
A Note on the Hint in the Dilithium Digital Signature
Scheme

Amit Berman, Ariel Doubchak, and Noam Livne∗

Advanced Flash Solutions Lab, Samsung R&D Center, Israel

Abstract

In the Dilithium digital signature scheme, there is an inherent tradeoff between
the length of the public key, and the length of the signature. The coefficients of the
main part of the public-key, the vector t, are compressed (in a lossy manner), or
"quantized", during the key-generation procedure, in order to save on the public-key
size. That is, the coefficients are divided by some fixed denominator, and only the
quotients are published. However, this results in some "skew" during the verification
process, and to fix this, a special signature-dependent "hint" is computed during
the signing process. Roughly speaking, stronger compression of t results in the hint
carrying more information, consequently increasing the signature length. Prior to
the hint computation, a test is performed to check whether a proper hint can indeed
be composed to fix this skew, and if the test fails, the signing process is rerun with a
different seed for the (pseudo-)randomness. However, in this short report we observe
that this test is not performed optimally: the test calculates a sufficient condition
for the hint to work, but not a necessary one. We suggest a new refined test that
results in a lower probability for the sign iteration to fail. The new test exhibits some
improvement (in terms of expected running time) in certain configurations that are
characterized by shorter public-key length on the expense of slightly longer signature
length. It is noted that the change does not imply any change in the security of the
algorithm.

Keywords: Dilithium, hint, digital signature scheme, module lattices.

1. Introduction

The Dilithium algorithm [1] is a digital signature scheme based on the hardness of lattice
problems over module lattices. It is one of the winners of the NIST Post-Quantum Cryp-
tography Standardization contest. In this short note we point out a sub-optimality in one

∗Corresponding author: noam.livne@samsung.com

1

of the procedures of the algorithm, namely, the hint generation. In the rest of this note
we will follow closely the notation and definitions of [1]. The algorithm is also published
as a NIST publication as FIPS204 [2].

During the verification process of the Dilithium digital signature scheme, the verifier
attempts to calculate the value w1 = HighBitsq(w, 2γ2) that is calculated during the
signing process, where w = Ay. However, the verifier cannot calculate w exactly, but
only the "noised" value w − cs2 + ct0.

The signer, thus, when generating the signature, assures that calculating w1 = HighBitsq(w, 2γ2)

will be possible given w − cs2 + ct0. This is done in two phases:

• It first checks whether HighBitsq(w, 2γ2) = HighBitsq(w − cs2, 2γ2) and fails the
iteration if the answer is negative.

• It then generates a "hint", which enables retrieving HighBitsq(w − cs2, 2γ2) from
HighBitsq(w − cs2 + ct0, 2γ2).

The hint is generated by the MakeHint procedure, and consists of a sequence of binary
values that indicate the coordinates where the vector HighBitsq(w − cs2, 2γ2) is different
from the vector HighBitsq(w − cs2 + ct0, 2γ2). In other words, the hint indicates the
locations where the subtraction of ct0 changes the high bits.

The UseHint procedure calculates HighBitsq(w− cs2, 2γ2) from w− cs2 + ct0 and the
hint. Since the hint only indicates for each coordinate if there is a difference between the
two vectors, but not its magnitude and sign, two requirements assure that the UseHint

procedure can perform its task:

• In all coordinates, the difference between the two vectors belongs to {−1, 0, 1} mod-
ulo (q − 1)/2γ2.

• In every coordinate, if the hint equals 1, the sign of the difference between the two
vectors is deducible from the value of w − cs2 + ct0 at this coordinate (via some
rule to be described in the following).

Given these two requirements, if the hint indicates for some coordinate that there is
a difference between the two vectors, that is, that the subtraction of ct0 changes its high
bits, the verifier knows the difference’s magnitude is 1, and it can deduce its sign, thus he
knows how to correct it. Thus, given w− cs2+ ct0 and the hint, the verifier can calculate
HighBitsq(w − cs2, 2γ2), which is equal to HighBitsq(w, 2γ2) – the desired value.

The rest of this note is organized as following: in Chapter 2 we describe the current test
to achieve the aforementioned two requirements, it’s sub-optimallity, and our improved
test. We then prove the correctness of our new test and argue about its security. In
Chapter 3 we demonstrate the improvement in different configurations.

2

2. Proposed Change

2.1 The Current Way and Its Sub-optimality

The signing process is a (pseudo-)randomized process that contains several tests, and is
rerun with different randomness until all tests pass. The test we refer to in this note relates
to the vector ct0. In the current way, the test consists of checking that ∥ct0∥∞ < γ2. If
the answer is negative, the iteration fails. If the test passes, all locations for which
HighBitsq(w − cs2 + ct0, 2γ2) is different than HighBitsq(w − cs2, 2γ2) are marked in the
hint with ’1’.

It is noted that with current parameters (in all three modes) the hint is typically a
sparse vector, and in order to save on the signature length, it is compressed as following:
for each of the k hint 256-vectors, specify its weight in one byte, and list all its 1’s indexes,
each in one byte. In order to keep the signature length fixed, another test is performed
to count the number of 1’s in the hint vector, and if it exceeds some threshold, meaning
the aforementioned compression will be too long, the iteration fails. Besides this, two
additional tests are performed during the signing process to assure that no information
on s1 and s2 is leaked.

Clearly the condition ∥ct0∥∞ < γ2 is sufficient to ensure the first requirement, that
for all i it holds that HighBitsq((w − cs2 + ct0)i, 2γ2) = HighBitsq((w − cs2)i, 2γ2) ± 1

mod (q − 1)/2γ2.1 However, this is not a necessary condition and in fact ∥ct0∥∞ ≤
2γ2 is also sufficient (but still not necessary, as we will soon see). As for the second
requirement, in terms of limiting the infinity-norm of ct0 it is a sufficient and (nearly)
necessary condition,2 that is, γ2 is the largest value the norm of ct0 can be limited to in
order to meet the requirement. However, our observation is that instead of simply limiting
the infinity-norm of ct0, we can test each of its coefficients independently, with respect to
the corresponding coefficient in w− cs2. If we allow such test, then testing that the norm
of every coefficient of ct0 is smaller or equal to γ2 is not necessary also with respect to the
second requirement. This is because while a coefficient of ct0 can distance a coefficient
of w− cs2 too far for the hint to work, exactly how far can it distance it depends on the
initial value of the coefficient of w − cs2 (and in particular, on its low bits).

The norm of a coefficient of ct0 can be larger than γ2 without failing the hint, and
only in the extreme case a coefficient of w − cs2 bounds the norm of the corresponding
coefficient of ct0 by γ2, and even then it is only in one direction (i.e., depending on the
coefficient of w − cs2 the coefficient of ct0 need be either larger or equal to −γ2 or less
than or equal to γ2).

Performing such coordinate-wise test allows for two types of coefficients of ct0 that
1For ease of notation, throughout this note we will take i as a double index into one coefficient of one

polynomial in the module vector, so i = (i1, i2) where 1 ≤ i1 ≤ k is the polynomial index and 1 ≤ i2 ≤ 256
is the coefficient index.

2Nearly – because while in [1], as well as in [2], the value is limited to γ2 − 1, it is in fact sufficient to
limit it to γ2.

3

would otherwise fail the test: coefficients that would not even yield ’1’ in the corresponding
location in the hint, and coefficients that would yield ’1’ in the corresponding location in
the hint, but are still correctable by the UseHint procedure.

2.2 Improved Test

In this light, we propose the following new test, instead of testing that ∥ct0∥∞ ≤ 2γ2:
Given some i, denote:

• r0,i = LowBitsq((w − cs2 + ct0)i, 2γ2)

• r1,i = HighBitsq((w − cs2 + ct0)i, 2γ2)

Denote also m = (q − 1)/α.

New Test. For each i, check that one of the following two conditions hold:

• r0,i > 0 and −γ2 < r0,i − (ct0)i ≤ 3γ2

(or r1,i = m− 1, r0,i > 0 and r0,i − (ct0)i = 3γ2 + 1)

• r0,i ≤ 0 and −3γ2 < r0,i − (ct0)i ≤ γ2

(or r1,i = 0, r0,i ≤ 0 and r0,i − (ct0)i = −γ2 − 1)

Note that with the new test, the allowed range for the coefficients of ct0 is doubled.

2.3 Proof of Correctness

The new proposed test does not require any consequent changes in the algorithm. In
particular, the MakeHint and UseHint procedures work just as before. To prove the new
test validity, we will follow [1]. Lemma 1 in [1] consists of three parts, stating three facts
about the generation and usage of the hint. Lemmas 5,6, which prove parts 2,3 of Lemma
1, stay true after the change, and their proofs need not be changed. As for Lemma 4,
which proves part 1 of Lemma 1, its conclusion can be proved from a new hypothesis that
reflects the new test. We change Lemma 4 accordingly, and reprove its conclusion.

Lemma 4. Let r, z ∈ Zq, and denote r0 = LowBitsq(r, α) and r1 = HighBitsq(r, α).
Suppose one of the following two conditions hold (the parts in parentheses relate to

the special case of the last segment of {0, ..., q− 1} which is larger by one, as explained in
Section 2.4 in [1]):

• r0 > 0 and −α/2 < r0 + z ≤ 3α/2

(or r1 = m− 1, r0 > 0 and r0 + z = 3α/2 + 1.)

• r0 ≤ 0 and −3α/2 < r0 + z ≤ α/2

(or r1 = 0, r0 ≤ 0 and r0 + z = −3α/2.)

4

Then:
UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α)

Proof. Denote m = (q − 1)/α as before. The two conditions can be rephrased as the
following three mutually exclusive conditions (again, the parts in parentheses relate to
the special case of the last segment of {0, ..., q − 1} which is larger by one):

1. −α/2 < r0 + z ≤ α/2

(or r1 = 0 and r0 + z = −α/2)
(hint=0)

2. r0 > 0 and α/2 < r0 + z ≤ 3α/2

(or r1 = m− 1, r0 > 0 and r0 + z = 3α/2 + 1)
(hint=1 and and high bit is increased)

3. r0 ≤ 0 and −3α/2 < r0 + z ≤ −α/2

(or r1 = 1, r0 ≤ 0 and r0 + z = −3α/2 + 1)
(hint=1 and and high bit is decreased)

Note that for any r, r0 and r1 defined as above, r = r1α + r0, with 0 ≤ r1 < m and
−α/2 < r0 ≤ α/2 or with r1 = 0 and r0 = −α/2, and that this decomposition is unique.

If condition 1 is met, then r + z = r1α + r0 + z where 0 ≤ r1 < m, and from
the condition −α/2 < r0 + z ≤ α/2 or r1 = 0 and r0 + z = −α/2. It follows that
HighBitsq(r + z, α) = r1 = HighBitsq(r, α). Thus, MakeHintq(r, z, α) will output h = 0,
and UseHintq(h, r, α) will output r1 as required.

If condition 2 is met, then we can write r+z = r1α+r0+z = (r1+1)α+r0+z−α with
r0 > 0 and −α/2 < r0 + z − α ≤ α/2 (or r1 + 1 = m, r0 > 0 and r0 + z − α = α/2 + 1).
If follows that HighBitsq(r + z, α) = r1 + 1(mod m) ̸= r = HighBitsq(r, α). Thus,
MakeHintq(r, z, α) will output h = 1, and since r0 > 0 UseHintq(h, r, α) will output r1 + 1

mod m as required.
If condition 3 is met, then we can write r+z = r1α+r0+z = (r1−1)α+r0+z+α with

r0 ≤ 0 and −α/2 < r0 + z + α ≤ α/2 (or r1 − 1 = 0, r0 ≤ 0 and r0 + z + α = −α/2 + 1).
It follows that HighBitsq(r + z, α) = r1 − 1(mod m) ̸= r = HighBitsq(r, α). Thus,
MakeHintq(r, z, α) will output h = 1, and since r0 ≤ 0 UseHintq(h, r, α) will output r1 − 1

mod m as required.

2.4 Security

Our new test has no impact on the security of the algorithm compared to the old test.
Regarding potential leakage of information: like the old test, the new test may leak
information about ct0, but this value is not secret. It may also leak some information
about w− cs2, but the previous test that ∥r0∥∞ < γ2 − β ensures that knowing even the

5

exact value of w − cs2 does not leak any information about cs2, and thus on s2. Besides
that, since the verify process is unchanged, the challenge for a potential forger stays the
same.

3. Improvement

In the dilithium algorithm there is an inherent tradeoff between the length of the public
key, and the length and runtime of the signature. Compressing the public key stronger,
that is, increasing d and thus reducing more bits from the vector t, means the magnitude
of t0, and thus of ct0, increases. In particular, every extra bit that is reduced from the
coefficients of t scales the distribution of the coefficients of ct0 by a factor of 2. This has
two consequences: the ct0 test (both old and new) fails with higher probability, and the
Hamming weight of the hint increases. Our new test affects only the first consequence: the
new test fails with lower probability, but the hint weight is unchanged (that is, iterations
that pass both old and new tests generate exactly the same hint).

We have incorporated our new test into the Dilithium algorithm and measured its
performance in different configurations. In Table 1 we show three configurations where
our new test exhibits advantage. These configurations are the 3 configurations from [1]
with d increased (and all other parameters of the mode unchanged). Thus, in these
configurations the public key length is reduced, but, as described above, the hint weight
increases. This renders the naïve compression currently used for the hint compression
detrimental, thus imposing a small increase on the signature length. However, once no
compression is used there is also no point in limiting the hint weight, thus less iterations
fail and we enjoy some reduction in expected running time (this is true for both old
and new test). Thus, our configurations exhibit reduction in both public key length and
running time, on the expense of increase in signature length. The difference between the
old and new test is in the runtime reduction: with the new test, the reduction is larger.
It is also noted that increasing d slightly harms the security of the protocol, and we do
not quantify this consequence. Removing the limit on the hint weight also slightly harms
the security, but this limit is not accounted for also with the original test, and is only
mentioned in passing in [1].

One way to view these results is as following: while the option of increasing d in order
to reduce public key length on the expense of increasing signature length was not favoured
with the old test, the new test exhibits a better tradeoff due to shorter signature running
time compared to the old test for this option. Thus, the new test may tip the scale in
favor of this choice.

Note that if one further allows non-trivial hint-compression in the signing process, the
advantage over the old test in running time can be traded for an advantage in the hint
size (as more running time means the threshold for compression failure can be less strict),
resulting in smaller increase (compared to the configuration with d = 13) in signature

6

Configuration Expected
number of
iterations,
old test

Expected
number of
iterations,
new test

Runtime
reduc-
tion

PK length
saving (vs.
d = 13),
old & new

Signature
length in-
crease (vs.
d = 13),
old & new

Mode 2, d =
14

5.22 4.45 14.78% 9.76% 1.82%

Mode 3, d =
15

5.55 5.23 5.80% 19.67% 3.98%

Mode 5, d =
15

4.65 4.13 11.23% 19.75% 3.76%

Table 1: Improvemnt of new test over old test

length over the old test.

Acknowledgments

The authors would like to thank Vadim Lyubashevsky for a helpful discussion that con-
tributed to this note.

References

[1] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium: Algorithm Specifications
and Supporting Documentation (Version 3.1),” National Institute of Standards
and Technology, Technical Report, 2021, post-Quantum Cryptography Stand-
ardization Process. [Online]. Available: https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf

[2] National Institute of Standards and Technology, “FIPS 204: CRYSTALS-
DILITHIUM Digital Signature Algorithm,” National Institute of Standards
and Technology, Federal Information Processing Standards Publication 204,
February 2024, dOI: https://doi.org/10.6028/NIST.FIPS.204. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf

7

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf

	Introduction
	Proposed Change
	The Current Way and Its Sub-optimality
	Improved Test
	Proof of Correctness
	Security

	Improvement

