Output: (𝑓1, 𝑓2, 𝑓3 ) .

VDPF.Eval(𝑏, 𝑓𝑏 , 𝑥 )

(1) Parse (𝑔, 𝑘 ) ← 𝑓𝑏 .

(2) Set (𝑏𝑔, 𝑏𝑘 ) to (0, 0), (1, 0) or (1, 1) if 𝑏 equals 1, 2 or 3, re-

spectively.

(3) Compute 𝑦𝑔 = VDPF+ .Eval(𝑏𝑔, 𝑔, 𝑥 )
(4) Compute 𝑦𝑘 = VDPF+ .Eval(𝑏𝑘 , 𝑘, 𝑥 )
(5) Compute 𝑦 = (𝑦𝑔 ⊕ 𝑦𝑘 ) ⊙ 𝑏.
(6) Output 𝑦.

VDPF.Prove(𝑏, 𝑓𝑏 , 𝑟𝑏 )
(1) Parse (𝑔, 𝑘 ) ← 𝑓𝑏 .

(2) Set (𝑏𝑔, 𝑏𝑘 ) to (0, 0), (1, 0) or (1, 1) if 𝑏 equals 1, 2 or 3, re-

spectively.

(3) 𝜋𝑔 = VDPF+ .Prove(𝑏𝑔, 𝑔) and 𝜋𝑘 = VDPF+ .Prove(𝑏𝑘 , 𝑘 )
(4) Initialize 𝒚𝒃 = {}, 𝒖 = {}.
(5) For 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛 }:

(a) Compute 𝑦𝑔 (𝑥𝑖 ) = VDPF+ .Eval(𝑏𝑔, 𝑔, 𝑥𝑖 )
(b) Compute 𝑦𝑘 (𝑥𝑖 ) = VDPF+ .Eval(𝑏𝑘 , 𝑘, 𝑥𝑖 )
(c) 𝑦𝑖 ← (𝑦𝑔 (𝑥𝑖 ) ⊕ 𝑦𝑘 (𝑥𝑖 ) ) ⊙ 𝑏
(d) 𝒚𝒃 ← 𝒚𝒃 ∪ {𝑦𝑖 }
(e) Generate (the same) 𝑢𝑖

$← F and let 𝒖 ← 𝒖 ∪ {𝑢𝑖 }
(6) 𝛽𝑏 ←

∑𝑛
𝑖=1 𝒚𝒃 [𝑖 ]

(7) 𝑡𝑏 ← (𝒚𝒃 · 𝒖 )2 − 𝛽𝑏 (𝒚𝒃 · 𝒖2 ) − 𝑟𝑏 (over F)
(8) Output 𝜋𝑏 = (𝜋𝑔, 𝜋𝑘 , 𝑡𝑏 , 𝐻 (𝑡𝑏 ) )

VDPF.Verify(𝜋1, 𝜋2, 𝜋3)

(1) Parse 𝜋𝑏 = (𝜋𝑔,𝑏 , 𝜋𝑘,𝑏 , 𝑡𝑏 , ℎ𝑏 )
(2) Compute 𝑡 = SS.Reconstruct(𝑡1, 𝑡2, 𝑡3 )
(3) Output accept iff 𝜋𝑔,2 = 𝜋𝑔,3 and 𝜋𝑘,1 = 𝜋𝑘,2

and accept = VDPF+ .Verify(𝜋𝑔,1, 𝜋𝑔,2 ) and accept =

VDPF+ .Verify(𝜋𝑘,1, 𝜋𝑘,3 ) , and 𝑡 = 0 and ∀𝑖 ∈ {0, 1, 2}
𝐻 (𝑡𝑏 ) = ℎ𝑏 .

Figure 3: Our (2, 3)-VDPF construction

𝑖’s; let that value be 𝑦. Then, an interpolation using the points

(1, 𝑦), (2, 𝑦), (3, 𝑦) results with an horizontal line at height 𝑦, which

leads to the secret 𝑦. To get a secret 0 instead, we multiply the

result, 𝑦, by the index of the key, which now results with the points

(1, 𝑦), (2, 2𝑦), (3, 3𝑦), resulting with a line that crosses through (0, 0)
and so hides the secret 0.

Finally, that multiplication by 𝑖 requires fixing the target values

we give to the VDPF
+
instances: instead of working with the shares

𝛽1, 𝛽2, 𝛽3, we work with the values 𝛽′
1
= 𝛽1 · 1−1 = 𝛽1, 𝛽′

2
= 𝛽2 · 2−1

and 𝛽′
3
= 𝛽3 · 3−1.
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3.3 Security analysis
Correctness can be verified from the protocol, in the following we

prove verifiability and privacy.

Theorem 3.3. The construction in Figure 3 is a VDPF (Def. 3.1),
secure against a malicious client and a single malicious server.

Proof. Verifiability. We show that if the verification function

outputs accept then the functions 𝑓1, 𝑓2, 𝑓3 are well formed (e.g.,

they evaluate to a Shamir sharing of zero at all points except of

at most one, where they evaluate to a non-zero value). Since the

VDPF
+
outputs accept in both verifications, this means that the

functions (𝑔0, 𝑔1) and (𝑘0, 𝑘1) are well formed (𝑔0, 𝑔1, 𝑘0 and 𝑘1
have only one non-zero value).

Denote by 𝑦𝑔𝑏 (𝑥) (resp. 𝑦𝑘𝑏 (𝑥)) the result of evaluation of 𝑔𝑏
(resp. 𝑘𝑏 ) at point 𝑥 . The above guarantees that𝑦𝑔0 and𝑦𝑔1 differ on

at most one point. Let that point be 𝛼𝑔 and denote the evaluation by

𝑦𝑔0 = 𝛽𝑔,0 and 𝑦𝑔1 = 𝛽𝑔,1, respectively. Similarly, let 𝛼𝑘 be the point

at which 𝑦𝑘0 and 𝑦𝑘1 differ, and denote the evaluation by 𝑦𝑘0 = 𝛽𝑘,0
and 𝑦𝑘1 = 𝛽𝑘,1, respectively.

We show that if 𝛼𝑔 ≠ 𝛼𝑘 then our verification rejects. Assume

𝛼𝑔 ≠ 𝛼𝑘 , that the parties partially exchanged 𝐻 (𝑡𝑏 ), where 𝐻 is a

collision-resistant hash function, before exchanging the rest of their

proof (this serves as a commitment and is needed for malicious

servers), and that the verification procedure accepted. This implies

that the vector 𝒚 has two non-zero positions, as it is the result of

adding (over F
2
𝑙 ) two vectors with a single non-zero value. Assume

these values are 𝛽𝛼𝑔 and 𝛽𝛼𝑘 . From this, we get that the calculation

of t in line 7 of Prove yields: 𝑡 = (𝛽𝛼𝑔𝑢𝛼𝑔 + 𝛽𝛼𝑘𝑢𝛼𝑘 )2 − (𝛽𝛼𝑔 +
𝛽𝛼𝑘 )

(
𝛽𝛼𝑔𝑢

2

𝛼𝑔
+ 𝛽𝛼𝑘𝑢2𝛼𝑘

)
= 0. This is since we assumed the verifi-

cation accepts. After re-arranging, this equation is simplified to

(𝑢𝛼𝑔 − 𝑢𝛼𝑘 )2 = 0, which implies 𝑢𝛼𝑔 = 𝑢𝛼𝑘 , in contradiction.

Privacy. Per Definition 3.1, each server’s view is: (𝑓𝑏 , 𝜋𝑏′ , 𝜋𝑏′′ ),
where 𝑓𝑏 consists of two different VDPF+ keys, each of which is

further composed of a (2,2) VDPF key and a value 𝑧. The underly-

ing (2,2) VDPF keys are all indistinguishable from random by the

privacy of those VDPF keys.

It is also easy to see that for each VDPF+ key, 𝑧 is pseudorandom,

given that our selection of 𝑣0, 𝑣1, 𝑣2, 𝑣3 is pseudorandom. However,

recall that our construction evaluates two (2,2)-VDPF+ keys, and

then adds (over F
2
𝑙 ) their result together. At every point 𝑥 ≠ 𝛼 ,

we are adding two pseudorandom shares together, but at the point

𝑥 = 𝛼 , by construction, we obtain 𝛽′
𝑏
∈ F. We therefore need to

ensure that 𝛽′
𝑏
is indistinguishable from a random value in F

2
𝑙 .

Otherwise, an adversary controlling 𝑏 could run a full domain

evaluation of its key, and look for a value that is distinguishable

from all others (which are pseudorandom in F
2
𝑙 ). This potentially

leaks both 𝛽′
𝑏
and 𝛼 , so the simulation would fail.

Thus, to conclude the proof, we focus on showing that 𝛽′
𝑏
is

indistinguishable from a random value in F
2
𝑙 . W.l.o.g., we will

assume we are looking at the view of party 𝑏 = 0, which holds

𝛽′
0
. We note that the analysis for party 𝑏 = 1 and 𝑏 = 2 is similar.

First, observe that 𝛽′
0
itself is random in F, from the security of

Shamir sharing. Then, by our assumption, the probability that a

randomly generated value falls in the gap between the two fields

is:
| |F |−2𝜅 |

2
𝜅 ≈ 2

−𝜅
, which implies that 𝛽′

0
also appears random in

F
2
𝑙 , since 𝑙 = 𝜅 as well.

□

4 ACCOUNT-BASED DIGITAL CURRENCY
As mentioned in the introduction, a (2, 3)-VDPF provides an effi-

cient way to construct an ORAM protocol. We will now use the

construction developed in the previous section to build a protocol

that realizes 𝐹𝐴𝑃𝑂𝑅𝐴𝑀 . We will specifically focus on an access pol-

icy for a privacy-preserving digital currency, in which each user

controls a single row in the database of balances (this is equivalent

to the account-model of blockchains). We note again that since

our solution distributes trust across three servers, we believe it

is especially relevant to CBDCs, which are growing in popularity

[9, 35, 44, 53, 59]. However, they currently pose significant privacy

challenges [2, 3, 52, 58], which our system can overcome.

We formalize the CBDC application using the AP-ORAM func-

tionality (See Functionality 1), with the following parameters: The

number of locations to read is𝑚read = 1 and the number of locations

to update is𝑚update = 2; these values replace the single parame-

ter𝑚 used in the functionality. In addition, the PVerify parameter

function is defined by:

PVerify(𝑐𝑖 , read, ℓ1) = (1){
accept if 𝑖 = ℓ1

reject otherwise

PVerify(𝑐𝑖 , update,ℓ1, 𝑣1, ℓ2, 𝑣2) = (2){
accept if 𝑖 = ℓ1 and 𝑣1 = 𝑣2 and 𝐷𝑖 ≥ 𝑣1
reject otherwise

where 𝐷𝑖 is part of the state held by the functionality, see Figure

1. That is, the procedures of interest in a CBDC application are

"moving" funds from one account to the other (a transfer), or reading
a balance. Reading a balance is allowed to the account owner and

so the function verifies that the client ID (index) matches the row

to be read. Moving funds is translated into two memory updates,

the first subtract the value in one entry and the second increase

the value in another (possibly same, if one is paying itself) entry.

It is required that one can pay only from its own account, and so

the same matching verification is done as in the balance check

procedure; additionally, it is required that the subtracted value at

the payer’s account and the added value at the payee account are

equal. In the rest of the paper, we denote FAP−ORAM with the above

parameters by FCBDC.

4.1 Registration & Access Control for DPFs
Recently, Servan-Schreiber et al., [42, 49] presented a mechanism

called private access control lists (PACL) to verify that a private

access to a database (or a vector) 𝐷 succeeds only if the client

requesting that access is permissioned. The privacy of such access,

as in our case, is provided via a DPF which enables hiding the

location and the value to be written (in case of an update). One

drawback of their scheme is that it requires the servers to perform

𝑂 (𝑁 ) (𝑁 = |𝐷 |) public-key operations per check, as each server

requires to compute an inner-product in-the-exponent. Although
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their scheme incurs only𝑂 (1) communication, performing so many

public-key operations per check (in case 𝑁 is large) is prohibitive.

Instead, we make the observation that since we are in an honest-

majority setting, we can modify their protocol to use secret-shared

values (instead of values in the exponent) and still compute inner-

productswith𝑂 (1) complexity, andwith cheap information-theoretic

operations, using the sum-of-products trick (e.g., [1, 63]). We de-

scribe the protocol and notation below. Security follows from the

same arguments as in [49] and the security of sum-of-products.

The registration procedure, as described in Figure 4, is very

simple: each new client receives a random value, 𝜆, from the servers;

this random value is known only to the client (and is secret shared

at the servers). This value is used by the client each time it wishes

to access the servers. The servers maintain a database, denoted Λ,
for those secret shared values [𝜆1], [𝜆2], . . ., where 𝜆𝑖 is known to

client 𝑐𝑖 .

Access control for CBDC. In the CBDC application, the 𝑖-th entry

of the database 𝐷 ‘belongs’ to the 𝑖-th client, 𝑐𝑖 , which means that

𝑐𝑖 is the only one who can read it, and decrease the value stored

there (up to zero). Suppose that client 𝑐𝑖 wants to read 𝐷𝑖 (recall

that all entries in 𝐷 are secret shared by the servers). Client 𝑐𝑖 now

sends a new secret sharing of 𝜆𝑖 , namely ( [𝜆𝑖 ]1, [𝜆𝑖 ]2, [𝜆𝑖 ]3), to the
servers, as well as a VDPF (𝑓1, 𝑓2, 𝑓3) that encodes the value 1 at
location 𝑖 . This way, the servers can evaluate the DPF to obtain a

new shared database, denoted 𝑇 , that hides 1 at location 𝑖 and 0

elsewhere. The servers can compute the dot-product between Λ
and𝑇 , which results with the secret authentication value stored for

the client at location 𝑖 , call that value ˜𝜆𝑖 . If the client indeed has

access to location 𝑖 then it must hold that 𝜆𝑖 that is shared by the

client at the time of the protocol is equal to
˜𝜆𝑖 that is already stored

at location 𝑖 in Λ. This is a proof that the request sender knows the
required authentication secret for some location 𝑖 that is ‘one-hot’

encoded in the database𝑇 . Then, computing a dot-product between

𝑇 and 𝐷 results with the balance 𝑏 of that exact location that the

client proved it knows the authentication secret for.

Initialization. The servers initialize a zero-shared database 𝐷 =

(𝐷1, . . . , 𝐷𝑁 ) . Denote the 𝑖-th share of the database by 𝐷𝑖 =

(𝐷𝑖
1
, . . . , 𝐷𝑖

𝑁
) . Similarly, the servers maintain a sharing of Λ =

(Λ1, . . . ,Λ𝑁 ) , which is used for access control. In addition, the servers
maintain a zero-initialized counter ctr, which keeps track on the num-

ber of registered clients.

(1) Register. On input (𝑐, register) to the servers: if ctr = 𝑁 then

send full to the client and halt, otherwise:

(a) The servers increment ctr and invoke [𝜆] ← FRand; then,
each server 𝑆 𝑗 stores Λ

𝑗
ctr ← [𝜆] 𝑗 and sends ctr and [𝜆] 𝑗 to

the client 𝑐 . From this point and on, 𝑐 is indexed 𝑐ctr.

(b) Client computes 𝜆 = SS.Reconstruct( [𝜆]1, [𝜆]2, [𝜆]3 ) and
stores (ctr, 𝜆) .

Figure 4: Protocol ΠCBDC .register.

4.2 The CBDC Protocol
The protocol is described in Figures 4-6. If the underlying MPC

protocols realizing the well-known functionalities we use (e.g.,

F .Mult, F .CheckZero, F .Product) aremaliciously secure (resp. semi-

honest), then our entire protocol protects against malicious servers

(resp. semi-honest). Except for the protocol F .Product, we can use

semi-honest protocols and turn themmaliciously-secure by running

them over authenticated inputs (i.e., using MACs) [16, 19], which is

exactly what we do in practice. However, doing so for F .Product
would require 𝑂 (𝑁 ) communication per requrest, which is prohib-

itively expensive. We solve that problem via a novel maliciously-

secure protocol for a dot-product between a DPF and a vector (see

Section 5).

The protocol is described in the ORAM language, with Read

and Update requests. In the CBDC context, the Read request is

actually only used by a client 𝑐𝑖 to get its balance. Since the client

does not reveal which database entry it reads, yet it proves (using

the authentication secret described above) that it is allowed to

read that entry, this action is anonymous. This is important, as it

reduces the attack surface of network correlation attacks that may

exist if requesting the balance would not be anonymous. Then, the

Update request is actually only used by a client in order to pay

another client. For a client 𝑐𝑖 to pay amount 𝑣 to another client 𝑐 𝑗 ,

the client runs the ORAM protocol with inputs (ℓ1, 𝑣1) and (ℓ2, 𝑣2)
with ℓ1 = 𝑖, ℓ2 = 𝑗 and 𝑣1 = 𝑣2 = 𝑣 . Security against a corrupted

server follows from the fact that the underlying building blocks and

functionality are secure; a formal simulation based proof is given

below. Security against a corrupted client follows the authentication

technique described above, which we briefly expound on now. The

client sends two VDPFs, each is verifiable on its own and therefore

it is guaranteed that each represents a vector with at most one

entry that is non-zero. To verify that the two non-zero values are

the same, the hidden values are ‘extracted’ (these are values 𝑎 and

𝑏) and their difference is later handed to F .CheckZero. Note that
in contrast to the Read operation, where the client provided a

sharing of its authentication secret 𝜆, in Update the client provides
a sharing of 𝜆 ·𝑣1 (i.e., the authentication secret times the amount to

transfer). Then, the protocol obtains another instance of that value

by computing a dot-product between Λ and 𝑓 (the vector shared

by (𝑓1, 𝑓2, 𝑓3)), and again, the difference between these results is

checked using F .CheckZero. Finally, to check that the amount to

transfer is no greater than the balance of the user, the protocol

computes 𝑣 ′ – the user’s balance times the amount to transfer, and

𝑎2 the amount to transfer squared. Obviously, it must hold that the

latter is no greater than the former, which is checked via a call to

FLTE. We note that because of that check, it is must be ensured that

the balances in the system do not exceed the square root of the

underlying field size (i.e.

√︁
|F|).

Security. An intuition to the security of the protocol was given

above; in this section we give a formal simulation-based proof of

security. We prove the following:

Theorem 4.1. Given a verifiable enhanced distributed point func-
tion scheme VDPF+, protocol Π = (ΠCBDC .register, ΠCBDC .read,
ΠCBDC .update) (from Figures 4-6) securely computes F .CBDC (Fig-
ure 1 with PVerify from Equations 1-2) in the FX-hybrid model, for
all X ∈ {Rand,Zero,Mult, Product,CheckZero, LTE}.

Proof. We show a proof against a malicious adversary. LetA be

an adversary who corrupts server 𝑆𝑐 (𝑐 ∈ {1, 2, 3}) and any subset of
the clients. We present a simulatorS that runsA internally and pro-

duce’s a simulated adversarial view and output set associated with



High-Throughput Three-Party DPFs with Applications to ORAM and Digital Currencies Conference’17, July 2017, Washington, DC, USA

Read. On input (read, ℓ ) to client 𝑐𝑖 :

(1) Client: The client 𝑐𝑖 sends (𝑓𝑖 , [𝜆]𝑖 ) to server 𝑆𝑖 , where:

(a) (𝑓1, 𝑓2, 𝑓3 ) ← VDPF+ .Gen(1𝜅 , ℓ, 1) .
(b) ( [𝜆]1, [𝜆]2, [𝜆]3 ) ← SS.Share2,3 (𝜆𝑖 ) .

(2) Servers: Given (𝑓𝑖 , [𝜆]𝑖 ) , the servers invoke [𝑧 ] ← F.Zero; and
then, server 𝑆 𝑗 computes:

(a) 𝑇 𝑗 ← VDPF+ .Eval( 𝑗, 𝑓𝑗 ) (this is a full-domain evaluation).

(b) [𝑡 ] 𝑗 =
∑𝑁

𝑘=1
𝑇

𝑗

𝑘
.

(c) 𝜋 𝑗 ← VDPF+ .Prove( 𝑗, 𝑓𝑗 , [𝑧 ] 𝑗 ) .
(d) [ ˜𝜆] ← F.Product( [Λ], 𝑓 ) .

(3) Servers verification:

(a) Server 𝑆 𝑗 exchanges ℎ 𝑗 from 𝜋 𝑗 , then exchanges the rest of

the proof.

(b) The servers halt if:

(i) The DPF is not valid, i.e., reject =

VDPF+ .Verify(𝜋1, 𝜋2, 𝜋3 ) ,
(ii) The DPF hides a value different than 1, i.e.,

F.CheckZero( [𝑡 ] − 1) returns false.
(iii) Client authentication fails, i.e., F.CheckZero( [𝜆] −
[ ˜𝜆] ) returns false.

(4) Balance retrieval:

(a) The servers compute [𝑏 ] ← F.Product( [𝐷 ], 𝑓 ) and then

server 𝑆 𝑗 sends [𝑏 ] 𝑗 to the client.

(5) Client: The client outputs 𝑏 = SS.Reconstruct( [𝑏 ]1, [𝑏 ]2, [𝑏 ]3 ) .

Figure 5: Protocol ΠCBDC .read.

Update. On input (update, (ℓ1, 𝑣1 ), (ℓ2, 𝑣2 ) to client 𝑐𝑖 :

(1) Client: The client 𝑐𝑖 sends (𝑓𝑖 , 𝑔𝑖 , [𝜆]𝑖 ) to server 𝑆𝑖 , where:

(a) (𝑓1, 𝑓2, 𝑓3 ) ← VDPF+ .Gen(1𝜅 , ℓ1, 𝑣1 ) .
(b) (𝑔1, 𝑔2, 𝑔3 ) ← VDPF+ .Gen(1𝜅 , ℓ2, 𝑣2 ) .
(c) ( [𝜆]1, [𝜆]2, [𝜆]3 ) ← SS.Share2,3 (𝜆𝑖 · 𝑣1 ) .

(2) Servers: Given (𝑓𝑖 , 𝑔𝑖 , [𝜆]𝑖 ) , the servers invoke FZero twice to get

[𝑧 ] and [𝑧′ ]; then, server 𝑆 𝑗 computes:

(a) 𝐹 𝑗 = VDPF+ .Eval( 𝑗, 𝑓𝑗 ) and𝐺 𝑗 = VDPF+ .Eval( 𝑗, 𝑔𝑗 ) ;
(b) [𝑎] 𝑗 =

∑𝑁
𝑘=1

𝐹
𝑗

𝑘
and [𝑏 ] 𝑗 =

∑𝑁
𝑘=1

𝐺
𝑗

𝑘
.

(c) 𝜋 𝑗 = VDPF+ .Prove( 𝑗, 𝑓𝑗 , [𝑧 ] 𝑗 ), 𝜋 ′
𝑗

=

VDPF+ .Prove( 𝑗, 𝑔𝑗 , [𝑧′ ] 𝑗 ) .
(d) [𝑎2 ] ← F.Mult( [𝑎], [𝑎] ) .
(e) [𝜆′ ] ← F.Product( [Λ], 𝑓 ) .
(f) [𝑣′ ] ← F.Product( [𝐷 ], 𝑓 ) .

(3) 𝑆 𝑗 exchanges (ℎ′𝑗 , ℎ′′𝑗 ) from 𝜋 ′
𝑗
, 𝜋 ′′

𝑗
, then exchanges the rest of

the proofs.

(4) Servers halt if:
(a) VDPF+ .Verify(𝜋1, 𝜋2, 𝜋3 ) or VDPF+ .Verify(𝜋 ′

1
, 𝜋 ′

2
, 𝜋 ′

3
) re-

turn reject.
(b) F.CheckZero( [𝜆] − [𝜆′ ] ) or F.CheckZero( [𝑎] − [𝑏 ] ) re-

turn false.

(c) F.LTE( [𝑎2 ], [𝑣′ ] ) and F.LTE( [𝑎],
√︁
|F | ) returns false.

(5) Each server 𝑆 𝑗 updates 𝐷
𝑗 = 𝐷 𝑗 − 𝐹 𝑗 +𝐺 𝑗

and sends Ok to the

client.

Figure 6: Protocol ΠCBDC .update.

the honest parties (the servers 𝑆ℎ1
, 𝑆ℎ2

s.t. {ℎ1, ℎ2, 𝑐} = {1, 2, 3}).
The resulting adversarial view and the honest parties’ outputs are

computationally indistinguishable from those in the real execution

of the protocol.

In the following we simulate the commands as if the adversary

controls the client as well, and later we discuss what is changed

in the simulation in case the client is honest. Whenever the sim-

ulator halts in the below description, it sends abort to the FCBDC
functionality, with which it interacts.

Register. On input (𝑐, register), if ctr = 𝑁 send full to the client
and halt, otherwise increment ctr and continue. Simulate F .Rand
by computing [𝜆] ← SS.Share2,3 (𝜆) for a uniform 𝜆 ∈ F, hand [𝜆]𝑐
to 𝑆𝑐 and [𝜆]ℎ1

, [𝜆]ℎ2
to the client.

Read. Given, 𝑓ℎ1
, 𝑓ℎ2

, [𝜆]ℎ1
, [𝜆]ℎ2

, simulate F .Zero by comput-

ing [𝑧] ← SS.Share2,3 (0) and hand [𝑧]𝑐 to 𝑆𝑐 ; then, do exactly as

in the protocol, for 𝑏 ∈ {1, 2}:
• Compute 𝑇ℎ𝑏 ← VDPF+ .Eval(ℎ𝑏 , 𝑓ℎ𝑏 ).
• Compute [𝑡]ℎ𝑏 =

∑
𝑘 = 1

𝑁𝑇
ℎ𝑏
𝑘

.

• Compute 𝜋ℎ𝑏 = VDPF+ .Prove(ℎ𝑏 , 𝑓ℎ𝑏 , [𝑧]ℎ𝑏 ), send 𝜋ℎ𝑏 to 𝑆𝑐
and receive 𝜋𝑐 from 𝑆𝑐 .

Then, simulate F .Product by receiving [Λ]𝑐 and 𝑓𝑐 from 𝑆𝑐 , then,

halt if [Λ]𝑐 together with [Λ]ℎ1
and [Λ]ℎ2

do not form a valid

Shamir sharing for a vector (note that the secrets in Λ are com-

pletely determined by [Λ]ℎ1
and [Λ]ℎ2

and so the secrets could

not be adversarially changed), or 𝑓𝑐 together with 𝑓ℎ1
and 𝑓ℎ2

do not form a valid point function (there exists at most one en-

try 𝛼 at which the shared value is non-zero, and all entries form

valid Shamir sharings), or reject = VDPF+ .Verify(𝜋1, 𝜋2, 𝜋3). Oth-
erwise (the above checks pass), compute

˜𝜆 = Λ ·𝑇 and hand [ ˜𝜆]𝑐
to 𝑆𝑐 where [ ˜𝜆] ← SS.Share2,3 ( ˜𝜆). Simulate the first instance of

F .CheckZero by receiving [𝑡]𝑐 from 𝑆𝑐 , checking that it is consis-

tent with [𝑡]ℎ1
, [𝑡]ℎ2

computed above and verifying that 𝑡 = 1. Sim-

ilarly, simulate the second instance of F .CheckZero by receiving

[𝜆− ˜𝜆]𝑐 from 𝑆𝑐 , checking that it is consistent with [𝜆− ˜𝜆]ℎ1
, [𝜆− ˜𝜆]ℎ2

and verifying that 𝜆− ˜𝜆 = 0. Finally, simulate F .Product by comput-

ing 𝑏 = 𝐷 ·𝑇 and [𝑏] ← SS.Share2,3 (𝑏), then sending [𝑏]ℎ1
, [𝑏]ℎ2

to the client and [𝑏]𝑐 to 𝑆𝑐 .

Update. Given, 𝑓ℎ𝑏 , 𝑔ℎ𝑏 , [𝜆]ℎ𝑏 for 𝑏 ∈ {1, 2}, simulate F .Zero by

computing [𝑧] ← SS.Share2,3 (0), [𝑧′] ← SS.Share2,3 (0), and hand
[𝑧]𝑐 , [𝑧′]𝑐 to 𝑆𝑐 ; then, do exactly as in the protocol, for 𝑏 ∈ {1, 2}:
• Compute 𝐹ℎ𝑏 ← VDPF+ .Eval(ℎ𝑏 , 𝑓ℎ𝑏 )
and 𝐺ℎ𝑏 ← VDPF+ .Eval(ℎ𝑏 , 𝑔ℎ𝑏 ).
• Compute [𝑎]ℎ𝑏 =

∑
𝑘 = 1

𝑁 𝐹
ℎ𝑏
𝑘

and [𝑏]ℎ𝑏 =
∑
𝑘 = 1

𝑁𝐺
ℎ𝑏
𝑘

.

• Simulate F .Mult by receiving [𝑎]𝑐 from 𝑆𝑐 ; if it is consistent

with the [𝑎]ℎ𝑏 ’s then compute [𝑎2] ← SS.Share2,3 (𝑎2) and
hand [𝑎2]𝑐 to 𝑆𝑐 .
• Compute 𝜋ℎ𝑏 = VDPF+ .Prove(ℎ𝑏 , 𝑓ℎ𝑏 , [𝑧]ℎ𝑏 ) and 𝜋

′
ℎ𝑏

=

VDPF+ .Prove(ℎ𝑏 , 𝑔ℎ𝑏 , [𝑧
′]ℎ𝑏 ), send (𝜋ℎ𝑏 , 𝜋

′
ℎ𝑏
) to 𝑆𝑐 and re-

ceive 𝜋𝑐 , 𝜋
′
𝑐 from 𝑆𝑐 .

• Simulate F .Product twice by receiving [Λ]𝑐 and 𝑓𝑐 from 𝑆𝑐 ,

then, halt if [Λ]𝑐 , when combined with the [Λ]ℎ𝑏 ’s, does not
form a valid Shamir sharing for a vector, or 𝑓𝑐 together with

𝑓ℎ1
and 𝑓ℎ2

do not form a valid point function, or reject
is returned when computing VDPF+ .Verify(𝜋1, 𝜋2, 𝜋3) or
VDPF+ .Verify(𝜋 ′

1
, 𝜋 ′

2
, 𝜋 ′

3
). If not halted, compute

[𝜆′] ← SS.Share2,3 (Λ · 𝐹 ) and [𝑣 ′] ← SS.Share2,3 (𝐷 · 𝐹 ),
and hand [𝜆′]𝑐 and [𝑣 ′]𝑐 to 𝑆𝑐 .

Simulate the first instance of F .CheckZero by receiving [𝜆 − 𝜆′]𝑐
from 𝑆𝑐 , checking that it is consistent with the [𝜆 − 𝜆′]ℎ𝑏 ’s and
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verifying that 𝜆 − 𝜆′ = 0. Then, simulate the second instance of

F .CheckZero by receiving [𝑎 − 𝑏]𝑐 from 𝑆𝑐 , checking that it is

consistent with the [𝑎 − 𝑏]ℎ𝑏 ’s computed above and verifying that

𝑎 −𝑏 = 0. Finally, simulate F .LTE by receiving [𝑎2]𝑐 , [𝑣 ′]𝑐 from 𝑆𝑐 ,

checking that they are consistent with the [𝑎2]ℎ𝑏 ’s and [𝑣
′]ℎ𝑏 ’s,

and verifying that 𝑎2 ≤ 𝑣 ′ (which is equivalent to verifying that

𝑎 ≤ 𝐷𝑖 ). If any of the above verifications fail then halt, otherwise,

update 𝐷ℎ𝑏 = 𝐷ℎ𝑏 − 𝐹ℎ𝑏 +𝐺ℎ𝑏
send Ok to the client.

The resulting view of the adversary and the output for the hon-

est servers are perfectly simulated, that is, these views under the

simulation and in the real execution of the protocol are identically

distributed. We note that this is a perfect simulation even though

the DPF construction is only computationally secure; this is due to

the fact that when the client is corrupted then the adversary itself

produces it, and so the VDPF’s simulator does not come into play.

The probability that the adversary’s client succeeds in submit-

ting a malformed VDPF and still pass the verification, or pass the

authentication verification without submitting a correct 𝜆 = Λ𝑖

(for some 𝑖 ∈ {1, . . . , 𝑁 } equals in the simulation and real execu-

tion, and are both negligible in 𝜅 (the former is computationally

negligible and the latter is statistically negligible).

Simulating an honest client. Here we use the VDPF’s simulator

(see Definition 3.1). The only difference between this case and the

above (when the client is under the control of A) is that now S
has to produce 𝑓𝑐 in the simulation of read (or 𝑓𝑐 , 𝑔𝑐 in the sim-

ulation of update). This is done by invoking the VDPF’s simu-

lator, and then sending 𝑆𝑐 the simulated point function’s share

𝑓𝑐 ← VDPF+ .S(1𝜅 , 𝑐, 𝑁 ). Combining with the rest of the simula-

tion, the views under real execution and simulation become com-

putationally indistinguishable (rather than identical as they were

in the case the client was corrupted). It is easy to see that we can

reduce the security of protocol Π to that of the VDPF+ construc-
tion. □

5 EFFICIENT, MALICIOUS DOT-PRODUCT
The functionality F .Product (Figure 7) is an important one in the

above CBDC protocol; it receives shares of a vector [𝑉 ] and point

functions 𝑓 = (𝑓1, 𝑓2, 𝑓3) (alternatively, it can receive two point

functions 𝑓 , 𝑔 and expand 𝑔 into [𝑉 ]) from the parties, and returns

the dot product of 𝑉 and 𝐹 , where 𝐹 is the result of a full-domain

evaluation of 𝑓 , that is the sharings [𝐹 ] = [𝐹1], . . . , [𝐹𝑁 ].

Setting: The functionality interacts with parties 𝑃1, 𝑃2, 𝑃3 and an adversary S.

Inputs: 𝑃𝑖 inputs [𝑉 ]𝑖 , 𝑓𝑖 , for 𝑖 ∈ {1, 2, 3}.
• For 𝑗 ∈ {1, 2, 3}, Expand [𝐹 ] 𝑗 ← VDPF.Eval( 𝑗, 𝑓𝑗 ) .
• For all 𝑖 ∈ {1, 2, ..., 𝑁 }:

– 𝐹𝑖 ← SS.Reconstruct1,3 ( [𝐹𝑖 ] )
– 𝑉𝑖 ← SS.Reconstruct1,3 ( [𝑉𝑖 ] )
– 𝑍𝑖 ← 𝐹𝑖 · 𝑉𝑖 .
– Store in [𝑍 ] the i-th sharing: [𝑍𝑖 ] ← SS.Share1, 3(𝑍𝑖 ) .

• Wait for an input from S, if it is ⊥ then output ⊥ to all parties, otherwise

continue.

• Output [𝑍 ] 𝑗 to 𝑃 𝑗 , for 𝑗 ∈ {1, 2, 3}.

Figure 7: Functionality F.Product

A naive implementation of F .Product would call F .Mult on the

pairs ( [𝑉𝑖 ], [𝐹𝑖 ]) for every 𝑖 ∈ {1, . . . , 𝑁 }. This, however, incurs
𝑂 (𝑁 ) communication between the parties, a cost we highly wish to

avoid (otherwise the protocol could not scale well with the number

of clients). Also, note that we cannot use a sum-of-products gate

directly (F .SoP), which has 𝑂 (1) communication in the honest

majority case, because it only provides semi-honest security.

Our goal is to achieve a secure implementation of F .Product
with communication sub-linear in 𝑁 , namely, with 𝑂 (log𝑁 ) or
even constant communication. In this section we show how to do

that using a new primitive we call updatable VDPF (or UVDPF). An
updatable VDPF allows the parties who already hold some VDPF

𝑓 = (𝑓1, 𝑓2, 𝑓3) for some point function 𝐹𝛼,𝛽 , to update the tar-

get value at entry 𝛼 ; that is, to produce an updated VDPF 𝑓 ′ =
(𝑓 ′
1
, 𝑓 ′
2
, 𝑓 ′
3
) for the point function 𝐹𝛼,𝛽 ′ for some 𝛽′ that is also se-

cret shared by them. If an implementation of that primitive can

be done in sub-linear communication in 𝑁 , then so can the dot

product. We remark that for simplicity and better generalization,

we present a protocol that only has black-box access to (2,2)-VDPFs.

This protocol has 𝑂 (log𝑁 ) communication. For our implementa-

tion, we make an optimization that achieves 𝑂 (1) communication

but without black-box access.

In Section 5.1 we formalize the functionality for a UVDPF, for

both the (2, 2) and the (2, 3) cases. Then, in Section 5.2 we show

how to use a UVDPF to implement the dot-product functionality.

5.1 Updatable (2, 3)-VDPF
In Figure 8 we present the updatable (2, 2)-VDPF+ functionality,
denoted F +(2,2)−UVDPF. A secure implementation of (a slightly dif-

ferent version of) that functionality was proposed in [55] (we note

that in that paper this primitive is called ’deferred DPF’).

Then, in Figure 9 we present the (2, 3)-threshold variant of that

functionality, denoted, F +(2,3)−UVDPF. Finally, using F
+
(2,2)−UVDPF,

we construct (Fig. 10) a protocol to securely compute F +(2,3)−UVDPF.
The (2, 2)-updatable VDPF+ functionality (Figure 8), is a two-

party functionality that, given VDPF
+
shares 𝑓0 from the first party

and 𝑓1 from the second party, for a point function 𝐹𝛼,𝛽0,𝛽1 , and the

sharings of new target values [𝛽′
0
], [𝛽′

1
] (these are (2, 2) sharings),

outputs updated shares 𝑓 ′
0
to the first party and 𝑓 ′

1
to the second

party for a new point function 𝐹𝛼,𝛽 ′
0
,𝛽 ′

1

.

Similarly, the (2, 3)-updatable VDPF+ functionality (Figure 9), is

a three-party functionality that, given VDPF
+
shares 𝑓1, 𝑓2, 𝑓3 from

𝑃1, 𝑃2, 𝑃3, respectively, for a point function 𝐹𝛼,𝛽 , and the sharings of

a new target value [𝛽′] (a Shamir (2, 3) sharing), outputs updated
shares 𝑓 ′

1
, 𝑓 ′
2
, 𝑓 ′
3
to point function 𝐹𝛼,𝛽 ′ .

We note that the three-party functionality gives the adversary

the opportunity to abort whereas the two-party one does not. This

is due to the fact that our realization of the three-party functionality

can work with a protocol for the two-party functionality that is

only secure against semi-honest adversaries, as a verification is

performed in the three-party protocol.

The construction begins when the servers hold shares for a

(2, 3)-VDPF, which, in our construction each share is essentially

composed of two (2, 2)-UVDPF+ shares (note that our construction
in Figure 3 uses VDPF, however, the same construction could work

with an updatable VDPF). Specifically, there are two UVDPF
+
s that
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Setting: The functionality interacts with parties 𝑃0 and 𝑃1 and an

adversary S. The functionality is initialized with a VDPF
+
scheme.

Inputs: 𝑃𝑖 inputs 𝑓𝑖 , for 𝑖 ∈ {0, 1}. The parties input the (2, 2)-
sharings of 𝛽 ′

0
, 𝛽 ′

1
∈ F2𝜅 .

• ‘Reconstruct’ the function hidden by (𝑓0, 𝑓1 ) and obtain 𝛼, 𝛽0, 𝛽1.

• Reconstruct the secrets 𝛽 ′
0
and 𝛽 ′

1
from their shares.

• Compute (𝑓 ′
0
, 𝑓 ′

1
) ← VDPF+ (𝛼, 𝛽 ′

0
, 𝛽 ′

1
) .

• Output 𝑓 ′
𝑖
to 𝑃𝑖 , for 𝑖 ∈ {0, 1}.

Figure 8: Functionality F+(2,2)−UVDPF

Setting: The functionality interacts with parties 𝑃1, 𝑃2, 𝑃3 and an

adversary S. The functionality is initialized with a VDPF
+
scheme.

Inputs: 𝑃𝑖 inputs 𝑓𝑖 , for 𝑖 ∈ {1, 2, 3}. The parties input a (2, 3)-Shamir

sharing of 𝛽 ′ ∈ F.

• ‘Reconstruct’ 𝐹𝛼,𝛽 using (𝑓1, 𝑓2, 𝑓3 ) and obtain 𝛼 and 𝛽 .

• Reconstruct the secret 𝛽 ′ .
• Compute (𝑓 ′

1
, 𝑓 ′

2
, 𝑓 ′

3
) ← VDPF+ (𝛼, 𝛽 ′ ) .

• Wait for an input from S, if it is ⊥ then output ⊥ to all parties,

otherwise continue.

• Output 𝑓 ′
𝑖
to 𝑃𝑖 , for 𝑖 ∈ {1, 2, 3}.

Figure 9: Functionality F+(2,3)−UVDPF

are already shared, namely, (𝑓0, 𝑓1) encode (𝛼, 𝛽0, 𝛽1) and (𝑔0, 𝑔1)
encode (𝛼,𝛾0, 𝛾1). Recall that each party 𝑃𝑖 (𝑖 ∈ {1, 2, 3}) has shares
of two (2, 2)-UVDPF+s, that is, 𝑃1 has (𝑓0, 𝑔0), 𝑃2 has (𝑓1, 𝑔0) and
𝑃3 has (𝑓1, 𝑔1). It holds that (𝛽0 ⊕ 𝛾0), (𝛽1 ⊕ 𝛾0) ⊙ 2, (𝛽1 ⊕ 𝛾1) ⊙ 3

form a valid Shamir sharing of 𝛽 .

Let 𝛿 be the value that the parties wish to plug at location 𝛼

instead of 𝛽 , we assume that the parties hold the (2, 3)-sharing [𝛿].
The parties’ goal is to obtain the sharings [𝛽′

0
], [𝛽′

1
], [𝛾 ′

0
], [𝛾 ′

1
] s.t.

[𝛿]1 = (𝛽′0 ⊕ 𝛾
′
0
), [𝛿]2 = (𝛽′1 ⊕ 𝛾

′
0
) ⊙ 2, [𝛿]3 = (𝛽′1 ⊕ 𝛾

′
1
) ⊙ 3 (3)

form a valid Shamir sharing of 𝛿 , and hand those sharings to the

two instances of F(2,2)−UVDPF+ . That is, the first (𝑓0, 𝑓1) should
be updated with [𝛽′

0
], [𝛽′

1
] and (𝑔0, 𝑔1) should be updated with

[𝛾 ′
0
], [𝛾 ′

1
]. In protocol Π (2,3)−UVDPF+ (Figure 10) the parties obtain

the appropriate (2, 2)-sharings of [𝛽′
0
], [𝛽′

1
], [𝛾 ′

0
], [𝛾 ′

1
] that are later

fed to the two instances of F(2,2)−UVDPF+ and obtain the new shares

of the (2, 3)-VDPF+.

5.2 The Dot-Product Protocol
Given a (2, 3)-UVDPF, the construction of our maliciously secure

dot-product is presented in Figure 11. It accepts a vector and a DPF,

expands the DPF, and computes a sharing of their dot product. We

note that the protocol relies on an additional functionality, F .SoP
for computation of sum-of-products. We note that F .SoP only

needs to be a semi-honest functionality that allows the adversary

to inject an additive error to the result, but this is not of concern in

our larger protocol as we achieve the MAC’ed result using another

invocation and compare the results. Since the MAC value is random

and independent, the adversary cannot inject additive errors to both

results such that they match (i.e., one is a MAC’ed version of the

Inputs: 𝑃𝑖 inputs 𝑓𝑖 , for 𝑖 ∈ {1, 2, 3}. The parties input a (2, 3)-Shamir

sharing of 𝛽 ′ ∈ F.
Protocol: If, at any of the following steps, any party receives ⊥ from

a functionality invocation, then it aborts.

(1) Pick random bit sharings:

• ([𝛽 ′
0,𝜅−1 ], . . . , [𝛽 ′0,0 ] ) .

• ([𝛾 ′
0,𝜅−1 ], . . . , [𝛾 ′0,0 ] ) .

(2) For every 𝑖 ∈ [0, 𝜅 − 1], compute [𝛿1,𝑖 ] = [𝛽 ′
0,𝑖
] ⊕ [𝛾 ′

0,𝑖
].

(3) Compute: [𝛿1 ] =
∑𝜅−1

𝑖=0 2
𝑖 · [𝛿1,𝑖 ].

Note that 𝛿1 = (𝛽 ′
0
⊕ 𝛾 ′

0
) is 𝑆1’s share; together with 𝛿 , they

completely define the degree-1 polynomial 𝑃 (x) = 𝛿 + 𝑎x s.t.

𝑃 (1) = 𝛿1 = 𝛿 + 𝑎, meaning that 𝑎 = 𝛿 − 𝛿1. Given 𝛿 and 𝑎,

it follows that 𝛿2 = 𝑃 (2) = 𝛿 + 2𝑎 and 𝛿3 = 𝑃 (3) = 𝛿 + 3𝑎.
Thus:

(4) Compute ( [𝛿2,𝜅−1 ], . . . , [𝛿2,0 ] ) ← F.A2B( [𝛿2 ] ) and

( [𝛿3,𝜅−1 ], . . . , [𝛿3,0 ] ) ← F.A2B( [𝛿3 ] ) , where [𝛿2 ] = [𝛿 ] +
2[𝑎] and [𝛿3 ] = [𝛿 ] + 3[𝑎].

(5) For every 𝑖 ∈ [0, 𝜅 − 1], compute [𝛽 ′
1,𝑖
] = [𝛿2,𝑖 ] ⊕ [𝛾 ′

0,𝑖
] and

[𝛾 ′
1,𝑖
] = [𝛽 ′

1,𝑖
] ⊕ [𝛿3,𝑖 ].

(6) Generate random sharings of bits, denoted

[𝑥𝑖 ], [𝑦𝑖 ], [𝑧𝑖 ], [𝑤𝑖 ] for every 𝑖 ∈ [0, 𝜅 − 1].
(7) Open to 𝑆1 the values 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑤𝑖 , for every 𝑖 ∈ [0, 𝜅 − 1].

Denote 𝑥 = (𝑥𝜅−1, . . . , 𝑥0 ) and similarly for 𝑦, 𝑧, 𝑤.

(8) Open to 𝑆3 the value 𝑥𝑖 ⊕ 𝛽 ′
0,𝑖
, 𝑦𝑖 ⊕ 𝛽 ′

1,𝑖
, 𝑧𝑖 ⊕ 𝛾 ′

0,𝑖
, 𝑤𝑖 ⊕ 𝛾 ′

1,𝑖
.

Denote 𝑥 ′ = (𝑥𝜅−1 ⊕ 𝛽 ′
0,𝜅−1, . . . , 𝑥0 ⊕ 𝛽 ′

0,0
) and similarly

𝑦′, 𝑧′, 𝑤′ .
(9) 𝑆1 and 𝑆3 call the updatable VDPF

+
functionality twice:

(a) 𝑆1 inputs 𝑓0, 𝑥, 𝑦 and 𝑆3 inputs 𝑓1, 𝑥
′, 𝑦′ . 𝑆1 receives 𝑓 ′

0
and

𝑆3 receives 𝑓
′
1
.

(b) 𝑆1 inputs𝑔0, 𝑧, 𝑤 and 𝑆3 inputs𝑔1, 𝑧
′, 𝑤′ . 𝑆1 receives𝑔′

0
and

𝑆3 receives 𝑔
′
1
.

(10) 𝑆1 sends 𝑔
′
0
to 𝑆2 and 𝑆3 sends 𝑓

′
1
to 𝑆2.

(11) The three servers obtain [𝑟 ] ← F.Rand; then they run Prove
and Verify on the new shares (𝑓 ′

0
, 𝑔′

0
), (𝑓 ′

1
, 𝑔′

0
) and (𝑓 ′

1
, 𝑔′

1
)

using their shares of [𝑟 ].

Figure 10: Protocol Π (2,3)−UVDPF+

other). This technique was used in previous works for maliciously

secure MPC (e.g., [16]).

6 IMPLEMENTATION, EVALUATION AND
APPLICATIONS

In this section, we implement prototypes of our VDPF constructions

and a basic three-server ORAM scheme that builds on top of it.

We then use these tools to construct our private Π𝐶𝐵𝐷𝐶 protocol

presented in Figures 4, 5, 6. Our code is written in C++ and consists

of approximately 7,000 lines of new code
5
. Our DPF implementation

leverages the highly efficient (2,2)-DPF implementation from [32],

but we extend their code
6
to allow for larger than 1-bit DPFs.

We ran all benchmarks on a single Azure Standard E32s (v5)

VM server, which has 16 physical cores (32 vCPUs) and 256GB of

RAM. We simulated network latency and bandwidth using the tc
command.

5
https://github.com/guyz/abcledger

6
https://github.com/dkales/dpf-cpp
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Inputs: 𝑃𝑖 has 𝑉 𝑖
and 𝑓𝑖 as inputs, for 𝑖 ∈ {1, 2, 3}, where 𝑉 𝑖

are

shares of a vector and 𝑓𝑖 are shares for a VDPF. We assume that the

VDPF was already proven valid.

Protocol:
(1) The parties invoke [𝑚] ← F.Rand( ) .
(2) Party 𝑃𝑖 computes 𝐴𝑖 = VDPF.Eval(𝑖, 𝑓𝑖 ) and then [𝑎]𝑖 =∑𝑁

𝑘=1
𝐴𝑖
𝑘
.

(3) The parties compute [𝑚𝑎] ← F.Mult( [𝑚], [𝑎] ) .
(4) The parties compute 𝑔′ ← F(2,3)−UVDPF (𝑓 , [𝑚𝑎] ) , which

results with shares 𝑓 ′
1
, 𝑓 ′

2
, 𝑓 ′

3
for a point function 𝐹𝛼,𝑚𝑎 .

(5) Party 𝑃𝑖 computes 𝐵𝑖 = VDPF.Eval(𝑖, 𝑓 ′
𝑖
) and then [𝑏 ]𝑖 =∑𝑁

𝑘=1
𝐵𝑖
𝑘
.

(6) The parties compute [𝑣𝑎] ← FSoP ( [𝑉 ], [𝐴] ) and [𝑣𝑏 ] ←
FSoP ( [𝑉 ], [𝐵 ] ) .

(7) Compute [𝑣𝑎𝑚] ← F.Mult( [𝑣𝑎], [𝑚] ) .
(8) Call F.CheckZero( [𝑣𝑎𝑚] − [𝑣𝑏 ] ) , if the result is false then

halt, otherwise output [𝑣𝑎].

Figure 11: Protocol ΠProduct

In addition, to further illustrate the applicability of our VDPF

construction, we sketch in Section 6.3 how it can be extended to

the application of building a Distributed ORAM (DORAM), and

qualitatively compare it with the state-of-the-art.

6.1 DPFs
We implement both verifiable and non-verifiable versions of the

state-of-the-art (2,2)-DPF from [7], and our two DPF constructions

(Sections 3.2, A.1). We also compare analytically to the (2,3)-DPF

from [11].

For all of these constructions, we measure the time it takes to

evaluate the entire domain for different domain sizes (shown in

Figure 12), as well as key sizes (in Table 2). As expected, our con-

structions have key sizes that are 2x bigger than the baseline
7
,

but this is marginal even for very large domains (∼ 2𝐾𝐵 keys for

𝑁 = 2
50
). Similarly, for evaluation, our (2,3)-DPF construction is

only 2x slower than the baseline, and similarly, the VDPF con-

struction has an additional estimated 2x overhead, since we are

effectively evaluating another level.

Our (2,3)-DPF from Section A.1 is ∼ 2.2× faster for 𝑛 > 2
20

compared to a (2, 2)-DPF. We estimate that this gap will increase

(in our favor) using GPUs, for two reasons: (i) AES is hardware-

accelerated in CPU, but not in GPU; (ii) In contrast, GPUs are

massively parallel and can perform vector operations well.

220 230 240 250

(2,2)-VDPF [7] 357 537 717 897

(2,3)-VDPF [11] (Analytical) 51024 120804 188664 289824

(2,3)-VDPF (Section 3.2) 850 1210 1570 1930

VDPF (Sublinear) (Section A.1) 980 1340 1700 2060

Table 2: Comparing key sizes (in bytes) of our constructions com-
pared to the baseline (2,2) DPF of [6] and (2,3) DPF of [11]. Since
[11] does not provide an implementation, we provide an analytical
estimate.

7
A (2,3) DPF has two (2,2) keys, and the DPF with sublinear PRF calls has 4 half-sized

such keys.
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Figure 12: Full domain evaluation of the various DPF constructions,
compared to the baseline (2,2) DPF.

6.2 Account-based Privacy-preserving
Cryptocurrency and CBDC

We now benchmark our main CBDC protocol. Our results support

our hypothesis that we can scale to large anonymity sets, including

those exceeding a million accounts. This vastly surpasses previous

systems, which only provided a k-anonymity set between 10-256.

We benchmark our system against Solidus [14], the closest existing

model, which also uses an ORAM for privacy in an account-based

ledger and marks the current state-of-the-art.

We conducted end-to-end transaction tests comparing Solidus

and our protocols (semi-honest and malicious Π𝐶𝐵𝐷𝐶 .𝑈 𝑝𝑑𝑎𝑡𝑒 pro-

tocols). To create a fair comparison, we optimized Solidus parame-

ters to leverage all available cores and systemmemory. Our findings,

detailed in Figure 13, reveal that our protocols significantly outper-

form Solidus in transaction throughput and memory efficiency for

up to𝑁 = 2
18

accounts, and continue to outperform it up to𝑁 = 2
22

accounts. While Solidus manages to close the gap at 𝑁 = 2
24

ac-

counts, it fails to offer complete anonymity like our system and it is

less efficient in memory usage. Beyond 𝑁 = 2
24
, Solidus exhausts

memory, whereas our protocols remain scalable.
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Figure 13: Transaction throughput and memory usage. Side-by-side
comparison with Solidus.

Additionally, we believe our system has the potential for horizon-

tal scaling across multiple servers, as it exhibits minimal bandwidth
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requirements and DPF evaluations and inner product computations

(which are the bottlenecks) could be run in parallel. Furthermore,

end-to-end latency, as shown in Figure 14, remains low across var-

ious network conditions, with acceptable delays even on slower

networks.

6.3 Three-party Distributed ORAM (DORAM)
A closely related problem to an ORAM scheme, which our CBDC

protocol above implements, is that of a Distributed ORAM (DO-

RAM). DORAM is a fundamental building block in MPC, as it

allows securely running RAM programs directly, as opposed to

converting them first to circuits, which can yield meaningful per-

formance gains. Thus, a significant body of research was dedi-

cated to optimizing DORAM for the two-party and three-party

cases [8, 10, 11, 23, 25, 43, 48, 56], with three-party DORAMs being

the most efficient. There are two major branches of DORAMs in

the literature: (i) those based on classical sublinear-computation

ORAM constructions, with logarithmic overhead (e.g., [25, 43]), or

with square-root overhead (e.g., [8]); (ii) and those based on DPFs

[10, 11, 23, 48, 56]. While the latter require linear computation, they

are extremely lightweight, having sublinear communication and a

very low number of rounds in comparison. For that reason, they

tend to scale better for mid-to-large memory sizes (e.g., up to 2
26

records [23, 56]), or are suited for higher-latency environments, for

example when the parties communicate over the internet and are

not co-located in the same data center.

Given our (2,3)-VDPF construction, our work fits in the second

bucket of research targeting DPF-based DORAMs. We have already

shown how our construction enables building an efficient three-

server ORAM. To turn it into a DORAM, we also need the servers to

generate the VDPF inMPC, since there is no client.We illustrate this

process in the following protocol sketch which builds a DORAM

from our DPF construction.

6.3.1 (2,3)-VDPF DORAM protocol:

• Input. The three parties start with a shamir-sharing over F
2
𝑙

of the secret DPF parameters [𝛼], [𝛽]. As shown in Figure

3, Line 1 of VDPF.Gen, the parties need to obtain shares

(of shares) of 𝛽 which they can achieve through a constant-

round re-sharing protocol.

• Recall that in Figure 3, VDPF.Gen constructs two underly-

ing VDPF+ instances, each of which is composed of a single

two-party VDPF with auxiliary data 𝑧. Generating a VDPF

in a distributed manner can be done with the well-known

protocol of [23], and it takes 𝑂 (𝑙𝑜𝑔𝑁 ) rounds and server

communication and 𝑂 (𝑁 ) computation. After this, the par-

ties have generated two VDPFs and have evaluated them at

the same time over the entire domain.

• However, in order to turn these into VDPFs+, we need to

handle the auxiliary data 𝑧 ← 𝛽0 ⊕ VDPF.Eval(0, 𝑓0, 𝛼). The
parties already have a sharing of 𝛽0, but to obtain

VDPF.Eval(0, 𝑓0, 𝛼), they need to somehow privately evalu-

ate each VDPF at the point 𝛼 . recall that P1, P2 both have

the first key of the second DPF, and similarly P2, P3 have

the second key of the first DPF. This redundancy allows the

third party to perform a PIR query to privately obtain the

necessary value. For example, for the second VDPF, P3 can

read VDPF.Eval(0, 𝑓0, 𝛼) by generating a DPF (locally) and

performing a 2-server PIR to read the value at 𝛼 from P1

and P2. Because P3 does not actually know 𝛼 , P1 and P2 first

shift 𝛼 by some randomness 𝑟 and open the result towards

P3. They also shift their own vector by 𝑟 positions locally,

ensuring that P3 reads the correct value. Treatment of the

other DPF is symmetrical. Note that this takes only a (small)

constant number of rounds, 𝑂 (𝑙𝑜𝑔𝑁 ) communication and

𝑂 (𝑁 ) computation, so it does not significantly add to the

protocol’s overhead.

• To complete the evaluation of the (2,3)-VDPF, the parties

perform local operations and obtain their final share. With

this, they can perform either a private read or write over the

secret-shared memory, in the same way we described for our

ORAM scheme.

Overall, this protocol has 𝑂 (𝑙𝑜𝑔𝑁 ) communication and round-

complexity, and most of the overhead is in the distributed genera-

tion of [23], which is already quite efficient and has small constants.

Comparing to the state-of-the-art. Several recent works tried
to construct an efficient three-party DORAMusing DPFs. In [10, 11],

the authors construct three-party DPFs that are significantly less

efficient than ours. Therefore, their overall communication over-

head between the servers is worse. In the first, communication is

𝑂 (
√
𝑁 ) per-query (but with a constant number of rounds), while

in the latter, it is 𝑂 (𝑙𝑜𝑔2𝑁 ) for both communication and rounds,

with high constants. More similar to our work, [48, 56] presented

a 𝑂 (𝑙𝑜𝑔𝑁 ) communication/rounds protocol for a three-party DO-

RAM, but their protocol is in the server-aided model and therefore

not a true three-party protocol. We thus estimate that a DORAM

protocol based on our VDPF would yield the most efficient three-

party DPF-based DORAM protocol to date, and that compared to

other DORAMs, ours would be the most efficient for mid-sized

memories or in high-latency environments. We leave implementing

and benchmarking such a system for future work.
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A APPENDIX
A.1 A VDPF with sublinear PRF calls
Another application of our (2,3)-VDPF construction is to build, in

a black-box manner, a VDPF with sublinear PRF calls (the main

computational bottleneck in evaluating DPFs). Note that in this

construction, calling Eval on 𝑥 produces a degree-2 sharing of

𝑦 = 𝐹 (𝑥). This has two implications: first, is that this construction

can still withstand malicious clients (due to verifiability), but only

semi-honest servers; second, we lose our one free multiplication, so

we can no longer combine PIR with PIW in a simple way, similar to

(2,2) VDPFs. In other words, this DPF is a potential (faster) drop-in

replacement for applications using (2,2) VDPFs (e.g., [17, 18, 42, 50]),

designed for the three-party model.

The full construction is detailed in the full version of this paper.

We only illustrate the main idea here, which is to re-interpret each

DPF as a square matrix (instead of a vector), where 𝛼 is defined by

𝛼𝑟𝑜𝑤 , 𝛼𝑐𝑜𝑙 . Then, for a DPF with domain of size 𝑛 = |𝐷 |, we can
share two DPFs that have a domain of size

√
𝑛 instead. One for the

row and one for the column. A similar idea was used in prior works

(e.g. [1, 11]). To perform a full-domain evaluation efficiently, we

can first run a full-domain evaluation on the row and column DPFs.

We then obtain two one-hot-vectors, which we use to expand the

full DPF. This is done by taking each value in the row vector, and

multiplying it with each value in the column vector. It is easy to

see that the result is a sharing of a vector 𝒚𝑛 , with a sharing of 𝛽 in

index 𝛼𝑟𝑜𝑤 ·
√
𝑛 + 𝛼𝑐𝑜𝑙 = 𝛼 , and 0 everywhere else.

A.2 Running in Bank Mode
There are several practical ways to deploy our CBDC protocol. As

mentioned, one method is to have the Central Bank distribute the

maintenance of the system to three trust zones (e.g., with two other

independent organizations).

Another method is to further distribute the system across com-

mercial banks. Similar to the bank-to-bank model employed by

[14, 15, 41], we could ask each bank to instantiate its own version

of the protocol for its own users. For each instantiation, the com-

mercial bank would be one of the three parties, and the two other

parties will be played by other independent organizations (e.g., the

Central Bank and an indepdendent non-profit).

In this deployment scenario, a user reading its balance will con-

tract its own bank’s database obliviously. Unlike similar works,

in our scenario the bank will remain oblivious to which user in-

teracts with it. To send a transaction, a user will split its update

into two parts (decreasing her own amount and increasing the

receiving party’s amount). One update will be performed on the

sending user’s bank ORAM, and similarly for the receiving user’s

bank ORAM. The two banks will ’compare notes’ and make sure

that the verification procedures all pass, but will otherwise remain

oblivious.
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