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Abstract

This paper addresses verifiable consensus of pre-processed circuit polynomials for succinct
non-interactive argument of knowledge (SNARK). More specifically, we focus on parts of circuits,
referred to as wire maps, which may change based on program inputs or statements being argued.
Preparing commitments to wire maps in advance is essential for certain SNARK protocols to
maintain their succinctness, but it can be costly. SNARK verifiers can alternatively consider
receiving wire maps from an untrusted parties.

We propose a consensus protocol that reaches consensus on wire maps using a majority
rule. The protocol can operate on a distributed, irreversible, and transparent server, such as a
blockchain. Our analysis shows that while the protocol requires over 50% honest participants
to remain robust against collusive attacks, it enables consensus on wire maps with a low and
fixed verification complexity per communication, even in adversarial settings. The protocol
guarantees consensus completion within a time frame ranging from a few hours to several days,
depending on the wire map degree and the honest participant proportion.

Technically, our protocol leverages a directed acyclic graph (DAG) structure to represent
conflicting wire maps among the untrusted deliverers. Wire maps are decomposed into low-
degree polynomials, forming vertices and edges of this DAG. The consensus participants, or
deliverers, collaboratively manage this DAG by submitting edges to branches they support.
The protocol then returns a commitment to the wire map that is written in the first fully grown
branch. The protocol’s computational efficiency is derived from an interactive commit-prove-
verify scheme that enables efficient validation of submitted edges.

Our analysis implies that the practical provides a practical solution for achieving secure con-
sensus on SNARK wire maps in environments with dynamic proportion of honest participants.
Additionally, we introduce a tunable parameter N that allows the protocol to minimize cost
and time to consensus while maintaining a desired level of security.
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1 Introduction

Succinct non-interactive argument of knowledge (SNARK) protocols allow provers to generate a
proof or argument of a statement. Verifiers, the counterpart on the protocol, are convinced of
correctness of the statement, if and only if the proof passes a verification algorithm. The proof is
succinct, meaning that its size and the complexity of verification remain constant independent of
the computation effort required to deduce the statement.

SNARK protocols can deal with any NP statements; however, they require a pre-compiler to
construct a circuit, which attests validity of a specific statement in polynomial time in a deterministic
way. Considering a program that takes an input and returns an output, a statement can be a tuple
of (the program, an input, an output), where the input and output, combined, are referred to as an
instance. For non-deterministic programs, a circuit can be defined only when specific input(s) are
provided.

As the complexity of the pre-compiler is asymptotically similar to that of running the program,
SNARK verification achieves succinctness only when the circuit is pre-processed and readily acces-
sible to verifiers. One practical approach to maintain this succinctness is to involve a third party
to deliver the circuit. However, this requires careful consideration; to avoid relying on trust in the
third party, circuit delivery should be designed to incorporate significant time delays, which mitigate
potential security risks.

In this paper, we propose a protocol that enables network participants to deliver a circuit to
verifiers through consensus. Although our protocol relies on the assumption that over 50% of par-
ticipants are honest, it remains both secure and efficient. Consensus can typically be reached within
a few hours to a few days, depending on the circuit’s degree of complexity.
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1.1 SNARK definition

We define a SNARK protocol that consists of four algorithms: CompileP, CompileNP, Prove, and
Verify, as follows:

• CompileP: It takes as input a pre-defined set of unit operations and returns a library K of
subcircuits, each corresponding to the unit operations, respectively, where

– the unit operations can vary from elementary operations such as multiplication or addition
gates to complex but deterministic modules such as MUX-based ALU or cryptographic
hash functions.

• CompileNP: It takes as input a program P with input in and the subcircuit library K and
generates a wire map S along with an instance ϕ and a witness ν, where

– a wire map S contains connectivity between interface wires of the library subcircuits as
a permutation, encoded in a polynomial.

– There exist a deterministic linear map DeriveS(K) 7→ C for each wire map S. Here C is
a linear combination of the elements in K such that

(ϕ = (in, out)) ∧ (P (in) = out) ⇐⇒ C(ϕ, ν) = 1.

– GivenK, CompileNP is a subroutine of a relation generator that generates a binary relation
R such that, for a finite field F and a statement length l,

R = {(ϕ, π) ∈ Fl : C(ϕ, π) = 1}.

• ProveSNARK: It takes as input srs, K, S, ϕ, and ν and generates a proof π, where

– a structured reference string srs can be a string of random encoding of monomial evalu-
ations provided by an Oracle.

• VerifySNARK: It takes as input srs, L, s, ϕ, and π and either accepts or rejects π, where

– L is a set of commitments to the library subcircuits in K, and
– s is a commitment to the wire map S.

1.1.1 SNARK examples

• If K contains only a single element and S is identity, Groth16[1] matches our SNARK definition.

• If K only consists of addition and multiplication gates and their linear combinations (custom
gates), PlonK[2] fits our SNARK definition.

• IfK varies from elementary gates to complex but deterministic modules, Tokamak zk-SNARK[3]
fits our SNARK definition.
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1.2 Security and efficiency of SNARK

According to SNARK theory, informally, if π is accepted by VerifySNARK, then the prover who
generated π, regardless of the algorithm used, has knowledge of a pair (ϕ, ν) ∈ R with overwhelming
probability. Furthermore, SNARK can provide an efficient verifiable computation due to succinct
verification properties:

• The proof length is O(1),

• proof generation requires O(|P | log2 |P |) time, and

• proof verification takes O(|ϕ|) time.

However, this security and efficiency are only achievable under an assumption that the verifier
running VerifySNARK has access to honestly generated commitments L and s, corresponding to the
library subcircuits and a wire map, respectively.

1.3 Paper outline

1.3.1 Problem statement

As mentioned above, the SNARK verification algorithm VerifySNARK relies on commitments to the
library subcircuits L and (a commitment to) a wire map s as auxiliary inputs, in addition to the
primary inputs an instance ϕ and a proof π. The security and efficiency of the SNARK are guaranteed
only if L and s are delivered honestly. However, ensuring reliable delivery of these commitments is
not in the scope of SNARK protocols.

Perfect reliability for both L and s can be achieved only if they are reproduced inside VerifySNARK,
which compromises the succinctness of SNARKs. Fortunately, for more reliable delivery of L, re-
searchers have developed multi-party computation (MPC) [4–6]. While an MPC ceremony typically
takes several weeks to a month and involves considerable verification complexity, these costs are
practically acceptable, as L is independent of specific programs and can be reused for multiple
SNARK verifications following a single ceremony.

The primary challenge, however, lies in reliably delivering the wire map s, which depends on the
specific program and its input. Repeating such high costs for every program input is impractical
and not a feasible solution in most cases.

1.3.2 Contribution

In this paper, we propose a protocol that reaches a consensus on s among network participants based
on a majority rule. Although our protocol requires more than 50% of participants to be honest, we
show that our protocol is efficient in both computational and communication complexities, with a
guarantee of consensus completion within a few hours to several days, depending on the degree of
the wire map and the honest portion.

Specifically, lettingN be a parameter for the minimum number of votes required from participants
to reach a consensus, the time required for consensus and the overall communication cost for the
entire process are O(N). We also show that increasing N reduces the reliance on the honest portion
for security. For example, when all malicious participants collaborate and collude, by making N
sufficiently large, we can make it unlikely that a malicious group will win the consensus even with a
low honest portion slightly greater than 50%. In other words, a larger N provides greater security
at the cost of a longer consensus duration and increased communication complexity.
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Furthermore, our protocol incurs only a small verification complexity for each participant. Let-
ting D be the degree of the wire map being agreed upon, each participant needs to compute O(D)
multiplications in a field while performing only O(1) exponentiations in a multiplicative group (Table
1). This reduced complexity is a strength of our protocol compared to traditional MPC protocols,
allowing it to be deployed on cost-sensitive networks such as a blockchain.

1.3.3 Technical overview

In Section 2, we will define an algebraic decomposition of polynomials, called accumulative decom-
position. Given a set X of any D distinct evaluation points, this decomposes a polynomial p(X)
of degree D into N contributions {ci(X)}N−1

i=0 , each being a polynomial of degree ⌈D/N⌉. Recon-
struction can be done by dividing X into N accumulative subsets {Xi}N−1

i=0 , where Xi ⊂ Xi+1 for
i = 0, · · · , N − 2 and XN−1 = X . By defining vanishing polynomials tXi , each of which vanishes on
Xi, the polynomial p can be reconstructed by

p(X) =

N−1∑
i=1

ci(X)tXi−1
(X) + c0(X). (1)

Considering the cases where multiple polynomials of degree D are decomposed by the accumu-
lative decomposition, we observe that the decomposition results can be placed on a directed acyclic
graph (DAG). Figure 1 illustrates a DAG. Simply put, a tuple vi = (Xi, ci, tXi

) can form a vertex.
A pair of vertices (vi,vj) can form an edge only if Xi ⊂ Xj . We can reconstruct a polynomial from a
branch of N consecutive edges, e.g., (v0,v1, · · · ,vN−1), by computing (1). As a result, each branch
of length N represents a polynomial of degree D.

Recall our main problem in which a number of network participants attept to deliver a com-
mitment to a wire map to the SNARK verifier. Under an untrusted environment, there can be
conflicts among wire maps during the delivery. The protocol we will propose in Section 3 is to solve
this conflict by allowing the participants to collaboratively manage a DAG. When a new consensus
session begins, the DAG is initialized as an empty graph. As the session proceeds, the participants
can vote on a wire map by submitting an edge to extend an existing branch or a vertex to propose
a new branch so that branches on the DAG grow. The protocol ends when the first branch that
reaches a target height is found, at which point the commitment to the wire map represented by
that branch is returned. Consequently, the wire map that that first receives N votes is chosen and
delivered to the SNARK verifier.

To reduce communication complexity, the protocol utilizes a representative selection algorithm
that periodically selects a contributor from among the participants. Each contributor is permitted
to submit a single vote. Assuming that the selection process is uniform, the resulting wire map can
be expected to receive the support of the largest number of participants.

To reduce computational complexity of the protocol’s online algorithms, we carefully separate the
whole procedure of voting into two parts, computing a vote and validating a vote. Vote computation
is run offline by a contributor that includes running the selection algorithm, choosing a branch to vote
for, computing a new edge, and generating witnesses and proofs for the validity of the contributor
selection and the edge. A vote is then validated on a server through a commit-prove-verify interactive
scheme under the random oracle model, based on the KZG commitment scheme[7]. We have also
optimized the scheme with techniques introduced in [2].

1.4 Notation and assumption

• Given a security parameter λ, we use a bilinear group (F,G1,G2,GT , e), where
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– F is a finite field,

– G1 is an additive group defined over F,
– G2 and GT are additive and multiplicative groups defined over an extension of F, respec-

tively, and

– e is a bilinear map defined as e : G1 ×G2 → GT .

– Letting g and h be the generators of G1 and G2, respectively, for x ∈ F, we write [x]1 = xg
and [x]2 = xh.

• Fd[X] denotes a ring of polynomials of degree d defined over F.

– similarly, F≤d[X] and F<d[X] denote rings of polynomials of degree at most d and of
degree less than d, respectively.

• Given f ∈ Fd−1[X] and a set X = (x0, · · · , xn−1) of n ≤ d evaluation points, we write
f̃X ∈ Fn−1[X] as the Lagrange interpolation based on a data set {(x, f(x))}x∈X , which is
calculated by

f̃X (X) =

l−1∑
i=0

f(xi)

l−1∏
k=0,k ̸=i

(X − xk)

(xi − xk)
.

– It is straightforward to see that if n = d, f̃X (X) = f(X).

– Analogously, for n = 0 or X = ∅, we write f̃∅(X) := 0.

• We assume that for some Dp ∈ F, all protocol entities are given srs defined as, for τ ∈ F,

srs := ([τ ]1, [τ
2]1, · · · , [τDp−1]1, [τ ]2, [τ

Dp ]2).

2 Polynomial analysis

Motivated by polynomial multipoint evaluation in [8, 9], we introduce the accumulative decomposi-
tion of polynomials and subsequently define a directed acyclic graph (DAG) constructed based on
this decomposition.

2.1 Accumulative decomposition of a polynomial

Definition 1. Let Dp, Dc ∈ F be parameters such that Dc | Dp. Consider a polynomial f ∈
FDp−1[X]. Define N := Dp/Dc. Let (x0, x1, · · · , xDp−1) ∈ FDp be a sequence of evaluation points
in any order. Accumulative decomposition of a polynomial f(X) is expressed by

f(X) =

N−1∑
i=0

ci(X)tXi−1
(X),

where

• We let Xi denote the incremental sets of evaluation points such that, for i = 0, · · · , N − 2,

Xi+1 := Xi ∪ {x(i+1)Dc
, · · · , x(i+2)Dc−1},

and X0 := {x0, · · · , xDc−1},
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• We let tXi(X) denote the accumulation polynomials, defined for i = 0, · · · , N − 1,

tXi
(X) :=

∏
i∈Xi

(X − xi),

and tX−1 := 1,

• We let ci ∈ FDc−1[X] denote the contributions to f(X) such that, for i = 1, · · · , N − 1

f̃Xi
(X)− f̃Xi−1

(X) = ci(X)
∏

x∈Xi−1

(X − x),

and c0(X) = f̃X0
(X).

The accumulative decomposition uses the following straightforward identity:

f(X)− f̃X0
(X) =(f̃XN−1

(X)− f̃XN−2
(X))+

(f̃XN−2
(X)− f̃XN−3

(X)) + · · ·+
(f̃X1

(X)− f̃X0
(X)).

2.2 DAG of contributions

Definition 2. Given parameters (Dp, Dc) with Dc | Dp, we define a DAG G = (V,E) as follows,

• Vertex: Each vertex v ∈ V is represented as v = (X , c(X), t(X), p(X)), where

– X ⊂ F is the set of Dc evaluation points,

– c ∈ FDc−1[X] is the contribution,

– t ∈ F≤Dp [X] is the accumulation polynomial, and

– p ∈ F<Dp
[X] is the branch polynomial.

• Edge: The set of edges is defined as E ⊆ {(v1, v2) : v1, v2 ∈ V ∧ v1 ̸= v2}.

• Branch: A sequence (v0, v1, · · · , vk−1) ∈ V k forms a branch if each pair pair ei = (vi−1, vi),
for i = 1, · · · , k − 1, belongs to E.

• Branch polynomial: For a branch (v0, v1, · · · , vk−1) where vi = (X (i), ci(X), tXi
(X), pi(X)),

each branch polynomial pi(X) is defined as

pi(X) :=

k−1∑
i=0

ci(X)tXi−1
(X),

where Xi =
⋃i

j=0 X (j).

• Maximum height: The length of a branch does not exceed N := Dp/Dc.

• Complete branch: We say a branch of length k is N -incomplete if k < N , and N -complete
otherwise.
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• Finishing edge: An edge e = (u, v) ∈ E is called a finishing edge, if v is the last vertex in an
N -complete branch.

Figure 1 illustrates a DAG of contributions. Each complete branch in this DAG corresponds
to a polynomial of degree Dp − 1, which can be retrieved from the branch polynomial of the last
vertex. The representative branch polynomials may be either identical or different. All the inter-
mediate contributions on each complete branch must be reproducible by their representative branch
polynomial f(X), as follow,

ci(X) =
f̃Xi

(X)− f̃Xi−1
(X)∏

x∈Xi−1
(X − x)

.

Figure 1: Example DAG of contributions

3 Proposed consensus protocol

Recall that the verification algorithm of Tokamak zk-SNARK, VerifySNARK, requires a wire map as
an auxiliary input. In this section, we propose a consensus protocol to resolve conflicts among wire
maps that could occur during their elivery from network participants to the SNARK verifiers, by
reaching a consensus among network participants.

In our protocol, each participant is assumed to propose a wire map of degree Dp − 1. Some of
the proposed wire maps may be identical, especially when they are honest. As discussed previously
in Section 1, we assume there is a contributor selection protocol that uniformly selects contributors
from the participants.
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Given the uniform selection algorithm, we can model the consensus procedure upon our protocol
as the clustering of wire map conflicts: participants possessing identical wire maps can be clustered
(Figure 2), and the distribution of wire maps in votes submitted by the selected contributors follows
the proportions that the clusters occupy relative to the total participant population. In Section 4, we
will show that our protocol can achieve a negligible chance of attack success by collusive adversaries,
provided that honest participants form the majority cluster.

Figure 2: Clustering of wire maps. In the left box, ai indicates each participant purporting a wire map
fi(X). In the right box, each subset Ffk represents a cluster of the participants purporting the same wire
map.

The clusters are represented as DAG branches. Thus, each contributor can support a cluster by
submitting a vote, which contains a new edge on the corresponding branch that they are supporting.
The main functionality of our protocol is to provide the algorithm UpdateDAG, which validates the
votes and accepts their new edges as elements of the DAG.

Definition 3. Our consensus protocol consists of three algorithms (InitDAG,VoteGen,UpdateDAG).
The protocol uses the following terminologies:

• Server: The protocol runs on a transparent and irreversible server, where data is gathered
and published in blocks, every T seconds. All important outputs generated by the protocol
users are recorded on this server upon requests.

• Consensus manager: There is a consensus manager, who raises a consensus agenda (ϕ, π) for
(the commitment to) a wire map f , such that VerifySNARK(ϕ, π, [f(τ)]1) = 1. The consensus
manager configures consensus parameters (Dp, Dc), and initiates a consensus session (See
Appendix A for the initiating algorithm InitDAG).

• Participant: Participants of the protocol are possessing their wire maps. We assume a list
of participants is available on the server before each consensus is initiated. The participants
in A are represented by their public keys in G2. The set A may be structured for fast data
access and retrieval.

• Contributor: Contributors are selected from the set A under a predefined selection rule (An
example of the selection rule is illustrated in Appendix B). Each contributor may compute a
contribution based on their wire map1. A contribution is then presented as a vote, packaged

1Although an example of the contribution algorithm VoteGen is provided in Appendix C, we do not assume that
contributors behave honestly.
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with any witnesses and proofs for its validity. The format of votes will be specified in the next
subsection.

• Consensus session: A consensus session is initiated by the consensus manager to initialize a
DAG G. During the session, at most one participant in the list is selected as the contributor
for each block. Their vote is validated by an algorithm UpdateDAG before being recorded
onto the server. As the server blocks are generated, the DAG grows with contributions from
the contributors. The session lasts for O(N) blocks, concluding when the first branch of length
N := Dp/Dc is found, such that the branch polynomial f satisfies VerifySNARK(ϕ, π, f) = 1.

3.1 Data Format

We define the format of data exchanged between the participants and the server. Suppose a DAG
G = (V, E) has been initialized, along with a preallocation of server storage for E . The set E is
assumed to be structured to allow fast access by indexing, meaning that E(a) for a ∈ F returns the
element of E indexed by a.

3.1.1 Vertex Format

For every v ∈ V , v = (x, c, t, p), where

• x ∈ F is a base evaluation point to span X ,

• c ∈ G1 is the commitment to a contribution of degree Dc − 1,

• t ∈ G1 is the commitment to an accumulation polynomial,

• p ∈ G1 is the commitment to a branch polynomial.

3.1.2 Edge Format

For every e ∈ E , e = (w0, v1), where

• w0 ∈ F ∪ {⊥} is the pointer to the previous vertex, specifically, ∃v0 ∈ V such that E(w0) =
(w−1, v0), if and only if w0 ∈ F,

• v1 ∈ V is the next vertex.

3.1.3 Vote Format

A vote is defined as a tuple o = (e, b, t̃, πλ, tζ , a, wa, C), where

• b ∈ {0, 1} is a flag such that b = 1 if and only if e is the last edge on an N -complete branch,

• (t̃, πλ, tζ) ∈ G2
1 × F are an auxiliary commitment, an opening proof, and an opening, respec-

tively, for efficient vertex and edge validation based on a KZG commitment scheme,

• a ∈ G2 is the public key of the contributor of this vote such that Hash(a) = x,

• wa is a witness that a is the selected contributor,

• C ∈ G1 is a signature for this vote.
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3.2 Vote Validation

Let a vote o be in the correct format. We define conditions for this vote to be validated.

3.2.1 Contributor Selection

By the definition, a contributor a is selected from A for each block under a predefined selection
rule. We model this contributor selection process as an NP problem. Let Select denote an NP-time
algorithm to decide a contributor, which is run on participants’ local. Let IsSelected denote a P-time
algorithm to verify the result of contributor selection, which is run on the server. We define the two
algorithms as follows:

• Select(A, h, a) 7→ wa: It takes as input the participant list A, a public coin toss h, and the
public key a of the participant and returns any witness wa to the correct selection of a as the
contributor.

• IsSelected(A, h, a, wa) 7→ 0/1: It takes as input A, h, a, and a witness wa and returns either
acceptance or rejection.

We exemplify the contributor selection and verification algorithms in Appendix 2, but our pro-
tocol does not mandate its use. Instead, in the next section for the analysis of our protocol, we
assume the distribution of Select follows that of h.

3.2.2 Signature Verification

To prevent spoofing, a signature is enveloped in every vote submission. We define a signature as

C := sp1,

where s ∈ F is the private key of the contributor such that a = [s]2, and p1 is the branch polynomial
commitment in the second vertex v1 of the edge e = (v0, v1). This signature can be verified by the
following pairing equation:

e(C, [1]2) = e (p1, a) . (2)

3.2.3 Summary of Vote Validation

Definition 4 (Valid votes). We say a vote o is valid if and only if:

• IsSelected(A, h, a, wa) = 1,

• e(C, [1]2) = e (p1, a),

• e is a valid edge.

3.3 Edge Validation

Let an edge e be in the correct format. We define conditions for e to be validated.
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3.3.1 Fast Vertex Retrieval

Since the server is transparent and irreversible, the server can quickly access the previous block
pointed by the index w0 to retrieve a vertex v0 such that E(w0) = (w−1, v0). This fast access is
feasible only when the index w0 is provided by the contributor. We assume there is an algorithm
for the contributor to retrieve the index w0 as follows:

• GetIndex(E , v0) 7→ w0: It takes as input a (sorted) edge set E and a vertex v0 and returns the
index w0 such that E(w0) = (w−1, v0), if v0 ∈ V , and returns ⊥ otherwise.

3.3.2 Verifying the Edge Direction

Consider an (retrieved) edge (v0, v1) where vi = (x(i), ci, ti, pi) for i ∈ {0, 1}. The base evaluation
points x(i) can generate the sets X (i) of evaluation points defined for the DAG as follows:

X (i) =
⋃Dc−1

k=0 {x(i) + k}.

We write ti = [tXi(τ)]2, where tXi(X) are the accumulation polynomials, and by the definition
of the incremental sets of evaluation points, they must satisfy

tX1
(X) = tX0

(X)t̃a(X), (3)

where t̃a(X) :=
∏

x∈X (1)(X − x), and we can write tX0(X) = 1, if v0 =⊥. If the following auxiliary

inputs t̃ := [t̃a(τ)]1, πt̃ := [πt̃(τ)]1, and πdir := [πdir(τ)]1 for some polynomials πt̃, πdir ∈ F[X] are
provided by the contributor, equation (3) can be equivalently checked by the two following equations:

t̃a(X)− t̃ζ = πt̃(X)(X − ζ), (4)

tX1(X)− tX0(X)t̃ζ = πdir(X)(X − ζ), (5)

where ζ is a coin tossed by a random oracle given (t0, t1, t̃), and t̃ζ := t̃a(ζ).
Checking (4)-(5) can be replaced with the following procedure:

1. Compute ζ = Hash(t0, t1, t̃).

2. Compute t̃ζ = t̃a(ζ).

3. Check

e(t̃− t̃ζ [1]1, [1]2) = e(πt̃, [τ ]2 − ζ[1]2), and (6)

e(t1 − t̃ζt0, [1]2) = e(πdir, [τ ]2 − ζ[1]2). (7)

3.3.3 Exception for Finishing Edges

For a finishing edge, the commitment t1 = [tX1(τ)]1 cannot be derived from the universal reference
string srs, since tX1

(X) is of degree Dp, whereas the G1 elements of srs only support monomials of
degree up to Dp − 1. Thus, for a finishing edge, the last pairing equation of the above procedure is
changed to

e(t1 − t̃ζt0, [1]2)e
(
[1]1, [τ

Dp ]2
)
= e(πdir, [τ ]2 − ζ[1]2), (8)

which allows an exception for t1 to be computed as
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t1 = [tX1
(X)−XDp |X=τ ]1.

To sum up, letting b ∈ {0, 1} denote a flag for notifying a finishing edge (b = 1, if and only if e
is a finishing edge), the pairing checks (7) and (8) can be combined as

e(t1 − t̃ζt0, [1]2)e
(
b[1]1, [τ

Dp ]2
)
= e(πdir, [τ ]2 − ζ[1]2). (9)

3.3.4 Commitment to the Branch Polynomial

Consider an (retrieved) edge (v0, v1) where vi = (x(i), ci, ti, pi) for i ∈ {0, 1}. We write ci = [ci(τ)]1,
ti = [tXi

(τ)]1, and pi = [pi(τ)]1. By Definition 2, the branch polynomials are expected to satisfy the
following relationship:

p1(X)− p0(X) = c1(X)tX0
(X),

where if v0 =⊥, p0(X) = 0 and tX0
(X) = 1. Let πt0 := [πt0(τ)]1 and πbrc := [πbrc(τ)]1 for some

polynomials πt0 , πbrc ∈ F[X], ζ denote a coin tossed by a random oracle given (c0, t0, p0, p1), and
tζ := tX0(ζ). If (πt0 , πbrc, tζ) is provided by the contributor as auxiliary input, the above equation
can be equivalently checked by the two following equations:

t0(X)− tζ = πt0(X)(X − ζ), (10)

p1(X)− p0(X)− c1(X)tζ = πbrc(X)(X − ζ). (11)

Checking (10)-(11) can be replaced with the following procedure: If v0 ̸=⊥,

1. Compute ζ = Hash(c0, t0, p0, p1),

2. Check
e(t0 − tζ [1]1, [1]2) = e(πt0 , [τ ]2 − ζ[1]2), and

e(p1 − p0 − tζc1, [1]2) = e(πbrc, [τ ]2 − ζ[1]2),
(12)

and if v0 =⊥, it is sufficient to simply check p1 = c1.

3.3.5 Summary of Edge Validation

Remark (Aggregation of the proofs). Let λ := Hash(t̃ζ , tζ). The four proofs πt̃, πt0 , πdir, πbrc and
the four pairing equations in (6), (9), and (12) can be aggregated into πλ and

e (LHSλ, [1]2) = e(πλ, [τ ]2 − ζ[1]2)e
(
−λ2b[1]1, [τ

Dp ]2
)
, (13)

respectively, where

LHSλ := t̃+ λt0 + λ2t1 + λ3(p1 − p0 − tζc1)− (t̃ζ + λtζ + λ2t̃ζtζ)[1]1,

πλ := πt̃ + λπt0 + λ2πdir + λ3πbrc.

Definition 5 (Valid edges). We say an edge e is valid, if and only if there exists πλ ∈ G1 such that
equation (13) holds, where ζ = Hash(c1, t0, t1, p0, p1, t̃) and λ = Hash(t̃ζ , tζ).
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3.4 Main algorithm

As the main algorithm of our clustering protocol, we define UpdateDAG. The algorithm takes as
input the vote of a contributor, validates it, and reflects the edge in it on the DAG G. It also runs
the SNARK verify algorithm VerifySNARK, if there is an N -complete branch in G.

Remark (All the vote validation in one). Consider a vote o in the correct format and denote
e = (v0, v1) and vi = (x(i), ci, ti, pi) for i ∈ {0, 1}. Let γ = Hash(LHSλ, πλ, C, p1) be a random
oracle instantiation. A vote is valid if and only if the following equation holds:

e (LHSλ + γC, [1]2) = e(πλ, [τ ]2 − ζ[1]2)e
(
−λ2b[1]1, [τ

Dp ]2
)
e (γp1, a) ,

which is an aggregation of (2) and (13).

Based on this vote check, we provide a pseudo-code of UpdateDAG in Algorithm 1.

4 Analysis

In the clustering protocol, we allow using a parameter Dc to balance cost and security. We define
a target height N := Dp/Dc. In this section, we show that larger N increases the time and cost
to reach consensus, but enhances security. We also provide specific numerical values for time, cost,
and security, which will help the consensus manager choose a suitable Dc.

4.1 Algorithm Complexity

During a clustering session, our main algorithm UpdateDAG is called at most once per block,
leading to at least N calls in total to reach consensus. Table 1 summarizes the communication
and computation complexities for a single call to UpdateDAG. The cost cost associated with the
sub-functions IsSelected, Retrieve, and VerifySNARK, as well as retrieving the structured reference
string (srs) are not included.

Complexity type Any contributors The last contributor

Communication
Input

Read-only 6G1 + 1G2 + 2F+ |wa| -
R&W 5G1 + 4F+ |A| |ϕ|+ |π|

Output R&W 3G1 + 2F -

Computation

G1 Multipl. 8

|VerifySNARK|
G1 Pairing 4
F Multipl. O(Dc)
F Hash 4

Table 1: The complexity of UpdateDAG. The last contributor who feeds a finishing edge in the algorithm
performs additional computation. Regarding the complexity types, the read-only input refers to a part of
input that is used locally by the algorithm but does not affect the original data stored on the server. In
contrast, the R&W input and output, referring to read and write input and output, indicate the data that
can be modified by the algorithm. MSM refers to multi-scalar multiplication.

In terms of communication complexity, UpdateDAG takes inputs of constant sizes in addition to
the variable-size inputs Wa and A, used by the IsSelected function. Read and write inputs, such as
edges, are provided by the server, while read-only inputs are provided by the contributor and used
temporarily within the algorithm.
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The variable input sizes |Wa|, |A| are designed with the algorithm’s efficiency in mind, particularly
for the (Select, IsSelected) pair. For example, given NA participants, if IsSelected is based on a
Merkle tree, |Wa| and |A| can be O(logNA) and O(NA), respectively, and if it is based on a KZG
commitment scheme, |Wa| and |A| can each consist of single G1 elements.

Regarding computation complexity, UpdateDAG performs a fixed number of operations in G1,
which remain constant regardless of the parameters Dp and Dc.

4.2 Consensus Time and Security

4.2.1 Stochastic Model for Clustering Sessions

Suppose participants are forming two groups, one group of honest participants and another of
malicious attackers, each supporting an honest wire map and a forged wire map, respectively. In
other words, each group advocates for one branch. We assume the participants are rational and
avoid forking their branch, as such behavior reduces the chance for their wire map to be selected as
the final consensus. We also assume that the distribution of Select strictly follows that of h, which
is uniform.

We model the growth of DAG branches as random walks Hn, An ∈ Z for a block index n. Let
the portion of honest participants be denoted by pH ∈ [0, 1]. Analogously, the portion of malicious
participants is pA = 1−pH . When a consensus instance is initiated, the random walks are initialized
to H0 = A0 = 0. As the consensus proceeds, either Hn or An increases by one for every block
formation. More specifically, the state transition probability follows:

Pr(Hn+1 = x+ 1, An+1 = y | Hn = x,An = y) = pH ,

Pr(Hn+1 = x,An+1 = y + 1 | Hn = x,An = y) = pA,

Pr(Hn+1 = x+ 1, An+1 = y + 1 | Hn = x,An = y) = 0,

Pr(Hn+1 = x,An+1 = y | Hn = x,An = y) = 0.

4.2.2 Consensus Time

The clustering process is completed and reaches a consensus as soon as the random walks first
encounter Hn = N or An = N . To estimate the consensus time, we observe the first block number
R at which the consensus is reached, defined as:

R := min{k : (Hk ≥ N ∧Ak < N) ∨ (Hk < N ∧Ak ≥ N)}.

Clearly, R ∈ [N..2N − 1]. The distribution of R is given by:

Pr[R = r] =0, for r < N or r ≥ 2N,(
r − 1

N − 1

)(
pNA (1− pA)

r−N + pr−N
A (1− pA)

N
)
, for N ≤ r < 2N.

Given the block formation period Tblk of the server, the time for consensus completion, Tcon is
calculated as follow:

Tcon = TblkR.
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Table 2 shows the numerical results of the expected Tcon in hours for various N and pH ∈
{0.51, 0.75, 0.9}, where Tblk = 13 seconds. As illustrated, given a fixed N , E[Tcon] is affected only
by pH . Since Tcon is observable from every consensus session, while pH is not, one can estimate pH
within a network by comparing the actual Tcon with E[Tcon].

log2 N min(Tcon)
E[Tcon] in hours when

max(Tcon)pH = 0.51 pH = 0.75 pH = 0.9

0 0.00 0.00 0.00 0.00 0.01
1 0.01 0.01 0.00 0.00 0.02
2 0.02 0.02 0.01 0.01 0.03
3 0.03 0.05 0.04 0.02 0.06
4 0.06 0.10 0.08 0.05 0.12
5 0.12 0.21 0.15 0.12 0.23
6 0.23 0.43 0.31 0.26 0.46
7 0.46 0.88 0.62 0.51 0.92
8 0.92 1.78 1.23 1.03 1.85
9 1.85 3.59 2.47 2.05 3.70
10 3.70 7.22 4.93 4.11 7.40
11 7.40 14.48 9.86 8.22 14.79
12 14.79 28.99 19.72 16.43 29.58
13 29.58 58.00 39.44 32.87 59.16
14 59.16 116.01 78.89 65.74 118.33
15 118.33 232.02 157.77 131.48 236.66

Table 2: Expected consensus time Tcon for different N and pH values.

4.2.3 Attack Success Probability

The forged wire map supported by the attackers can be selected as the final consensus if the random
walks first reach Hr < N and Ar ≥ N in r movements. Since r can vary in [N..2N − 1], the
probability Pr[Awin] can be obtained by:

Pr[Awin] =

2N−1∑
r=N

(
r − 1

N − 1

)
pNA (1− pA)

r−N .

Table 3 presents numerical results of Pr[Awin] for various N and pH ∈ {0.51, 0.75, 0.9}. In this
table, as N increases, the protocol becomes more robust against attackers. If we can estimate pH in
a network in advance, this table can help the consensus manager determine the minimum N required
for a desired security level.

4.3 Choosing a Good Dc

To summarize our analysis, a lower Dc increases the robustness of the protocol’s against collusive
attackers but also makes reaching a consensus more time-consuming and costly. Thus, the goal
of the consensus manager is to find a suitable Dc that minimizes cost and time while ensuring a
desired level of security. However, since pH is not observable, the theoretically optimal Dc may not
be practical.
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log2 N
Pr[Awin] when min(pH) for

pH = 0.51 pH = 0.75 pH = 0.9 Pr[Awin] < 10−2 Pr[Awin] < 10−3

0 0.4900 0.2500 0.1000 0.990 0.999
1 0.4850 0.1562 0.0280 0.942 0.982
2 0.4781 0.0706 0.0027 0.858 0.924
3 0.4686 0.0173 0.0000 0.772 0.839
4 0.4553 0.0013 0.0000 0.669 0.756
5 0.4367 0.0000 0.0000 0.643 0.687
6 0.4107 0.0000 0.0000 0.602 0.635
7 0.3746 0.0000 0.0000 0.573 0.596
8 0.3255 0.0000 0.0000 0.552 0.569
9 0.2611 0.0000 0.0000 0.537 0.549
10 0.1827 0.0000 0.0000 0.526 0.535
11 0.1003 0.0000 0.0000 0.519 0.525
12 0.0351 0.0000 0.0000 0.513 0.518
13 0.0052 0.0000 0.0000 0.510 0.513
14 0.0001 0.0000 0.0000 0.507 0.509
15 0.0000 0.0000 0.0000 0.505 0.507

Table 3: Attack success probabilities and minimum pH values for different thresholds.

We can estimate pH based on E[Tcon] and its Table 2. Although the real-world pH may be
heterogeneous (i.e., pH can change over time), we assume that pH changes slowly. A traditional
estimate of pH can be developed using the distribution of Tcon. For example, letting E[Tcon(pH)]
denote the expected consensus time as a function of pH , and tcon denote an observation of Tcon, a
simple (though imperfect) estimate p̂H of pH can be made by:

p̂H := argmin
pH

|tcon − E[Tcon(pH)]|.

Better estimates, such as the Bayes estimator, can be developed based on higher moments of Tcon,
but they are beyond the scope of this paper.

Given an estimate p̂H , based on Pr[Awin] and its Table 3, the consensus manager can decide on
the maximum Dc that guarantees the attack success probability does not exceed a desired threshold.
For example, the table shows that the attack success probability is guaranteed to be below 10−3

for N not less than 24, given that pH ≥ 0.76. The consensus manager can repeat this observation-
estimation-decision process for every consensus session.

5 Conclusion

In this paper, we have proposed a consensus protocol for SNARK pre-processed circuit polynomials,
referred to as wire maps. Pre-processing the wire maps is essential for some SNARKs, but it is costly.
Our protocol is particularly useful for securely delivering wire maps from untrusted network partici-
pants to SNARK verifiers. We developed a framework to resolve conflicts over wire maps among the
participants by representing the wire maps within a DAG structure and allowing the participants to
collaboratively manage this DAG. Our design aimed to enhance efficiency in distributed networks
by enabling verifiable consensus with constant verification complexity.
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Through our analysis, we highlighted the critical role of parametersDc and pH in determining the
protocol’s security and efficiency. Our findings suggest that while lower values of Dc improve security
by mitigating attack success probabilities, they also increase the time and resource expenditure
needed to reach consensus. Consequently, we provided insights into selecting suitable values for Dc

that satisfy both performance and security requirements, given dynamic nature of pH .
The results of this study contribute to the broader discourse on secure consensus mechanisms in

cryptographic systems, with practical implications for blockchain applications and other decentral-
ized networks. Future research could further refine the model by integrating real-time parameter
adjustments and exploring advanced statistical estimators for pH to enhance protocol responsiveness
and adaptability to changing network dynamics.
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Appendix

A Protocol initiation

The consensus manager initiates each consensus session by running the algorithm InitMem, which
takes as input a pair (ϕ, π) representing SNARK instance and proof and consensus parameters Dp
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and Dc. As shown in Algorithm 2, there is no data processing performed by this algorithm. Instead,
its role is to publish the inputs to the server and pre-allocate slots for DAG edges that will be
submitted by contributors during the session.

B Example: Contributor selection rule based on PoS

We provide an example algorithm for selecting contributors from the public key pool A of partici-
pants. Assume that public keys in the pool A have been sorted and mapped to equally spaced indices
during the protocol initiation. In other words, the pool can be written asA = ((x0, a0), (x1, a1), · · · , (xN−1, aN−1)),
where xi = i∆ for all i. Then, given a hash of the previous block h ∈ F, the participant holding the
public key ak that satisfies the following condition is selected as the contributor:

(xk, ak) ∈ A ∧ |h− xk| ≤ 0.5∆.

With this rule, we present two algorithms Select and IsSelected. Define a polynomial tA ∈ F[X]
such that tA(xi) = Hash(ai) for all i. Assume that A is public, and tA = [tA(τ)]1 and ∆ are given.
The two algorithms are provided in Algorithm 3 and Algorithm 4, respectively.

C Vote generation

We provide guidance on how a contributor computes a DAG contribution and forms a vote. However,
our guidance cannot compel the actions of participants, and we are also open to the possibilities that
malicious participants or those prioritizing computational efficiency may not adhere to our guides.

Consider a participant possessing a polynomial f(X) of degree Dp and a private key s, with the
corresponding public key a = [s]2. Suppose the participant has access to A and the latest E . If
the participant is a contributor (i.e., the participant can generate a witness wa through Select that,
along with the public key a, can pass IsSelected), they may use a traditional efficient algorithm
named DepthFirstSearch to collect all DAG branches from E .

Conjecture (Branch selection criteria). When choosing a DAG branch to contribute to, a rational
contributor possessing f(X) may choose the longest Dp-incomplete branch that can be reproduced
by f(X).

A pseudocode for vote generation is illustrated in Algorithm 5.
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Algorithm 1 UpdateDAG

1: procedure UpdateDAG(o;h,M, E(w0))
2: parseM = (A, ϕ, π,Dp, Dc)
3: assert A ≠ ∅
4: assert E ̸=⊥
5: assert IsSelected(A, h, a, wa) = 1 ▷ Validate the contributor eligibility
6: parse o = (e, b, t̃, πλ, tζ , a, wa, C) ▷ Check the format of the vote
7: assert b ∈ {0, 1}
8: parse e = (w0, v1)
9: if w0 =⊥ then

10: t0 ← [1]1
11: p0 ← [0]1
12: else
13: (v−1, v0)← E(w0) ▷ Retrieve the previous vertex from the server
14: parse v0 = (x(0), c0, t0, p0)
15: end if
16: parse v1 = (x(1), c1, t1, p1)
17: assert x(1) = Hash(a)
18: ζ ← Hash(c1, t0, t1, p0, p1, t̃) ▷ Toss the first coin
19: t̃ζ ← 1
20: for i = 0→ Dc − 1 do ▷ Reproducing t̃ζ
21: xi ← x(1) + i
22: t̃ζ ← t̃ζ(ζ − xi)
23: end for
24: λ← Hash(t̃ζ , tζ) ▷ Toss the second and last coins
25: γ ← Hash(LHSλ, πλ, C, p1)
26: LHSλ ← t̃+ λt0 + λ2t1 + λ3(p1 − p0 − tζc1)− (t̃ζ + λtζ + λ2t̃ζtζ)[1]1
27: E0 ← e(LHSλ + γC, [1]2)
28: E1 ← e(πλ, [τ ]2 − ζ[1]2)
29: E2 ← e

(
−λ2b[1]1, [τ

Dp ]2
)

30: E3 ← e (γp1, a)
31: assert E0 = E1E2E3 ▷ Verify the pairing equations
32: if b = 1 then ▷ Return the validated edge to the server
33: assert VerifySNARK(ϕ, π, p1) = 1
34: end if
35: E ← E ∪ {e}
36: return E
37: end procedure

Algorithm 2 InitDAG

1: procedure InitDAG(A, ϕ, π,Dp, Dc)
2: assert V =⊥
3: M← (A, ϕ, π,Dp, Dc)
4: E ← ∅
5: return (M, E)
6: end procedure
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Algorithm 3 Select

1: procedure Select(A, h,∆, x, a)
2: assert (x, a) ∈ A
3: assert |h− x| ≤ ⌊0.5∆⌋
4: tA(X)← 0
5: for i = 0 to |A| − 1 do
6: Define Li(X) such that Li(i∆) = 1 and Li(k∆) = 0 for all k ̸≡ i mod |A|
7: end for
8: for m ∈ A do
9: parse m = (x̃, ã)

10: i← x̃/∆
11: tA(X)← tA(X) + Hash(ã)Li(X)
12: end for
13: πa(X)← (tA(X)−Hash(a))/(X − x)
14: πa ← [πa(τ)]1
15: return πa

16: end procedure

Algorithm 4 IsSelected

1: procedure IsSelected(tA, h,∆, a, x, πa)
2: assert x ∈ F, π ∈ G1

3: assert |h− x| ≤ ⌊0.5∆⌋
4: assert e(tA −Hash(a)[1]1, [1]2) = e(π, [τ ]2 − x[1]2)
5: return True
6: end procedure
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Algorithm 5 VoteGen

1: procedure VoteGen(f(X), s,M, E)
2: parseM = (A, ϕ, π,Dp, Dc)
3: assert deg(f(X)) = Dp

4: assert VerifySNARK(ϕ, π, [f(τ)]1) = 1
5: (X , tpre(X), ppre(X), vpre)← Choose(f(X), E , Dp, Dc, ϕ, π)
6: x← Hash(a)
7: Xa ← ∅
8: t̃a(X)← 1
9: for k = 0 to Dc − 1 do

10: Xa ← Xa ∪ {x+ k}
11: t̃a(X)← t̃a(X) · (X − (x+ k))
12: end for
13: p(X)← Interpolate(f(X),X ∪ Xa)
14: c(X)← (p(X)− ppre(X)) /tpre(X)
15: t(X)← tpre(X) · t̃a(X)
16: if deg(t) < Dp then
17: b← 0
18: t← [t(τ)]1
19: else
20: b← 1
21: t← [t(X)−XDp |X=τ ]1
22: end if
23: Package vote: o = (e, b, t̃, πλ, tζ , a, wa, C)
24: return o
25: end procedure

Algorithm 6 Choose

1: procedure Choose(f(X), E , Dp, Dc)
2: Xlong ← ∅
3: tlong(X)← 1
4: plong(X)← 0
5: if E ̸= ∅ then
6: N ← Dp/Dc

7: B ← DepthFirstSearch(E)
8: Find the longest reproducible branch
9: end if

10: return (Xlong, tlong(X), plong(X), vlong)
11: end procedure

Algorithm 7 Reproduce

1: procedure Reproduce(b, f(X), Dp, Dc)
2: Parse branch b = (v0, v1, · · · , vl−1)
3: Cut off non-reproducible vertices and return (l, vl−1,X , t(X), p(X))
4: end procedure
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Algorithm 8 Interpolate

1: procedure Interpolate(f(X),X )
2: l← |X |
3: for x ∈ X do
4: Compute interpolation using Lagrange formula
5: end for
6: return f̃X (X)
7: end procedure
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