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Abstract

Collision-resistant hashing (CRH) is a cornerstone of cryptographic protocols. However,
despite decades of research, no construction of a CRH based solely on one-way functions has
been found. Moreover, there are black-box limitations that separate these two primitives.

Harnik and Naor [HN10] overcame this black-box barrier by introducing the notion of in-
stance compression. Instance compression reduces large NP instances to a size that depends
on their witness size while preserving the “correctness” of the instance relative to the language.
Shortly thereafter, Fortnow and Santhanam showed that efficient instance compression algo-
rithms are unlikely to exist (as the polynomial hierarchy would collapse). Bronfman and Roth-
blum defined a computational analog of instance compression, which they called computational
instance compression (CIC), and gave a construction of CIC under standard assumptions. Un-
fortunately, this notion is not strong enough to replace instance compression in Harnik and
Naor’s CRH construction.

In this work, we revisit the notion of computation instance compression and ask what the
“correct” notion for CIC is, in the sense that it is sufficiently strong to achieve useful cryp-
tographic primitives while remaining consistent with common assumptions. First, we give a
natural strengthening of the CIC definition that serves as a direct substitute for the instance
compression scheme in the Harnik–Naor construction. However, we show that even this notion
is unlikely to exist.

We then identify a notion of CIC that gives new hope for constructing CRH from one-way
functions via instance compression. We observe that this notion is achievable under standard
assumptions and, by revisiting the Harnik–Naor proof, demonstrate that it is sufficiently strong
to achieve CRH. In fact, we show that our CIC notion is existentially equivalent to CRH.

Beyond Minicrypt, Harnik and Naor showed that a strengthening of instance compression
can be used to construct OT and public-key encryption. We rule out the computational analog
of this stronger notion by showing that it contradicts the existence of incompressible public-key
encryption, which was recently constructed under standard assumptions.
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1 Introduction

Collision-resistant hashing (CRH) is one of the cornerstones of modern cryptography. It has a
wide range of applications, including the classical “hash-and-sign” paradigm, zero knowledge, and
succinct arguments [Kil92; Kil95]. A family H of collision-resistant hash functions has the property
that efficient adversaries cannot find two distinct x1, x2, such that h(x1) = h(x2) for a randomly
sampled function h ∈ H. There are constructions of CRH families based on diverse assumptions,
including concrete structured assumptions such as the intractability of factoring, finding discrete
logarithms in finite groups, and lattice-based assumptions [Dam87; GGH11; IKO05; YZWGL19],
and more generic assumptions such as homomorphic encryption, and one-round PIR protocols
[IKO05].

However, despite decades of research, there is no construction of a CRH from one-way functions.
This missing connection implies that CRH cannot be placed within “Minicrypt”, a class based
solely on one-way functions according to Impagliazzo’s five worlds of relative complexity [Imp95].
Additionally, any potential construction of CRH from one-way functions must leverage non-black-
box techniques, even when using advanced tools like indistinguishability obfuscation and one-way
permutations[Sim98; AS16]. Thus, constructing CRH from one-way functions remains one of the
major open problems of our field.
Instance compression. To make progress on this question, Harnik and Naor [HN10] introduced
the notion of instance compression, with the goal to compresses large NP instances to a size that
depends on their witness length, which may be significantly smaller, while preserving the “correct-
ness” of the instance relative to the language. Roughly, an instance compression for a relation R
consists of a pair of efficient algorithms (IC,WT), one for compressing the instance into a smaller
instance x′ = IC(x) and one for translating the witness w′ = WT(x,w). The condition to be sat-
isfied is that (x,w) ∈ R if and only if (IC(x),WT(x,w)) ∈ R (not all definitions require WT to be
efficient). While the compression rate may vary, the standard regime involves an instance x′ of size
poly(|w|, log |x|).

Harnik and Naor [HN10] showed that by using instance compression, it is possible to construct
a CRH family from one-way functions in a non-black-box manner. This raised hope that construct-
ing CRH from one-way functions might be feasible if one could first solve the (arguably) simpler
problem of instance compression. Instance compression has proven useful in other works, such as
in [BDFH09], where it was employed as a pre-processing technique for fixed-parameter tractable
(FPT) problems.

Unfortunately, this hope was short-lived as Fortnow and Santhanam [FS11] showed that ef-
ficient instance compression algorithms are unlikely to exist. Specifically, they showed that an
instance compression for SAT (which is required for the CRH construction) would imply that
NP ⊆ coNP/poly, ultimately leading to a collapse of the polynomial hierarchy. Their results
additionally extend to relaxed notions of instance compression that allow for a small error proba-
bility and also to quantum instance compression [FS11; Dru15]. As a result, the initial optimism
surrounding new non-black-box constructions of CRH waned.
Computational instance compression. This unfulfilling state of affairs remained until Bronf-
man and Rothblum [BR22] defined a computational analog of instance compression, which they
called computational instance compression (CIC). This relaxed notion allows for errors that are
computationally hard to find (in the CRS model). Specifically, they allow for instances that are
not in the language to be compressed to an instance x′ = IC(x) that is in the language, as long as

1



proving the validity of x′ is computationally hard. In other words, it is computationally hard to
find a witness w′ for x′. This notion bypasses the barriers posed by Fortnow and Santhanam, and
indeed, Bronfman and Rothblum constructed CICs for bounded-depth NP relations from standard
assumptions (LWE). Ben-David [Ben24] extended this work to cover all NP relations while relying
on a broader range of assumptions (e.g., DDH).

Despite this progress, their CIC definition could not serve as a replacement instance compression
primitive in Harnik and Naor’s CRH construction [HN10], leaving the problem unresolved. This
leads us to ask the question:

Is there an achievable notion of computational instance compression that is sufficient for
constructing a CRH family?

1.1 Our contributions

We provide an in-depth and thorough (positive) answer to the aforementioned question.
Impossiblity of CIC with strong soundness. We begin by providing a CIC definition with a
strong soundness notion that serves as a direct substitute, for instance, compression in the Harnik–
Naor construction. The completeness property remains the same (instances in the language are
always mapped to instances in the language). The difference is in the soundness requirement. As
opposed to the notions given in [BR22; Ben24],1 here we do not require the adversary to find a
witness for the compressed instance x′ (additionally, we do not require an efficient witness transfor-
mation algorithm).

In more detail, for a setup algorithm Gen and a compression algorithm IC we say that the scheme
has strong soundness s if for every security parameter λ ∈ N, and any efficient adversary A:

• Strong soundness (informal):

Pr

[
x /∈ L(R)
∧ IC(crs, x) ∈ L(R′)

crs← Gen(1λ)
x← A(crs)

]
≤ s(λ) .

A CIC with strong soundness s(λ) = negl(λ) suffices to recover the CRH constructions of [HN10].
Unfortunately, we show that this definition is unlikely to exist. Inspired by [FS11] and [Dru15], we
prove that a computational instance compression for SAT with strong soundness would imply that
the polynomial hierarchy collapses (the limitations of [FS11; Dru15] apply only for information-
theoretic definitions). In fact, this limitation holds even for very large strong soundness error
s(λ) = 1− 2−λ.

Theorem 1.1 (Informal). If there exists a computational instance compression for SAT with strong
soundness error s(λ) ≤ 1− 2−λ (as defined above) then UNSAT ∈ NP/poly.

Therefore, we need to identify a weaker notion that is both achievable and still adequate for
constructing collision-resistant hash functions.
Adaptive CIC to the rescue. We give new hope for constructing CRH from one-way functions
via instance compression. We identify that an adaptive version of the CIC given in [BR22] is
precisely the notion we need. Informally, the adaptive CIC soundness notion we consider is the
following:

1A discussion in [BR22] suggests a variant that does not require finding a witness (which they call “strong CIC”).
Their notion is incomparable to ours and cannot serve as a substitute for instance compression in the Harnik–Naor
construction.
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• Adaptive soundness (informal). For every λ ∈ N, and every efficient adversary A:

Pr

 x /∈ L(R)
∧ (x′, w′) ∈ R′

crs← Gen(1λ)
(x,w′)← A(crs)
x′ ← IC(crs, x)

 = negl(λ) .

On the one hand, we observe that this definition is achievable, and in fact, it was implicitly
realized in [Ben24] under standard assumptions. On the other hand, we strengthen the proof of
[HN10] to rely on this adaptive CIC to construct a CRH family. As our construction of CRH is
non-black-box it provides a path bypass the CRH black-box separation, and raises the natural task
of a (black-box) construction of adaptive CIC from one-way functions.

In fact, we establish a stronger result: we provide a construction of adaptive CIC from CRH.
This means that any construction of CRH from one-way functions must go via adaptive CIC.

Theorem 1.2 (Informal). Assume that one-way functions exist. Then, there is a non-black-box con-
struction of a family of collision-resistant hash functions from any adaptive computational instance
compression scheme for SAT.

Conversely, any family of collision-resistant hash functions implies the existence of an adaptive
computational instance compression scheme for SAT.

We note that the construction of CIC from CRH yields a CIC with a large witness for the
compressed instance. That is, the size of the witness w′ for the compressed instance x′ depends
on the original large instance x. For some advanced applications, a CIC with a smaller witness
(independent of the size of x) is desired. The precise theorem statement is given in Section 6.
Beyond collision-resistant hashing? Harnik and Naor [HN10] showed that instance compres-
sion can be used to construct primitives beyond Minicrypt. In particular, they show that if the
instance compression is equipped with an efficient witness retrieval algorithm, it can be used to
construct OT and public-key encryption from one-way functions, thus showing that constructing
instance compression has the potential of collapsing Minicrypt and Cryptomania. A witness re-
trieval algorithm gets as input a witness w for x, and x′ = IC(x), and outputs a witness w′ for
x′.

We observe that an adaptive CIC with witness retrieval can serve as a replacement for the
instance compression in the [HN10] for public-key encryption. This naturally leads to the question
of whether CIC with witness retrieval can exist.

We answer this question negatively by showing a connection between instance compression
and incompressible encryption [Dzi06; GWZ22]. Roughly speaking, an incompressible encryption
scheme produces large, incompressible ciphertexts in the sense that any adversary who “forgets” a
small fraction of the ciphertext data learns nothing about the encrypted data, even given the secret
key. Incompressible encryption (with various rates) has been constructed under various assumptions.

We show that the existence of adaptive CIC with an efficient witness retrieval algorithm (along
with a NIZK scheme) implies that incompressible public-key encryption does not exist, which contra-
dicts existing constructions of incompressible PKE schemes [GWZ22]. See Figure 1 for a summary
of our results.

Theorem 1.3 (Informal). If there exists an incompressible PKE with an efficient key generation
algorithm and NIZK for NP, then there is no computational instance compression (adaptive or
non-adaptive) with an efficient witness retrieval algorithm.
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For our results, we require the key generation algorithm of the incompressible PKE scheme
to run in time that is polynomial in the security parameter and polylogarithmic in the compres-
sion parameter. In [GWZ22], several suitable constructions meeting these requirements have been
proposed, either based on CPA-secure public key encryption or indistinguishability obfuscation.

Corollary 1.4. If there exists a CPA secure public-key encryption scheme and NIZK for NP, then
there is no computational instance compression (adaptive or non-adaptive) with an efficient witness
retrieval algorithm.

CIC and pre-processing SNARGs. Finally, we show (somewhat surprising) connections be-
tween CIC and other cryptographic primitives. We observe that any (adaptive) pre-processing
SNARG2 implies an adaptive CIC, thus getting the first formal connection from SNARGs to CRH.
In [WW24b], Waters and Wu constructed an adaptive SNARG from indistinguishability obfusca-
tion and any rerandomizable one-way function. Later, Waters and Zhandry [WZ24] constructed an
adaptive SNARG based on indistinguishability obfuscation and lossy functions. We observe that
both constructions also imply an adaptive pre-processing SNARG and, in turn, a CRH. This shows
that the reradomizable one-way functions or the lossy functions are the key elements that allow to
escape the impossibility results of [AS16].

Waters and Wu [WW24a] later improved this result to rely solely on indistinguishability ob-
fuscation (and one-way functions). However, in this case, their construction does not imply a
pre-processing SNARG, and there is a possible explanation for that. Otherwise, we would get a
construction of a CRH from indistinguishability obfuscation. While Theorem 1.2 is non-black-box
in the sense of [Sim98], the overall construction could still be described using oracle-aided circuits
and thus capture under the impossibility of [AS16]. See Figure 1 for a summary of our results.

1.2 Related work

On the non-existence of instance compression. Dubrov and Ishai [DI06] studied the (non-
existence) of instance compression through the notion of non-boolean PRGs. They asked if every
efficiently samplable distribution can be efficiently sampled, up to a small statistical distance, using
roughly as much randomness as the length of its output. They showed that the non-existence of
(strong forms of) instance compression yields such a non-boolean PRG (they give constructions
under other assumptions as well). They further showed that the non-existence of a non-boolean
PRG implies a construction of a distributional collision-resistant hash function (dCRH) from any
one-way permutation. While dCRH is a weaker notion than standard CRH, the separations of
[Sim98] and [AS16] apply also to dCRH.
More non-black-box constructions of CRH. In [KY18], the authors give a non-black-box
construction of dCRH from a multi-collision resistance hash (MCRH) family. MCRH was introduced
in [KNY17], where it is hard to find multiple elements (more than 2) that all hash to the same value.
The different flavors of hashing were formulated in [KNY18] into four worlds of hashing (analogously
to the five complexity worlds of [Imp95]). Recently, the techniques from [KY18] were extended to
get a non-black-box construction of a CRH from MCRH for certain parameters [RV24; BT24].

2In a pre-processing SNARG, the verifier runs in sublinear time given the proof and the output of a more costly
pre-processing phase on the input.
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izable one-way functions; lossy refers to lossy functions.
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2 Techniques

In this section, we give an overview of our techniques:

• In Section 2.1, we show that the existence of CIC with strong soundness implies a collapse of the
polynomial hierarchy.

• In Section 2.2, we show that adaptively secure CIC exists if and only if there exists a family of
collision-resistant hash functions.

• In Section 2.3, we show that CIC with efficient witness retrieval is at odds with incompressible
encryption.

• In Section 2.4, we discuss connections between CIC and pre-processing SNARGs.

2.1 Impossibility of CIC with strong soundness

We give an overview of our impossibility result described in Theorem 1.1. Intuitively, a CIC for
source relation R and target relation R′ with strong soundness is an efficient mapping from large
elements to smaller ones, specified by the choice of the reference string crs and computed using
IC(crs, ·). For completeness, it holds that for any crs generated in the setup phase, every instance
x ∈ L(R) is mapped to an instance x′ ∈ L(R′). While this definition permits incorrect mappings
where x /∈ L(R) is mapped to x′ ∈ L(R′), strong soundness ensures that, with probability s, a
bounded adversary cannot find such an instance x (the probability is over the choice of crs and the
adversary’s randomness).

We assume the existence of a CIC with strong soundness from the NP-complete source relation
RORSAT (defined below) to an arbitrary NP target relation R′, which compresses instances to a size
of k(λ, n,w) = poly(λ, log n,m), where λ is the security parameter, n is the instance size, and m is
the witness size. Given this, we show how to construct an NP/poly verifier that decides UNSAT.

The relation RORSAT is defined as follows,

RORSAT := {(ϕ,w) = ((φ1, . . . , φt), w) | ∃i ∈ [t], w is a satisfying assignment for φi} .

We will decide instances of UNSAT of size n, using the CIC run with security parameter λ = n, and
run on RORSAT instances that are comprised of t subformulas, where each subformula is of size n,
where t = poly(n) is some sufficiently large polynomial (the exact choice of polynomial depends on
the parameters of the CIC). Let k = poly(n) be the output size of the CIC for such formulas. We
define the set T to be the set of all outputs of the CIC that are not in L(R′).

Structure of the advice. The NP/poly verifier that decides UNSAT will receive an advice string
U of comprised of at most n pairs (crs, y) where crs is a common reference string for the CIC and
y ∈ T . Observe that, since |crs| = poly(λ) = poly(n) and |y| = k = poly(n), the advice U can be
described as a binary string of length poly(n). We defer discussion of the precise properties of the
advice string to when we argue completeness.

The NP/poly verifier. Given the advice U , for an instance φ and a witness ϕ := (φ1, . . . , φt):
1. Check that φ is a subformula in ϕ: φ ∈ {φ1, . . . , φt}.
2. Check that there exists a pair (crs, y) ∈ U such that IC(crs, ϕ) = y.
3. If both of the above checks pass, accept. Otherwise, reject.

We discuss soundness, completeness, and efficiency of the algorithm.
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Soundness. We show that, by completeness of the CIC, given the advice string U , an instance
x ∈ SAT, and a claimed witness w, the verifier will reject (in fact, this holds for any advice string
that is structured as pairs (crs, y) as described above).

Fix any φ̃ ∈ SAT, and let ϕ := (φ1, . . . , φt) be a potential witness. If the witness ϕ does not
include φ as a subformula, then the verifier rejects during its first check. On the other hand, if
it does include φ as subformula, then ϕ ∈ ORSAT. By the perfect completeness of the CIC, this
implies that for every crs, IC(crs, ϕ) ∈ L(R′). Since for every (crs, y) ∈ U , we have y ∈ T ⊆ L(R′),
this implies that IC(crs, ϕ) ̸= y for every (crs, y) ∈ U , and so the verifier rejects in its second check.
See Figure 2 for an illustration.

Completeness. We show that given the advice string U and an instance x ∈ UNSAT, there exists
a witness ϕ that will make the verifier accept.

We begin by describing how the advice is chosen (by an inefficient algorithm). We define the
set S to be the set of all UNSAT formulas of size n.
1. Initialize U := ∅, S1 := S, and i := 1.
2. While Si ̸= ∅ do the following:

(a) Set Xi to be the set of all formulas ϕ of the form (φ1, . . . , φt), where φj ∈ Si.
(b) Set crsi to be a CRS such that Pr [IC(crsi, ϕ) ∈ T | ϕ← Xi] > 1− s .

(We prove in Claim 1 that there exists such a CRS.)
(c) Let yi be the element in T with the maximal number of formulas ϕ ∈ Xi with IC(crsi, ϕ) = yi.
(d) Add the pair (crsi, yi) to U .
(e) Let Si+1 be the set of all elements in Si that are not part of a formula ϕ ∈ Xi with

IC(crsi, ϕ) = yi.
(f) Update i := i+ 1.

3. Output U .
The connection between the sets Si, Xi, and T is described pictorially in Figure 2.

Note that it is not immediately clear that the algorithm is well defined (i.e., Item 2b always
succeeds) and that it will ever terminate. The CIC could have many “errors” in the form of formulas
ϕ ∈ UNSAT that are mapped to elements in y ∈ T̄ (T̄ is the complement of T ). Moreover, it could
be the case that for any crs, there is a subformula φ such that IC(crs, ϕ) ∈ T̄ for every ϕ that
contains φ. This would mean that any single crs by itself is not sufficient for the completeness of all
φ ∈ UNSAT, and it is the reason why we need to couple a different CRS string crsi for each element
yi.

Nevertheless, we show that the algorithm is well-defined and that it always terminates after n
steps. Observe that the algorithm terminates only if for every φ ∈ S there exists (crsi, yi) ∈ U and
ϕ such that φ is a subformula of ϕ, and IC(crs, ϕ) = y. This is precisely what the verifier checks,
and so it will accept given advice U and witness ϕ.

Claim 1 (Informal). For every i, there exists crsi such that

Pr [IC(crsi, ϕ) ∈ T | ϕ← Xi] > 1− s .

Proof sketch. We base the existence of such a CRS on the strong soundness guarantee of the CIC
scheme. Suppose, for contradiction, that such a CRS does not exist. This would imply that for any
crs, a uniformly random element ϕ ← Xi would be mapped to an element in the target relation,
i.e., IC(crs, ϕ) ∈ L(R′), with probability greater than s. Using an averaging argument, we can show
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Figure 2: An illustration of the various sets and the relationship between them. The top left oval
represents the set Si of unsatisfiable formulas still not covered by the advice. The right-hand side of
this set is what is covered in the current iteration, while the left-hand side, Si+1, is a subset that is left
to be covered by future iterations. Every φ ∈ Si has an outgoing edge to all ϕ ∈ Xi ⊆ ORSAT that
contain φ. The formulas ϕ have either outgoing edges to T (in case the mapping is correct) or outgoing
edges to T̄ (these are the “errors”), which is denoted with a red dashed arrow.

that there exists a specific element ϕ ∈ Xi ⊆ ORSAT such that: Prcrs [IC(crs, ϕ) ∈ L(R′)] > s . Since
ϕ ∈ Xi is an element that is not in the source language (not in ORSAT), an adversary that only
outputs ϕ would break the strong soundness with probability greater than s. (Refer to Claim 5.5
for the formal proof).

Next, we demonstrate that the algorithm terminates and that the advice size is small.

Claim 2 (Informal). The algorithm terminates, and outputs U comprised of n pairs (crs, y).

Proof sketch. We show that |Si+1| ≤ 1
2 · |Si| for every i. This proves the claim since we start with

the set S0 = UNSAT of size at most 2n so it takes n steps to reduce the set all the way down (so the
algorithm terminates), and in every step, we append a pair (crs, y) to U (so U has the right size).

In the i-th step, Xi consists of all formulas ϕ = (φ1, . . . , φt) composed of subformulas from
Si. For simplicity, we assume that the soundness error s is at most 1/2 (in the full proof, this
requirement is removed). In this case, the reference string crsi selected by the algorithm ensures
that at least half of the elements in Xi are correctly mapped (i.e., IC(crsi, ϕ) ∈ T ). Since Xi is
comprised of all t-tuples of elements in Si, the size of Xi is |Si|t. Let yi be the element in T with
the maximal number of formulas ϕ ∈ Xi with IC(crsi, ϕ) = yi, and let Yi be the set of all formulas
ϕ ∈ Xi that are mapped to yi. Since there exists (1− s) · |Xi| elements that are mapped correctly
(according to the CRS choice in Item 2b), by an averaging argument, we have |Yi| ≥ (1−s)·|Xi|

|T | . Since

the soundness error is bounded by 1/2, it holds that |Yi| ≥ |Xi|
2·|T | =

|Si|t
2k+1 .

On the other hand, Si+1 is formed by removing the elements in Si that are included in a tuple
in Yi. Therefore, |Si \ Si+1|t ≥ |Yi|. By combining the two bounds on the size of Yi, we show in the
full proof that |Si \ Si+1| ≥ |Si|/2. Thus, we get that |Si+1| ≤ |Si|/2, as required.

8



2.2 Collision resistant hashing and adaptive CIC

We show that collision-resistant hash functions can be constructed from adaptive CIC in a non-
black-box manner and that CRH can be used to construct adaptive CIC.

2.2.1 Collision resistant hashing from CIC

We show how to construct a CRH function family from adaptive CIC (and one-way functions). Our
construction closely follows the construction presented in [HN10], using CIC in place of instance
compression. In addition to an adaptive CIC scheme, our construction relies on the existence of
a commitment scheme (CM.Com,CM.Ver) that is statistically binding and computationally hiding
(which can be constructed from one-way functions [Nao91]).

The high-level idea of the construction is to generate a commitment σ to a random value i ∈ [N ].
Then, given the commitment, for each input x ∈ {0, 1}N we define a formula that is satisfiable if
and only if the i-th bit of x is equal to 1. This formula is then compressed using the CIC scheme,
and its output is the output of the hash function.

Roughly, if a collision x, x′ is found, then either both have bit i set to the same value (which
invalidates the fact that the commitment scheme hides i), or one has its i-th bit set to 0, and the
other has it set to 1. In this case, one of the formulas derived from x and x′ is satisfiable, and
the second is not, but they both are compressed into the same value. Thus, one of the formulas is
mapped to a value that does not match whether it is satisfiable, which invalidates the security of
the CIC.

We describe the hash function family:

• Key generation: For input size N and security parameter λ, sample i ← [N ] and generate
commitment σ ← CM.Com(i). Sample crs for the CIC scheme with security parameter λ. The
hash key is then hk = (σ, crs).

• Hash value: On input x ∈ {0, 1}N ,
1. Let ϕσ be the SAT analogue of CM.Ver when applied to commitment σ. Let y1, . . . , yℓ be the

variables of ϕσ that represent the value under the commitment (i.e., supposed to be i).
2. Let ϕx be a formula over the variables y1, ..., yℓ, where for every j ∈ [N ] it holds that ϕx(j) = 1

if and only if xj = 1.
3. Set ϕσ,x := (ϕσ ∧ ϕx), and output ϕ′ := IC(crs, ϕσ,x).

We prove that the hash function described above is compressing and that it is collision-resistant.

Compression. The formula ϕσ has size poly(λ, logN), and the number of variables in ϕx is
ℓ = logN . Thus, the number of variables in the formula ϕσ,x (which is its witness size) is
poly(λ, logN), and its size is |ϕσ,x| = poly(N). The CIC scheme compresses the formula into
one of size poly(λ, log |ϕσ,x|,m) where m is the witness size. Thus, the output of the hash function
has size poly(λ, logN).

Collision resistance. We show that the scheme is collision-resistant. Let A be a computationally
efficient adversary for the CRH, and denote by x, x′ its outputs. Supposing x an x′ are a collision,
either the formulas ϕσ,x, ϕσ,x′ defined by x, x′ have the same satisfiability (i.e., are both satisfiable
or both unsatisfiable) or one is satisfiable while the other is not. We show that both cases can
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happen with at most negligible probability, implying that x and x′ cannot be a collision except with
negligible probability.

Before analyzing the two cases, we highlight two observations regarding the formulas in the
construction:

1. ϕσ,x is satisfiable if and only if xi = 1. By the binding property of the commitment scheme
(except with negligible probability), the only assignment to the variables y1, . . . , yℓ that satisfies
ϕσ is i, and by correctness of the commitment scheme, this assignment will satisfy the formula
(along with some assignment on the rest of the variables of the formula). Furthermore, ϕx(i) = 1
if and only if xi = 1. Therefore (except with negligible probability over generation of the
commitment σ), ϕσ,x is satisfiable if and only if xi = 1.

2. If ϕσ,x is satisfiable, then every satisfying assignment for ϕσ is satisfying for ϕσ,x . Let w
be a satisfying assignment to ϕσ. By the binding of the commitment scheme (except with
negligible probability), every satisfying assignment to ϕσ must include in the variables y1, . . . , yℓ
the committed value i. By Item 1, the satisfiability of ϕσ,x implies that xi = 1. Since ϕx(i) = 1
if and only if xi = 1, we get that ϕx(w) = 1. Therefore, ϕσ,x(w) = ϕσ(w) ∧ ϕx(w) = 1.

We now turn to showing that each of the two cases alluded to earlier can occur with at most a
negligible probability:

• ϕσ,x and ϕσ,x′ have the same satisfiability. We base our argument on the computational hiding
of the commitment scheme. Since ϕσ,x is satisfiable if and only if xi = 1 (by Item 1), and since
ϕσ,x and ϕσ,x′ have the same satisfiability, it must hold that xi = x′i. Now, since x and x′ form
a collision, there must be at least one index j ∈ [N ] where x and x′ differ – so this index is
not i. If this occurs with non-negligible probability, then we can construct an adversary for the
commitment scheme that, upon receiving a commitment, constructs the hash function using it,
and runs A to get x and x′ and guesses the index i out of (at most) N − 1 indices that x and
x′ agree on identical will have a noticeable advantage in guessing i. Due to the computational
hiding property of the commitment scheme, this can only occur with negligible probability.

• ϕσ,x and ϕσ,x′ have different satisfiability. In this case, we demonstrate an attack on the CIC
scheme. Without loss of generality, assume that ϕσ,x ∈ SAT and ϕσ,x′ /∈ SAT. Consider the
following adversary to adaptive soundness of the CIC scheme.

1. Given as input a crs, sample i← [N ], and generate a commitment σ.
2. Run A with hk = (crs, σ) to obtain x, x′.
3. Compute a satisfying assignment w for ϕσ. This can be done efficiently as the adversary can

generate the opening to the commitment σ.
4. Output (ϕσ,x′ ,WT(ϕσ,x, w)).

First, note that since w is a satisfying assignment for ϕσ, and since ϕσ,x is satisfiable, by Item 2,
w is also a satisfying assignment (and a witness) for ϕσ,x. Therefore, by completeness of the
CIC scheme: (IC(crs, ϕσ,x),WT(crs, ϕσ,x, w)) ∈ R′. Since x, x′ form a collision, it holds that
IC(crs, ϕσ,x) = IC(crs, ϕσ,x′), and therefore (IC(crs, ϕσ,x′),WT(crs, ϕσ,x, w)) ∈ R′. Since ϕσ,x′ /∈
SAT, by adaptive security of the CIC scheme, this can happen with at most negligible probability,
which implies that A could not have output such x and x′ with non-negligible probability.
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2.2.2 CIC from collision-resistant hashing

Given a collision-resistant hash (CRH) scheme, we construct an adaptively sound CIC scheme for
any NP relation R as follows:

• Setup: Sample hash key hk, and output crs := hk.
• Compression (IC): Given as input crs = hk, and instance x. Output the compressed instance
x′ := (hk,Hash(hk, x)).

• Witness transformation (WT): Given as input crs := hk, an instance x, and a witness w. Output
the new witness w′ := (x,w).

The compressed instance consists of both the hash key and the hashed value, while the new witness
consists of the original instance and witness. The target relation R′ is defined as:

R′ := {(x′, w′) = ((hk, z), (x,w)) | (x,w) ∈ R ∧ Hash(hk, x) = z} .

It is immediate by construction that completeness holds, i.e., if (x,w) ∈ R, then it holds that
(CIC(crs, x),WT(crs, x, w)) ∈ R′. We turn to showing adaptive soundness.

We argue that any adversary that outputs (x,w′) that breaks CIC soundness with noticeable
probability can be used to generate a hash collision with noticeable probability. Consider such
a CIC adversary. Given crs, its output (x,w′) breaks soundness of the CIC if x /∈ L(R) with
(IC(crs, x), w′) ∈ R′. Parsing w′ as a pair (x̃, w̃), and letting (hk, z) = IC(crs, x), by the definition
of R′, this implies that (x̃, w̃) ∈ R, and Hash(hk, x̃) = z = Hash(hk, x). Observe that x /∈ L(R) and
x̃ ∈ L(R), and so x ̸= x̃. Thus, x ̸= x̃ and Hash(hk, x̃) = Hash(hk, x), forming a hash collision.

2.3 Impossibility of CIC with efficient witness retrieval

We show a surprising connection between CIC and incompressible encryption. Specifically, we show
that the existence of incompressible encryption implies the inexistence of CIC with efficient witness
retrieval.
Witness retrieval. Harnik and Naor posited a notion of instance compression where, given the
compressed instance x′ ∈ R and a witness w for the original instance, one can efficiently derive
a witness w′ for x′, and show that it implies public-key encryption through oblivious transfer.
We observe that CIC with such an efficient witness retrieval algorithm WR also suffices for these
constructions.
Incompressible encryption. Roughly, an incompressible PKE scheme is a PKE scheme (Gen,Enc,Dec)
where we require that any computationally bounded two-stage algorithm (A1,A2) wins in the fol-
lowing game with at most negligible probability:
1. The challenger samples (pk, sk)← Gen, b← {0, 1}, and ct← Enc(pk, b).
2. A1 receives pk and ct and outputs a state st with |st| ≪ |ct|.
3. A2 receives pk, sk, and st and outputs b′.
4. The adversary wins in the game if b = b′.
Witness retrieval versus incompressible encryption. We show that CIC with efficient witness
retrieval is incompatible with incompressible PKE. Intuitively, they are at odds in the following
way: incompressible encryption says that it is hard to compress the ciphertext ct while preserving
information about its decryption. CIC for the relation of ciphertexts that decrypt to 0 negates
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this by positing that ct can be compressed while retaining information about the decryption, and
witness retrieval allows for this information to leak via the original secret key.

In more detail, suppose that there exists a CIC scheme (CIC,WT) with efficient witness retrieval
algorithm WR for the relation

R := {((pk, ct), sk) | Dec(sk, ct) = 0} ,

and some output relation R′. We propose an adversary (A1,A2) for the PKE scheme: (1) A1(pk, ct)
outputs st := CIC(pk, ct), and (2) A2(pk, sk, st) outputs b′ = 0 if (st,WR(st, sk)) ∈ R′ and otherwise
outputs 1.

Intuitively, this adversary wins in the incompressibility security game since st generated by the
CIC compresses the input while preserving information on whether it belongs to R, which in turn
informs about the encrypted bit. Later, this bit of information is leaked by using the witness
retrieval algorithm: since sk is a witness to R, the algorithm WR outputs a correct witness for st
belonging to R′.
Incompressible PKE with key consistency. Unfortunately, this intuition does not quite
hold, since for ciphertexts ct′ ← Enc(pk, 1), it may be that there exist secret keys sk′ such that
Dec(sk′, ct′) = 0. By perfect correctness of the PKE scheme, this can only be the case if (pk, sk′) is
not in the image of Gen. In order to resolve this issue, we transform the PKE scheme into one that
has key consistency, informally meaning that there are (with high probability) no alternate secret
keys that can decrypt the ciphertext to the wrong bit (but decrypting with incompatible keys may
output ⊥). This suffices for our adversary for the incompressible encryption.

We show how to transform an incompressible PKE scheme into one with key consistency using
NIZK proofs. Roughly, when generating key pairs, we add a NIZK proof that the key pair was
generated by Gen. This NIZK proof is then appended to the secret key. When decrypting with a
secret key, it is also verified that (pk, sk) is in the image of Gen using the NIZK proof (and otherwise
outputs ⊥). This ensures that the secret-key is valid, and so if there is decryption to a value other
than ⊥ then this must be the correct value. Zero-knowledge ensures that the proof does not leak
any information about the randomness used to generate the key-pair (knowing it could potentially
break incompresibility of the original scheme).

2.4 Pre-processing SNARGs and CIC

We observe that pre-processing SNARGs are intimately connected to CIC.

Pre-processing SNARGs. An adaptively sound SNARG for a relation R is a tuple of algorithms
(Gen,P,V) with the following properties. Roughly, completeness says that for every crs ← Gen, if
(x,w) ∈ R then V(crs, x, π) = 1 with probability 1 for π ← P(crs, x, w). Adaptive soundness posits
that no computationally bounded malicious prover P̃ causes the verifier to accept with noticeable
probability in the following game: crs ← Gen is sampled honestly, then P̃(crs) outputs (x, π) with
x /∈ L(R), and the verifier is then given crs, x, and π. The standard definition of SNARG additionally
requires the size of π to be sub-linear in the size of w, and for verification time poly(|crs|, |x|, |π|).

We say that (Gen,P,V) is a pre-processing SNARG if the CRS can be described as two strings
crs = (crs1, crs2), and verifier can be described as a two-stage machine V = (V1,V2) such that
V(crs, x, π) = V2(crs2, x

′, π) where x′ ← V1(crs1, x). In other words V1 is an offline pre-processing
phase that is based only on crs1 and x, and V2 is on online phase that makes the decision given
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crs2, x′, and the prover message π. The standard parameter setting requires V2 to run in time that
is sublinear in |x|, meaning that both crs2 and x′ are sublinear in the size of x.

Pre-processing SNARGs and CIC. We observe that an adaptively sound pre-processing SNARG
for a relation R can be viewed as an adaptively sound CIC: Indeed, we let the CRS genera-
tion algorithm of the CIC be the same as that of the SNARG, set IC(crs, x) := V1(crs, x), and
WT(crs, x, π) := P(crs, x, π). The target relation is R′ := {(x′, π) | V2(crs, x

′, π) = 1}.3
It is immediate by construction that the CIC has perfect completeness, and adaptive soundness

follows from the soundness of the SNARG, since finding a proof π that causes the verifier to accept is
identical to finding a witness that puts x′ into R′. Compression stems from the fact that |x′| ≪ |x|.

Note that, while pre-processing SNARGs typically require |π| ≪ |w| and that V2 run in sub-
linear time in |x|, the construction of CIC only requires |π| = poly(|w|), and V2 to run in time
poly(|crs|, |x|, |w|). Thus, it also applies to a more relaxed notion of pre-processing SNARG with
these properties.

SNARGs and CRH. The above observations bring a new perspective to the recent construc-
tions of adaptively sound SNARGs [WW24b; WZ24; WW24a] from one-way functions (OWF) and
indistinguishability obfuscation (iO).

In [WW24b; WZ24] Waters and Wu, and Waters and Zhandry construct SNARGs with adaptive
soundness from OWF and iO, along with re-randomizable one-way functions (ROWF) [WW24b]
or lossy functions [WZ24]. In both papers, the verifier, given a CRS containing (the obfuscation
of) a “challenge generation” algorithm GenInst, instance x, and prover message π, works as follows:
(1) run GenInst on x to receive challenge x′, and (2) accept if and only if f(x′) = π, where f is
a one-way function. We observe that in both papers |x′| ≪ |x|, and that GenInst does not use π.
Therefore, the verifier can be described as a pre-processing SNARG where V1 runs GenInst on x
and outputs x′, and V2, given x′ and π, outputs 1 if and only if f(x′) = π.

In light of Theorem 1.2 and the above discussion, we achieve constructions of CRH that rely on
OWFs and iO, combined with either ROWF or lossy functions. We observe that while Theorem 1.2
is non-black-box in the sense of [Sim98], the overall construction could still be described using
oracle-aided circuits and thus capture under the impossibility of [AS16], which rules out certain
constructions of CRH from OWF and iO. Thus, ROWFs and lossy functions are the crucial stepping
stone towards pre-processing SNARGs and through them to CIC and CRH.

[WW24a] construct adaptively sound SNARGs from only OWFs and iO in a manner captured by
the model of [AS16]. Unlike the prior works, their verifier does not use a similar GenInst paradigm
and cannot be naturally described as a two-stage algorithm that implies a pre-processing SNARG.
Our new connection to CIC explains that this fact is inherent as otherwise, the [WW24a] construc-
tion would imply a CRH from OWF and iO, contradicting [AS16].

3We remark that while R′ depends on crs, this suffices for our construction of CRH.
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3 Preliminaries

In this section we define objects and state results that we use throughout this paper.

3.1 Collision resistant hash scheme

A collision-resistant hash family is a tuple of algorithms (H.Gen,H.Hash) where H.Gen is proba-
bilistic polynomial-time algorithm and H.Hash is deterministic polynomial-time algorithm with the
following properties:

• Collision resistance. There exist a negligible function µ such that for every adversary A and for
every λ,N ∈ N:

Pr

[
x ̸= x′

H.Hash(hk, x) = H.Hash(hk, x′)
hk← H.Gen(1λ, 1N )

(x, x′)← A(hk)

]
= µ(λ) .

• Compressibility. For every λ,N ∈ N, and for every x ∈ [N ], for hk in the image of H.Hash(1λ, 1N ),
the size of the output of H.Hash(hk, x) is λ.

3.2 Commitment schemes

A non-interactive commitment scheme (in the CRS model) for the message space {0, 1}ℓ is a tuple
of polynomial-time algorithms (Gen,CM.Com,CM.Ver) that allows a sender to commitment to a
message to a receiver by sending a commitment. The commitment does not reveal the content of
the message. At a later stage, the sender can open the commitment, revealing the true content of
the commitment. Crucially, the sender is not able to open to a different message than the one it
commitment to in the first stage.

Formally, CM.Gen and CM.Com are randomized algorithms and CM.Ver is a deterministic algo-
rithm that satisfy the following properties.

• Completeness. For every λ ∈ N, and any message msg ∈ {0, 1}ℓ:

Pr

 CM.Ver(crs, σ,msg, ρ) = 1
crs← CM.Gen(1λ)

ρ← {0, 1}r
σ = CM.Com(crs,msg, ρ)

 = 1 .

• Statistical binding. There exist a negligible function µ such that for every λ ∈ N:

Pr


∃ msg0,msg1, ρ0, ρ1, σ s.t.
CM.Ver(crs, σ,msg0, ρ0) = 1
∧ CM.Ver(crs, σ,msg1, ρ1) = 1
∧ msg0 ̸= msg1

∣∣∣∣∣∣∣∣ crs← CM.Gen(1λ)

 = negl(λ)

• Computational hiding. There exist a negligible function µ such that for every λ ∈ N, any two
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message msg0,msg1 ∈ {0, 1}ℓ, and any polynomial-sized distinguisher A, it holds that:∣∣∣∣∣∣Pr
 A(crs,msg0,msg1,CM.Com) = 1

crs← CM.Gen(1λ)
ρ← {0, 1}r

σ = CM.Com(crs,msg0, ρ)

∣∣∣∣∣∣−∣∣∣∣∣∣Pr
 A(crs,msg0,msg1,CM.Com) = 1

crs← CM.Gen(1λ)
ρ← {0, 1}r

σ = CM.Com(crs,msg1, ρ)

∣∣∣∣∣∣ = negl(λ)

Theorem 3.1 ([Nao91]). If one-way functions exist, then there exists a statistically binding and
computationally hiding commitment scheme.

3.3 NIZK

A non-interactive zero knowledge (NIZK) proof system for a relation R is a tuple of algorithms
(NIZK.Gen,NIZK.P,NIZK.V) where NIZK.Gen and NIZK.P are probabilistic polynomial-time algo-
rithms and NIZK.V is deterministic polynomial-time algorithm with the following properties:

• Completeness. For every (x,w) ∈ R, and for every λ ∈ N:

Pr

[
NIZK.V(crs, x, π) = 1

crs← NIZK.Gen(1λ, 1|x|)
π ← NIZK.P(crs, x, w)

]
= 1 .

• Statistical soundness. There exist a negligible function µ such that for every λ, n ∈ N:

Pr

 ∃(x, π) s.t.
x /∈ L(R)
∧ NIZK.V(crs, x, π) = 1

crs← NIZK.Gen(1λ, 1n)

 = negl(λ) .

• Adaptive computational zero knowledge. There exists a PPT simulator S = (S1,S2) such that for
every non-uniform polynomial-size adversary Ṽ = (Ṽ1, Ṽ2) and every λ, n ∈ N,∣∣∣∣∣∣Pr

 x ∈ L(R)

∧ Ṽ2(crs, x, π, st) = 1

crs← NIZK.Gen(1λ, 1n)

(x,w, st)← Ṽ1(crs)
π ← NIZK.P(crs, x, w)


− Pr

 x ∈ L(R)

∧ Ṽ2(crs, x, π, st) = 1

(crs, aux)← S1(1
λ, 1n)

(x,w, st)← Ṽ1(crs)
π ← S2(crs, x, aux)

∣∣∣∣∣∣ = negl(λ)

Theorem 3.2 ([PS19]). Assuming the hardness of LWE with suitable polynomial factors, for every
NP language, there exists non-interactive zero knowledge proof.

3.4 Incompressible PKE

We use the definition of incompressible encryption by Guan et al. [GWZ22]. The syntax of in-
compressible PKE is analogous to that of a standard PKE scheme, except that Gen algorithm gets
an additional security parameter S, which is the space bound of the adversary. Informally, the
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security guarantee is that any adversary, even given the secret key, needs to know more than S bits
of information on the ciphertext in order to distinguish two encrypted messages.

Formally, an incompressible public-key encryption scheme is a tuple of algorithms (IE.Gen, IE.Enc, IE.Dec)
where IE.Gen and IE.Enc are probabilistic polynomial-time algorithms, and IE.Dec is a polynomial-
time algorithm with the following properties:

• Correctness. For every λ, S ∈ N, messages msg ∈ {0, 1}∗,

Pr
[
msg = IE.Dec(pk, sk, IE.Enc(pk,msg)) (pk, sk)← IE.Gen(1λ, S)

]
= 1 .

• Incompressible encryption security. For every adversary A = (A1,A2), we define the experiment
DistIEA(λ) as follows:

1. The adversary A1, on input 1λ, outputs a space bound 1S .
2. Generate (pk, sk)← IE.Gen(1λ, S).
3. Sample b← {0, 1} uniformly at random.
4. The adversary A1 is then provided the public key pk and submits an auxiliary input aux, msg0,

and msg1.
5. The adversary A1 then receives ct← IE.Gen(pk,msgb), and submits a state st of size at most

S.
6. The adversary A2 receives (pk, sk, aux, st) and outputs a guess b′.
7. If b = b′ then the adversary succeeds and the experiment outputs 1. Otherwise, the experiment

outputs 0.

For every λ ∈ N, for every probabilistic polynomial-time adversary A = (A1,A2) there exists a
negligible function s such that:

Pr
[
DistIEA(λ) = 1

]
≤ 1

2
+ s(λ) .

Note that we define IE.Gen to run in time that is poly(λ, logS), which is a restriction compared
to the definition in [GWZ22] that allows the function to run in time poly(λ, S). In a closer look
at their incompressible PKE construction one can see that the running time of their generation
algorithm is indeed poly(λ, S).

Theorem 3.3 ([GWZ22]). If there exists a CPA secure public key encryption scheme, then there
exists incompressible PKE.
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4 Computational instance compression

Instance compression, introduced by [HN10], is an algorithm that compresses a large instance into a
small instance with size that is proportional to the witness size (rather than the original instance).
In more details, an instance compression from a source relation R ∈ NP to a target relation R′ ∈ NP
is a polynomial time algorithm f that takes as input an instance x and output x′ = f(x). The
compressed instance x′ is of size proportional to the witness size, and x′ ∈ L(R′) if and only if
x ∈ L(R).

Although instance compression has proven useful in various settings ([HN10; BDFH09]), it is
strongly believed that this object does not exist for certain NP-complete languages, as shown by
Fortnow and Santhanam [FS11] (under the assumption that coNP ̸⊆ NP/poly). To overcome
this limitation, Bronfman and Rothblum [BR22] introduced and constructed the new notion of
computational instance compression (CIC), which relaxes the requirements of instance compression.
While their work focused on the non-adaptive setting, the notion of adaptive soundness is critical
for many cryptographic applications. In our work, we define CIC in the adaptive setting.4

Definition 4.1 (Computational instance compression). A computational instance compression
scheme for a source relation R and target relation R′ with instance compression parameter k, witness
size z, adversary size T : N→ N, is a tuple of polynomial-time algorithms (Gen, IC,WT) where Gen
is probabilistic, and IC and WT are deterministic algorithms. We say that the scheme has perfect
completeness and adaptive soundness error s : N→ [0, 1] if the following holds:

• Perfect completeness. For every λ ∈ N, x ∈ {0, 1}n, w ∈ {0, 1}m such that (x,w) ∈ R,

Pr
[
(IC(crs, x),WT(crs, x, w)) ∈ L(R′) | crs← Gen(1λ, 1n, 1m)

]
= 1 .

• Adaptive soundness. For every λ ∈ N, n,m ∈ N, for every T (λ)-sized adversary A:

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

crs← Gen(1λ, 1n, 1m)
(x,w′)← A(crs)

 ≤ s(λ) .

• Instance succinctness. For every crs in the image of Gen(1λ, 1n, 1m) and x ∈ {0, 1}n, IC(crs, x) ∈
{0, 1}≤k, where k := k(λ, n,m).

• Witness succinctness. For every crs in the image of Gen(1λ, 1n, 1m), and for every x ∈ {0, 1}n,
w ∈ {0, 1}m such that (x,w) ∈ R, we have that WT(crs, x, w) ∈ {0, 1}≤z(λ,n,m), where z :=
z(λ, n,m).

Unless stated otherwise, we assume a CIC scheme with instance compression parameter k = poly(λ, log n,m)
and witness size z = poly(λ, n,m), security against adversaries of size T = poly(λ), and soundness
error s = negl(λ). We say that the CIC is also witness-succinct if z = poly(λ, log n,m).

Remark 4.2. The CIC defined in [BR22] refers to the non-adaptive setting where the soundness
requirement is replaced with the following:

4The notion of CIC with adaptive soundness was implicitly referred to in [Ben24].
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Non-adaptive soundness. For every λ ∈ N, n,m ∈ N, for every T (λ)-sized adversary A =
(A1,A2):

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

(aux, x)← A1

crs← Gen(1λ, 1n, 1m)
w′ ← A2(crs, aux)

 ≤ s(λ) .
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5 Impossibility of CIC with strong soundness

In this section, we show that a variant of CIC with a stronger notion of soundness and relaxed
witness transformation requirement does not exist under standard complexity assumptions.

Definition 5.1. A computational instance compression algorithm with strong soundness for a source
relation R and target relation R′ is a computational instance compression (Definition 4.1), with the
following modifications:

• Inefficient witness transformation. The witness transformation algorithm WT is allowed to run
in unbounded time.

• Strong adaptive soundness. The scheme has the following stronger soundness guarantee: For
every λ ∈ N, n,m ∈ N, for every T (λ)-sized adversary A:

Pr

[
x ∈ {0, 1}n ∧ x /∈ L(R) ∧ IC(crs, x) ∈ L(R′)

∣∣∣∣ crs← Gen(1λ, 1n, 1m)
x← A(crs)

]
≤ s(λ) .

We show that there is no computational instance compression with strong soundness for NP
unless coNP ⊆ NP/poly. Specifically, use the following NP-complete relation:

Definition 5.2. The OR-SAT relation RORSAT is defined as follows

RORSAT := {(ϕ,w) = ((φ1, . . . , φt), w) | ∃i ∈ [t], w is a satisfying assignment for φi} .

We state and prove the barrier for constructing CIC with strong soundness. Our results hold
even for scheme with soundness error that is exponentially close 1:

Theorem 5.3. If there exists a strong CIC from RORSAT to a target relation R′ ∈ NP with com-
pression parameter k(λ, n,m) = poly(λ, log n,m) and strong soundness error s(λ) ≤ 1−2−λ against
any polynomial size adversary, then UNSAT ∈ NP/poly.

Proof. We construct an NP/poly verifier for UNSAT. Let (Gen, IC,WT) denote the algorithms of the
CIC scheme and A = L(R′) denote its target language. We use the CIC scheme in order to construct
an advice string for the NP/poly verifier. Recall that, by assumption, for any security parameter
λ ∈ N, instance size ℓ ∈ N, and witness size z ∈ N, it holds that k(λ, ℓ, z) = poly(λ, log ℓ, z).

We use the following notation and setting of parameters:

• k := k(λ, ℓ, z),
• c is the smallest constant such that k(λ, ℓ, z) ≤ (λ+ log ℓ+ z)c,
• ℓ := n2c+2, z := n, λ := n, t := ℓ/z,
• T := Ā ∩ {0, 1}≤k, where Ā is the complement of A,
• S = UNSAT ∩ {0, 1}z is the set of unsatisfiable formulas of size at most z,
• X := St is the set of unsatisfiable ORSAT instances comprised of t formulas, each of size z.

We now describe our verification algorithm:

Construction 5.4. We describe an algorithm that constructs the advice string, and then describe
the UNSAT verifier. Let s := s(λ).

• Constructing the advice U . For length n:
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– Initialize S1 := S, and i := 1.
– While Si ̸= ∅ do the following:

1. Set Xi := St
i .

2. Set crsi to be a CRS in the image of Gen(1λ, 1ℓ, 1z) such that for the set

|{ϕ ∈ Xi | IC(crsi, ϕ) ∈ T}| > (1− s) · |Xi| .

(see Claim 5.5 for why such a choice exists.)
3. Set yi := argmaxy∈T |{ϕ | ϕ ∈ Xi, IC(crsi, ϕ) = y}|. In other words, yi is an element in T

with a maximum number of pre-images in Xi.
4. Set Si+1 := Si\{φ | φ ∈ Si, ∃ϕ ∈ Xi s.t. (φ ∈ ϕ)∧(IC(crsi, ϕ) = yi)}. In other words, Si+1 is

the the set of all elements in Si that are not part of a tuple ϕ ∈ Xi such that IC(crsi, ϕ) = yi.
5. Set i := i+ 1.

– Output U := {crsj , yj}j∈[i−1]

• The verifier. Given the advice U constructed as above, an instance φ ∈ {0, 1}n, and a witness
w ∈ {0, 1}m, the verifier does the following:

1. Parse w := (φ1, . . . , φt) (reject if it cannot be correctly parsed).
2. Output 1 if and only if both of the following checks pass:

(a) φ ∈ (φ1, . . . , φt), and
(b) there exists a tuple (crs, y) ∈ U such that IC(crs, (φ1, . . . , φt)) = y.

We now prove efficiency, completeness, and soundness of the verifier.

Efficiency. The verifier receives advice of size |U | and runs in time O(|U | · poly(n)). We show
that |U | = poly(n), and so the verifier runs in polynomial time and receives a polynomial-length
advice string. We do this by first showing that for every i there is always a choice of CRS for the
advice construction algorithm in Item 2, and that, |Si+1| ≤ 1

2 · |Si|. This suffices to prove the claim,
since |S| ≤ 2n (since S is comprised of formulas of binary representation size n), and so there is a
constant d such that |Sd·n| ≤ 1 after which point Sd·n+1 is empty, and the algorithm stops.

The following claim shows that the algorithm always has a choice of CRS:

Claim 5.5. There exists crsi in the image of Gen(1λ, 1ℓ, 1z) such that,

|{ϕ ∈ Xi | IC(crsi, ϕ) ∈ T}| > (1− s) · |Xi| .

Proof. Equivalently, we prove that

Pr [IC(crsi, ϕ) ∈ T | ϕ← Xi] > 1− s .

Since Xi ⊆ X, for every ϕ ∈ Xi it holds that ϕ /∈ ORSAT. Assume toward contradiction (to strong
soundness of the CIC) that for every crs in the image of Gen(1λ, 1ℓ, 1z):

Pr [IC(crs, ϕ) /∈ T | ϕ← Xi] > s .

Or equivalently, by the definition of T := Ā∩{0, 1}≤k, and recalling that IC never outputs elements
of length larger than k,

Pr [IC(crs, ϕ) ∈ A | ϕ← Xi] > s .
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Therefore,

Pr

[
IC(crs, ϕ) ∈ A

ϕ← Xi

crs← Gen(1λ, 1ℓ, 1z)

]
≥ s .

By the law of total probability,

Pr

[
IC(crs, ϕ) ∈ A

ϕ← Xi

crs← Gen(1λ, 1ℓ, 1z)

]
=

∑
ϕ∈Xi

Pr
[
IC(crs, ϕ) ∈ A | crs← Gen(1λ, 1ℓ, 1z)

]
|Xi|

> s .

Therefore, by an averaging argument, there exists ϕ ∈ Xi for which,

Pr
[
IC(crs, ϕ) ∈ A | crs← Gen(1λ, 1ℓ, 1z)

]
> s . (1)

Let ϕ be the formula described above. We describe an adversary A for breaking strong soundness
of the CIC. A has ϕ hardwired, and for every crs, A always outputs ϕ. By Equation 1,

Pr

[
IC(crs, ϕ) ∈ A

crs← Gen(1λ, 1ℓ, 1z)
ϕ← A(crs)

]
> s .

Note that since ϕ ∈ Xi, it holds that ϕ /∈ ORSAT. Moreover, the size of ϕ is ℓ = n2c+2 = poly(λ),
which implies that the size of A is poly(λ). We get a poly-sized adversary A such that,

Pr

[
ϕ /∈ ORSAT
IC(crs, ϕ) ∈ A

crs← Gen(1λ, 1ℓ, 1z)
ϕ← A(crs)

]
> s ,

as a contradiction to the strong soundness guaranty of the CIC scheme.

We now show that the sets Si decrease in size by half in each iteration:

Claim 5.6. |Si+1| ≤ 1
2 · |Si| .

Proof. Let Yi := {ϕ ∈ Xi | IC(crsi, ϕ) = yi}, and let X ′
i := {ϕ ∈ Xi | IC(crsi, ϕ) ∈ T} be the set of

all formulas ϕ ∈ Xi such that IC(crsi, ϕ) ∈ T . By the definition of yi together with the pigeonhole
principle we get that,

|Yi| ≥
|X ′

i|
|T |

.

Plugging in the fact that, |X ′
i| ≥ (1−s)·|Xi| (derived from Claim 5.5), we get that |Yi| ≥ |Xi|·

(
1−s
|T |

)
.

Recall that the CIC always outputs elements of length at most k, and so |T | ≤ 2k+1. Thus,

|Yi| ≥
|X ′

i|
|T |
≥ (1− s) · |Xi|

2k+1
= |Si|t ·

(
1− s

2k+1

)
,

where the equality is by the definition of Xi. By assumption, we have that s ≤ 1− 2−λ. Therefore,
1− s ≥ 2−λ, and we get that,

|Yi| ≥ |Si|t ·
(
1− s

2k+1

)
≥ |Si|t ·

1

2λ+k+1
. (2)
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Next we upper bound the size of Yi. Note that every subformula of any ϕ ∈ Yi is in Si since
Yi ⊆ X ′

i ⊆ Xi = St
i . On the other hand, Si+1 is formed by removing the elements in Si that are

included in a tuple in Yi. Therefore,

|Si \ Si+1|t ≥ |Yi| . (3)

By combining Equation 2 and Equation 3, we get that,

|Si \ Si+1|t ≥ |Yi| ≥ |Si|t ·
1

2λ+k+1
.

Therefore,

|Si \ Si+1| ≥ |Si| ·
(

1

2λ+k+1

)1/t

.

Since k ≤ (λ+ log ℓ+ z)c, λ = n, ℓ = n2c+2, z = n, and t = ℓ/z, we get that for large enough n,

(λ+ k + 1)/t ≤ (λ+ (λ+ log ℓ+ z)c + 1)/t

= (n+ (log n2c+1 + 2n)c + 1)/n2c+1

≤ n · (3n)c/n2c+1

≤ n2c+1/n2c+1 = 1

Therefore, |Si \ Si+1| ≥ |Si|
2 . Since Si+1 ⊆ Si, it holds that |Si \ Si+1| = |Si| − |Si+1|, and so we

conclude that |Si+1| ≤ 1
2 · |Si|, as required.

Completeness. Let φ ∈ UNSAT ∩ {0, 1}n. To prove completeness, we show that there exists a
witness of size m = n2c+1 that will make the verifier accept, i.e., that there exist φ1, . . . , φt ∈ {0, 1}z
such that (a) φ ∈ (φ1, . . . , φt), and (b) for some (crs, y) ∈ U it holds that IC(crs, (φ1, . . . , φt)) = y.

Following the construction of U , first note that since S = UNSAT ∩ {0, 1}n it holds that φ ∈ S.
At the beginning, the algorithm is initiated with S1 = S, and therefore, φ ∈ S1. When the algorithm
halts, we have that Si = ∅. Therefore, there exists j such that φ ∈ Sj and φ /∈ Sj+1.

Let (crsj , yj) ∈ U be the CRS and target element chosen at the j-th stage of the algorithm.
In Item 4, Sj+1 is formed by removing from Sj the formulas φ′ such that there exists ϕ ∈ Xj

where φ′ ∈ ϕ and IC(crsj , ϕ) = yj . Since we know that φ is removed from Sj , there exists ϕ ∈
Xj such that φ ∈ ϕ and IC(crsj , ϕ) = yj . Fix such ϕ. By the definition of Xj , we have that
Xj = St

j ⊆ St. Therefore, ϕ is a list of t sub-formulas (φ1, . . . , φt) such that φ ∈ (φ1, . . . , φt) and
IC(crsj , (φ1, . . . , φt)) = yj , as required.

Soundness. Let φ ∈ SAT ∩ {0, 1}n. We prove that the algorithm will reject for any w ∈ {0, 1}m.
Fix some w ∈ {0, 1}m. If it is not possible to parse w as (φ1, . . . , φt) or is φ /∈ (φ1, . . . , φt), then
the algorithm rejects, and so we assume this not to be the case. By assumption, φ ∈ SAT and so
(φ1, . . . , φt) ∈ ORSAT.

Let ϕ = (φ1, . . . , φt). By the perfect completeness of the CIC, since ϕ ∈ ORSAT, we get that
for every crs that is in the image of Gen(1λ, 1ℓ, 1z), it holds that IC(crs, ϕ) ∈ A. On the other hand,
for every (crs, y) ∈ U , it holds that y ∈ T ⊆ Ā. Therefore, the check in Item 2b will fail, and the
verifier will reject.
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6 Collision resistant hashing and CIC

We give new hope for constructing CRH from one-way functions via instance compression. In
Section 6.1, we strengthen the proof of [HN10] to rely on this adaptive CIC to construct a CRH
family. As our construction of CRH is non-black-box it provides a path bypass the CRH black-box
separation, and raises the natural task of a (black-box) construction of adaptive CIC from one-way
functions. In Section 6.2, we provide a construction of adaptive CIC from CRH. This means that
any construction of CRH from one-way functions must go via adaptive CIC.

6.1 Adaptive CIC implies collision resistance

Theorem 6.1. If there exist one-way functions and a computational instance compression scheme
for SAT with instance succinctness parameter k(λ, n,m) ≤ n(1−ϵ) · poly(λ,m) for ϵ ∈ (0, 1], then
there exists a family of collision-resistance hash functions.

Proof. Let λ be the security parameter, and let N be the input size. Let (CM.Gen,CM.Com,CM.Ver)
be a statistically binding and computationally hiding commitment scheme based on OWF (Theo-
rem 3.1), and let (CIC.Gen,CIC.IC,CIC.WT) be a CIC scheme for SAT.

Notation. Let crs be in the image of CM.Gen(1λ), and let σ be a commitment to some value
i ∈ [N ]. We define CM.Vercrs,σ to be the circuit of CM.Ver with crs and σ fixed. We denote
|CM.Vercrs,σ| to be the size of the circuit CM.Vercrs,σ.

The hash family H is defined as follows:

Construction 6.2. The construction works as follows.

• Gen(1λ, 1N ). Given security parameter λ and input size N ,

1. Sample index i← [N ].
2. Generate crs1 ← CM.Gen(1λ) and commit σ ← CM.Com(crs1, i).
3. Let CM.Vercrs1,σ be the circuit CM.Ver with crs1 and σ fixed.
4. Set m := |CM.Vercrs1,σ|, and n := |CM.Vercrs1,σ|+N · logN .
5. Sample crs2 ← CIC.Gen(1λ, 1n, 1m).
6. Output hk = (σ, crs1, crs2).

• Hash(hk, x). Given hash key hk := (σ, crs1, crs2), on input x ∈ {0, 1}N ,

1. Let ϕσ be the SAT analogue of CM.Vercrs1,σ over variables y1, . . . , yℓ that represent the value
under the commitment, bits of the randomness, and dummy variables.

2. Set ϕx :=
(∧

j∈[N ]Cj,x

)
, where Cj,x := (y1−j1

1 ∨ · · · ∨ y1−jℓ
ℓ ) if xj = 0 and Cj,x := 1 if xj = 1.

3. Set ϕσ,x := (ϕσ ∧ ϕx).
4. Output ϕ′ := CIC.IC(crs2, ϕσ,x).

Efficiency. By efficiency of the commitment and the CIC schemes, the hash function is computable
in polynomial time.
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Compressibility. Fix some security parameter λ, and fix some constant c such that k(λ, n,m) ≤
n(1−ϵ) · (λ+m)c. Let n(λ,N),m(λ,N) be the instance and witness size as a function of the security
parameter and input size. By the efficiency of the commitment scheme and by construction,

m(λ,N) = poly(λ, logN) ,

n(λ,N) = poly(λ, logN) +N · logN .

By the above, for large enough constant c′ and for large enough N it holds that

n ≥ (λ+ w)c
′/ϵ .

Fix some c′ that satisfies the above condition. By the above, for large enough N .

k(λ, n,m) ≤ n(1−ϵ) · (λ+m)c = n · (λ+m)c

nϵ
≤ n · 1

(λ+ w)c′−c
. (4)

By embedding the values of n,m in the above equation, we get that,

k(λ, n,m) ≤ (poly(λ, logN) +N · logN) · 1

(poly(λ, logN))c′−c
.

Therefore, for large enough constant c′, and for large enough N ,

k(λ, n,m)≪ N .

Collision resistant. Fix a collision-finding adversary A, and an index i ∈ [N ]. Define the
following events:

• Ebind: the event that σ has exactly one legal opening.
• Ecol: the event that A outputs x, x′ ∈ [N ] with x ̸= x′ and Hash(hk, x) = Hash(hk, x′).
• Ecorr: the event that A outputs x, x′ ∈ [N ] where one of the following is true:

– ϕσ,x ∈ SAT and ϕσ,x′ ∈ SAT, or
– ϕσ,x /∈ SAT and ϕσ,x′ /∈ SAT.

In the following, we bound Pr[Ecol]. It holds that,

Pr[Ecol] ≤ Pr[Ecol | Ebind] + Pr[¬Ebind] .

By the binding property of the commitment scheme,

Pr[Ecol] ≤ Pr[Ecol | Ebind] + negl(λ) .

By the law of total probability,

Pr[Ecol | Ebind] ≤ Pr[Ecol ∧ Ecorr | Ebind] + Pr[Ecol ∧ ¬Ecorr | Ebind] .

In Claim 6.3 and Claim 6.4 we bound the two probabilities on the right-hand side of the above
expression by functions negligible in λ. Overall, we get that,

Pr[Ecol] ≤ negl(λ) ,

as required.
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Claim 6.3. Pr[Ecol ∧ Ecorr | Ebind] ≤ negl(λ) .

Proof. Suppose towards contradiction that for some non-negligible function p,

Pr[Ecol ∧ Ecorr | Ebind] = p(λ) .

We now use A in order to build an adversary A′ that breaks hiding of σ:

1. Generate hk as in Construction 6.2, but replace σ with the commitment that was given as input.
2. Run (x, x′)← A(hk).
3. If x ̸= x′ and Hash(x) = Hash(x′),

(a) Let S ⊆ [N ] be the set of all indices j such that x[j] = x′[j].

(b) Sample y′ ← S.

4. Otherwise, sample y′ ← [N ].
5. Output y′.

Let i be the value under the commitment σ. Consider the probability that A′ wins (by guessing i)
in the following events condition on the biding event Ebind.

• Pr [A′ wins ∧ Ecol ∧ Ecorr | Ebind]: By the completeness of the commitment scheme, ϕσ is satisfi-
able. By the biding event, any satisfying assignment for ϕσ must contain y = i. Observe that, by
the definition of ϕx, it holds that ϕx(y) = 1 if and only if x[y] = 1. Combining both statements,
we get that

1. ϕσ,x is satisfiable if and only if x[i] = 1.

2. ϕσ,x′ is satisfiable if and only if x′[i] = 1.

By the event Ecorr, it holds that ϕσ,x and ϕσ,x′ are either both satisfiable or both unsatisfiable. By
the above, we get that i ∈ S. Therefore, A′ guesses i with probability 1/|S|. By the event Ecol,
since x ̸= x′, it must hold that |S| < N . Therefore, it holds that A′ guesses i with probability at
least 1/N − 1.

• Pr [A′ wins ∧ ¬Ecol | Ebind]: In this case, A′ guesses i uniformly at random, and therefore succeeds
with probability 1/N .

Thus we get that for i← [N ],

Pr
crs1

[
A′(CM.Com(crs1, i)) = i | Ebind

]
≥ Pr [Ecol ∧ Ecorr | Ebind] · Pr

crs1

[
A′(CM.Com(crs1, i)) = i ∧ Ecol ∧ Ecorr | Ebind

]
+ Pr [¬Ecol ∨ ¬Ecorr | Ebind] · Pr

crs1

[
A′(CM.Com(crs1, i)) = i ∧ ¬Ecol | Ebind

]
= p(λ) · 1

N − 1
+ (1− p(λ)) · 1

N

=
1

N
+ p(λ) ·

(
1

N − 1
− 1

N

)
=

1

N
+ p(λ) ·

(
1

N · (N − 1)

)
.
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Since Pr[Ebind] ≥ 1− negl(λ), we get that,

Pr
crs1

[
A′(CM.Com(crs1, i)) = i

]
≥ (1− negl(λ)) · Pr

crs1

[
A′(CM.Com(crs1, i)) = i | Ebind

]
≥ Pr

crs1

[
A′(CM.Com(crs1, i)) = i | Ebind

]
− negl(λ)

≥ 1

N
+ p(λ) ·

(
1

N · (N − 1)

)
− negl(λ) ,

contradicting the computational hiding of the commitment scheme.

Claim 6.4. Pr[Ecol ∧ ¬Ecorr | Ebind] ≤ negl(λ) .

Proof. Let A′ be an adversary to the CIC scheme:

1. Given input crs2.
2. Sample i← [n], and randomness ρ← {0, 1}poly(λ) for CM.Com.
3. Generate crs1 ← CM.Gen(1λ) and compute σ := CM.Com(crs1, i; ρ).
4. Set hk = (σ, crs1, crs2).
5. Run (x, x′)← A(hk).
6. If Hash(hk, x) ̸= Hash(hk, x′) or x = x′, then abort.
7. Set w to be the satisfying assignment to ϕσ. (This can be efficiently computed given (crs1, i, ρ)).
8. If ϕσ,x(w) = 1, then set ϕ1 := ϕσ,x, and ϕ0 := ϕσ,x′ . Otherwise, set ϕ0 := ϕσ,x, and ϕ1 := ϕσ,x′ .
9. Compute w0 := CIC.WT(crs2, ϕ1, w).

10. Output (ϕ0, w0).

By the law of total probability, and by the binding property of the commitment scheme,

Pr[A′ succeeds] = Pr[Ebind] · Pr[A′ succeeds | Ebind] + Pr[¬Ebind] · Pr[A′ succeeds | ¬Ebind]

≥ (1− negl(λ)) · Pr[A′ succeeds | Ebind]− negl(λ)

= Pr[A′ succeeds | Ebind]− negl(λ) .

By the law of total probability,

Pr[A′ succeeds | Ebind] ≥ Pr[Ecol ∧ ¬Ecorr | Ebind] · Pr[A′ succeeds | Ecol ∧ ¬Ecorr ∧ Ebind] .

In Claim 6.5 we prove that Pr[A′ succeeds | Ecol ∧ ¬Ecorr ∧ Ebind] = 1 . Therefore,

Pr[A′ succeeds | Ebind] ≥ Pr[Ecol ∧ ¬Ecorr | Ebind] .

Overall, we get that,

Pr[A′ succeeds] ≥ Pr[Ecol ∧ ¬Ecorr | Ebind]− negl(λ) .

Therefore, by the soundness of the CIC scheme we conclude that,

Pr[Ecol ∧ ¬Ecorr | Ebind] ≤ negl(λ) .

We left to prove Claim 6.5.

Claim 6.5. Pr[A′ succeeds | Ecol ∧ ¬Ecorr ∧ Ebind] = 1 .
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Proof. By the CIC definition,

Pr[A′ succeeds | Ecol ∧ ¬Ecorr ∧ Ebind] = Pr

 ϕ0 /∈ SAT
∧ (CIC.IC(crs2, ϕ0), w0) ∈ R′

crs2 ← CIC.Gen(1λ, 1n, 1m)
(ϕ0, w0)← A′(crs2)
Ecol ∧ ¬Ecorr ∧ Ebind

 .

By the event ¬Ecorr we get that either ϕσ,x is satisfiable and ϕσ,x′ is unsatisfiable or vise versa.
Without loss of generality, we assume that ϕσ,x is satisfiable and ϕσ,x′ is unsatisfiable. In the
following, we prove that ϕσ,x(w) = 1. In that case, ϕ1 = ϕσ,x and ϕ0 = ϕσ,x′ . By completeness of
the CIC scheme,

(CIC.IC(crs2, ϕ1),CIC.WT(crs2, ϕ1, w)) ∈ R′ .

By the event Ecol, we get that CIC.IC(crs2, ϕ0) = CIC.IC(crs2, ϕ1). Therefore,

(CIC.IC(crs2, ϕ0),CIC.WT(crs2, ϕ1, w)) ∈ R′ .

Since ϕ0 is unsatisfiable, the above implies that,

Pr

 ϕ0 /∈ SAT
∧ (CIC.IC(crs2, ϕ0), w0) ∈ R′

crs2 ← CIC.Gen(1λ, 1n, 1m)
(ϕ0, w0)← A′(crs2)
Ecol ∧ ¬Ecorr ∧ Ebind

 = 1 .

We now left to prove that if ϕσ(w) = 1, then ϕσ,x(w) = 1. Let ℓ be the number of variables in the
formula ϕσ, and let y1, . . . ylogn ∈ {w1, . . . , wm} be the variables that represent the committed value
in σ. Recall that ϕσ,x = ϕσ∧ϕx, and that ϕx is over the variables y1, . . . ylogn. By the binding event
Ebind, we get that i is the only assignment to y1, . . . ylogn that satisfies ϕσ. Since ϕσ,x is satisfiable, it
holds that ϕx is satisfiable, and that ϕx(i) = 1. Overall we get that if ϕσ(w) = 1, then ϕσ,x(w) = 1,
as required.

6.2 From collision resistance hashing to adaptive CIC

In this subsection we construct adaptive CIC from collision resistance hash family.

Theorem 6.6. If there exists a collision resistance hash with hash key of size poly(λ), then there ex-
ists CIC for NP with instance succinctness k(λ, n,m) = poly(λ) and witness succinctness z(λ, n,m) =
n+m.

Proof. Let R be an NP relation, and let R′ be the following relation:

R′ := {(hk, x′), (x,w) | (x,w) ∈ R ∧ Hash(hk, x) = x′} .

Let λ be the security parameter, let n be an instance size, and let m be the size of the witness. We
construct the following CIC scheme from R to R′.

Construction 6.7. The construction is as follows,
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• Gen(1λ, 1n, 1m). Given as input security parameter λ, instance size n, and witness size m. Sample
hk← H.Gen(1λ, 1n), and output crs := hk.

• IC(crs, x). Given as input crs = hk, and instance x. Output x′ := (hk,H.Hash(hk, x)).

• WT(crs, x, w). Given as input crs = hk, instance x, and a witness w. Output w′ := (x,w).

Completeness follows directly from the construction. In the following, we prove instance and
witness succinctness, and adaptive soundness.

Instance and witness succinctness. For the instance size, the IC algorithm outputs hash key of
size poly(λ) and hashed value of size λ bits. Therefore, k(λ, n,m) = poly(λ). For the witness size,
the WT algorithm outputs the original instance and witness, which is of size z(λ, n,m) = n+m.

Adaptive soundness. Let λ be a security parameter, let n be the instance size, and let m be the
witness size. By construction we get that,

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

crs← Gen(1λ, 1n, 1m)
(x,w′)← A(crs)


= Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ ((hk,H.Hash(hk, x)), w′) ∈ R′

hk← H.Gen(1λ, 1n)
(x,w′)← A(hk)


By the definition of R′ we get that,

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ ((hk,H.Hash(hk, x)), w′) ∈ R′

hk← H.Gen(1λ, 1n)
(x,w′)← A(hk)



= Pr


x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (x̃, w̃) ∈ R
∧ H.Hash(hk, x) = H.Hash(hk, x̃)

hk← H.Gen(1λ, 1n)
(x,w′ := (x̃, w̃))← A(hk)


Note that x /∈ L(R) and (x̃, w̃) ∈ R implies that x ̸= x̃. Therefore,

Pr


x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (x̃, w̃) ∈ R
∧ H.Hash(hk, x) = H.Hash(hk, x̃)

hk← H.Gen(1λ, 1n)
(x,w′ := (x̃, w̃))← A(hk)


≤ Pr

 x ∈ {0, 1}n
∧ x ̸= x̃
∧ H.Hash(hk, x) = H.Hash(hk, x̃)

hk← H.Gen(1λ, 1n)
(x,w′ := (x̃, w̃))← A(hk)


By the security of the collision resistance hash function, we get that,

Pr

 x ∈ {0, 1}n
∧ x ̸= x̃
∧ H.Hash(hk, x) = H.Hash(hk, x̃)

hk← H.Gen(1λ, 1n)
(x,w′ := (x̃, w̃))← A(hk)

 ≤ negl(λ).
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Combining all of the above equations concludes the proof by getting the following bound,

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

crs← Gen(1λ, 1n, 1m)
(x,w′)← A(crs)

 ≤ negl(λ).
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7 Impossibility of CIC with witness retrieval

In [HN10] Harnik and Naor define a notion of instance compression with “witness retrieval” and
use such an instance compression scheme to build an oblivious transfer protocol. In this section,
we show that under standard cryptographic assumptions the computational equivalent of their
definition does not exist.

Definition 7.1. We say that a computational instance compression algorithm for a source relation
R and target relation R′ has (efficient) witness retrieval if it has a polynomial time algorithm WR
with the following guaranty:

• Witness retrieval. For every λ ∈ N, x ∈ {0, 1}n, w ∈ {0, 1}m such that (x,w) ∈ R,

Pr

[
(x′,WR(crs, x′, w)) ∈ R′ crs← Gen(1λ, 1n, 1m)

x′ ← IC(crs, x)

]
= 1 .

Note that witness retrieval implies witness transformation using WT(crs, x, w) := WR(crs, IC(crs, x), w),
and so for a CIC with witness retrieval we sometimes omit the algorithm WT.

We show the following:

Theorem 7.2. If there exists incompressible PKE whose key-generation algorithm runs in time
poly(λ, logS) and NIZK for NP, then there is no computational instance compression for NP with
witness retrieval and compression parameter k(λ, n,m) ≤ poly(λ, log n,m).

Proof. Letting t := poly(λ, logS) be the running time of the key-generation algorithm, and applying
Lemma 7.5, we use the NIZK to transform the incompressible PKE into a stronger incompressible
PKE that has key consistency (which we define in Section 7.1). In addition, the new incompressible
PKE has secret key of size poly(λ, t) = poly(λ, logS). Combined with Lemma 7.11, we conclude that
there is no computational instance compression with witness retrieval and compression parameter
k(λ, n,m) ≤ poly(λ, log n,m).

We use the incompressible PKE constructed from CPA secure PKE in Theorem 3.3 together
with Theorem 7.2 and obtain the following corollary.

Corollary 7.3. If there exists a CPA secure public key encryption scheme and NIZK for NP,
then there is no computational instance compression for NP with witness retrieval and compression
parameter k(λ, n,m) ≤ poly(λ, log n,m).

In Section 7.1 we show how to transform incompressible PKE schemes into ones with key con-
sistency, and in Section 7.2 we show that such schemes imply the nonexistence of CIC schemes with
witness retrieval.

7.1 Incompressible PKE with key consistency

In this section we define “key consistency” for an incompressible PKE scheme which will be useful
for the impossibility proof for CIC. Roughly, an incompressible PKE scheme has key consistency if
the decryption algorithm cannot be made to decrypt incorrectly a correctly encrypted message by
altering the secret key. We then show that any incompressible PKE can be adapted to have this
property.
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Definition 7.4. We say that incompressible PKE has (statistical) key consistency if there exist a
negligible function µ such that for every λ ∈ N, S = poly(λ), and for every (unbounded) adversary
A,

Pr

 IE.Dec(pk, s̃k, ct) /∈ {msg,⊥}
(pk, sk)← Gen(1λ, S)

(msg, ρ, s̃k)← A(pk)
ct := IE.Enc(pk,msg; ρ)

 = µ(λ) .

We remark that a similar but incomparable notions have been defined in prior work in very
different contexts (e.g., “decryption consistency” [SG02; GLFFLMS10]).

We show that, assuming NIZKs, any incompressible PKE scheme can be transformed into one
that has key consistency:

Lemma 7.5. If there exists incompressible PKE whose key-generation algorithm runs in time t,
and a NIZK for NP, then there exists an incompressible PKE with key consistency and secret key
size poly(λ, t).

Proof. Let (IE.Gen′, IE.Enc′, IE.Dec′) be an incompressible PKE scheme. Let r := r(λ, S) be the
number of random bits that the algorithm uses. Let R be the following NP relation,

R :=
{
((λ, S, pk, sk), ρ) | (pk, sk) = IE.Gen′(1λ, S; ρ)

}
.

Let (NIZK.Gen,NIZK.P,NIZK.V) be a NIZK proof system for R with simulator S = (S1,S2). We
construct an incompressible PKE scheme with statistical key consistency.

Construction 7.6. The construction is as follows,

• IE.Gen(1λ, S):

1. Sample ρ← {0, 1}r.
2. Compute (pk′, sk′) := IE′.Gen(1λ, S; ρ), and set x := (λ, S, pk′, sk′) and w := ρ.
3. Generate crs← NIZK.Gen(1λ, 1n) and π ← NIZK.P(crs, x, w).
4. Output pk := (λ, S, pk′, crs) and sk := (sk′, π).

• IE.Enc(pk,msg):

1. Parse pk := (λ, S, pk′, crs).
2. Output IE′.Enc(pk′,msg).

• IE.Dec(pk, sk, ct):

1. Parse pk := (λ, S, pk′, crs) and sk := (sk′, π), and set x := (λ, S, pk′, sk′).
2. If NIZK.V(crs, x, π) = 0, then output ⊥, and otherwise output IE′.Dec(pk′, sk′, ct).

Completeness follows directly from the completeness of the underlying incompressible PKE and
NIZK schemes. The secret key size is |sk′|+ |π|. We have (a) |sk′| ≤ ℓsk ≤ t, and (b) |π| = poly(λ, t)
since the NIZK prover has time that is polynomial in its witness verification algorithm, which is
IE.Gen′. Thus, the secret-key size is poly(t).

In Claim 7.7 we prove that the scheme has incompressible encryption security, and in Claim 7.10,
we show that it has key consistency.

Claim 7.7. The scheme has incompressible encryption security.
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Proof. Let A = (A1,A2) be a PPT adversary for the above scheme. Let n := |(λ, S, pk′, sk′)|
for (pk′, sk′) ∈ Img(IE.Gen′(1λ, S)). Let IES be the same scheme as IE, except that IES.Gen is
implemented using the simulator of the NIZK scheme. Specifically, crs← NIZK.Gen(1λ) is replaced
with (crs, aux)← S1(1

λ, 1n), and π ← NIZK.P(crs, x, w) is replaced with π ← S2(crs, x, aux).
We prove that (IE.Gen, IE.Enc, IE.Dec) is incompressible using Claim 7.8 and Claim 7.9. In

Claim 7.8 we prove that,

Pr
[
DistIEA(λ) = 1

]
− negl(λ) ≤ Pr

[
DistIE

S

A (λ) = 1
]
.

In Claim 7.9 we prove that there exists a PPT adversary A′ such that,

Pr
[
DistIE

S

A = 1
]
= Pr

[
DistIE

′

A′ = 1
]
.

By incompressibility of IE′ we have that Pr[DistIE
′

A′] ≤ 1
2 + negl(λ). Therefore,

Pr
[
DistIEA(λ) = 1

]
− negl(λ) ≤ Pr

[
DistIE

S

A (λ) = 1
]
= Pr

[
DistIE

′

A′ = 1
]
≤ 1

2
+ negl(λ) ,

and so Pr
[
DistIEA(λ) = 1

]
≤ 1

2 + negl(λ) as required. All that remains is to prove Claim 7.8 and
Claim 7.9.

Claim 7.8. Pr
[
DistIEA(λ) = 1

]
− negl(λ) ≤ Pr

[
DistIE

S

A (λ) = 1
]
.

Proof. Let Ṽ = (Ṽ1, Ṽ2) be the following cheating verifier for the NIZK scheme:

• Ṽ1 is defined as follows:

1. Given input crs.
2. Sample S ← A1(1

λ) and ρ← {0, 1}r(λ).
3. Compute (pk′, sk′) := IE′.Gen(1λ, S; ρ).
4. Output (x,w, st) where x := (λ, S, pk′, sk′), w := ρ, and st := ⊥

• Ṽ2 is defined as follows:

1. Given inputs crs, x, π, st.
2. Parse x := (λ, S, pk′, sk′) and set pk := (λ, S, pk′, crs) and sk := (sk′, π).
3. Sample b← {0, 1}.
4. Send pk to A1, and receive aux,msg0,msg1.
5. Compute ct← IE′.Enc(pk′,msgb).
6. Send ct to A1, and receive a state st′.
7. Send (pk, sk, aux, st′) to A2, and receive b′.
8. Output b′.

By the security of the scheme, and since Ṽ can be described as a non-uniform poly-size circuit (by
fixing the best randomness),∣∣∣∣∣∣Pr

 x ∈ L(R)

∧ Ṽ2(crs, x, π, st) = 1

crs← NIZK.Gen(1λ, 1n)

(x,w, st)← Ṽ1(crs)
π ← NIZK.P(crs, x, w)


− Pr

 x ∈ L(R)

∧ Ṽ2(crs, x, π, st) = 1

(crs, aux)← S1(1
λ, 1n)

(x,w, st)← Ṽ1(crs)
π ← S2(crs, x, aux)

∣∣∣∣∣∣ = negl(λ)

32



Note that the left probability equals to Pr
[
DistIEA(λ) = 1

]
, and the right probability equals to

Pr[DistIE
S

A = 1]. Therefore,

|Pr
[
DistIEA(λ) = 1

]
− Pr

[
DistIE

S

A = 1
]
| = negl(λ) .

And so Pr
[
DistIEA(λ) = 1

]
− negl(λ) ≤ Pr

[
DistIE

S

A = 1
]
.

Claim 7.9. There is a PPT adversary A′ = (A′
1,A

′
2) such that Pr[DistIE

S

A = 1] = Pr[DistIE
′

A′ = 1].

Proof. Let A′ = (A′
1,A

′
2) be the following adversary for the IE′ scheme:

• A′
1 is defined as follows:

1. On input 1λ:
(a) Run A1(1

λ) to receive 1S .
(b) Output 1S .

2. After receiving pk:
(a) Let n := |(λ, S, pk, sk)| for (pk, sk) ∈ Img(IE.Gen(1λ, S)).
(b) Compute (crs, aux1)← S1(1

λ, 1n).
(c) Send (pk, crs) to A1 as the public key.
(d) Receive (aux2,msg0,msg1) from A1.
(e) Submit aux := (crs, aux1, aux2),msg0,msg1.

3. After receiving ct:
(a) Send ct to A1 and receive st of size at most S.
(b) Output st.

• A′
2, on receiving (pk, sk, aux, st), is defined as follows:

1. Parse (crs, aux1, aux2) and set x := (λ, S, pk, sk).
2. Compute π ← S2(crs, x, aux1).
3. Set pk′ := (pk, crs) and sk′ := (sk, π).
4. Run A2 on (λ, S, pk′, sk′) to receive b′.
5. Output b′.

Observe that the view of the adversary A in the experiment DistIE
S

A is identical to the view of the
adversary A in the experiment DistIE

′

A′. Therefore,

Pr
[
DistIE

S

A = 1
]
= Pr

[
DistIE

′

A′ = 1
]
,

as required.

We now show that our new incompressible PKE has key consistency, finalizing the proof of
Lemma 7.5.

Claim 7.10. The scheme has key consistency.
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Proof. Fix some λ ∈ N, S = poly(λ) and a key consistency adversary A. By construction of the IE
scheme:5

Pr

 IE.Dec(pk, s̃k, ct) /∈ {msg,⊥}
(pk, sk)← IE.Gen(1λ, S)

(msg, ρ, s̃k)← A(pk)
ct := IE.Enc(pk,msg; ρ)



= Pr


IE′.Dec(pk′, sk′, ct) = msg
∧ NIZK.V(crs, x, π) = 1

(pk′, ·)← IE′.Gen(1λ, S)
crs← NIZK.Gen(1λ)
pk := (λ, S, pk′, crs)

(msg, ρ, s̃k)← A(pk)

s̃k := (sk′, π)
x := (λ, S, pk′, sk′)

ct := IE′.Enc(pk′,msg; ρ)


.

Let Exp be the experiment described in the above second probability expression. By the law of total
probability,

Pr

[
IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1

(pk′, sk′, ct, crs, x, π)← Exp

]
(5)

= Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∃ρ′, (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp


+ Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∄ρ′, (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

 .

We show that the probability in Equation 5 is negligible by proving the following two equations,

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∃ρ′, (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

 = 0 , (6)

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∄ρ′, (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

 = negl(λ) . (7)

• Equation 6: Note that,

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∃ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp


≤ Pr

[
IE′.Dec(pk′, sk′, ct) ̸= msg
∧ ∃ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

]
.

By the perfect completeness of the underlying incompressible PKE scheme,

Pr

[
IE′.Dec(pk′, sk′, ct) = msg

(pk′, sk′)← IE′.Gen(1λ, S)
ct← IE′.Enc(pk′,msg)

]
= 1 .

5Note that here we assume without loss of generality that IE′.Dec never outputs ⊥, which can be ensured by
having ⊥ be a symbol outside of the alphabet of IE′.Dec.
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Therefore, if there exist ρ′ and ρ such that (pk′, sk′) = IE.Gen(1λ, S; ρ′) and ct = IE′.Enc(pk′,msg; ρ),
then IE′.Dec(pk′, sk′, ct) = msg. Observe that in the above probability, pk′, sk′, and ct are gener-
ated as in Exp. Consequently,

Pr

[
IE′.Dec(pk′, sk′, ct) ̸= msg
∧ ∃ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

]
= 0 .

As a result,

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∃ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

 = 0 ,

as required.

• Equation 7: Note that,

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∄ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp


≤ Pr

[
NIZK.V(crs, x, π) = 1
∧ ∄ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

]
.

By the definition of R we get that,

Pr

[
NIZK.V(crs, x, π) = 1
∧ ∄ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

]
= Pr

[
NIZK.V(crs, x, π) = 1
∧ x /∈ L(R)

(pk′, sk′, ct, crs, x, π)← Exp

]
.

By the definition of Exp, we get that,

Pr

[
NIZK.V(crs, x, π) = 1
∧ x /∈ L(R)

(pk′, sk′, ct, crs, x, π)← Exp

]

≤ Pr

 ∃(x, π) s.t.
NIZK.V(crs, x, π) = 1
∧ x /∈ L(R)

crs← NIZK.Gen(1λ, 1n)

 .

By the statistical soundness of the NIZK scheme,

Pr

 ∃(x, π) s.t.
NIZK.V(crs, x, π) = 1
∧ x /∈ L(R)

crs← NIZK.Gen(1λ, 1n)

 = negl(λ) .

Overall, we get that,

Pr

 IE′.Dec(pk′, sk′, ct) ̸= msg
∧ NIZK.V(crs, x, π) = 1
∧ ∄ρ′ s.t (pk′, sk′) = IE′.Gen(1λ, S; ρ′)

(pk′, sk′, ct, crs, x, π)← Exp

 = negl(λ) ,

as required.
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7.2 Incompressible encryption and witness retrieval are incompatible

In this section we show that the existence incompressible encryption with statistical key consistency
implies the inexistence of CIC with witness retrieval:

Lemma 7.11. If there exists incompressible PKE with key consistency and secret key of size
poly(λ, logS), then there is no computational instance compression for NP with witness retrieval
and compression parameter k(λ, n,m) ≤ poly(λ, log n,m).

Note that the impossibility works even for the weaker notion of CIC with non-adaptive sound-
ness.

Proof. Let (IE.Gen, IE.Enc, IE.Dec) be the incompressible PKE scheme with key consistency, and let
ℓsk(λ, S) = poly(λ, logS). We prove the theorem by defining a specific NP language, and use the
CIC for that language to attack the incompressible PKE. Let R be the following NP relation,

R :=
{
((λ, S, pk, ct), sk) IE.Dec(pk, sk, ct) = 0

}
.

Assume towards contradiction (to the incompressible encryption security of the PKE scheme) that
there exists a CIC scheme with witness retrieval (Gen, IC,WR) for the source NP relation R and
target relation R′ ∈ NP with compression parameter k(λ, n,m) ≤ (λ+ log n+m)c for a constant c.

We construct an adversary to the incompressible encryption security of the PKE scheme. Let
S(λ) = poly(λ) be a large enough polynomial such that for every large enough λ it holds that
S(λ) ≥ (2λ+ℓsk(λ, S(λ))). Note that there exists such a polynomial since ℓsk(λ, S) = poly(λ, logS).
Let A = (A1,A2) be the following adversary,

• A1 is defined is follows:

1. On input 1λ, outputs a space bound 1S where S := S(λ).
2. On receiving pk,

(a) Sample crs ← Gen(1λ, 1n, 1m), where m := ℓsk(λ) and n := |(λ, S, pk, ct)| for ct that is a
one bit encryption.

(b) Output (aux = crs,msg0 = 0,msg1 = 1).
3. On receiving ct,

(a) Set x := (λ, S, pk, ct).
(b) Compute x′ := IC(crs, x).
(c) If |x′| ≤ S, then st := x′. Otherwise, st := ⊥.
(d) Output st.

• A2 on receiving (pk, sk, aux, st),

1. Parse aux := crs, st := x′, and sk := w.
2. Compute w′ ←WR(crs, x′, w).
3. If (x′, w′) ∈ R′, then output b′ = 0.
4. Otherwise, output b′ ← {0, 1}.

We show that for large enough λ,

Pr[DistIEA(λ) = 1] ≥ 1

2
+

1

4
· (1− negl(λ)) ,
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which breaks incompressible encryption security of the PKE scheme.
We start by proving that for large enough λ, the adversary A1 always outputs st = x′ (as

opposed to ⊥), and then we show that, given st = x′, A2 guesses the correct b′ = b with probability
1
2 + 1

4 · (1− negl(λ)).

Claim 7.12. A1 outputs st = x′ for large enough λ.

Proof. By the construction, if |x′| ≤ S, then A1 outputs x′, and so we show that this event happens
for large enough λ. By the CIC compression parameter,

|x′| = |IC(crs, x)|
≤ k(λ, n,m)

≤ (λ+ log n+m)c

= (λ+ log n+ ℓsk(λ, S))
c . (8)

where the last equality holds since m = ℓsk(λ, S). By the efficiency parameters of the PKE scheme,
|pk|, |ct| ≤ poly(λ, S). Since S = poly(λ) (so |S| = O(log λ)), it holds that

n = |(λ, S, pk, ct)| ≤ poly(λ, S) = poly(λ) .

Therefore, there exists some constant c′ such that,

(λ+ log n+ ℓsk(λ, S))
c ≤ (λ+ c′ · log λ+ ℓsk(λ, S))

c ≤ (2λ+ ℓsk(λ, S))
c ≤ S ,

where by the definition of S, the rightmost inequality holds for large enough λ. By combining the
above with Equation 8, we get that for large enough λ it holds that |x′| ≤ S.

We henceforth assume that λ is large enough so that Claim 7.12 holds, so that we can always
assume that some x′ is output. Let E be the event that (x′, w′) ∈ R′. By the law of total probability,
and since b is sampled uniformly at random,

Pr[DistIEA(λ) = 1] ≥ 1

2
· Pr[DistIEA(λ) = 1 | b = 0] +

1

2
· Pr[Ē | b = 1] · Pr[DistIEA(λ) = 1 | b = 1 ∧ Ē] .

We bound each of the above expressions:

Claim 7.13. The following hold:

1. Pr[DistIEA(λ) = 1 | b = 0] = 1.
2. Pr[DistIEA(λ) = 1 | b = 1 ∧ Ē] = 1

2 .
3. Pr[Ē | b = 1] ≥ 1− negl(λ).

Proof. We prove each one individually:

1. Fix (pk, sk) and ct that was generated by DistIEA(λ), conditioned on b = 0. Note that b = 0
implies that ct is an honestly generated encryption of 0. Therefore, by the perfect correctness of
the PKE scheme, the decryption algorithm decrypts to 0: IE.Dec(pk, sk, ct) = 0. Consequently,
((λ, S, pk, ct), sk) ∈ R. Moreover, since x′ = IC(crs, (λ, S, pk, ct)), we have (x′,WR(x′, sk)) ∈ R′,
and so A2 outputs b′ = 0 = b. Therefore, the A2 outputs b′ = b with probability 1, as required.
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2. By the definition of the event Ē, for every (x′, w′) generated by DistIEA(λ), it holds that (x′, w′) /∈
R′. In this case, the adversary simply outputs uniformly random bit b′. Therefore,

Pr[DistIEA(λ) = 1 | b = 1 ∧ Ē] =
1

2
.

3. Let A′ be the following adversary to the CIC scheme,

(a) Given as input a crs.
(b) Sample (pk, sk) ← IE.Gen(1λ, S) and ct ← IE.Enc(pk, 1), and set x := (λ, S, pk, ct) and

w := sk.
(c) Output (x,w′) where w′ := WR(crs, x′, w) for x′ := IC(crs, x).

Note that the output of the adversary A′ is distributed identically to (x,w′) generated in DistIEA(λ)
when conditioned on b = 1. Therefore,

Pr

[
(IC(crs, x), w′) ∈ R′ crs← Gen(1λ, 1n, 1m)

(x,w′)← A′(crs)

]
= Pr

[
E b = 1

]
. (9)

By the definition of A′, it is always the case that x ∈ {0, 1}n. By rephrasing key consistency of
the PKE scheme for msg = 1, for every λ and S:

Pr

[
∀ρ, s̃k,
IE.Dec(pk, s̃k, IE.Enc(pk, 1; ρ)) ∈ {1,⊥} (pk, sk)← Gen(1λ, S)

]
= 1− negl(λ) .

Recalling that
R :=

{
((λ, S, pk, ct), sk) IE.Dec(pk, sk, ct) = 0

}
,

we conclude that for any λ and S,

Pr

[
∀ρ,
(λ, S, pk, , IE.Enc(pk, 1; ρ)) /∈ L(R)

(pk, sk)← Gen(1λ, S)

]
= 1− negl(λ) .

Observe that A′ generates x := (λ, S, pk, ct) as in the above probability albeit with uniform ρ,
and so we have:

Pr

[
x /∈ L(R)

crs← Gen(1λ, 1n, 1m)
(x,w′)← A′(crs)

]
≥ 1− negl(λ) . (10)

Combining Equations 9 and 10, we have

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

crs← Gen(1λ, 1n, 1m)
(x,w′)← A′(crs)

 ≥ (1− negl(λ)) · Pr
[
E b = 1

]
(11)

By adaptive soundness of the CIC scheme,

Pr

 x ∈ {0, 1}n
∧ x /∈ L(R)
∧ (IC(crs, x), w′) ∈ R′

crs← Gen(1λ, 1n, 1m)
(x,w′)← A′(crs)

 ≤ s(λ) = negl(λ) . (12)

Overall, By Equations 11 and 12 we get that,

(1− negl(λ)) · Pr
[
E b = 1

]
≤ negl(λ) .

Therefore, Pr [E | b = 1] ≤ negl(λ) or, equivalently, Pr
[
Ē | b = 1

]
≥ 1− negl(λ).
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Given Claim 7.13, we finalize the proof:

Pr[DistIEA(λ) = 1] ≥ 1

2
· Pr[DistIEA(λ) = 1 | b = 0] +

1

2
· Pr[Ē | b = 1] · Pr[DistIEA(λ) = 1 | b = 1 ∧ Ē]

≥ 1

2
· 1 + 1

2
· 1
2
· (1− negl(λ))

=
1

2
+

1

4
· (1− negl(λ)) ,

as required.
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