
A Hidden-Bits Approach to Black-Box Statistical ZAPs from LWE

Eli Bradley
1
, George Lu

1
, Shafik Nassar

1
, Brent Waters

1,2
, and David J. Wu

1

1
UT Austin

2
NTT Research

Abstract

We give a new approach for constructing statistical ZAP arguments (a two-message public-coin statistically

witness indistinguishable argument) from quasi-polynomial hardness of the learning with errors (LWE) assumption

with a polynomial modulus-to-noise ratio. Previously, all ZAP arguments from lattice-based assumptions relied

on correlation-intractable hash functions. In this work, we present the first construction of a ZAP from LWE via

the classic hidden-bits paradigm. Our construction matches previous lattice-based schemes by being public-coin

and satisfying statistical witness indistinguishability. Moreover, our construction is the first lattice-based ZAP that

is fully black-box in the use of cryptography. Previous lattice-based ZAPs based on correlation-intractable hash

functions all made non-black-box use of cryptography.

1 Introduction
Zero-knowledge proofs for NP [GMR85] allow a prover to convince a verifier that an NP statement is true without

revealing anything more than the fact that the statement is true. However, achieving zero-knowledge requires either

a trusted setup (i.e., a common reference string) or interaction. Many works have studied the round complexity of

zero-knowledge proofs for NP in the plain model, and it is known, for instance, that two-round zero-knowledge

proofs for NP are impossible in the plain model [GO94, BLV03] under standard worst-case complexity assumptions

(e.g., that NP ⊈ BPP). One way to overcome the barrier of two-round zero-knowledge in the plain model is to relax

zero-knowledge to witness indistinguishability [FS90], which asks that a proof constructed using an NP witness𝑤0

is indistinguishable from a proof constructed using a witness𝑤1.

ZAPs. Dwork and Naor [DN00] gave the first construction of a two-round public-coin witness-indistinguishable

proof (i.e., “ZAPs”) in the plain model, and moreover, showed how to construct it from any non-interactive zero-

knowledge (NIZK) proof in the uniform random string model (e.g., [FLS90]). Critically, the [DN00] approach relied

on both statistical soundness and that the common reference string is a uniform random string. In the context of the

ZAP, the public-coin property means the verifier’s first message is a uniform random string (i.e., the random coins

of the verifier). As such, ZAPs are publicly-verifiable since anyone who sees the verifier’s first message can run the

verification algorithm. Following the work of Dwork and Naor, there have been many constructions of ZAPs from

pairing-based assumptions [GOS06a, CKSU21], lattice-based assumptions [LVW19, BFJ
+
20, GJJM20], group-based

assumptions (without pairings) [JJ21, CKSU21], and from indistinguishability obfuscation (together with one-way

functions) [BP15]. Several works also considered a relaxation to ZAPs with private randomness [KKS18, LVW20].

This work: statistical ZAP arguments. In this work, we focus on statistical ZAP arguments where witness indis-
tinguishability holds against computationally-unbounded adversaries (and soundness holds against computationally-

bounded adversaries). Public-coin statistical ZAP arguments are currently known from the decisional Diffie-Hellman

1

(DDH) assumption in a pairing-free group [JJ21] as well as from the plain learning with errors (LWE) assump-

tions [LVW19, BFJ
+
20, GJJM20]. Notably, all of these approaches start by constructing a correlation-intractable hash

function and using it to instantiate the Fiat-Shamir transform [CCRR18, CCH
+
19]. In this work, we ask whether we

can construct a ZAP from LWE without relying on correlation intractability. Specifically, motivated by the recent

advances in realizing NIZKs from LWE via the classic hidden-bits paradigm due to Waters [Wat24] and recently

improved upon by Waters, Wee, and Wu [WWW24], we ask whether there is a hidden-bits model approach for

building ZAPs from LWE. Indeed, the very first ZAP by [DN00] showed how to leverage the hidden-bits model

NIZK from [FLS90] to obtain a computational ZAP proof. Later, [CKSU21] showed how to leverage the pairing-based

hidden-bits model NIZK from [LPWW20] to also obtain a public-coin statistical ZAP argument using bilinear maps.

In this work, we show how to construct a statistical ZAP argument from LWE via the hidden-bits approach. Our

main result can be stated as follows:

Theorem 1.1 (Informal). Assuming quasi-polynomial hardness of LWE with a polynomial modulus-to-noise ratio, there
exists a statistical ZAP argument for NP with non-adaptive soundness.

If we are willing to assume sub-exponential hardness of LWE, then we obtain an adaptively-sound statistical ZAP

for statements of a priori bounded length. We refer to Remark 3.3 for additional details.

Comparison and discussion. Theorem 1.1 achieves the same properties as previous lattice-based ZAPs [LVW19,

BFJ
+
20, GJJM20], which also relied on quasi-polynomial security of LWE (with polynomial modulus-to-noise ratio).

The previous approaches all relied on correlation-intractability hash functions, which requires non-black-box access

to the decryption algorithm of a public-key encryption scheme. In contrast, our hidden-bits-model approach yields

a more direct construction that does not rely on any non-black-box use of cryptography. This can be appealing from

a concrete efficiency perspective.

Simultaneously, we believe there is value in exploring different approaches for realizing a single cryptographic

goal. For instance, in the setting of NIZKs, there have been two general (and incomparable) paradigms: the hidden-

bits paradigm [FLS90, BY92, CHK03, GR13, CL18, LPWW20, KMY23, CW23, Wat24, BWW24, WWW24] and the

correlation-intractability paradigm [CCRR18, CCH
+
19, PS19, CKU20, BKM20, JJ21, CJJQ23, DJJ24] that have yielded

constructions from a broad array of algebraic assumptions. There are also many approaches that do not fall into either

paradigm [BFM88, GOS06b, SW14, BKP
+
24]. Here, similar algebraic assumptions can yield very different approaches

for realizing the primitive, and this enriches our understanding of the particular primitive. Moreover, having a broad set

of approaches and constructions can enable new trade-offs for concrete efficiency. We believe the same is true for ZAPs.

Here again, there have been two broad categories of approaches for constructing ZAPs, based either on the hidden-bits

model or on the correlation-intractability approach. While previous lattice-based ZAPs relied critically on correlation-

intractable hash functions, our approach shows that a construction is also feasible via the earlier hidden-bits approach.

1.1 Technical Overview
Our starting point for constructing a statistical ZAP argument from LWE is the recent (dual-mode) NIZK in the

hidden-bits model from the work of [Wat24] (and subsequently improved upon in the work of [WWW24]). Both

constructions operate by constructing a (dual-mode) hidden-bits generator [FLS90, QRW19, LPWW20]. We start by

recalling this notion.

Hidden-bits generators. Roughly speaking, a hidden-bits generator (HBG) [FLS90, QRW19] is a cryptographic

primitive in the common reference string model that allows the prover to generate a random string, alongside a

commitment to the string and a local opening to each bit. Moreover, the scheme should satisfy the following properties:

• Hiding: First, we require that the openings to a subset of the bits hide the unopened bits.

• Binding: Second, given the commitment (and the CRS), the prover can only open to one possible hidden-bits

string.

A dual mode HBG can be instantiated in one of two computationally indistinguishable modes: statistically hiding

or statistically binding.

2

Shifted multi-preimage sampling. To construct a hidden-bits generator from lattice assumptions, the work of

[WWW24] explicitly defined the shifted multi-preimage sampling problem, which was implicitly considered in the

previous work of [Wat24]. The problem is parameterized by a collection of matrices A1, . . . ,A𝑡 ∈ Z𝑛×𝑡𝑞 and requires

the following: given target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , sample a random vector c r← Z𝑛𝑞 with short discrete Gaussian

preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑡𝑞 satisfying A𝑖𝝅 𝑖 = t𝑖 + c for all 𝑖 ∈ [ℓ]. That is, 𝝅 𝑖 ← A−1𝑖 (t𝑖 + c) for each 𝑖 ∈ [ℓ], where
x← A−1𝑖 (y) denotes the discrete Gaussian distribution conditioned on A𝑖x = y. The goal is to publish a hint that

allows one to efficiently sample (𝝅1, . . . , 𝝅 ℓ , c), while ensuring that problems like LWE remain hard with respect

to any individual matrix A𝑖 . In particular, this latter requirement rules out the possibility of giving a trapdoor for

each individual A𝑖 as the hint. The work of [WWW24] shows how to solve this problem for a specific distribution

of correlated matrices A1, . . . ,A𝑡 ∈ Z𝑛×𝑡𝑞 . Moreover, although the matrices are correlated, the marginal distribution

of each individual matrix is actually uniform over Z𝑛×𝑡𝑞 .

The [Wat24, WWW24] hidden-bits generator. We can now describe the LWE-based hidden-bits generator from

[Wat24, WWW24] through the lens of the shifted multi-preimage sampling problem from [WWW24]:

• The common reference string (for the hidden-bits generator) consists of the CRS for the shifted multi-preimage

trapdoor sampler together with ℓ vectors v1, . . . , vℓ ∈ Z𝑡𝑞 . The distribution of the vectors v𝑖 varies depending
on whether we want the hidden-bits generator to be statistically binding or statistically hiding. The CRS for

the shifted multi-preimage trapdoor sampler defines a set of ℓ matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑡𝑞 and a hint td for

solving the shifted multi-preimage sampling problem with respect to matrices A1, . . . ,Aℓ .

• To generate the hidden-bits string, the user samples (𝝅1, . . . , 𝝅 ℓ , c) using the multi-preimage sampler with

targets t𝑖 = 0 for all 𝑖 ∈ [ℓ]. This means A𝑖𝝅 𝑖 = c for all 𝑖 ∈ [ℓ]. The commitment of the hidden-bits generator

is the vector c ∈ Z𝑛𝑞 . Each bit 𝜌𝑖 is now defined as 𝜌𝑖 = ⌊vT
𝑖𝝅 𝑖⌉ ∈ {0, 1}, where ⌊·⌉ denotes a rounding operation.

The hidden-bits string is defined as 𝝆 = 𝜌1 · · · 𝜌ℓ , and the openings are 𝝅1, . . . , 𝝅 ℓ .

• In hiding mode, the vectors v1, . . . , vℓ in the CRS are uniform over Z𝑡𝑞 . The security proof of [WWW24] now

relies on the min-entropy of the conditional discrete Gaussian distribution A−1𝑖 (c) (even given c) and the

randomness of v𝑖 to argue that vT
𝑖𝝅 𝑖 is statistically close to uniform over Z𝑞 (even given v𝑖 , but not 𝝅 𝑖) using

the leftover hash lemma [HILL99].

• In binding mode, the vectors v1, . . . , vℓ are LWE samples (i.e., vT
𝑖 = sT𝑖A𝑖 + eT𝑖). In this case, the commitment

c determines the bit. For simplicity, if we ignore the error e𝑖 and just consider the inner product, we have

vT
𝑖𝝅 𝑖 = sT𝑖 (A𝑖𝝅 𝑖) = sT𝑖 c. Specifically, the LWE secret s𝑖 and the commitment c completely determines the value

of vT
𝑖𝝅 𝑖 , and correspondingly, the the bit 𝜌𝑖 = ⌊vT

𝑖𝝅 𝑖⌉ = ⌊sT𝑖 c⌉.

• Finally, the CRS in hiding mode is computationally indistinguishable from the CRS in binding mode by the

LWE assumption.

Problem: lack of a trusted setup. While the hidden-bits generator immediately implies a NIZK for NP [FLS90,

QRW19], the same is not true for ZAPs. This is because a hidden-bits generator requires a common reference string,

and the assumption is that the CRS is sampled honestly. In a ZAP, we do not have any trusted setup, so it is not clear

where this common reference string comes from. Certainly, neither the prover nor the verifier should unilaterally

choose the CRS, as this would violate either soundness or witness indistinguishability, respectively.

Relying on re-randomization. The work of Dwork and Naor [DN00] shows that NIZKs can nonetheless be used

to obtain ZAPs by having the prover and the verifier jointly sample a CRS via the following general template (also

used in many subsequent works [LVW19, BFJ
+
20, GJJM20, CKSU21]):

• The verifier picks an initial common reference string crs𝑉 , but then the prover re-randomizes it by choosing

a tweak crs𝑃 .

• The prover cannot “completely” re-randomize the CRS, since this would give the prover the ability to choose

the full CRS. Instead, there should be a small set 𝑆 of “tweaks” that the prover can choose from.

3

• The prover communicates the tweak crs𝑃 it used to the verifier. The proof is then constructed with respect

to the CRS derived from (crs𝑉 , crs𝑃).
For example, suppose the verifier chooses crs𝑉 as its initial CRS. Then the prover may choose a string crs𝑃 ∈ 𝑆 from

the (small) set 𝑆 , and re-randomize the CRS by computing crs = crs𝑃 ⊕ crs𝑉 . The prover then generates a proof using

the re-randomized reference string crs.

Arguing soundness via complexity leveraging. To prove soundness, we use a complexity-leveraging idea similar

to that from [LVW19, BFJ
+
20, GJJM20, CKSU21] where the verifier “guesses” the re-randomization crs𝑃 that the prover

will use. Namely, the verifier first samples a common reference string crsbind for which the hidden-bits generator

is binding, and then chooses crs𝑉 = crsbind ⊕ crs𝑃 as its common reference string. If the verifier correctly guesses the

prover’s common reference string crs𝑃 , then the prover will compute crs = crs𝑉 ⊕ crs𝑃 = crsbind and generate a proof

with respect to crsbind. Since the hidden-bits generator is binding with respect to crsbind, this guarantees soundness
for the overall ZAP. If there are |𝑆 | possibilities for crs𝑃 , then the verifier correctly guesses crs𝑃 with probability 1/|𝑆 |.
To show this works, we require the two following properties hold:

• The reference string crsbind that the verifier samples should hide crs𝑃 . This is necessary to ensure that the prover
does not “avoid” choosing the tweak the verifier guessed. More precisely, an efficient prover should not be able

to distinguish a reference string crs𝑉 = crsbind ⊕ crs𝑃 from crs′
𝑉
= crsbind ⊕ crs′

𝑃
for any (adversarially-chosen)

pair of tweaks crs𝑃 , crs′𝑃 , with probability better than 𝜀dis. In this case, if the original prover is able to break the

binding property of the hidden bits generator with probability 𝜀, then with probability 𝜀/|𝑆 | − 𝜀dis, the prover
will choose crs𝑃 as its tweak and break binding with respect to the tweaked CRS crs𝑉 ⊕ crs𝑃 = crsbind.

• Next, we require that the probability 𝜀bind that an adversary breaks binding with respect to a reference string

crsbind sampled in binding mode to be small.

If both properties hold, then 𝜀/|𝑆 | − 𝜀dis ≤ 𝜀bind, or equivalently, 𝜀 ≤ |𝑆 | · (𝜀dis + 𝜀bind). In the context of the [WWW24]

construction, these two requirements are satisfied as follows:

• In [WWW24], the reference string crsbind in binding mode is pseudorandom under the LWE assumption. An

adversary that can distinguish between crsbind ⊕ crs𝑃 and crsbind ⊕ crs′
𝑃
with advantage 𝜀bind can break LWE

with the same advantage 𝜀bind.

• Next, when the common reference string crsbind is sampled in binding mode, the resulting construction is

statistically binding (e.g., the advantage 𝜀bind is exponentially small).

The remaining question is how big the set 𝑆 should be. In [WWW24], when the CRS is binding, there is a trapdoor

that can be used to extract the actual hidden-bit string (which in turn would violate zero-knowledge or witness

indistinguishability when used to construct a NIZK or a ZAP, respectively). Therefore, we cannot have 1/|𝑆 | be
inverse polynomial, as this allows the verifier to break witness indistinguishability with inverse polynomial advantage

(namely, the verifier would choose crsbind with knowledge of the associated trapdoor). Thus, to argue hiding, we

take |𝑆 | to be quasi-polynomial (i.e., |𝑆 | = 2
polylog(𝜆)

) and rely on quasi-polynomial hardness of LWE (i.e., the LWE

distinguishing advantage of any efficient adversary is at most 𝜀dis = 1/2polylog(𝜆)).

Specialized CRS re-randomization for statistical hiding. Arguing hiding is more complex and the set of possible

tweaks 𝑆 must be carefully chosen based on the specific algebraic structure of the base scheme. Recall first that

the CRS for the hidden-bits generator consists of a common reference string crssamp for the shifted multi-preimage

trapdoor sampler and the vectors v1, . . . , vℓ ∈ Z𝑡𝑞 . In our construction, the verifier first picks an initial crssamp for

the shifted multi-preimage trapdoor sampler and a set of vectors ṽ1, . . . , ṽℓ ∈ Z𝑡𝑞 . The prover re-randomizes the set

of vectors ṽ1, . . . , ṽℓ , but does not change crssamp.

More concretely, let crs𝑉 = (crssamp, ṽ1, . . . , ṽℓ) be the reference string chosen by the verifier. In our approach, the

prover chooses a small subset of indices 𝐼 ⊆ [𝑡] of the vectors and fully re-randomizes the components of ṽ𝑖 at these
indices. Specifically, the prover chooses a single random sparse vector 𝜹 ∈ Z𝑡𝑞 , and then shifts each of the vectors ṽ𝑖 by
𝜹 by computing v𝑖 = ṽ𝑖 + 𝜹 . The prover then uses crs = (crssamp, v1, . . . , vℓ) as the CRS for the hidden-bits generator.
Observe that if 𝜹 has 𝑁 = polylog(𝜆) non-zero entries (where 𝜆 is a security parameter), and if 𝑡, 𝑞 = poly(𝜆), then
there are at most 𝑡𝑁𝑞𝑁 = 2

polylog(𝜆)
options for 𝜹 , so the set of tweaks indeed has quasi-polynomial size.

4

Introducing min-entropy into proof generation. The hiding analysis from [WWW24] employs a min-entropy

argument which relies on the preimage distribution property of the shifted multi-preimage trapdoor sampler. This

property essentially asserts that when the CRS for the shifted multi-preimage trapdoor sampler is honestly generated,

then the distribution of (𝝅1, . . . , 𝝅 ℓ , c) output by the multi-preimage sampler is statistically close to the distribution

where c r← Z𝑛𝑞 and 𝝅 𝑖 ← A−1𝑖 (c). Then, by relying on min-entropy of the (conditional) discrete Gaussian distribution

A−1𝑖 (c), they show how to extract a random bit (by computing 𝜌𝑖 = ⌊vT
𝑖𝝅 𝑖⌉ and appealing to the leftover hash lemma

where v𝑖 is the seed for the extractor).

This preimage distribution property for the shifted multi-preimage trapdoor sampler critically assumed that

the CRS (and correspondingly, the matrices A1, . . . ,Aℓ) are sampled honestly. In particular, the previous argument

relies on the marginal distribution of A𝑖 being uniform. Unfortunately, in our case, the CRS for the multi-preimage

sampler is chosen adversarially by the verifier, so we can no longer rely on 𝝅 𝑖 being distributed according to a discrete

Gaussian or even on it having high min-entropy. To overcome this problem, the prover needs to introduces additional

min-entropy during proof generation via the following procedure:

• First, for each 𝑖 ∈ [ℓ], the prover samples a uniform vector w𝑖
r← {0, 1}𝑡 .

• Instead of setting the shifted multi-preimage trapdoor sampler targets to be t1 = · · · = tℓ = 0 as in [WWW24],

the prover now defines the targets to be t1 = A1w1, . . . , tℓ = Aℓwℓ . This yields (𝝅 ′
1
, . . . , 𝝅 ′ℓ , c) such that

A𝑖𝝅 ′𝑖 = t𝑖 + c = A𝑖w𝑖 + c for each 𝑖 ∈ [ℓ].

• The prover now defines the openings to be 𝝅 𝑖 = 𝝅 ′𝑖 − w𝑖 . Observe that this still preserves the [WWW24]

verification invariant: A𝑖𝝅 𝑖 = A𝑖 (𝝅 ′𝑖 −w𝑖) = t𝑖 + c − t𝑖 = c.

• The key observation is that the additional vector w𝑖 introduces additional min-entropy into 𝝅 𝑖 . In particular,

𝝅 𝑖 has high min-entropy even given the commitment c and the other openings 𝝅 𝑗 for all 𝑗 ≠ 𝑖 . The latter

property holds because (𝝅1, . . . , 𝝅 ℓ , c) are functions of t1 = A1w1, . . . , tℓ = Aℓwℓ , and A𝑖 is a compressing
function. Namely, the value of t𝑖 = A𝑖w𝑖 can only leak a limited number of bits of information about w𝑖 .

Preserving min-entropy. Having established that the opening 𝝅 𝑖 has high min-entropy (even given c and 𝝅 𝑗

for 𝑗 ≠ 𝑖), it remains to argue that the bit 𝜌𝑖 = ⌊vT
𝑖𝝅 𝑖⌉ is statistically close to uniform. By definition, v𝑖 = ṽ𝑖 + 𝜹 so

vT
𝑖𝝅 𝑖 = ṽT

𝑖𝝅 𝑖 + 𝜹T𝝅 𝑖 .

Our argument critically relies on the fact that the re-randomization term 𝜹T𝝅 𝑖 is statistically close to uniform over

Z𝑞 . Recall that 𝜹 ∈ Z𝑡𝑞 is a sparse vector with up to 𝑁 non-zero entries (and where the non-zero entries are uniformly

random). Let 𝐽 ⊆ [𝑡] be the indices where 𝜹 is non-zero. Then 𝜹T𝝅 𝑖 =
∑

𝑗∈ 𝐽 𝛿 𝑗𝜋𝑖, 𝑗 . If we can argue that the sub-vector

(𝜋𝑖, 𝑗) 𝑗∈ 𝐽 has high min-entropy, then we can appeal to the leftover hash lemma (treating 𝜹 as the seed for the extractor

and (𝜋𝑖, 𝑗) 𝑗∈ 𝐽 as the min-entropy source) and conclude that 𝜹T𝝅 𝑖 is statistically close to uniform over Z𝑞 . To do so,
we use a standard entropy preservation argument (c.f., [NZ96, Vad06, ADW09]) that says that if 𝝅 𝑖 ∈ Z𝑡𝑞 has high
min-entropy, then projecting 𝝅 𝑖 onto a random set of coordinates 𝐽 ⊆ [𝑡] still yields a string with high min-entropy.

By our earlier argument, the openings 𝝅 𝑖 have high min-entropy so projecting 𝝅 𝑖 onto the random subset 𝐽 ⊆ [𝑁]
preserves the min-entropy. We can now appeal to the leftover hash lemma to conclude that 𝜹T𝝅 𝑖 is statistically close

to uniform over Z𝑞 . Since vT
𝑖𝝅 𝑖 = ṽT

𝑖𝝅 𝑖 + 𝜹T𝝅 𝑖 , this means that vT
𝑖𝝅 𝑖 is statistically close to uniform, which completes

the hiding analysis.

Interactive hidden-bits generators. Rather than build a ZAP directly, the work of [CKSU21] introduces an

intermediate abstraction called an interactive hidden-bits generator, which models the key ingredients we described

above. The approach described above readily maps to this abstraction. Once we have constructed an interactive

hidden-bits generator from quasi-polynomial hardness of LWE, we can directly invoke the [CKSU21] compiler to

obtain a public-coin statistical ZAP argument for NP. We give the formal definition of an interactive hidden-bits

generator in Section 3, and give our construction in Section 4.

The previous work of [CKSU21] describe a pairing-based construction of an interactive hidden-bits generator.

In their approach, the prover re-randomizes a matrix encoded in the exponent by applying a perturbation to the

5

diagonal entries. They show that with overwhelming probability, this yields a full-rank matrix in the exponent,

which ensures hiding for the unopened bits of the hidden-bits string. The starting point of our approach is the

hidden-bits generator from [Wat24, WWW24], which has a different and incomparable structure. Correspondingly,

our lattice-based approach uses an entirely different re-randomization approach.

Concurrent work. Very recently, a concurrent work by [BCD
+
24] also followed up on the work of [Wat24] and

presents a NIZK from LWE with a polynomial modulus (similar to [WWW24]). Like [WWW24], they do not construct

a ZAP, although we believe a variation of our techniques can also be applied to their scheme as well. However, such

an adaptation would inherit properties that result in a less efficient scheme (e.g., the verifier message would be ℓ2,

where ℓ is the output length of the hidden-bits generator and the size of the openings would be linear in ℓ). Their

work also introduces a new statistically-sound NIZK from DDH and LPN. It is an interesting open question whether

our techniques can be helpful to obtain a ZAP from DDH and LPN.

2 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. We say that a function 𝜇 (𝜆) is negligible if
𝜇 (𝜆) = 𝑜 (𝜆−𝑐) for every constant 𝑐 > 0. We denote this by writing 𝜇 (𝜆) = negl(𝜆). We say that an event happens

with overwhelming probability if its complement happens with negligible probability. For any positive integer 𝑛 ∈ N,
we write [𝑛] := {1, . . . , 𝑛}. For any positive integer 𝑞 ∈ N, we write Z𝑞 to denote the ring of integers modulo 𝑞.

Throughout this work, we use bold uppercase letters (e.g., A,B) to denote matrices and bold lowercase letters (e.g., u, v)
to denote vectors. For a vector v = (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛𝑞 , and any vector of indices 𝐼 = (𝑖1 . . . , 𝑖𝑘) ∈ [𝑛]𝑘 , we write v[𝐼] to
denote the projection of v on 𝐼 , that is v[𝐼] = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘). We say that an algorithm is efficient if it runs in probabilistic

polynomial time in the length of its input. For two distribution ensembles X = {X𝜆}𝜆∈N andY = {Y𝜆}𝜆∈N indexed by

a security parameter 𝜆, we say that X and Y are computationally (respectively, statistically) indistinguishable if for

all efficient (respectively, unbounded) adversariesA, there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N:���Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← X𝜆] − Pr[A(1𝜆, 𝑦) = 1 : 𝑦 ← Y𝜆]
��� = negl(𝜆).

Average min-entropy. For random variables 𝑋 and 𝑌 , the average min-entropy of 𝑋 given 𝑌 [DORS08] is defined

to be

H̃∞ (𝑋 | 𝑌) := − log
(
E𝑦←𝑌

[
max

𝑥
Pr[𝑋 = 𝑥 | 𝑌 = 𝑦]

])
.

We will use the following bound on the average min-entropy from [DORS08]:

Lemma 2.1 (Average Min-Entropy [DORS08, Lemma 2.2]). Let 𝑋,𝑌 be random variables and suppose there are at
most 2𝑘 elements in the support of 𝑌 . Then, H̃∞ (𝑋 | 𝑌) ≥ H∞ (𝑋) − 𝑘 .

Leftover hash lemma. We recall the (generalized) leftover hash lemma [HILL99, DORS08] that shows how to

extract a uniform random value from any source with high average min-entropy. While the general form of the leftover

hash lemma can be instantiated with any universal hash function, we describe a specialization that is convenient

for our specific application:

Lemma 2.2 (Generalized Leftover Hash Lemma [DORS08, Lemma 2.4, adapted]). Let 𝜆 be a security parame-
ter. Let 𝑡, 𝑞 ∈ N and D be any distribution that outputs x ∈ {0, 1}𝑡 and auxiliary information aux. Suppose
H̃∞ (x | aux) ≥ 𝜔 (log 𝜆) + log𝑞. Then, there exists a negligible function negl(𝜆) the statistical distance between
the following distributions is at most negl(𝜆):{

(zTx, z, aux) : (x, aux) ← Dz r← Z𝑡𝑞

}
and

{
(𝑢, z, aux) : (x, aux) ← D

z r← Z𝑡𝑞, 𝑢
r← Z𝑞

}

6

Entropy preservation. We will also use the fact that if x ∈ {0, 1}𝑡 is a bit-string with high min-entropy, then

taking a random subset of the bits of x still yields a bit-string with high min-entropy of x. We use the statement

from [ADW09] (similar statements can also be found in earlier works on randomness extractors [NZ96, Vad06]):

Lemma 2.3 (Entropy Preservation [ADW09, Lemma A.3, adapted]). Let x ∈ {0, 1}𝑡 be a random variable. Suppose
we sample 𝐼 r← [𝑡]𝑘 . Then for all random variables aux and all 𝑐 > 0, if H̃∞ (x | aux) ≥ 2𝑐

𝑘
𝑡 (1 + log 𝑡) + 3𝑐 + 5, then

H̃∞ (x[𝐼] | (aux, 𝐼)) ≥ 𝑐 .

ZAPs. We now recall the formal notion of a statistical ZAP argument [DN00]. We consider two notions of soundness:

non-adaptive soundness where the statement is fixed in advance and adaptive soundness where the (malicious) prover

can choose the statement after it sees the verifier’s first message.

Definition 2.4 (Statistical ZAP Argument). Let 𝜆 be a security parameter. Let R be an NP relation defined by a family

of circuits C =
{
C𝑛 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}

}
𝑛∈N, where 𝑛 is the instance length and ℎ = ℎ(𝑛) is a polynomial

denoting the witness length. Let L be the associated NP language. A (public-coin) statistical ZAP argument for R
with public-coin length 𝑡 = 𝑡 (𝜆, 𝑛) and proof size ℓ = ℓ (𝜆, 𝑛) is a pair of efficient algorithms (Prove,Verify) with the

following syntax:

• Prove(1𝜆, 𝑟 , 𝑥,𝑤) → 𝜋 : On input a public random coin 𝑟 ∈ {0, 1}𝑡 , a statement 𝑥 ∈ {0, 1}𝑛 , and a witness

𝑤 ∈ {0, 1}ℎ , the prove algorithm outputs a proof 𝜋 ∈ {0, 1}ℓ .

• Verify(1𝜆, 𝑟 , 𝑥, 𝜋) → 0/1: On input a public random coin 𝑟 ∈ {0, 1}𝑡 , a statement 𝑥 ∈ {0, 1}𝑛 , and a proof

𝜋 ∈ {0, 1}ℓ , the verification algorithm outputs a bit.

We require (Prove,Verify) satisfy the following properties:

• Completeness: For all 𝜆, 𝑛 ∈ N, and all (𝑥,𝑤) ∈ R, it holds that

Pr

[
Verify(1𝜆, 𝑟 , 𝑥, 𝜋) = 1 : 𝑟

r← {0, 1}𝑡 , 𝜋 ← Prove(1𝜆, 𝑟 , 𝑥,𝑤)
]
= 1.

• Efficiency: There exists a polynomial poly(·, ·) such that for all 𝜆, 𝑛 ∈ N it holds that 𝑡 (𝜆, 𝑛) ≤ poly(𝜆, 𝑛) and
ℓ (𝜆, 𝑛) ≤ poly(𝜆, 𝑛).

• Computational non-adaptive soundness: For all polynomials 𝑛 = 𝑛(𝜆) and all efficient adversariesA, there

exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and all 𝑥 ∉ L, the following holds:

Pr

[
Verify(1𝜆, 𝑟 , 𝑥, 𝜋) = 1 : 𝑟

r← {0, 1}𝑡 , 𝜋 ← A(1𝜆, 𝑟 , 𝑥)
]
= negl(𝜆).

• Statistical witness-indistinguishability: For all polynomials𝑛 = 𝑛(𝜆), and every (possibly unbounded) adver-
saryA, there exists a negligible function negl(𝜆) such thatA wins the following game with probability negl(𝜆):

1. On input a security parameter 1
𝜆
, the adversary A chooses 𝑟 ∈ {0, 1}𝑡 , 𝑥 ∈ {0, 1}𝑛,𝑤0,𝑤1 ∈ {0, 1}ℎ to the

challenger.

2. The challenger samples 𝑏
r← {0, 1}, computes 𝜋 ← Prove(1𝜆, 𝑟 , 𝑥,𝑤𝑏), and sends 𝜋 to the adversary.

3. The adversary outputs a guess 𝑏′ ∈ {0, 1} and wins the game if all of the following holds:

𝑏 = 𝑏′ and (𝑥,𝑤0) ∈ R and (𝑥,𝑤1) ∈ R .

Definition 2.5 (Computational Adaptive Soundness). A public-coin statistical ZAP argument for an NP relation

R satisfies computational adaptive soundness if for all polynomials 𝑛 = 𝑛(𝜆), and all efficient adversaries A, there

exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr

[
𝑥 ∉ L ∧ Verify(1𝜆, 𝑟 , 𝑥, 𝜋) = 1 : 𝑟

r← {0, 1}𝑡 , (𝑥, 𝜋) ← A(1𝜆, 𝑟)
]
= negl(𝜆).

7

2.1 Lattice Preliminaries
We now recall some preliminaries on lattice-based cryptography. First, we write 𝐷Z,𝑠 to denote the discrete Gaussian

distribution over Z with width parameter 𝑠 > 0. We will use the following tail bound on discrete Gaussian random

variables:

Lemma 2.6 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). For all 𝜆 ∈ N,

Pr[|𝑥 | >
√
𝜆𝑠 : 𝑥 ← 𝐷Z,𝑠] ≤ 2

−𝜆 .

Learning with errors. Next, we recall the standard learning with errors (LWE) assumption [Reg05]:

Assumption 2.7 (Learning with Errors [Reg05]). Let 𝜆 be a security parameter and 𝑛 = 𝑛(𝜆),𝑚 =𝑚(𝜆), 𝑞 = 𝑞(𝜆),
and 𝑠 = 𝑠 (𝜆) be lattice parameters. We say that the LWE𝑛,𝑚,𝑞,𝑠 assumption holds if the following two distributions

are computationally indistinguishable:{
(A, sTA + eT) : A r← Z𝑛×𝑚𝑞

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝑠

}
and

{
(A, uT) : A r← Z𝑛×𝑚𝑞

u r← Z𝑚𝑞

}
Moreover, for a constant 𝑐 > 1, we say that the 𝑐-quasi-polynomial LWE𝑛,𝑚,𝑞,𝑠 assumption holds if for all efficient

adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, the advantage in distinguishing the

distributions is bounded by 2
− log𝑐 (𝜆) · negl(𝜆).

Shifted multi-preimage trapdoor sampler. Next, we recall the notion of a shifted multi-preimage trapdoor

sampler introduced in [WWW24]:

Definition 2.8 (Shifted Multi-Preimage Trapdoor Sampler [WWW24, adapted]). Let 𝜆 be a security parameter

and ℓ be a dimension. Let 𝑛 = 𝑛(𝜆, ℓ), 𝑡 = 𝑡 (𝜆, ℓ), 𝑞 = 𝑞(𝜆, ℓ), and 𝑠 = 𝑠 (𝜆, ℓ) be functions. An (𝑛, 𝑡, 𝑞, 𝑠)-shifted
multi-preimage trapdoor sampler is a pair of efficient algorithms (Gen,GenTD, Expand) with the following syntax:

• Gen(1𝜆, 1ℓ) → crs: On input the security parameter 𝜆 and the dimension ℓ , the generator algorithm outputs

a common reference string crs.

• Expand(1𝜆, 1ℓ , crs) → (A1, . . . ,Aℓ , td): On input the security parameter 𝜆, the dimension ℓ , and the common

reference string crs, the expand algorithm outputs a collection of matrices A𝑖 ∈ Z𝑛×𝑡𝑞 and a trapdoor td. This
algorithm is deterministic.

• SampleMultPre(td, t1, . . . , tℓ) → (𝝅1, . . . , 𝝅 ℓ , c): On input a trapdoor td and a collection of preimages t1, . . . , tℓ ,
the shifted multi-preimage sampling algorithm outputs a shift c ∈ Z𝑛𝑞 together with preimages 𝝅1, . . . , 𝝅 ℓ ∈ Z𝑡𝑞 .

The structured trapdoor sampler should satisfy the following properties:

• Correctness: For all 𝜆, ℓ ∈ N, and all crs in the support of Gen(1𝜆, 1ℓ), all target vectors t1, . . . , tℓ ∈ Z𝑛𝑞 , and
setting (A1, . . . ,Aℓ , td) = Expand(1𝜆, 1ℓ , crs), it holds that:

Pr[∀𝑖 ∈ [ℓ] : A𝑖𝝅 𝑖 = t𝑖 + c] = 1,

where (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ).

• Preimage norm bound: For all polynomials ℓ = ℓ (𝜆), there exists a negligible function negl(·) such that

for all crs in the support of Gen(1𝜆, 1ℓ), setting (A1, . . . ,Aℓ , td) = Expand(1𝜆, 1ℓ , crs), and for all target vectors

t1, . . . , tℓ ∈ Z𝑛𝑞 :

Pr

[
∥𝝅 𝑖 ∥ ≥

√
ℓ𝑡𝑠 : (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ)

]
= negl(𝜆).

8

• Somewhere programmable: There exists an efficient algorithm GenProg such that for all polynomials

ℓ = ℓ (𝜆), the following holds:

– For all 𝜆 ∈ N, all indices 𝑖 ∈ [ℓ], and all matrices A𝑖 ∈ Z𝑛×𝑡𝑞 , it holds that

Pr

[
A𝑖 = Ã𝑖 :

c̃rs← GenProg(1𝜆, 1ℓ , 𝑖,A𝑖)
(Ã1, . . . , Ãℓ , T̃) = Expand(1𝜆, 1ℓ , c̃rs)

]
= 1.

– There exists a negligible function negl(·) such that for all 𝜆 ∈ N and all 𝑖 ∈ [ℓ], the statistical distance
between the following distributions is negl(𝜆):{

crs : crs← Gen(1𝜆, 1ℓ)
}

and

{
c̃rs :

A𝑖
r← Z𝑛×𝑡𝑞

c̃rs← GenProg(1𝜆, 1ℓ , 𝑖,A𝑖)

}
.

When these distributions are identical, we say the shifted multi-preimage trapdoor sampler satisfies perfect
somewhere programmability.

• Transparent setup: The common reference string crs output by Gen is exactly the random coins given to Gen.

Remark 2.9 (Preimage Distribution Property). The shifted multi-preimage trapdoor sampler definition from

[WWW24] states a different preimage property which they call preimage distribution. Their property asserts that the

outputs (𝝅1, . . . , 𝝅 ℓ , c) ← SampleMultPre(td, t1, . . . , tℓ) are statistically close to the distribution obtained by sampling

c r← Z𝑛𝑞 and 𝝅 𝑖 ← (A𝑖)−1𝑠 (t𝑖 + c). However, this property only holds with overwhelming probability over the choice of

crs← Gen(1𝜆, 1ℓ). In contrast, the property we state here holds for all common reference strings, which is crucial for

our application since the CRS may be chosen adversarially. Finally, it is easy to see that the construction of [WWW24],

satisfies the preimage bound property. Specifically, for every choice of CRS (which determines the matrices A1, . . . ,Aℓ),

the work of [WWW24, Construction 4.6] shows how to construct a trapdoor T where ∥T∥ = 1 and
A1 G

. . .
...

Aℓ G

︸ ︷︷ ︸
D

·T = Iℓ ⊗ G,

where G ∈ Z𝑛×𝑛⌈log𝑞⌉𝑞 is the gadget matrix [MP12]. The SampleMultPre algorithm uses T to sample a Gaussian-

distributed preimage D−1𝑠 (t) where where t ∈ Z𝑛ℓ𝑞 is the vertical concatenation of t1, . . . , tℓ ∈ Z𝑛𝑞 . Since the matrix D
has a “gadget trapdoor” T with norm 1 (irrespective of the choice of the CRS), we can appeal to a standard Gaussian

tail bound (c.f., [MP12, Lemma 2.6]) to conclude that the norm of the preimage is bounded with overwhelming

probability (for the parameter choices from [WWW24, Theorem 4.7]).

Theorem 2.10 (Shifted Multi-Preimage Trapdoor Sampler [WWW24, Theorem 4.7]). Let 𝑛 = 𝑛(𝜆, ℓ), 𝑞 = 𝑞(𝜆, ℓ) be ar-
bitrary non-negative functions where 𝑛 ≥ 𝜆. Let𝑚 = 3𝑛 ⌈log𝑞⌉ and 𝑡 =𝑚(⌈log𝑞⌉ + 1). Then for all 𝑠 ≥ (ℓ𝑡 +𝑚) log(ℓ𝑛),
there exists an (𝑛, 𝑞, 𝑡, 𝑠)-shifted multi-preimage trapdoor sampler (Gen, Expand, SampleMultPre) with perfect some-
where programmability and transparent setup. The size of the CRS output by Gen(1𝜆, 1ℓ) is 𝑛𝑡 log𝑞.

3 Interactive Hidden-Bits Generator
An interactive hidden bits generator (IHBG) is a cryptographic primitive introduced by [CKSU21] as the main ingredient

to build statistical ZAPs. It is a natural extension of a standard (non-interactive) dual-mode hidden-bits generator

[QRW19, LPWW20]. We start by recalling the definition.

Definition 3.1 (Interactive Hidden-Bits Generator [CKSU21]). Let 𝜆 be a security parameter and ℓ be an output

length parameter. An interactive hidden-bits generator with public-coin length ℓpub = ℓpub (𝜆, ℓ) and commitment

length ℓcom = ℓcom (𝜆, ℓ) is a tuple of efficient algorithms ΠIHBG = (GenBits,Verify) with the following syntax:

9

• GenBits(1𝜆, 1ℓ , 𝑟) → (com, 𝜋1, . . . , 𝜋ℓ , 𝝆): On input a security parameter 𝜆, a length parameter ℓ , and a public-

coin 𝑟 ∈ {0, 1}ℓpub , the bit-generation algorithm outputs a commitment com ∈ {0, 1}ℓcom , openings 𝜋1, . . . , 𝜋ℓ ,
and a hidden-bits string 𝝆 ∈ {0, 1}ℓ .

• Verify(𝑟, com, 𝑖, 𝑏, 𝜋𝑖) → 𝛽 : On input a public-coin 𝑟 ∈ {0, 1}ℓpub , a commitment com ∈ {0, 1}ℓcom , an index

𝑖 ∈ [ℓ], a bit 𝑏 ∈ {0, 1} and an opening 𝜋 , the verification algorithm outputs a bit 𝛽 ∈ {0, 1}.

We require ΠIHBG to satisfy the following properties:

• Correctness: For all 𝜆 ∈ N, ℓ ∈ N, 𝑖 ∈ [ℓ], and 𝑟 ∈ {0, 1}ℓpub , the following holds:

Pr

[
Verify(𝑟, com, 𝑖, 𝜌𝑖 , 𝜋𝑖) = 1 : (com, 𝜋1, . . . , 𝜋ℓ , 𝝆) ← GenBits(1𝜆, 1ℓ , 𝑟)

]
= 1.

• Succinctness: There exists a fixed polynomial poly(·, ·) such that commitment length ℓcom (𝜆, ℓ) ≤ poly(𝜆, log ℓ).

• Statistical hiding: For a security parameter 𝜆, a length parameter ℓ , a bit 𝑏 ∈ {0, 1}, a simulator Sim, and an

adversary A, we define the hiding game as follows:

1. On input a security parameter 1
𝜆
and length parameter 1

ℓ
, the adversary A chooses a public coin

𝑟 ∈ {0, 1}ℓpub , and sends 𝑟 to the challenger.

2. If 𝑏 = 0, the challenger samples (com, 𝜋1, . . . , 𝜋ℓ , 𝝆) ← GenBits(1𝜆, 1ℓ , 𝑟). If 𝑏 = 1, the challenger samples

𝝆 r← {0, 1}ℓ . The challenger sends 𝝆 to A.

3. The adversary A chooses a subset 𝑆 ⊆ [ℓ] and sends it to the challenger.

4. If 𝑏 = 1, then the challenger computes (com, (𝜋𝑖)𝑖∈𝑆) ← Sim(1𝜆, 1ℓ , 𝑟 , 𝑆, 𝝆𝑆), where 𝝆𝑆 denotes the bits

of 𝝆 associated with the indices 𝑖 ∈ 𝑆 . In both cases, the challenger responds with (com, (𝜋𝑖)𝑖∈𝑆).
5. The adversary A outputs a guess 𝑏′ ∈ {0, 1}.

We say that ΠIHBG is statistically hiding if there exists a (possibly unbounded) simulator Sim, such that for all

polynomials ℓ = ℓ (𝜆) and all (possibly unbounded) adversaries A, there exists a negligible function negl(·)
such that for all 𝜆 ∈ N,

|Pr [𝑏′ = 1 : 𝑏 = 0] − Pr [𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆).

• Extraction: We additionally require the following efficient algorithms:

– TrapCoin(1𝜆, 1ℓ) → (𝑟 ∗, td): On input a security parameter 𝜆 and a length parameter ℓ , the trapdoor

public-coin generation algorithm outputs a public-coin 𝑟 ∗ ∈ {0, 1}ℓpub and a trapdoor td.

– Extract(td, com) → 𝝆: On input a trapdoor td and a commitment com ∈ {0, 1}ℓcom , the extraction

algorithm outputs a string 𝝆 ∈ {0, 1}ℓ .

We require the following properties:

– Mode indistinguishability: For all efficient adversaries A and all polynomials ℓ = ℓ (𝜆), there exists
a negligible function negl(·) such that���Pr [A(1𝜆, 1ℓ , 𝑟) = 1 : 𝑟

r← {0, 1}ℓpub
]
− Pr

[
A(1𝜆, 1ℓ , 𝑟 ∗) = 1 : (𝑟 ∗, td) ← TrapCoin(1𝜆, 1ℓ)

] ��� = negl(𝜆).

Moreover, for a constant 𝑐 > 1, we say that ΠIHBG satisfies 𝑐-quasi-polynomial mode indistinguishability

if for all efficient adversariesA, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, the above
distinguishing advantage is bounded by 2

− log𝑐 (𝜆) · negl(𝜆).
– 𝜇-Extraction: For an adversary A, a security parameter 𝜆, and a length parameter ℓ , we define the

extraction game as follows:

∗ The challenger samples (𝑟 ∗, td) ← TrapCoin(1𝜆, 1ℓ) sends 𝑟 ∗ to the adversary.

10

∗ The adversaryA either aborts (with output ⊥) or outputs a commitment com, a set of indices 𝑆 ⊆ [ℓ],
and a tuple of openings (𝜋𝑖)𝑖∈𝑆 .

Define the following events:

∗ Let 𝐸lose be the event that for all 𝑖 ∈ 𝑆 it holds that Verify(𝑟 ∗, com, 𝑖, 1 − 𝜌𝑖 , 𝜋𝑖) = 0, where 𝝆 ←
Extract(td, com).

∗ Let 𝐸⊤ be the event that A does not abort.

Let 𝜇 (𝜆) be any positive function of 𝜆. We say that ΠIHBG is 𝜇-extractable if for all polynomials ℓ = ℓ (𝜆)
and all efficient algorithms A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr

[
𝐸⊤ ∧ 𝐸lose

]
≥ 𝜇 (𝜆) ·

(
Pr

[
𝐸⊤

]
− negl(𝜆)

)
.

Theorem 3.2 (Statistical ZAP Arguments [CKSU21]). Suppose there exists an interactive hidden-bits generator that
satisfies correctness, succinctness, statistical hiding and 𝜇-extraction for some negligible function 𝜇 (𝜆) = negl(𝜆). Then
there exists a (public-coin) statistical ZAP argument for NP with non-adaptive soundness.

Remark 3.3 (Adaptive Security). If the interactive hidden-bits generator is sub-exponentially secure, then the ZAP

from Theorem 3.2 is also sub-exponentially (non-adaptively) sound. Using standard complexity leveraging, we can

get an adaptively-sound ZAP for bounded-length statements from a sub-exponentially sound ZAP in a black-box

way. Looking ahead, this means that our result can be extended to getting a statistical ZAP argument for NP with

adaptive soundness assuming sub-exponential hardness of LWE (with a polynomial modulus-to-noise ratio).

Single-bit hiding. Similar to [Wat24], we now define a single-bit hiding property for an interactive hidden-bits

generator and then show that it implies the hiding property from Definition 3.1. This is a simpler property to analyze.

Definition 3.4 (Single Bit Hiding). LetΠIHBG = (GenBits,Verify) be an interactive hidden-bits generator. For an adver-
saryA, a security parameter 𝜆, a length parameter ℓ and a bit𝑏 ∈ {0, 1}, we define the single bit hiding game as follows:

1. On input a security parameter 1
𝜆
and a length parameter 1

ℓ
, the adversary A chooses public-coin 𝑟 ∈ {0, 1}ℓpub

and an index 𝑖∗ ∈ [ℓ], and sends (𝑟, 𝑖∗) to the challenger.

2. The challenger samples (com, 𝜋1, . . . , 𝜋ℓ , 𝝆) ← GenBits(1𝜆, 1ℓ , 𝑟).

3. If 𝑏 = 0, the challenger sets 𝛽 = 𝜌𝑖∗ . If 𝑏 = 1, the challenger samples a bit 𝛽
r← {0, 1}.

4. The challenger sends

(
com, (𝜌𝑖 , 𝜋𝑖)𝑖≠𝑖∗ , 𝛽

)
to A.

5. The adversary A outputs a guess 𝑏′ ∈ {0, 1}.

We say that ΠIHBG satisfies single-bit hiding if for all polynomials ℓ = ℓ (𝜆) and all (possibly unbounded) adversaries

A, there exists a negligible function such that

|Pr [𝑏′ = 0 : 𝑏 = 0] − Pr [𝑏′ = 0 : 𝑏 = 1] | ≤ negl(𝜆)

in the single-bit hiding game.

Theorem 3.5 (Single-Bit Hiding to Statistical Hiding). If ΠIHBG satisfies single bit hiding, it satisfies statistical hiding.

Proof. We define an (unbounded) simulator algorithm Sim for the statistical hiding game:.

1. On input (1𝜆, 1ℓ , 𝑟 , 𝑆, 𝝆𝑆), the simulator starts by sampling (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) ← GenBits(1𝜆, 1ℓ , 𝑟) conditioned
on 𝜌𝑖 = 𝜌𝑖 for all 𝑖 ∈ 𝑆 . If there does not exist any tuple (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) that satisfies this condition in the

support of GenBits(1𝜆, 1ℓ , 𝑟), then the simulator aborts with output ⊥.

2. The simulator outputs (c̃om, (�̃�𝑖)𝑖∈𝑆).

11

Let A be an adversary for ΠIHBG in the statistical hiding game. For each 𝑘 ∈ [ℓ + 1], we define a hybrid experiment

Hyb𝑘 between the challenger and the adversary A as follows:

1. On input the security parameter 1
𝜆
and the length parameter 1

ℓ
, the adversary A chooses a public-coin

𝑟 ∈ {0, 1}ℓpub , and sends 𝑟 to the challenger.

2. The challenger samples 𝜌𝑖
r← {0, 1} for 𝑖 ∈ [𝑘 − 1] and (com, 𝜋1, . . . , 𝜋ℓ , 𝝆′) ← GenBits(1𝜆, 1ℓ , 𝑟). Then, the

challenger gives the string 𝜌1 · · · 𝜌𝑘−1𝜌 ′𝑘 · · · 𝜌
′
ℓ to A.

3. The adversary A chooses a subset 𝑆 ⊆ [ℓ] and sends it to the challenger.

4. The challenger samples (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) ← GenBits(1𝜆, 1ℓ , 𝑟) conditioned on

𝜌𝑖 =

{
𝜌𝑖 𝑖 < 𝑘

𝜌 ′𝑖 𝑖 ≥ 𝑘

for all 𝑖 ∈ 𝑆 . If there does not exist any tuple (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) in the support ofGenBits(1𝜆, 1ℓ , 𝑟) that satisfies
this condition, then the challenger responds to A with ⊥.

5. The challenger responds to A with (c̃om, (�̃�𝑖)𝑖∈𝑆).

6. The adversary A outputs a guess 𝑏′ ∈ {0, 1}.

We write Hyb𝑖 (A) to denote the random variable corresponding to the output A in Hyb𝑖 . By construction, we have

the following:

• InHyb
1
, the challenger samples (com, 𝜋1, . . . , 𝜋ℓ , 𝝆′) ← GenBits(1𝜆, 1ℓ , 𝑟), so 𝝆′ is generated correctly according

toGenBits(1𝜆, 1ℓ , 𝑟). In this experiment, the challenger gives the hidden-bits string 𝝆′ toA. After the adversary

chooses a subset 𝑆 ⊆ [ℓ], the challenger then samples (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) ← GenBits(1𝜆, 1ℓ , 𝑟) conditioned on

�̃�𝑆 = 𝝆′
𝑆
. Since themarginal distribution of 𝝆′

𝑆
is distributed exactly as (com, 𝜋1, . . . , 𝜋ℓ , 𝝆′) ← GenBits(1𝜆, 1ℓ , 𝑟),

the joint distribution of c̃om and (𝜋𝑖)𝑖∈𝑆 is distributed exactly as a fresh sample from GenBits(1𝜆, 1ℓ , 𝑟). Thus,
this game is equivalent to the statistical hiding game where 𝑏 = 0.

• In Hybℓ+1, the challenger samples 𝝆 r← {0, 1}ℓ and gives 𝝆 toA as the hidden-bit string. After the adversaryA
outputs a set 𝑆 ⊆ [ℓ], the challenger samples (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) ← GenBits(1𝜆, 1ℓ , 𝑟) conditioned on �̃�𝑆 = 𝝆𝑆

where 𝝆 r← {0, 1}ℓ . This exactly coincides with the behavior of the simulation algorithm Sim. Since the

challenger samples 𝝆 r← {0, 1}ℓ in this experiment, the output distribution is equivalent to the statistical hiding

game where 𝑏 = 1.

We now use A to construct an (unbounded) adversary B for the single-bit hiding game:

1. On input a security parameter 1
𝜆
and length parameter 1

ℓ
, algorithm B runs A on (1𝜆, 1ℓ). Algorithm A

outputs a public-coin 𝑟 ∈ {0, 1}ℓpub . Algorithm B samples an index 𝑘∗ r← [ℓ] and forwards the public-coin 𝑟

and the index 𝑘∗ to the challenger.

2. The challenger replies to B with

(
com, (𝜌 ′𝑖 , 𝜋 ′𝑖)𝑖≠𝑘∗ , 𝛽

)
.

3. Algorithm B samples 𝜌𝑖
r← {0, 1} for 𝑖 ∈ [𝑘∗ − 1] and gives the string 𝜌1, . . . , 𝜌𝑘∗−1, 𝛽, 𝜌

′
𝑘∗+1, . . . , 𝜌

′
ℓ to A.

4. The adversary A chooses a subset 𝑆 ⊆ [ℓ] and sends it to algorithm B.

5. Algorithm B samples (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) ← GenBits(1𝜆, 1ℓ , 𝑟) conditioned on

𝜌𝑖 =

𝜌𝑖 𝑖 < 𝑘∗

𝛽 𝑖 = 𝑘∗

𝜌 ′𝑖 𝑖 > 𝑘∗

for all 𝑖 ∈ 𝑆 . If there does not exist any tuple (c̃om, �̃�1, . . . , �̃�ℓ , �̃�) in the support ofGenBits(1𝜆, 1ℓ , 𝑟) that satisfies
this condition, then algorithm B responds to A with ⊥.

12

6. Algorithm B responds to A with (c̃om, (�̃�𝑖)𝑖∈𝑆).

7. The adversary A outputs a guess 𝑏′ ∈ {0, 1}, which B outputs to the challenger.

In the single-bit hiding experiment, the challenger samples (com, 𝜋1, . . . , 𝜋ℓ , 𝝆′) ← GenBits(1𝜆, 1ℓ , 𝑟). Take any fixed

index 𝑘 ∈ [ℓ]. Then conditioned on 𝑘∗ = 𝑘 , the following holds:

• If 𝑏 = 0, the challenger sets 𝛽 = 𝜌 ′
𝑘
. Then, when 𝑘∗ = 𝑘 , algorithm B perfectly simulates an execution of Hyb𝑘

for algorithm A, and hence outputs 1 with probability Pr[Hyb𝑘 (A) = 1].

• If 𝑏 = 1, the challenger samples 𝛽
r← {0, 1}. Then, when 𝑘∗ = 𝑘 , algorithm B perfectly simulates an execution

of Hyb𝑘+1 for algorithm A, and hence outputs 1 with probability Pr[Hyb𝑘+1 (A) = 1].

Since 𝑘∗ is uniform over [ℓ], then for any 𝑘 ∈ [ℓ], we conclude that Pr[𝑘∗ = 𝑘] = 1/ℓ . The distinguishing advantage

of B is then������1ℓ ∑︁
𝑘∈[ℓ]
(Pr[Hyb𝑘+1 (A) = 1] − Pr[Hyb𝑘 (A) = 1])

������ = 1

ℓ
·
��
Pr[Hybℓ+1 (A) = 1] − Pr[Hyb

1
(A) = 1]

��.
By single-bit hiding of ΠIHBG,

1

ℓ
·
��
Pr[Hybℓ+1 (A) = 1] − Pr[Hyb

1
(A) = 1]

�� ≤ negl(𝜆) for some negligible function

negl(·). Correspondingly, ��
Pr[Hybℓ+1 (A)] − Pr[Hyb1 (A)]

�� ≤ ℓ · negl(𝜆),

which is negligible since ℓ = poly(𝜆). As argued previously, Hyb
1
corresponds to the statistical hiding experiment

with bit 𝑏 = 0 while Hybℓ+1 corresponds to the statistical hiding experiment with bit 𝑏 = 1. The theorem follows. □

4 Constructing an Interactive Hidden-Bits Generator from Lattices
We now show how to use a shifted multi-preimage trapdoor sampler (Definition 2.8) to construct an interactive

hidden-bits generator (Definition 3.1).

Construction 4.1. Let 𝜆 be a security parameter and ℓ be a length parameter. We start by defining the following

parameters:

• Let Πsamp = (Gen,GenTD, Expand) be a (𝑛, 𝑡, 𝑞, 𝑠)-shifted multi-preimage trapdoor sampler, where 𝑛, 𝑡, 𝑞, 𝑠 are

functions of 𝜆 and ℓ . We assume Πsamp has a transparent setup procedure, and moreover, that the length of

the (public) randomness needed by Gen is ℓsamp = ℓsamp (𝜆, ℓ).

• Let 𝑠LWE = 𝑠LWE (𝜆, ℓ) be a Gaussian width parameter.

• Let 𝑁 = 𝑁 (𝜆, 𝑞) be the number of indices used for prover re-randomization.

• Let 𝐵max = 𝐵max (𝜆, ℓ) be a norm bound and 𝐵round = 𝐵round (𝜆, ℓ) be a rounding boundary parameter.

• Let ℓpub = ℓsamp + ℓ𝑡 (⌈log𝑞⌉ + 𝜆) be the public-coin length. For each 𝑟 ∈ {0, 1}ℓpub , we derive an associated tuple

(crssamp, ṽ1, . . . , ṽℓ) from 𝑟 as follows:

1. First, parse 𝑟 = 𝑟samp∥𝑟1∥ · · · ∥𝑟ℓ where 𝑟samp ∈ {0, 1}ℓsamp
and 𝑟𝑖 ∈ {0, 1}𝑡 (⌈log𝑞⌉+𝜆) for all 𝑖 ∈ [ℓ].

2. Let crssamp = Gen(1𝜆, 1ℓ ; 𝑟samp).
3. For each 𝑖 ∈ [ℓ], we further parse 𝑟𝑖 = 𝑟𝑖,1∥ · · · ∥𝑟𝑖,𝑡 where 𝑟𝑖, 𝑗 ∈ {0, 1}⌈log𝑞⌉+𝜆 . We now interpret 𝑟𝑖, 𝑗 as

the binary representation of a ⌈log𝑞⌉ + 𝜆-bit integer and define the vector ṽ𝑖 ∈ Z𝑡𝑞 where 𝑣𝑖, 𝑗 = 𝑟𝑖, 𝑗 mod 𝑞

for all 𝑗 ∈ [𝑡].

We now construct a interactive hidden-bits generatorΠIHBG = (GenBits,Verify) with public-coin length ℓpub as follows:

13

• GenBits(1𝜆, 1ℓ , 𝑟): On input a security parameter 𝜆, a length parameter ℓ , and a public coin 𝑟 ∈ {0, 1}ℓpub , the
bit-generation algorithm proceeds as follows:

1. Let (crssamp, ṽ1, . . . , ṽℓ) be the tuple associated with 𝑟 . Expand crssamp by computing (A1, . . . ,Aℓ , tdsamp) =
Expand(1𝜆, 1ℓ , crssamp).

2. Sample indices 𝑖1, . . . , 𝑖𝑁
r← [𝑡] and 𝑧1, . . . , 𝑧𝑁 r← Z𝑞 . Compute v𝑖 = ṽ𝑖 +

∑
𝑗∈[𝑁] 𝑧 𝑗𝜼𝑖 𝑗 for 𝑖 ∈ [ℓ], where

𝜼𝑖 ∈ Z𝑡𝑞 denotes the 𝑖th standard basis vector.

3. Repeat the following procedure up to 𝜆 times:

(a) Sample w1, . . . ,wℓ
r← {0, 1}𝑡 .

(b) Compute (𝝅 ′
1
, . . . , 𝝅 ′ℓ , c) ← SampleMultPre(tdsamp,A1w1, . . . ,Aℓwℓ).

(c) For each 𝑖 ∈ [ℓ], set 𝝅 𝑖 = 𝝅 ′𝑖 −w𝑖 . If ∥𝝅 𝑖 ∥ > 𝐵max then set 𝜌𝑖 = ⊥. Otherwise, compute 𝑢𝑖 = vT
𝑖𝝅 𝑖

and set 𝜌𝑖 as follows:

𝜌𝑖 =

0 𝑢𝑖 ∈ [−𝐵round, 𝐵round]
1 𝑢𝑖 ∈

[
⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round

]
⊥ otherwise

(d) If 𝜌𝑖 = ⊥ for some 𝑖 ∈ [ℓ], then repeat the procedure. Otherwise, declare the procedure successful

and continue.

4. If the procedure does not succeed after 𝜆 iterations, then set c = ⊥ and 𝜋𝑖 = ⊥ and 𝜌𝑖 = 0 for all 𝑖 ∈ [ℓ].
Set 𝝆 = 𝜌1 · · · 𝜌ℓ ∈ {0, 1}𝑡 and output com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c), the openings 𝝅1, . . . , 𝝅 ℓ , and the

string 𝝆.

• Verify(𝑟, com, 𝑖, 𝑏, 𝝅 𝑖): On input a public-coin 𝑟 ∈ {0, 1}ℓpub , a commitment com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c), an
index 𝑖 ∈ [ℓ], a bit 𝑏 ∈ {0, 1} and an opening 𝝅 𝑖 ∈ Z𝑡𝑞 , the verification algorithm proceeds as follows:

1. Let (crssamp, ṽ1, . . . , ṽℓ) be the tuple associated with 𝑟 . Then compute v𝑖 = ṽ𝑖 +
∑

𝑗∈[𝑁] 𝑧 𝑗𝜼𝑖 𝑗 .

2. If c = ⊥, then output 1 if 𝑏 = 0 and output 0 if 𝑏 = 1.

3. Otherwise, expand (A1, . . . ,Aℓ , tdsamp) ← Expand(1𝜆, 1ℓ , crssamp).
4. Output 1 if

∥𝝅 𝑖 ∥ ≤ 𝐵max and A𝑖𝝅 𝑖 = c and vT
𝑖𝝅 𝑖 ∈

[
⌊𝑞/2⌋ · 𝑏 − 𝐵round, ⌊𝑞/2⌋ · 𝑏 + 𝐵round

]
.

Output 0 otherwise.

In addition, we define the (TrapCoin, Extract) algorithms for the 𝜇-extraction property as follows:

• TrapCoin(1𝜆, 1ℓ): On input a security parameter 𝜆 and a length parameter ℓ , the trapdoor public-coin generation

algorithm proceeds as follows:

1. Sample 𝑟samp
r← {0, 1}ℓsamp

and let crssamp = Gen(1𝜆, 1ℓ ; 𝑟samp). Then expand crssamp by computing

(A1, . . . ,Aℓ , tdsamp) = Expand(1𝜆, 1ℓ , crssamp).
2. Sample 𝑖′

1
, . . . , 𝑖′

𝑁

r← [𝑡] and 𝑧′
1
, . . . , 𝑧′

𝑁

r← Z𝑞 .
3. Sample s1, . . . , sℓ

r← Z𝑛𝑞 , e1, . . . , eℓ ← 𝐷𝑡
Z,𝑠LWE

. Set vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for 𝑖 ∈ [ℓ].

4. Compute ṽ𝑖 = v𝑖 −
∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 for 𝑖 ∈ [ℓ]. Write ṽ𝑖 = [𝑣𝑖,1, . . . , 𝑣𝑖,𝑡].

5. For 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡], sample 𝛾𝑖, 𝑗
r← [0,

⌊
2
⌈log𝑞⌉+𝜆/𝑞

⌋
− 1], and set 𝑟𝑖, 𝑗 = 𝑞𝛾𝑖, 𝑗 + 𝑣𝑖, 𝑗 , represented as a

binary string in {0, 1}⌈log𝑞⌉+𝜆 . Finally, let 𝑟𝑖 = 𝑟𝑖,1∥ · · · ∥𝑟𝑖,𝑡 ∈ {0, 1}𝑡 (⌈log𝑞⌉+𝜆) .
6. Output 𝑟 ∗ = 𝑟samp∥𝑟1∥ · · · ∥𝑟ℓ and td = (𝑟 ∗, 𝑖′

1
, . . . , 𝑖′

𝑁
, 𝑧′

1
, . . . , 𝑧′

𝑁
, s1, . . . , sℓ).

14

• Extract(td, com): On input a trapdoor td = (𝑟 ∗, 𝑖′
1
, . . . , 𝑖′

𝑁
, 𝑧′

1
, . . . , 𝑧′

𝑁
, s1, . . . , sℓ) and a commitment com =

(𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c), the extraction algorithm does the following:

1. If 𝑖′
𝑘
≠ 𝑖𝑘 or 𝑧′

𝑘
≠ 𝑧𝑘 for any 𝑘 ∈ [𝑁], abort.

2. Output 𝝆 where 𝜌𝑖 ← ⌊sT𝑖 c⌉ for 𝑖 ∈ [ℓ].

Theorem 4.2 (Correctness). If Πsamp is correct, then Construction 4.1 satisfies perfect correctness.

Proof. Take any 𝜆, ℓ ∈ N. Take any public coin 𝑟 ∈ {0, 1}ℓpub and let (crssamp, ṽ1, . . . , ṽℓ) be the tuple associated with

𝑟 . Take any commitment com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c), openings 𝝅1, . . . , 𝝅 ℓ and string 𝝆 = 𝜌1 · · · 𝜌ℓ in the support

of GenBits(1𝜆, 1ℓ , 𝑟). Consider the two possibilities:

• If c = ⊥ then by construction of GenBits, we have 𝝆 = 0ℓ . By construction, we have Verify(𝑟, com, 𝑖, 0, 𝝅 𝑖) = 1

for all 𝑖 ∈ [ℓ].

• Otherwise suppose c ∈ Z𝑛𝑞 . By construction, this means that GenBits sampled w1, . . . ,wℓ
r← {0, 1}𝑡 and

computed (𝝅 ′
1
, . . . , 𝝅 ′ℓ , c) ← SampleMultPre(tdsamp,A1w1, . . . ,Aℓwℓ). By correctness of Πsamp, this means that

for all 𝑖 ∈ [ℓ], we have A𝑖𝝅 ′𝑖 = c + A𝑖w𝑖 . Next, GenBits sets 𝝅 𝑖 = 𝝅 ′𝑖 −w𝑖 , so for all 𝑖 ∈ [ℓ], we have

A𝑖𝝅 𝑖 = A𝑖 (𝝅 ′𝑖 −w𝑖) = A𝑖𝝅
′
𝑖 − A𝑖w𝑖 = c + A𝑖w𝑖 − A𝑖w𝑖 = c.

Finally, by the bound checks in GenBits, it outputs c ∈ Z𝑛𝑞 only if

∥𝝅 𝑖 ∥ ≤ 𝐵max and vT
𝑖𝝅 𝑖 ∈

[
⌊𝑞/2⌋ 𝜌𝑖 − 𝐵round, ⌊𝑞/2⌋ 𝜌𝑖 + 𝐵round

]
.

In this case, all of the verification checks pass and Verify(𝑟, com, 𝑖, 𝜌𝑖 , 𝝅 𝑖) = 1. □

Theorem 4.3 (Succinctness). If there exists a polynomial poly(·, ·) such that 𝑁, 𝑡, log𝑞 ≤ poly(𝜆, log ℓ), then Construc-
tion 4.1 is succinct.

Proof. Take any 𝑟 ∈ {0, 1}ℓpub and any (com, 𝝅1, . . . , 𝝅 ℓ , 𝝆) in the support of GenBits(1𝜆, 1ℓ , 𝑟), where com =

(𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c) for 𝑖 𝑗 ∈ [𝑡], 𝑧 𝑗 ∈ Z𝑞 , and c ∈ Z𝑡𝑞 . Then, com can be represented in𝑁 (⌈log 𝑡⌉+⌈log𝑞⌉)+𝑡 ⌈log𝑞⌉
bits, as required. □

4.1 Security Analysis of Construction 4.1
In this section, we give the security analysis for Construction 4.1. In the following section, we show how to instantiate

the underlying lattice parameters to obtain our main result (Theorem 1.1).

4.1.1 Mode Indistinguishability

In this section, we prove that Construction 4.1 satisfies mode indistinguishability (Definition 3.1). While Theorem 3.2

only requires normal mode indistinguishability, our proof of 𝜇-extractability (see Theorem 4.9 in Section 4.1.2) requires

quasi-polynomial mode indistinguishability. For this reason, we rely on quasi-polynomially-secure LWE.

Theorem 4.4 (Mode Indistinguishability). Suppose 𝑐-quasi-polynomial LWE𝑛,𝑡,𝑞,𝑠LWE holds with constant 𝑐 > 1 and
Πsamp has a transparent setup and is perfectly somewhere programmable. Then, Construction 4.1 satisfies 𝑐-quasi-
polynomial mode indistinguishability.

Proof. LetA be an efficient mode indistinguishability adversary. Next, Πsamp satisfies perfect somewhere programma-

bility, so let GenProg be the associated algorithm. For each 𝑘 ∈ [ℓ + 1], we define a sequence of hybrid experiments

between a challenger and A as follows:

• Hyb
0
: This is the mode indistinguishability game where the challenger samples a uniform random public-coin.

Namely, the experiment proceeds as follows:

1. The challenger samples 𝑟 ∗ r← {0, 1}ℓpub .

15

2. The challenger gives (1𝜆, 1ℓ , 𝑟 ∗) to A. Algorithm A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the

experiment.

• Hyb𝑘,1: This is the mode indistinguishability game, except the challenger samples the vectors ṽ1, . . . , ṽ𝑘−1 as
LWE instances and then reverse samples the public-coin 𝑟 ∗ ∈ {0, 1}ℓpub . Specifically, the experiment proceeds

as follows:

1. The challenger starts by sampling 𝑟 ∗samp
r← {0, 1}ℓsamp

and sets crssamp ← Gen(1𝜆, 1ℓ ; 𝑟 ∗samp). Then it

computes (A1, . . . ,Aℓ , tdsamp) = Expand(1𝜆, 1ℓ , crssamp).
2. Next, the challenger samples 𝑖′

1
, . . . , 𝑖′

𝑁

r← [𝑡] and 𝑧′
1
, . . . , 𝑧′

𝑁

r← Z𝑞 .
3. For each 𝑖 ∈ [ℓ], the challenger proceeds as follows:

– If 𝑖 < 𝑘 , the challenger samples s𝑖
r← Z𝑛𝑞 , e𝑖 ← 𝐷𝑡

Z,𝑠LWE
and sets vT

𝑖 = sT𝑖A𝑖 + eT𝑖 .
– If 𝑖 ≥ 𝑘 , sample v𝑖

r← Z𝑡𝑞 .
For each 𝑖 ∈ [ℓ], the challenger sets ṽ𝑖 = v𝑖 −

∑
𝑗∈[𝑁] 𝑧

′
𝑗𝜼𝑖′𝑗 .

4. For all 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡]:
(a) The challenger samples 𝛾𝑖, 𝑗

r← [0,
⌊
2
⌈log𝑞⌉+𝜆/𝑞

⌋
− 1].

(b) The challenger sets 𝑟 ∗𝑖, 𝑗 = 𝑞𝛾𝑖, 𝑗 + 𝑣𝑖, 𝑗 , represented as a binary string in {0, 1}⌈log𝑞⌉+𝜆 .

Finally, the challenger sets 𝑟 ∗𝑖 = 𝑟 ∗𝑖,1∥ · · · ∥𝑟 ∗𝑖,𝑡 ∈ {0, 1}𝑡 (⌈log𝑞⌉+𝜆) .

5. The challenger sets 𝑟 ∗ = 𝑟 ∗samp∥𝑟 ∗1 ∥ · · · ∥𝑟 ∗ℓ ∈ {0, 1}ℓsamp+ℓ𝑡 (⌈log𝑞⌉+𝜆)
and gives (1𝜆, 1ℓ , 𝑟 ∗) to A. Algorithm

A outputs a bit 𝑏 ∈ {0, 1}, which is the output of the experiment.

• Hyb𝑘,2: Same as Hyb𝑘,1, except the challenger samples A′
𝑘

r← Z𝑛×𝑡𝑞 and crssamp ← GenProg(1𝜆, 1ℓ , 𝑘,A′
𝑘
). Let

𝑟 ∗ = crssamp∥𝑟 ∗1 ∥ · · · ∥𝑟 ∗ℓ .

• Hyb𝑘,3: Same as Hyb𝑘,2, except the challenger samples s𝑘
r← Z𝑛𝑞 , e𝑘 ← 𝐷𝑡

Z,𝑠LWE
and sets vT

𝑘
= sT

𝑘
A𝑘 + eT𝑘 .

For a hybrid experiment Hyb, we write Hyb(A) to denote the random variable corresponding to the output of an

execution of Hyb with adversary A.

Claim 4.5. There exists negligible function negl(𝜆) where for all 𝜆 ∈ N,��
Pr[Hyb

1,1 (A) = 1] − Pr[Hyb
0
(A) = 1]

�� = negl(𝜆).

Proof. Consider the distribution of 𝑟 ∗ = 𝑟 ∗samp∥𝑟 ∗1 ∥ · · · ∥𝑟 ∗ℓ in the two experiments. First, the distribution of 𝑟 ∗samp in

the two experiments is identical, so it suffices to consider the distribution of 𝑟 ∗𝑖 for 𝑖 ∈ [ℓ]. In Hyb
0
, each 𝑟 ∗𝑖 is uniform

over {0, 1}𝑡 (⌈log𝑞⌉+𝜆) . We consider the distribution in Hyb
1,1:

• In Hyb
1,1, the challenger samples v𝑖

r← Z𝑡𝑞 . Since v𝑖 is independent of 𝑧′1, . . . , 𝑧
′
𝑁
, this means ṽ𝑖 = v𝑖 −∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 remains uniform over Z𝑡𝑞 .

• We conclude that each value 𝑟𝑖, 𝑗 = 𝑞𝛾𝑖, 𝑗 + 𝑣𝑖, 𝑗 is uniform over [0,
⌊
2
⌈log𝑞⌉+𝜆/𝑞

⌋
· 𝑞 − 1]. The statistical distance

between this distribution and the uniform distribution over [0, 2⌈log𝑞⌉+𝜆] is at most 𝑞/2⌈log𝑞⌉+𝜆 ≤ 2
−𝜆
.

• The statistical distance between 𝑟 ∗𝑖 and the uniform distribution over {0, 1}𝑡 (⌈log𝑞⌉+𝜆) is then at most 𝑡 · 2−𝜆 .

We conclude that the statistical distance between the distribution of 𝑟 ∗ in Hyb
1,1 and the uniform distribution over

{0, 1}ℓpub is at most ℓ𝑡 · 2−𝜆 , which is negligible since 𝑡, ℓ = poly(𝜆). □

Claim 4.6. Suppose Πsamp has a transparent setup and is perfectly somewhere programmable. Then, for all 𝑘 ∈ [ℓ],

Pr[Hyb𝑘,2 (A) = 1] = Pr[Hyb𝑘,1 (A) = 1] .

16

Proof. Note that in any execution of Hyb𝑘,1, 𝑟
∗
samp = crssamp by transparent setup of Πsamp. Since Πsamp is perfectly

somewhere programmable, the distributions{
crs : crs← Gen(1𝜆, 1ℓ)

}
and

{
c̃rs :

A𝑘
r← Z𝑛×𝑡𝑞

c̃rs← GenProg(1𝜆, 1ℓ , 𝑘,A𝑘)

}
are identically distributed for all 𝑘 ∈ [ℓ]. Thus, Hyb𝑘,1 andHyb𝑘,2 are identical distributions and the claim follows. □

Claim 4.7. Suppose quasi-polynomial LWE𝑛,𝑡,𝑞,𝑠LWE holds with constant 𝑐 > 1. Then, there exists a negligible function
negl(𝜆) where for all 𝜆 ∈ N,∑︁

𝑘∈[ℓ]
(Pr[Hyb𝑘,3 (A) = 1] − Pr[Hyb𝑘,2 (A) = 1]) = 2

− log𝑐 (𝜆) · negl(𝜆).

Proof. We define an efficient adversary B in the LWE𝑛,𝑡,𝑞,𝑠LWE game.

1. At the beginning of the game, algorithm B receives the LWE challenge (A∗, v∗) from the challenger.

2. Algorithm B samples an index 𝑘∗ r← [ℓ] and setsA𝑘∗ = A∗. Then, it samples crssamp ← GenProg(1𝜆, 1ℓ , 𝑘∗,A𝑘∗)
and expands (A1, . . . ,Aℓ , tdsamp) = Expand(1𝜆, 1ℓ , crssamp).

3. Algorithm B samples 𝑖′
1
, . . . , 𝑖′

𝑁

r← [𝑡] and 𝑧′
1
, . . . , 𝑧′

𝑁

r← Z𝑞 . For each 𝑖 ∈ [ℓ], algorithm B sets v𝑖 as follows:

• If 𝑖 < 𝑘 , algorithm B samples s𝑖
r← Z𝑛𝑞 , e𝑖 ← 𝐷𝑡

Z,𝑠LWE
and sets vT

𝑖 = sT𝑖A𝑖 + eT𝑖 .
• If 𝑖 = 𝑘∗, algorithm B sets v𝑘∗ = v∗.
• If 𝑖 > 𝑘∗, algorithm B samples v𝑖

r← Z𝑡𝑞 .

For each 𝑖 ∈ [ℓ], algorithm B sets ṽ𝑖 = v𝑖 −
∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 .

4. For 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡]:

(a) Algorithm B samples 𝛾𝑖, 𝑗
r← [0,

⌊
2
⌈log𝑞⌉+𝜆/𝑞

⌋
− 1].

(b) Algorithm B sets 𝑟𝑖, 𝑗 = 𝑞𝛾𝑖, 𝑗 + ṽ𝑖 [𝑗], represented as a string in {0, 1}⌈log𝑞⌉+𝜆 .

Finally, algorithm B sets 𝑟 ∗𝑖 = 𝑟 ∗𝑖,1∥ · · · ∥𝑟 ∗𝑖,𝑡 ∈ {0, 1}𝑡 (⌈log𝑞⌉+𝜆) .

5. Algorithm B sets 𝑟 ∗ = 𝑟 ∗samp∥𝑟 ∗1 ∥ · · · ∥𝑟 ∗ℓ ∈ {0, 1}ℓsamp+ℓ𝑡 (⌈log𝑞⌉+𝜆)
and gives (1𝜆, 1ℓ , 𝑟 ∗) to A. Finally, algorithm

B outputs whatever A outputs.

Consider a run of B where 𝑘∗ = 𝑘 for some fixed value 𝑘 ∈ [ℓ]. First, the LWE challenger always samples A∗ r← Z𝑛×𝑚𝑞 ,

so algorithm B correctly simulates the distribution of A𝑘 according to the specification of Hyb𝑘 or Hyb𝑘+1. Consider
now the distribution of v∗:

• Suppose v𝑘 = v∗ r← Z𝑡𝑞 . In this case, algorithm B perfectly simulates an execution of Hyb𝑘 for A, and outputs

1 with probability Pr[Hyb𝑘,2 (A) = 1].

• Suppose v𝑘 = v∗ = sTA∗ + eT where s r← Z𝑛𝑞 and e ← 𝐷𝑡
Z,𝑠LWE

. Then, algorithm B perfectly simulates an

execution of Hyb𝑘,3 for A and outputs 1 with probability Pr[Hyb𝑘,3 (A) = 1].
Finally, algorithm B samples 𝑘∗ r← [ℓ], so its overall advantage is then

1

ℓ

∑︁
𝑘∈[ℓ]
(Pr[Hyb𝑘,3 (A) = 1] − Pr[Hyb𝑘,2 (A) = 1]).

By 𝑐-quasi-polynomial hardness of LWE𝑛,𝑡,𝑞,𝑠LWE , this quantity is at most 2
− log𝑐 (𝜆) · negl′ (𝜆) for some negligible

function negl′ (·). Then,∑︁
𝑘∈[ℓ]
(Pr[Hyb𝑘,3 (A) = 1] − Pr[Hyb𝑘,2 (A) = 1]) ≤ ℓ · 2− log

𝑐 (𝜆) · negl′ (𝜆).

Since ℓ = poly(𝜆), the claim holds. □

17

Claim 4.8. Suppose Πsamp has a transparent setup and is perfectly somewhere programmable. Then, for all 𝑘 ∈ [ℓ],

Pr[Hyb𝑘+1,1 (A) = 1] = Pr[Hyb𝑘,3 (A) = 1] .

Proof. Follows by the same argument as the proof of Claim 4.6. □

Returning now to the proof of Theorem 4.4, we have the following:

• Hyb
0
is exactly the first mode indistinguishability experiment for algorithm A.

• In Hybℓ+1,1, every value v𝑖 is sampled exactly as in TrapCoin. In this case, algorithm B perfectly simulates an

execution of the second mode indistinguishability experiment for algorithm A.

By Claims 4.6 to 4.8, the advantage of A is then

��
Pr[Hybℓ+1,1 (A) = 1] − Pr[Hyb

1,1 (A) = 1]
�� = ����� ∑︁

𝑘∈[ℓ]
(Pr[Hyb𝑘+1,1 (A) = 1] − Pr[Hyb𝑘,3 (A) = 1])

+
∑︁
𝑘∈[ℓ]
(Pr[Hyb𝑘,3 (A) = 1] − Pr[Hyb𝑘,2 (A) = 1])

+
∑︁
𝑘∈[ℓ]
(Pr[Hyb𝑘,2 (A) = 1] − Pr[Hyb𝑘,1 (A) = 1])

�����
=

������ ∑︁𝑘∈[ℓ](Pr[Hyb𝑘,3 (A) = 1] − Pr[Hyb𝑘,2 (A) = 1])

������
= 2
− log𝑐 (𝜆) · negl(𝜆)

for some negligible function negl(·). Theorem 4.4 holds. □

4.1.2 Extraction

In this section, we show that Construction 4.1 satisfies 𝜇-extractability for an inverse quasi-polynomial 𝜇 = 2
−Ω (log𝑐 𝜆)

.

Theorem 4.9 (Extraction). Suppose 𝑐-quasi-polynomial LWE𝑛,𝑡,𝑞,𝑠LWE holds with constant 𝑐 > 4 and Πsamp is per-
fectly somewhere programmable. Suppose also 𝐵round + 𝐵max

√︁
log

𝑐 (𝜆) + 𝜆𝑠LWE ≤ 𝑞/4, and 𝑁 = 𝑂 (log3 𝜆). Then,
Construction 4.1 satisfies 𝜇-extraction where 𝜇 = 2

−Ω (log𝑐 𝜆) .

Proof. Let A be an efficient adversary for the 𝜇-extraction game. We define a sequence of hybrid games between

a challenger and A as follows:

• Hyb
1
: This is the 𝜇-extraction game where the output is 1 if event 𝐸⊤ occurs (i.e., the game where the adversary

A does not abort). Specifically, the game proceeds as follows:

1. The challenger starts by sampling (𝑟 ∗, td) ← TrapCoin(1𝜆, 1ℓ). Namely, the challenger proceeds as follows:

(a) Sample 𝑟samp
r← {0, 1}ℓsamp

and let crssamp = Gen(1𝜆, 1ℓ ; 𝑟samp). Then expand crssamp by computing

(A1, . . . ,Aℓ , tdsamp) = Expand(1𝜆, 1ℓ , crssamp).
(b) Sample 𝑖′

1
, . . . , 𝑖′

𝑁

r← [𝑡] and 𝑧′
1
, . . . , 𝑧′

𝑁

r← Z𝑞 .
(c) Sample s1, . . . , sℓ

r← Z𝑛𝑞 , e1, . . . , eℓ ← 𝐷𝑡
Z,𝑠LWE

. Set vT
𝑖 = sT𝑖A𝑖 + eT𝑖 for 𝑖 ∈ [ℓ].

(d) Compute ṽ𝑖 = v𝑖 −
∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 for 𝑖 ∈ [ℓ].

(e) For 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑡], sample 𝛾𝑖, 𝑗
r← [0,

⌊
2
⌈log𝑞⌉+𝜆/𝑞

⌋
− 1] and set 𝑟𝑖, 𝑗 = 𝑞𝛾𝑖, 𝑗 + 𝑣𝑖, 𝑗 , represented as

a binary string in {0, 1}⌈log𝑞⌉+𝜆 . Finally, let 𝑟𝑖 = 𝑟𝑖,1∥ · · · ∥𝑟𝑖,𝑡 ∈ {0, 1}𝑡 (⌈log𝑞⌉+𝜆) .
(f) Let 𝑟 ∗ = 𝑟samp∥𝑟1∥ · · · ∥𝑟ℓ and td = (𝑟 ∗, 𝑖′

1
, . . . , 𝑖′

𝑁
, 𝑧′

1
, . . . , 𝑧′

𝑁
, s1, . . . , sℓ).

18

The challenger sends (1𝜆, 1ℓ , 𝑟 ∗) to the adversary.

2. The adversary A now either aborts with ⊥ or outputs a set of indices 𝑆 ⊆ [ℓ], a commitment com =

(𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c) and openings (𝜋𝑖)𝑖∈𝑆 .
3. The output of the experiment is 1 if A does not abort. Otherwise, the output is 0.

• Hyb
2
: Same as Hyb

1
, except the challenger samples v𝑖

r← Z𝑡𝑞 for all 𝑖 ∈ [ℓ].

• Hyb
3
: Same as Hyb

2
, except the challenger additionally checks that 𝑖′

𝑘
= 𝑖𝑘 and 𝑧′

𝑘
= 𝑧𝑘 for all 𝑘 ∈ [𝑁]. If this

condition does not hold, the output of the experiment is 0.

• Hyb
4
: Same as Hyb

3
, except the challenger reverts to setting v𝑖 = sT𝑖A𝑖 + eT𝑖 for all 𝑖 ∈ [ℓ].

• Hyb
5
: Same as Hyb

4
, except the challenger aborts with output 0 if ∥e𝑖 ∥ >

√︁
log

𝑐 (𝜆) + 𝜆 · 𝑠LWE for any 𝑖 ∈ [ℓ].

• Hyb
6
: Same as Hyb

5
, except the challenger also aborts with output 0 if there exists an index 𝑖 ∈ 𝑆 where

Verify(𝑟 ∗, com, 𝑖, 1 − 𝜌𝑖 , 𝜋𝑖) = 1 and 𝜌𝑖 = ⌊sT𝑖 c⌉.

• Hyb
7
: Same as Hyb

6
, except the challenger no longer checks if there exists an 𝑖 ∈ [ℓ] where ∥e𝑖 ∥ >√︁

log
𝑐 (𝜆) + 𝜆 · 𝑠LWE. This is the 𝜇-extraction game where the challenger outputs 1 if event 𝐸⊤ ∧ 𝐸lose occurs.

Claim 4.10. Suppose 𝑐-quasi-polynomial LWE𝑛,𝑡,𝑞,𝑠LWE holds with constant 𝑐 > 1 and Πsamp is perfectly somewhere
programmable. Then, there exists a negligible function negl(𝜆) where��

Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = 2
− log𝑐 (𝜆) · negl(𝜆).

Proof. By Theorem 4.4, under the given conditions, Construction 4.1 satisfies 𝑐-quasi-polynomial mode indistin-

guishability. We use algorithm A to construct an adversary B for the mode indistinguishability game:

1. Algorithm B receives (1𝜆, 1ℓ , 𝑟 ∗), and sends (1𝜆, 1ℓ , 𝑟 ∗) to the adversary A.

2. Algorithm A either aborts or outputs a set of indices 𝑆 ⊆ [ℓ], a commitment com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c)
and a tuple of openings (𝜋𝑖)𝑖∈𝑆 .

3. Algorithm B outputs 1 if A does not abort. Otherwise, algorithm B outputs 0.

We consider the two cases depending on the behavior of the mode indistinguishability challenger:

• If the challenger samples 𝑟 ∗ ← TrapCoin(1𝜆, 1ℓ), algorithm B perfectly simulates an execution of Hyb
1
for A,

and outputs 1 with probability Pr[Hyb
1
(A) = 1].

• If the challenger samples 𝑟 ∗ r← {0, 1}ℓpub , then algorithm B perfectly simulates an execution of Hyb
2
for A,

and outputs 1 with probability Pr[Hyb
2
(A) = 1].

Thus, the advantage of B for the mode indistinguishability game is

��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

1
(A) = 1]

��. By
Theorem 4.4, we can bound this quantity by 2

− log𝑐 (𝜆) · negl(𝜆) for some negligible function negl(·), as required. □

Claim 4.11. It holds that Pr[Hyb
3
(A) = 1] = 𝑡−𝑁𝑞−𝑁 · Pr[Hyb

2
(A) = 1].

Proof. In Hyb
2
and Hyb

3
, the only quantities that depend on 𝑖′

𝑘
and 𝑧′

𝑘
are the values ṽ𝑖 for 𝑖 ∈ [ℓ]. The challenger

sets ṽ𝑖 = v𝑖 −
∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 . Since each v𝑖 is uniform random, the values of 𝑖′

𝑘
and 𝑧′

𝑘
are information-theoretically

hidden from the adversary A for all 𝑘 ∈ [𝑁]. Thus, the values 𝑖1, . . . , 𝑖𝑁 and 𝑧1, . . . , 𝑧𝑁 chosen by the adversary

are independent of the values of 𝑖′
1
, . . . , 𝑖′

𝑁
and 𝑧′

1
, . . . , 𝑧′

𝑁
. Since the challenger samples 𝑖′𝑗

r← [𝑡] and 𝑧′𝑗
r← Z𝑞 for all

𝑗 ∈ [𝑁], we have that whenever A does not abort (i.e., event 𝐸⊤ occurs), the probability that 𝑖′
𝑘
= 𝑖𝑘 and 𝑧′

𝑘
= 𝑧𝑘 for

all 𝑘 ∈ [𝑁] is exactly 𝑡−𝑁𝑞−𝑁 . □

Claim 4.12. There exists a negligible function negl(𝜆) where��
Pr[Hyb

4
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = 2
− log𝑐 (𝜆) · negl(𝜆).

19

Proof. Follows by the same argument as the proof of Claim 4.10. □

Claim 4.13. There exists a negligible function negl(𝜆) where��
Pr[Hyb

5
(A) = 1] − Pr[Hyb

4
(A) = 1]

�� = 2
− log𝑐 (𝜆) · negl(𝜆).

Proof. The only difference between Hyb
5
and Hyb

4
is we require for all 𝑖 ∈ [ℓ] that ∥e𝑖 ∥ ≤

√︁
log

𝑐 (𝜆) + 𝜆 · 𝑠LWE. By

Lemma 2.6, for each 𝑖 ∈ [ℓ], ∥e𝑖 ∥ ≤
√︁
log

𝑐 (𝜆) + 𝜆 · 𝑠LWE with all but probability 2
− log𝑐 (𝜆)−𝜆

. By a union bound, this

occurs for all 𝑖 ∈ [ℓ] with all but probability 2
− log𝑐 (𝜆)−𝜆 · ℓ = 2

− log𝑐 (𝜆) (2−𝜆ℓ). Since ℓ = poly(𝜆), the claim holds. □

Claim 4.14. Suppose 𝐵round + 𝐵max
√︁
log

𝑐 (𝜆) + 𝜆𝑠LWE ≤ 𝑞/4. Then Pr[Hyb
6
(A) = 1] = Pr[Hyb

5
(A) = 1].

Proof. Consider a run of Hyb
4
(A) outputting 1. In particular, we know 𝑖′

𝑘
= 𝑖𝑘 and 𝑧′

𝑘
= 𝑧𝑘 for every 𝑘 ∈ [𝑁].

Consequently, for all 𝑖 ∈ [ℓ], the value ṽ𝑖 −
∑

𝑗∈[𝑁] 𝑧
′
𝑗𝜼𝑖′𝑗 computed by the Verify algorithm is indeed equal to v𝑖

where vT
𝑖 = sT𝑖A𝑖 + e𝑖 . Suppose for some 𝑖 ∈ 𝑆 and 𝑏 ∈ {0, 1}, ∥e𝑖 ∥ ≤

√︁
log

𝑐 (𝜆) + 𝜆𝑠LWE and Verify(𝑟 ∗, com, 𝑖, 𝑏, 𝝅 𝑖) = 1.

Then, the following conditions hold:

∥𝝅 𝑖 ∥ ≤ 𝐵max and A𝑖𝝅 𝑖 = c and vT
𝑖𝝅 𝑖 ∈

[
⌊𝑞/2⌋ 𝑏 − 𝐵round, ⌊𝑞/2⌋ 𝑏 + 𝐵round

]
.

Notice vT
𝑖𝝅 𝑖 = (sT𝑖A𝑖 +eT𝑖)𝝅 𝑖 = sT𝑖 (A𝑖𝝅 𝑖) +eT𝑖𝝅 𝑖 = sT𝑖 c+eT𝑖𝝅 𝑖 . Since ∥𝝅 𝑖 ∥ ≤ 𝐵max, then

��eT𝑖𝝅 𝑖

�� ≤ 𝐵max
√︁
log

𝑐 (𝜆) + 𝜆𝑠LWE ≤
𝑞/4 − 𝐵round, so

sT𝑖 c = vT
𝑖𝝅 𝑖 − eT𝑖𝝅 𝑖 ∈

[
⌊𝑞/2⌋ 𝑏 − 𝑞/4, ⌊𝑞/2⌋ 𝑏 + 𝑞/4

]
.

Consequently, 𝜌𝑖 = ⌊sT𝑖 c⌉ = 𝑏, and the claim follows. □

Claim 4.15. There exists a negligible function negl(𝜆) where��
Pr[Hyb

7
(A) = 1] − Pr[Hyb

6
(A) = 1]

�� ≤ 2
− log𝑐 (𝜆)negl(𝜆).

Proof. Follows by the same argument as the proof of Claim 4.13. □

Since 𝑡, 𝑞 are polynomials in 𝜆 and 𝑁 = 𝑂 (log3 𝜆), then, 𝑡−𝑁𝑞−𝑁 = 2
𝑂 (log4 𝜆)

and 𝑡𝑁𝑞𝑁 · 2− log𝑐 (𝜆) ≤ 2
−Ω (log𝑐 𝜆)

for

any 𝑐 > 4. By Claims 4.10 to 4.15, we conclude Pr[Hyb
7
(A) = 1] ≥ 2

−Ω (log𝑐 𝜆) (Pr[Hyb
1
(A) = 1] − negl(𝜆)) and the

theorem follows. □

4.1.3 Statistical Single-Bit Hiding

In this section, we show that Construction 4.1 satisfies statistical single-bit hiding (Definition 3.4). To argue this, we

first abstract out the main information-theoretic problem that we are interested in. Namely, we define a substring
min-entropy preservation game which the adversary must win in order to break single-bit hiding. At a high level,

the game states that if the challenger samples a uniform w r← {0, 1}𝑡 , then a random substring of w also has high

entropy even given some information about w. We give the formal definition below:

Definition 4.16 (Substring Min-Entropy Preservation). Let 𝑛, 𝑡, 𝑞 be lattice parameters 𝑘 be a number of samples.

For a bit 𝑏 ∈ {0, 1} and an adversary A, we define the following experiment ExpSMEP
𝑏

:

• On input the security parameter 1
𝜆
, the adversary outputs a matrix A ∈ Z𝑛×𝑡𝑞 and a vector v ∈ Z𝑡𝑞 .

• The challenger samples w r← {0, 1}𝑡 and a vector of indices 𝐼
r← [𝑡]𝑘 (with repetitions) where 𝐼 = (𝑖1, . . . , 𝑖𝑘).

The challenger samples z r← Z𝑘𝑞 . If 𝑏 = 0, the challenger computes 𝑢𝑏 = zTw[𝐼]. If 𝑏 = 1, the challenger samples

𝑢𝑏
r← Z𝑞 .

• The challenger gives the challenge (Aw, vTw, 𝐼 , z, 𝑢𝑏) to A. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the

output of the experiment.

20

For any adversary A, the advantage in the substring min-entropy preservation game is defined as

AdvSMEP
𝑛,𝑞,𝑡,𝑘

(A) =
���Pr [ExpSMEP

0
(A) = 1

]
− Pr

[
ExpSMEP

1
(A) = 1

] ���.
Lemma 4.17 (Min-Entropy Preservation Advantage). Let 𝑛, 𝑡, 𝑞 be lattice parameters such that 𝑡 ≥ (2𝑛 + 8) log𝑞 +
6 log

2 𝜆 + 10, where 𝜆 is the security parameter. Let 𝑘 ≥ 8 log
2 𝜆 log 𝑡 + 8 log𝑞 log 𝑡 be the number of samples. Then, for

all (possibly unbounded) adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

AdvSMEP
𝑛,𝑞,𝑡,𝑘

(A) = negl(𝜆).

Proof. Fix an unbounded adversary A. Without loss of generality, we can assume that A is deterministic. Define the

auxiliary view of the adversary as the random variable auxA := (A, v,Aw, vTw). Note that Aw ∈ Z𝑛𝑞 and vTw ∈ Z𝑞 .
Thus, the pair (Aw, vTw) can be described by a bit-string of length (𝑛 + 1) log𝑞. Additionally, observe that A, v are

chosen independent of w. Since w r← {0, 1}𝑡 , we know that H∞ (w) = 𝑡 . By Lemma 2.1 and using the fact that the

pair (A, v) is independent of w, we have that

H̃∞ (w | auxA) = H̃∞ (w | (Aw, vTw)) ≥ 𝑡 − (𝑛 + 1) log𝑞.

Now, we appeal to Lemma 2.3 with 𝑐 = log
2 𝜆 + log𝑞. To do so, we need to show that the following inequality holds:

H̃∞ (w | auxA) ≥ 𝑡 − (𝑛 + 1) log𝑞 ≥ 2

log
2 𝜆 + log𝑞

𝑘
𝑡 (1 + log 𝑡) + 3 log2 𝜆 + 3 log𝑞 + 5

We rewrite the last inequality as

𝑡

(
1 − 2

𝑘

(
log

2 𝜆 + log𝑞 + log2 𝜆 log 𝑡 + log𝑞 log 𝑡
))
≥ (𝑛 + 4) log𝑞 + 3 log2 𝜆 + 5 (4.1)

By taking 𝑘 ≥ 8(log2 𝜆 log 𝑡 + log𝑞 log 𝑡), we guarantee that

1 − 2(log2 𝜆 + log𝑞)
𝑘

− 2(log2 𝜆 log 𝑡 + log𝑞 log 𝑡)
𝑘

≥ 1

2

.

By taking 𝑡 ≥ (2𝑛 + 8) log𝑞 + 6 log2 𝜆 + 10, we guarantee that

𝑡

2

≥ (𝑛 + 4) log𝑞 + 3 log2 𝜆 + 5.

Thus, by Lemma 2.3, we get that H̃∞ (w[𝐼] | (auxA, 𝐼)) ≥ log
2 𝜆 + log𝑞. Finally, we can apply Lemma 2.2 to get that

the statistical distance between the following distribution is negl(𝜆):

(zTw[𝐼], auxA, z, 𝐼) :
w r← {0, 1}𝑡
𝐼

r← [𝑡]𝑘
z r← Z𝑡𝑞

 and

(𝑢, auxA, z, 𝐼) :
w r← {0, 1}𝑡
𝐼

r← [𝑡]𝑘
z r← Z𝑡𝑞
𝑢

r← Z𝑞

 .

These distributions correspond to the view of A in ExpSMEP
0

and ExpSMEP
1

, so the advantage of A in the substring

min-entropy preservation game is at most negl(𝜆) and the claim follows. □

Theorem 4.18 (Statistical Single-Bit Hiding). Suppose 𝑡 ≥ (2𝑛+8) log𝑞+6 log2 𝜆+10 and𝑘 ≥ 8 log
2 𝜆 log 𝑡+8 log𝑞 log 𝑡

and that ℓ is some polynomial in 𝜆. Suppose also that 𝐵round ≥ 𝑞/4−𝑞/(42ℓ) and 𝐵max ≥
√
𝑡ℓ𝑠LWE. Then Construction 4.1

satisfies statistical single-bit hiding.

Proof. We begin by defining a series of hybrids in order to show that the advantage of any unbounded adversary in

the single-bit hiding game is negligible. Fix an unbounded adversary A, and assume that A is deterministic without

loss of generality. For any 𝑑 ′ ∈ [𝜆], define the hybrid experiment Hyb𝑑 ′ as follows:

21

1. On input (1𝜆, 1ℓ), the adversary A sends a public-coin 𝑟 ∈ {0, 1}ℓpub and an index 𝑖∗ ∈ [ℓ] to the challenger.

2. The challenger then proceeds as follows:

(a) Let (crssamp, ṽ1, . . . , ṽℓ) be the tuple associated with the public-coin 𝑟 . Then, the challenger expands

(A1, . . . ,Aℓ , tdsamp) = Expand(1𝜆LWE , 1ℓ , crssamp).
(b) Sample 𝑖1, . . . , 𝑖𝑁

r← [𝑡] and 𝑧1, . . . , 𝑧𝑁 r← Z𝑞 , and compute v𝑖 = ṽ𝑖 +
∑

𝑗∈[𝑁] 𝑧 𝑗𝜼𝑖 𝑗 .

(c) Next, for 𝑑 ∈ [𝜆], the challenger proceeds as follows:
• Sample w𝑑,𝑖

r← {0, 1}𝑡 and compute y𝑑,𝑖 = A𝑖w𝑑,𝑖 for all 𝑖 ∈ [ℓ].
• Sample (𝝅 ′

𝑑,1
, . . . , 𝝅 ′

𝑑,ℓ
, c𝑑) ← SampleMultPre(tdsamp, y𝑑,1, . . . , y𝑑,ℓ).

• For each 𝑖 ∈ [ℓ], set 𝝅𝑑,𝑖 = 𝝅 ′
𝑑,𝑖
+w𝑑,𝑖

• For each 𝑖 ≠ 𝑖∗, set 𝑢𝑑,𝑖 = vT
𝑖𝝅𝑑,𝑖 .

• If 𝑑 > 𝑑 ′, set 𝑢𝑑,𝑖∗ = vT
𝑖∗𝝅𝑑,𝑖∗ . Otherwise if 𝑑 ≤ 𝑑 ′ then sample 𝑢𝑑,𝑖∗

r← Z𝑞 .
• For each 𝑖 ∈ [ℓ], if ∥𝝅𝑑,𝑖 ∥ > 𝐵max then set 𝜌𝑑,𝑖 = ⊥. Otherwise, set 𝜌𝑑,𝑖 as follows:

𝜌𝑑 ′,𝑖 =

0 𝑢𝑑,𝑖 ∈ [−𝐵round, 𝐵round]
1 𝑢𝑑,𝑖 ∈

[
⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round

]
⊥ otherwise.

(4.2)

(d) The challenger constructs the challenge as follows:

• If for all 𝑑 ∈ [𝜆], there exists an index 𝑖 ∈ [ℓ] where 𝜌𝑑,𝑖 = ⊥, then the challenger sets c = ⊥ and

𝜌𝑖 = 0 and 𝝅 𝑖 = ⊥ for all 𝑖 ∈ [ℓ].
• Otherwise, let 𝑑∗ ∈ [𝜆] be the first index where 𝜌𝑑∗,𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ]. Then the challenger sets

c = c𝑑∗ , and 𝜌𝑖 = 𝜌𝑑∗,𝑖 and 𝝅 𝑖 = 𝝅𝑑∗,𝑖 for all 𝑖 ∈ [ℓ].
(e) The challenger sends com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c) and (𝝅 𝑖 , 𝜌𝑖)𝑖≠𝑖∗ as well as 𝛽 = 𝜌𝑖∗ to the adversary.

3. The adversary outputs a bit 𝑏′, which is the output of the experiment.

Observe that Hyb
0
is identical to the single-bit hiding game with 𝑏 = 0. On the other hand, Hyb𝜆 is almost identical

to the single-bit hiding game with 𝑏 = 1, but not exactly. We address this issue in the following section. For now,

we prove that the adversary has negligible probability of distinguishing any two consecutive hybrids:

Lemma 4.19. Suppose 𝑡 ≥ (2𝑛 + 12) log𝑞 + 20𝜆 + 6 and 𝑘 ≥ 8 log
2 𝜆 log 𝑡 + 8 log𝑞 log 𝑡 . For all polynomials ℓ = ℓ (𝜆),

and all (possibly unbounded) adversaries A, there exists a negligible function negl(𝜆) such that for all 𝑑 ′ ∈ [𝜆]:��
Pr[Hyb𝑑 ′ (A) = 1] − Pr[Hyb𝑑 ′−1 (A) = 1]

�� ≤ negl(𝜆).

Proof. Let A be an unbounded adversary for the single-bit hiding game and let ℓ (𝜆) be a polynomial. We construct

an algorithm B for the substring min-entropy preservation game in Definition 4.16 as follows:

1. On input a security parameter 1
𝜆
, algorithm B starts by sampling 𝑑∗ r← [ℓ] and runs A on (1𝜆, 1ℓ) to gets a

public-coin 𝑟 ∈ {0, 1}ℓpub and an index 𝑖∗ ∈ [ℓ].

2. Algorithm B computes the tuple (crssamp, ṽ1, . . . , ṽℓ) associated with the public-coin 𝑟 . Then, it expands the

matrices (A1, . . . ,Aℓ , tdsamp) ← Expand(1𝜆LWE , 1ℓ , crssamp), and submits (A𝑖∗ , ṽ𝑖∗) to the challenger.

3. The challenger responds with y𝑑∗,𝑖∗ ∈ Z𝑛𝑞 , 𝛼 ∈ Z𝑞 , 𝐼 ∈ [𝑡]𝑁 , z ∈ Z𝑁𝑞 and a scalar 𝑢 ∈ Z𝑞 .

4. Algorithm B sets v𝑖 = ṽ𝑖 +
∑

𝑗∈[𝑁] 𝑧 𝑗𝜼𝑖 𝑗 , where 𝐼 = (𝑖1, . . . , 𝑖𝑁).

5. For all 𝑑 ≠ 𝑑∗, algorithm B samples c𝑑 , 𝜌𝑑,1, . . . , 𝜌𝑑,ℓ and 𝝅𝑑,1, . . . , 𝝅𝑑,ℓ according to the specification of Hyb𝑑∗ .

6. For 𝑑 = 𝑑∗, algorithm B does the following:

22

(a) For all 𝑖 ≠ 𝑖∗, it samples w𝑑∗,𝑖
r← {0, 1}𝑡 and computes y𝑑∗,𝑖 = A𝑖w𝑑∗,𝑖 .

(b) It samples (𝝅 ′
𝑑∗,1, . . . , 𝝅

′
𝑑∗,ℓ , c𝑑∗) ← SampleMultPre(tdsamp, y𝑑∗,1, . . . , y𝑑∗,ℓ).

(c) For each 𝑖 ≠ 𝑖∗, it sets 𝝅𝑑∗,𝑖 = 𝝅 ′
𝑑∗,𝑖 +w𝑑∗,𝑖 and 𝑢𝑑∗,𝑖 = vT

𝑖𝝅𝑑∗,𝑖 .

(d) It computes 𝑢𝑑∗,𝑖∗ = vT
𝑖∗𝝅
′
𝑑∗,𝑖∗ + 𝑢 + 𝛼 .

(e) Finally, for all 𝑖 ∈ [ℓ], it computes 𝜌𝑑∗,𝑖 from 𝑢𝑑∗,𝑖 according to Eq. (4.2).

Finally, algorithm B sets c, 𝝅1, . . . , 𝝅 ℓ , 𝜌1, . . . , 𝜌ℓ using the same procedure as in Hyb𝑑 ′ , and sends the commit-

ment com = (𝑖1, . . . , 𝑖𝑁 , 𝑧1, . . . , 𝑧𝑁 , c), the openings (𝝅 𝑖 , 𝜌𝑖)𝑖≠𝑖∗ , and the challenge bit 𝜌𝑖∗ to the adversary.

Fix some 𝑑 ′ ∈ [𝜆] and let 𝜀 = | Pr[Hyb𝑑 ′ (A) = 1] −Pr[Hyb𝑑 ′−1 (A) = 1] |. Since 𝑑∗ is sampled uniformly, then 𝑑 ′ = 𝑑∗

with probability 1/ℓ . Assume this event happens. Note that since 𝑧1, . . . , 𝑧𝑁
r← Z𝑞 and 𝑖1, . . . , 𝑖𝑁

r← [𝑡], then for all

𝑑 ≠ 𝑑 ′, algorithm B simulates c𝑑 , 𝜌𝑑,1, . . . , 𝜌𝑑,ℓ and 𝝅𝑑,1, . . . , 𝝅𝑑,ℓ according to the specification of Hyb𝑑 ′ and Hyb𝑑 ′−1.
Moreover, for all 𝑖 ≠ 𝑖∗, we have that 𝑦𝑑 ′,𝑖 are also simulated according to the specification of Hyb𝑑 ′ and Hyb𝑑 ′−1. In
addition, the challenger of ExpSMEP

𝑏
(from Definition 4.16) samples w𝑑 ′,𝑖∗

r← {0, 1}𝑡 and sets y𝑑 ′,𝑖∗ = A𝑖∗w𝑑 ′,𝑖∗ . This

implies that (𝝅 ′
𝑑 ′,1, . . . , 𝝅

′
𝑑 ′,ℓ , c𝑑 ′) is also sampled according to the specification of Hyb𝑑 ′ and Hyb𝑑 ′−1. Now we do

a case analysis on the bit 𝑏 in the definition of the ExpSMEP
𝑏

experiment:

• If 𝑏 = 0, then 𝑢 = zTw𝑑 ′,𝑖∗ [𝐼] (where z r← Z𝑁𝑞 is sampled by the challenger). Recall also that 𝛼 = ṽT
𝑖∗w𝑑 ′,𝑖∗ . Hence

𝑢+𝛼 = zTw𝑑 ′,𝑖∗ [𝐼]+ṽT
𝑖∗w𝑑 ′,𝑖∗ = vT

𝑖∗w𝑑 ′,𝑖∗ , where the last equality follows from the fact that v𝑖∗ = ṽ𝑖∗+
∑

𝑗∈[𝑁] 𝑧 𝑗𝜼𝑖 𝑗 .

In total, 𝑢𝑑 ′,𝑖∗ = vT
𝑖∗𝝅
′
𝑑 ′,𝑖∗ + 𝑢 + 𝛼 = vT

𝑖∗ (𝝅 ′𝑖∗ + w𝑑 ′,𝑖∗). Therefore 𝑢𝑑,𝑖∗ in this case is sampled according to the

specification of Hyb𝑑 ′−1.

• If 𝑏 = 1, then 𝑢
r← Z𝑞 , then 𝑢𝑑,𝑖∗ is a uniform random variable over Z𝑞 and is thus sampled according to the

specification of Hyb𝑑 ′ .

From here, we conclude that the advantage of B in breaking the game from Definition 4.16 is at least 𝜀/ℓ and therefore
𝜀 is negligible by Lemma 4.17. □

Handling rejection sampling. We would like to say now that Hyb𝜆 is identical to the single-bit hiding game with

𝑏 = 1. However, the rejection sampling introduces a bad case: if the rejection sampling procedure fails in Hyb𝜆 , then
the challenger sets 𝛽 = 0. Whereas if the rejection sampling fails in the single-bit hiding game with 𝑏 = 1, then the chal-

lenger would still set 𝛽
r← {0, 1}. This is natural, as we cannot expect the construction to be hiding when the rejection

sampling fails (causingGenBits to output 𝝆 = 0). To address this, we show that each iteration of the rejection sampling

fails with constant probability (e.g., at most 1/5). After 𝜆 independent attempts, the probability that every iteration

fails is then negligible. This suffice to show that Hyb𝜆 is negligibly close to the single-bit hiding game with 𝑏 = 1.

Lemma 4.20. Fix any 𝑑 ′ ∈ [𝜆] and any 𝑖′ ∈ [ℓ]. Let 𝝅𝑑 ′,𝑖′ be distributed as in Hyb𝜆 . If 𝐵max ≥
√
𝑡ℓ𝑠LWE and Πsamp

satisfies the preimage norm bound property, then

Pr

[𝝅𝑑 ′,𝑖′
 > 𝐵max

]
≤ 1

10ℓ
.

Proof. This follows immediately from the preimage norm bound property (Definition 2.8) and the choice of 𝐵max. □

Lemma 4.21. Suppose 𝑡 ≥ (2𝑛 + 12) log𝑞 + 20𝜆 + 6 and 𝑘 ≥ 8 log
2 𝜆 log 𝑡 + 8 log𝑞 log 𝑡 . Fix any 𝑑 ′ ∈ [𝜆] and any

𝑖′ ∈ [ℓ]. Let 𝑢𝑑 ′,𝑖′ be distributed as in Hyb𝜆 . If 𝐵round ≥ 𝑞/4 − 𝑞/(42ℓ) then

Pr

[
𝑢𝑑 ′,𝑖′ ∉ [−𝐵round, 𝐵round] ∧ 𝑢𝑑 ′,𝑖′ ∉

[
⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round

]]
≤ 1

10ℓ
. (4.3)

Proof. Fix 𝑑 ′ ∈ [𝜆] and 𝑖′ ∈ [ℓ]. Let 𝜀 be the probability from Eq. (4.3). If 𝑖′ = 𝑖∗ then 𝑢𝑑,𝑖∗ is sampled uniformly from

Z𝑞 , so

𝜀 = 1 − 4𝐵round

𝑞
≤ 1

10ℓ

for our choice of 𝐵round. Now suppose 𝑖′ ≠ 𝑖∗. We construct an adversaryB for the game fromDefinition 4.16 as follows:

23

1. On input a security parameter 1
𝜆
, algorithm B runs A on (1𝜆, 1ℓ) and gets a public-coin 𝑟 ∈ {0, 1}ℓpub and an

index 𝑖∗ ∈ [ℓ].

2. Algorithm B computes the tuple (crssamp, ṽ1, . . . , ṽℓ) associated with the public-coin 𝑟 . Then, it expands the

matrices (A1, . . . ,Aℓ , tdsamp) ← Expand(1𝜆LWE , 1ℓ , crssamp) and submits (A𝑖∗ , ṽ𝑖∗) to the challenger.

3. The challenger responds with 𝑦𝑑 ′,𝑖′ ∈ Z𝑛𝑞 , 𝛼 ∈ Z𝑞 , 𝐼 ∈ [𝑡]𝑁 , z ∈ Z𝑁𝑞 and a scalar 𝑢 ∈ Z𝑞 .

4. Algorithm B now simulates the challenger of Hyb𝜆 in order to compute 𝑢𝑑 ′,𝑖′ :

(a) For all 𝑖 ≠ 𝑖′, it samples w𝑑 ′,𝑖
r← {0, 1}𝑡 and computes y𝑑 ′,𝑖 = A𝑖w𝑑 ′,𝑖 .

(b) It samples (𝝅 ′
𝑑 ′,1, . . . , 𝝅

′
𝑑 ′,ℓ , c𝑑 ′,𝑖) ← SampleMultPre(tdsamp, y𝑑 ′,1, . . . , y𝑑 ′,ℓ).

(c) It sets 𝑢𝑑 ′,𝑖′ = vT
𝑖′𝝅
′
𝑑 ′,𝑖 + 𝑢 + 𝛼 .

5. It outputs 1 if 𝑢𝑑 ′,𝑖′ ∉ [−𝐵round, 𝐵round] or 𝑢𝑑 ′,𝑖′ ∉
[
⌊𝑞/2⌋ − 𝐵round, ⌊𝑞/2⌋ + 𝐵round

]
and outputs 0 otherwise.

We analyze what happens for both values of the bit 𝑏 in the experiment ExpSMEP
𝑏

:

• If 𝑏 = 0, then 𝑢 = zTw𝑑 ′,𝑖′ [𝐼] for somew𝑑 ′,𝑖,
r← {0, 1}𝑡 and thus, 𝑢𝑑 ′,𝑖′ is sampled according to the specification of

Hyb𝜆 (by the same argument in the proof of Lemma 4.19). In this case, algorithm B outputs 1 with probability 𝜀.

• If 𝑏 = 1, then 𝑢
r← Z𝑞 and thus, 𝑢𝑑 ′,𝑖′ is uniform in the view of B. In this case, algorithm B outputs 1 with

probability 1 − 4𝐵round
𝑞

.

By Lemma 4.17, the probability that B outputs 1 is negligibly close. Thus,

𝜀 ≤ 1 − 4𝐵round

𝑞
+ negl(𝜆).

Since ℓ is a polynomial and by our choice of 𝐵round, we have

𝜀 ≤ 1 − 4𝐵round

𝑞
+ negl(𝜆) ≤ 4

42ℓ
+ negl(𝜆) ≤ 1

10ℓ

and the claim follows. □

Corollary 4.22. Suppose 𝑡 ≥ (2𝑛 + 12) log𝑞 + 20𝜆 + 6 and 𝑘 ≥ 8 log
2 𝜆 log 𝑡 + 8 log𝑞 log 𝑡 and that ℓ is some polynomial

in 𝜆. Suppose also that 𝐵round ≥ 𝑞/4 − 𝑞/(42ℓ) and 𝐵max ≥
√
𝑡ℓ𝑠LWE. Then the rejection sampling procedure used Hyb𝜆

succeeds with overwhelming probability.

Proof. By Lemmas 4.20 and 4.21 and a union bound over all 𝑖 ∈ [ℓ], each iteration in the rejection sampling fails

with probability at most 1/5. Since we have 𝜆 independent iterations, with all but negligible probability, at least one

iteration succeeds. □

Proof of Theorem 4.18. Fix an unbounded adversary A for the single-bit hiding game. By Lemma 4.19 and a

standard hybrid argument, ��
Pr[Hyb𝜆 (A) = 1] − Pr[Hyb

0
(A) = 1]

�� = negl(𝜆).

As we observed before, Hyb
0
is just the single-bit hiding game with 𝑏 = 0. On the other hand, conditioned on the

rejection sampling procedure not failing, Hyb𝜆 is identical the single-bit hiding game with 𝑏 = 1. By Corollary 4.22,

we know that the rejection sampling fails with negligible probability, therefore Hyb𝜆 is statistically close to the

single-bit hiding game with 𝑏 = 1. In total, the adversary A has only a negligible advantage in the single-bit hiding

game and the theorem follows. □

24

4.2 Parameter Instantiation
Let 𝜆 be a security parameter and ℓ be a length parameter. We now provide one possible instantiation of the parameters

in Construction 4.1 to satisfy the requirements of Theorems 4.2, 4.4, 4.9 and 4.18. In the following, we assume that

ℓ is some polynomial in 𝜆, so log ℓ = 𝑂 (log 𝜆).

• We set 𝑠LWE = 𝜆𝛿 for some constant 𝛿 > 0 (to be determined later).

• We instantiate Πsamp using Theorem 2.10 with parameters 𝑛 = 𝜆 and 𝑞 = 𝜆2 · ℓ2 · 𝑠2LWE = 𝜆2+2𝛿 ℓ2 = poly(𝜆).
With this setting of parameter, we have that 𝑡 = 𝜆 · polylog(𝜆).

• Next, we set 𝑁 = 8 log
2 𝜆 log 𝑡 + 8 log𝑞 log 𝑡 = 𝑂 (log3 𝜆).

• We set the bounds to be 𝐵round (𝜆, ℓ) = 𝑞/4 − 𝑞/(42ℓ) = 𝜆2+𝛿 ℓ2/4 − 𝜆2+𝛿 ℓ/42 and 𝐵max (𝜆, ℓ) =
√
𝑡ℓ𝑠LWE =√

ℓ𝜆1/2+𝛿 · polylog(𝜆, ℓ).

• Finally, we choose 𝛿 > 0 (recall that 𝑠LWE = 𝜆𝛿) so that the 𝑐-quasi-polynomial LWE𝑛,𝑚,𝑞,𝑠LWE assumption holds

for some constant 𝑐 > 4.

We briefly verify that there parameters satisfy the necessary requirements. We start with Theorem 4.18:

• Note that the setting of 𝑡 by Theorem 2.10 gives 𝑡 > 3𝜆 log𝑞 which satisfies the requirement. In addition,

𝑁, 𝐵round, 𝐵max were set to satisfy Theorem 4.18.

We now consider the conditions for Theorem 4.9:

• We require 𝐵round + 𝐵max
√︁
log

𝑐 (𝜆) + 𝜆 · 𝑠LWE ≤ 𝑞/4. That is, we want to show 𝐵max
√︁
log

𝑐 (𝜆) + 𝜆 · 𝑠LWE ≤
𝑞/(42ℓ) = 𝜆2+2𝛿 · ℓ/42. This exactly follows since 𝐵max (𝜆, ℓ) =

√
ℓ𝜆1/2+𝛿 · polylog(𝜆, ℓ).

• Additionally, we have 𝑁 = 𝑂 (log3 𝜆).

Together with Theorem 3.2, we obtain a ZAP for NP from quasi-polynomial hardness of LWE with a polynomial

modulus-to-noise ratio. This yields Theorem 1.1.

Acknowledgments
We would like to thank Elahe Sadeghi for useful discussions. Brent Waters is supported by NSF CNS-1908611,

CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2140975, CNS-2318701, a

Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in the

bounded-retrieval model. In CRYPTO, 2009.

[BCD
+
24] Pedro Branco, Arka Rai Choudhuri, Nico Döttling, Abhishek Jain, Giulio Malavolta, and Akshayaram

Srinivasan. Black-box non-interactive zero knowledge from vector trapdoor hash. IACR Cryptol. ePrint
Arch., 2024.

[BFJ
+
20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit Sahai. Statistical

ZAP arguments. In EUROCRYPT, 2020.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications

(extended abstract). In STOC, 1988.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor hash via correlation

intractability for approximable relations. In CRYPTO, 2020.

25

[BKP
+
24] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron D. Rothblum, and Prashant Nalini Vasudevan. Batch

proofs are statistically hiding. In STOC, 2024.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box zero knowledge. In

FOCS, 2003.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from

indistinguishability obfuscation. In TCC, 2015.

[BWW24] Eli Bradley, Brent Waters, and David J. Wu. Batch arguments to NIZKs from one-way functions. In

TCC, 2024.

[BY92] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of trapdoor permutations. In

CRYPTO, 1992.

[CCH
+
19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and

Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and correlation intractability

from strong kdm-secure encryption. In EUROCRYPT, 2018.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In

EUROCRYPT, 2003.

[CJJQ23] Geoffroy Couteau, Abhishek Jain, Zhengzhong Jin, and Willy Quach. A note on non-interactive

zero-knowledge from CDH. In CRYPTO, 2023.

[CKSU21] Geoffroy Couteau, Shuichi Katsumata, Elahe Sadeghi, and Bogdan Ursu. Statistical ZAPs from

group-based assumptions. In TCC, 2021.

[CKU20] Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-knowledge in pairing-free

groups from weaker assumptions. In EUROCRYPT, 2020.

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In TCC, 2018.

[CW23] Jeffrey Champion and David J. Wu. Non-interactive zero-knowledge from non-interactive batch

arguments. In CRYPTO, 2023.

[DJJ24] Quang Dao, Aayush Jain, and Zhengzhong Jin. Non-interactive zero-knowledge from LPN and MQ.

In CRYPTO, 2024.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, 2000.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1), 2008.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on

a single random string (extended abstract). In FOCS, 1990.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In STOC, 1990.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical Zaps and new oblivious

transfer protocols. In EUROCRYPT, 2020.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof-systems (extended abstract). In STOC, 1985.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. J. Cryptol.,
7(1), 1994.

26

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new techniques for NIZK. In

CRYPTO, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In

EUROCRYPT, 2006.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J. Cryptol., 26(3), 2013.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM J. Comput., 28(4), 1999.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH. In

EUROCRYPT, 2021.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability (and

more) in two messages. In EUROCRYPT, 2018.

[KMY23] Fuyuki Kitagawa, Takahiro Matsuda, and Takashi Yamakawa. NIZK from snargs. J. Cryptol., 36(2), 2023.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:

Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[LVW19] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. 2-message publicly verifiable WI from

(subexponential) LWE. IACR Cryptol. ePrint Arch., 2019.

[LVW20] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Statistical ZAPR arguments from bilinear

maps. In EUROCRYPT, 2020.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In

EUROCRYPT, 2012.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1), 1996.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with

errors. In CRYPTO, 2019.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier nizks for all NP from

CDH. In EUROCRYPT, 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and

more. In STOC, 2014.

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM J. Comput., 36(4), 2006.

[Wat24] Brent Waters. A new approach for non-interactive zero-knowledge from learning with errors. In STOC,
2024.

[WWW24] Brent Waters, Hoeteck Wee, and David J. Wu. New techniques for preimage sampling: Improved NIZKs

and more from LWE. Cryptology ePrint Archive, 2024.

27

	Introduction
	Technical Overview

	Preliminaries
	Lattice Preliminaries

	Interactive Hidden-Bits Generator
	Constructing an Interactive Hidden-Bits Generator from Lattices
	Security Analysis of cons:ihbg
	Mode Indistinguishability
	Extraction
	Statistical Single-Bit Hiding

	Parameter Instantiation

