
Composability in Watermarking Schemes

Jiahui Liu1 and Mark Zhandry2

1Massachusetts Institute of Technology, jiahuiliu.crypto@gmail.com
2NTT Research, mark.zhandry@ntt-research.com

Abstract

Software watermarking allows for embedding a mark into a piece of code, such that any
attempt to remove the mark will render the code useless. Provably secure watermarking
schemes currently seems limited to programs computing various cryptographic operations,
such as evaluating pseudorandom functions (PRFs), signing messages, or decrypting cipher-
texts (the latter often going by the name “traitor tracing”). Moreover, each of these watermark-
ing schemes has an ad-hoc construction of its own.

We observe, however, that many cryptographic objects are used as building blocks in larger
protocols. We ask: just as we can compose building blocks to obtain larger protocols, can we
compose watermarking schemes for the building blocks to obtain watermarking schemes for
the larger protocols? We give an affirmative answer to this question, by precisely formulating a
set of requirements that allow for composing watermarking schemes. We use our formulation
to derive a number of applications.

1 Introduction

Watermarking is an old idea, which aims to embed a mark in some object, such that any attempt
to remove the mark destroys the object. In software watermarking, this means embedding a mark
into program code, such that any attempt to remove the code will make the code useless. Such wa-
termarking aims to deter piracy by identifying the source of pirated software. Recently, software
watermarking has become an active area of research within cryptography, with numerous positive
results for watermarking cryptographic functionalities, such as trapdoor functions [Nis13], pseu-
dorandom functions [CHN+16, KW17, GKWW21], decryption [CFNP00] (under the name “traitor
tracing”), and more [GKM+19].

In this work, we initiate the study of composing watermarked functionalities. That is, if a cryp-
tographic primitive 𝐴 (or perhaps several primitives) is used to build a primitive 𝐵, can we use a
watermarking scheme for 𝐴 to realize a watermarking scheme for 𝐵? Our aim is to show when
such a composition is possible, based on properties of the construction and security proof for 𝐵
using 𝐴.

1.1 Motivation

Abstractions are central to cryptography, as they allow for decomposing various tasks into smaller
building blocks, which can then be instantiated independently. The literature is full of results

1

mailto:jiahuiliu.crypto@gmail.com
mailto:mark.zhandry@ntt-research.com

that show how to generically realize one abstraction assuming solutions to one or more input
abstractions.

Given that cryptographic primitives are often composed, and that most watermarking schemes
with provable security are for cryptographic primitives, an interesting question is whether water-
marking schemes can be composed. To the best of our knowledge, this question has not been
previously asked. In contrast, existing watermarking schemes are each developed “from scratch.”
Even if the underlying techniques are similar, watermarking schemes for different primitives must
go through separate constructions and security proofs. This can be a time-consuming process.

What does it mean to watermark a PRF? As a running example throughout this this introduc-
tion, we will use pseudorandom functions (PRFs), which are one of the main workhorses in sym-
metric key cryptography, and are used as a central component in many higher-level protocols.
In [CHN+16], the authors show how to watermark the evaluation procedure for a certain class of
PRFs. We point out, however, that PRFs are typically not considered a cryptographic end goal, but
rather a tool used to build other cryptographic notions. So what, then, is the utility of watermarking
a PRF?

Another fundamental question is the following: for important reasons that we will not get into
here, the watermarking guarantee proved by [CHN+16] (and all subsequent work on watermark-
ing PRFs) is weaker than one may expect. Namely, they show that it is impossible to remove the
mark without causing the program to fail on random inputs. Certain PRFs called “weak PRFs”
are only guaranteed secure when the adversary sees evaluations on random inputs, and so for
this reason may authors (e.g. [GKWW21, MW22, KN22]) refer to such a scheme as watermarking
“weak PRFs.” Weak PRFs can be used as building blocks for many applications, though not as
many as ordinary PRFs. In the context of using PRFs as a building block, what is implication of
watermarking a weak PRF?

Composition of Watermarking Schemes. Our thesis is that watermarking, at least in many
cases, should be defined and executed in such a way as to be composable, allowing watermarking
schemes for building blocks to generically imply watermarking schemes for higher-level proto-
cols. Watermarking a weak PRF, for example, should generically enable watermarking for many
applications of weak PRFs, such as CPA-secure symmetric encryption. Naturally, a more ambi-
tious goal is: watermarking a message-authentication code scheme or a digital signatures scheme,
when composed with a watermarkable PRF scheme, should lead to a watermarkable CCA-secure
SKE scheme.

Not all compositions support watermarking. Certainly, not all composition results from cryp-
tography can be used to compose watermarking schemes. For example, pseudorandom functions
can be built from any pseudorandom generator (PRG) [GGM86]. But this does not seem to yield a
viable path toward constructing a watermarking scheme for PRFs. After all, what would it even
mean to watermarking a PRG, given that the evaluation algorithm for the PRG is public?

1.2 Overview of Our Results

Defining Watermarking Security. Most cryptographic primitives are defined by an interactive
game between an adversary 𝐴 and challenger. Given a security game, we can translate the game

2

into a watermarking definition, as follows. The attacker gets a watermarked secret key, and then
tries to produce a program 𝐴. We say that 𝐴 is “good” if it can win the security game with non-
negligible advantage. We then require the existence of a tracing algorithm, which can extract
the mark from any good program 𝐴 produced by the adversary. In the case of watermarking
public key decryption functionalities, our notion corresponds exactly to existing notions of traitor
tracing, since the security game is non-interactive. However, for other primitives, our definition is
potentially stronger than existing notions: existing notions only ask for mark extraction for non-
interactive programs 𝐴 that can evaluate some function, whereas we must extract from any 𝐴
which wins a security experiment, which is potentially interactive. The strengthened definitions
will be crucial for our composition theorem, which we now describe.

Composition Theorem. Our first result is a composition theorem, which gives conditions under
which a construction of a target primitive 𝑃 from input primitives 𝑃1, · · · , 𝑃𝑘 can be turned into a
compiler for watermarking schemes.

Theorem 1.1 (Main Theorem (Informal)). If the construction of a target primitive 𝑃 from input prim-
itives 𝑃1, · · · , 𝑃𝑘 satisfies some given conditions and the watermarking schemes for 𝑃1, · · · , 𝑃𝑘 satisfy the
above watermarking security definition, then we can compose the construction to watermarking schemes for
𝑃1, · · · , 𝑃𝑘, black-boxly into a watermarking scheme for 𝑃 that satisfies the above watermarking definition.

Our conditions apply to a large class of constructions. They are, very roughly, as follows:

• The construction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 is black-box. Moreover, the secret key 𝗌𝗄 for 𝑃 is
𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄𝑘) where 𝗌𝗄𝑖 is the secret key for 𝑃𝑖.

• The security proof for 𝑃 turns an adversary 𝐴 for 𝑃 into adversaries 𝐴1, · · · , 𝐴𝑘 for 𝑃1, · · · , 𝑃𝑘,
respectively, such that if 𝐴 has non-negligible advantage, so does at least one of the 𝑃𝑖. Typi-
cal proofs in cryptography utilizing hybrid proofs will usually have this form.

• Moreover, we require a property of the security proof, which we call a “watermarking-
compatible reduction”. This is a rather technical definition, but roughly we allow the se-
curity games for 𝑃, 𝑃1, · · · , 𝑃𝑘 to consist of two phases, where the adversary’s winning con-
dition is only dependent on the second phase. We require that the reduction respects the
phases, in the sense that the second stages of 𝐴1, · · · , 𝐴𝑘 only depend on the second stage of
𝐴.

• Depending on the construction and reduction, not all input primitives 𝑃1, · · · , 𝑃𝑘 have to
be watermarkable to give a watermarking construction for the target primitive 𝑃 . That is,
we can compose the "plain" constructions of these input primitives with the watermarkable
versions of the other input primitives to give a watermarkable construction for 𝑃 .

• If all input primitives (that need to be watermarkable) have collusion-resistant watermark-
ing security, the resulting watermarkable 𝑃 also satisfies collusion-resistant security. If all
input primitives can be traced using only a public key, the same is true of 𝑃 .

Many reductions in the literature are watermarking-compatible. For example, consider con-
structing CPA-secure symmetric encryption from weak PRFs. Here, the first stage for CPA-security
consists of all queries occurring prior to the challenge query, and the second stage consists of the
challenge query and all subsequent queries. The winning condition does not depend on any first
stage CPA queries (or second stage). The first and second stages for the weak PRF are just two

3

rounds of queries to the weak PRF oracle, and here again the win condition does not depend on
the actually queries. Thus, this reduction is watermarking compatible.

A non-example would be many proofs involving signatures as the target primitive 𝑃 . The
issue is that, the winning condition for a signature scheme security game is that the adversary
produces a “new” signature on a message that was not seen in a previous query. But checking
this win condition requires knowing all the queries. So if there is a first phase where the attacker
can make signature queries, then the win condition is not solely dependent on the second stage. If
we let the winning condition depend only on the second stage, the adversary can trivially win by
querying a signature in the first stage and give it to the second stage adversary as the final output.

Applications. We demonstrate that many well-known cryptographic constructions have watermarking-
compatible reductions, and therefore we can compose the watermarkable constructions of the in-
put primitives to obtain watermarkable constructions of the target primitive. Within the scope of
this work, we give the following examples:

• Two most simple examples are:

– Watermarkable CPA-secure secret-key encryption scheme from watermarkable weak
PRF

– Watermarkable CCA2-secure secret-key encryption scheme from watermarkable weak
PRF and watermarkable MACs.

• Some more advanced examples are:

– Watermarkable CCA2-secure public-key encryption from watermarkable selectively se-
cure identity based encryption and strong one-time signatures, which can in turn be
based on LWE. Here, the strong one-time signature we need is a "plain scheme" which
does not need to be watermarkable.

– Watermarkable CCA2-secure PKE from watermarkable CPA-secure PKE and NIZK
(without watermarking), which can in turn be based on LWE too.

– Watermarkable weak pseudorandom permutation from watermarkable weak PRF.
– Watermarkable CCA2-secure hybrid encryption scheme from watermarkable CCA2-

secure PKE and CCA2-secure SKE (without watermarking).

Additionally, we show that all the input primitives (weak PRF, CPA-secure PKE, selective IBE,
signatures, etc.) in the above examples have constructions that satisfy our security definition for
watermarking. We can obtain these constructions by using or modifying the existing watermark-
ing schemes in [GKM+19], [GKWW21, MW22]. Therefore, the above composed schemes all have
concrete constructions.

We also briefly discuss how the functional encryption construction in [GKP+13] is also wa-
termarking compatible. We cannot possibly elaborate all the concrete examples of watermarking
compatible reductions within the scope of this work, but given our generic framework of compo-
sition, one can easily verify whether a construction is watermarking compatible by looking into
its security proof.

1.3 Other Related Work

[Nis20] presents a general framework for constructing watermarking schemes for any primitive
which admits a certain “all-but-one” reduction. The work and ours focus on different aspects of

4

watermarking: theirs is focused on constructing watermarking schemes in the first place, whereas
our composition theorem shows how to combine watermarking schemes. We also note that the
framework in [Nis20] seems very much tied to the collusion-free setting, whereas ours is much
more general, and can accommodate collusions if the input tracing mechanisms are collusion re-
sistant.

1.4 Technical Overview

Watermarking We first briefly recall the definition of watermarking a cryptographic primitive:
in a watermakrable cryptographic scheme, apart from the usual evaluation algorithms (such as
key generation, encrypt, decrypt or sign and verify), it additionally has a 𝖬𝖺𝗋𝗄 algorithm and an
𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm (as well as the corresponding marking and extraction keys). The 𝖬𝖺𝗋𝗄 algorithm
allows one to embed a mark into the secret key used to evaluate the cryptographic functionality;
the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 key allows one to extract a mark from an allegedly marked key. The watermarking
security, usually referred to as "unremovability", states that given a marked secret key with an
adversarially requested mark 𝜏 , the adversary should not be able to produce a circuit that has
the same functionality as the secret key such that the above mark 𝜏 cannot be extracted from this
adversarial circuit.

As explored in this work and some previous works ([GKM+19, GKWW21]), one important
definitional aspect in the above security lies in what we mean by the "adversary’s output circuit
has the same functionality as the original secret key". We will elaborate in the following sections
of the overview.

Watermarking-Compatible Reduction Before we go into how we compose watermarking schemes,
we expand more on the type of reductions that allow us to build a watermarking composition
upon. We call these reductions watermarking-compatible. We will then give a concrete example
to help comprehension.

Consider a black-box construction of a target primitive 𝑃 from input primitives 𝑃1, · · · , 𝑃𝑘 and
consider a reduction algorithm ℬ from security of 𝑃 to the security of 𝑃𝑖: we let both the adversary
𝒜 and the reduction ℬ be divided into two stages. In the first stage, stage-1 adversary 𝒜1, for the
security game of 𝑃 , receives some public parameters from stage-1 ℬ1 and makes some queries; ℬ1
answers these queries by making queries to the oracle provided by the challenger of the security
game for 𝑃𝑖.

Entering the second stage, as one can expect, 𝒜1 can give an arbitrary state it to stage-2 adver-
sary 𝒜2. However, what ℬ1 can give to the second stage reduction ℬ2 is more restricted: ℬ1 can
give all the public parameters to the second stage but none of the queries made by 𝒜1, to ℬ2. ℬ2
continues to simulate the query stage to answer 𝒜’s queries. In particular, ℬ records 𝒜2’s queries.
Note that the challenge phase of the security game where 𝒜2 (and resp. ℬ) receives its challenge
from the challenger always happens in stage 2 1.

In the final output phase, ℬ2’s answer to the challenger in game 𝑃𝑖 will be dependent on (some
of) the following pieces of information: challenger’s challenge input to ℬ2, 𝒜2’s queries made
during stage 2, ℬ2’s randomness used to prepare the challenge input for 𝒜2 and 𝒜2’s final output.

1But as we will see in some concrete examples, 𝒜 can commit to some "challenge messages" in stage 1, which will
be taken into stage-2 as an "auxiliary input" and later used by the challenger to prepare the challenge.

5

We give some intuition on why we need 𝐵 to be "oblivious" about 𝒜’s queries in stage 1 of the
above reduction. Looking forward, in the actual watermarking (unremovability) security game,
we can replace "answering 𝒜’s queries in stage 1" with a giving out a watermarked secret key to
𝒜, where ℬ will have no idea what inputs 𝒜 has evaluated on using the key. We therefore model
the reduction as the above to capture this scenario.

Example: CCA2-Secure Secret-Key Encryption To make the above abstract description con-
crete, we take an example of the reduction from CCA2-security to weak PRF and MAC.

We briefly recall the textbook construction: the scheme’s secret key consists of the PRF’s se-
cret key 𝗌𝗄1 and MAC’s secret key 𝗌𝗄2. The encryption algorithm, on input message 𝑚, computes
ciphertext 𝖼𝗍 = (𝑟, 𝖼𝗍′ = 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑟)⊕𝑚, 𝗌𝗂𝗀), where 𝗌𝗂𝗀← 𝖬𝖠𝖢.𝖲𝗂𝗀𝗇(𝗌𝗄2, (𝑟, 𝖼𝗍

′)). The decryp-
tion algorithm will first verify the signature 𝗌𝗂𝗀 on (𝑟, 𝖼𝗍′), if yes continue to decrypt using 𝗌𝗄1, else
abort.

It’s not hard to see how the CCA2 security game can fit into the format of a two-stage game
we have depicted above: stage 1 consists simply of letting the adversary making queries to the
encryption and decryption oracles. Entering stage 2, the adversary 𝒜 is allowed to make more
queries and then submits the challenge plaintexts; then 𝒜 receives challenge ciphertexts from the
challenger. 𝒜 continues to make more admissible queries and finally outputs its answer.

By viewing the security game in two stages, we will recall the security proof for CCA2 security.
The proof can go through a case-by-case analysis:

1. In case 1, in stage 2 of the CCA2 security game, there is a decryption query from 𝒜 of the
form 𝖼𝗍 = (𝖼𝗍0, 𝜎), such that it has never been the output of an encryption query. Also, the
decryption oracle did not output ⊥ on this query.

2. In case 2, there is no such decryption query in stage 2.

In the first case, we can do a reduction to unforgeability of 𝖬𝖠𝖢:

• 𝒜𝖬𝖠𝖢 samples its own 𝖯𝖱𝖥 secret key 𝗌𝗄1. For stage 1: For any encryption query from
stage-1 adversary, 𝒜1, stage-1 reduction 𝒜1

𝖬𝖠𝖢 will simulate the response as follows: it will
compute the 𝖼𝗍0 part of ciphertext and then query the signing oracle 𝖬𝖠𝖢.𝖲𝗂𝗀𝗇(𝗌𝗄2, ·) in the
security game 𝐺𝖬𝖠𝖢. For any decryption query, 𝒜1

𝖬𝖠𝖢 will query the verification oracle
𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒(𝗌𝗄2, ·) first and decrypt those whose response is not ⊥.

• After entering stage 2, for any encryption or decryption query from 𝒜2, 𝒜2
𝖬𝖠𝖢 will still sim-

ulate the response as the above. Recall that 𝒜2
𝖬𝖠𝖢 will not get to see any queries made in

stage 1 and 𝒜2
𝖬𝖠𝖢 will record all queries from 𝒜2.

• In the challenge phase, 𝒜2 sends in challenge messages (𝑚0,𝑚1); 𝒜2
𝖬𝖠𝖢 flips a coin 𝑏 ←

{0, 1}, prepares and sends the signed encryption 𝖼𝗍* of 𝑚𝑏 to𝒜2. 𝐴2
𝖬𝖠𝖢 continues to simulate

the encryption and decryption oracles for 𝒜2, on queries 𝖼𝗍 ̸= 𝖼𝗍*.
• In the end, 𝒜2

𝖬𝖠𝖢 will look up 𝒜2’s queries: find a decryption query 𝖼𝗍 = (𝖼𝗍′, 𝜎) such that it
has never been the output of an encryption query and the decryption oracle did not output
⊥ on this query. 𝒜2

𝖬𝖠𝖢 output (𝖼𝗍′, 𝜎) as its forgery.

In the second case, we consider a reduction 𝒜𝖯𝖱𝖥 to the weak pseudorandomness of the PRF.
In the following reduction, for he sake of simplicity, let’s consider a variant of the weak PRF
game: the adversary 𝒜𝖯𝖱𝖥 is given adaptive query access to an oracle 𝐹 : {0, 1}𝑛 → {0, 1}𝑚 that
computes a PRF function; there will be a challenge phase where a challenge input 𝑟* is sampled at

6

random; 𝒜𝖯𝖱𝖥 will receive one of (𝑟*, 𝐹 (𝑟*)) or (𝑟*, 𝑦 ← {0, 1}𝑚) at random and try to tell which
one it receives 2.

• In stage 1: 𝒜𝖯𝖱𝖥 samples its own 𝖬𝖠𝖢 key 𝗌𝗄2. For any encryption query from 𝒜1, 𝒜1
𝖯𝖱𝖥

will simulate the response as follows: it will query the PRF oracle 𝐹 (·) := 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, ·) on
a fresh 𝑟 of its own choice. After obtaining (𝑟, 𝐹 (𝑟)), 𝒜𝖯𝖱𝖥 signs the message (𝑟, 𝐹 (𝑟) ⊕𝑚)
using 𝗌𝗄2 and sends the entire ciphertext to 𝒜.
Similarly, for decryption queries, 𝒜𝖯𝖱𝖥 first verifies the signature and then queries 𝐹 (·) ora-
cle to decrypt.

• After entering stage 2, for any encryption query from 𝒜2, 𝒜2
𝖯𝖱𝖥 will still simulate the re-

sponse as the above. Recall that 𝒜2
𝖯𝖱𝖥 will not get to see any queries made in stage 1.

• In the challenge phase,𝒜2
𝖯𝖱𝖥 will receive a challenge input-output pair (𝑟*, 𝑦*) from the weak

𝖯𝖱𝖥 challenger: 𝑟* ← {0, 1}ℓ, 𝑦* ∈ {0, 1}ℓ where 𝑦* is either 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑟
*) or uniformly

random.
• 𝒜2 sends in challenge messages, (𝑚0,𝑚1); 𝒜2

𝖯𝖱𝖥 flips a coin 𝑏 ← {0, 1} and sends 𝖼𝗍 =
(𝑟*, 𝑦* ⊕𝑚𝑏, 𝜎

*) to 𝒜2.
• If𝒜2 guesses the correct 𝑏, then𝒜2

𝖯𝖱𝖥 output 0, for "𝑦* is 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑟*)", else𝒜2
𝖯𝖱𝖥 output

1, for "𝑦* is uniformly random".

Note that in the above reductions, both 𝒜𝖯𝖱𝖥 and 𝒜𝖬𝖠𝖢 do not need the stage-1 queries from
𝒜 to help them win their own games.

Definition and Composition Framework of Watermarking Now we relate the above reduction
to the watermarking goal: in our watermarking (i.e. unremovability) security game for primitive
𝑃 , the watermarking adversary 𝒜 acts like a "stage-1" adversary in the original security game for
the underlying primitive P. Then 𝒜 produces a program 𝐶 —-this signifies the end of "stage 1" of
the security game.

A notable feature of our extraction algorithm is the following. The adversarial program 𝐶 pro-
duced by 𝒜will be treated as a stage-2 adversary by the extraction algorithm: the extraction algo-
rithm will try to extract a watermark by having only black-box access to 𝐶. Since 𝐶 is supposed
to function like a stage-2 adversary that wins the security game of 𝑃 , the extraction procedure
ensures 𝐶 operates properly by simulating the stage-2 security game for 𝐶.

Finally, 𝒜 wins if 𝐶 is a "good" program in winning the corresponding security game for 𝑃 ,
but no valid watermarks can be extracted from 𝐶.

Suppose a target primitive 𝑃 can be built from input primitives 𝑃1, · · · , 𝑃𝑘 via watermarking-
compatible reductions, and each watermarking scheme for 𝑃𝑖 satisfies our definition, then we can
compose the watermarkable versions of 𝑃1, · · · , 𝑃𝑘 to give a watermarkable 𝑃 .

The composition construction works roughly as follows:

1. A watermarkable 𝑃 ’s key generation algorithm is similar to the unwatermarkable (plain)
construction of 𝑃 : by generating all keys of 𝑃1, · · · , 𝑃𝑘 and concatenate them, for secret/public
keys respectively. The extra step is that now we also concatenate the marking keys and ex-
traction keys generated from the watermarkble 𝑃1, · · · , 𝑃𝑘.

2. How 𝑃 evaluates is exactly the same as in the plain construction of 𝑃 form 𝑃1, · · · , 𝑃𝑘: by
running the 𝑃1, · · · , 𝑃𝑘 algorithms as black-box subroutines.

2Watermarkable weak PRF with this type of security can be constructed in [GKM+19].

7

3. To watermark 𝑃 , we simply watermark the secret keys of the 𝑃1, · · · , 𝑃𝑘 respectively. The
watermarked key for 𝑃 is then just the concatenation of the watermarked keys for 𝑃1, · · · , 𝑃𝑘.
Since the construction is black-box and assumes the key is just a tuple of keys for 𝑃1, · · · , 𝑃𝑘,
the evaluation with watermarked keys is still the same, running the evaluation algorithm
with black-box from subroutines 𝑃1, · · · , 𝑃𝑘, except now with the marked keys respectively.
We obtain correctness (functionality-preserving property), following from the correctness of
the plain construction and functionality preserving properties of watermarkable 𝑃1, · · · , 𝑃𝑘.

4. In order to extract a mark, we turn any pirated algorithm 𝐴 for 𝑃 into pirated algorithm
𝐴1, · · · , 𝐴𝑘 for 𝑃1, · · · , 𝑃𝑘. We do this by applying the security reduction for 𝑃 to the pirated
algorithm 𝐴, and let 𝐴1, · · · , 𝐴𝑘 be the adversaries produced by the reduction. We then
interpret 𝐴1, · · · , 𝐴𝑘 as pirated programs for 𝑃1, · · · , 𝑃𝑘, and attempt to extract the mark
from each of them. Note that any mark extraction algorithm is supposed to use only the
input-output behavior of the pirate program.
The guarantee of the reduction is that one of these pirated programs 𝐴𝑖 must actually be a
"good" program in the security game for the corresponding primitive 𝑃𝑖, which means that
mark extraction must succeed for that 𝐴𝑖. The security proof therefore shows that we are
guaranteed to extract some mark 3.

Formalizing this composition takes some care, as we need to ensure that the mark extraction
algorithm has the ability to actually transform 𝐴 into each of the 𝐴𝑖. There are a couple issues with
getting this to work:

• In a reduction, it is typically assumed that, when the reduction is attacking 𝑃𝑖, it has access to
the keys for 𝑃𝑗 , 𝑗 ̸= 𝑖. This access is often used to simulate the view of 𝐴 when constructing
𝐴𝑖. In our watermarking construction, we therefore need to ensure that the tracing algorithm
has this information.

• Security proofs often work via hybrid arguments that change various terms. Importantly, the
hybrid arguments get to simulate the entire game. For us, however, we only get to simulate
the second stage of the game; the first stage has actually already been fixed by the time the
adversary produces its pirated program 𝐴. So we have to ensure that the tracing algorithm
can carry out the reduction to create a program 𝐴𝑖, even though it cannot simulate the entire
security experiment from the very beginning.

Our definition and proof take care of these issues and more, to give a composition theorem
that applies any time our criteria are met.

Note that the restriction to games where the winning condition is independent of the first
stage seems necessary. This is because the adversary actually gets in its possession a watermarked
key, which lets it compute the various cryptographic functions of the key. For example, in the
case of digital signatures, the adversary can actually compute signatures for itself. In the case
of encryption, the adversary can encrypt and decrypt messages. Moreover, there is no way to
track what the adversary is doing, since it is all happening internally to the adversary rather
than being explicitly queried (suppose for example, that the adversary signs a few messages, but
has its entire state encrypted under a fully homomorphic encryption (FHE) scheme so that the

3The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm assumes the (input) adversarial circuit to be possibly stateful and interactive, but does not
require any input circuit to be stateful and interactive. For example, an honestly generated watermarked circuit is not
stateful or interactive in our construction.

8

signature and message being signed are all “under the hood” of the FHE scheme). We model this
ability by having a first stage of the security experiment where the adversary can freely query the
functionalities, but then do not have the win condition depend on those queries.

Watermarking Composition Example: CCA2-Secure SKE Now we demonstrate how the above
abstract watermarking composition works by using the concrete example of a CCA2-secure SKE
built from weak PRF and MAC again.

Consider having input constructions as watermarkable weak PRF and watermarkable MAC
which satisfies our syntax and unremovability security requirements, a watermarking CCA-secure
scheme consists of several algorithms: 𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍. The 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 generates
the secret key, marking key and extraction key by concatenating the corresponding keys from the
PRF and MAC. The marking algorithm is on input 𝗌𝗄 = (𝗌𝗄𝖯𝖱𝖥, 𝗌𝗄𝖬𝖠𝖢) and watermarking message
𝜏 , output 𝗌𝗄 = (𝗌𝗄𝖯𝖱𝖥 ← 𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗌𝗄𝖯𝖱𝖥, 𝜏), 𝗌𝗄𝖬𝖠𝖢 ← 𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗌𝗄𝖬𝖠𝖢, 𝜏)).

Finally, the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm is slightly more complex: on input extraction key 𝗑𝗄 = (𝗑𝗄𝖬𝖠𝖢, 𝗑𝗄𝖯𝖱𝖥)
and a circuit 𝐶, do both of the following:

1. Create a circuit 𝐶𝖯𝖱𝖥:

• Simulate the stage-2 CCA2-security for 𝐶 (as described in our previous paragraph on
watermarking-compatible reduction from CCA2 security to PRF). Note that just as a
real reduction 𝐶𝖯𝖱𝖥 is only hardcoded with the MAC extraction key 𝗑𝗄𝖬𝖠𝖢 (unless the
underlying watermarkable PRF scheme has a public extraction key), which enables it
to simulate the signing and verification of MAC; to compute the part that involves the
PRF evaluation oracle, 𝐶𝖯𝖱𝖥 need to make external queries to some "challenger" to get
answers.
How 𝐶𝖯𝖱𝖥 uses 𝐶 to get its final output is exactly the same as in the watermarking-
compatible reduction from CC SKE to weak PRF we described.

After 𝐶𝖯𝖱𝖥 is created, the extraction algorithm uses the watermarkable 𝖯𝖱𝖥’s extraction algo-
rithm to extract a mark from 𝐶𝖯𝖱𝖥: 𝜏/⊥ ← 𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝖯𝖱𝖥, 𝐶𝖯𝖱𝖥). Note that the "external
queries" made by the circuit will be answered now by the 𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝖯𝖱𝖥, ·) algorithm,
because it treats 𝐶𝖯𝖱𝖥 as a stage-2 adversary in the weak pseudorandomness security game
and uses the extraction key 𝗑𝗄𝖯𝖱𝖥 to simulate the game.

2. Create a circuit 𝐶𝖬𝖠𝖢:

• Simulate the stage-2 CCA2-security for 𝐶 (as described in our previous paragraph on
watermarking-compatible reduction from CCA2 security to MAC). Note that just as
a real reduction 𝐶𝖬𝖠𝖢 is only hard-coded with the PRF extraction key 𝗑𝗄𝖯𝖱𝖥, which
enables it to simulate the oracles of PRF; to compute the part that involves the MAC
signing/verifying oracles, 𝐶𝖬𝖠𝖢 need to make external queries to some "challenger" to
get answers.
How 𝐶𝖬𝖠𝖢 uses 𝐶 to get its final output is exactly the same as in the watermarking-
compatible reduction from CCA SKE to MAC we described.

After 𝐶𝖬𝖠𝖢 is created, the extraction algorithm will use the watermarkable 𝖬𝖠𝖢’s extraction
algorithm to extract a mark from 𝐶𝖬𝖠𝖢: 𝜏/⊥ ← 𝖬𝖠𝖢.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝖬𝖠𝖢, 𝐶𝖯𝖱𝖥). Note that the "ex-
ternal queries" made by the circuit will be answered by the algorithm 𝖬𝖠𝖢.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝖬𝖠𝖢, ·)
algorithm, because it treats 𝐶𝖬𝖠𝖢 as a stage-2 adversary in the MAC security game and uses
the extraction key 𝗑𝗄𝖬𝖠𝖢 to simulate the game.

9

We say that the adversary 𝒜 wins the watermarkable CCA2-secure SKE’s unremovability
game if no (previously queried) watermark can be extracted from either of the above circuits
𝐶𝖯𝖱𝖥, 𝐶𝖬𝖠𝖢 created during the extraction algorithm and 𝐶 is a "good" program in winning the
CCA2 security game. The intuition for the security proof is relatively straightforward: if 𝐶 is
a "good" program for winning CCA2-security game, then at least one of 𝐶𝖯𝖱𝖥 and 𝐶𝖬𝖠𝖢 must
be a "good" program for winning its corresponding security game pf weak PRF or MAC, by the
property of the reduction.

For instance, imagine a reduction algorithmℬ𝖯𝖱𝖥 to the unremovability of watermarkable 𝖯𝖱𝖥:
ℬ𝖯𝖱𝖥 will simulate the marking query stage for 𝒜 by making marking queries to the marking
oracle of the weak PRF challenger, along with the 𝖬𝖠𝖢 key it sampled on its own. Note that the
evaluation queries to the 𝖯𝖱𝖥 evaluation oracle can now be replaced by having access to a marked
𝖯𝖱𝖥 key. After 𝒜 outputs circuit 𝐶, ℬ𝖯𝖱𝖥 simply creates the same circuit 𝐶 ′𝖯𝖱𝖥 as the 𝐶𝖯𝖱𝖥 created
in the above extraction algorithm. If the 𝐶𝖯𝖱𝖥 circuit created in the extraction is "good" at winning
the weak pseudorandomness game, then so is 𝐶 ′𝖯𝖱𝖥. Since we cannot extract a watermark from
𝐶𝖯𝖱𝖥, neither can we extract from 𝐶 ′𝖯𝖱𝖥 because they have the same input-output behavior when
using the same 𝐶 as its subroutine black-boxly. The same argument applies to the reduction to
unremovability of watermarkable MAC.

More Advanced Watermarking Constructions with "Unwatermarkable" Building Blocks The
watermarking reduction in the above example of CCA2-secure SKE is relatively straightforward
to acquire. Some similar construction examples include a watermarkable weak PRP from water-
markable weak PRF (see Appendix B).

However, there exist various constructions that look markedly distinct from the above example
of CCA2-secue SKE and may be much more involved.

More importantly, some constructions have building blocks which are cryptographic primi-
tives that don’t make sense to watermark, for instance, a non-interactive zero knowledge proof
scheme. Nevertheless, we show that a large class of them can be watermarking-compatible and in
many scenarios, we simply do not need to watermark all the building blocks.

We briefly discuss two examples on a high level:

• CCA-secure PKE from IBE and One-Time Signatures The first example is the CCA2-secure
PKE from selectively secure IBE and one-time signatures by [BCHK07].
In the original scheme, the encryption samples a fresh signature signing/verification key
pair (𝗌𝗄, 𝗏𝗄), compute an IBE ciphertext by using the 𝗏𝗄 as the identity, then signs this cipher-
text using signing key 𝗌𝗄, and finally outputs the IBE ciphertext, the signature and 𝗏𝗄.
To decrypt, one first verifies the signature under 𝗏𝗄, if valid then derives an identity-embedded
decryption key from the IBE master secret key using 𝗏𝗄 as the identity and decrypt the ci-
phertext.
Note that in this scheme, the keys for one-time signatures are only sampled "online" upon
every encryption algorithm and how to watermark such keys is not well-defined. However,
as it turns out—we don’t have to watermark the signing key in our composed construction.
A watermarkable CCA2-secure PKE using the above construction only has to watermark
the IBE secret key. The security proof would show that a successful unremovability adver-
sary can help us either break the unremovability security of the watermark IBE scheme or
break the strong one-time unforgeability security of the signature scheme. In other words,

10

leveraging the "plain" security of the one-time signature scheme suffices for the composed
watermarking scheme.
In more detail, we can show the following: the pirated algorithm 𝐶 produced by an adver-
sary is a "good" program for breaking the CCA-security and meanwhile no watermark can
be extracted from 𝐶. However, it does not help us win the selective IBE CPA-security game.
Then, simply following the hybrid argument in the security analysis of the CCA-secure PKE
itself, we observe that 𝐶 must be breaking the security of the one-time signature scheme.
Thereby, we can use 𝐶 black-boxly to create a reduction for the one-time signature scheme.

• CCA-secure PKE from CPA-secure PKE and NIZK A second example is the [NY90] CCA-
secure PKE scheme built from CPA-secure PKE and a non-interactive zero-knowledge proof
scheme (NIZK). The encryption algorithm encrypts a message twice under two different
public keys and uses a NIZK proof to prove that they encrypt the same message.
The watermarkable version of the above construction does not watermark the NIZK scheme,
but only the two decryption keys of the PKE scheme. How the NIZK scheme is used in the
watermarking scheme is less obvious to see: intuitively, the extraction algorithm will try
to create two circuits that break the underlying CPA security game of the PKE, with the
corresponding keys. If we look carefully into the proof for the [NY90] scheme, to make this
reduction go through, one has to first work in a hybrid game where the real NIZK proof
in the challenge ciphertext is replaced with a simulated proof. Our extraction algorithm
thereby uses such a simulated proof when interacting with the input circuit 𝐶. The security
of NIZK helps us say that if 𝐶 is "good" in the original CCA-security game, so will 𝐶 be good
in the game simulated by the extraction algorithm.

To summarize, we only have to watermark the secret keys of input primitives 𝑃𝑖 which have their
keys generated in the main Key Generation algorithm of the target primitive 𝑃 and have their
secret keys used during the evaluation algorithm of 𝑃 . If an input primitive has its keys sampled
"freshly" during every invocation of 𝑃 ’s evaluation algorithms or sampled in key generation, but
not used in 𝑃 ’s evaluation algorithm (e.g. only used in the security proof instead), then we don’t
need a watermarkable version of 𝑃𝑖 to build a watermarkable 𝑃 . Leveraging 𝑃𝑖’s original security
property suffices.

More advanced examples include the functional encryption from attribute-based encryption,
FHE and garbled circuits in [GKP+13], where we only have to watermark the ABE scheme; a
hybrid CCA-secure encryption scheme from CCA-secure PKE and CCA secure SKE, where we
only have to watermark the PKE scheme. We refer the readers to the construction and discussions
of these examples in Appendix A, 6, B,E, F.

2 Organizations

3 Definitions: General Cryptographic Primitive and Watermarking-Compatible
Constructions

3.1 General Cryptographic Primitive

In this section, we present syntax and definitions for a general cryptographic primitive. The nota-
tions and definitions formalized in this section will assist the demonstration of our generic water-

11

marking framework.

General Cryptographic Primitive Syntax A cryptographic primitive 𝑃 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅)
consists of the following algorithms:

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) → (𝗌𝗄, 𝗉𝗄): is a (randomized) algorithm that takes a security parameter 𝜆 and
interacts with an adversary 𝒜: (𝗌𝗄, 𝗉𝗄) ← (𝒜 ⇔ 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)) where 𝗌𝗄 is some secret infor-
mation unknown to 𝒜, and 𝒜 can get some public information 𝗉𝗄 from the interaction.

• 𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥 ∈ 𝒳) → 𝑦 ∈ 𝒴𝑠 : a secret-evaluation algorithm that takes in the secret
information 𝗌𝗄, public information 𝗉𝗄 and some input 𝑥 from input space 𝒳 , and output a
value 𝑦 ∈ 𝒴𝑠.

• 𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, 𝑥 ∈ 𝒳) → 𝑦 ∈ 𝒴𝑝 : a public-evaluation algorithm that takes in the public infor-
mation 𝗉𝗄 and some input 𝑥 from input space 𝒳 , and output a value 𝑦 ∈ 𝒴𝑝.

More generally, the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm can generate several secret keys 𝗌𝗄1, · · · , 𝗌𝗄ℓ for some poly-
nomial ℓ. There will be ℓ different secret algorithms {𝖲𝖾𝖼𝖤𝗏𝖺𝗅𝑖(𝗌𝗄𝑖, 𝗉𝗄, 𝑥 ∈ 𝒳𝑠,𝑖)}𝑖∈[ℓ] and (some
constant) 𝑚 different public algorithms {𝖯𝗎𝖻𝖤𝗏𝖺𝗅𝑗(𝗉𝗄, 𝑥 ∈ 𝒳𝑝,𝑗)}𝑗∈[𝑚]. For example, an identity-
based encryption scheme can have two decryption algorithms, one using the master secret key,
the other with a secret key embedded with an identity.

However, without loss of generality, we will make two simplifications:

• All algorithms have their input space padded to be the same length as 𝒳 ;
• We view all secret algorithms {𝖲𝖾𝖼𝖤𝗏𝖺𝗅𝑖(𝗌𝗄𝑖, 𝗉𝗄, 𝑥 ∈ 𝒳𝑠,𝑖)}𝑖∈[ℓ] as one algorithm 𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·)

that will take in an index 𝑖 ∈ [ℓ] to decide which mode to use, similarly for public algorithms.
But we will assume such an index specification to be implicit and omit the use of indices in
the algorithm to avoid an overflow of letters.

Occasionally, we denote all the algorithms ({𝖲𝖾𝖼𝖤𝗏𝖺𝗅𝑖(𝗌𝗄𝑖, 𝗉𝗄, 𝑥 ∈ 𝒳𝑠,𝑖)}𝑖∈[ℓ], {𝖯𝗎𝖻𝖤𝗏𝖺𝗅𝑗(𝗉𝗄, 𝑥 ∈
𝒳𝑝,𝑗)}𝑗∈[𝑚]) as a combined functionality hardcoded with the corresponding keys 𝖤𝗏𝖺𝗅(𝗉𝗄, 𝗌𝗄). We
call it 𝖤𝗏𝖺𝗅 for short.

Correctness for Predicate 𝐹𝑅 Before going into the correctness property, we first define a notion
important to our generic definition:

Definition 3.1 (Predicate). A predicate 𝐹 (𝐶, 𝑥, 𝑧1, · · · , 𝑧𝑘, 𝑟) is a binary outcome function that runs a
program 𝐶 on a some input 𝑥 to get output 𝑦, and outputs 0/1 depending on whether (𝑥, 𝑦, 𝑧1, · · · , 𝑧𝑘, 𝑟) ∈
𝑅 for some binary relation defined by 𝑅. The randomness of input 𝑥, program 𝐶 both depend on randomness
𝑟. . 𝑧1, , 𝑧𝑘 are auxiliary inputs that specify the relation.

A correctness property of a primitive 𝑃 with respect to predicate 𝐹𝑅 says that

Definition 3.2 (Correctness for Predicate 𝐹𝑅). 𝑃 satisfies correctness if there exists some function 𝜖 =
𝜖(𝜆) ∈ [0, 1] so that for all 𝜆 ∈ ℕ, 𝑥 ∈ 𝒳 4:

Pr
𝑟←𝐷𝑟,(𝗌𝗄,𝗉𝗄)←𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)

[𝐹𝑅(𝖤𝗏𝖺𝗅, 𝗉𝗄, 𝗌𝗄, 𝑥, 𝑟) = 1] ≥ 1− 𝜖.

4For a cryptographic primitive 𝑃 , there can be many different correct properties, each defined with respect to a
different predicate.

12

The randomness used in checking the predicate is sampled from a distribution 𝐷𝑟. We can simply take
𝐷𝑟 to be the uniform distribution, which can be mapped to any distribution we need when computing the
predicate.

All 𝜖 within the scope of this work is negligible in 𝜆.

Remark 3.3. To further explain the above correctness property, we consider the following (abstract) ex-
ample. Given 𝖤𝗏𝖺𝗅 = ({𝖲𝖾𝖼𝖤𝗏𝖺𝗅𝑖(𝗌𝗄𝑖, 𝗉𝗄, 𝑥 ∈ 𝒳)}𝑖∈[ℓ], {𝖯𝗎𝖻𝖤𝗏𝖺𝗅𝑗(𝗉𝗄, 𝑥 ∈ 𝒳}𝑗∈[𝑚]) , 𝐹𝑅 samples input
𝑥 ∈ 𝒳 using the first part of 𝑟; then it runs algorithm (supposing randomized, using part 2 of string 𝑟)
𝖲𝖾𝖼𝖤𝗏𝖺𝗅1(𝗌𝗄1, 𝗉𝗄, 𝑥) to give some outcome 𝑦1; then runs (supposing deterministic) 𝖯𝗎𝖻𝖤𝗏𝖺𝗅1(𝗉𝗄1, 𝑦1) to
give outcome 𝑦2; check if (𝑥, 𝑦1, 𝑦2) ∈ 𝑅; output 1 if yes, 0 otherwise.

A concrete example is a public key encryption scheme: the predicate is encrypting a message 𝑥 using 𝑟
and then decrypting it to check if one can recover the original message.

Game-based Security A security property of the cryptographic primitive 𝑃 is described by a
interactive procedure 𝐺𝑃 between a challenger and adversary 𝒜.

𝐺𝑃 will involve 𝖪𝖾𝗒𝖦𝖾𝗇,𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅 as its subroutines. 𝐺𝑃 outputs a bit 1 if the game is
not aborted and a certain condition has been met at the end of the game; else it outputs 0.

The security of a primitive 𝑃 with respect to 𝐺𝑃 says: For all 𝜆 ∈ ℕ, there exists some function
𝜂 = 𝜂(𝜆) such that for all admissible 𝒜 , there exists a function 𝗇𝖾𝗀𝗅(𝜆):

Pr[𝐺𝑃 (1
𝜆,𝒜) = 1] ≤ 𝜂 + 𝗇𝖾𝗀𝗅(𝜆)

where 𝜂 is the trivial probability for any admissible𝒜 to make 𝐺𝑃 output 1 and the probability
is over the randomness used in 𝐺𝑃 .

2-Stage Game-based Security To be compatible with the context of watermarking, we will view
the game 𝐺𝑃 as a 2-stage security game. 2-stage game-based security is a central notion that
connects a prmitive’s "plain security" to its watermarking security.

The 𝖪𝖾𝗒𝖦𝖾𝗇 procedure and a first part of the interactions between the challenger and 𝒜 are
taken out of the original game and executed as a first stage 𝐺1

𝑃 . Then, 𝐺2
𝑃 denotes the rest of the

game and will take in parameters (𝗌𝗄, 𝗉𝗄) generated in stage 1 as well as some auxiliary input.

Definition 3.4 (2-Stage Game-based Security). A security property of the cryptographic primitive 𝑃
is described by a stage-1 (possibly interactive) key generation procedure a challenger and adversary 𝒜1

followed by a fixed-parameter game 𝐺2
𝑃 between a challenger and adversary 𝒜2.

We denote 𝐺1
𝑃 (1

𝜆,𝒜1) as the first stage adversary𝒜1 interacting a challenger which runs the 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆),
𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅 algorithm; together they output a key pair (𝗌𝗄, 𝗉𝗄) and some auxiliary parameters 𝖺𝗎𝗑
which will be later used in the game 𝐺𝑃 . 𝒜1 only gets 𝗉𝗄, 𝖺𝗎𝗑 but may make arbitrary polynomial number
of admissible queries to oracles provided by the challenger during the interaction.

The stage-2 game challenger 𝐺2
𝑃 is parametrized by inputs 𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑 generated during stage 1 and will

involve 𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅 as its subroutines. Stage-2 adversary 𝒜2 gets an arbitrary polynomial size state
𝗌𝗍 from stage 1𝒜1. 𝐺2

𝑃 outputs a bit 1 if the game is not aborted and a certain condition has been met at the
end of the game; else it outputs 0.

The security of a primitive 𝑃 with respect to 𝐺𝑃 says: there exists some function 𝜂 = 𝜂(𝜆) such that
for all admissible 𝒜 = (𝒜1,𝒜2) and any non-negligible 𝛾 = 𝛾(𝜆), there exists a function 𝗇𝖾𝗀𝗅(𝜆) for all
𝜆 ∈ ℕ:

Pr[𝒜2(𝗌𝗍) is 𝛾-good in 𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, ·) : {(𝗌𝗄, 𝗉𝗄), 𝖺𝗎𝗑, 𝗌𝗍} ← 𝐺1

𝑃 (𝒜1, 1
𝜆)] ≤ 𝗇𝖾𝗀𝗅(𝜆)

13

where 𝒜2 is said to be 𝛾-good if:

Pr[𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2) = 1] ≥ 𝜂 + 𝛾

where 𝜂 is the trivial probability for any admissible 𝒜 to make 𝐺𝑃 output 1 and the probability is over the
randomness used in 𝖪𝖾𝗒𝖦𝖾𝗇 and by 𝐺𝑃 .

Remark 3.5. While some readers may find the introduction of parameter 𝛾 in the above 2-stage game
confounding, we would like to make a note that the above two definitions are essentially equivalent.

An alternative way of stating the 2-stage game security would be: there exists some function 𝜂 = 𝜂(𝜆)
such that for all admissible 𝒜 = (𝒜1,𝒜2), there exists two negligible functions 𝗇𝖾𝗀𝗅1(𝜆), 𝗇𝖾𝗀𝗅2(𝜆) such
that for all 𝜆 ∈ ℕ:

Pr
[︁
Pr[𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2(𝗌𝗍)) = 1] ≤ 𝜂 + 𝗇𝖾𝗀𝗅1(𝜆) : {(𝗌𝗄, 𝗉𝗄), 𝖺𝗎𝗑, 𝗌𝗍} ← 𝐺1
𝑃 (𝒜1, 1

𝜆)
]︁
≥ 1− 𝗇𝖾𝗀𝗅2(𝜆)

Remark 3.6 (Division into a 2-stage Game). How we divide a security game into two stages depends
on the application and suppose that the game 𝐺𝑃 has different stages by its definition, the way we divide
stage-1 and 2 is usually not the same as in the original definition of 𝐺𝑃 . We will see examples later.

In most settings, stage-1 game 𝐺1
𝑃 only involves running the key generation 𝖪𝖾𝗒𝖦𝖾𝗇 and letting 𝒜1

make some queries. In a few special settings, 𝒜1 needs to commit to some challenge messages which will
be put into 𝖺𝗎𝗑 and be part of the input to stage 2. Examples include the challenge attribute/identity in
an attribute/identity-based encryption, because the queries made in the first stage need to go through the
"admissibility" check that depends on 𝒜’s choice of challenge messages.

Remark 3.7. In the rest of this work, it is usually clear from the context which stage of 𝐺𝑃 we are refering
to because 𝐺2

𝑃 will take in paramters 𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑 while the entire game 𝐺𝑃 takes in only security parameter
1𝜆. Plus 𝐺1

𝑃 is seldomly used explicitly in our language. Occasionally we will omit the superscript and
slightly abuse the notation to denote 𝐺2

𝑃 as 𝐺𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, ·)

For our convenience in later notations, we also give the following simple definition:

Definition 3.8 (Stage-2 Game View). The stage-2 𝐺2
𝑃 can also output a view 𝗏𝗂𝖾𝗐(𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2) that

is the transcript of interaction of 𝒜2 with the challenger in 𝐺2
𝑃 , including the final output.

Remark 3.9. We make a few notes on the scope of security games we consider in this work:

1. We mainly focus on game-based (and falsifiable) security notions within the scope of this work. We
need the challenger in the security to be efficient for the watermarking construction to be efficient.

2. All the admissible adversary need to be PPT. We do not consider security models other than polyno-
mially bounded in time/circuit size (such as bounded storage).

3.2 Watermarking-Compatible Construction of Cryptographic Primitive

In this section, we characterize what type of black-box cryptographic constructions are water-
marking compatible. As we will see in later sections, watermarking compatible constructions
allow us to give a watermarking scheme for the target primitive constructed, black-boxly from the
watermarking schemes of the building blocks.

14

Outline and Intuition Let use denote 𝑃 as the target, or outcome primitive built in a construc-
tion. Let 𝑃𝑖, 𝑖 ∈ [𝑘] denote each underlying primitive we use to build 𝑃 .

Intuitively, one expects to watermark all underlying building blocks to ensure watermarking
security of the target primitive 𝑃 . As discussed in our technical overview section "More advanced
watermarking constructions with unwatermarked building blocks", many constructions possess
building blocks of primitives that do not need to be watermarkable to ensure the watermarkability
of the final target primitive.

Here, we discuss the matter in more details: we need the partitioning for primitives in {𝑃𝑖}𝑖∈[𝑘]
into 𝑆 and 𝑆. These primitives in these two sets will play different roles when we construct the
watermarking scheme for the target primitive 𝑃 : the primitives in set 𝑆 need to be watermarkable
and those in set 𝑆 do not need to be watermarkable. The reasoning is that the primitives in set
𝑆 will have their secret keys generated during the Key Generation of the target primitive 𝑃 , but
primitives in set 𝑆 will only have their secret keys generated freshly during every run of 𝖲𝖾𝖼𝖤𝗏𝖺𝗅
or 𝖯𝗎𝖻𝖤𝗏𝖺𝗅 algorithm of the target primitive 𝑃 .

A simple example is CCA2-secure PKE scheme based on IBE and one-time signatures, which
we discussed in the technical overview. During the encryption algorithm, one generates fresh
one-time signature keys and the message is encrypted with the one-time signature’s verification
key as the identity. Therefore, the one-time signature in the above construction belongs to set 𝑆
because its keys are only generated during the encryption algorithm.

In the watermarking construction for 𝑃 , the 𝖪𝖾𝗒𝖦𝖾𝗇,𝖯𝗎𝖻𝖤𝗏𝖺𝗅, 𝖲𝖾𝖼𝖤𝗏𝖺𝗅 algorithms will follow
from the plain construction for 𝑃 from primitives in set 𝑆 and 𝑆. Therefore, we cannot watermark
the keys for the primitives in set 𝑆 because their keys are not generated when we give out the
watermarked key (which only contains keys in set 𝑆) to a user. We therefore distinguish these two
sets in our presentation for watermarking-compatible construction in this section and watermark-
able implementation in Section 4.2.

Moreover, looking forward: we will observe that we indeed do not need watermarking security
(i.e. unremovability) for the primitives in set 𝑆, to achieve watermarking security for the target
primitive P. We only need to rely on their “plain security” (e.g. unforgeability for a signature
scheme, IND-CPA-security for an encryption scheme).

Notations Now we give formalization for the above outline.
Suppose a cryptographic primitive 𝑃 is constructed black-boxly from primitives 𝑃1, 𝑃2, · · · , 𝑃𝑘

in the following way, where 𝑃𝑖, 𝑃𝑗 , 𝑖 ̸= 𝑗 are allowed to be the same primitive.

• Let 𝒮 be some fixed subset of [𝑘] defined in the construction. 𝒮 specifies two ways of using
primitive 𝑃𝑖. The major difference is: for primitives 𝑃𝑖, 𝑖 ∈ 𝒮, the algorithm 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)
will compute 𝑃𝑖.𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) and the secret keys 𝑃𝑖.𝗌𝗄 generated will be used in the secret
evaluation algorithm 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅.
Without loss of generality, we let the first |𝒮| number of 𝑃𝑖’s be those corresponding to the
set 𝒮.

• For primitives 𝑃𝑖, 𝑖 /∈ 𝒮, the algorithm 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) will not compute 𝑃𝑖.𝖪𝖾𝗒𝖦𝖾𝗇(1
𝜆). They

will either (1) have their keys generated freshly upon every run of 𝖲𝖾𝖼𝖤𝗏𝖺𝗅 or 𝖯𝗎𝖻𝖤𝗏𝖺𝗅 (2) will
have a reference string (which can be viewed as a public key) generated during 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆),
but have no secret keys or their secret keys will not be used in the 𝖲𝖾𝖼𝖤𝗏𝖺𝗅 algorithm of the
target primitive 𝑃 .

15

• For the sake of formality, we make a further division of the set 𝑆 into 𝑇𝑆 , 𝑇𝑃 , 𝑇𝐾 . They
perform slightly different functionalities in the construction.

– Let 𝒯𝑆 ∈ [𝑘] denote the set of indices 𝑖 where 𝑃𝑖’s keys will be generated during the
secret evaluation algorithm 𝖲𝖾𝖼𝖤𝗏𝖺𝗅;

– Let 𝒯𝑃 ∈ [𝑘] denote the set of indices 𝑖 where 𝑃𝑖’s keys will be generated during the
public evaluaton algorithm 𝖯𝗎𝖻𝖤𝗏𝖺𝗅;

– Let 𝒯𝐾 denote the set of indices 𝑖 where 𝑃𝑖 have no secret keys/secret keys are not used
in 𝖲𝖾𝖼𝖤𝗏𝖺𝗅 and will have a public reference string (which can be viewed as a public key)
generated during 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆).
5.

Watermarking-Compatible Construction Syntax

𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)→ (𝗌𝗄, 𝗉𝗄):

1. compute (𝗌𝗄𝑖, 𝗉𝗄𝑖) ← 𝑃𝑖.𝖪𝖾𝗒𝖦𝖾𝗇(1
𝜆) for all 𝑖 ∈ 𝒮 ; compute (𝗉𝗄𝑖, 𝗍𝖽𝑖) ← 𝑃𝑖.𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆)
for all 𝑖 ∈ 𝒯𝐾 .

2. output 𝗌𝗄 = ({𝗌𝗄𝑖}𝑖∈𝒮); 𝗉𝗄 = ({𝗉𝗄𝑖}𝑖∈𝒮∪𝒯𝐾).
𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥 ∈ 𝒳)→ 𝑦 ∈ 𝒴𝑠 : is an algorithm that

1. uses 𝑃𝑖.𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝑖, 𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 as subroutines.
2. uses 𝑃𝑖.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 ∪ 𝒯𝐾 as subroutines.
3. computes (𝗌𝗄𝑗 , 𝗉𝗄𝑗)← 𝑃𝑗 .𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for some 𝑗 ∈ 𝒯𝑆 (can include these 𝗉𝗄𝑗 generated
as part of the output).

𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, 𝑥 ∈ 𝒳)→ 𝑦 ∈ 𝒴𝑝 : is an algorithm that

1. uses 𝑃𝑖.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 ∪ 𝒯𝐾 as subroutines.
2. computes (𝗌𝗄𝑗 , 𝗉𝗄𝑗)← 𝑃𝑗 .𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for all 𝑗 ∈ 𝒯𝑃 (may include these {𝗉𝗄𝑗}𝑗 generated
as part of the output).

We say the construction is watermarking compatible if the above construction of 𝑃 satisfies:

1. Correctness of Construction : the above construction of 𝑃 satisfies a correctness property
defined by predicate 𝐹𝑅. Moreover, the proof of this correctness property follows from cor-
rectness properties of 𝑃1, · · · , 𝑃𝑘 for predicates 𝐹𝑅𝑖 respectively.

2. Security of Construction: The above construction satisfies security defined with game 𝐺𝑃 .
The security can be proved from the security properties of 𝑃1, · · · , 𝑃𝑘 with respect to some
game 𝐺𝑃1 , · · · , 𝐺𝑃𝑘

3. Watermarking Compatible Reduction The above security proof is of the following format,
which we call Watermarking-Compatible Reduction, shown below.

Among the above 3 properties, the first two are natural properties that come with any black-
box cryptographic constructions with provable security and correctness. We will focus on dis-
cussing property 3.

5As we will see, primitives in 𝒯𝑘 will have their secret keys (called trapdoors 𝗍𝖽 here) used only in the security
proofs.

Looking forward: the sets 𝒯𝑆 , 𝒯𝑃 will play the same role in the watermarking reduction, and the set 𝒯𝐾 will incur a
slightly different argument but will essentially play the same role as the other primitives in set 𝑆. That is, only their
plain security is required to achieve the watermarking security of the target primitive 𝑃 .

16

Watermarking Compatible Reductions On a high-level, a watermarking-compatible reduction
is essentially a natural security reduction, except with the following feature: we view both the
the security game 𝐺𝑃 for the target security primitive 𝑃 and the security game 𝐺𝑃𝑖 for the input
primitive 𝑃𝑖 as two-stage games defined in Definition 3.4. The supposed adversary 𝒜 for 𝐺𝑃 will
just be any usual PPT adversary. But we restrict the reduction in stage 2 to be "oblivious" about
the queries made by 𝒜 in stage 1: that is, it cannot pass on any queries made by 𝒜 to the stage 2
reduction but we should nevertheless make the reduction go through successfully.

We divide our watermarking compatible reductions into two types. Type 1 reduction captures
the reduction from breaking the security of 𝑃 to breaking the security of a primitive 𝑃𝑖, 𝑖 ∈ 𝒮,
i.e. the primitives that have their secret keys generated in the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm and used in the
𝖲𝖾𝖼𝖤𝗏𝖺𝗅 algorithm of 𝑃 .

Type 2 reduction accordingly captures the reduction from breaking the security of 𝑃 to break-
ing the security of a primitive 𝑃𝑖, 𝑖 ∈ 𝒮 .

The main difference is in how they are used in proving the unremovability security in the
composed watermarking scheme. In the actual watermarking unremovability, type 1 reduction
is supposed to be oblivious about the queries made by the adversary and will eventually lead to
breaking the unremovability of the underlying primitive; type 2 reduction operates similarly but
will eventually lead to breaking the plain security of the underlying primitive.

Watermarking-Compatible Reduction Type 1 First we consider reductions for primitives 𝑃𝑖 for
𝑖 ∈ 𝒮.

1. Consider a reduction to 𝑃𝑖 for the 𝑗-th 𝑃𝑖 ∈ 𝒮; let 𝒜𝑖 = (𝒜1
𝑖 ,𝒜2

𝑖) be the two-stage adversary
for the 2-stage game of primitive 𝑃𝑖 defined in Definition 3.4.

2. 𝒜𝑖 receives public key 𝗉𝗄𝑖
3. 𝒜𝑖 prepares (𝗌𝗄𝑗 , 𝗉𝗄𝑗)← 𝖪𝖾𝗒𝖦𝖾𝗇𝑗(1

𝜆) for all 𝑗 ̸= 𝑖, 𝑗 ∈ 𝒮 and 𝒜𝑖 sends all ({𝗉𝗄𝑗}𝑗∈𝒮) to 𝒜1.
4. 𝒜𝑖 simulates the security game 𝐺𝑃 for 𝑃 with 𝒜, while being the adversary in game 𝐺𝑃𝑖 .

• In stage 1, 𝒜1
𝑖 provides the oracles needed for game 𝐺1

𝑃 and answer 𝒜1’s queries as
follows:

– For any (admissible) queries in the game 𝐺1
𝑃 , if 𝗌𝗄𝑖 is required to compute the an-

swer for the query, 𝒜𝑖 can use the oracles provided in game 𝐺1
𝑃𝑖

. To answer the
entire query, 𝒜𝑖 may finish the rest of the computation using {𝗌𝗄𝑗}𝑗 ̸=𝑖.

– If only {𝗌𝗄𝑗}𝑗 ̸=𝑖 are needed, 𝒜𝑖 answers the queries by itself.
• During the interaction of stage-1 game, 𝒜1 and 𝒜1

𝑖 generates an auxiliary information
𝖺𝗎𝗑 which is public to both of them.

• Upon entering stage 2, 𝒜1 generates an arbitrarily polynomial-size state 𝗌𝗍 and gives it
to 𝒜2.

• 𝒜𝑖 also enters its second stage 𝒜2
𝑖 . 𝒜2

𝑖 also receives all of ({𝗌𝗄𝑗}𝑗 ̸=𝑖, {𝗉𝗄}𝑖∈𝒮 , 𝖺𝗎𝗑) from
But 𝒜2

𝑖 does not obtain any of 𝒜1’s queries in stage 1.
• 𝒜2

𝑖 simulates the stage-2 game 𝐺2
𝑃 for 𝒜2, using the above strategy as 𝐴1

𝑖 uses. Note
that the oracle operations done by 𝒜2

𝑖 and the conditions on admissible queries cannot
be dependent on of 𝒜1’s queries in stage 1, because 𝒜2

𝑖 cannot see these queries.
• 𝒜2

𝑖 also records all of 𝒜2’s queries.
• In the challenge phase of 𝐺2

𝑃𝑖
𝒜2

𝑖 receives a challenge input 𝗂𝗇𝗉𝑖 from the challenger.

17

• In 𝐺𝑃 ’s challenge phase, 𝒜2
𝑖 samples some randomness 𝑟 and prepares a challenge

input 𝗂𝗇𝗉 for 𝒜 using 𝑟 and 𝗂𝗇𝗉𝑖. 𝒜2
𝑖 sends 𝗂𝗇𝗉𝑖 to 𝒜2. 6

• 𝒜2
𝑖 continues to simulate the oracles needed in 𝐺2

𝑃 game for𝒜2 if there are further query
stages.

5. 𝒜𝑖 computes an efficiently computable function 𝑓𝑖(𝗈𝗎𝗍, 𝑟,𝒬, 𝗂𝗇𝗉𝑖) on input of 𝒜2’s final an-
swer 𝗈𝗎𝗍, the randomness used to prepare 𝒜2’s challenge input, 𝒜2’s queries 𝒬 and 𝐴𝑖’s
challenge input 𝗂𝗇𝗉𝑖, and gives it to the challenger of primitive 𝑃𝑖.

Remark 3.10. In the actual watermarking unremovability reduction, 𝒜1
𝑖 will receive a watermarked secret

key ̃𝗌𝗄𝑖 and simulate the queries required using the oracles in game 𝐺1
𝑃𝑖

with ̃𝗌𝗄𝑖 instead.
More generically, we can also model the queries made by 𝒜1 in stage 1, related to the keys in the set 𝒮 ,

{𝗌𝗄𝑖}𝑖∈𝒮 as some arbitrary polynomial size (admissible) leakage on these keys. In the plain security reduc-
tion, such leakage correspond to 𝒜1’s adaptive queries made to the oracles provided. In the watermarking
unremovability game, it corresponds to admissible marking queries where we give out marked secret keys.

Watermarking-Compatible Reduction Type 2 Watermarking-compatible reduction type 2 op-
erates essentially the same as the above reduction for 𝑃𝑖 but for some 𝑖 /∈ 𝒮.

The main difference is that in the actual watermarking unremovability security game, in order
to simulate oracle queries for 𝐺1

𝑃 , the stage 1 reduction 𝒜1
𝑖 will actually need oracles in the game

𝐺1
𝑃𝑖

. Naturally, this is because the primitives in set 𝒮 are not watermarked in the watermarking
composition and the corresponding reduction will not get a watermarked key from the challenger,
but only the oracles provided in the plain security game of 𝐺𝑃𝑖 . Even though this also means that
the reduction 𝐴1

𝑖 gets to observe 𝒜1’s queries (using the oracles of the game 𝐺𝑃𝑖) in the actual
watermarking security game, and can make use of them in stage 2, 𝐴1

𝑖 does not need to make
any of such queries to the challenger since the keys of any primitive in set 𝒮 will only be sampled
online by 𝐴1

𝑖 itself. Meanwhile,𝒜2
𝑖 should still not inherit any queries related to the "watermarked"

primitives in set 𝒮 since in the real watermarking unremovability game,𝒜2
𝑖 is not supposed to see

them.

1. Consider doing reduction to 𝑃𝑖 for some 𝑃𝑖, 𝑖 /∈ 𝒮; let 𝒜𝑖 = (𝒜1
𝑖 ,𝒜2

𝑖) be the two-stage adver-
sary for primitive 𝑃𝑖, where the stages are defined by Definition 3.4.

2. 𝒜𝑖 receives public key 𝗉𝗄𝑖 from the challenger.
3. 𝒜𝑖 prepares (𝗌𝗄ℓ, 𝗉𝗄ℓ)← 𝑃ℓ.𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for all ℓ ∈ 𝒮 𝒜𝑖 sends all ({𝗉𝗄ℓ) to 𝒜1.
4. 𝒜𝑖 simulates the security game 𝐺𝑃 for 𝑃 with 𝒜:

• In stage-1 game 𝐺1
𝑃 , for any (admissible) queries if 𝗌𝗄ℓ, ℓ ∈ 𝒮 is required to compute the

answer for the query, 𝒜𝑖 can answer the query since it possesses the keys {𝗌𝗄ℓ}ℓ∈𝒮 .
The secret keys of primitives {𝑃𝑗}𝑗 /∈𝒮 are all sampled freshly upon every run of 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·)
(or sampled freshly in 𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, ·)), which 𝒜1

𝑖 can do it on its own.
• During the interaction of stage-1 game, 𝒜1 and 𝒜1

𝑖 generates an auxiliary information
𝖺𝗎𝗑 which is public to both of them.

• Entering stage 2, 𝒜1 generates an arbitrarily polynomial-size state 𝗌𝗍 and gives it to 𝒜2.
𝒜𝑖 also enters its second stage 𝒜2

𝑖 . 𝒜2
𝑖 also receives all of ({𝗌𝗄ℓ}ℓ∈𝒮 , {𝗉𝗄ℓ}ℓ∈𝒮 , 𝖺𝗎𝗑) but

does not obtain any of 𝒜1’s queries involving the use of {𝗌𝗄ℓ}ℓ/∈𝒮 .
6Note that 𝐺𝑃 ’s challenge phase may be before, after or concurrent with 𝐺𝑃𝑖 ’s challenge phase depending on the

reduction. Similarly, the challenge 𝒜2 receives may be dependent on 𝗂𝗇𝗉.

18

• 𝒜2
𝑖 continues to provide the oracles needed for game 𝐺2

𝑃 and answer 𝒜2(𝗌𝗍)’s queries
using the above strategy as 𝐴1

𝑖 uses.
• 𝒜2

𝑖 also records all of 𝒜2’s queries.
• In the challenge phase of 𝐺𝑃𝑖 , 𝒜2

𝑖 receives a challenge input 𝗂𝗇𝗉𝑖 from the challenger.
• In 𝐺2

𝑃 ’s challenge phase, 𝒜2
𝑖 samples some randomness 𝑟 and prepares a challenge

input 𝗂𝗇𝗉 for 𝒜 using 𝑟 and 𝗂𝗇𝗉𝑖. 𝒜2
𝑖 sends 𝗂𝗇𝗉𝑖 to 𝒜2.

• 𝒜2
𝑖 continues to simulate the oracles needed in 𝐺2

𝑃 game for𝒜2 if there are further query
stages

5. 𝒜𝑖 computes an efficiently computable function 𝑓𝑖(𝗈𝗎𝗍, 𝑟,𝒬, 𝗂𝗇𝗉𝑖) on input of 𝒜2’s final an-
swer 𝗈𝗎𝗍, its queries 𝒬 and 𝐴𝑖’s challenge input 𝗂𝗇𝗉𝑖 and secrret radomness 𝑟, and gives it to
the challenger of primitive 𝑃𝑖.

Properties of Watermarking-Compatible Reductions We further give some properties of watermarking-
compatible reduction. These properties come with any natural black-box security roof with hybrid
argument and reductions. We present them here for the sake of convenience and use them as facts
later.

Fact 3.11 (Reduction Property 1). A watermarking-compatible reduction guarantees that: if there exists
some 𝒜 such that the advantage of 𝒜2 winning the game 𝐺𝑃 is non-negligible, i.e. Pr[𝐺𝑃 (1

𝜆, 𝐴) = 1] ≥
𝜂 + 𝛾 where 𝜂 is the trivial winning probability and 𝛾 is non-negligible in 𝜆, then there exists some 𝑖 ∈ [𝑘]
such that 𝒜𝑖, using the above reduction strategy, wins 𝐺𝑃𝑖 with some non-negligible advantage 𝛾𝑖.

Remark 3.12. The above property follows naturally from any hybrid argument of proof.
If using the language of the 2-stage security game: If there exists some adversary 𝒜 = (𝒜1,𝒜2) such

that for some non-negligible 𝜖 and some non-negligible 𝛾, we have:

Pr
[︁
Pr[𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2(𝗌𝗍)) = 1] ≥ 𝜂 + 𝛾 : {(𝗌𝗄, 𝗉𝗄), 𝖺𝗎𝗑, 𝗌𝗍} ← 𝐺1
𝑃 (𝒜1, 1

𝜆)
]︁
≥ 𝜖

Then there exists some 𝑖 ∈ [𝑘] such that 𝒜𝑖 = (𝒜1
𝑖 ,𝒜2

𝑖), using the above reduction strategy, such that for
some non-negligible 𝛾𝑖, 𝜖𝑖, we have:

Pr
[︁
Pr[𝐺2

𝑃𝑖
(𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑,𝒜2

𝑖 (𝗌𝗍)) = 1] ≥ 𝜂 + 𝛾𝑖 : {(𝗌𝗄𝑖, 𝗉𝗄𝑖), 𝖺𝗎𝗑, 𝗌𝗍} ← 𝐺1
𝑃𝑖
(𝒜1

𝑖 , 1
𝜆)
]︁
≥ 𝜖𝑖.

Fact 3.13 (Reduction Property 2). For all 𝑖 ∈ 𝒮, once give the secret key 𝑃𝑖.𝗌𝗄 in the clear, there exists a
PPT algorithm 𝑇𝑖 that wins the security game 𝐺𝑃 with probability 1.

Additionally, such a 𝑇𝑖 can be used black-boxly by the watermarking-compatible reduction algorithm
𝒜𝑖 to win the security game 𝐺𝑃𝑖 with noticeable probability.

Reduction Function Recall that in the end of the reduction, 𝒜𝑖 computes an efficiently com-
putable function 𝑓𝑖(𝗈𝗎𝗍, 𝑟,𝒬, 𝗂𝗇𝗉𝑖) on input of 𝒜2’s final answer 𝗈𝗎𝗍, the randomness used to pre-
pare 𝒜2’s challenge input, 𝒜2’s queries 𝒬 and 𝐴𝑖’s challenge input 𝗂𝗇𝗉𝑖, and gives it to the chal-
lenger of primitive 𝑃𝑖.

For convenience, we will refer to the function 𝑓𝑖 used by the reduction as reduction function.

Remark 3.14 (Reduction Function). We refer to the above function 𝑓𝑖 used by the reduction as reduction
function.

19

Remark 3.15 (Special Primitives in 𝒯𝐾). The role of the primitives in the set 𝒯𝐾 may be confusing to the
readers at this point. We make some further explanation. As we go into later sections and go into examples
(Appendix A), its role will become clear.

More specifically, 𝒯𝑘 only contains the simulation-based primitives 𝑃ℓ where

1. there exists an efficient simulator algorithm such that the output of 𝑃ℓ.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝑃ℓ.𝗉𝗄, ·) is indistin-
guishable from the output of the simulator 𝖲𝗂𝗆(𝑃ℓ.𝗍𝖽, ·). Their secret key (trapdoor 𝗍𝖽) will only come
up in the security proof for 𝑃 .

2. In the security proof for 𝑃 , the rest of the hybrid arguments and reduction happen in a hybrid world
where we have already invoked the above security for 𝑃ℓ.

The one example primitive in the set 𝒯𝐾 we use within this work is a NIZK scheme with a trapdoor.
Its "keys" (the common reference string 𝖢𝖱𝖲, and trapdoor 𝗍𝖽) are generated in the main key generation
algorithm, but the trapdoor is not used in any of 𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅, and only in the security proof.

4 Watermarking Composition Framework

4.1 Definition: Watermarkable Implementation of a Cryptographic Primitive

In this section, we will define what we call a "watermarkable implementation" of a cryptographic
primitive 𝑃 . We distinguish it from the usual naming ("watermarkable P") because of some dif-
ferences in syntax and definition. But we will sometimes use watermarkable P in our work for
convenience. Please note that all "watermarkable P" used in the technical part of this work refers
to a watermarkable implementation of a cryptographic primitive 𝑃 defined below.

On a high-level, a watermarkable implementation of 𝑃 differs from most existing watermark-
ing definition in two aspects:

1. Unremovability security: A pirate circuit produced by the adversary in the unremovability
security game is considered to function successfully as long as it can break the security game
𝐺𝑃 .

2. Extraction algorithm syntax: the extraction key used to extract a watermark is able to simu-
late the game 𝐺𝑃 for the underlying "plain security" of 𝑃 .

In more detail, a watermarkable implementation of a cryptographic primitive has the follow-
ing syntax and properties.

Watermarkable Primitive Syntax A watermarkable primitive 𝖶𝖯 for a cryptographic primitive
𝑃 with a security game 𝐺𝑃 consists of the following algorithms:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗌𝗄, 𝗉𝗄,𝗆𝗄, 𝗑𝗄): on security parameter, outputs a secret key 𝗌𝗄, public key 𝗉𝗄,
marking key 𝗆𝗄, extraction key 𝗑𝗄.

𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥): takes in the secret information 𝗌𝗄, public information 𝗉𝗄 and some input 𝑥
from input space 𝒳 , and output a value 𝑦 ∈ 𝒴𝑠.

𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, 𝑥 ∈ 𝒳): takes in the public information 𝗉𝗄 and some input 𝑥 from input space 𝒳 ,
and output a value 𝑦 ∈ 𝒴𝑝.

20

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏 ∈ ℳ𝖬𝖺𝗋𝗄) → 𝗌𝗄𝜏 : takes in marking key 𝗆𝗄, a secret key 𝗌𝗄 and a message 𝜏 ∈
ℳ𝖬𝖺𝗋𝗄; output a marked key 𝗌𝗄𝜏

7.
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) → 𝜏 ∈ ℳ𝖬𝖺𝗋𝗄/�⃗� ∈ ℳ𝑘

𝖬𝖺𝗋𝗄/⊥: on input extraction key 𝗌𝗄, public key 𝗉𝗄,
auxiliary information 𝖺𝗎𝗑 and circuit 𝐶, outputs a mark message 𝜏 ∈ ℳ𝜏 or a tuple of
marked messages �⃗� ∈ ℳ𝑘

𝜏 where 𝑘 is a constant/small polynomial parameter related to the
concrete watermarking construction.

Remark 4.1. The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm is allowed to output a tuple of marks when working on adversarial
programs, when the watermarkable implementation is one that comes from composing underlying water-
marking implementations. More details to be discussed later in Section 4.2.

Remark 4.2. The extraction algorithm takes in the public key 𝗉𝗄 (which is not a limitation because it’s
public) and an auxiliary input 𝖺𝗎𝗑. As we will see in the concrete examples, depending on the security
game of the primitives we watermark, we may need 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 to take in some 𝖺𝗎𝗑 or may not.

When it is clear from the context that there is no public key or auxiliary information for 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 to take,
we will omit them from the input parameters for notation cleanness.

Remark 4.3. There can be several different (constant number of) 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅 and 𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅. As aforemen-
tioned, we view all secret algorithms as one algorithm 𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·) that will take in an index 𝑖 ∈ [ℓ] to
decide which mode to use, similarly for public algorithms. We thus also use 𝗌𝗄 to denote ({𝗌𝗄𝑖}𝑖∈[ℓ].

Let us denote 𝖤𝗏𝖺𝗅 = (𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅).

Correctness The construction should satisfy "unmarked" correctness for unmarked keys: a wa-
termarkable implementation of 𝑃 is said to be correct with respect to predicate 𝐹𝑅 if there exists a
negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, 𝑥 ∈ 𝒳 :

Pr[𝐹𝑅(𝖤𝗏𝖺𝗅, 𝗉𝗄, 𝗌𝗄, 𝑥, 𝑟) = 1 : (𝗌𝗄, 𝗉𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝑟 ← 𝐷𝑟] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

where the probability is taken over randomness used in 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 and 𝐷𝑟. Recall that randomness
𝑟 is used in checking whether the predicate 𝐹𝑅(𝖤𝗏𝖺𝗅, 𝗉𝗄, 𝗌𝗄, 𝑥, 𝑟) is satisfied Definition 3.1 and 𝐷𝑟

can be simply taken to be the uniform distribution.

Functionality Preserving vs. Exact Functionality Preserving We present both definitions of
functionality-preserving for the sake of comprehensiveness because they have both appeared in
watermarking literatures. Before [GKM+19], the watermarking literature mainly used exact func-
tionality preserving only. While it is not particularly vital to the contributions in this work, we
would like to mention that exact functionality preserving is a stronger notion. For some of the
underlying building blocks we use, only constructions under the relaxed functionality-preserving
definition are known, for example the watermarkable signature scheme in [GKM+19].

7In defintions in the watermarking literature, the output of 𝖬𝖺𝗋𝗄 is the program 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝜏 , 𝗉𝗄, ·). Since con-
ventionally by Kerkhoff’s principle, the evaluation algorithm itself is public, giving out only the marked secret key is
equivalent to giving out the program, we give out the key for convenience that come up later. There are watermarking
schemes where the evaluation algorithm may be different when running on a marked key; in that case we can consider
𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅 to have two modes, one for unmarked keys one for marked keys.

21

Functionality Preserving The functionality-preserving property says: if for a predicate 𝐹𝑅, the
underlying primitive 𝑃 satisfies he correctness in Definition 3.2, then there exists a negligible
function 𝗇𝖾𝗀𝗅(𝜆) ssuch that for all 𝜆 ∈ ℕ, 𝑥 ∈ 𝒳 :

Pr

[︂
𝐹𝑅(𝖤𝗏𝖺𝗅, 𝗉𝗄, 𝗌𝗄, 𝑥, 𝑟) = 1 :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏), 𝑟 ← 𝐷𝑟

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Exact Functionality Preserving The exact functionality preserving is a stronger property that:
there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ, 𝑥 ∈ 𝒳 , 𝜏 ∈ℳ𝜏 :

Pr

[︂
𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥) = 𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥) :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Correctness of Extraction There exists a publicly known efficient algorithm 𝑇 and a negligible
function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ, for all 𝜏 ∈ℳ𝜏 :

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝑇 (𝗌𝗄𝜏 , ·)) = 𝜏 :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Security with Security Game 𝐺𝑃 The watermarkable primitive 𝖶𝖯 satisfies the same security
defined by the security game 𝐺𝑃 for 𝑃 , except that the subroutines used in 𝐺𝑃 , 𝖪𝖾𝗒𝖦𝖾𝗇,𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅
are replaced with 𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅 respctively. The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍,𝖬𝖺𝗋𝗄 algorithms and
keys are ignored in the context of these games.

Watermarking Security Compatible with A Security Game Now we present the unremovabil-
ity security of the watermarking implementation for primitive P.

Informally, the security guarantees that: any PPT adversary 𝒜, when given the watermarked
key(s), generates a pirate circuit 𝐶*; if 𝐶* can win the security game 𝐺𝑃 with some non-negligible
advantage, then we must be able to extract a (previously queried) watermark from 𝐶*.

Definition 4.4 (𝛾-Unremovability with Game 𝐺𝑃). We say a watermarkable implementation of 𝑃 is
𝛾-unremovable if:

For every stateful 𝛾-unremovable admissible PPT adversary𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·)
such that for all 𝜆 ∈ ℕ, the following holds:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶*) /∈ 𝒬 :

(𝗌𝗄, 𝗉𝗄,𝗆𝗄, 𝗑𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

(𝖺𝗎𝗑, 𝐶*)← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆, 𝗉𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆)

𝒬 denotes the set of f marks queried by 𝒜 to the marking oracle 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, ·), 𝐺1
𝑃 is the stage 1 of a

security game 𝐺𝑃 , as defined in Definition 3.4.
We call a PPT adversary𝒜 as 𝛾-unremovable admissible if𝒜’s output 𝐶* is an admissible adversary in

the stage-2 security game 𝐺2
𝑃 and is 𝛾-good, where 𝛾-good is defined as:

Pr[𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶

*) = 1] ≥ 𝜂 + 𝛾

Here, 𝜂 is the trivial success probability for any admissible adversary in 𝐺𝑃 .
The randomness over testing whether 𝐶* is 𝛾-good is the randomness used answering any oracle queries

from 𝐶* and preparing the challenge for 𝐶*, in the stage-2 security game 𝐺2
𝑃 .

To match our syntax, we denote 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶*) /∈ 𝒬 to mean that:

22

1. If 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶*) outputs a single mark 𝜏 ∈ ℳ𝜏/𝜏 = ⊥, it is considered to be not in the
query set 𝒬 if and only if 𝜏 /∈ 𝒬.

2. If 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶*) outputs a tuple of marks �⃗� = (𝜏1, · · · , 𝜏𝑘), where each 𝜏𝑖 ∈ ℳ𝜏/𝜏𝑖 = ⊥,
it is considered not in the query set 𝒬 if and only if for all 𝑖, 𝜏𝑖 /∈ 𝒬.

Remark 4.5. The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm will only output a tuple of marks when used on adversarial circuits 𝐶.
Because of composition, the adversary might be able to acquire a composed watermarked circuit where each
"component" has a different watermark, but this does not formulate an attack as long as we can still extract
any valid (previously queried) watermarks from the circuit. We will discuss this aspect in more details in
Section 4.2.

Remark 4.6 (Discussions on the 𝛾-Unremovability Definition). We give the above definition with a
parameter 𝛾 and it helps illustrate how this definition corresponds to the 2-stage security game in Defini-
tion 3.4: 𝒜 corresponds to the "stage-1" adversary and the circuit 𝐶* corresponds to stage-2 adversary.

If we want a watermarking scheme’s 𝛾 to be any non-negligible function (the strongest notion here) in
terms of the security parameter, we can simply require it to satisfy 𝛾-unremovability for any non-negligible
𝛾 (defined below as "strong unremovability").

In our paper, all our underlying watermarking building blocks used for composition satisfy 𝛾-unremovability
for any non-negligible gamma. So they are not sensitive to 𝛾. Our statements about the watermarking com-
piler also only consider this case (see Lemma 4.21).

Besides, we also inherit this 𝛾-removability definition partially from [GKM+19]. In some other water-
marking literatures, it may be also meaningful to consider a weaker security where gamma is not necessarily
negligible.

Definition 4.7 (Strong Unremovability). We say a watermarking implementation of 𝑃 satisfies strong
unremovability if it satisfies 𝛾-unremovability for any non-negligible 𝛾.

Remark 4.8 (Statefulness of the Adversarial Program). Since the adversarial circuit in our security
game is assumed to be interactive and stateful, one may ask how stateful it can be.

This issue with stateful pirates is almost always present in the traitor tracing and watermarking liter-
ature. For this reason, the vast majority of works operate in a stateless program model. This requires an
assumption that the pirate program can be reset by the tracer to its initial conditions, which makes sense if,
say, the program is given as software. In our work, we allow the pirate program to be stateful, in the sense
that we allow it to play an interactive security game. However, we always assume between runs of the game
that the program is reset to its initial conditions. This notion of statefulness generalizes the existing wa-
termarking/traitor tracing definitions from non-interactive games to interactive games, while also avoiding
the issue of self-destruction. Like in the existing models, our model makes sense if, say, the program is given
as software.

We leave more remark on the unremovability definition at the end of this section Remark 4.12.

Security Game Simulation Property of the Extraction Key We additionally require the extrac-
tion key 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 to be able to simulate the (stage-2) security game 𝐺2

𝑃 for the primitive 𝑃 to be
watermarked.

Consider the security game 𝐺𝑃 for the underlying primitive 𝑃 : 𝐺𝑃 = (𝐺1
𝑃 , 𝐺

2
𝑃) is an interac-

tive game between a challenger and admissible 𝒜 = (𝒜1,𝒜2). Recall that in the stage-2 Defini-
tion 3.4 𝐺2

𝑃 can output a view 𝗏𝗂𝖾𝗐(𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2) (Definition 3.8).

23

Definition 4.9 (Extraction key simulation property). The extraction key simulation property of the ex-
traction key says that: given (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑)← 𝐺1

𝑃 (𝒜1, 1
𝜆) where we use 𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) to obtain (𝗌𝗄, 𝗉𝗄, 𝗑𝗄)

in 𝐺1
𝑃 , there exists a PPT simulator 𝖲𝗂𝗆(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2) (where 𝖲𝗂𝗆 interacts with 𝒜2 black-boxly) that

outputs a simulated view 𝗏𝗂𝖾𝗐𝖲𝗂𝗆(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2), such that for any 𝜆 ∈ ℕ, for any admissible 𝒜 in 𝐺𝑃 ,
the distributions 𝗏𝗂𝖾𝗐𝐺2

𝑃
= {𝗏𝗂𝖾𝗐(𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2)} and 𝗏𝗂𝖾𝗐𝖲𝗂𝗆 = {𝗏𝗂𝖾𝗐𝖲𝗂𝗆(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2)} are per-

fectly/statistically/computationally indistinguishable.

Extraction Syntax: Simulation of Security Game 𝐺𝑃 inside 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 Following the above prop-
erty, we require that the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm in a watermarkable implementation of a primitive 𝑃
follows a specific format: it simulates the stage-2 security game 𝐺2

𝑃 for any input circuit, while
trying to extract a mark.

𝖤𝗑𝗍𝗋𝖺𝖼𝗍 Algorithm

On input (𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑) and a program 𝐶:

• Run an algorithm 𝐸 where 𝐸 uses the following subroutine (for possibly 𝗉𝗈𝗅𝗒(𝜆)) many
times):

– Use (𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑) to simulate the stage-2 game 𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) for primitive 𝑃 ,

running 𝐶 black-boxly by treating 𝐶 as the stage-2 adversary𝒜2 defined in Defini-
tion 3.4.

– If 𝐶 is non-interactive (i.e. 𝐶 does not make any queries or respond to interaction
in the challenge phase of 𝐺2

𝑃), then 𝐸 samples challenge inputs on its own and runs
𝐶 on them.

• 𝐸 can take any of 𝐶’s outputs, including 𝐶’s queries made during the above simulated
game, as inputs to compute the extraction algorithm’s final output.

• Output a watermark 𝜏 ∈ℳ𝜏 or ⊥

Examples of Extraction Algorithm that Simulates a Security Game It is not hard to create an
extraction algorithm with the above syntax and simulation capability. In fact, some existing works
have already built watermarking schemes that have 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm with such a format.

• To enable the extraction key to simulate the security game, a naive solution in the private
extraction case is to simply let 𝗑𝗄 contain the secret key 𝗌𝗄.
One example is the extraction algorithm in a watermarkable signature scheme (see Ap-
pendix D). To answer the signature queries for the pirate program, the extraction key is
the signing key.

• In some other scenarios, we don’t need the secret key to simulate the security game and one
can even have public extraction.
For example, a CPA secure PKE scheme. Another example is when we can sample from
the input-output space of the evaluation oracles without having the actual key: in the weak
PRF setting (with non-adaptive queries), we can simply answer its queries by sampling. In
[GKWW21], one can use indistinguishability obfuscation to build such a sampler, so that we
have watermarkable weak PRF with public extraction.

24

Remark 4.10 (Extraction of watermarks from honestly generated circuit). Note that even though our
extraction algorithm simulates a possibly interactive game for any input program, it does not require or
assume the input program to be interactive or even stateful. As we have described, when the input circuit
is not interactive, then the extraction algorithm simply samples challenge inputs and run 𝐶 on them to get
𝐶’s outputs.

For example, we can also correctly extract from an honestly watermarked circuit which is neither stateful
nor interactive.

Remark 4.11 (Computational Simulation). In most of our applications, the extraction key can simu-
late the security game’s view with perfect indistinguishability. But whether the simulation quality is per-
fect/statistical/computational does not affect our watermarking composition theorem and applications, as
long as the difference is negligible.

We will encounter computational simulation only when there are primitives in the set 𝒯𝐾 : the extraction
algorithm will simulate a "hybrid version" of the security game, after invoking the security of the primitive
in 𝒯𝐾 , instead of the original security game. See more discussions Remark 4.16.

The one example provided in our paper is the use of NIZK proof with trapdoors in Appendix A.

Meaningfulness The meaningfulness property says that an honestly generated key should not
have watermarks.

A watermarking implementation of primitive 𝑃 scheme satisfies the meaningfulness property
if there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ:

Pr
[︀
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗌𝗄) ̸= ⊥ : (𝗌𝗄, 𝗉𝗄,𝗆𝗄, 𝗑𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

]︀
≤ 𝗇𝖾𝗀𝗅(𝜆)

Private Extraction vs. Public Extraction A watermakable implementation of a cryptographic
primitive is a scheme with public-extraction if the extraction key 𝗑𝗄 can be made public while the
above properties still hold. Otherwise it has private extraction.

Single-key vs. Collusion Resistant A watermakable implementation of a cryptographic primi-
tive is collusion resistant if in the unremovability security game,𝒜 is allowed to query the marking
oracle 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, ·) for arbitrarily many times and 𝑞-bounded collusion resistance if it is allowed
to query for a-priori bounded polynomial 𝑞-times. the scheme is single-key secure if 𝑞 = 1.

Remark 4.12 (Defining stages in the unremovability game). As discussed briefly in Definition 3.4:
an example of subtlety when defining the staged unremovability game is: in the original security game for
𝑃 , 𝒜 needs to commit to some challenge messages that will be used by the challenger to prepare the final
challenge for 𝒜. The question is whether we make 𝒜 commit to such challenge messages in stage 1, or let
the stage-2 adversary, i.e. the circuit 𝐶 output by 𝒜 choose their challenge messages later in stage 2.

In summary, if admissibility of queries made in stage 1 will be dependent on the challenge, then we must
make 𝒜 commit to its own part on the challenge (as some auxiliary information 𝖺𝗎𝗑) before it produces 𝐶 ,
and we run 𝐶 with these prefixed 𝖺𝗎𝗑 in stage-2 game 𝐺2

𝑃 (𝗉𝗄, 𝗑𝗄, 𝖺𝗎𝗑, 𝐶).
Let’s take a "flexible" example, where we can let the stage-2 adversary 𝒜2 do such commitment, instead

of forcing it to commit in stage 1. Accordingly, we can let the watermarking adversary’s output program 𝐶
selects its own commitment when we run 𝐶: for example, in CPA/CCA encryption games, we can allow 𝒜
to submit its challenge messages (𝑚0,𝑚1) either together/before it outputs 𝐶 or output a 𝐶 that will choose

25

its own (𝑚0,𝑚1). This flexibility comes from the fact that whether the queries made by 𝒜 and 𝐶 are valid
does not depend on the choice of (𝑚0,𝑚1).

A non-flexible example would be the challenge attribute/identity in ABE/IBE. We must let 𝒜 choose its
challenge attribute/identity before/at the same time with outputting 𝐶. 𝐶 is simulated in a second stage
security game with this pre-selected attribute/identity as its input. Otherwise 𝒜 can easily cheat because
the extraction algorithm(stage-2 game) does not get to check if the previous key generation queries made by
𝒜 are valid with respect to challenge attribute/identity.

4.2 Watermarking Composition: Target Primitive from Input Primitives

In this section, we show that if primtivive 𝑃 is built from 𝑃1, · · · , 𝑃𝑘 where the security can be
shown via a watermarking-compatible reduction, we can construct a watermarkable implemen-
tation of 𝑃 , named 𝖶𝖯 to satisfy definition in 4.1, from existing watermarkable implementations
of 𝑃1, · · · , 𝑃𝑘 called 𝖶𝖯1,𝖶𝖯2, · · · ,𝖶𝖯𝑘, satisfying definition in 4.1. We will still refer to 𝑃 as the
target primitive and 𝑃1, · · · , 𝑃𝑘 as input primitives.

Outline and Intuition On a high level, the watermarking scheme of the target primitive 𝑃 sim-
ply follows the construction of plain 𝑃 from the plain underlying building blocks in terms of
evaluation algorithms 𝖲𝖾𝖼𝖤𝗏𝖺𝗅,𝖯𝗎𝖻𝖤𝗏𝖺𝗅. Correctness and functionality-preserving compose in a
relatively natural way.

To mark a key of 𝑃 , the marking algorithm concatenates the marked keys of all underlying
𝑃𝑖 that need to be marked. To extract a mark, we attempt to run the extraction algorithm of all
underlying 𝑃𝑖 on the input circuit. If any valid mark is extracted, then the circuit is considered
marked.

In particular, the extraction algorithm will treat the circuit as an adversary in the stage-2 secu-
rity game of 𝑃 and turns it black-boxly into a reduction for the security game of each underlying
𝑃𝑖, one by one and then run the underlying extraction algorithm of 𝑃𝑖 on it.

In order to remove a mark from a 𝑃 ’s key, the adversary 𝒜 must remove all marks from each
𝑃𝑖’s key. Meanwhile, the pirate program still needs to win the security game of 𝑃 , then we must be
able to use to break the unremovability of at least one underlying 𝑃𝑖. In more generic scenarios, the
pirate program made by𝒜may not break any unremovability security of watermarkable building
blocks, but get around the task of removing marks by breaking the security of some unwater-
marked building blocks. By similar means, we can use the pirate program to build our reduction
to the security of these unwatermarked building blocks. By the properties of the watermarking-
compatible reduction (Section 3.2) that 𝑃 ’s construction satisfies, the above analysis is exhaustive.

Construction of 𝖶𝖯 Similar to the description of construction in Section 3.2, we recall the fol-
lowing notations:

• Let 𝒮 ⊂ [𝑘] be a fixed set used in 𝑃 ’s construction from 𝑃1, · · · , 𝑃𝑘, where the primitives 𝑃𝑖

with 𝑖 ∈ 𝒮’s keys will be generated in the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm of 𝑃 . Without loss of generality,
we let the first |𝒮| number of 𝑃𝑖’s be those corresponding to the set 𝒮.

• Let 𝒯𝑆 ∈ [𝑘] denote the set of indices 𝑖 where 𝑃𝑖’s keys will be generated during 𝖲𝖾𝖼𝖤𝗏𝖺𝗅; Let
𝒯𝑃 ∈ [𝑘] denote the set of indices 𝑖 where 𝑃𝑖’s keys will be generated during 𝖯𝗎𝖻𝖤𝗏𝖺𝗅. Let
𝒯𝐾 denote the set of indices 𝑖 where 𝑃𝑖’s secret key (we call trapdoor 𝗍𝖽) will be generated
during 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) but will not be used in 𝑃 ’s algorithms.

26

• Without loss of generality, we sometimes assume a numbering on the primitives so that the
first |𝒮| primitives are in the set 𝒮.

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄) :

1. compute (𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝗑𝗄𝑖,𝗆𝗄𝑖)←𝖶𝖯𝑖.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) for all 𝑖 ∈ 𝒮.
2. compute (𝗉𝗄ℓ, 𝗍𝖽ℓ)← 𝑃ℓ.𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for all ℓ ∈ 𝒯𝐾 ;
3. output 𝗌𝗄 = (𝗌𝗄𝑗1 , · · · , 𝗌𝗄|𝒮|); 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄|𝒮|), {𝗉𝗄ℓ}ℓ∈𝒯𝑘));

𝗑𝗄 = (𝗑𝗄1, · · · , 𝗑𝗄|𝒮|, {𝗍𝖽ℓ}ℓ∈𝒯𝑘);𝗆𝗄 = (𝗆𝗄1, · · · ,𝗆𝗄|𝒮|)

𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, 𝑥):

1. parse input 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄|𝒮|); 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄|𝒮|, {𝗉𝗄ℓ}ℓ∈𝒯𝑘)).
2. 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄,) is the same algorithm as 𝑃.𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·) in the construction of 𝑃

from 𝑃1, · · · , 𝑃𝑘, except that 𝑃𝑖.𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝑖, ·) is replaced with 𝖶𝖯𝑖.𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝑖, ·) for
𝑖 ∈ 𝒮. Overall, 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄,) is an algorithm that:
(a) uses 𝖶𝖯𝑖.𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝑖, 𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 as subroutines.
(b) uses 𝖶𝖯𝑖.𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 ∪ 𝒯𝑘 as subroutines.
(c) computes (𝗌𝗄𝑗 , 𝗉𝗄𝑗) ← 𝑃𝑗 .𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for some 𝑗 ∈ 𝒯𝑆 (and may include these 𝗉𝗄𝑗
generated as part of the output).

𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, 𝑥)

1. parse input 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄|𝒮|, {𝗉𝗄ℓ}ℓ∈𝒯𝑘).
2. 𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄,) is the same algorithm as 𝑃.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, ·) in the construction of 𝑃 from

𝑃1, · · · , 𝑃𝑘, except that 𝑃𝑖.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·) is replaced with 𝖶𝖯𝑖.𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·) for 𝑖 ∈
𝒮 ∪ 𝒯𝑘. Overall, 𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·) is an algorithm that:
(a) uses 𝖶𝖯𝑖.𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 as subroutines.
(b) uses 𝖶𝖯𝑖.𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄𝑖, ·), 𝑖 ∈ 𝒮 as subroutines.
(c) computes (𝗌𝗄𝑗 , 𝗉𝗄𝑗) ← 𝑃𝑗 .𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆) for some 𝑗 ∈ 𝒯𝑃 (and may include these 𝗉𝗄𝑗
generated as part of the output).

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏 ∈ℳ𝖬𝖺𝗋𝗄)→ 𝗌𝗄𝜏

1. parse 𝗆𝗄 = (𝗆𝗄1, · · · ,𝗆𝗄|𝒮|); 𝗌𝗄 = (𝗌𝗄1, · · · , 𝗌𝗄|𝒮|); 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄|𝒮|, {𝗉𝗄ℓ}ℓ∈𝒯𝑘).
2. Compute 𝗌𝗄𝑖,𝜏 ←𝖶𝖯𝑖.𝖬𝖺𝗋𝗄(𝗆𝗄𝑖, 𝗌𝗄𝑖, 𝜏) for all 𝑖 ∈ 𝒮.
3. output 𝗌𝗄 = (𝗌𝗄1,𝜏 , · · · , 𝗌𝗄|𝒮|,𝜏)

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶)→ 𝜏 ∈ℳ𝖬𝖺𝗋𝗄/�⃗� ∈ℳ
|𝒮|
𝖬𝖺𝗋𝗄/⊥ :

1. parse 𝗑𝗄 = (𝗑𝗄1, · · · , 𝗑𝗄|𝒮|, {𝗍𝖽ℓ}ℓ∈𝒯𝐾); 𝖺𝗎𝗑 = (𝖺𝗎𝗑1, · · · , 𝖺𝗎𝗑|𝒮|); 𝗉𝗄 = (𝗉𝗄1, · · · , 𝗉𝗄|𝒮|, {𝗉𝗄ℓ}ℓ∈𝒯𝑘).
2. Initialize an empty set �⃗� .
3. For each 𝑖 ∈ 𝒮:

(a) prepare the following circuit 𝐶𝑖 using black-box access to 𝐶.
i. 𝐶𝑖 uses ({𝗑𝗄𝑗}𝑗∈𝒮,𝑗 ̸=𝑖, {𝗍𝖽ℓ}ℓ∈𝒯𝐾) and external queries to simulate security game

𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) for 𝐶 8:

• For any (admissible) queries in the stage-2 game 𝐺2
𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶), if the or-

acles provided in security game 𝐺𝑃𝑖(𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, ·) is required to compute

8𝐶𝑖 can also have 𝗑𝗄𝑖 if the watermarkable implementation 𝖶𝖯𝑖 has a public extraction key. In this case, 𝐶𝑖 also
does not need to make external queries.

27

the answer for the query, 𝐶𝑖 can will make a query to an external challenger.
To answer the entire query, 𝐶𝑖 may finish the rest of the computation using
({𝗑𝗄𝑗}𝑗 ̸=𝑖, {𝗍𝖽ℓ}ℓ∈𝒯𝑘).

• If only {𝗑𝗄𝑗}𝑗 ̸=𝑖 are needed to answer a query, 𝐶𝑖 answers it by itself.
ii. 𝐶𝑖 records queries from 𝐶 into a set 𝒬𝐶 .

iii. 𝐶𝑖 receives its challenge input 𝗂𝗇𝗉𝑖 from the interaction with an external chal-
lenger, samples a random string 𝑟, and prepares a challenge input 𝗂𝗇𝗉 for 𝐶
using 𝗂𝗇𝗉𝑖 and 𝑟.

iv. If there is a query phase after the challenge phase, 𝐶𝑖 continues to simulate the
oracles required using {𝗑𝗄𝑗}𝑗 ̸=𝑖 and external queries to a challenger.

v. After 𝐶 makes its final output 𝗈𝗎𝗍, 𝐶𝑖 computes the function 𝑓𝑖(𝗈𝗎𝗍, 𝑟,𝒬𝑐, 𝗂𝗇𝗉)
where 𝑓𝑖 is the reduction function (Remark 3.14) used in watermarking-compatible
reduction of 𝑃 to 𝑃𝑖 . Output the result of this computation.

(b) compute 𝜏𝑖/⊥ ←𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝐶𝑖).
(c) add 𝜏𝑖(or ⊥) to the tuple �⃗� , and go to step 2 with 𝑖 := 𝑖+ 1.

4. Output
• �⃗� = (𝜏1, · · · , 𝜏|𝒮|) if ∃𝑖, 𝑗 where 𝜏𝑖 ̸= 𝜏𝑗 ;
• else if 𝜏𝑖 = 𝜏𝑗 = 𝜏 (or ⊥) for all 𝑖, 𝑗, output 𝜏 (or ⊥ resp.).

Remark 4.13. We also give a more systematic description of Extract is using the language of watermarking-
compatible reduction:

The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm:

1. On input circuit 𝐶 and 𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑; for 𝑖 ∈ 𝒮:

(a) Create program 𝐶𝑖 (𝐶𝑖 has black-box access to 𝐶). 𝐶𝑖 treats 𝐶 as the stage-2 adversary 𝒜2 in
the stage-2 game 𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑,𝒜2).
(b) 𝐶 acts as a stage-2 reduction 𝒜2

𝑖 in the watermarking-compatible reduction from primitive P
to 𝑃𝑖, with the difference that 𝐶 uses {𝗑𝗄𝑗}𝑗 ̸=𝑖 (instead of {𝗌𝗄𝑗}𝑗 ̸=𝑖) and external queries to
challenger to simulate the game.

(c) compute 𝜏/⊥ ←𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝐶𝑖); add it to the extracted mark tuple.

2. Output the tuple of marks extracted.

Remark 4.14. As discussed previously, for the convenience of discussions in some later parts, our 𝖬𝖺𝗋𝗄
algorithm outputs a marked key instead of circuits since the 𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅 algorithm itself is public.

Remark 4.15 (Outputting a tuple of marks). The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm will only output a tuple of marks
(with |𝒮| number of them at most) when used on adversarial circuits 𝐶. For honestly generated circuit 𝐶,
the extraction will always output only one marked message.

First this is clearly not a limitation because |𝒮| is the number of input primitives and usually a small
constant/polynomial. Second, the need for the extraction algorithm to output a tuple of marks is essential
for the composability of watermarking schemes, otherwise we cannot capture the following trivial "attack":
the adversary receives an honestly marked output primitive key, which consists of 𝑘 marked secret keys of
the input primitives. It can simply destroy all the keys except one and this leftover marked key suffices for
breaking the security of 𝑃 . Such an "attack" should not be considered as a successful attack because we
can still extract a valid watermark from the entire program. Therefore, we need the extraction to output a

28

tuple of marks so that we can check if the adversary has succeeded at removing/replacing marks from each
underlying functionality.

Remark 4.16. As previously discussed in Remark 4.11, when we have a primitive in the set 𝒯𝐾 , the
𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm needs to use the trapdoor(s) 𝗍𝖽 of the primitives in set 𝒯𝐾 to simulate a hybrid version of
the security game 𝐺𝑃 . This simulation is supposedly computationally indistinguishable from the original
game, by the security of the primitive(s) in 𝒯𝐾 .

In more detail, 𝒯𝑘 only contains primitives 𝑃ℓ where

1. There exists an efficient simulator algorithm such that the output of 𝑃ℓ.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝑃ℓ.𝗉𝗄, ·) is indis-
tinguishable from the output of the simulator 𝖲𝗂𝗆(𝑃ℓ.𝗍𝖽, ·). Their secret key (trapdoor 𝗍𝖽) will only
come up in the security proof for 𝑃 .

2. In the security proof for 𝑃 , the rest of the hybrid arguments and reduction happen in a hybrid game
where we have already invoked the above security for 𝑃ℓ.

Due to the above reasons, the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm has to simulate hybrid version of game 𝐺𝑃 where the
security of 𝑃ℓ ∈ 𝒯𝐾 is already invoked, in order for the reduction (and thus extraction) for the rest of the
primitives to go through.

Essentially, we simply need the plain security of primitives in the set 𝒯𝐾 to realize the watermarking
security of 𝑃 , like other primitives in 𝒮 .

Such examples are rare. The only example in this work is a NIZK proof system with a trapdoor used to
simulate proofs (Appendix A).

We now state our main theorem:

Theorem 4.17 (Watermarking Composition). Suppose the input primitives in the set 𝒮, {𝑃𝑖}𝑖∈𝒮 have
watermarkable implementations {𝖶𝖯𝑖}𝑖∈𝒮 which satisfy the definitions in 4.1, the primitives outside the
set 𝒮 have secure constructions (defined by their corresponding correctness and security in Section 3.1), and
the construction of 𝑃 is watermarking-compatible by the definitions in 3.2, then the output watermarkable
implementation 𝖶𝖯 for primitive 𝑃 will satisfy the properties in Definition 4.1.

To prove Theorem 4.17, we show that all the properties from Section 4.1 hold.

Functionality-Preserving

Lemma 4.18 (Functionality-Preserving and Exact Functionality-Preserving). Suppose the above con-
struction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 satisfies correctness of construction, and constructions 𝖶𝖯1, · · · ,𝖶𝖯|𝒮|
satisfy the functionality-preserving properties in Definition 4.1, then 𝖶𝖯 satisfies correctness defined by
predicate 𝐹𝑅.

If all 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| satisfy the exact functionality-preserving properties, then 𝖶𝖯 satisfies exact
functionality-preserving.

Proof. Since 𝖶𝖯1, · · · ,𝖶𝖯𝑘 satisfy the functionality-preserving properties in Definition 4.1, the
correctness properties of 𝑃1, · · · , 𝑃𝑘 are preserved by their watermarkable implementations. Since
𝑃 ’s correctness follows from the correctness properties of 𝑃1, · · · , 𝑃𝑘 and moreover, 𝖶𝖯’s evalu-
ation algorithms are constructed the same way as they are in 𝑃 (even though the 𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)
algorithm differs from 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), we can ignore the watermarking-related components 𝗑𝗄,𝗆𝗄 in

29

this context). The constructions for primitives 𝑃𝑖, 𝑖 /∈ 𝒮 also do not affect functionality preserv-
ing since we use their plain, unwatermarked keys during evaluations. 𝖶𝖯’s correctness property
thereby follows.

It is easy to see that if all 𝖶𝖯𝑖 satisfies exact functionality preserving, then 𝖶𝖯 satisfies exact
functionality preserving.

Correctness of Extraction Our correctness property is a computational correctness that relies
on the unremovability of the input watermarkable implementations. Since our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm
interacts with any input circuit black-boxly by simulating the security game 𝐺𝑃 , the only way
to extract a watermark is through the circuit’s input-output behavior in this game. We use the
guarantee that "if the circuit can win the game, then we can extract a watermark" to show cor-
rectness on a circuit embedded with an honestly watermarked key (which can win the game with
probability 1 naturally). Also note that we do not need our honestly watermarked circuit to be
stateful/interactive as in Remark 4.10.

Lemma 4.19 (Correctness of Extraction). Suppose the above construction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 has a
watermarking-compatible reduction, and all watermarkable implementation of input primitives in set 𝒮,
𝖶𝖯1, · · · ,𝖶𝖯|𝒮| satisfy strong unremovability and the extraction syntax, then the watermarkable imple-
mentation of target primitive 𝖶𝖯 satisfies correctness of extraction.

Proof. Given an honestly marked key 𝗌𝗄𝜏 = (𝗌𝗄1,𝜏 , · · · , 𝗌𝗄|𝒮|,𝜏)←𝖶𝖯.𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄): we can observe
that there exists a public algorithm 𝑇 that once given 𝗌𝗄𝜏 , can win the game 𝐺𝑃 (𝗌𝗄, 𝗉𝗄, ·) with
probability (1 − 𝗇𝖾𝗀𝗅(𝜆)). We can sample a random 𝑖 ← 𝒮 and design a circuit 𝑇 to work as
follows: 𝑇 on any challenge input, uses a strategy associated with the key 𝗌𝗄𝑖 to compute the
challenge given in game 𝐺2

𝑃 .
Take the concrete example of the watermarkable implementation 𝖶𝖯 for a CCA2 encryption

scheme, used in our technical overview section (Section 1.4). The watermarked key is a concate-
nation of a watermarked decryption key/weak PRF key 𝗌𝗄1,𝜏 and a watermarked MAC signing
key 𝗌𝗄2,𝜏 . Then the algorithm 𝑇 can choose the weak PRF key as its functionality: on any chal-
lenge ciphertext, 𝑇 simply decrypts the ciphertext using the watermarked key 𝗌𝗄1,𝜏 and outputs
the correct answer.

We then look into what happens when we compute 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶): 𝐶 is treated as a stage-2
adversary in the watermarking-compatible reduction from the security of 𝑃 to the security of 𝑃𝑖

and 𝐶𝑖 with black box access to C is a stage-2 reduction algorithm. 𝐶, for each 𝑖 ∈ 𝒮. We input
𝑇 (𝗌𝗄𝜏 , ·) into the extraction algorithm. By the properties of watermarking-compatible reduction,
such a 𝑇 (𝗌𝗄𝜏 , ·) will be used to build 𝐶𝑖 that is 𝛾𝑖-good for some noticeable 𝛾𝑖 for each 𝑖 ∈ 𝒮. When
it comes to the index 𝑖 that we choose to be our functionality in 𝑇 , then the created circuit 𝐶𝑖 using
𝑇 will naturally help win the security game 𝐺2

𝑃𝑖
.

If we view the honest user as an adversary that makes one marking query on some message 𝜏 ,
then by the unremovability security of 𝖶𝖯𝑖, we must have Pr[𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑, 𝐶𝑖 = 𝜏] ≥
1−𝗇𝖾𝗀𝗅(𝜆) for all 𝑖. Therefore Pr[𝖶𝖯.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, (𝗌𝗄𝜏 , ·)) = 𝜏] ≥ 1−𝗇𝖾𝗀𝗅(𝜆). Since extracting
one valid watermark suffices, we can conclude the correctness of extraction.

Going back to the CCA2 encryption example: the circuit 𝑇 can answer any challenge by de-
crypting using the PRF key; therefore, when it is used by the circuit 𝐶1 created in 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm,
its output helps 𝐶1 distinguish between pseudorandom input and real random input. By the un-
removability security of the watermarkable weak PRF, we must be able to extract the queried
watermark 𝜏 from 𝐶1.

30

Security with 𝐺𝑃 We show that the (plain) security of 𝑃 with game 𝐺𝑃 holds.

Lemma 4.20 (Security with 𝐺𝑃). Suppose the above construction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 has a provable
black-box security, and watermarkable implementations 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| as well as the (unwatermarked)
constructions for {𝑃𝑖}𝑖/∈𝒮 satisfy the security with the security defined by game 𝐺𝑃𝑖 , 𝑖 ∈ [𝑘] respectively,
then 𝖶𝖯 satisfies security defined by game 𝐺𝑃 .

Proof. Since 𝖶𝖯1, · · · ,𝖶𝖯𝑘 satisfy the security property with game 𝐺𝑃𝑖 in Definition 4.1, the secu-
rity properties of 𝑃1, · · · , 𝑃𝑘 are preserved by their watermarkable implementations. 𝑃 ’s security
with respect to 𝐺𝑃 follows from the security properties of 𝑃1, · · · , 𝑃𝑘 with respect to {𝐺𝑃𝑖}𝑖∈[𝑘].
Moreover, 𝖶𝖯’s evaluation algorithms are constructed the same way as they are in 𝑃 and even
though the 𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) algorithm differs from 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), we can ignore the watermarking-
related components 𝗑𝗄,𝗆𝗄 in this context. Therefore, 𝖶𝖯’s security property follows from the
security of 𝖶𝖯1, · · · ,𝖶𝖯𝑘 as 𝑃 ’s security property follows from the security of 𝑃1, · · · , 𝑃𝑘.

Unremovability We now show that the construction satisfies unremovability if all building blocks
satisfy unremovability (or plain security, for unwatermarked building blocks) and the properties
on extraction key/algorithm defined in section 4.1.

Lemma 4.21 (Unremovability). Suppose the above construction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 has a watermarking-
compatible reduction, the watermarkable implementations 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| satisfy strong unremovability
(Definition 4.7), the constructions for {𝑃𝑗}𝑗 /∈𝒮 satisfy security defined by their game {𝐺𝑃𝑗}𝑗 /∈𝒮 respec-
tively, and the extraction algorithms of 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| satisfy the extraction syntax in Section 4.1, then
the watermarkable implementation 𝖶𝖯 satisfies strong unremovability.

Proof. If there exists an adversary that breaks 𝛾-unremovability with game 𝐺𝑃 as defined in Def-
inition 4.4, then we We have Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good] ≥ 𝜖 for some non-negligible 𝜖
where 𝐶 is 𝛾-good in the sense that Pr[𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) = 1] ≥ 𝜂 + 𝛾. Here the overall winning
probability of 𝒜 is taken over the randomness used in 𝖪𝖾𝗒𝖦𝖾𝗇 and the unremovability game; the
probability for 𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) = 1 is taken over the randomness used in the stage-2 game 𝐺2
𝑃 .

By the design of our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm, it must be the case that, for all 𝑖 ∈ 𝒮, 𝖶𝖯𝑖.Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝐶𝑖) /∈
𝑄] ≥ 𝜖, where 𝐶𝑖 is the circuit made black-boxly from 𝐶 in 𝖶𝖯.𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm for index 𝑖.

Now we divide our analysis into cases. First, we consider that there is no input primitive in
the set 𝒯𝑘, i.e. no trapdoor 𝗍𝖽 used in the extraction procedure and the extraction key can perfectly
simulate the security game for 𝐺𝑃 .

For any 𝒜 producing a circuit 𝐶 such that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good] ≥ 𝜖
(where the probability is taken over the randomness in 𝖪𝖾𝗒𝖦𝖾𝗇 and randomness used throughout
the game), one of the following cases must hold:

• Case 1: For some non-negligible probability 𝜖𝑖, during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶),
there exists some 𝑖* ∈ 𝒮 such that 𝐶𝑖* is a 𝛾𝑖*-good program in 𝐺2

𝑃𝑖
(𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, 𝐶𝑖) for

some non-negligible 𝛾𝑖* .
Then, there exists a reduction to break the 𝛾𝑖*-unremovability of 𝖶𝖯𝑖* for some non-negligible
𝛾𝑖* , using 𝒜. Let 𝒜𝑖* be the reduction and adversary in 𝛾𝑖*-unremovability game of 𝖶𝖯𝑖* .

31

– 𝒜𝑖* receives 𝗉𝗄𝑖* from the challenger and samples {𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝗑𝗄𝑖,𝗆𝗄𝑖}𝑖∈𝒮,𝑖 ̸=𝑖* from 𝖶𝖯𝑖* .𝖶𝖬𝖲𝖾𝗍𝗎𝗉.
It gives {𝗉𝗄𝑖}𝑖∈𝒮,𝑖 ̸=𝑖* to 𝒜.

– When 𝒜makes a marking query on some symbol 𝜏 , 𝒜𝑖* responds as follows:

* compute 𝗌𝗄𝑖,𝜏 ← 𝖬𝖺𝗋𝗄(𝗆𝗄𝑖, 𝗌𝗄𝑖, 𝜏) for 𝑖 ∈ 𝒮, 𝑖 ̸= 𝑖*.
* query the 𝖶𝖯𝑖* challenger on oracle 𝖬𝖺𝗋𝗄(𝗆𝗄𝑖* , 𝗌𝗄𝑖* , 𝜏) to obtain 𝗌𝗄𝑖*,𝜏 .
* Let 𝗌𝗄𝜏 = {𝗌𝗄𝑖,𝜏}𝑖∈𝒮 ; send 𝗌𝗄𝜏 to 𝒜.

– Next, 𝒜 outputs circuit polynomial-size 𝐶.
– 𝒜𝑖* creates the following circuit 𝐶 ′𝑖* using 𝐶 as a black-box:

* 𝐶 ′𝑖* is hardcoded with {𝗌𝗄𝑖}𝑖∈𝒮,𝑖 ̸=𝑖* , {𝗉𝗄𝑖}𝑖∈𝒮 .
* When 𝐶 makes a query to oracles in game 𝐺𝑃 , 𝐶 ′𝑖* responds as follows: if 𝗌𝗄𝑖* is

required to answer the query, 𝐶𝑖* queries the external challenger on the oracles
provided in game 𝐺𝑃𝑖* ; otherwise, 𝐶 ′𝑖* answers the query using {𝗌𝗄𝑖}𝑖∈𝒮,𝑖 ̸=𝑖* .

* 𝐶 ′𝑖* records all queries from 𝐶, denoted as 𝒬𝐶 .
* In the challenge phase, 𝐶 ′𝑖* receives challenge input 𝗂𝗇𝗉𝑖 from the interaction with

an external challenger, samples a random string 𝑟, and prepares a challenge input
𝗂𝗇𝗉 for 𝐶 using 𝗂𝗇𝗉𝑖 and 𝑟.

* When 𝐶 outputs its final answer 𝗈𝗎𝗍, 𝐶𝑖* computes the function 𝑓𝑖*(𝗈𝗎𝗍,𝒬𝐶 , 𝗂𝗇𝗉)
according to the reduction function 𝑓𝑖* in the watermarking-compatible reduction
from 𝑃 to 𝑃𝑖* .

– In short, 𝐶 is treated as a stage adversary𝒜2 in security game 𝐺𝑃 ; circuit 𝐶𝑖* is a stage-
2 reduction algorithm in the watermarking-compatible reduction from target primitive
𝑃 to input primitive 𝑃𝑖* , with black box access to 𝐶.

By the design of the 𝖶𝖯.𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm, it using extraction keys {𝗑𝗄𝑖}𝑖∈𝒮 , will treat the
input circuit as an adversary in stage-2 game 𝐺2

𝑃 and simulate 𝐺2
𝑃 for it.

Given any adversarial circuit 𝐶 that is a 𝛾-good adversary in the security game 𝐺𝑃 , following
our extraction algorithm syntax requirement, the extraction algorithm running at step 𝑖 = 𝑖*

will create a circuit 𝐶𝑖* that has exactly the same functionality as the circuit 𝐶 ′𝑖* created in the
above reduction 9. Therefore, if 𝐶𝑖* created by 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 is a 𝛾𝑖*-good in breaking 𝐺𝑃𝑖* , then
so is 𝐶 ′𝑖* created by the above procedure; since we have 𝖶𝖯𝑖* .Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖* , 𝐶𝑖*) /∈ 𝑄] ≥ 𝜖
and the set 𝑄 is the same for𝒜 and𝒜𝑖* , then we also have 𝖶𝖯𝑖.Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝐶

′
𝑖*) /∈ 𝑄] ≥ 𝜖.

• Case 2: With overwhelming probability, during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶),
there exists no 𝑖 ∈ 𝒮 such that 𝐶𝑖 is a 𝛾𝑖-good adversary in 𝐺2

𝑃𝑖
(𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, 𝐶𝑖) for some

non-negligible 𝛾𝑖.
In this case, it must be that there exists some 𝑖* /∈ 𝒮 such that we can use the unremovability
adversary 𝒜 for 𝖶𝖯 to break the security of 𝑃𝑖* , i.e. winning game 𝐺𝑃𝑖 , 𝑖 /∈ 𝒮 with some
non-negligible advantage.
By the properties of watermarking-compatible reduction, if (with non-negligible probabil-
ity), the circuit 𝐶 produced by 𝒜 is a 𝛾-good adversary in 𝐺𝑃 , then there must exist some
𝑖 ∈ [𝑘] such that using the watermarking-compatible reduction, one can create a 𝛾𝑖-good ad-
versary for some non-negligible 𝛾𝑖. By the above analysis, 𝐶𝑖 supposedly performs exactly
the reduction for 𝑃𝑖 and if there is no good 𝐶𝑖 for 𝑖 ∈ 𝒮 , then 𝐶 can only be used to build a

9Note that the external queries made by 𝐶𝑖* will be answered by 𝖶𝖯𝑖* .𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖* , 𝐶𝑖*) during its execution, where
by our requirement on the extraction syntax, 𝖶𝖯𝑖* .𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖* , 𝐶𝑖*) will simulate the game 𝐺𝑃𝑖* for 𝐶𝑖* , answering
its queries.

32

reduction to break the security of some 𝑃𝑖, 𝑖 /∈ 𝒮.
The reduction is as follows. Let 𝒜𝑖* be the reduction and adversary in the security game
𝐺𝑃𝑖* .

– 𝒜𝑖* receives 𝗉𝗄𝑖* from the challenger and samples {𝗌𝗄𝑖, 𝗉𝗄𝑖, 𝗑𝗄𝑖,𝗆𝗄𝑖}𝑖∈𝒮 from 𝖶𝖯𝑖* .𝖶𝖬𝖲𝖾𝗍𝗎𝗉.
It gives {𝗉𝗄𝑖}𝑖∈𝒮 to 𝒜.

– When 𝒜 makes a marking query on some symbol 𝜏 , 𝒜𝑖* answers the query on its own
because it has all the {𝗌𝗄𝑖,𝗆𝗄𝑖}𝑖∈𝒮 .

– Besides answering marking queries, 𝒜𝑖* will treat 𝒜 as a stage-1 adversary in the
watermarking-compatible reduction Type 2 (Section 3.2): when 𝒜 makes a query to
oracles in game 𝐺𝑃 ,𝒜𝑖* responds as follows: if 𝗌𝗄𝑖* is required to answer the query,𝒜𝑖*

queries the challenger in 𝐺𝑃𝑖* security game; otherwise, 𝒜𝑖* answers the query using
{𝗌𝗄𝑖}𝑖∈𝒮 .
For the secret keys of {𝖶𝖯𝑖}𝑖/∈𝒮,𝑖 ̸=𝑖* , they are all sampled freshly upon every query of
𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄, 𝗉𝗄, ·) (or sampled freshly in 𝗐𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝗉𝗄, ·) which 𝒜 can do it on its own).

– Next, 𝒜 outputs circuit polynomial-size 𝐶.
– 𝒜𝑖* creates the following circuit 𝐶* using 𝐶 as a black-box:

* 𝐶* is hardcoded with {𝗌𝗄𝑖, 𝗉𝗄𝑖}𝑖∈𝒮 .
* When 𝐶 makes a query to oracles in game 𝐺𝑃 , 𝐶* responds as follows: if 𝗌𝗄𝑖*

is required to answer the query, 𝐶* queries the external challenger on the oracles
provided in game 𝐺𝑃𝑖* ; otherwise, 𝐶* answers the query using {𝗌𝗄𝑖}𝑖∈𝒮 .

* 𝐶* records all queries from 𝐶, denoted as 𝒬𝐶 .
* In the challenge phase, 𝐶* receives challenge input 𝗂𝗇𝗉𝑖 from the interaction with

an external challenger, samples a random string 𝑟, and prepares a challenge input
𝗂𝗇𝗉 for 𝐶 using 𝗂𝗇𝗉𝑖 and 𝑟.

* When 𝐶 outputs its final answer 𝗈𝗎𝗍, 𝐶* computes the function 𝑓𝑖*(𝗈𝗎𝗍,𝒬𝐶 , 𝗂𝗇𝗉)
according to the reduction function 𝑓𝑖* in the watermarking-compatible reduction
from 𝑃 to 𝑃𝑖* .

– In short, 𝐶 is treated as a stage-2 adversary 𝒜2 in security game 𝐺𝑃 ; circuit 𝐶* is a
stage-2 reduction algorithm in the watermarking-compatible reduction Type 2 from
target primitive 𝑃 to input primitive 𝑃𝑖* , with black box access to 𝐶. By the property of
the reduction, 𝐶* should win the security game 𝐺𝑃𝑖* with non-negligible advantage.

Finally, we discuss the rare case when the extraction key simulates the security game for 𝐶
statistically/computationally close to a real game.
In the setting where ({𝗑𝗄𝑖}𝑖∈𝒮 , {𝗍𝖽ℓ}ℓ∈𝒯𝐾) can only simulate 𝐺2

𝑃 for 𝐶 statistically close by
some negligible distance, then if 𝐶 is a 𝛾-good circuit in a real 𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, ·) game, then
𝐶 is a (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good circuit in the game simulated by the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm and thus by
the reduction. Afterwards, we can go back to use 𝐶 in the above Case 1 and Case 2.
Coming to the computational setting, we will see that they will also be transformed into
Case 1 or Case 2.
Note that within the scope of this work, this case corresponds precisely to having primitives
in the set 𝒯𝑘 and the computational property comes from primitives in the set 𝒯𝑘. Recall that
𝒯𝑘 only contains the primitives 𝑃ℓ where there exists a simulator algorithm such that the out-
put of 𝑃ℓ.𝖯𝗎𝖻𝖤𝗏𝖺𝗅(𝑃ℓ.𝗉𝗄, ·) is indistinguishable from the output of the simulator 𝖲𝗂𝗆(𝑃ℓ.𝗍𝖽, ·)
and in the security proof for 𝑃 , the rest of the hybrid arguments and reduction happen in
a hybrid world where we have already invoked the security for 𝑃ℓ. (see discussions in Re-

33

mark 3.15, Definition 4.9 and Remark 4.11, Remark 4.16).
We provide one such example where we need to use a NIZK proof and provide simulated
proofs to the adversarial circuits in the extraction algorithm. See the example in Appendix A
for details.
First consider the case where we only have one primitive 𝑃ℓ in set 𝒯𝐾 in our construction
(this is the case in our example Appendix A). By our premise, using ({𝗑𝗄𝑖}𝑖∈𝒮 , 𝗍𝖽ℓ}) where
𝗍𝖽ℓ ← 𝑃ℓ.𝖪𝖾𝗒𝖦𝖾𝗇(1

𝜆), one can simulate 𝐺2
𝑃 for 𝐶 computationally close by some negligible

amount. If with some non-negligible probability 𝜖, we have 𝐶 is a 𝛾-good circuit in a real
𝐺2

𝑃 (𝗌𝗄, 𝗉𝗄, 𝖺𝗎𝗑, ·) game. Then with (𝜖 − 𝗇𝖾𝗀𝗅(𝜆)) probability, 𝐶 is a (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good circuit
in the game simulated by the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm and the reductions, otherwise there exists a
PPT distinguisher that can use 𝐶 to distinguish between the real game and simulated one
to break the security of a primitive in set 𝒯𝑘: a reduction ℬ can samples all 𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄
on its own and receive the public parameters from the challenger of some 𝐺𝑃ℓ

. The rest of
simulation is the same as in Case 2 of the above analysis. At the end, ℬ tests if the circuit
output by 𝒜 is a 𝛾-good one, if yes, output guess "real view; else output guess "simulated
view".
If there are more than one𝑃ℓ ∈ 𝒯𝐾 , we can then use a hybrid to apply the above to each of
them, following the hybrid order in the security proof for the plain security of 𝑃 .
Therefore, by the security of 𝑃ℓ, we have that 𝐶 is a (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good circuit in the game
simulated by the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm. Since the drop in 𝐶’s advantage is negligible, we can go
back to Case 1 and Case 2.

Additional Properties Finally, we discuss some additional properties realized by the water-
marking composition.

Private vs. Public Extraction Firstly, we have a relatively straightforward observation that if all
underlying constructions satisfy public extraction, then the target construction also does.

Lemma 4.22 (Public Extraction). Suppose a watermakable implementation 𝖶𝖯 is constructed from wa-
termarkable implementations 𝖶𝖯1, · · · ,𝖶𝖯|𝒮|, if 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| all have public extraction and there
exists no primitive in the set 𝒯𝐾 , then 𝖶𝖯 has public extraction.

Proof. It is easy to observe that if all 𝖶𝖯𝑖 have public extraction, then all 𝗑𝗄𝑖 can be made public
and the extraction algorithm of 𝖶𝖯 can be made public. During the extraction procedure, since
the keys in the primitives in the set 𝒯𝑆 , 𝒯𝑃 are sampled online, even a public procedure can sample
them. But if we have a primitive in the set 𝒯𝐾 , then we need a trapdoor during extraction, so we
have to rule out this case.

Meaningfulness The meaningfulness of 𝖶𝖯 follows from the meaningfulness of each 𝖶𝖯𝑖 con-
struction naturally.

Collusion Resistance Finally, we show that collusion resistance also composes. Informally, sup-
pose a watermakable implementation 𝖶𝖯 is constructed from watermarkable implementations
𝖶𝖯1, · · · ,𝖶𝖯|𝒮|, if all of 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| are collusion resistant, then 𝖶𝖯 is collusion resistant. If

34

at least one of them is 𝑞-bounded collusion resistant, then 𝖶𝖯 is 𝑞-collusion resistant 𝑞 (by the
smallest 𝑞𝑖, 𝑖 ∈ |𝒮|).

Lemma 4.23 (Collusion Resistance). Suppose the above construction of 𝑃 from 𝑃1, · · · , 𝑃𝑘 has a watermarking-
compatible reduction, the watermarkable implementations 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| all satisfy strong unremovabil-
ity (Definition 4.7) with 𝑞-collusion-resistance, the constructions for {𝑃𝑗}𝑗 /∈𝒮 satisfy security defined by
their game {𝐺𝑃𝑗}𝑗 /∈𝒮 respectively, and the extraction algorithms of 𝖶𝖯1, · · · ,𝖶𝖯|𝒮| satisfy the extrac-
tion syntax in Section 4.1, then he watermarkable implementation 𝖶𝖯 satisfies strong unremovability with
𝑞-collusion resistance.

Proof. Since each marking query of 𝖶𝖯 requires querying each underlying marking oracle 𝖶𝖯𝑖.𝖬𝖺𝗋𝗄
once on the same marking message, the number of queries allowed for the reduction from 𝖶𝖯’s
unremovability is bounded by the input primitive 𝖶𝖯𝑖’s query bound. If all underlying schemes
are 𝑞-collusion resistant for some 𝑞, then all reductions can query 𝑞 times and the unremovability
proof for Lemma 4.21 stays the same. 𝖶𝖯 is also 𝑞-collusion resistant.

Extraction Simulation Property and Extraction Syntax Having this additional property in the
composed watermarkable implementation scheme allows us to further compose watermarking
schemes from input schemes that come from composition themselves.

It is easy to see that the ability of the extraction algorithm to simulate the security game also
composes.

We can observe that if all watermarkable implementations of input primitives satisfy the ex-
traction syntax (Section 4.1,and thus key simulation property Definition 4.9) , then the combined
keys ({𝗑𝗄𝑖}𝑖∈𝒮 , {𝗉𝗄𝑖}𝑖∈𝒮) can be used to simulate the game 𝐺𝑃 because all oracles used in 𝐺𝑃 can
all be built from oracles used in {𝐺𝑃𝑖}𝑖∈𝒮 according to the watermarking-compatible reduction.

Since all the 𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, ·) algorithm perfectly(statistically/computationally, resp.)
simulates the security game for 𝐺𝑃𝑖 stage 2 (as a subroutine of extraction), when each 𝐶𝑖 cre-
ated from input program 𝐶 is executed inside the procedure 𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, 𝐶𝑖): 𝐶𝑖

will simulate the game 𝐺𝑃 stage 2 for 𝐶 using external oracle queries when interacting with the
algorithm 𝖶𝖯𝑖.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝗉𝗄𝑖, 𝖺𝗎𝗑𝑖, 𝐶𝑖) and the other extraction keys {𝗑𝗄𝑖}𝑖∈𝒮 . The entire 𝖤𝗑𝗍𝗋𝖺𝖼𝗍
algorithm consists of subroutines where one simulates 𝐺𝑃 perfectly(statistically/computationally,
resp.) stage 2 for 𝐶 when running 𝐶.

When we have input primitives in 𝒯𝑘, as we have discussed in several remarks: in the extract
trapdoor(s) 𝗍𝖽 of primitives in 𝒯𝑘 to simulate part of the security game, which results in a compu-
tationally close simulation from the original game. One concrete example of such primitive in 𝒯𝑘
is NIZK, which we will use in Appendix A and Appendix G.

5 Two Simple Examples: Watermarkable CPA and CCA-secure SKE

In this section, we give two relatively simple examples through the following two steps:

• First we give their "plain" construction and show that their reduction is watermarking-
compatible.

• Then give their watermarking implementation of the target primitive in the watermarking-
compatible reduction language.

35

For the remaining examples we show in this work, we will integrate the above two discussions
for brevity.

5.1 Watermarkable CPA-secure SKE from Watermarkable weak PRF

In this section, we show a simple example of obtaining a watermarkable implementation of a CPA
secure secret-key encryption scheme from a watermarkable implementation of weak PRF. The
security of watermarkable weak PRF satisfying our requirements in Section 4.1 can be built from
LWE (with private extraction) or iO (with public extraction) [GKWW21]. The following example
was also discussed in [GKWW21].

5.2 Definition: Watermarkable Implementation of PRF

We give the functionality-preserving unremovability security definition for PRF and CPA-secure
SKE. The other definitions (pseudorandomness, CPA-security, correctness, functionality preserv-
ing) follow naturally from the correctness and security defintions of PRF and SKE respectively.

A watermarkable implementation of a PRF scheme consists of the following algorithms (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗏𝖺𝗅,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍)
and satisfies the following properties:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗌𝗄,𝗆𝗄, 𝗑𝗄): on input security parameter, outputs a secret key 𝗌𝗄, marking key
𝗆𝗄, extraction key 𝗑𝗄.

𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥 ∈ {0, 1}ℓ) → 𝑦 ∈ {0, 1}ℓ: a deterministic evaluation algorithm that on input 𝗌𝗄, 𝑥,
outputs 𝑦.

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): on marking key 𝗆𝗄, secret key 𝗌𝗄, a message 𝜏 , output a marked key 𝗌𝗄𝜏 .
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶): on extraction key 𝗌𝗄 and program 𝐶, output a mark 𝜏 ∈ℳ𝜏 or ⊥.

Functionality-Preserving A watermarkable PRF is functionality preserving if then there exists a
negligible function 𝗇𝖾𝗀𝗅(𝜆) ssuch that for all 𝜆 ∈ ℕ, , 𝑥 ∈ 𝒳 , 𝜏 ∈ℳ𝜏 :

Pr

[︂
𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥) = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥) :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Weak Pseudorandomness A watermarkable PRF satisfies weak pseudorandomness if for all
PPT 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr
[︁
𝒜𝒪(𝗌𝗄,·)(𝑥, 𝑦𝑏) = 𝑏 : 𝑥← {0, 1}ℓ, 𝑦0 = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥), 𝑦1 ← {0, 1}ℓ, 𝑏← {0, 1}

]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

where the oracle 𝒪(𝗌𝗄, ·) samples a uniformly random 𝑥← {0, 1}ℓ upon every query and outputs
(𝑥,𝖤𝗏𝖺𝗅(𝗌𝗄, ·)).

We can also consider the equivalent notion where 𝒜 is given an oracle 𝒪(𝗌𝗄, ·) which either
computes 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, ·) on random inputs or computes a real random function that samples ran-
dom input together with a random output. There will be no challenge input and 𝒜 outputs a bit
indicating which oracle it is given. Similarly for the security below.

36

Variant of Weak Pseudorandomness Game To be better compatible with our unremovability
definition, we consider the following variant of the above weak PRF game, described in a 2-stage
fasion: in stage 1,𝒜1 is allowed to query adaptively𝒪(𝗌𝗄, ·) on any input of its own choice. Entering
stage 2, it can only query 𝒪(𝗌𝗄, ·) in a way that each input is sampled at random. Then 𝒜2 is fed
with challenge input (𝑥, 𝑦𝑏) where 𝑥← {0, 1}ℓ, 𝑦0 = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥), 𝑦1 ← {0, 1}ℓ, 𝑏← {0, 1} and needs
to output the correct 𝑏.

𝛾-Unremovability of weak PRF The 𝛾-Unremovability for a watermarkable implementation of
a weak PRF scheme says, for all PPT admissible stateful adversary 𝒜, there exists a negligible
function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

𝒪(𝗌𝗄, ·) samples a uniformly random 𝑥← {0, 1}ℓ upon every query and outputs (𝑥,𝖤𝗏𝖺𝗅(𝗌𝗄, ·)).
𝒬 is the set of marks queried by 𝒜 and 𝐶 is a PPT admissible, stateful 𝛾-good adversary in the

security game 𝐺𝖯𝖱𝖥(𝗌𝗄, ·) if:

Pr
[︁
𝐶𝒪(𝗌𝗄,·)(𝑥, 𝑦𝑏) = 𝑏 : 𝑥← {0, 1}ℓ, 𝑦0 = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥), 𝑦1 ← {0, 1}ℓ, 𝑏← {0, 1}

]︁
≥ 1

2
+ 𝛾.

Remark 5.1. In the above setting, the oracle 𝒪(·) will sample a random 𝑟 and output 𝑟,𝒪(𝑟).
We can consider an even slightly stronger notion of weak PRF: in the "fully adaptive-query" setting,

𝒜, 𝐶 are allowed to make any query to the real 𝖤𝗏𝖺𝗅 oracle; only the challenge input 𝑥 is sampled uniformly
at random. Then 𝐶 is asked o distinguish between 𝑦0 = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥), 𝑦1 ← {0, 1}ℓ.

Note that [GKWW21] consider the first notion so that they can realize public extraction only by letting
the extraction key sample input-output pairs. This notion also suffices to prove watermarkable CPA security.
Both cann be constructed in [GKWW21] .

5.3 Definition: Watermarkable Implementation of CPA-secure SKE

A watermarkable implementation of a SKE scheme consists of the following algorithms:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗌𝗄,𝗆𝗄, 𝗑𝗄): on input security parameter, outputs a secret key 𝗌𝗄, marking key
𝗆𝗄, extraction key 𝗑𝗄.

𝖤𝗇𝖼(𝗌𝗄,𝑚)→ 𝖼𝗍: on input secret key 𝗌𝗄 and message 𝑚, outputs a ciphertext 𝖼𝗍.
𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)→ 𝑚: on input secret key 𝗌𝗄 and ciphertext 𝖼𝗍 outputs a message 𝑚.
𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): on marking key 𝗆𝗄, secret key 𝗌𝗄, a message 𝜏 , output a marked key 𝗌𝗄𝜏 .
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶): on extraction key 𝗌𝗄 and program 𝐶, output a mark 𝜏 ∈ℳ𝜏 or ⊥.

The correctness property is the same as the correctness property of a plain SKE scheme and we
combine it with the functionality preserving property it due to it being standard.

Correctness and Functionality Preserving A watermarkable CPA-secure SKE is functionality
preserving if then there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) ssuch that for all 𝜆 ∈ ℕ, ,𝑚 ∈ ℳ, 𝜏 ∈
ℳ𝜏 :

Pr

⎡⎣𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍′) = 𝑚 ∧ 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) = 𝑚 :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)
𝖼𝗍← 𝖤𝗇𝖼(𝗌𝗄,𝑚), 𝖼𝗍′ ← 𝖤𝗇𝖼(𝗌𝗄𝜏 ,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

37

CPA-security A watermarkable CPA secure SKE scheme satisfies CPA security if for all PPT
admissible stateful adversary 𝒜 = (𝒜1,𝒜2), there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for
all 𝜆 ∈ ℕ:

Pr

[︃
𝒜𝖤𝗇𝖼(𝗌𝗄,·)

2 (𝖼𝗍𝑏) = 𝑏 :
(𝑚0,𝑚1)← 𝒜𝖤𝗇𝖼(𝗌𝗄,·)

1

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

𝛾-Unremovability of CPA-secure SKE The 𝛾-Unremovability for a watermarkable CPA secure
SKE scheme says, for all PPT admissible stateful adversary 𝒜, there exists a negligible function
𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

where𝒬 is the set of marks queried by𝒜 and 𝐶 = (𝐶1, 𝐶2) is said to be a (PPT admissible, stateful)
𝛾-good program in the security game 𝐺2

𝐶𝐶𝐴(𝗌𝗄, ·), more specifically:

Pr

[︃
𝐶

𝖤𝗇𝖼(𝗌𝗄,·)
2 (𝖼𝗍𝑏) = 𝑏 :

(𝑚0,𝑚1)← 𝐶
𝖤𝗇𝖼(𝗌𝗄,·)
1

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≥ 1

2
+ 𝛾.

Remark 5.2. The above definition is equivalent to letting 𝐴 output (𝑚0,𝑚1) and making (𝑚0,𝑚1) as the
auxiliary input 𝖺𝗎𝗑 for 𝐺𝖢𝖢𝖠 and 𝖤𝗑𝗍𝗋𝖺𝖼𝗍. Because we can view any distribution over (𝑚0,𝑚1) used by
𝐶 as a convex combination of different message pairs {(𝑚0,𝑚1)𝑖})𝑖 and its corresponding strategy such
that the overall winning probability is 1/2 + 𝛾. Thus, we can let 𝒜 pick the message-pair and correspond-
ing strategy with the largest winning probability and hardcode them into 𝐶 instead. The other way of
implication is easy to see.

This also applies to the CCA security game.

5.4 Watermarking-Compatible Reduction

We show that the textbook construction of CPA encryption from weak PRF is watermarking-
compatible. Given a PRF scheme that satisfies weak PRF security 𝖯𝖱𝖥 = (𝖯𝖱𝖥.𝖪𝖾𝗒𝖦𝖾𝗇,𝖯𝖱𝖥.𝖤𝗏𝖺𝗅),
where input and output lengths are ℓ and key length is 𝑛.

The syntax of 𝖯𝖱𝖥 and CPA-security is standard and we refer them to the watermarkable
definitions Section 5.3, Section 5.3, by replace 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 with 𝖪𝖾𝗒𝖦𝖾𝗇 and removing 𝖤𝗑𝗍𝗋𝖺𝖼𝗍,𝖬𝖺𝗋𝗄
algorithms.

Plain Construction of CPA-secure Encryption from weak PRF

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) : 𝗌𝗄← 𝖯𝖱𝖥.𝖪𝖾𝗒𝖦𝖾𝗇(𝜆)
• 𝖤𝗇𝖼(𝗌𝗄,𝑚 ∈ {0, 1}ℓ)→ 𝖼𝗍 : samples 𝑟 ← {0, 1}ℓ; output 𝖼𝗍← (𝑟,𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟)⊕𝑚).
• 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍): parse 𝖼𝗍 := (𝑟, 𝖼𝗍′); compute 𝑚 := 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟)⊕ 𝖼𝗍′.

Watermarking-Compatible Reduction We briefly recall the textbook reduction for the above
construction, in the language of watermarking-compatible.

38

Claim 5.3. The CPA-secure SKE to weak PRF pseudorandomness reduction is a watermarking compatible
reduction.

𝖯𝖱𝖥 pseudorandomness adversary 𝒜𝖯𝖱𝖥 simulates CPA game for adversary 𝒜 as follows:

• There is no public key and public evaluation algorithm 𝖯𝗎𝖻𝖤𝗏𝖺𝗅 in the scheme, so 𝒜𝖯𝖱𝖥 and
𝒜will not receive information regarding public key 𝗉𝗄.

• First consider stage 1: For any encryption query from 𝒜1, 𝒜1
𝖯𝖱𝖥 will simulate the response

as follows: it will query the oracle 𝒪(𝗌𝗄, ·) in the security game 𝐺𝖯𝖱𝖥, where 𝒪(·) outputs
𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥) on any query 𝑥.

• After entering stage 2, for any encryption query from 𝒜2, 𝒜2
𝖯𝖱𝖥 will still simulate the re-

sponse as the above. Recall that 𝒜2
𝖯𝖱𝖥 will not get to see any queries made in stage 1.

• Note that 𝒜2
𝖯𝖱𝖥’s access to 𝒪(·) is changed to non-adaptive. 𝒪(·) performs the following:

upon every query, sample a fresh 𝑟, output 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟).
• In the challenge phase, 𝒜2

𝖯𝖱𝖥 will use the challenge input from the weak 𝖯𝖱𝖥 challenger:
𝑟* ← {0, 1}ℓ, 𝑦* ∈ {0, 1}ℓ where 𝑦* is either 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟*) or uniformly random.

• 𝒜2 sends in challenge messages (𝑚0,𝑚1); 𝒜2
𝖯𝖱𝖥 flips a coin 𝑏 ← {0, 1} and sends 𝖼𝗍 =

(𝑟*, 𝑦* ⊕𝑚𝑏) to 𝒜2.
• If 𝒜2 guesses the correct 𝑏, then 𝒜2

𝖯𝖱𝖥 output 0, for 𝑦* is 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟*)", else 𝒜2
𝖯𝖱𝖥 output

1, for "𝑦* is uniformly random".

In the above reduction, 𝒜2
𝖯𝖱𝖥’s reduction function 𝑓(𝗈𝗎𝗍, 𝑏,𝒬, 𝗂𝗇𝗉) is: ignore 𝒬, 𝗂𝗇𝗉, check if 𝒜2’s

output 𝗈𝗎𝗍 is equal to the randomness 𝑏 used in preparing the challenge input, if yes output 0 else
1.

We denote the security game for weak 𝖯𝖱𝖥 as 𝐺𝖯𝖱𝖥 and for CPA encryption as 𝐺𝐶𝑃𝐴; we also
denote the advantage of𝒜 in 𝐺𝐶𝑃𝐴 as 𝖠𝖽𝗏𝐶𝑃𝐴 and advantage of𝒜𝖯𝖱𝖥 as 𝖠𝖽𝗏𝖯𝖱𝖥. We can observe
that 𝖠𝖽𝗏𝖯𝖱𝖥 ≥ 𝖠𝖽𝗏𝐶𝑃𝐴/2− 𝑞

2ℓ
where 𝑞 is the number of queries made by 𝒜.

5.4.1 Security of Watermarkable Implementation for CPA-secure SKE

Theorem 5.4. Assuming that LWE is secure, then there exists secure single-key watermarkable implemen-
tation of CPA-secure SKE with private tracing.

Assuming that there exists indistinguishability obfuscation, then there exists secure collusion-resistant
watermarkable implementation of CPA-secure SKE with public tracing.

Theorem 5.5. [[GKWW21, MW22]] Assuming that LWE is secure, then there exists secure collusion-
resistant watermarkable implementation of weak PRF with private extraction.

Assuming that there exists indistinguishability obfuscation, then there exists secure collusion-resistant
watermarkable implementation of weak PRF with public extraction.

Note that both schemes above satisfy the properties we require in Section 4.1, including: ex-
traction key of the scheme can be used to simulate the weak PRF pseudorandomness security
game perfectly; the extraction procedure satisfies the extraction syntax 10.

Remark 5.6. In [GKWW21, MW22], the watermarkable implementation of weak PRF is called traceable
PRF. Their exact extraction procedure does not satisfy our requirement that the adversarial circuit 𝐶 can

10For conveniece, in the rest of this work, when we cite an existing watermarking scheme as a "watermarking imple-
mentation of a primitive", then the scheme satisfies all properties defined in Section 4.1.

39

make 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, ·) queries during the extraction/tracing procedure. But it can be easily modified to
satisfy this property: their tracing key has the capability to sample from the input-output space of the PRF,
and thus can answer weak PRF queries.

Lemma 5.7. Assuming that there exists collusion-resistant (resp. single-key) secure watermarkable imple-
mentation of weak PRF with public(resp. private) extraction, then there exists secure collusion-resistant
(resp. single-key) watermarkable implementation of CPA-secure SKE with public(resp. private)extraction.

To prove Lemma 5.7, we present the construction as below.

Watermarking Implementation of CPA-secure Encryption Given a watermarkable implemen-
tation of weak PRF (𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅,𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄,𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍), we can construct a
watermarkable implementation of CPA-secure SKE as follows:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗑𝗄,𝗆𝗄): compute (𝗌𝗄, 𝗑𝗄,𝗆𝗄)← 𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)
𝖤𝗇𝖼(𝗌𝗄,𝑚 ∈ {0, 1}ℓ): samples 𝑟 ← {0, 1}ℓ; output 𝖼𝗍← (𝑟,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟)⊕𝑚).
𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍): parse 𝖼𝗍 := (𝑟, 𝖼𝗍′); compute 𝑚 := 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟)⊕ 𝖼𝗍′.
𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏 ∈ℳ𝖬𝖺𝗋𝗄):

1. parse 𝗆𝗄 = 𝗐𝖯𝖱𝖥.𝗆𝗄
2. output 𝗌𝗄𝜏 ← 𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏);

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) :

1. On input circuit 𝐶 and 𝗑𝗄 = 𝗐𝖯𝖱𝖥.𝗑𝗄;
2. Treat 𝐶 as the stage-2 adversary 𝒜2 in the watermarking-compatible reduction from

CPA-security to weak PRF security to create circuit 𝐶𝖯𝖱𝖥 (𝐶𝖯𝖱𝖥 has black-box access to
𝐶) as a stage-2 reduction 𝒜2

𝖯𝖱𝖥 algorithm from CPA-security to the weak PRF security.
3. compute 𝜏/⊥ ← 𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶𝖯𝖱𝖥); if the mark extracted is not ⊥, abort and out-

put the mark.

Proof. We describe the reduction in the watermarking-compatible reduction language.
Suppose there exists a PPT adversary𝒜𝖬𝖺𝗋𝗄 for the 𝛾-unremovability security of the above wa-

termarkable CPA encryption, we can consider the adversary 𝒜𝖬𝖺𝗋𝗄 to be the stage-1 adversary 𝒜1

in the CPA-security game: 𝒜𝖬𝖺𝗋𝗄 gets to query the marking oracle 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, ·). The reduction
ℬ which is an adversary in the strong unremovability security game of the watermarkable imple-
mentation of weak PRF, can simulate both the answers to the marking queries by querying the
PRF’s marking oracle.

Then𝒜𝖬𝖺𝗋𝗄 outputs a circuit 𝐶; during the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, ·) algorithm. C will be treated as a stage-2
adversary in the CPA-security game; with black-box access to 𝐶, circuit 𝐶𝖯𝖱𝖥 will act like a stage-2
reduction from CPA-security to weak PRF security. Since 𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖱𝖥.𝗌𝗄, ·) algorithm will
perfectly simulate the weak PRF security game on its input circuit, 𝐶𝖯𝖱𝖥 will be able to answer 𝐶’s
queries and use 𝐶’s output to finish the reduction.

The reduction 𝐵 will create a circuit 𝐶 ′with black-box use of 𝐶 the same way as the above 𝐶𝐶
𝖯𝖱𝖥

and output 𝐶 ′ in the 𝛾/2-unremovability security game of the watermarkable implementation of
weak PRF.

By our assumption, 𝐶 should satisfy that Pr[𝐺𝐶𝑃𝐴(𝗌𝗄, 𝐶) = 1] ≥ 1
2 + 𝛾 and Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈

𝒬] ≥ 𝜖 for some non-negligible 𝜖. By the design of our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm, it must be the case that

40

Pr[𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖱𝖥.𝗑𝗄, 𝐶𝖯𝖱𝖥) /∈ 𝒬] ≥ 𝜖. Since the circuit 𝐶 ′ created by ℬ is exactly the same as
𝐶𝖯𝖱𝖥 and the set of marking queries 𝒬 made by ℬ to the marking oracle is the set as 𝒜𝖬𝖺𝗋𝗄’s, we
must have that Pr[𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖱𝖥.𝗑𝗄, 𝐶 ′) /∈ 𝒬] ≥ 𝜖.

Meanwhile, by the property of the reduction, we have that

Pr[𝐺𝖯𝖱𝖥(𝗐𝖯𝖱𝖥.𝗌𝗄, 𝐶
′) = 1] ≥ 1

2
+ 𝛾/3

. Therefore, ℬ breaks 𝛾/3-unremovability for watermarkable implementation of weak PRF for
some non-negligible 𝛾.

5.5 Watermarkable CCA-secure Encryption from Watermarkable MAC and PRF

In this section, we show an example of obtaining a watermarkable implementation of a CCA
secure secret-key encryption scheme from a watermarkable implementation of weak PRF and a
watermarkable implementation of MAC(or signature).

The security of watermarkable implementation of signatures (and therefore MAC) satisfying
our requirements in Section 4.1 can be built from a modification of the watermarkable signature
scheme in [GKM+19].

5.5.1 Watermaking-Compatible Reduction of CCA Security to MAC and weak PRF

We first give the "plain" construction from weak PRF and MAC to CCA-secure SKE and show that
the reduction is watermarking-compatible.

Given a PRF scheme that satisfies weak PRF security 𝖯𝖱𝖥 = (𝖯𝖱𝖥.𝖪𝖾𝗒𝖦𝖾𝗇,𝖯𝖱𝖥.𝖤𝗏𝖺𝗅), where in-
put and output lengths are ℓ and key length is 𝑛 and a MAC scheme 𝖬𝖠𝖢 = (𝖬𝖠𝖢.𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝖠𝖢.𝖲𝗂𝗀𝗇,𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒).

Construction

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) : 𝖯𝖱𝖥.𝗌𝗄← 𝖯𝖱𝖥.𝖪𝖾𝗒𝖦𝖾𝗇(𝜆),𝖬𝖠𝖢.𝗌𝗄← 𝖬𝖠𝖢.𝖪𝖾𝗒𝖦𝖾𝗇(𝜆); output 𝗌𝗄 = (𝖯𝖱𝖥.𝗌𝗄,𝖬𝖠𝖢.𝗌𝗄).
• 𝖤𝗇𝖼(𝗌𝗄,𝑚 ∈ {0, 1}ℓ)→ 𝖼𝗍 :

– parse 𝗌𝗄 = (𝖯𝖱𝖥.𝗌𝗄,𝖬𝖠𝖢.𝗌𝗄);
– samples 𝑟 ← {0, 1}ℓ;
– compute 𝖼𝗍0 ← (𝑟,𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑟)⊕𝑚);
– compute 𝜎 = 𝖬𝖠𝖢.𝖲𝗂𝗀𝗇(𝖬𝖠𝖢.𝗌𝗄, 𝖼𝗍0)
– output 𝖼𝗍 = (𝖼𝗍0, 𝜎),

• 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍):

– parse 𝖼𝗍 = (𝖼𝗍0, 𝜎) and 𝗌𝗄 = (𝖯𝖱𝖥.𝗌𝗄,𝖬𝖠𝖢.𝗌𝗄);
– If 𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒(𝖬𝖠𝖢.𝗌𝗄, 𝖼𝗍0, 𝜎) = 1 continue, else abort and output ⊥.
– parse 𝖼𝗍0 := (𝑟, 𝖼𝗍′); compute 𝑚 := 𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝖯𝖱𝖥.𝗌𝗄, 𝑟)⊕ 𝖼𝗍′.
– output 𝑚.

Claim 5.8. The CCA-secure SKE to weak PRF pseudorandomnes’s reduction and the CCA-secure SKE to
EUF-CMA-security of MACs reduction are both watermarking compatible reductions.

41

Watermarking-Compatible Reduction We describe the security reduction of the above con-
struction in the language of watermarking-compatible.

First consider a reduction for 𝖬𝖠𝖢 security, 𝒜𝖬𝖠𝖢 simulates CPA game for adversary 𝒜 as
follows:

• There is no public key and public evaluation algorithm 𝖯𝗎𝖻𝖤𝗏𝖺𝗅 in the scheme, so 𝒜𝖯𝖱𝖥 and
𝒜will not receive information regarding public key 𝗉𝗄.

• 𝒜𝖬𝖠𝖢 samples its own 𝖯𝖱𝖥 secret key 𝖯𝖱𝖥.𝗌𝗄.
• For stage 1: For any encryption query from𝒜1,𝒜1

𝖬𝖠𝖢 will simulate the response as follows: it
will compute the 𝖼𝗍0 part of ciphertext and then query the signing oracle 𝖬𝖠𝖢.𝖲𝗂𝗀𝗇(𝖬𝖠𝖢.𝗌𝗄, ·)
in the security game 𝐺𝖬𝖠𝖢. For any decryption query,𝒜𝖬𝖠𝖢 will query the verification oracle
𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒(𝖬𝖠𝖢.𝗌𝗄, ·).

• After entering stage 2, for any encryption or decryption query from 𝒜2, 𝒜2
𝖬𝖠𝖢 will still sim-

ulate the response as the above. Recall that 𝒜2
𝖬𝖠𝖢 will not get to see any queries made in

stage 1 and 𝒜2
𝖬𝖠𝖢 will record all queries from 𝒜2.

• In the challenge phase,𝒜2 sends in challenge messages (𝑚0,𝑚1);𝒜2
𝖬𝖠𝖢 flips a coin 𝑏← {0, 1}

and sends the encryption of 𝑚𝑏 to 𝒜2.
• 𝐴2

𝖬𝖠𝖢 continues to simulate the encryption and decryption oracles for 𝒜2.
• In the end, 𝒜2

𝖬𝖠𝖢 will look up 𝒜2’s queries: find a decryption query 𝖼𝗍 = (𝖼𝗍0, 𝜎) such that it
has never been the output of an encryption query and the decryption oracle did not output
⊥ on this query. 𝒜2

𝖬𝖠𝖢 output (𝖼𝗍0, 𝜎) as its forgery.

If such a decryption query exists in the end, then 𝒜𝖬𝖠𝖢 break the EUF-CMA-security of 𝖬𝖠𝖢
(Otherwise, we will do a reduction to weak PRF).

In the above reduction, 𝒜2
𝖬𝖠𝖢’s reduction function 𝑓(𝗈𝗎𝗍, 𝑟,𝒬, 𝗂𝗇𝗉) is: ignore 𝗈𝗎𝗍, 𝗂𝗇𝗉, 𝑟, check if

𝒜2’s queries 𝒬 contain a decryption query where the input of this query is not from the output of
an encryption query; if found, output this query.

Since such a ciphertext pair was never output by the encryption oracle, then it means that the
reduction 𝒜𝖬𝖠𝖢 never queried the corresponding message-signature out of the decryption oracle.
Thus 𝒜𝖬𝖠𝖢 can use it to break EUF-CMA-security of MAC.

If no such a decryption query exists, we can build a reduction to break the weak pseudoran-
domness of PRF. The reduction to weak PRF security will be similar to Section 5.1, except that the
reduction will sample its own MAC keys to simulate the oracles. Since we have discussed this
example in sufficient detail in the technical overview, we omit repeating the details here.

5.5.2 Definition: Watermarkable Implementation of CCA-secure SKE

We give the CCA2 security and unremovability security definition for CCA2-secure SKE. The
other definitions (correctness, functionality preserving) follow naturally from the correctness and
previously discussed CPA secure SKE.

CCA2-security A watermarkable CPA secure SKE scheme satisfies CPA security if for all PPT
admissible stateful adversary 𝒜 = (𝒜1,𝒜2), there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for
all 𝜆 ∈ ℕ:

Pr

[︃
𝒜𝖤𝗇𝖼(𝗌𝗄,·),𝖣𝖾𝖼(𝗌𝗄,·)

2 (𝖼𝗍𝑏) = 𝑏 :
(𝑚0,𝑚1)← 𝒜𝖤𝗇𝖼(𝗌𝗄,·),𝖣𝖾𝖼(𝗌𝗄,·)

1

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

42

where 𝒜2 can only make decryption queries on 𝖼𝗍 ̸= 𝖼𝗍𝑏.

𝛾-Unremovability of CCA2-secure SKE The 𝛾-Unremovability for a watermarkable CCA2 se-
cure SKE scheme says, for all PPT admissible stateful adversary 𝒜 = (𝒜1,𝒜2), there exists a
negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

where 𝒬 is the set of marks queried by 𝒜 and 𝐶 = (𝐶1, 𝐶2) is a PPT admissible, stateful 𝛾-good
adversary in the security game 𝐺𝐶𝐶𝐴(𝗌𝗄, ·), more specifically:

Pr

[︃
𝐶

𝖤𝗇𝖼(𝗌𝗄,·),𝖣𝖾𝖼(𝗌𝗄,·)
2 (𝖼𝗍𝑏) = 𝑏 :

(𝑚0,𝑚1)← 𝐶
𝖤𝗇𝖼(𝗌𝗄,·),𝖣𝖾𝖼(𝗌𝗄,·)
1

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≥ 1

2
+ 𝛾.

𝐶 is admissible if it only make queries to the oracle on 𝖼𝗍 ̸= 𝖼𝗍𝑏.
We refer the watermarkable MAC (and signatures) definition to Appendix D.2.

5.5.3 Security of Watermarkable Implementation for CCA-secure SKE

Theorem 5.9. Assuming LWE, then there exists secure bounded collusion-resistant watermarkable imple-
mentation of CCA-secure SKE with private extraction.

Assuming that there exists indistinguishability obfuscation, then there exists secure bounded collusion-
resistant watermarkable implementation of CCA-secure SKE with private tracing.

Tha above theorem is based on Theorem 5.5 and the following:

Theorem 5.10. [Revision of [GKM+19]] Assuming that there exists secure OWFs, then there exists se-
cure watermarkable implementation of digital signatures (and MAC) with private extraction and bounded
collusion resistance.

Remark 5.11. The construction for the watermarkable digital signature scheme in the original [GKM+19]
does not exactly satisfy our requirements in Section 4.1. But we will show that a minor modification of the
scheme will suffice.

Lemma 5.12. Assuming that there exists collusion-resistant (resp. single-key) secure watermarkable im-
plementation of weak PRF and MAC, then there exists secure collusion-resistant (resp. single-key) water-
markable implementation of CCA-secure SKE with private extraction.

Remark 5.13. [GKWW21, MW22]can give us a watermarkable weak PRF scheme that suffices for our
use, though their definition of weak PRF allows only non-adaptive queries of random 𝑟 and its evalaution.
We need the weak PRF to allow adaptive queries to be used in CCA construction. But their prvate-key
watermarkable PRF scheme already satisfies this stronger definition, by having the PRF evaluation key
included in the tracing key.

To prove Lemma 5.12, we present the construction as below.

43

Watermarking Implementation of CCA-secure Encryption Given a watermarkable implemen-
tation of weak PRF (𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅,𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄,𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍) and one of MAC (𝗐𝖬𝖠𝖢.𝖶𝖬𝖲𝖾𝗍𝗎𝗉,
𝗐𝖬𝖠𝖢.𝖲𝗂𝗀𝗇,𝗐𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒,𝗐𝖬𝖠𝖢.𝖬𝖺𝗋𝗄,𝗐𝖬𝖠𝖢.𝖤𝗑𝗍𝗋𝖺𝖼𝗍), we can construct a watermarkable imple-
mentation of CCA-secure SKE as follows:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗑𝗄,𝗆𝗄):

1. compute (𝗐𝖯𝖱𝖥.𝗌𝗄,
𝗐𝖯𝖱𝖥.𝗑𝗄,𝗐𝖯𝖱𝖥.𝗆𝗄)← 𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆); compute (𝗐𝖬𝖠𝖢.𝗌𝗄,𝗐𝖬𝖠𝖢.𝗑𝗄,𝖬𝖠𝖢.𝗆𝗄)←
𝗐𝖬𝖠𝖢.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

2. output 𝗌𝗄 = (𝗐𝖯𝖱𝖥.𝗌𝗄,𝗐𝖬𝖠𝖢.𝗌𝗄);𝗆𝗄 = (𝗐𝖯𝖱𝖥.𝗆𝗄,𝗐𝖬𝖠𝖢.𝗆𝗄); 𝗑𝗄 = (𝗐𝖯𝖱𝖥.𝗑𝗄,𝗐𝖬𝖠𝖢.𝗑𝗄)

𝖤𝗇𝖼(𝗌𝗄,𝑚 ∈ {0, 1}ℓ):
1. parse 𝗌𝗄 = (𝗐𝖯𝖱𝖥.𝗌𝗄,𝗐𝖬𝖠𝖢.𝗌𝗄);
2. samples 𝑟 ← {0, 1}ℓ;
3. compute 𝖼𝗍0 ← (𝑟,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗐𝖯𝖱𝖥.𝗌𝗄, 𝑟)⊕𝑚);
4. compute 𝜎 = 𝗐𝖬𝖠𝖢.𝖲𝗂𝗀𝗇(𝗐𝖬𝖠𝖢.𝗌𝗄, 𝖼𝗍0)
5. output 𝖼𝗍 = (𝖼𝗍0, 𝜎),

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍):

1. parse 𝖼𝗍 = (𝖼𝗍0, 𝜎) and 𝗌𝗄 = (𝗐𝖯𝖱𝖥.𝗌𝗄,𝗐𝖬𝖠𝖢.𝗌𝗄);;
2. If 𝗐𝖬𝖠𝖢.𝖵𝖾𝗋𝗂𝖿𝗒(𝗐𝖬𝖠𝖢.𝗌𝗄, 𝖼𝗍0, 𝜎) = 1 continue, else abort and output ⊥.
3. parse 𝖼𝗍0 := (𝑟, 𝖼𝗍′); compute 𝑚 := 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗐𝖯𝖱𝖥.𝗌𝗄, 𝑟)⊕ 𝖼𝗍′.
4. output 𝑚.

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏 ∈ℳ𝖬𝖺𝗋𝗄):

1. parse 𝗆𝗄 = (𝗐𝖯𝖱𝖥.𝗆𝗄,𝗐𝖬𝖠𝖢.𝗆𝗄)
2. compute 𝗌𝗄𝖯𝖱𝖥,𝜏 ← 𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗐𝖯𝖱𝖥.𝗆𝗄,𝗐𝖯𝖱𝖥.𝗌𝗄, 𝜏);

𝗌𝗄𝖬𝖠𝖢,𝜏 ← 𝗐𝖬𝖠𝖢.𝖬𝖺𝗋𝗄(𝗐𝖬𝖠𝖢.𝗆𝗄,𝗐𝖬𝖠𝖢.𝗌𝗄, 𝜏);
3. output (𝗌𝗄𝖯𝖱𝖥,𝜏 , 𝗌𝗄𝖬𝖠𝖢,𝜏)

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) :

1. On input circuit 𝐶 and 𝗑𝗄 = (𝗐𝖯𝖱𝖥.𝗑𝗄,𝗐𝖬𝖠𝖢.𝗑𝗄);
2. Initialize empty tuple �⃗� .
3. Let 𝑃1 := 𝖯𝖱𝖥 and 𝑃2 := 𝖬𝖠𝖢; For 𝑖 = 1, 2:

(a) Treat 𝐶 as the stage-2 adversary 𝒜2 in the watermarking-compatible reduction
from CCA-security to 𝑃𝑖 security; create a circuit 𝐶𝐶

𝑃𝑖
(i.e. 𝐶𝑃𝑖 has black-box access

to 𝐶) as a stage-2 reduction algorithm 𝒜2
𝑖 from CCA-security game to 𝑃𝑖’s security

game.
(b) compute 𝜏/⊥ ← 𝗐𝖯𝗂.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝗂.𝗑𝗄, 𝐶

𝐶
𝑃𝑖

); if the mark extracted is not ⊥, add it to �⃗� .
4. output �⃗�

Now we prove the unremovability security of the watermarkable implementation of the CCA
secure encryption scheme.

Proof. We describe the reduction in the watermarking-compatible reduction language.
Suppose there exists a PPT adversary 𝒜𝖬𝖺𝗋𝗄 for the 𝛾-unremovability security of the above

watermarkable CCA encryption, we can consider the adversary 𝒜𝖬𝖺𝗋𝗄 to be the stage-1 adversary

44

𝒜1 in the CCA-security game: 𝒜𝖬𝖺𝗋𝗄 gets to query the marking oracle 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, ·), which is a
leakage on the secret key {𝗐𝖯𝖱𝖥.𝗌𝗄,𝗐𝖬𝖠𝖢.𝗌𝗄}.

Let us denote 𝑃1 = 𝖯𝖱𝖥;𝑃2 = 𝗐𝖬𝖠𝖢. The reduction ℬ𝑖 which is an adversary in the 𝛾/3-
unremovability security game of the watermarkable implementation of primitive 𝑃𝑖, can simulate
both the answers to the marking queries by querying the challenger.

Then𝒜𝖬𝖺𝗋𝗄 outputs a circuit 𝐶; during the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, ·) algorithm. C will be treated as a stage-
2 adversary in the CCA-security game; with black-box access to 𝐶. circuit 𝐶𝑃𝑖 will act like a stage-2
reduction from CCA-security to 𝑃𝑖’s security. Since 𝗐𝖯𝗂.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝗂.𝗑𝗄, ·) algorithm will perfectly
simulate the security game 𝐺𝑃𝑖 on its input circuit, 𝐶𝑃𝑖 will be able to answer 𝐶’s queries and use
𝐶’s output to finish the reduction.

Since we are assuming that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖, for some non-negligible 𝜖. By the design
of our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm, it must be that for both 𝑖 ∈ {1, 2}, Pr[𝗐𝖯𝗂.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝗂.𝗑𝗄, 𝐶

𝐶
𝑖) /∈ 𝒬] ≥ 𝜖.

We now consider two cases. For any 𝒜𝖤𝗇𝖼(𝗌𝗄,·),𝖣𝖾𝖼(𝗌𝗄,·),𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(𝗉𝗄) producing a 𝛾-good 𝐶
such that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖, one of the following cases must hold:

• Case 1: In case 1, with some non-negligible probability, 𝐶1 is 𝛾1-good in the game 𝐺𝖯𝖱𝖥(𝗐𝖯𝖱𝖥.𝗌𝗄, ·)
for some non-negligible 𝛾1. In other words, during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶), 𝐶 makes
decryption queries on ciphertexts that all come from the encryption queries.
The reduction 𝐵1 will create a circuit 𝐶 ′1 with black-box use of 𝐶 the same way as the circuit
𝐶𝐶
𝑃1

created in the extraction algorithm and output 𝐶 ′1 in the 𝛾1-unremovability security
game of the watermarkable implementation of weak PRF.
Since the circuit 𝐶 ′ created by ℬ1 is exactly the same as 𝐶𝐶

𝖯𝖱𝖥 and the set of marking queries𝒬
made byℬ to the marking oracle is the set as𝒜𝖬𝖺𝗋𝗄’s, we must have that Pr[𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖱𝖥.𝗑𝗄, 𝐶 ′1) /∈
𝒬] ≥ 𝜖.
Meanwhile, by the property of the reduction, we have that Pr[𝐺𝖯𝖱𝖥(𝗐𝖯𝖱𝖥.𝗌𝗄, 𝐶

′
1) = 1] ≥

1
2 +𝛾1 for some non-negligible 𝛾1. Therefore, ℬ breaks 𝛾1-unremovability for watermarkable
implementation of weak PRF.

• Case 2: In case 2, with some non-negligible probability, 𝐶2 is 𝛾2-good in the game 𝐺𝖬𝖠𝖢(𝗐𝖬𝖠𝖢.𝗌𝗄, ·)
for some non-negligible 𝛾2.
In other words, during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶), 𝐶 makes decryption queries on ci-
phertexts that not only come from the encryption queries.
The reduction 𝐵2 will create a circuit 𝐶 ′2 with black-box use of 𝐶 the same way as the circuit
𝐶𝐶
𝖬𝖠𝖢 created in the extraction algorithm and output 𝐶 ′2 in the 𝛾2-unremovability security

game of the watermarkable implementation of weak PRF.
Since the circuit 𝐶 ′ created by ℬ2 is exactly the same as 𝐶𝖬𝖠𝖢 and the set of marking queries
𝒬made byℬ2 to the marking oracle is the set as𝒜𝖬𝖺𝗋𝗄’s, we must have that Pr[𝗐𝖬𝖠𝖢.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖬𝖠𝖢.𝗑𝗄, 𝐶 ′2)
/∈ 𝒬] ≥ 𝜖.
Meanwhile, by the property of the reduction, we have that Pr[𝐺𝖬𝖠𝖢(𝗐𝖬𝖠𝖢.𝗌𝗄, 𝐶 ′2) = 1] ≥
1
2+𝛾2 for some non-negligible 𝛾2. Therefore, ℬ2 breaks 𝛾2-unremovability for watermarkable
implementation of MAC.

By the property of the watermarking-compatible reduction (shown in Section 5.5.1), one of the
above two cases must hold.

45

6 Watermarkable CCA-secure PKE from Watermarkable Identity-based
Encryption and Strong One-Time Signature

In this section, we give an example of how to achieve watermarkable implementation of CCA-
secure PKE, where type-2 reduction is used. The watermarkable CCA-secure PKE scheme is based
on the construction from selectively secure IBE and strong one-time signatures ([BCHK07])

6.1 Definition: Watermarkable CCA2-secure PKE

A watermarkable implementation of a SKE scheme consists of the following algorithms:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗌𝗄, 𝗉𝗄,𝗆𝗄, 𝗑𝗄): on input security parameter, outputs a secret key 𝗌𝗄, public key
𝗉𝗄, marking key 𝗆𝗄, extraction key 𝗑𝗄.

𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍: on input public key 𝗉𝗄 and message 𝑚, outputs a ciphertext 𝖼𝗍.
𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)→ 𝑚: on input secret key 𝗌𝗄 and ciphertext 𝖼𝗍 outputs a message 𝑚.
𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): on marking key 𝗆𝗄, secret key 𝗌𝗄, a message 𝜏 , output a marked key 𝗌𝗄𝜏 .
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶): on extraction key 𝗌𝗄, public key 𝗉𝗄 and program 𝐶, output a mark 𝜏 ∈ ℳ𝜏 or

⊥.

The correctness property is the same as the correctness property of a plain PKE scheme and
we combine it with the functionality preserving property it due to it being standard.

Correctness and Functionality Preserving A watermarkable PKE is functionality preserving if
then there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) ssuch that for all 𝜆 ∈ ℕ, ,𝑚 ∈ℳ, 𝜏 ∈ℳ𝜏 :

Pr

⎡⎣𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) = 𝑚 ∧ 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) = 𝑚 :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)̃︀𝗌𝗄← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)
𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

CCA2-security A watermarkable PKE scheme satisfies CCA2 security if for all PPT admissible
stateful adversary 𝒜 = (𝒜1,𝒜2), there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︃
𝒜𝖣𝖾𝖼(𝗌𝗄,·)

2 (𝗌𝗍, 𝖼𝗍𝑏) = 𝑏 :
(𝑚0,𝑚1, 𝗌𝗍)← 𝒜𝖣𝖾𝖼(𝗌𝗄,·)

1 (𝗉𝗄)
𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

𝒜 is admissible if it only make queries to the oracle on 𝖼𝗍 ̸= 𝖼𝗍𝑏.

𝛾-Unremovability of CCA2-secure PKE The 𝛾-Unremovability for a watermarkable CCA2 se-
cure PKE scheme says, for all PPT admissible stateful adversary 𝒜 = (𝒜1,𝒜2), there exists a
negligible function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆, 𝗉𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

46

where 𝒬 is the set of marks queried by 𝒜 and 𝐶 = (𝐶1, 𝐶2) is a PPT admissible, stateful 𝛾-good
adversary in the security game 𝐺𝐶𝐶𝐴(𝗌𝗄, 𝗉𝗄, ·), more specifically:

Pr

[︃
𝐶

𝖣𝖾𝖼(𝗌𝗄,·)
2 (𝖼𝗍𝑏) = 𝑏 :

(𝑚0,𝑚1)← 𝐶
𝖣𝖾𝖼(𝗌𝗄,·)
1 (𝗉𝗄, 1𝜆)

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏), 𝑏← {0, 1}

]︃
≥ 1

2
+ 𝛾.

𝐶 is admissible if it only make queries to the oracle on 𝖼𝗍 ̸= 𝖼𝗍𝑏.

6.1.1 Preliminaries

Definition: Watermarkable Implementation of Identity-Based Encryption For clarity, we first
give the definition for watermarkable implementation of a selectively secure identity-based en-
cryption 𝗐𝖨𝖡𝖤 where one can mark the master secret key, though it is easy to see that they match
the definition in Section 4.1. It consists of the following algorithms.

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗆𝗌𝗄,𝗆𝗉𝗄,𝗆𝗄, 𝗑𝗄): on input security parameter, outputs a master secret key
𝗆𝗌𝗄, master public key 𝗆𝗉𝗄, marking key 𝗆𝗄, extraction key 𝗑𝗄.

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝗂𝖽)→ (𝗌𝗄𝗂𝖽): on input mster secret key, and 𝗂𝖽 ∈ ℐ𝒟, output a key 𝗌𝗄𝗂𝖽.
𝖤𝗇𝖼(𝗆𝗉𝗄,𝑚, 𝗂𝖽)→ 𝖼𝗍𝗂𝖽: on input public key 𝗉𝗄, message 𝑚 and 𝗂𝖽 ∈ ℐ𝒟, outputs a ciphertext 𝖼𝗍.
𝖣𝖾𝖼(𝗌𝗄𝗂𝖽, 𝖼𝗍)→ 𝑚 : on input secret key 𝗌𝗄𝗂𝖽 and ciphertext 𝖼𝗍 outputs a message 𝑚.
𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄, 𝜏)→ 𝗆𝗌𝗄𝜏 : on marking key 𝗆𝗄, secret key 𝗆𝗌𝗄, a message 𝜏 , output a marked key

𝗆𝗌𝗄𝜏 .
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑, 𝐶) → 𝜏/⊥ : on extraction key 𝗌𝗄, public key 𝗆𝗉𝗄 auxiliary input 𝖺𝗎𝗑 and

program 𝐶, output a mark 𝜏 ∈ℳ𝜏 or ⊥.

Note that for our applications, we only consider marking a master secret key. But a scheme
where one marks an ID-embedded key can also be applicable in certain compositions. Both types
of watermarkable IBE can be consructed from modifications of the watermarkable ABE scheme in
[GKM+19].

Correctness The functionality-preserving property says, for all 𝑚 ∈ ℳ, 𝗂𝖽 ∈ 𝐼𝐷, there exists a
negligible function 𝗇𝖾𝗀𝗅(𝜆) such that:

Pr

⎡⎣ (𝖣𝖾𝖼(𝗌𝗄𝗂𝖽, 𝖼𝗍) = 𝑚)∧
(𝖣𝖾𝖼(𝗆𝗌𝗄, 𝖼𝗍) = 𝑚)

:
(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝗌𝗄𝗂𝖽 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝗂𝖽)
𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗂𝖽,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Functionality-Preserving The functionality-preserving property says, for all 𝑚 ∈ ℳ, 𝗂𝖽 ∈ 𝐼𝐷
and all 𝜏 ∈ℳ𝜏 , there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that:

Pr

⎡⎢⎢⎣ (𝖣𝖾𝖼(𝗌𝗄𝗂𝖽,𝜏 , 𝖼𝗍) = 𝑚)∧
(𝖣𝖾𝖼(𝗆𝗌𝗄𝜏 , 𝖼𝗍) = 𝑚)

:

(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)
𝗆𝗌𝗄𝜏 ← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)
𝗌𝗄𝗂𝖽,𝜏 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝜏 , 𝗂𝖽)

𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗂𝖽,𝑚)

⎤⎥⎥⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

47

Selective-ID Security The selective-ID CPA security property says, for all 𝑚 ∈ ℳ, 𝗂𝖽 ∈ 𝐼𝐷
and all 𝜏 ∈ ℳ𝜏 , and for all PPT admissible stateful adversary 𝒜 = (𝒜1,𝒜2,𝒜3), there exists a
negligible function 𝗇𝖾𝗀𝗅(𝜆) such that:

Pr

⎡⎢⎢⎣𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)
3 (𝖼𝗍𝑏) = 𝑏 :

𝗂𝖽* ← 𝒜1(1
𝜆)

(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

(𝑚0,𝑚1)← 𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)
2 (𝗆𝗉𝗄)

𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗂𝖽*,𝑚𝑏), 𝑏← {0, 1}

⎤⎥⎥⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

where 𝒜 = (𝒜1,𝒜2,𝒜3) is admissible if 𝒜2,𝒜3 only makes queries to the oracle 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) on
𝗂𝖽 ̸= 𝗂𝖽*.

Additionally, we denote the above security game after 𝗂𝖽*,𝑚𝑠𝑘,𝗆𝗉𝗄 are fixed as 𝐺𝖨𝖡𝖤(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗂𝖽*, ·).
Note that the stages in the above defintion do not exactly match the stage in the watermarking-

compatible reduction, as shown below.

𝛾-Unremovability The 𝛾-Unremovability for a watermarkable selective-ID secure IBE scheme
says, for all 𝑚 ∈ ℳ, 𝗂𝖽 ∈ 𝐼𝐷 and all 𝜏 ∈ ℳ𝜏 , and for all PPT admissible stateful adversary
𝒜 = (𝒜1,𝒜2), there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that:

Pr

⎡⎣ 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = 𝗂𝖽*, 𝐶) /∈ 𝒬
∧𝐶 is 𝛾-good

:

𝗂𝖽* ← 𝒜1(1
𝜆)

(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄,·)
2 (𝗆𝗉𝗄)

⎤⎦ ≤ 𝗇𝖾𝗀𝗅(𝜆).

where 𝒬 is the set of marks queried by 𝒜2 and 𝐶 = (𝐶1, 𝐶2) is a PPT admissible, stateful 𝛾-good
adversary in the security game 𝐺𝖨𝖡𝖤(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗂𝖽*, ·), more specifically:

Pr

[︃
𝐶

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)
2 (𝖼𝗍𝑏) = 𝑏 :

(𝑚0,𝑚1)← 𝐶
𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)
1 (𝗆𝗉𝗄)

𝖼𝗍𝑏 ← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗂𝖽*,𝑚𝑏), 𝑏← {0, 1}

]︃
≥ 1

2
+ 𝛾.

𝐶 is admissible if and only if 𝐶 only make queries to the oracle 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) on 𝗂𝖽 ̸= 𝗂𝖽*.

6.2 Watermarkable CCA-secure PKE Construction

In this section, we prove Theorem A.1with an alternative approach, based on [BCHK07].

Theorem 6.1. Assuming the hardness of LWE, there exists secure watermarkable implementation of identity-
based encryption with selective-ID security, with private extraction and collusion-resistant security.

We prove this above theorem in Appendix C by making a modification of [GKM+19].

Lemma 6.2. Assuming there exists secure watermarkable implementation of (private-extraction, collusion
resistant) identity-based encryption with selective-ID security and strongly unforgeable one-time signa-
tures, then there exists secure (private-extraction, collusion resistant) watermarkable implementation of
CCA-secure PKE

Now we describe the construction for watermarkable implementation of CCA-secure PKE
from a watermarkable implementation of selective-ID secure IBE scheme 𝗐𝖨𝖡𝖤 = (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖪𝖾𝗒𝖦𝖾𝗇,
𝖤𝗇𝖼,𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍) and a one-time strongly unforgeable signature scheme 𝖮𝖳𝖲 = (𝖪𝖾𝗒𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒)
(without watermarking).

48

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗆𝗌𝗄,𝗆𝗉𝗄,𝗆𝗄, 𝗑𝗄): compute (𝗐𝖨𝖡𝖤.𝗆𝗌𝗄,𝗐𝖨𝖡𝖤.𝗆𝗉𝗄,𝗐𝖨𝖡𝖤.𝗆𝗄,𝗐𝖨𝖡𝖤.𝗑𝗄)← 𝗐𝖨𝖡𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆);
output 𝗌𝗄 = 𝗐𝖨𝖡𝖤.𝗆𝗌𝗄; 𝗉𝗄 = 𝗐𝖨𝖡𝖤.𝗆𝗉𝗄;𝗆𝗄 = 𝗐𝖨𝖡𝖤.𝗆𝗄; 𝗑𝗄 = (𝗐𝖨𝖡𝖤.𝗑𝗄,𝗐𝖨𝖡𝖤.𝗆𝗉𝗄).

𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍:

1. compute (𝖮𝖳𝖲.𝗏𝗄,𝖮𝖳𝖲.𝗌𝗄)← 𝖮𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆);
2. compute 𝖼𝗍𝗏𝗄 ← 𝗐𝖨𝖡𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗂𝖽 = 𝗏𝗄,𝑚);
3. compute 𝜎 ← 𝖮𝖳𝖲.𝖲𝗂𝗀𝗇(𝖮𝖳𝖲.𝗌𝗄, 𝖼𝗍𝗏𝗄);
4. output 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄).

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)→ 𝑚 :

1. parse 𝖼𝗍 := (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄), 𝗌𝗄 = 𝗐𝖨𝖡𝖤.𝗆𝗌𝗄;
2. if 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀)) = 1, continue; else abort and output ⊥.
3. compute 𝗌𝗄𝗏𝗄 ← 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, 𝗂𝖽 = 𝗏𝗄);
4. Output 𝑚← 𝗐𝖨𝖡𝖤.𝖣𝖾𝖼(𝗌𝗄𝗏𝗄, 𝖼𝗍𝗏𝗄).

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)→ 𝗌𝗄𝜏 : compute 𝗌𝗄𝜏 ← 𝗐𝖨𝖡𝖤.𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄 = 𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, 𝜏).
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝖺𝗎𝗑 = ⊥, 𝐶)→ 𝜏/⊥ :

1. parse 𝗑𝗄 := 𝗐𝖨𝖡𝖤.𝗑𝗄,𝗐𝖨𝖡𝖤.𝗆𝗉𝗄. Samples (𝖮𝖳𝖲.𝗏𝗄*,𝖮𝖳𝖲.𝗌𝗄*)← 𝖮𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆).
2. Create a circuit 𝐶𝖨𝖡𝖤 that has black-box access to 𝐶.

• 𝐶𝖨𝖡𝖤 is hardcoded with challenge 𝗂𝖽* = 𝖮𝖳𝖲.𝗏𝗄* and 𝖮𝖳𝖲.𝗌𝗄*, 𝗐𝖨𝖡𝖤.𝗆𝗉𝗄
• 𝐶𝖨𝖡𝖤 simulates the CCA PKE security game for 𝐶 by simulating 𝖣𝖾𝖼(𝗌𝗄, ·) oracles

as follows:
(a) when 𝐶 makes a query 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄); first check if 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀)) =

1, if yes continue; else output ⊥.
(b) make an external query to a 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle for 𝗌𝗄𝗏𝗄 ← 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝗏𝗄).

Output 𝑚← 𝗐𝖨𝖡𝖤.𝖣𝖾𝖼(𝗌𝗄𝗏𝗄, 𝖼𝗍𝗏𝗄).
• In the challenge phase, 𝐶 outputs (𝑚0,𝑚1); then 𝐶𝖨𝖡𝖤 submits (𝑚0,𝑚1) to the exter-

nal challenger and receives challenger ciphertext 𝖼𝗍𝑏,𝗏𝗄* = 𝖤𝗇𝖼(𝗆𝗉𝗄,𝖮𝖳𝖲.𝗏𝗄*,𝑚𝑏), 𝑏←
{0, 1};

• feed 𝐶 with 𝖼𝗍*𝑏 = (𝖼𝗍𝑏,𝗏𝗄* , 𝗌𝗂𝗀
* = 𝖮𝖳𝖲.𝖲𝗂𝗀𝗇(𝖮𝖳𝖲.𝗌𝗄*, 𝖼𝗍𝑏,𝗏𝗄*),𝖮𝖳𝖲.𝗏𝗄

*).
• Continue to simulate 𝖣𝖾𝖼(𝗌𝗄, ·) oracle for 𝐶 and only answer queries 𝖼𝗍 ̸= 𝖼𝗍*𝑏 ; fi-

nally 𝐶 outputs a bit 𝑏′ and 𝐶𝖨𝖡𝖤 outputs the same.
3. Output 𝜏/⊥ ← 𝗐𝖨𝖡𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖨𝖡𝖤.𝗑𝗄, 𝖺𝗎𝗑 = 𝗂𝖽*, 𝐶𝖨𝖡𝖤);

Proof. We devide our analysis into cases.
Suppose there exists adversary 𝒜 that breaks the 𝛾-unremovability of watermarkable CCA-

secure PKE for some non-negligible 𝛾, i.e. 𝒜𝖣𝖾𝖼(𝗌𝗄,·),𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(𝗉𝗄) produces some program 𝐶 such
that Pr[𝐺𝐶𝐶𝐴(𝗌𝗄, 𝗉𝗄, 𝐶) = 1] ≥ 1

2 + 𝛾 (for 𝐺𝐶𝐶𝐴 see Section 5.5.2) and Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) ∈ 𝒬] ≥ 𝜖
for some non-negligible 𝜖.

For any (𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄) generated by 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 and any 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(𝗉𝗄) producing a 𝛾-good
𝐶 such that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖, one of the following cases must hold:

• Case 1: during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶), the program 𝐶 produced by the adversary
𝒜will only make queries that have the format 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗏𝗄, 𝗌𝗂𝗀), where 𝗏𝗄 ̸= 𝗏𝗄*, 𝗏𝗄* is the
𝖮𝖳𝖲’s verification key part in the challenge ciphertext 𝖼𝗍*𝑏 = (𝖼𝗍𝑏,𝗏𝗄* , 𝗌𝗂𝗀

,𝖮𝖳𝖲.𝗏𝗄).
In this case, we show that we can use𝒜 to break the 𝛾-unremovability of the watermarkable
IBE.
The reduction ℬ𝗐𝖨𝖡𝖤 interacts with 𝒜 as follows:

49

– ℬ samples (𝗏𝗄*, 𝗌𝗄*) ← 𝖮𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) and submits 𝗏𝗄* as the challenge 𝗂𝖽* to the
challenger;

– ℬ𝗐𝖨𝖡𝖤 receives 𝗐𝖨𝖡𝖤.𝗆𝗉𝗄 from the challenger and gives it as the public key to 𝒜. For
𝒜’s marking queries, ℬ queries the marking oracle 𝗐𝖨𝖡𝖤.𝖬𝖺𝗋𝗄(𝗐𝖨𝖡𝖤.𝗆𝗄,𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, ·);

Next, 𝒜 outputs a program 𝐶. ℬ creates a circuit 𝐶𝗐𝖨𝖡𝖤 with black-box access to 𝐶. 𝐶 is
treated as a stage-2 adversary in the reduction from CCA-secure PKE to selective-ID secure
IBE:

– 𝐶𝗐𝖨𝖡𝖤 is hardcoded with the challenge 𝗂𝖽* = 𝗏𝗄* and its corresponding signing key 𝗌𝗄*

and 𝗐𝖨𝖡𝖤.𝗆𝗉𝗄. Note that 𝐶𝗐𝖨𝖡𝖤 does not receive any queries ℬ has answered/queried
when answering 𝒜s queries in the previous stage.

– 𝐶𝗐𝖨𝖡𝖤 simulates answers to 𝐶s decryption queries: when 𝐶 makes a query 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄);
first check if 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀)) = 1, if yes continue; else output⊥. Make an exter-
nal query to the 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle for 𝗌𝗄𝗏𝗄 ← 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝗏𝗄). Output
𝑚 ← 𝗐𝖨𝖡𝖤.𝖣𝖾𝖼(𝗌𝗄𝗏𝗄, 𝖼𝗍𝗏𝗄). Since all the 𝗏𝗄 queried are not equal to 𝗏𝗄*, these queries
arre all valid.

– In the challenge phase, 𝐶 outputs (𝑚0,𝑚1); then 𝐶𝗐𝖨𝖡𝖤 submits (𝑚0,𝑚1) to the external
challenger and receives challenger ciphertext 𝖼𝗍𝑏,𝗏𝗄* = 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗏𝗄*,𝑚𝑏), 𝑏← {0, 1};

– feed 𝐶 with 𝖼𝗍*𝑏 = (𝖼𝗍𝑏,𝗏𝗄* , 𝗌𝗂𝗀
* = 𝖮𝖳𝖲.𝖲𝗂𝗀𝗇(𝗌𝗄*, 𝖼𝗍𝑏,𝗏𝗄*), 𝗏𝗄

*).
– Continue to simulate 𝖣𝖾𝖼(𝗌𝗄, ·) oracle for 𝐶 and only answer queries 𝖼𝗍 ̸= 𝖼𝗍*𝑏 ; finally 𝐶

outputs a bit 𝑏′ and 𝐶𝗐𝖨𝖡𝖤 outputs the same.

In the execution of the extraction 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶), 𝐶 is used in the program 𝐶𝖨𝖡𝖤 as a black box
and by our design, it must hold that Pr[𝗐𝖨𝖡𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝐶𝖨𝖡𝖤) ∈ 𝒬 ∧ 𝐶 is 𝛾-good] ≥ 𝜖
for some non-negligible 𝜖. Note that 𝐶𝖨𝖡𝖤 created by 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) differs from 𝐶𝗐𝖨𝖡𝖤 cre-
ated by ℬ in that: 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) samples a fresh (𝗏𝗄*, 𝗌𝗄*) ← 𝖮𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆); 𝐶𝗐𝖨𝖡𝖤 is
hardcoded with a (𝗏𝗄*, 𝗌𝗄*) sampled by ℬ previously. However, the challenge 𝗂𝖽’s in both
settings are sampled freshly at random, independent of the 𝗐𝖨𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, ·)(i.e.
𝖣𝖾𝖼(𝗌𝗄, ·)) queries made in the stage of ℬ interacting with 𝒜 before 𝒜 outputs 𝐶 (i.e. stage-
1 in the watermarking-compatible reduction). Therefore, the output of 𝐶𝗐𝖨𝖡𝖤, 𝐶𝖨𝖡𝖤 are the
same unless in the real CCA PKE security game, 𝒜 has made a query on some cipher-
text 𝖼𝗍 = (𝖼𝗍𝗏𝗄* = 𝗐𝖨𝖡𝖤.𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗏𝗄*,𝑚𝑏), 𝗏𝗄

, 𝗌𝗂𝗀) for the same 𝗏𝗄 that is later sampled
by 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) and for one of the challenge messages 𝑚𝑏 ∈ {𝑚0.𝑚1}. But this happens
with negligible probability since 𝗏𝗄* is sampled at random.
Since we have Pr[𝗐𝖨𝖡𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝖺𝗎𝗑 = 𝗏𝗄*, 𝐶𝖨𝖡𝖤) ∈ 𝒬] ≥ 𝜖 and given our assumption
in case 1, we also have Pr[𝐺𝖨𝖡𝖤(𝗐𝖨𝖡𝖤.𝗆𝗉𝗄,𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, 𝗂𝖽* = 𝗏𝗄*, 𝐶𝖨𝖡𝖤) = 1] ≥ 1/2 + 𝛾,
we should deduce that the program 𝐶𝗐𝖨𝖡𝖤 produced by the reduction ℬ𝗐𝖨𝖡𝖤 from 𝐶 per-
forms the same with all but negligible difference: with probability 𝜖 − 𝗇𝖾𝗀𝗅(𝜆), we still have
𝗐𝖨𝖡𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝖺𝗎𝗑 = 𝗂𝖽*𝐶𝗐𝖨𝖡𝖤) ∈ 𝒬] and Pr[𝐺𝖨𝖡𝖤(𝗐𝖨𝖡𝖤.𝗆𝗉𝗄,𝗐𝖨𝖡𝖤.𝗆𝗌𝗄, 𝖺𝗎𝗑 = 𝗂𝖽*, 𝐶𝗐𝖨𝖡𝖤) =
1] ≥ 1/2 + 𝛾.

• Case 2: during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶), the program 𝐶 produced by the adversary
𝒜will make at least one query that have the format 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄), where 𝗏𝗄 = 𝖮𝖳𝖲.𝗏𝗄*,
𝖮𝖳𝖲.𝗏𝗄* is the 𝖮𝖳𝖲’s verification key part in the challenge ciphertext 𝖼𝗍*; further more, the
query 𝖼𝗍 = (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀, 𝗏𝗄) satisfies 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝖮𝖳𝖲.𝗏𝗄*, 𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀) = 1 and 𝖼𝗍* ̸= 𝖼𝗍
In this case, we show a Type-2 watermarking compatible reduction to the strongly unforge-
ability security of the one-time signature scheme.

50

In stage-1 of the watermarking-compatible reduction, ℬ1𝖮𝖳𝖲 operates as follows:

– ℬ1𝖮𝖳𝖲 receives 𝗏𝗄* from the challenger. It samples 𝗐𝖨𝖡𝖤.𝗑𝗄,𝗆𝗌𝗄,𝗆𝗉𝗄,𝗆𝗄 on its own.
ℬ1𝖮𝖳𝖲 can thus answer all the marking queries from 𝒜.

After 𝒜 outputs program 𝐶, since we are given that Pr[𝐺𝐶𝐶𝐴(𝗌𝗄, 𝗉𝗄, 𝐶) = 1] ≥ 1/2 + 𝛾 and
𝐶 makes decryption queries on valid ciphertexts with the 𝗏𝗄*. ℬ𝖮𝖳𝖲 can do the following.
Entering stage-2 of the reduction, ℬ2𝖮𝖳𝖲 receives all stateful information from ℬ1𝖮𝖳𝖲 except
for the queries made by 𝒜.
ℬ2𝖮𝖳𝖲 runs 𝐶 and simulates the CCA-security game, 𝖣𝖾𝖼(𝗌𝗄, ·) oracles for 𝐶 as follows:

– For decryption queries o the format 𝖼𝗍 = (𝖼𝗍0, 𝗏𝗄, 𝗌𝗂𝗀), first checks if 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝖼𝗍𝗏𝗄, 𝗌𝗂𝗀)) =
1, if yes continue; else output ⊥.
Then decrypt 𝖼𝗍 directly using 𝗌𝗄𝗏𝗄 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝗏𝗄) and 𝑚← 𝖣𝖾𝖼(𝗌𝗄𝗏𝗄, 𝖼𝗍𝗏𝗄).

In the challenge phase, 𝐶 submits 2 messages (𝑚0,𝑚1) and ℬ2𝖮𝖳𝖲 outputs challenge cipher-
text 𝖼𝗍* = (𝖼𝗍𝗏𝗄*,𝑏 = 𝗐𝖨𝖡𝖤.𝖤𝗇𝖼(𝗆𝗉𝗄, 𝗏𝗄*,𝑚𝑏 ← (𝑚0,𝑚1)), 𝗏𝗄

, 𝗌𝗂𝗀) by making one query to
the signing oracle 𝖮𝖳𝖲.𝖲𝗂𝗀𝗇(𝗌𝗄*, ·) on message 𝖼𝗍𝗏𝗄*,𝑏.
Then the query phase continues and 𝐶 is only allowed to query on 𝖼𝗍 ̸= 𝖼𝗍*. Since in the end,
there will be one query 𝖼𝗍 such that 𝖼𝗍 = (𝖼𝗍′, 𝗏𝗄*, 𝗌𝗂𝗀′) where 𝖼𝗍 ̸= 𝖼𝗍* but 𝖮𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄*, 𝖼𝗍′, 𝗌𝗂𝗀′) =
1. Thus ℬ2𝖮𝖳𝖲 can output (𝖼𝗍′, 𝗌𝗂𝗀′) as a forgery.

7 References

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

[CFNP00] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Transactions on Infor-
mation Theory, 46(3):893–910, 2000.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, page 1115–1127, New
York, NY, USA, 2016. Association for Computing Machinery.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages
542–552, 1991.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, aug 1986.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J Wu. Water-
marking public-key cryptographic primitives. In Advances in Cryptology–CRYPTO

51

2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18–22, 2019, Proceedings, Part III 39, pages 367–398. Springer, 2019.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceed-
ings of the forty-fifth annual ACM symposium on Theory of computing, pages 555–564,
2013.

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J Wu. Beyond software water-
marking: traitor-tracing for pseudorandom functions. In Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27,
pages 250–280. Springer, 2021.

[KN22] Fuyuki Kitagawa and Ryo Nishimaki. Watermarking prfs against quantum adver-
saries. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, pages 488–518, Cham, 2022. Springer International Publishing.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from stan-
dard lattice assumptions. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 503–536, Cham, 2017. Springer International Pub-
lishing.

[MW22] Sarasij Maitra and David J. Wu. Traceable prfs: Full collusion resistance and active
security. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key
Cryptography – PKC 2022, pages 439–469, Cham, 2022. Springer International Publish-
ing.

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages
111–125, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Nis20] Ryo Nishimaki. Equipping public-key cryptographic primitives with watermarking
(or: A hole is to watermark). In Rafael Pass and Krzysztof Pietrzak, editors, Theory of
Cryptography, pages 179–209, Cham, 2020. Springer International Publishing.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 427–437, 1990.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from (plain)
learning with errors. In Annual International Cryptology Conference, pages 89–114.
Springer, 2019.

[Wat24] Brent Waters. A new approach for non-interactive zero-knowledge from learning
with errors. Cryptology ePrint Archive, Paper 2024/340, 2024. https://eprint.
iacr.org/2024/340.

52

https://eprint.iacr.org/2024/340
https://eprint.iacr.org/2024/340

A Watermarkable CCA-secure PKE from Watermarkable CPA-secure
PKE and Statistically Simulation-Sound NIZK

In this section we present a watermarkable CCA2-secure PKE, based on a modification of the
[NY90] scheme.

A.1 Preliminaries: Statistically Simulation Sound 𝖭𝖨𝖹𝖪 Proof for 𝖭𝖯

A statistically simulation sound 𝖭𝖨𝖹𝖪 proof for language 𝐿 ∈ 𝖭𝖯 with relation 𝑅𝐿 consists of the
following efficient algorithms.

• 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝖢𝖱𝖲, 𝗍𝖽): On input the security parameter 1𝜆, the setup returns a com-
mon reference string 𝖢𝖱𝖲 and a trapdoor 𝗍𝖽.

• 𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖢𝖱𝖲, 𝑤, 𝑥)→ 𝜋: On input a common reference string 𝖢𝖱𝖲, a classical witness 𝑤,
and a statement 𝑥, the proving algorithm returns a proof 𝜋.

• 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋(𝖢𝖱𝖲, 𝜋, 𝑥) → 0/1: On input a common reference string 𝖢𝖱𝖲, a proof 𝜋, and a
statement 𝑥, the verification algorithm returns a bit in {0, 1}.

A SSS-𝖭𝖨𝖹𝖪 for 𝖭𝖯 scheme should satisfy the following properties:

Correctness A NIZK proof (𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉,𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾,𝖭𝖨𝖹𝖪.𝖵𝖾𝗋) is correct if there exists a negligi-
ble function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, all 𝑥 ∈ 𝐿, and all 𝑤 ∈ ℛ𝐿(𝑥) it holds that

Pr[𝖭𝖨𝖹𝖪.𝖵𝖾𝗋(𝖢𝖱𝖲,𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖢𝖱𝖲, 𝑤, 𝑥), 𝑥) = 1] = 1− 𝗇𝖾𝗀𝗅(𝜆)

where 𝖢𝖱𝖲← 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆).

Statistical Soundness A 𝖭𝖨𝖹𝖪 proof (𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉,𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾,𝖭𝖨𝖹𝖪.𝖵𝖾𝗋) is computationally sound
if there exist a negligible function 𝗇𝖾𝗀𝗅(·) such that for all unbounded adversaries 𝒜 and all 𝑥 /∈ 𝐿,
it holds that:

Pr[𝖭𝖨𝖹𝖪.𝖵𝖾𝗋(𝖢𝖱𝖲, 𝜋 ← 𝒜(𝖢𝖱𝖲, 𝑥), 𝑥) = 1] = 𝗇𝖾𝗀𝗅(𝜆)

where 𝖢𝖱𝖲← 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆).

Computational Zero Knowledge A 𝖭𝖨𝖹𝖪 proof (𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉,𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾,𝖭𝖨𝖹𝖪.𝖵𝖾𝗋) is compu-
tationally zero-knowledge if there exists a PPT simulator 𝖲𝗂𝗆 such that for all non-uniform PPT
adversaries, all statements 𝑥 ∈ 𝐿 and all witnesses 𝑤 ∈ ℛ𝐿(𝑥), it holds that 𝖲𝗂𝗆(1𝜆,𝖢𝖱𝖲, 𝗍𝖽, , 𝑥) ≈𝑐

𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖢𝖱𝖲, 𝑤, 𝑥) where 𝖢𝖱𝖲← 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆).

Statistically Simulation Soundness A 𝖭𝖨𝖹𝖪 proof satisfies statistically simulation soundness if
it is infeasible to convince an honest verifier of a false statement even when the adversary itself is
provided with a simulated proof.

Formally, for all statements 𝑥 and all (even unbounded) adversaries 𝒜 = (𝖲𝗂𝗆1,𝖲𝗂𝗆2) , there
exists a negligible function 𝗇𝖾𝗀𝗅(·):

Pr

[︂
(𝖢𝖱𝖲, 𝗍𝖽)← 𝖲𝗂𝗆1(1

𝜆, 𝑥), 𝜋 ← 𝖲𝗂𝗆2(𝑥,𝖢𝖱𝖲, 𝗍𝖽) :
∃(𝑥′,𝜋′)∧𝑥′ ̸=𝑥∧𝑥′∈𝐿𝑛𝑜

and
𝑉 (𝖢𝖱𝖲,𝑥′,𝜋′)=1

]︂
≤ 𝗇𝖾𝗀𝗅(·)

where 𝗍𝖽 is a trapdoor generated by the simulator along with the simulated 𝖢𝖱𝖲.

53

Instantiation A SSS-𝖭𝖨𝖹𝖪 proof system can be realized from a standard 𝖭𝖨𝖹𝖪 proof system
[GGH+16], which can be built on the hardness of LWE [PS19, Wat24].

A.2 Construction and Security

Theorem A.1. Assuming the hardness of LWE, there exists secure watermarkable implementation of CCA-
secure PKE with private extraction and collusion resistance.

Lemma A.2. Assuming the security of watermarkable implementation of a CPA-secure PKE 𝗐𝖯𝖪𝖤 =
(𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍) and statistically simulation sound NIZK scheme 𝖭𝖨𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉,𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒)
(without watermarking) , there exists a secure watermarkable implementation of CCA(2)-secure PKE.

The two building blocks: watermarkable implementation of a CPA-secure PKE 𝗐𝖯𝖪𝖤 = (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗇𝖼,𝖣𝖾𝖼,
𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍) and a SSS-NIZK scheme 𝖭𝖨𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉,𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒) can both be obtained from
LWE.

Construction Given a watermarkable implementation of a CPA-secure PKE 𝗐𝖯𝖪𝖤 = (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗇𝖼,
𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍) and a SSS-NIZK scheme 𝖭𝖨𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉,𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒), the construction of wa-
termarkable implementation of CCA-secure PKE is as follows.

𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆, 1𝑛) : Compute (𝗐𝖯𝖪𝖤.𝗉𝗄1,𝗐𝖯𝖪𝖤.𝗌𝗄1,𝗐𝖯𝖪𝖤.𝗑𝗄1,𝗐𝖯𝖪𝖤.𝗆𝗄1) ← 𝗐𝖯𝖪𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(𝜆);
(𝗐𝖯𝖪𝖤.𝗉𝗄2,𝗐𝖯𝖪𝖤.𝗌𝗄2,𝗐𝖯𝖪𝖤.𝗑𝗄2,𝗐𝖯𝖪𝖤.𝗆𝗄2)← 𝗐𝖯𝖪𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(𝜆);
Compute (𝖢𝖱𝖲, 𝗍𝖽)← 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆); Output 𝗌𝗄 = (𝗐𝖯𝖪𝖤.𝗌𝗄𝑖)𝑖{1,2}; 𝗉𝗄 = ({𝗐𝖯𝖪𝖤.𝗉𝗄𝑖}𝑖∈{1,2},𝖢𝖱𝖲); 𝗑𝗄 =
({𝗐𝖯𝖪𝖤.𝗑𝗄𝑖}𝑖∈{1,2}, 𝗍𝖽);𝗆𝗄 = {𝗐𝖯𝖪𝖤.𝗆𝗄𝑖}𝑖∈{1,2}

𝖤𝗇𝖼(𝗉𝗄,𝑚):

• parse 𝗉𝗄 := 𝗉𝗄1, 𝗉𝗄2,𝖢𝖱𝖲;
• compute 𝖼𝗍1 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄1,𝑚); 𝖼𝗍2 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄2,𝑚);
• compute 𝜋 ← 𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖢𝖱𝖲, (𝖼𝗍1, 𝖼𝗍2), (𝑟1, 𝑟2,𝑚)) for the following statement:
∃ witness (𝑟1, 𝑟2,𝑚) such that 𝖼𝗍𝑖 = 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚; 𝑟𝑖) for all 𝑖 ∈ [2], where 𝑟𝑖 is the
randomness used in encryption.

• Output 𝖼𝗍 = ({𝖼𝗍𝑖}𝑖∈[2], 𝜋).
𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍):

• parse 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2, 𝜋); 𝗌𝗄 = (𝗌𝗄1, 𝗌𝗄2);
• if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋, (𝖼𝗍1, 𝖼𝗍2)) = 1, continue; else abort and output ⊥.
• compute 𝑚← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄1, 𝖼𝗍1); output 𝑚′.

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): parse 𝗆𝗄 = (𝗆𝗄1,𝗆𝗄2); 𝗌𝗄 = (𝗌𝗄1, 𝗌𝗄2); output (𝗌𝗄𝜏,1 ← 𝗐𝖯𝖪𝖤.𝖬𝖺𝗋𝗄(𝗌𝗄1, 𝜏); 𝗌𝗄𝜏,2 ←
𝗐𝖯𝖪𝖤.𝖬𝖺𝗋𝗄(𝗌𝗄2, 𝜏);

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶):

• parse 𝗑𝗄 := (𝗑𝗄1, 𝗑𝗄2,𝖭𝖨𝖹𝖪.𝗍𝖽); 𝗉𝗄 := (𝗉𝗄1, 𝗉𝗄2,𝖢𝖱𝖲). Initialize an empty tuple �⃗� ;
For 𝑖 = 1, 2: Create the following circuit 𝐶𝑖 with black-box access to 𝐶:

– 𝐶𝑖 is hardcoded with (𝗉𝗄1, 𝗉𝗄2, 𝗑𝗄𝑗 ̸=𝑖, 𝗍𝖽,𝖢𝖱𝖲) and simulates the 𝖢𝖢𝖠− 𝖯𝖪𝖤 game
for 𝐶 as follows:

– For 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2, 𝜋):

* First check if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋) = 1, if 0 output ⊥; else continue;

54

* By the extraction key simulation property, since 𝗑𝗄𝑗 ̸=𝑖 can be used to simulate
the oracles used in 𝐺𝐶𝑃𝐴(𝗉𝗄𝑗 , 𝗌𝗄𝑗 , ·), 𝐶𝑖 can simulate the oracle 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄𝑗 , ·)
and thus decrypt 𝖼𝗍𝑗 in the ciphertext 𝖼𝗍 to output 𝑚.

– 𝐶 submits challenge messages (𝑚0,𝑚1); 𝐶𝑖 submits (𝑚0,𝑚1) to the external chal-
lenger; 𝐶𝑖 receives challenge ciphertext 𝖼𝗍*𝑖 = 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚𝑏), 𝑏 ← {0, 1} from
the challenger.
𝐶𝑖 prepares the following ciphertext: compute 𝖼𝗍𝑗 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑗 ,𝑚𝑏𝑗), 𝑏𝑗 ←
{0, 1};
compute ̂︀𝜋 ← 𝖲𝗂𝗆(𝗍𝖽,𝖢𝖱𝖲, (𝖼𝗍*1, 𝖼𝗍

*
2)) where 𝖲𝗂𝗆 is the simulator algorithm for 𝖭𝖨𝖹𝖪.

Then it sends 𝖼𝗍* = (𝖼𝗍*1, 𝖼𝗍
*
2, ̂︀𝜋) to 𝐶.

– 𝐶 continues to simulate the decryption oracle as above to decrypt only valid ci-
phertexts 𝖼𝗍 ̸= 𝖼𝗍*.

– In the end, 𝐶𝑖 outputs the same as 𝐶 outputs.
– Add 𝜏/⊥ ← 𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖪𝖤.𝗑𝗄𝑖,𝗐𝖯𝖪𝖤.𝗉𝗄𝑖, 𝖺𝗎𝗑 = ⊥, 𝐶𝑖) to �⃗� .

• Output �⃗� .

Proof. We make a few claims for the proof of unremovability.
First, we consider a hybrid game where stage-1 (before the unremovability adversary 𝒜 pro-

duces program 𝐶) is the same, but the stage-2 game for 𝖢𝖢𝖠− 𝖯𝖪𝖤 where the program 𝐶 plays in
is different. We call this stage-2 game 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·), defined as follows:

• On input (𝗌𝗄, 𝗉𝗄) = (𝗉𝗄1, 𝗉𝗄2, 𝗌𝗄1, 𝗌𝗄2, 𝗍𝖽,𝖢𝖱𝖲); the challenger plays the 𝖢𝖢𝖠− 𝖯𝖪𝖤 game for
𝐶 as follows:

• For 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2, 𝜋):

– First check if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋) = 1, if 0 output ⊥; else continue; output 𝑚′ ←
𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄1, 𝖼𝗍1).

• 𝐶 submits challenge messages (𝑚0,𝑚1)
The challenger prepares the following ciphertext: compute 𝖼𝗍*𝑖 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑚𝑏) for all
𝑖 = 1, 2, 𝑏← {0, 1};
compute ̂︀𝜋 ← 𝖲𝗂𝗆(𝗍𝖽,𝖢𝖱𝖲, (𝖼𝗍*1, 𝖼𝗍

*
2)) where 𝖲𝗂𝗆 is the simulator algorithm for 𝖭𝖨𝖹𝖪.

Then it sends 𝖼𝗍* = (𝖼𝗍*1, 𝖼𝗍
*
2, ̂︀𝜋) to 𝒜 and 𝐶 outputs a guess 𝑏′.

• continues to simulate the decryption oracle as above to decrypt only valid ciphertexts 𝖼𝗍 ̸=
𝖼𝗍*.

Claim A.3. Assuming the computational zero-knowledge property of 𝖭𝖨𝖹𝖪, for any admissible PPT 𝐶, if
𝐶 is a 𝛾-good program in the original game 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·), then 𝐶 is a (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good program
in the above 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·) defined.

Proof. We refer the definition of 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, 𝐶) to Section 6.1.
Let 𝗏𝗂𝖾𝗐𝖢𝖢𝖠,𝐻1(see Definition 3.8 for defintion) be the transcript output by the above game.
It is to see that the only difference in 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, 𝐶) and 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, 𝐶) is in the gen-

eration of the proof 𝜋: 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, 𝐶) the proof is generated honestly using 𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾 and
in 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, 𝐶) it is generated by 𝖲𝗂𝗆(𝗍𝖽, ·). By the computational zero knowledge property
of 𝖭𝖨𝖹𝖪, 𝗏𝗂𝖾𝗐𝐺𝖢𝖢𝖠−𝖯𝖪𝖤

and 𝗏𝗂𝖾𝗐𝖢𝖢𝖠,𝐻1 are computationally indistinguishable. Otherwise we can
build a distinguisher, given 𝖭𝖨𝖹𝖪.𝖢𝖱𝖲, that samples 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 on its own and use 𝐶 to break the
computational zero knowledge property.

55

Therefore, the output distributions of any admissible PPT𝒜 in 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, 𝐶) and 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, 𝐶)
must be computationally indistinguishable. Thus, any 𝛾-good 𝐶 in 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·) must be
(𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good in 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·)

Next, we consider a next stage-2 hybrid game 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·) (note that the stage before 𝒜
outputs 𝐶 is still the same:

• On input (𝗌𝗄, 𝗉𝗄) = (𝗉𝗄1, 𝗉𝗄2, 𝗌𝗄1, 𝗌𝗄2, 𝗍𝖽,𝖢𝖱𝖲);
• For 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2, 𝜋):

– First check if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋) = 1, if 0 output ⊥; else continue; output 𝑚′ ←
𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄1, 𝖼𝗍1).

• 𝐶 submits challenge messages (𝑚0,𝑚1)
The challenger prepares the following ciphertext: compute 𝖼𝗍*1 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄1,𝑚𝑏1),
𝑏1 ← {0, 1}; compute 𝖼𝗍*2 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄2,𝑚𝑏2) 𝑏2 ← {0, 1}
compute ̂︀𝜋 ← 𝖲𝗂𝗆(𝗍𝖽,𝖢𝖱𝖲, (𝖼𝗍*1, 𝖼𝗍

*
2)) where 𝖲𝗂𝗆 is the simulator algorithm for 𝖭𝖨𝖹𝖪.

Then it sends 𝖼𝗍* = (𝖼𝗍*1, 𝖼𝗍
*
2, ̂︀𝜋) to 𝒜 and 𝐶 outputs a guess 𝑏′.

• continues to simulate the decryption oracle as above to decrypt only valid ciphertexts 𝖼𝗍 ̸=
𝖼𝗍*.

Claim A.4. For any admissible PPT 𝐶, if 𝐶 is a 𝛾-good program in the game 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·), then 𝐶 is
a 𝛾/2-good program in the above 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·) defined.

Proof. The only difference between 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·) and 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·) is that the bits 𝑏𝑖 used
to decide which of 𝑚0,𝑚1 to encrypt for the challenge ciphertext is the same for 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·)
and independent for 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·). When 𝑏1 = 𝑏2, the two games are the same. Therefore, we
have that 𝐶 is a 𝛾/2-good program in the above 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·) given that 𝐶 is a 𝛾-good program
in the above 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·).

Next we show that for any 𝛾-unremovability adversary 𝒜 where the output program 𝐶 is 𝛾-
good in 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·),𝒜 can be used to build a reduction to 𝛾-unremovability of CPA-security
of for 𝗐𝖯𝖪𝖤.

Claim A.5. For any 𝛾-unremovability adversary𝒜where the output program 𝐶 is 𝛾-good in 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·),
𝒜 can be used to build a reduction to (𝛾/2− 𝗇𝖾𝗀𝗅(𝜆))-unremovability of CPA-security of for 𝗐𝖯𝖪𝖤.

Proof. By Claim A.3 and Claim A.4, we know that if there is a 𝛾-unremovability adversary 𝒜 for
Section 6.1, then if we put its output circuit 𝐶 into our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑, 𝐶) procedure, the game
simulated by 𝖤𝗑𝗍𝗋𝖺𝖼𝗍, when 𝑖 = 2 is exactly the same as 𝐺𝖢𝖢𝖠,𝐻2(𝗌𝗄, 𝗉𝗄, ·), i.e. the NIZK proof in
the challenge ciphertext is generated by simulator and the bits for encryption are independent.

Thus, for any 𝐶 produced by a winning 𝒜, if 𝐶 is 𝛾-good by definition in 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·),
𝐶 will be a (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))/2-good program during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) for 𝑖 = 2.

Also, by the statistical soundness and statistical simulation soundness of 𝖭𝖨𝖹𝖪, no adversary
𝒜 and its output program 𝐶 will make a query on a 𝖼𝗍 that contains a false proof 𝜋′, that will pass
the verification, even after 𝐶 has seen the simulated proof ̂︀𝜋, except with negligible probability.

56

Therefore we can say that with overwhelming probability, all queries made in the unremovability
game (including execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 contain valid proofs.

Now we can create a reduction ℬ2 to break the 𝛾/2 − 𝗇𝖾𝗀𝗅(𝜆)-unremovability of 𝐶𝑃𝐴-secure
PKE (of 𝗌𝗄2). ℬ2 simulates the marking oracle for 𝒜 by querying the marking oracle for 𝗐𝖯𝖪𝖤.𝗌𝗄1.
ℬ2 also samples 𝗐𝖯𝖪𝖤.𝗌𝗄1 on its own.

After𝒜 outputs 𝐶, ℬ2 created program 𝐶 ′2 that works exactly as the circuit 𝐶2 in our 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶)
algorithm when 𝑖 = 2, except that 𝐶 ′2 can hardcode the secret key 𝗌𝗄1 sampled by ℬ2 to simulate
the decryption oracle.

Also, since we have that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖 for some non-negligible 𝜖, we must
have that Pr[𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄2, 𝗉𝗄2, 𝐶 ′2) /∈ 𝒬] ≥ 𝜖 for some non-negligible 𝜖 by the design of our
𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm.

We next analyze a symmetric case, consider the following game 𝐺𝖢𝖢𝖠,𝐻3(𝗌𝗄, 𝗉𝗄, ·).
First, before 𝒜 outputs program 𝐶, we switch to answering 𝒜’s decryption queries using

𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄2, ·).
Note that the underlined differences are between game 𝐺𝖢𝖢𝖠,𝐻1(𝗌𝗄, 𝗉𝗄, ·) and game 𝐺𝖢𝖢𝖠,𝐻3(𝗌𝗄, 𝗉𝗄, ·).

• On input (𝗌𝗄, 𝗉𝗄) = (𝗉𝗄1, 𝗉𝗄2, 𝗌𝗄1, 𝗌𝗄2, 𝗍𝖽,𝖢𝖱𝖲);
• For 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2, 𝜋):

– First check if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋) = 1, if 0 output⊥; else continue; output 𝑚′ ← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄2, 𝖼𝗍1).

• 𝐶 submits challenge messages (𝑚0,𝑚1)
The challenger prepares the following ciphertext: compute 𝖼𝗍*1 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄1,𝑚𝑏1),
𝑏1 ← {0, 1}; compute 𝖼𝗍*2 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄2,𝑚𝑏2) 𝑏2 ← {0, 1}
compute ̂︀𝜋 ← 𝖲𝗂𝗆(𝗍𝖽,𝖢𝖱𝖲, (𝖼𝗍*1, 𝖼𝗍

*
2)) where 𝖲𝗂𝗆 is the simulator algorithm for 𝖭𝖨𝖹𝖪.

Then it sends 𝖼𝗍* = (𝖼𝗍*1, 𝖼𝗍
*
2, ̂︀𝜋) to 𝒜 and 𝐶 outputs a guess 𝑏′.

• continues to simulate the decryption oracle as above to decrypt only valid ciphertexts 𝖼𝗍 ̸=
𝖼𝗍*.

Note that the only difference is that we now answer decryption queries of 𝐶 using 𝗌𝗄2. This
results in no difference on the adversary’s view because by the statistical soundness of 𝖭𝖨𝖹𝖪, all
ciphertexts submitted to the decryption oracle have their 𝖼𝗍1, 𝖼𝗍2 encrypt the same message or will
result in ⊥ replies.

By the exact (but symmetric) analysis as Claim A.5, we can do a reduction to break the (𝛾/2−
𝗇𝖾𝗀𝗅(𝜆))-unremovability of 𝗐𝖯𝖪𝖤 where the reduction is challenged with CPA-security game un-
der (𝗉𝗄1, 𝗌𝗄1,𝗆𝗄1, 𝗑𝗄1) and samples (𝗉𝗄2, 𝗌𝗄2,𝗆𝗄2, 𝗑𝗄2) on its own.

B Watermarkable Weak PRP from Watermarkable weak PRF

In this section, we present a watermarkable weak PRP built using the two-round Feistel network
from a watermarkable weak PRF.

A weak 𝖯𝖱𝖯 of input-output space {0, 1}ℓ consists of algorithms:

𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)→ 𝗌𝗄: a randomized algorithm that generates a secret key 𝗌𝗄.

57

𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥 ∈ {0, 1}ℓ) → 𝑦 ∈ {0, 1}ℓ: a deterministic evaluation algorithm that on input 𝗌𝗄, 𝑥,
outputs 𝑦.

The other syntax and definitions (such as correcntess, functionality preserving) are the same
as watermarkable weak 𝖯𝖱𝖥 and we omit them here.

𝛾-Unremovability of weak PRP The 𝛾-Unremovability for a watermarkable implementation of
a weak PRF scheme says, for all PPT admissible stateful adversary 𝒜, there exists a negligible
function 𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

𝒬 is the set of marks queried by𝒜 and 𝐶 is said to be a PPT admissible, stateful 𝛾-good circuit
if:

Pr
[︁
𝐶𝖤𝗏𝖺𝗅(𝗌𝗄,·)(𝑥, 𝑦𝑏) = 𝑏 : 𝑥← {0, 1}ℓ, 𝑦0 = 𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥), 𝑦1 ← {0, 1}ℓ, 𝑏← {0, 1}

]︁
≥ 1

2
+ 𝛾.

𝖤𝗏𝖺𝗅(·) samples a uniformly random 𝑥← {0, 1}ℓ upon every query and outputs (𝑥,𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥)).

B.1 Construction and Security

Given a watermarkable implementation of a weak PRF 𝗐𝖯𝖱𝖥 = (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝖤𝗏𝖺𝗅,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍)
where the input and output space of 𝖤𝗏𝖺𝗅 is {0, 1}ℓ/2, we give the construction based on a 2-round
Feistel network as below:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) : compute (𝗌𝗄1, 𝗑𝗄1,𝗆𝗄1)← 𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆); (𝗌𝗄2, 𝗑𝗄2,𝗆𝗄2)← 𝗐𝖯𝖱𝖥.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆);
output 𝗌𝗄 = (𝗌𝗄1, 𝗌𝗄2); 𝗑𝗄 = (𝗑𝗄1, 𝗑𝗄2);𝗆𝗄 = (𝗆𝗄1,𝗆𝗄2).

𝖤𝗏𝖺𝗅(𝗌𝗄, 𝑥 ∈ {0, 1}ℓ):
1. parse 𝗌𝗄 = (𝗌𝗄1, 𝗌𝗄2); parse 𝑥 = 𝑥0‖𝑥1 where 𝑥0, 𝑥1 ∈ {0, 1}ℓ/2.
2. for 𝑖 = 1, 2:

𝑥𝑖+1 = 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄𝑖, 𝑥𝑖)⊕ 𝑥𝑖−1

3. output 𝑥2‖𝑥3
𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏) : parse 𝗌𝗄 = (𝗌𝗄1, 𝗌𝗄2);𝗆𝗄 = (𝗆𝗄1,𝗆𝗄2);

Output (𝗌𝗄1 ← 𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗌𝗄1, 𝜏), 𝗌𝗄2 ← 𝗐𝖯𝖱𝖥.𝖬𝖺𝗋𝗄(𝗌𝗄2, 𝜏)).
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶):

1. parse 𝗑𝗄 = (𝗑𝗄1, 𝗑𝗄2);
2. For 𝑖 = 1: create the following circuit 𝐶1

(a) 𝐶1 is harcoded with 𝗑𝗄2 has black-box access to 𝐶. 𝐶1 answers 𝐶’s queries using
𝗑𝗄2 and external queries:

i. Upon 𝐶’s query: query external oracle𝒪(𝗌𝗄1, ·) which will return (𝑥1 ← {0, 1}ℓ/2,
𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑥1));

ii. sample (𝑥2 ← {0, 1}ℓ/2,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄2, 𝑥2)) using 𝗑𝗄2. Let 𝑥0 := 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑥1)⊕
𝑥2 and 𝑥3 = 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄2, 𝑥2)⊕ 𝑥1.

iii. output (𝑥0‖𝑥1, 𝑥3‖𝑥2).

58

(b) In the challenge phase, receive the challenge (𝑥*1, 𝑦
*
1) from the external challenger;

compute challenge input for 𝐶: (𝑥*0‖𝑥*1, 𝑥*3‖𝑥*2) the same way as above queries.
(c) 𝐶 outputs a guess 𝑏′ and 𝐶1 outputs the same.

3. compute 𝜏1/⊥ ← 𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄1, 𝐶1);
4. For 𝑖 = 2: create the following circuit 𝐶2

(a) 𝐶2 is harcoded with 𝗑𝗄1 has black-box access to 𝐶. 𝐶2 answers 𝐶’s queries using
𝗑𝗄1 and external queries:

i. Upon 𝐶’s query: query external oracle𝒪(𝗌𝗄2, ·) which will return (𝑥2 ← {0, 1}ℓ/2,
𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄2, 𝑥2));

ii. sample (𝑥1 ← {0, 1}ℓ/2,𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑥1)) using 𝗑𝗄1. Let 𝑥0 := 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑥1)⊕
𝑥2 and 𝑥3 = 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄2, 𝑥2)⊕ 𝑥1.

iii. output (𝑥0‖𝑥1, 𝑥3‖𝑥2).
(b) In the challenge phase, receive the challenge (𝑥*2, 𝑦

*
2) from the external challenger;

compute challenge input for 𝐶: (𝑥*0‖𝑥*1, 𝑥*3‖𝑥*2) the same way as above queries.
(c) 𝐶 outputs a guess 𝑏′ and 𝐶2 outputs the same.

5. compute 𝜏2/⊥ ← 𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄2, 𝐶2);
6. output (𝜏1, 𝜏2) (which can include ⊥’s).

Proof. The unremovability proof is relatively straightforward given the framework of proof in
Section 4.2. We will make it brief. Suppose a given 𝐶 satisfies that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖, then
it must be that Pr[𝗐𝖯𝖱𝖥.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄𝑖, 𝐶𝑖) /∈ 𝒬] for both 𝑖 = 1, 2.

Since the extraction keys of the 𝗐𝖯𝖱𝖥 scheme can be used to simulate the PRF pseudorandom-
ness game perfectly (see Section 5.4.1), the program 𝐶𝑖 built in the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm is a stage-2
reduction from weak PRP to weak PRF (with key 𝗌𝗄𝑖). Therefore, for each 𝑖 = 1, 2, we can build
a reduction ℬ𝑖 that samples the key 𝗌𝗄𝑗 ̸=𝑖,𝑗∈[2] and simulates the 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, ·) queries from 𝒜
making queries to the unremovability challenger of 𝗐𝖯𝖱𝖥 with key 𝗌𝗄𝑖.

After 𝒜 outputs program 𝐶, ℬ𝑖 makes a program 𝐶𝑖(𝗌𝗄𝑗)
′ that uses black-box access to 𝐶:

𝐶𝑖(𝗌𝗄𝑗)
′ behaves the same as 𝐶𝑖 built in 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 except using the real secret key 𝗌𝗄𝑗 instead of the

extraction key 𝗑𝗄𝑗 to simulate the game for 𝐶.
By the reduction property, either 𝐶1 or 𝐶2 must be a 𝛾𝑖-good program for winning the weak

pseudorandomness game of weak PRP for some non-negligible 𝛾𝑖: if 𝐶1 has only negligible ad-
vantage, then we can replace 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, ·) in the evaluation algorithm with a real random
function (or always give the challenge point evaluation 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, 𝑥

*
1) with a random value)

and 𝐶 should still be (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good. Then we use 𝐶 in a way where 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄1, ·) is re-
placed with random to build a program 𝐶2: if 𝐶2 is also not 𝛾2-good for any non-negligible 𝛾2,
then we must be able to replace 𝗐𝖯𝖱𝖥.𝖤𝗏𝖺𝗅(𝗌𝗄2, ·) with a random function while 𝐶 should still
be (𝛾 − 𝗇𝖾𝗀𝗅(𝜆))-good. But now since all evaluations are random, 𝐶 should have no advantage.
Contradiction.

C Watermarkable Implementation of Attribute-based Encryption

In this section, we give a modified version of the watermarkable 𝖠𝖡𝖤 scheme in [GKM+19] which
will imply a watermarkable implementation of the 𝖨𝖡𝖤 scheme in Section 6.1.1.

59

C.1 Watermarkable Attribute-based Encryption

Syntax A watermarkable implementation of 𝖠𝖡𝖤 consists of the following algorithms:

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗆𝗄, 𝗑𝗄,𝗆𝗌𝗄,𝗆𝗉𝗄): on the security parameter, outputs a master public/secret
key, a marking key, an extraction key.

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓,𝗆𝗈𝖽𝖾 ∈ {𝖬𝖺𝗋𝗄𝖾𝖽,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽}) → 𝗌𝗄𝑓 on master secret key 𝗆𝗌𝗄, a policy 𝑓 , and a
mode 𝗆𝗈𝖽𝖾 ∈ {𝖬𝖺𝗋𝗄𝖾𝖽,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽} outputs a secret key 𝗌𝗄𝑓 .

𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥,𝑚) → 𝖼𝗍: on master public key 𝗆𝗉𝗄, anttribute 𝑥 ∈ 𝒳 , a message 𝑚 ∈ ℳ, outputs a
ciphertext 𝖼𝗍.

𝖣𝖾𝖼(𝗌𝗄𝑓 , 𝖼𝗍)→ 𝑚′/⊥: on secret key 𝗌𝗄𝑓 and ciphertext 𝖼𝗍, output a message 𝑚 ∈ℳ or ⊥.
𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏,𝗆𝗈𝖽𝖾 ∈ {𝖬𝖲𝖪, 𝖲𝖪𝖥}): on marking key 𝗆𝗄 and secret key 𝗌𝗄, a message 𝜏 ∈ ℳ𝜏 ,

and a mode 𝗆𝗈𝖽𝖾 ∈ {𝖬𝖲𝖪,𝖲𝖪𝖥}, output a marked key 𝗌𝗄𝜏 .
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑, 𝐶): on input an extraction key 𝗑𝗄, master public key 𝗆𝗉𝗄, and program 𝐶,

output a mark 𝜏 ∈ℳ𝜏/⊥.

Remark C.1. The definition in [GKM+19] only considers running 𝖪𝖾𝗒𝖦𝖾𝗇 on an unmarked master secret
key and marking the policy-embedded key 𝗌𝗄𝑓 .

For the use of our watermarkable 𝖨𝖡𝖤 scheme, we consider marking the master secret key and allowing
𝖪𝖾𝗒𝖦𝖾𝗇 to first "mark" a master secret key.

We additionally allow computing the functional key 𝗌𝗄𝑓,𝜏 from a marked master secret key 𝗆𝗌𝗄𝜏 .When
running on 𝖬𝖺𝗋𝗄𝖾𝖽 mode, the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm also takes in a symbol 𝜏 .

Note that not giving out 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle to 𝒜, but only 𝖬𝖺𝗋𝗄(𝗆𝗌𝗄, ·) suffices for our use of
watermarkable IBE in Section 6. Here we simply prove a slightly stronger security.

Correctness There exists a negligible funcion 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, all 𝑥 ∈ 𝒳 , 𝑓, 𝑔 ∈
ℱ ,𝑚 ∈ℳ, when 𝑓(𝑥) = 1 the following holds:

Pr

[︂
𝖣𝖾𝖼(𝗌𝗄𝑓 , 𝖼𝗍) = 𝑚 :

(𝗆𝗉𝗄,𝗆𝗌𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝗌𝗄𝑓 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓)
𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥,𝑚)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Definition C.2 (ABE security). The standard notion of security for a KP-ABE scheme is that of full or
adaptive security. Specifically, a key-policy attribute-based encryption scheme is said to be fully secure if
for every stateful PPT adversary A, there exists a negligible function 𝑛𝑒𝑔𝑙(·), such that for every 𝜆 ∈ ℕ the
following holds:

Pr

⎡⎣𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)(𝖼𝗍) = 𝑏 :

(𝗆𝗉𝗄,𝗆𝗌𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

((𝑚0,𝑚1), 𝑥)← 𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)(1𝜆,𝗆𝗉𝗄)
𝑏← {0, 1}, 𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥,𝑚𝑏)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆)

𝒜 is admissible if all query 𝑓 ∈ ℱ made to oracle 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) satisfies 𝑓(𝑥) = 0.
It is selectively securre if 𝒜 needs to output 𝑥 before seeing 𝗆𝗉𝗄.

Definition C.3 (𝛾-Unremovability). The 𝛾-Unremovability for a watermarkable ABE scheme says, for
all 𝜆 ∈ ℕ, and for all PPT admissible stateful adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such
that:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = (𝑚0,𝑚1, 𝑥), 𝐶) /∈ 𝒬

∧𝐶 is 𝛾-good :
(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

({𝑚0,𝑚1}, 𝑥, 𝐶)← 𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·),𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄,·)(1𝜆,𝗆𝗉𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

60

where 𝒬 is the set of marks queried by 𝒜 and 𝐶 is a PPT admissible, stateful 𝛾-good adversary in the
security game 𝐺𝖠𝖡𝖤(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = (𝑚0,𝑚1, 𝑥), ·), more specifically:

Pr
[︁
𝐶𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·)(𝖼𝗍) = 𝑏 : 𝖼𝗍* ← 𝖤𝗇𝖼(𝗆𝗉𝗄,𝑚𝑏, 𝑥), 𝑏← {0, 1}

]︁
≥ 1

2
+ 𝛾.

𝒜, 𝐶 is admissible if all query 𝑓 ∈ ℱ made to oracle 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) satisfies 𝑓(𝑥) = 0.
𝐶 will be given the 𝖪𝖾𝗒𝖦𝖾𝗇 oracle as 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽) where it only queries on unmarked

keys.
A selective variant is requiring 𝒜 output 𝑥 before seeing 𝗆𝗉𝗄.

Remark C.4. As discussed in Section 5.5.2, the above definition is equivalent to letting 𝐶 output (𝑚0,𝑚1)
because we can view any distribution over (𝑚0,𝑚1) used by 𝐶 as a convex combination of different message
pairs {(𝑚0,𝑚1)𝑖})𝑖 and its corresponding strategy such that the overall winning probability is 1/2 + 𝛾.
Thus, we can let 𝒜 pick the message-pair and corresponding strategy with the largest winning probability
and hardcode them into 𝐶 instead.

But 𝑥 needs to be output by 𝒜 instead of 𝐶, because the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm does not get to see queries of
𝒜 and thus cannot make sure if 𝑓(𝑥) = 0 for all 𝑓 queried.

Remark C.5 (Modification of [GKM+19] Watermarkable ABE scheme). In [GKM+19], the unremov-
ability game allows𝒜 to be given only one policy-embedded key 𝗌𝗄𝑓 and then allowed to query 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄𝑓 , ·)
for polynomially many times. In our setting, we let 𝒜 query a marked master secret key 𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄, ·)
and the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm can derive a functional key from a "marked" master secret key. We will show
how to adapt [GKM+19]’s construction for our use.

C.2 Preliminaries: Delegatable ABE and Mixed FE

The [GKM+19]’s watermakable PKE and ABE building blocks are delegatable 𝖠𝖡𝖤 and mixed 𝖥𝖤.

C.2.1 Delegatable ABE

Delegatable ABE has the same syntax with ABE (see Appendix C.1, ignoring the extraction key,
marking key and 𝖤𝗑𝗍𝗋𝖺𝖼𝗍,𝖬𝖺𝗋𝗄 algorithm) with an additional algorithm 𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾:

𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾(𝗌𝗄𝑓 , 𝑔)→ 𝑠𝑘𝑓,𝑔: on input 𝗌𝗄𝑓 and a predicate 𝑔 ∈ ℱ , output a delegated key 𝗌𝗄𝑓,𝑔.

Correctness of Delegation There exists a negligible funcion 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, all
𝑥 ∈ 𝒳 , 𝑓, 𝑔 ∈ ℱ ,𝑚 ∈ℳ, when 𝑓(𝑥) = 𝑔(𝑥) = 1 the following holds:

Pr

⎡⎣𝖣𝖾𝖼(𝗌𝗄𝑓,𝑔, 𝖼𝗍) = 𝑚 :
(𝗆𝗉𝗄,𝗆𝗌𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝗌𝗄𝑓 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓)

𝗌𝗄𝑓,𝑔 ← 𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾(𝗌𝗄𝑓 , 𝑔)
𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥,𝑚)

⎤⎦ ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Delegatable ABE Security The 𝖣𝖠𝖡𝖤 security is the same as 𝖠𝖡𝖤 security except that the ad-
versary 𝒜 queries an oracle 𝒪(𝗆𝗌𝗄, ·) that has several modes and takes in a query of the form
(𝑓, 𝗂𝗇𝖽𝖾𝗑,𝗆𝗈𝖽𝖾):

• If 𝗆𝗈𝖽𝖾 = 𝖲𝗍𝗈𝗋𝖾𝗄𝖾𝗒, the challenger generates a new key 𝗌𝗄𝑓 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓) and store the
generated (𝑛, 𝑓, 𝗌𝗄𝑓) where 𝑛 is an index; update 𝑛 := 𝑛+ 1.

61

• If 𝗆𝗈𝖽𝖾 = 𝖮𝗎𝗍𝗉𝗎𝗍𝖪𝖾𝗒: the challenger first checks if there exists a key tuple of the form
(𝗂𝗇𝖽𝖾𝗑, 𝑔, 𝑠𝑘𝑔). If no such tuple exists or if 𝑔(𝑥) = 1, it outputs ⊥. Otherwise, it replies
with (𝗂𝗇𝖽𝖾𝗑, 𝑠𝑘𝑔).

• If 𝗆𝗈𝖽𝖾 = 𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾𝖪𝖾𝗒, then the challenger first checks if there exists a key tuple of the form
(𝗂𝗇𝖽𝖾𝗑, 𝑔, 𝑠𝑘𝑔). If no such tuple exists or if 𝑔(𝑥) = 𝑓(𝑥) = 1, it outputs ⊥. Otherwise, it
generates 𝑠𝑘𝑔,𝑓 ← 𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾(𝗌𝗄𝑔, 𝑓) and replies with (𝗂𝗇𝖽𝖾𝗑, 𝑠𝑘𝑔,𝑓).

C.2.2 Mixed Functional Encryption

An 𝖬𝖥𝖤 scheme consists of the following algorithms:

𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗆𝗉𝗄,𝗆𝗌𝗄): on input security parameter 𝜆, outputs the public parameters/master
public key 𝗆𝗉𝗄 and master secret key 𝗆𝗌𝗄.

𝖤𝗇𝖼(𝗆𝗉𝗄)→ 𝖼𝗍: on master public key, the normal encryption outputs ciphertext 𝖼𝗍.
𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, 𝑓)→ 𝖼𝗍: on master secret key 𝗆𝗌𝗄 and fucnction 𝑓 ∈ ℱ , outputs a ciphertext 𝖼𝗍.
𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝑚)→ 𝗌𝗄𝑚: on master secret key 𝗆𝗌𝗄 and message 𝑚, outputs a key 𝗌𝗄𝑚.
𝖣𝖾𝖼(𝗌𝗄𝑚, 𝖼𝗍)→ {0, 1}: on secret key 𝗌𝗄𝑚 and ciphertext 𝖼𝗍, outputs a bit.

Correctness A mixed functionl encryption scheme is correct if there exists a negligible function
𝗇𝖾𝗀𝗅(𝜆) such that for all 𝜆 ∈ ℕ, 𝑓 ∈ ℱ ,𝑚 ∈ℳ:

Pr

[︂
𝖣𝖾𝖼(𝗌𝗄𝑚, 𝖼𝗍) = 1 :

(𝗆𝗉𝗄,𝗆𝗌𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝗌𝗄𝑚 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝑚)
𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Pr

[︂
𝖣𝖾𝖼(𝗌𝗄𝑚, 𝖼𝗍) = 𝑓(𝑚) :

(𝗆𝗉𝗄,𝗆𝗌𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝗌𝗄𝑚 ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝑚)
𝖼𝗍← 𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, 𝑓)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

𝑞-Bounded function indistinguishability Let 𝑞 = 𝑞(𝜆) be any fixed polynomial. A mixed func-
tional encryption scheme is said to satisfy 𝑞-bounded function indistinguishability security if for
every stateful PPT adversary𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·), such that for every 𝜆 ∈ ℕ
the following holds:

Pr

⎡⎣𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·),𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄,·)(𝖼𝗍) = 𝑏 :

(𝗆𝗉𝗄,𝗆𝗌𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆)

(𝑓0, 𝑓1)← 𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·),𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄,·)(1𝜆,𝗆𝗉𝗄)
𝑏← {0, 1}, 𝖼𝗍← 𝖲𝖪𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑓𝑏)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆)

where 𝒜 can make at most 𝑞 queries to 𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, ·) oracle; every secret key query 𝑚 made by
adversary 𝒜 to the 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle must satisfy 𝑓0(𝑚) = 𝑓1(𝑚).

𝑞-Bounded accept indistinguishability Let 𝑞 = 𝑞(𝜆) be any fixed polynomial. A mixed func-
tional encryption scheme is said to satisfy 𝑞-bounded accept indistinguishability security if for
every stateful PPT adversary𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·), such that for every 𝜆 ∈ ℕ
the following holds:

Pr

⎡⎣𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·),𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄,·)(𝖼𝗍𝑏) = 𝑏 :

(𝗆𝗉𝗄,𝗆𝗌𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝑓* ← 𝒜𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·),𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄,·)(1𝜆,𝗆𝗉𝗄)
𝑏← {0, 1}, 𝖼𝗍1 ← 𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, 𝑓*), 𝖼𝗍1 ← 𝖤𝗇𝖼(𝗆𝗉𝗄)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆)

where 𝒜 can make at most 𝑞 queries to 𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, ·) oracle; every secret key query 𝑚 made by
adversary 𝒜 to the 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle must satisfy 𝑓*(𝑚) = 1.

62

𝖰𝖳𝗋𝖺𝖼𝖾 Jump-Finding Algorithm The [GKM+19] watermarkable ABE schemes 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 proce-
dure also additionally uses an algorithm 𝖰𝖳𝗋𝖺𝖼𝖾 that is widely used in the traitor-tracing litera-
ture. 𝖰𝖳𝗋𝖺𝖼𝖾 on inpput parameters (𝜆,𝑁, 𝑞, 𝛿, 𝛾) and given black box access to a program 𝑄, runs
in time 𝑡 = 𝗉𝗈𝗅𝗒(𝜆, log𝑁, 𝑞, 1/𝛿). Since detailed discussions are not essential to our presentation
on the modified scheme, we refer the readers to [GKM+19] Section 4.2.3 for details.

C.3 Construction

Now we give the construction for watermarkable implementation of ABE, which is modified from
[GKM+19] Section 4.3.

• Given a delegatable 𝖠𝖡𝖤 scheme 𝖣𝖠𝖡𝖤 = (𝖣𝖠𝖡𝖤.𝖲𝖾𝗍𝗎𝗉,𝖣𝖠𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇,𝖣𝖠𝖡𝖤.𝖤𝗇𝖼,𝖣𝖠𝖡𝖤.𝖣𝖾𝖼,
𝖣𝖠𝖡𝖤.𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾) and a 𝖬𝖥𝖤 scheme (𝖬𝖥𝖤.𝖲𝖾𝗍𝗎𝗉,𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝖥𝖤.𝖲𝖪𝖤𝗇𝖼,𝖬𝖥𝖤.𝖤𝗇𝖼,𝖬𝖥𝖤.𝖣𝖾𝖼).

• Letℳ𝜏 be the marked space, 𝒳 = {0, 1}ℓ2 the attribute space, and 𝒞 ⊆ 𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇𝗌[𝒳 , {0, 1}]
be thepredicate class for the target watermarkable ABE scheme, with parameters ℓ1, ℓ2.

• Let 𝒴 = {0, 1}ℓ2+𝜅 and 𝒟 = 𝒞 ∪ {𝖬𝖥𝖤.𝖣𝖾𝖼} ∪ {𝖬𝖥𝖤.𝖣𝖾𝖼 ∧ 𝐶}𝐶∈𝒞 .
• the 𝖣𝖠𝖡𝖤 scheme has attribute class 𝒴 , message spaceℳ, predicate class 𝑐𝐷. Elements in 𝒴

hav the following format (𝑥 ∈ 𝒳 ,𝖬𝖥𝖤.𝖼𝗍).
• Let 𝛾 be the unremovability parameter.

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗆𝗉𝗄,𝗆𝗌𝗄,𝗆𝗄, 𝗑𝗄):

1. compute 𝖬𝖥𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗌𝗄← 𝖬𝖥𝖤.𝖲𝖾𝗍𝗎𝗉(1𝜆);
2. compute (𝖣𝖠𝖡𝖤.𝗆𝗉𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄)← 𝖣𝖠𝖡𝖤.𝖲𝖾𝗍𝗎𝗉(1𝜆);
3. output 𝗆𝗉𝗄 = (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖣𝖠𝖡𝖤.𝗆𝗉𝗄);𝗆𝗌𝗄 = (𝖬𝖥𝖤.𝗆𝗌𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄);

𝗆𝗄 = 𝗑𝗄 = (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗌𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄).

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓,𝗆𝗈𝖽𝖾, 𝜏)→ 𝗌𝗄𝑓 : Let 𝗆𝗌𝗄 = (𝖬𝖥𝖤.𝗆𝗌𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄)
If 𝗆𝗈𝖽𝖾 = 𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽:

1. Let 𝑓 : {0, 1}ℓ2+𝜅 → {0, 1} denote the predicate 𝑓(𝑥, 𝑐) = 𝑓(𝑥), 𝑥 ∈ {0, 1}ℓ2 , 𝑐 ∈ {0, 1}𝜅.
2. output 𝗌𝗄𝑓 ← 𝖣𝖠𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓).

If 𝗆𝗈𝖽𝖾 = 𝖬𝖺𝗋𝗄𝖾𝖽:

1. compute 𝗌𝗄𝜏 ← 𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝖬𝖥𝖤.𝗆𝗌𝗄, 𝜏)
2. Let 𝑔𝜏 denote the mixed FE decryption circuit with 𝗌𝗄𝜏 hardwired, i.e. 𝑔𝜏 = 𝖬𝖥𝖤.𝖣𝖾𝖼(𝗌𝗄𝜏 , ·);
3. compute 𝗌𝗄𝑔𝜏 ← 𝖣𝖠𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝖣𝖠𝖡𝖤.𝗆𝗌𝗄, 𝑔𝜏) where 𝑔𝜏 (𝑥, 𝑐) = 𝑔𝜏 (𝑐),∀𝑥 ∈ {0, 1}ℓ2 , 𝑐 ∈
{0, 1}𝜅;

4. compute and output delegated key 𝗌𝗄𝑓,𝑔𝜏 ← 𝖣𝖠𝖡𝖤.𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾(𝗌𝗄𝑔𝜏 , 𝑓)

𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥,𝑚):
Let 𝗆𝗉𝗄 = (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖣𝖠𝖡𝖤.𝗆𝗉𝗄); compute 𝖼𝗍𝖬𝖥𝖤 ← 𝖬𝖥𝖤.𝖤𝗇𝖼(𝖬𝖥𝖤.𝗆𝗉𝗄).
Next compute ad output 𝖼𝗍← 𝖣𝖠𝖡𝖤.𝗆𝗉𝗄, (𝑥, 𝖼𝗍𝖬𝖥𝖤),𝑚) where (𝑥, 𝖼𝗍𝖬𝖥𝖤) is the attribute.

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)→ 𝑚/⊥: output 𝑚← 𝖣𝖠𝖡𝖤.𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍).
𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄, 𝜏):

1. 𝗆𝗄 := (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗌𝗄);
2. compute 𝗌𝗄𝜏 ← 𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝖬𝖥𝖤.𝗆𝗌𝗄)
3. Let 𝑔𝜏 denote the mixed FE decryption circuit with 𝗌𝗄𝜏 hardwired, i.e. 𝑔𝜏 = 𝖬𝖥𝖤.𝖣𝖾𝖼(𝗌𝗄𝜏 , ·);

63

4. compute and output 𝗌𝗄𝑔𝜏 ← 𝖣𝖠𝖡𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝖣𝖠𝖡𝖤.𝗆𝗌𝗄, 𝑔𝜏) where 𝑔𝜏 (𝑥, 𝑐) = 𝑔𝜏 (𝑐),∀𝑥 ∈
{0, 1}ℓ2 , 𝑐 ∈ {0, 1}𝜅

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = (𝑥,𝑚0,𝑚1), 𝐶, 𝑞):
Let 𝗑𝗄 = (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗌𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄);𝗆𝗉𝗄 = (𝖣𝖠𝖡𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗉𝗄);
The extraction algorithms runs the 𝖰𝖳𝗋𝖺𝖼𝖾 algorithm as 𝜏 ← 𝖰𝖳𝗋𝖺𝖼𝖾𝑄𝐶 (𝜆, 2ℓ1 , 𝑞, 𝛿, 𝛾) where
𝑞 is the bounded parameter for the 𝖬𝖥𝖤 scheme (upper bound on the number of queries to
the 𝖲𝖪𝖤𝗇𝖼(𝗆𝗌𝗄, ·) oracles), 𝛾 is the unremovability paramter and 𝛿 = 𝛾/(5 + 2ℓ1𝑞). 𝑄𝐶 is
simulated as follows:

On input 𝜏 ← [0, 2ℓ1]:

• compute 𝖬𝖥𝖤 ciphertext as 𝖼𝗍𝖬𝖥𝖤 ← 𝖬𝖥𝖤.𝖲𝖪𝖤𝗇𝖼(𝖬𝖥𝖤.𝗆𝗌𝗄, 𝖼𝗈𝗆𝗉𝜏), where 𝖼𝗈𝗆𝗉𝜏
is the comparison function that on input 𝑧, output 1 if and only if 𝑧 ≥ 𝜏 .

• sample a bit 𝑏 ← {0, 1} and compute 𝖼𝗍𝑏 ← 𝖣𝖠𝖡𝖤.𝖤𝗇𝖼(𝖣𝖠𝖡𝖤.𝗆𝗉𝗄, (𝑥, 𝖼𝗍𝖬𝖥𝖤),𝑚𝑏)
where (𝑥, 𝖼𝗍𝖬𝖥𝖤) is the attribute input.

• compute 𝑏′ ← 𝐶𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,·,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽)(𝖼𝗍) and output 1 if 𝑏′ = 𝑏 and 0 otherwise.
𝐶 has oracle access to 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽), which can be simulated using
𝖣𝖠𝖡𝖤.𝗆𝗌𝗄 provided in 𝗑𝗄.

Correctness and Other Properties The correctness of decryption, correctness of extraction, functionality-
preserving and ABE security can directly follow the same proof as in [GKM+19] so we omit them
here.

We can observe that the above scheme also satisfies the additional extraction key simulation
property and extraction syntax also satisfy our requirement on watermarkable implementation:
the extraction key has 𝖣𝖠𝖡𝖤.𝗆𝗌𝗄 embedded so enough to simulate the 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽)
queries for program 𝐶. The entire extraction algorithm follows the format that runs the simulated
stage-2 security game for 𝖠𝖡𝖤.

Security Proof The security proof will be similar to the proof in [GKM+19]. Overall, our changes
are minor. To avoid repetitive work of doing a same proof verbatimly, we omit the parts of our
proof which are exactly the same as [GKM+19] and refer the readers to Section 4.3.1 of [GKM+19]
"Proof of Theorem 4.15(Unremovability)" part. We only discuss the major changes to make to
adjust to our construction:

All discussions and lemmas before Lemma 4.18 will be exactly the same when moved to our
case, except some minor changes:

1. We adjust Experiment 𝖦𝖾𝗍𝖢𝗂𝗋𝖼𝗎𝗂𝗍𝒜(𝜆) in Figure 2 of [GKM+19] to fit our unremovability
game: 𝒜 is allowed to query 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) for arbitrarily polynomial times. We will discuss
how this oracle is simulated when doing different reductions.

2. In Lemma 4.16 and 4.17 invokes security of 𝖬𝖥𝖤: in our setting, the reduction algorithm
will additionally query the 𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle when dealing with the adversary 𝒜s
𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·,𝖬𝖺𝗋𝗄𝖾𝖽, ·) queries. But these queries have exactly the same format as when
answering the marking queries 𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄, 𝜏). Moreover, in both the 𝑞-bounded function
indistinguishability and accept indistinguishability games, the number of queries a reduc-
tion can make to oracle 𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) are unbounded polynomial. Therefore, the proof
of Lemma 4.16 and 4.17 are unaffected.

64

We mainly discuss the changes to Lemma 4.18 and take some steps from [GKM+19] verbatimly
for completeness: Let ℬ be the reduction to security of 𝖣𝖠𝖡𝖤.

1. Adversary 𝒜 chooses a challenge attribute 𝑥 and sends it over to ℬ, since we consider only
selective security.

2. The DABE challenger samples a 𝖣𝖠𝖡𝖤 key pair (𝖣𝖠𝖡𝖤.𝗆𝗉𝗄,𝖣𝖠𝖡𝖤.𝗆𝗌𝗄)← 𝖣𝖠𝖡𝖤.𝖲𝖾𝗍𝗎𝗉(1𝜆).
Algorithm ℬ samples a mixed FE key pair (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖬𝖥𝖤.𝗆𝗌𝗄) ← 𝖬𝖥𝖤.𝖲𝖾𝗍𝗎𝗉(1𝜆), and
sends 𝖬𝖥𝖤.𝗆𝗉𝗄 to ℬ. , and sends the public key 𝗆𝗉𝗄 = (𝖬𝖥𝖤.𝗆𝗉𝗄,𝖣𝖠𝖡𝖤.𝗆𝗉𝗄) to 𝒜.

3. ℬ computes 𝖼𝗍*𝖬𝖥𝖤 ← 𝖬𝖥𝖤.𝖲𝖪𝖤𝗇𝖼(𝖬𝖥𝖤.𝗆𝗌𝗄, 𝖼𝗈𝗆𝗉2ℓ1
) and commits to the challenge attribute

𝑥* = (𝑥, 𝖼𝗍*𝖬𝖥𝖤).
4. When 𝒜 makes a query to the 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) and 𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄, ·) oracles, ℬ simulates the

answer as follows:

(a) If𝒜makes a marking query on message 𝜏 : ℬ computes the function ̃𝑔𝗌𝗄𝜏 as described in
the construction on its own; using 𝖬𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇; then it sends query (̃𝑔𝗌𝗄𝜏 ,⊥,𝖲𝗍𝗈𝗋𝖾𝖪𝖾𝗒)
to 𝒪(𝗆𝗌𝗄, ·).
Note that 𝜏 ∈ [0, 2ℓ1], so ̃𝑔𝗌𝗄𝜏 (𝑥

*) = 0 is satisfied with overwhelming probability.
ℬ gets reply in the form (𝗂𝗇𝖽𝖾𝗑,⊥); ℬ then makes another query (̃𝑔𝗌𝗄𝜏 , 𝗂𝗇𝖽𝖾𝗑,𝖮𝗎𝗍𝗉𝗎𝗍𝖪𝖾𝗒)
and gets back (𝗂𝗇𝖽𝖾𝗑,𝖣𝖠𝖡𝖤.𝗌𝗄𝑔𝗌𝗄𝜏).
ℬ makes a table that stores the following information (𝗂𝗇𝖽𝖾𝗑, 𝜏, 𝗌𝗄𝑔𝗌𝗄𝜏) in each entry.

(b) If 𝒜 makes 𝖪𝖾𝗒𝖦𝖾𝗇 query of the format (𝖬𝖺𝗋𝗄𝖾𝖽, 𝜏, 𝑓): ℬ first checks if an entry con-
taining 𝜏 is stored in its table in the format (𝗂𝗇𝖽𝖾𝗑, 𝜏, 𝗌𝗄𝑔𝗌𝗄𝜏); if so ℬ prepares 𝑓(𝑥, 𝑐) =
𝑓(𝑥) and queries the 𝒪(𝗆𝗌𝗄, ·) oracle on input (𝗂𝗇𝖽𝖾𝗑, 𝑓,𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾𝖪𝖾𝗒) and gets back
(𝗂𝗇𝖽𝖾𝗑,𝖣𝖠𝖡𝖤.𝗌𝗄𝑔𝗌𝗄𝜏 ,𝑓

). ℬ sends 𝖣𝖠𝖡𝖤.𝗌𝗄𝑔𝗌𝗄𝜏 ,𝑓 to 𝒜.
If there is no such entry, ℬwill query (̃𝑔𝗌𝗄𝜏 ′ ,⊥, 𝖲𝗍𝗈𝗋𝖾𝖪𝖾𝗒) first and then query (𝗂𝗇𝖽𝖾𝗑′, 𝑓,𝖣𝖾𝗅𝖾𝗀𝖺𝗍𝖾𝖪𝖾𝗒)
to get the same output.

(c) If 𝒜 makes a 𝖪𝖾𝗒𝖦𝖾𝗇 query in the format (𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽, 𝑓), then ℬ prepares 𝑓(𝑥, 𝑐) =
𝑓(𝑥) and first queries (𝑓,⊥, 𝖲𝗍𝗈𝗋𝖾𝖪𝖾𝗒) to get back some (𝗂𝗇𝖽𝖾𝗑𝑓 ,⊥); then queries again
(𝗂𝗇𝖽𝖾𝗑𝑓 , 𝑓 ,𝖮𝗎𝗍𝗉𝗎𝗍𝖪𝖾𝗒) for 𝑠𝑘𝑓 . Note it is also satisfied that 𝑓(𝑥*) = 𝑓(𝑥) = 0.

5. At the end of the game, 𝒜 outputs a pair of messages (𝑚0,𝑚1) and a circuit 𝐶*.
6. ℬ then sends (𝑚0,𝑚1) to DABE challenger and gets a ciphrtext 𝖼𝗍*. ℬ samples a random

bit 𝛽 ← {0, 1} and computes a fresh ciphertext 𝖼𝗍 ← 𝖣𝖠𝖡𝖤.𝖤𝗇𝖼(𝖣𝖠𝖡𝖤.𝗆𝗉𝗄, (𝑥, 𝖼𝗍𝖬𝖥𝖤),𝑚𝛽),
where 𝖼𝗍𝖬𝖥𝖤 ← 𝖬𝖥𝖤.𝖲𝖪𝖤𝗇𝖼(𝖬𝖥𝖤.𝗆𝗌𝗄, 𝖼𝗈𝗆𝗉2ℓ1).
𝐶* will continue to make queries but only allowed to query 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽, ·) oracle.
ℬ can answer these queries by querying𝒪(𝗆𝗌𝗄, ·) with (𝑓,⊥,𝖲𝗍𝗈𝗋𝖾𝖪𝖾𝗒), because ℬ is allowed
to make such queries in 𝖣𝖠𝖡𝖤 game:

• If 𝐶 makes a 𝖪𝖾𝗒𝖦𝖾𝗇 query in the format (𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽, 𝑓), then ℬ prepares 𝑓(𝑥, 𝑐) =
𝑓(𝑥) and first queries (𝑓,⊥, 𝖲𝗍𝗈𝗋𝖾𝖪𝖾𝗒) to get back some (𝗂𝗇𝖽𝖾𝗑𝑓 ,⊥); then queries again
(𝗂𝗇𝖽𝖾𝗑𝑓 , 𝑓 ,𝖮𝗎𝗍𝗉𝗎𝗍𝖪𝖾𝗒) for 𝑠𝑘𝑓 . Note it is also satisfied that 𝑓(𝑥*) = 𝑓(𝑥) = 0.

7. Finally, ℬ runs the decryption circuit 𝐶* on 𝖼𝗍* and 𝖼𝗍, and if 𝐶𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽,·)(𝖼𝗍*) =
𝐶𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄,𝖴𝗇𝗆𝖺𝗋𝗄𝖾𝖽,·)(𝖼𝗍), it outputs 𝑏′ = 𝛽. Otherwise, it outputs 𝑏′ = 1− 𝛽.

The rest of the analysis is the same as in the original proof.

65

D Watermarkable Implementation of Digital Signatures

D.1 Preliminaries: Constrained Signatures

The building block of a bounded collusion resistant watermarkable implementation of digital sig-
natures in [GKM+19] relies on the following building block.

Constrained Signatures A constrained signature with message space ℳ and consraint family
ℱ ⊆ 𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇[ℳ, {0, 1}] is a tuple of algorithms:

𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗏𝗄,𝗆𝗌𝗄). On input the security parameter 𝜆, the setup algorithm outputs the veri-
fication key 𝗏𝗄 and the master secret key 𝗆𝗌𝗄.

𝖲𝗂𝗀𝗇(𝗆𝗌𝗄,𝑚) → 𝗌𝗂𝗀. On input the master signing key 𝗆𝗌𝗄 and a message 𝑚 ∈ ℳ, the signing
algorithm outputs a signature 𝗌𝗂𝗀.

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚, 𝗌𝗂𝗀) → 𝑏. On input the verification key 𝗏𝗄, a message 𝑚 ∈ ℳ, and a signature 𝗌𝗂𝗀,
the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(𝗆𝗌𝗄, 𝑓)→ 𝗌𝗄𝑓 : On input the master signing key 𝗆𝗌𝗄 and a function 𝑓 ∈ ℱ , the constrain
algorithm outputs a constrained key 𝗌𝗄𝑓 .

𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝖲𝗂𝗀𝗇(𝗌𝗄𝑓 ,𝑚) → 𝗌𝗂𝗀. On input a constrained key 𝗌𝗄𝑓 and a message 𝑚 ∈ ℳ, the signing
algorithm outputs a signature 𝗌𝗂𝗀.

Correctness A constrained signature scheme is correct if for all messages 𝑚 ∈ ℳ and key pair
(𝑣𝑘,𝑚𝑠𝑘)← 𝖲𝖾𝗍𝗎𝗉(1𝜆):

Pr[𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚,𝖲𝗂𝗀𝗇(𝗆𝗌𝗄,𝑚)) = 1] = 1.

In addition, for all constraints 𝑓 ∈ ℱ where 𝑓(𝑚) = 1,

Pr[𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚,𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝖲𝗂𝗀𝗇(𝗌𝗄𝑓 ,𝑚)) = 1 : 𝗌𝗄𝑓 ← 𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(𝗆𝗌𝗄, 𝑓)] = 1.

Constrained Unforgeability A constrained signature scheme is secure if for every stateful ad-
missible PPT 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆𝑖𝑛ℕ:

Pr

[︂
𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚*, 𝗌𝗂𝗀*) = 1 :

(𝗆𝗌𝗄, 𝗏𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆)

(𝑚*, 𝗌𝗂𝗀*)← 𝒜𝖲𝗂𝗀𝗇(𝗆𝗌𝗄,·),𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(𝗆𝗌𝗄,·)(1𝜆, 𝗏𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

where 𝒜 is admissible if (1) it does not make a signing query on message 𝑚* ; and (2) it does not
make a constrained key query for any function 𝑓 ∈ ℱ such that 𝑓(𝑚*) = 1.

D.2 Definition: Watermarkable Signatures

A watermarkable signatures scheme consists of the following algorithms:

• 𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗏𝗄, 𝗌𝗄, 𝗑𝗄,𝗆𝗄): on input security parameter outputs verification key 𝗏𝗄,
signing key 𝗌𝗄; extraction key 𝗑𝗄, marking key 𝗆𝗄.

• 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)→ 𝗌𝗄𝜏 . On input the marking key 𝗆𝗄, a signing key 𝗌𝗄, and a mark 𝜏 ∈ ℳ𝜏 ,
the marking algorithm outputs a marked key 𝗌𝗄𝜏 .

66

• 𝖲𝗂𝗀𝗇(𝗌𝗄,𝑚) → 𝗌𝗂𝗀. On input a signing key 𝗌𝗄 and a message 𝑚 ∈ ℳ, the signing algorithm
outputs a signature 𝗌𝗂𝗀. 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚, 𝜎) → 0/1. On input a verification key 𝗏𝗄, a message
𝑚 ∈ ℳ, and a signature 𝗌𝗂𝗀, the verification algorithm outputs a bit to signify whether the
signature is valid or not.

• 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗏𝗄, 𝐶) → 𝜏/⊥. On input the extraction key 𝗑𝗄, a verification key 𝗏𝗄, and a circuit
𝐶, the extraction algorithm either outputs a mark 𝜏 ∈ℳ𝜏 or ⊥.

The correctness, meaningfulness and other properties are natural to derive from the general
watermarking definition Section 4.1. We refer to [GKM+19] for more details and only present
functionality-preserving and security defintions.

Functionality Preserving A watermarkable signature scheme satisfies the functionality-preserving
property if there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, (𝗏𝗄, 𝗌𝗄,𝗆𝗄, 𝗑𝗄) ←
𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝑚 ∈ℳ, 𝜏 ∈ℳ𝜏 , the following holds:

Pr

[︂
𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚,𝗐𝖲𝖾𝖼𝖤𝗏𝖺𝗅(𝗌𝗄𝜏 ,𝑚)) = 1 :

(𝗏𝗄, 𝗌𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆),
𝗌𝗄𝜏 ← 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

We provide the unremovability definition, which is different from the one defined in [GKM+19],
but their scheme can be modified to satisfy this definition.

𝛾-Unremovability For every stateful 𝛾-unremovable admissible PPT adversary 𝒜, there exists
a negligible function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, the following holds:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗏𝗄, 𝐶) /∈ 𝒬 ∧ 𝐶 is 𝛾-good :

(𝗌𝗄, 𝗏𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

𝐶 ← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(1𝜆, 𝗏𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

where 𝒬 is the set of marks queried by 𝒜 and 𝐶 is said to be a (PPT admissible, stateful) 𝛾-good
adversary if:

Pr
[︁
𝐶𝖲𝗂𝗀𝗇(𝗌𝗄,·) → (𝑚*, 𝗌𝗂𝗀*) : 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚*, 𝗌𝗂𝗀*) = 1

]︁
≥ 𝛾.

𝐶 is admissible if and only if it does not query 𝖲𝗂𝗀𝗇(𝗌𝗄, ·) on 𝑚*.

Discussions on Security Definitions and [GKM+19] construction In the [GKM+19]’s water-
markable signature scheme, the unmarked 𝖲𝗂𝗀𝗇 function and the circuit used to compute signa-
tures using marked keys have different output distributions, if we let 𝒜 query 𝖲𝗂𝗀𝗇(𝗌𝗄, ·) oracle in
the first stage but allow 𝐶 to choose the challenge message to sign on, then there can be an attack.
Because the [GKM+19] scheme ’s 𝖲𝗂𝗀𝗇(𝗌𝗄, ·) and marked signing circuit have different output dis-
tributions. If 𝐶 can choose its own 𝑚* but the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm does not know which queries
𝒜 has made in stage 1, then 𝐶 can be hardcoded with some 𝑚*, 𝗌𝗂𝗀′ where watermark cannot be
extracted. We thus give the above definition, which suffice for our applications 1.

D.3 Construction

We show the following modified construction from [GKM+19] based on a constrained signature
scheme 𝖢𝖲𝗂𝗀 defined in Appendix D.1:

67

• Let 𝒯 ′ = 𝒯 ∪{⊥}. For a mark 𝜏* ∈ 𝒯 , let 𝑓𝜏* : 𝒯 ′×ℳ→ {0, 1} be the function 𝑓𝜏*(𝜏,𝑚) = 1
if 𝜏 = 𝜏* and 0 otherwise.

𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗏𝗄, 𝗌𝗄,𝗆𝗄, 𝗑𝗄): outputs a signing/verification key-pair (𝗏𝗄, 𝗌𝗄)← 𝖢𝖲𝗂𝗀.𝖲𝖾𝗍𝗎𝗉(1𝜆);
𝗆𝗄 = ⊥, 𝗑𝗄 = 𝗌𝗄.

𝖲𝗂𝗀𝗇(𝗌𝗄,𝑚)→ 𝗌𝗂𝗀: On input a signing key 𝗌𝗄, and a message 𝑚 ∈ ℳ, the signing algorithm signs
𝗌𝗂𝗀′ ← 𝖢𝖲𝗂𝗀.𝖲𝗂𝗀𝗇(𝗌𝗄, (⊥,𝑚)), and outputs the signature 𝗌𝗂𝗀 = (⊥, 𝗌𝗂𝗀′).

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄,𝑚, 𝗌𝗂𝗀) → 𝑏. On input a verification key 𝗏𝗄, a message 𝑚 ∈ ℳ, and a signature 𝗌𝗂𝗀 =
(𝜏 ′, 𝗌𝗂𝗀′); the verification algorithm outputs 𝑏← 𝖢𝖲𝗂𝗀.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝜏 ′,𝑚), 𝗌𝗂𝗀′).

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏) → 𝐶. On input a marking key 𝗆𝗄 = ⊥, a signing key 𝗌𝗄, and a mark 𝜏 ∈ 𝒯 , the
marking algorithm computes 𝗌𝗄𝜏 ← 𝖢𝖲𝗂𝗀.𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(𝗌𝗄, 𝑓𝜏) and outputs a circuit 𝐶𝜏 : ℳ →
𝒮ℐ𝒢 where 𝐶𝜏 (·) := (𝜏,𝖢𝖲𝗂𝗀.𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝖲𝗂𝗀𝗇(𝗌𝗄𝜏 , (𝜏, ·))).

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗏𝗄, 𝐶) → 𝜏/⊥: on 𝗑𝗄 = 𝖢𝖲𝗂𝗀.𝗌𝗄, 𝗏𝗄 = 𝖢𝖲𝗂𝗀.𝗏𝗄 and circuit 𝐶 :ℳ → 𝒮ℐ𝒢, perform the
following for 𝑇 = 𝜆/𝛾 times where 𝛾 is the unremovability parameter:

• For 𝑖 ∈ [𝑇]: compute (𝑚𝑖 = (𝜏 ′𝑖 ,𝑚
′
𝑖), 𝗌𝗂𝗀𝑖)← 𝐶𝖲𝗂𝗀𝗇(𝗌𝗄,·). If 𝖢𝖲𝗂𝗀.𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, (𝜏𝑖,𝑚′𝑖), 𝗌𝗂𝗀𝑖) = 1

and 𝑚′𝑖 has not been queried, abort and output 𝜏 ′𝑖 .

The correctness, functionlity-preserving, meaningfulness proof will all follow exactly from
[GKM+19]. Even though our extraction algorithm is different, the unremovability proof will fol-
low similarly: any valid signatures provided by 𝐶 must contain some 𝜏𝑖 ∈ 𝒬 of the marking
queries, otherwise it helps break the constrained unforgeable security of the constrained signa-
ture. The only change is that the reduction does not answer any 𝖲𝗂𝗀𝗇(𝗌𝗄, ·) queries in the first
stage, and thus do not need to query 𝖢𝖲𝗂𝗀.𝖲𝗂𝗀𝗇(𝗌𝗄, ·) oracle when interacting with 𝒜, but only
when interacting with the circuit 𝐶 produced by 𝒜.

E Watermarkable CCA-secure Hybrid Encryption (Key Encapsulation
Scheme)

Theorem E.1. Assuming LWE, there exists secure watermarkable implementation of a CCA-secure hybrid
encryption scheme.

The assumption of LWE comes from the need of watermarkable CCA-secure PKE.

Construction A watermarkable implementation of CCA-secure hybrid encryption 𝗐𝖧𝖤 = (𝖪𝖾𝗒𝖦𝖾𝗇,
𝖤𝗇𝖼,𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍) can be built from a CCA-secure secret key encryption scheme 𝖲𝖪𝖤 =
(𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇, 𝖲𝖪𝖤.𝖤𝗇𝖼,𝖲𝖪𝖤.𝖣𝖾𝖼) and a watermarkable implementatin of CCA-secure public key
encryption 𝗐𝖯𝖪𝖤 = (𝗐𝖯𝖪𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉,𝗐𝖯𝖪𝖤.𝖤𝗇𝖼,𝗐𝖯𝖪𝖤.𝖣𝖾𝖼,𝗐𝖯𝖪𝖤.𝖬𝖺𝗋𝗄,𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍) as follows:

• 𝖪𝖾𝗒𝖦𝖾𝗇(𝜆) : compute (𝗐𝖯𝖪𝖤.𝗉𝗄,𝗐𝖯𝖪𝖤.𝗌𝗄,𝗐𝖯𝖪𝖤.𝗑𝗄,𝗐𝖯𝖪𝖤.𝗆𝗄) ← 𝗐𝖯𝖪𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(𝜆). Out-
put 𝗌𝗄 = 𝗐𝖯𝖪𝖤.𝗌𝗄; 𝗉𝗄 = 𝗐𝖯𝖪𝖤.𝗉𝗄; 𝗑𝗄 = 𝗐𝖯𝖪𝖤.𝗑𝗄;𝗆𝗄 = 𝗐𝖯𝖪𝖤.𝗆𝗄

• 𝖤𝗇𝖼(𝗉𝗄,𝑚): compute 𝖲𝖪𝖤.𝗌𝗄 ← 𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝜆); then compute 𝖼𝗍1 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄,𝖲𝖪𝖤.𝗌𝗄);
compute 𝖼𝗍2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝖲𝖪𝖤.𝗌𝗄,𝑚). Output 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2).

• 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍): parse 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2); compute 𝗌𝗄′ ← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍1) and then 𝑚′ ← 𝖲𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄′, 𝖼𝗍2).
Output 𝑚′.

• 𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): parse 𝗆𝗄 = 𝗐𝖯𝖪𝖤.𝗆𝗄; 𝗌𝗄 = 𝗐𝖯𝖪𝖤.𝗌𝗄; output 𝗌𝗄𝜏 ← 𝗐𝖯𝖪𝖤.𝖬𝖺𝗋𝗄(𝗌𝗄, 𝜏);

68

• 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑 = ⊥, 𝐶):

– parse 𝗑𝗄 := 𝗐𝖯𝖪𝖤.𝗑𝗄; 𝗉𝗄 := 𝗐𝖯𝖪𝖤.𝗉𝗄. Create the following circuit 𝐶𝖯𝖪𝖤 with black-box
access to 𝐶:

* 𝐶𝖯𝖪𝖤 is hardcoded with 𝗉𝗄 and simulates the CCA-PKE game for 𝐶 as follows:
* give 𝗉𝗄 to 𝐶; for 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2): query an external oracle
𝗌𝗄′ ← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗐𝖯𝖪𝖤.𝗌𝗄, 𝖼𝗍1); output 𝑚′ ← 𝖲𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄′, 𝖼𝗍2).

* 𝐶 submits challenge messages (𝑚0,𝑚1); 𝐶𝖯𝖪𝖤 submits (𝗌𝗄0 ← 𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), 𝗌𝗄1 ←
𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)) to the external challenger; 𝐶𝖯𝖪𝖤 receives challenge ciphertext 𝖼𝗍*

from the challenger and 𝐶𝖯𝖪𝖤 sends 𝖼𝗍** = (𝖼𝗍*, 𝖼𝗍*2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0,𝑚𝑏)) to 𝐶,
where 𝑚𝑏 ← {𝑚0,𝑚1}.

* 𝐶 continues to simulate the decryption oracle as above to decrypt only valid ci-
phertexts.

* If 𝐶 outputs 𝑏′ = 𝑏, then 𝐶𝖯𝖪𝖤 outputs guess 0; else it outputs guess 1.
– output 𝜏/⊥ ← 𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖪𝖤.𝗑𝗄,𝗐𝖯𝖪𝖤.𝗉𝗄, 𝖺𝗎𝗑 = ⊥, 𝐶𝖯𝖪𝖤).

Now we prove Theorem E.1

Proof. Suppose there exists adversary𝒜 that breaks the 𝛾-unremovability of watermarkable CCA-
secure PKE for some non-negligible 𝛾, i.e. 𝒜𝖣𝖾𝖼(𝗌𝗄,·),𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(𝗉𝗄 produces some program 𝐶 such
that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖 for some non-negligible 𝜖, whereas 𝐶 satisfies Pr[𝐺𝐶𝐶𝐴(𝗌𝗄, 𝗉𝗄, 𝐶) =
1] ≥ 1

2 + 𝛾 (for 𝐺𝐶𝐶𝐴 see Section 5.5.2). The probability Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] is taken over the
randomness in 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 and the probability Pr[𝐺𝐶𝐶𝐴(𝗌𝗄, 𝗉𝗄, 𝐶) = 1] is take over the randomness
used in 𝐺𝐶𝐶𝐴.

We will show that we can either break 𝛾′-unremovability of the watermarkable 𝗐𝖯𝖪𝖤 or CCA-
security of 𝖲𝖪𝖤.

For any (𝗌𝗄, 𝗉𝗄, 𝗑𝗄,𝗆𝗄) generated by 𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆) and any𝒜𝖣𝖾𝖼(𝗌𝗄,·),𝖬𝖺𝗋𝗄(𝗆𝗄,𝗌𝗄,·)(𝗉𝗄) producing
a 𝛾-good 𝐶 such that Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶) /∈ 𝒬] ≥ 𝜖, one of the following cases must hold:

• Case 1: the program 𝐶𝖯𝖪𝖤 created during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) is a 𝛾′-good ad-
versary for the stage-2 game 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·) for some non-negligible 𝛾′. The reduction
ℬ𝗐𝖯𝖪𝖤 works as follows:

– ℬ𝗐𝖯𝖪𝖤 receives 𝗐𝖯𝖪𝖤.𝗉𝗄 from the challenger and sends to 𝒜. ℬ𝗐𝖯𝖪𝖤;
– for 𝒜’s marking queries : query the challenger’s marking oracle 𝖬𝖺𝗋𝗄(𝗐𝖯𝖪𝖤.𝗌𝗄, ·) and

forward the output.

After 𝒜 outputs program 𝐶, ℬ𝗐𝖯𝖪𝖤 creates circuit 𝐶 ′𝗐𝖯𝖪𝖤 with black-box access to 𝐶:

– 𝐶 ′𝗐𝖯𝖪𝖤 is hardcoded with 𝗉𝗄 and makes external queries to simulate the decryption
oracle for 𝐶:

* for 𝐶’s decryption queries 𝖼𝗍 = (𝖼𝗍1, 𝖼𝗍2): query the challenger’s decryption oracle
𝗌𝗄′ ← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗐𝖯𝖪𝖤.𝗌𝗄, 𝖼𝗍1); output 𝑚′ ← 𝖲𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄′, 𝖼𝗍2).

– 𝐶 submits challenge messages (𝑚0,𝑚1); 𝐶𝖯𝖪𝖤 submits (𝗌𝗄0 ← 𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), 𝗌𝗄1 ←
𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)) to the external challenger; 𝐶𝖯𝖪𝖤 receives challenge ciphertext 𝖼𝗍* from
the challenger and 𝐶𝖯𝖪𝖤 sends 𝖼𝗍** = (𝖼𝗍*, 𝖼𝗍*2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0,𝑚𝑏)) to 𝐶, where 𝑚𝑏 ←
{𝑚0,𝑚1}.

– 𝐶 continues to simulate the decryption oracle as above to decrypt only valid cipher-
texts.

69

– If 𝐶 outputs 𝑏′ = 𝑏, then 𝐶𝖯𝖪𝖤 outputs guess 0; else it outputs guess 1.

By the design of out 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 and by our assumption, we must have that Pr[𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖪𝖤.𝗑𝗄,
𝗐𝖯𝖪𝖤.𝗉𝗄, 𝖺𝗎𝗑, 𝐶𝖯𝖪𝖤) /∈ 𝒬] ≥ 𝜖 where 𝐶𝖯𝖪𝖤 is the program created dring 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶).
For any (𝗑𝗄,𝗆𝗄, 𝗌𝗄, 𝗉𝗄), it is easy to see that program 𝐶𝖯𝖪𝖤 created by 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶)’s
input-output behavior is the same as 𝐶 ′𝗐𝖯𝖪𝖤 above. Therefore, if Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶𝖯𝖪𝖤) ∈ 𝒬]
is 𝛾′-good and Pr[𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶𝖯𝖪𝖤)] ≥ 𝜖, so will 𝐶 ′𝗐𝖯𝖪𝖤 satisfy these two conditions. Thus
ℬ𝗐𝖯𝖪𝖤 breaks the 𝛾′-unremovability.

• Case 2: the program 𝐶𝖯𝖪𝖤 created during the execution of 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝐶) is not a 𝛾′-good
adversary for the stage-2 game 𝐺𝖢𝖢𝖠−𝖯𝖪𝖤(𝗌𝗄, 𝗉𝗄, ·) for any non-negligible 𝛾′. In this
case, we must have that |Pr[𝐶𝖯𝖪𝖤 → 0|𝖼𝗍* = 𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄0)] − Pr[𝐶𝖯𝖪𝖤 → 0|𝖼𝗍* =
𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄1)] = |Pr[𝐶 outputs 𝑏′ = 𝑏|𝖼𝗍* = 𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄0)]−Pr[𝐶 outputs 𝑏′ = 𝑏|𝖼𝗍* =
𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄1)]| ≤ 𝗇𝖾𝗀𝗅(𝜆);
Thus we can switch to doing the following in running 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝐶): when 𝐶 submits
challenge messages (𝑚0,𝑚1); 𝐶𝖯𝖪𝖤 sends 𝖼𝗍** = (𝖼𝗍*1 = 𝖯𝖪𝖤.𝖤𝗇𝖼(𝖯𝖪𝖤.𝗉𝗄, 𝗌𝗄1), 𝖼𝗍

*
2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0,𝑚𝑏))

to 𝐶, where 𝑚𝑏 ← {𝑚0,𝑚1}where 𝖼𝗍* is always 𝖯𝖪𝖤.𝖤𝗇𝖼(𝖯𝖪𝖤.𝗉𝗄, 𝗌𝗄1).
Since 𝐶 is still (𝛾 − 𝗇𝖾𝗀𝗅(𝜆)) good, we will build a reduction to break IND-CCA security of
𝖲𝖪𝖤.
The reductionℬ𝖲𝖪𝖤 samples 𝗐𝖯𝖪𝖤’s keys on its own and can query the oracles 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0, ·),
𝖲𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄0, ·) provided by the 𝖲𝖪𝖤 challenger.
After 𝒜 outputs 𝐶, ℬ𝖲𝖪𝖤 enters stage-2 of reduction and simulates the encryption and de-
cryption oracles by submitting the decryption queries to the encryption, decryption oracles
𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0, ·),𝖲𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄0, ·) in the CCA-security game of SKE. In the challenge phase, 𝐶
submits challenge messages (𝑚0,𝑚1); ℬ2𝖲𝖪𝖤 submits (𝑚0,𝑚1) to the external challenger; and
samples 𝗌𝗄1 ← 𝖲𝖪𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆),; 𝐶𝖯𝖪𝖤 receives challenge ciphertext 𝖼𝗍*2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0,𝑚𝑏)
from the challenger, where 𝗌𝗄0 is only known to the challenger and 𝐶𝖯𝖪𝖤 sends 𝖼𝗍** = (𝖼𝗍*1 =
𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄1), 𝖼𝗍

*
2 ← 𝖲𝖪𝖤.𝖤𝗇𝖼(𝗌𝗄0,𝑚𝑏)) to 𝐶. 𝐶 continues to simulate the encryption

and decryption oracle as above to decrypt only valid ciphertexts. In the end, if 𝐶 outputs 𝑏′,
then ℬ2𝖲𝖪𝖤 outputs the same 𝑏′.

F Watermarkable Functional Encryption from Watermarkable Attribute-
Based Encryption

We give a high-level description on how to turn the [GKP+13] functional encryption construction
from ABE, FHE, garbled circuits into a watermarkable FE based on watermarkable ABE. We will
not elaborate details of the construction as we cannot possibly cover all explicit constructions for
watermarking-compositions of existing schemes, and our main goal here is to give reference to
another example of watermarking-composition when applied to an advanced encryption scheme.

All the main algorithms are the same as the [GKP+13] construction. We will mainly remark on
how we do extraction and refer interested readers to [GKP+13] for the detailed construction.

Watermarkable Functional Encryption: Definitions A watermarkable 𝖥𝖤 scheme can be given
different watermarking definitions. One is to watermark the master secret key and given out an

70

unmarked functional key to the adversarial program 𝒜; the other is to let 𝒜 submit a function 𝑓
in the first stage and gets to query on marked versions of the functional key 𝗌𝗄𝑓 . Both notions are
interesting.

For the first notion, we can consider the following security game: The 𝛾-Unremovability for
a watermarkable single-key FE scheme says, for all 𝜆 ∈ ℕ, and for all PPT admissible stateful
adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(𝜆) such that:

Pr

[︂
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = 𝑥,𝐶) /∈ 𝒬

∧𝐶 is 𝛾-good
:

(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝗑𝗄,𝗆𝗄)←𝖶𝖬𝖲𝖾𝗍𝗎𝗉(1𝜆)

(𝑥,𝐶)← 𝒜𝖬𝖺𝗋𝗄(𝗆𝗄,𝗆𝗌𝗄,·)(1𝜆,𝗆𝗉𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆).

where𝒬 is the set of marks queried by𝒜 and 𝐶 = (𝐶1, 𝐶2, 𝐷) is a PPT admissible, stateful 𝛾-good
adversary in the security game 𝐺𝖠𝖡𝖤(𝗆𝗌𝗄,𝗆𝗉𝗄, 𝖺𝗎𝗑 = (𝑥), ·) if:

Pr

⎡⎢⎢⎣𝐷(𝗌𝗍, 𝖼𝗍𝑏) = 𝑏 :

(𝑓, 𝗌𝗍1)← 𝐶1(𝗆𝗉𝗄)
𝗌𝗄𝑓 ← 𝖥𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓)

𝖼𝗍0 ← 𝖥𝖤.𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥), 𝖼𝗍1 ← 𝖲𝗂𝗆(𝗆𝗉𝗄, 𝗌𝗄𝑓 , 𝑓, 𝑓(𝑥), 1
|𝑥|), 𝑏← {0, 1}

𝗌𝗍← 𝐶2(𝗌𝗍1, 𝖼𝗍𝑏)

⎤⎥⎥⎦ ≥ 1

2
+ 𝛾.

where 𝖲𝗂𝗆 is some PPT simulator.
A selective variant is requiring𝒜 output 𝑥 before seeing 𝗆𝗉𝗄. Note that we need𝒜 to output 𝑥

in the first stage because by relying out construction on ABE, the choice of message 𝑥 will influence
the choice of the ABE reduction’s choice of challenge attribute, which must be committed to before
entering stage 2. We can also let 𝒜 outputs 𝑓 first so that 𝒜 sees 𝗌𝗄𝑓 before outputing 𝑥 (which
matches the semantics of a fully secure FE). But then the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm will have to take in 𝑓
as an auxiliary inputs.

The case where 𝗌𝗄𝑓 gets watermarked is slightly trickier to define. We need to work with
an indistinguishability-based FE security where the function family ℱ is a "high-entropy" func-
tion family. Also, the 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 needs to take in the challenge 𝑓 as an auxiliary input. We refer to
[GKM+19] Remark 4.5 for more discussions. [GKM+19]’s watermarkable predicate encryption
scheme can be extended to a watermarkable FE scheme for watermarking a functional key when
working with the above restricted function class.

F.1 Two-Outcome Attribute-Based Encryption

The first building block for [GKP+13] FE is a two-outcome ABE, called 𝖠𝖡𝖤2. It has the similar
syntax to a normal ABE except that: the encryption scheme takes in 𝗆𝗉𝗄, 𝑥,𝑚0,𝑚1; when de-
crypting with a functional key 𝗌𝗄𝑓 on ciphertext 𝖼𝗍𝑥,𝑚0,𝑚1 , the decryption will output 𝑚𝑏 when
𝑓(𝑥) = 𝑏.

The single-key 𝖠𝖡𝖤2 security game is exactly like a single-key ABE security game except that𝒜
provides 3 challenge messages (𝑚,𝑚0,𝑚1) and attribute 𝑥, then𝒜 is given either 𝖠𝖡𝖤2.𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥, (𝑚0,𝑚))
if 𝑓(𝑥) = 1 for the key generation query 𝑓 , or 𝖠𝖡𝖤2.𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥, (𝑚,𝑚1)) if 𝑓(𝑥) = 0, and asked to
output 𝑏.

A single-key 𝖠𝖡𝖤2 scheme can be built with a simple construction from a regular single-key
𝖠𝖡𝖤 . We refer the readers to [GKP+13] Appendix B for details and give a high level idea: the
scheme generates two pairs regular ABE keys; the encryption generates two encryptions of the
same message and attribute, each under one of the master public keys respectively; the decryption

71

algorithm on 𝗌𝗄𝑓 and 𝖼𝗍 = (𝖼𝗍0, 𝖼𝗍1) will try to decrypt both ciphertexts, and output that one that
has a valid decryption result.

In the watermarking construction, we watermark both the master secret keys of the two 𝖠𝖡𝖤
(regarding single-key watermarkable ABE security: see Definition C.3 except that 𝒜 is not give
𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle and 𝐶 can only query 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) once)). The 𝖤𝗑𝗍𝗋𝖺𝖼𝗍 algorithm in the
watermarkable 𝖠𝖡𝖤2 will turn the input program 𝐶 into a circuit 𝐶𝑖 to break the single-key ABE
security for each of the keys in the construction. The reduction in [GKP+13] Appendix B would
go through because each stage of 𝖠𝖡𝖤2 in the unremovability game would map to the stage of the
regular 𝖠𝖡𝖤 unremovability game. That is, making some 𝗆𝗌𝗄 marking queries after receiving 𝗆𝗉𝗄,
and outputs challenge messages, attribute and program 𝐶; then 𝐶 gets to query a single 𝑠𝑘𝑓 and
challenged with the challenge ciphertext (If we choose to work with a watermarkable FE scheme
where we let 𝒜 choose 𝑓 , we can also let the adversary in watermarkble 𝖠𝖡𝖤 scheme query one
𝗌𝗄𝑓 and then the program 𝐶 is not allowed to make any queries).

Watermarkable Functional Encryption Construction, Extraction and Security We refer the read-
ers to [GKP+13] Section 3.1 for details on the construction and its preliminaries for definitions of
FHE and garbled circuit, since we only plan to give an idea here.

The construction only needs to rely on a watermarkable 𝖠𝖡𝖤2 scheme (which we have shown
above can be based on watermarkable regular 𝖠𝖡𝖤). The FHE and garbled circuits do not have to
be watermarked because they are only generated freshly on each evaluation.

The 𝖶𝖬𝖲𝖾𝗍𝗎𝗉 algorithm generates all 𝜆 number of (𝗆𝗉𝗄𝑖,𝗆𝗌𝗄𝑖,𝗆𝗄𝑖, 𝗑𝗄𝑖) from the setup of a
watermarkable 𝖠𝖡𝖤2 scheme.

The 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, 𝑓) algorithm generates a 𝑠𝑘𝑖 ← 𝖠𝖡𝖤2.𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝑖,𝖥𝖧𝖤.𝖤𝗏𝖺𝗅
𝑖
𝑓) where 𝖥𝖧𝖤.𝖤𝗏𝖺𝗅𝑖𝑓

is outputing the 𝑖-th bit after the FHE evaluation on some FHE 𝖤𝗏𝖺𝗅 key 𝖥𝖧𝖤.𝗉𝗄, the input function
𝑓 and some FHE ciphertexts 𝑐1, · · · , 𝑐𝑛.

The 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥) algorithm takes input attribute 𝑥 = 𝑥1 · · ·𝑥𝑛, generates a fresh 𝖥𝖧𝖤 key pair,
encrypt each 𝑥𝑖 to get FHE ciphertext 𝑐𝑖. Then produce garbled circuit for the FHE decryption
algorithm 𝖥𝖧𝖤.𝖣𝖾𝖼(𝖥𝖧𝖤.𝗌𝗄, ·) with 2𝜆 labels {𝐿0

𝑖 , 𝐿
1
𝑖 }𝑖∈[𝜆]. Then we produce 𝖠𝖡𝖤2 ciphertext 𝖼𝗍𝑖 ←

𝖠𝖡𝖤2.𝖤𝗇𝖼(𝗆𝗉𝗄𝑖, (𝖥𝖧𝖤.𝗉𝗄, �⃗�), 𝐿
0
𝑖 , 𝐿

1
𝑖) for all 𝑖 ∈ [𝜆] where �⃗� = (𝑐1, · · · , 𝑐𝑛). Output the ciphertext

(𝖼𝗍1, · · · 𝖼𝗍𝜆) and the garbled circuit.
The decryption algorithm 𝖣𝖾𝖼(𝗌𝗄𝑓 , 𝖼𝗍) runs the 𝖠𝖡𝖤2 decryption on each𝖼𝗍𝑖 using 𝗌𝗄𝑖 to obtain

a label 𝐿𝑑𝑖
𝑖 , for each 𝑖 ∈ [𝜆]. Then one can recover 𝑓(𝑥) ← 𝖥𝖧𝖤.𝖣𝖾𝖼(𝖥𝖧𝖤.𝗌𝗄, 𝑑1 · · · 𝑑𝜆) by using the

labels 𝐿𝑑𝑖
𝑖 and the garbled circuit.

Now we can talk about how we watermark and extract: the marking scheme simply marks
each 𝖠𝖡𝖤2.𝗆𝗌𝗄𝑖 for 𝑖 ∈ [𝜆]. To see how we extract, we roughly open up the security proof of
the above scheme: On an input program 𝐶, the extraction interacts with 𝐶 as in the stage-2 FE
game in our unremovability definition. Recall that in the end of the original security game, we
need to prepare either real ciphertext 𝖼𝗍← 𝖤𝗇𝖼(𝗆𝗉𝗄, 𝑥) or a simulated ciphertext, and ask the final
stage adversary 𝐷 to distinguish. But in our extraction algorithm that tries to create circuit 𝐶𝑖 to
break the unremovability of the 𝑖-the 𝖠𝖡𝖤2 scheme, we instead sample either of the following:
(1) generate the ciphertext as in the original scheme; (2) use the label 𝐿𝑑𝑖

𝑖 twice in the ciphertext
𝖼𝗍′𝑖 ← 𝖠𝖡𝖤2.𝖤𝗇𝖼(𝗆𝗉𝗄𝑖, (𝖥𝖧𝖤.𝗉𝗄, �⃗�), 𝐿

𝑑𝑖
𝑖 , 𝐿𝑑𝑖

𝑖), where 𝑑𝑖 = 𝖥𝖧𝖤.𝖤𝗏𝖺𝗅𝑖𝑓 (𝖥𝖧𝖤.𝗉𝗄, �⃗�). More specifically,
circuit 𝐶𝑖 obtains one of these ciphetexts from some external 𝖠𝖡𝖤2 challenger and uses 𝐶’s output
to distinguish them.

Why would a 𝛾-good 𝐶 in the original security game still be 𝛾-good when we simulate the

72

game as in the above extraction? This relies on the hybrid arguments invoking the IND-CPA se-
curity of 𝖥𝖧𝖤 and then the security of garbled circuit. We refer the details to the proofs for Hybrid
0 to Hybrid 2 in Section 3.2 of [GKP+13]. By invoking these security properties, we move from
giving a completely simulated ciphertext, to give the fake ciphertext described in the extraction
algorithm (when flipping the coin to 1), while 𝐶 should still be 𝛾-good with some noticeable prob-
ability.

Then we can argue that at least one of 𝐶𝑖 is 𝛾𝑖-good for some non negligible 𝛾𝑖, we can break
unremovability of 𝖠𝖡𝖤2 with the 𝑖-th key pair. In the marking stage, the 𝑖-th 𝖠𝖡𝖤2 reduction can
simulate the marking queries by making marking query to the 𝖠𝖡𝖤2 marking oracle (and mark the
other keys on its own). After 𝒜 commits to chellenge message 𝑥, the reduction can also commit
the challenge attribute (𝖥𝖧𝖤.𝗉𝗄, �⃗�) where �⃗� is computed from 𝑥 as in the construction. After 𝒜
outputs 𝐶, the reduction creates circuit 𝐶𝑖 as in the extraction algorithm, and 𝐶𝑖 can answer 𝐶’s
single key query by making a single query to the 𝖠𝖡𝖤2 𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, ·) oracle.

G Watermarkable Non-malleable PKE from Watermarkable CPA-secure
PKE, NIZK and Signatures

G.1 Watermarkable Implementation of Non-malleable CCA2 PKE

We present that an alternative construction to Appendix A, the CCA2 non-malleable PKE in
[DDN91] also has a watermarking implementation. We will omit the security proof due to the
similarity to Appendix A.

G.2 Construction and Security

Our construction is based on the non-malleable encryption scheme in [DDN91].
Given a watermarkable implementation of a CPA-secure PKE 𝗐𝖯𝖪𝖤 = (𝖶𝖬𝖲𝖾𝗍𝗎𝗉,

𝖤𝗇𝖼,𝖣𝖾𝖼,𝖬𝖺𝗋𝗄,𝖤𝗑𝗍𝗋𝖺𝖼𝗍), a NIZK scheme 𝖭𝖨𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉,𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒) and a signature scheme 𝖣𝖲 =
(𝖪𝖾𝗒𝖦𝖾𝗇,𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒). where the verification key size of 𝖣𝖲 is 𝑛.

Construction

𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆, 1𝑛) : For 𝑖 ∈ [𝑛], 𝑏 ∈ {0, 1}: compute (𝗐𝖯𝖪𝖤.𝗉𝗄𝑖,𝑏,𝗐𝖯𝖪𝖤.𝗌𝗄𝑖,𝑏, 𝗑𝗄 = 𝗐𝖯𝖪𝖤.𝗑𝗄𝑖,𝑏;𝗆𝗄 =
𝗐𝖯𝖪𝖤.𝗆𝗄𝑖,𝑏)← 𝗐𝖯𝖪𝖤.𝖶𝖬𝖲𝖾𝗍𝗎𝗉(𝜆);
Compute 𝖢𝖱𝖲← 𝖭𝖨𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(1𝜆); Output 𝗌𝗄 = (𝗐𝖯𝖪𝖤.𝗌𝗄𝑖,𝑏)𝑖∈[𝑛],𝑏∈{0,1}; 𝗉𝗄 = ({𝗐𝖯𝖪𝖤.𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1},𝖢𝖱𝖲); 𝗑𝗄 =
{𝗐𝖯𝖪𝖤.𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1};𝗆𝗄 = {𝗐𝖯𝖪𝖤.𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}

𝖤𝗇𝖼(𝗉𝗄,𝑚):

• parse 𝗉𝗄 := {𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1},𝖢𝖱𝖲; compute (𝖣𝖲.𝗌𝗄,𝖣𝖲.𝗏𝗄) ← 𝖣𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆); Let us
denote 𝑖-th bit of 𝖣𝖲.𝗏𝗄 as 𝗏𝗄𝑖.

• For each 𝑖 ∈ [𝑛]: compute 𝖼𝗍𝑖 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝗏𝗄𝑖 ,𝑚);
• compute 𝜋 ← 𝖭𝖨𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖢𝖱𝖲, (𝖼𝗍1, 𝖼𝗍2, · · · , 𝖼𝗍𝑛,𝖣𝖲.𝗏𝗄), (𝑟1, 𝑟2, · · · , 𝑟𝑛,𝑚)) for the fol-

lowing statement:
∃witness (𝑟1, 𝑟2, · · · , 𝑟𝑛,𝑚) such that 𝖼𝗍𝑖 = 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝗏𝗄𝑖 ,𝑚; 𝑟𝑖) for all 𝑖 ∈ [𝑛], where
𝑟𝑖 is the randomness used in encryption.

• compute a signature 𝗌𝗂𝗀← 𝖣𝖲.𝖲𝗂𝗀𝗇(𝖣𝖲.𝗌𝗄, ({𝖼𝗍𝑖}𝑖∈𝑛, 𝜋))

73

• Output 𝖼𝗍 = ({𝖼𝗍𝑖}𝑖∈𝑛,𝖣𝖲.𝗏𝗄, 𝜋, 𝗌𝗂𝗀).
𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍):

• parse 𝖼𝗍 = ({𝖼𝗍𝑖}𝑖∈𝑛,𝖣𝖲.𝗏𝗄, 𝜋); 𝗌𝗄 = {𝗌𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1};
• if 𝖣𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝖣𝖲.𝗏𝗄, ({𝖼𝗍𝑖}𝑖∈𝑛, 𝜋), 𝗌𝗂𝗀) = 1 continue; else abort and output ⊥.
• if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋, (({𝖼𝗍𝑖}𝑖∈𝑛,𝖣𝖲.𝗏𝗄)) = 1, continue; else abort and output ⊥.
• compute 𝑚← 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄1,𝗏𝗄1 , 𝖼𝗍1); output 𝑚′.

𝖬𝖺𝗋𝗄(𝗆𝗄, 𝗌𝗄, 𝜏): parse 𝗆𝗄 = {𝗆𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}; 𝗌𝗄 = {𝗌𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}; output {𝗌𝗄𝑖,𝑏,𝜏 ← 𝗐𝖯𝖪𝖤𝑖,𝑏.𝖬𝖺𝗋𝗄(𝗌𝗄𝑖,𝑏, 𝜏)}}𝑖∈[𝑛],𝑏∈{0,1};
𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗑𝗄, 𝗉𝗄, 𝖺𝗎𝗑 = (𝑚0,𝑚1), 𝐶):

• parse 𝗑𝗄 := ({𝗑𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1},𝖭𝖨𝖹𝖪.𝗍𝖽); 𝗉𝗄 := ({𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1},𝖢𝖱𝖲). Initialize an
empty tuple �⃗� ;
For 𝑖* = 1, · · · , 𝑛; 𝑏* = 0, 1: Create the following circuit 𝐶𝑖*,𝑏* with black-box access to
𝐶:

– 𝐶𝑖*,𝑏* is hardcoded with ({𝗉𝗄𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}, {𝗑𝗄𝑖,𝑏}𝑖 ̸= 𝑖* ∨ 𝑏 ̸= 𝑏*, 𝗍𝖽,𝖢𝖱𝖲)
𝐶𝑖*,𝑏* acts as a stage-2 reduction from CCA2-PKE to CPA-PKE with the keys (𝗌𝗄𝑖*,𝑏* , 𝗉𝗄𝑖*,𝑏*)
simulates the CCA2-PKE stage-2 game for 𝐶 as follows:

– For 𝐶’s decryption queries 𝖼𝗍 = ({𝖼𝗍𝑖,𝗏𝗄𝑖}, 𝗏𝗄, 𝜋, 𝗌𝗂𝗀):
* First check if 𝖭𝖨𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝖢𝖱𝖲, 𝜋) = 1, if 0 output ⊥; else continue;
* By the extraction key simulation property, since 𝗑𝗄𝑖 ̸=𝑖*∨𝑏 ̸=𝑏* can be used to sim-

ulate the oracles used in 𝐺𝐶𝑃𝐴(𝗉𝗄𝑖, 𝗌𝗄𝑗 , ·) for 𝑖 ̸= 𝑖* or 𝑏 ̸= 𝑏*, 𝐶𝑖*,𝑏* can simulate
the oracle 𝗐𝖯𝖪𝖤.𝖣𝖾𝖼(𝗌𝗄𝑖*,1−𝑏* , ·) and thus decrypt 𝖼𝗍𝑖*,1−𝑏* in the ciphertext 𝖼𝗍
to output 𝑚.

– 𝐶𝑖*,𝑏* submits (𝑚0,𝑚1) to the external challenger; 𝐶𝑖*,𝑏* receives challenge cipher-
text 𝖼𝗍*𝑖*,𝑏* = 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖*,𝑏* ,𝑚𝛿), 𝛿 ← {0, 1} from the challenger.

– 𝐶𝑖*,𝑏* prepares the following ciphertext:
1. Sample (𝖣𝖲.𝗏𝗄*,𝖣𝖲.𝗌𝗄*)← 𝖣𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) so that the 𝑖*-th bit of 𝗏𝗄* is 𝑏*.
2. Compute 𝖼𝗍*𝑖,𝑏𝑖 ← 𝗐𝖯𝖪𝖤.𝖤𝗇𝖼(𝗉𝗄𝑖,𝑏𝑖 ,𝑚𝛿′), 𝛿

′ ← {0, 1} for all 𝑖 ̸= 𝑖*, where 𝑏𝑖 =
𝗏𝗄*𝑖 .

3. compute ̂︀𝜋 ← 𝖲𝗂𝗆(𝗍𝖽,𝖢𝖱𝖲,,({𝖼𝗍*𝑖,𝑏𝑖}𝑖∈[𝑛],𝑏𝑖=𝗏𝗄*𝑖
))

where 𝖲𝗂𝗆 is the simulator algorithm for 𝖭𝖨𝖹𝖪.
Then it sends 𝖼𝗍* = ({𝖼𝗍*𝑖,𝑏𝑖}𝑖∈[𝑛],𝑏𝑖=𝗏𝗄*𝑖

), 𝗏𝗄*, ̂︀𝜋) to 𝐶.
– 𝐶 continues to simulate the decryption oracle as above to decrypt only valid ci-

phertexts 𝖼𝗍 ̸= 𝖼𝗍*, except adding the following check:

* Check if 𝗏𝗄 = 𝗏𝗄*, if yes, output ⊥; else continue to decrypt.
– 𝐶 outputs ℓ ciphertexts 𝖼𝗍1, · · · , 𝖼𝗍ℓ and 𝐶𝑖 computes 𝑑𝑗 ← 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍𝑗) if 𝑐𝑡𝑗 ̸= 𝖼𝗍*,

else 𝑑𝑗 = ⊥.
– In the end, feed (𝑑1, · · · , 𝑑ℓ) to 𝐶 and 𝐶 outputs a bit b’. 𝐶𝑖 outputs the same as 𝐶

outputs.
– Add 𝜏/⊥ ← 𝗐𝖯𝖪𝖤.𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗐𝖯𝖪𝖤.𝗑𝗄𝑖*,𝑏* ,𝗐𝖯𝖪𝖤.𝗉𝗄𝑖*,𝑏* , 𝖺𝗎𝗑 = (𝑚0,𝑚1), 𝐶𝑖*,𝑏*) to �⃗� .

• Output �⃗� .

The security proof is highly similar to Appendix A and we omit it here.

74

	Introduction
	Motivation
	Overview of Our Results
	Other Related Work
	Technical Overview

	Organizations
	Definitions: General Cryptographic Primitive and Watermarking-Compatible Constructions
	General Cryptographic Primitive
	Watermarking-Compatible Construction of Cryptographic Primitive

	Watermarking Composition Framework
	Definition: Watermarkable Implementation of a Cryptographic Primitive
	Watermarking Composition: Target Primitive from Input Primitives

	Two Simple Examples: Watermarkable CPA and CCA-secure SKE
	Watermarkable CPA-secure SKE from Watermarkable weak PRF
	Definition: Watermarkable Implementation of PRF
	Definition: Watermarkable Implementation of CPA-secure SKE
	Watermarking-Compatible Reduction
	Security of Watermarkable Implementation for CPA-secure SKE

	Watermarkable CCA-secure Encryption from Watermarkable MAC and PRF
	Watermaking-Compatible Reduction of CCA Security to MAC and weak PRF
	Definition: Watermarkable Implementation of CCA-secure SKE
	Security of Watermarkable Implementation for CCA-secure SKE

	Watermarkable CCA-secure PKE from Watermarkable Identity-based Encryption and Strong One-Time Signature
	Definition: Watermarkable CCA2-secure PKE
	Preliminaries

	Watermarkable CCA-secure PKE Construction

	References
	Watermarkable CCA-secure PKE from Watermarkable CPA-secure PKE and Statistically Simulation-Sound NIZK
	Preliminaries: Statistically Simulation Sound NIZK Proof for NP
	Construction and Security

	Watermarkable Weak PRP from Watermarkable weak PRF
	Construction and Security

	Watermarkable Implementation of Attribute-based Encryption
	 Watermarkable Attribute-based Encryption
	Preliminaries: Delegatable ABE and Mixed FE
	Delegatable ABE
	Mixed Functional Encryption

	Construction

	Watermarkable Implementation of Digital Signatures
	Preliminaries: Constrained Signatures
	Definition: Watermarkable Signatures
	Construction

	Watermarkable CCA-secure Hybrid Encryption (Key Encapsulation Scheme)
	Watermarkable Functional Encryption from Watermarkable Attribute-Based Encryption
	Two-Outcome Attribute-Based Encryption

	Watermarkable Non-malleable PKE from Watermarkable CPA-secure PKE, NIZK and Signatures
	Watermarkable Implementation of Non-malleable CCA2 PKE
	Construction and Security

