
DMM: Distributed Matrix Mechanism for
Differentially-Private Federated Learning using

Packed Secret Sharing

Alexander Bienstock
J.P. Morgan AI Research &

J.P. Morgan AlgoCRYPT CoE

Ujjwal Kumar
J.P. Morgan

Antigoni Polychroniadou
J.P. Morgan AI Research &

J.P. Morgan AlgoCRYPT CoE

Abstract

Federated Learning (FL) has gained lots of traction recently, both in industry and
academia. In FL, a machine learning model is trained using data from various
end-users arranged in committees across several rounds. Since such data can often
be sensitive, a primary challenge in FL is providing privacy while still retaining
utility of the model. Differential Privacy (DP) has become the main measure of
privacy in the FL setting. DP comes in two flavors: central and local. In the former,
a centralized server is trusted to receive the users’ raw gradients from a training
step, and then perturb their aggregation with some noise before releasing the next
version of the model. In the latter (more private) setting, noise is applied on users’
local devices, and only the aggregation of users’ noisy gradients is revealed even to
the server. Great strides have been made in increasing the privacy-utility trade-off
in the central DP setting, by utilizing the so-called matrix mechanism. However,
progress has been mostly stalled in the local DP setting. In this work, we introduce
the distributed matrix mechanism to achieve the best-of-both-worlds; local DP and
also better privacy-utility trade-off from the matrix mechanism. We accomplish this
by proposing a cryptographic protocol that securely transfers sensitive values across
rounds, which makes use of packed secret sharing. This protocol accommodates
the dynamic participation of users per training round required by FL, including
those that may drop out from the computation. We provide experiments which show
that our mechanism indeed significantly improves the privacy-utility trade-off of
FL models compared to previous local DP mechanisms, with little added overhead.

1 Introduction

In Federated Learning (FL), a machine learning model is trained using data from several end-
users. Since such data can often be sensitive, a key challenge in FL is maintaining utility of the
trained models, while preserving privacy of the end-users. FL has experienced an explosion of
progress in recent years, both in industry and research. In terms of use in practice, there have been
numerous deployments of FL recently, such as Google’s and Apple’s privacy-preserving training
of machine learning models for making word suggestions in their mobile keyboards [29, 2] and
voice assistants [2]. In FL research, new solutions continue to be proposed with better privacy-utility
tradeoffs and usability, e.g., [34, 17, 15, 14].

In more detail, FL typically works in a round-based setting, wherein the current model parameters
are sent to a set of clients, which we call a committee, who locally execute a step of Stochastic
Gradient Descent on their own data to obtain gradients with respect to a loss function. These gradients
are then aggregated using different techniques to update the model parameters for the next round

Preprint. Under review.

Figure 1: Left: Federated Learning in the central DP model. Right: Federated Learning based on our
Distributed Matrix Mechanism in the local DP model.

(e.g., [40, 22, 47]). The main privacy metric for FL is differential privacy (DP) [18]. Roughly speaking,
DP guarantees that with high probability, one cannot tell whether or not a user participated in a
given FL execution. There are two different notions of DP that can be considered. In central DP,
there is a centralized server who receives the gradients directly from the clients in each round and
then updates the model based on its own noisy aggregation of these gradients. See the left side of
Figure 1 for a flowchart illustrating the process involving the committee of users from round j and the
committee of users from round k = j + 1. A Secure Aggregation [33, 10, 8, 38] protocol is applied
in a black-box fashion to conceal local gradients, with noise being added exclusively by the server to
preserve privacy. In this case, DP holds with respect to those to whom the server sends the updated
models, but not the server itself. In local DP, there may still be a centralized server, however, the
users utilize a Secure Aggregation protocol to only release to the server a noisy aggregation of their
gradients, and thus DP holds with respect to the server as well.

There has been tremendous progress recently in the area of central DP for FL [34, 17, 15, 14]. These
works use a sophisticated set of techniques from the DP literature called the matrix mechanism [31, 19]
to achieve excellent privacy-utility trade-offs. Indeed, in this setting, since the central server receives
all of the gradients in the clear and samples all noise on its own, it can correlate the noise across
rounds in a complex manner. Intuitively, this means that noise can be re-used across rounds without
being detected so that the cumulative noise across all rounds is lower compared to sampling new,
fresh noise to hide the gradients in each round.

On the other hand, in the setting of local DP, the clients just add noise locally to their gradients, and
then these noisy gradients are summed using a Secure Aggregation protocol. Since the noise is not
correlated across epochs via the matrix mechanism like in the central DP setting, the privacy-utility
trade-off of local DP is not as good as that of central DP thus far.

We note that in both settings, privacy amplification techniques like shuffling [21, 24] or (Poisson)
subsampling [7, 54, 51] are sometimes used to increase privacy-utility tradeoffs; however, these
require strong assumptions on how data is processed which are often not suitable for practice [34]
and thus should be avoided.

Our Contributions In this work, we propose a solution to achieve the “best-of-both-worlds" of
the central and local DP settings, without using privacy amplification, called the Distributed Matrix

Mechanism. We achieve privacy with respect to the central server as in the local DP setting, while
using correlated noise to get privacy-utility trade-offs close to that of the central DP setting. To
facilitate this, we propose an efficient cryptographic protocol to (re)share users’ noise and gradients
across committees in a way that they remain private.

(Packed) secret sharing is a common technique in the cryptographic literature [25]. In such a protocol,
there are n users, tc of which might be corrupted by an adversary A; by this we mean that A sees
everything that the tc users see, and can act arbitrarily on behalf of them. In this work, we will focus
on the setting where in each round there are n users in the committee for that round and at most
tc < (1/2 � µ) · n of them are corrupted, for some 0 < µ < 1/2. Packed secret sharing allows a
user to split a secret vector x 2 Fk, where F is a finite field and 0 < k < n, amongst the n users, by
sending them shares of the secrets. These shares are distributed in such a way that the tc shares that

2

A sees reveal nothing about the secret vector x. On the other hand, if at least tc + k users send their
shares to another user, then this user can reconstruct the original secret vector x. Moreover, if some of
the corrupted parties send the reconstructing user incorrect shares, then this can be detected. Packed
secret sharing is additionally linear, meaning that if the users have a sharing of x1 and x2, they can
add their shares together to obtain a sharing of x3 = x1 + x2 (which can later be constructed as
such).

In our FL setting, we have the users in each round secret share vectors containing their noise and
gradients. We then propose a resharing protocol such that given the secret shares of noise and
gradients from users in a given round, the users can efficiently and securely reshare them to the users
of the next round. This can be repeated for the same (and additional) secrets shares of noise and
gradients across many rounds. Given this resharing protocol, we can instantiate the matrix mechanism
in a distributed fashion: First, the users take linear combinations of the secret shared gradients and
noise and thus introduce noise correlations across epochs. Then, we can reconstruct these aggregrated
gradients with (correlated) noise to the server using Secure Aggregation. See the right side of Figure 1
for a flowchart illustrating our approach, where parties from committee j in round j receive noise
and gradient shares from previous rounds. These parties combine the received shares with the new
gradients and freshly sampled noise, applying a linear combination function f , and then input the
result to the Secure Aggregation, whose output will be used to obtain the updated model. Afterward,
the gradient and noise shares are reshared with the parties in the subsequent committee k, ensuring
continuity in the distributed matrix mechanism.

Our resharing protocol also achieves dropout tolerance. In FL, the gradients from end-users often
come from mobile devices, and therefore it may not be guaranteed that such users will stay online
for the whole round, even if they are honest. Thus, the protocol must not fail if some (honest) users
drop out, while still being able to handle other corrupted users. We design our resharing protocol in a
particular way to be able to still work even if a certain fraction of users drop out in each committee.

Our main technical contribution is thus instantiating this dropout-resilient, new secure resharing
protocol with constant overhead O(1) overhead in the presence of tc corrupted users per round and
td dropout (honest) users per round, such that tc + td < (1/2� µ) · n. We do so by using three main
ingredients: (i) packed secret sharing; (ii) parity check matrices, with which we can catch corrupted
parties who do not follow the protocol; and (iii) random linear combinations, which allow us to
perform such checks with low communication overhead. See Section 3 for a detailed explanation
on how the constant overhead is achieved. Importantly, our method maintains differential privacy
(DP) even in the presence of corrupted parties who might manipulate the shares, as we show this
only leads to an additive attack on the values opened to the server, which can be viewed as a form of
post-processing that does not compromise DP.

Another approach without secret sharing includes maintaining aggregate noise and gradients masked

via a secure aggregation protocol. However, this approach is vulnerable: the server could selectively
include or exclude certain masked noise terms as input to the secure aggregation, or manipulate the
scaling of the masked gradients inputs, potentially undermining DP and revealing information about
the current round’s gradients. See Section E for more details on this approach and manipulation
attacks.

We implement the Distributed Matrix Mechanism using our resharing protocol and use it to train
differentially private FL models. We show that for Federated EMNIST [12] and Stack Overflow Next
Word Prediction [4], our approach improves upon the privacy-utility tradeoff of the previous best
local DP approach [33] based on a lightweight cryptographic solution.

Related Work DP has been used for various statistical tasks, where privacy is demanded [18, 31, 19].
DP-Follow-The-Regularized-Leader (DP-FTRL) [34] used the DP tree mechanism [31] to achieve
high privacy-utility tradeoff for FL, without using any privacy amplification [1, 21, 24, 7, 51, 54].
To improve this, [17] use the matrix mechanism to provide better privacy-utility tradeoff for FL,
where each user only participates in the training once. Follow-up work [15] allowed for multiple
participations in the training using the matrix mechanism to get even higher privacy-utility tradeoff,
while requiring a strict participation pattern amongst users. Then, [14] introduced more relaxed and
realistic multi-participation training with the matrix mechanism, while achieving similar privacy-
utility tradeoff.

3

Typically, prior DP mechanisms use secure aggregation in a black box way. The seminal work of [10]
introduced secure aggregation for federated learning protocols with dropout resilience. Building on
this, subsequent research [8, 32, 37, 49, 48, 53, 52, 38, 36] has focused on optimizing the protocols by
either reducing the number of intermediate helper users or minimizing the rounds of communication
required between users and the server per secure aggregation protocol

Several works have considered so-called proactive secret sharing [43, 6, 39]. This setting is very
similar to ours in which secrets are reshared across rounds, however, there the users stay the same in
each round (some of the users completely delete their state in each round). Papers that study a similar
model to ours exist, but for more general computations and without a central server, and thus are
inefficient [27, 9, 16, 44].

2 Packed Secret Sharing

Let F be some finite field. Let n be the number of parties in each committee; i.e., the number of
clients in each round/iteration (assume uniform committee size). Let tc be the number of maliciously
corrupted parties in each committee. A (tc +1)-out-of-n secret-sharing scheme takes as input a secret
z from F and outputs n shares, one for each party, with the property that it is possible to efficiently
recover z from every subset of tc + 1 shares, but every subset of at most tc shares reveals nothing
about the secret z. The value tc is called the privacy threshold of the scheme.

A secret-sharing scheme consists of two algorithms: the first algorithm, called the sharing algorithm,
Share, takes as input the secret z and the parameters n and tc, and outputs n shares: (z1, . . . , zn) =
Share(z, n, tc). We often denote to the vector of shares as [z]tc = (z1, . . . , zn). The second algorithm,
called the reconstruction algorithm, Reconstruct, takes as input party identity i and share z

i and
outputs a reconstruction value Reconstruct(i, zi). We will utilize secret sharing schemes in which
�i · zi = Reconstruct(i, zi), for some constant �i dependent on i. Any set of at least tc + 1 of these
reconstruction values can be simply summed to obtain z =

P
i �i · zi. It is required that such a

reconstruction of shares generated from a value z reconstructs to the same value z. The secret-sharing
scheme we use is also linear, meaning that if the parties add their shares zi1 of a secret z1 with their
shares zi2 of a secret z2, then invoke Reconstruct to get reconstruction value �i · (zi1 + z

i
2), summing

these reconstruction values will yield z1 + z2 =
P

i �i(zi1 + z
i
2). Using the notation from above,

when all parties sum their shares of [z1]tc and [z2]tc , we will write [z1 + z2]tc = [z1]tc + [z2]tc .

Packed secret sharing is an extension of traditional secret-sharing schemes, where a vector of k > 1
secrets z = (z1, . . . , zk) 2 Fk is packed into a single set of (individual) shares. This technique
is particularly useful for efficiency in cryptographic protocols, as it allows multiple secrets to be
shared and reconstructed simultaneously with reduced overhead compared to handling each secret
individually. Here, we still have that every subset of at most tc shares reveals nothing about z, but
we need at least tc + k shares to be able to recover z. There are also similar Share and Reconstruct

algorithms, and we denote a sharing of some vector z as [z]tc+k�1 = (z1
, . . . , z

n). In addition,
Reconstruct takes as input an index j 2 [k] representing the index of the vector to eventually
reconstruct. Here, we utilize packed secret sharing schemes in which �

j
i · zi = Reconstruct(i, zi

, j),
for some constant �j

i dependent on i and j. If at least tc + k parties run the Reconstruct algorithm to
get reconstruction values �j

i · zi, then zj can be computed with these values, which is again a simple
sum zj =

P
i �

j
i · zi. The packed secret sharing scheme we use is also linear with respect to vector

addition of the underlying secrets; i.e., [z1 + z2]tc+k�1 = [z1]tc+k�1 + [z2]tc+k�1.

In the following, tc and k will be fixed, so we will simply refer to packed secret sharings as [z].

3 Linear Packed Resharing Protocol

In this section, we present our constant overhead Linear Resharing Protocol PSS. Let td be the
number of (honest party) dropouts in each committee and tc the number of corrupted parties in each
committee. We will aim to handle td + tc < (1/2� µ)n, for constant 0 < µ < 1/2.

Passively-Secure Protocol Our resharing protocol consists of four algorithms: it inherits the first
algorithm Share from an underlying linear packed secret sharing scheme. Now, let it be the case that
k packed secret sharings [z1], . . . , [zk] are generated for length-k secret vectors z1, . . . , zk 2 Fk to

4

Figure 2: Packed Resharing Protocol

the n parties of iteration r (so there are k
2 total secrets). The next algorithm, called the resharing

algorithm, Reshare, takes as input the packed shares of party Pi of iteration r, which we denote
as the vector zi

[1,k] = (zi
1, . . . , z

i
k), and reshares them to the parties of iteration r + 1: [zi

[1,k]] =

((zi
[1,k])

1
, . . . , (zi

[1,k])
n) = Reshare(zi

[1,k]). Let it be the case that each Pi in iteration r does this.
Next, the recovery algorithm, Recover takes as input the reshared shares output to party Pj of iteration
r + 1, (z1

[1,k])
j
, . . . , (zn

[1,k])
j , and outputs new shares of the original secret vectors z1, . . . , zk for

party Pj : (ẑj
1, . . . , ẑ

j
k) = Recover((z1

[1,k])
j
, . . . , (zn

[1,k])
j).1 The last algorithm Reconstruct is also

inherited from the underlying linear packed secret sharing scheme.

We present the passively-secure version of our protocol below, wherein corrupted parties must follow
the protocol and only try to break the privacy of other parties using what they see. The actively-secure
protocol where corrupted parties may behave arbitrarily is presented in Section C.

• Reshare(zi
[1,k]) simply executes and outputs [zi

[1,k]] = Share(zi
[1,k]).

• Recover((z1
[1,k])

j
, . . . , (zn

[1,k])
j) computes and outputs for m 2 [k]: ẑ

j
m =P

i Reconstruct(i, (z
i
[1,k])

j
,m).

The protocol is also pictorially presented in Figure 2.

Now we observe how Recover(·) outputs packed shares of the original secrets. Recall that
Reconstruct(i, (zi

[1,k])
j
,m) = �

m
i · (zi

[1,k])
j , so we can re-write ẑ

j
m =

P
i �

m
i · (zi

[1,k])
j .

Moreover, each (zi
[1,k])

j is a packed share of sharing of vector z
i
[1,k] = (zi

1, . . . , z
i
k) for

a linear packed secret sharing scheme. Thus, we are computing new packed shares of the
vectors

P
i �

m
i · (zi

1, . . . , z
i
k). Each z

i
l was itself Pi’s share of packed sharing of vector zl.

Thus the packed shares we are computing indeed share the vectors
P

i �
m
i · (zi

1, . . . , z
i
k) =

(
P

i Reconstruct(i, z
i
1,m), . . . ,

P
i Reconstruct(i, z

i
k,m)) = (z1,m, . . . , zk,m).

It is clear that the output of Reshare() reveals nothing to the tc corrupted parties, since it just uses
Share() of the underlying packed secret sharing scheme, that is secure against tc corrupted parties.
Since the number of honest parties that do not dropout is at least n � td � tc > (1/2 + µ)n, it is
clear that this protocol is resilient to the td (honest) dropout parties, if k 2µn. This is because
tc + k (1/2 + µ)n < n� td � tc, so the shares of the honest parties that do not dropout can still
be used to obtain the secrets.

Communication Complexity The total communication complexity of this protocol is n
2 field

elements—each party in iteration r sends a share to every party in iteration r + 1. If we choose
k = 2µn, then this is for k2 = 4µ2

n
2 secrets, which is 1/4µ2 communicated field elements per

secret.

1Note: they are shares of length-k vectors (z1,m, . . . , zk,m) for each m 2 [k], instead of (zl,1, . . . , zl,k), for
each l 2 [k].

5

4 Differentially Private Federated Learning

In this section, we define some notions important to DPFL before recalling some DP mechanisms for
FL from prior work, one with local DP and one with central DP. In the next section, we will describe
in more detail our Distributed Matrix Mechanism which achieves the best-of-both-worlds of these
two mechanisms. Let T ⇤ be the number of training rounds and d be the dimension of a model to be
trained via DPFL.

Adjacency and Participation Schemas DP requires a notion of adjacent datasets. Two data streams
X and X̃ are adjacent if the data associated with any single user is altered, in every round where the
user participates.2 Thus, any XT which a user contributed a gradient gT,i to can be changed subject
to the constraint ||gT,i|| c, where c is the norm clip. The participation pattern does not change in
these two adjacent streams. A participation schema � contains all possible participation patterns

� ✓ �, with each � 2 [T ⇤] indicating a set of rounds in which a single user participates. Let Nbrs be
the set of all pairs of neighboring streams X and D = {X � X̃ : (X, X̃) 2 Nbrs} represent the set
of all possible differences between neighboring X, X̃ . We say a D satisfies the participation schema
� if the indices of all nonzero rows in each RT⇤⇥d matrix U 2 D are a subset of some � 2 �. In
this work, we consider the b-min-sep-participation schema of [14], where any adjacent participations
are at least b steps apart.

Local DP Distributed Discrete Gaussian Mechanism [33] In this setting, the central server only
learns noisy versions of the aggregated model gradients, in each round T . This means that each user
locally applies some noise to their model gradients. A naive way to do so is for each user to locally
compute ĝT,i gt,i + zt,i, where zT,i is drawn from some noise distribution. Then, these noisy
gradients are combined using Secure Aggregation into X̂T

P
i ĝT,i for the sever, which is then

used to compute the next model iteration release. Thus, the sensitivity of this setting for a participation
schema � can be simply computed as sens� = sup(X,X̃)2Nbrs ||X � X̃||F = supU2D ||U ||F .

Centralized DP Matrix Mechanism In this setting, the central server learns the (aggregated)
gradients in the clear, and adds noise to the new model before releasing it to the users of the next
round. Let A 2 RT⇤⇥T⇤

be an appropriate linear query work-load (e.g., prefix sums or a matrix
encoding of stochastic gradient descent with momentum (SGDM) [17]). Matrix mechanisms in
the central DP setting use a factorization A = BC to privately estimate the quantity AX as
dAX = B(CX +Z), where Z is sampled by the central server from some noise distribution.

Each entry of the vector dAX corresponds to a model iteration that is released. The matrix A is
lower-diagonal, which means that the T -th entry of dAX only depends on the first T entries of X ,
for each dimension. Additionally, the T -th entry of dAX depends on the first T entries of Z, which
means that the noise used in each released model iteration is correlated. This means that each sampled
noise element can have less variance, resulting in better accuracy.

We now define the sensitivity of the central DP matrix mechanism for a particular participation
schema � with set of neighboring streams Nbrs as sens�(C) = sup(X,X̃)2Nbrs ||CX �CX̃||F =

supU2D ||CU ||F . As in previous works, it is useful to analyze sens�(C) when each gradient gt,i
has `2 norm at most c = 1, noting that the actual value of sens�(C) scales with c in general. In our
work, however, it is useful to explicitly define the sensitivity with gradients of `2 norm c = 1 as
sens1�(C).

The expected total squared error on A is typically given as L(B,C) = sens�(C)||B||2F and the
goal is to find a factorization that minimizes this loss.

5 Distributed Matrix Mechanism

In this paper, we achieve the best-of-both-worlds of the previous two mechanisms by using the matrix
mechanism in a way that still only reveals to the server linear combinations of the noisy aggregated
gradients. See Protocol 1 for a detailed description of our FL protocol ⇧PPFL.

2We study the more general user-level DP in this work, as opposed to example-level DP.

6

Protocol 1 Privacy-Preserving Federated Learning Protocol ⇧PPFL

Protocol ⇧PPFL runs with clients P1, . . . , PN and a server S. Let PSS =
(Share,Reshare,Reconstruct,Recover) be a packed resharing protocol (See Section 3) and let
SecAgg = (SecAgg.Enc, SecAgg.Dec) be a secure aggregation protocol. ⇧PPFL = (Setup, Initialize,Agg)
proceeds as follows:
Parameters: Model dimension d 2 N; number of rounds T ⇤; clipping threshold c > 0; granularity � > 0; noise
scale � > 0; bias � 2 [0, 1); finite field F of bit-width m; public (lower-triangular) matrix encoding of prefix
sums or stochastic gradient descent with momentum (SGDM) [17]) A 2 RT⇤⇥T⇤

; matrices B,C such that
A = BC.
Inputs: For i 2 [N], party Pi holds input dataset Di. Without loss of generality we assume that committees in
each training iteration are of size n.

Agg(Di,✓T�1, {[gT�1,⌘,j], [zT�1,⌘,j]}⌘2[n], {[X⌘
⌧,[1,k]], [Z

⌘
⌧,[1,k]]}⌧2[T�2],⌘2[n]): Let CT be the set of cho-

sen clients for the T -th training iteration. For each T each client Pi in CT proceeds as follows:

Round 1:
• Runs training model on ✓T�1, Di which generates the vector of local gradients gT,i (that are then

clipped to norm c, scaled via granularity parameter � > 0, flattened, and rounded/discretized with
bias � 2 [0, 1) as in [33]; details of this are provided in the Section A).

• Samples a noise vector zT,i from a Discrete Gaussian distribution NZ(0,�
2/�2).

• For each batch of parameters j 2 [d/k] of size k, secret shares the noise vectors and the gradients
using the packed secret sharing scheme as [zT,i,j] = Share(zT,i,j) and [gT,i,j] = Share(gT,i,j) to
the set CT+1 of clients of the next training iteration. Each ⌘-th share z

⌘
T,i,j and g

⌘
T,i,j is encrypted to

the ⌘-th client of CT+1 using authenticated and encrypted channels.

If T = 1:
• For each model parameter l 2 [d], invokes a SecAgg protocol and sends yT,i,l = SecAgg.Enc(A[1,1] ·
gT,i,l +B[1,1] · zT,i,l) to S.

If T > 2:
• Decrypts and recovers each batch using the packed resharing protocol on the sets of k batches from

all previous rounds ⌧ 2 [T � 2] as (Ẑi
⌧,1, . . . , Ẑ

i
⌧,k) = Recover((Z1

⌧,[1,k])
i, . . . , (Zn

⌧,[1,k])
i) and

(X̂i
⌧,1, . . . X̂

i
⌧,k) = Recover((X1

⌧,[1,k])
i, . . . , (Xn

⌧,[1,k])
i).

• Then again reshares these shares as [X̂i
⌧,[1,k]] = Reshare(X̂i

⌧,[1,k]) and [Ẑi
⌧,[1,k]] =

Reshare(X̂i
⌧,[1,k]) to set CT+1.

If T > 1:
• Decrypts and aggregates the shares of each batch of noise vector and gradients [ZT�1,j] =
(
Pn

⌘=1[zT�1,⌘,j]) and [XT�1,j] = (
Pn

⌘=1[gT�1,⌘,j]) from round T � 1 and securely reshares each
set of k such batches using the packed resharing protocol as [Zi

T�1,[1,k]] = Reshare(Zi
T�1,[1,k]),

[Xi
T�1,[1,k]] = Reshare(Xi

T�1,[1,k]) to the set of clients in CT+1.

• For each model parameter l 2 [k] inside batch j 2 [d/k], invokes a SecAgg protocol and sends to S:

yT,i,j·d/k+l = SecAgg.Enc

✓
Reconstruct

i,

T�1X

⌧=1

(A[T,⌧] · X̂i
⌧,j +B[T,⌧] ·Zi

⌧,j), l

!

+A[T,T] · gT,i,j·d/k+l +B[T,T] · zT,i,j·d/k+l

◆
.

Round 2:
• S recovers the noisy summed gradients as YT,l = SecAgg.Dec(

Pn
i yT,i,l) (then unflattens and

rescales as in [33]; details of this are provided in the Section A) and then applies them to the model to
obtain ✓T .

In the T -th round, we will assume that the n clients selected have, for ⌧ 2 [T � 2], ⌘ 2 [n], encrypted
secret shares (i) [Z⌘

⌧,[1,k]], which are the (aggregated) noise sampled in the first T � 2 rounds and

7

reshared by party ⌘ in the previous round; and (ii) [X⌘
⌧,[1,k]], which are the (aggregated) gradients

from the first T � 2 rounds and reshared by party ⌘ in the previous round (both really are shares of
batches of the noise and gradients, respectively). The clients will decrypt these, and then recover
shares of the same: (Ẑi

⌧,1, . . . , Ẑ
i
⌧,k) = Recover((Z1

⌧,[1,k])
i
, . . . , (Zn

⌧,[1,k])
i) and (X̂i

⌧,1, . . . X̂
i
⌧,k) =

Recover((X1
⌧,[1,k])

i
, . . . , (Xn

⌧,[1,k])
i). Additionally, from round T�1, the clients will have encrypted

shares of (i) [zT�1,i], which is the noise sampled by the i-th client in the last round; and (ii) [gT�1,i],
which is the gradient computed by the i-th client in the last round. The clients will decrypt these, and
then compute the aggregated versions [ZT�1] = (

Pn
⌘=1[zT�1,i]) and [XT�1] = (

Pn
⌘=1[gT�1,i]).

Next, as in the distributed setting, the clients will compute their local gradients gi (clipped, scaled,
flattened, and rounded as in [33]) using current model parameters ✓T�1 and data Di, and sample
some noise zi from a Discrete Gaussian distribution. The parties then take linear combinations,
according to A and B, of the packed sharings of gradients and noise of all previous rounds as well as
their current gradients and noise vectors to obtain packed sharings of the next output of the matrix
mechanism, dAXT . We employ secure aggregation SecAgg in a black-box way to reconstruct these
packed sharings (which are unflattened and rescaled by the server [33]).

Finally, each client will compute some secret shares [zi], [gi] of their local gradients and noise. They
will also reshare their shares Ẑi

⌧,m and X̂
i
⌧,m of the aggregated noise and gradients from the first

T � 1 rounds.The clients reshare the shares according to the protocol in Section 3.

Privacy We now state the privacy of our protocol. First we explain some parameters: c is the norm
to which gradients are clipped, � > 0 is used to determine the granularity for the discretization of
gradients, � determines the bias of the randomized rounding for discretization, and � is the noise
scale of the Discrete Gaussians. Details on these steps (for which we use the same strategy as [33]) are
provided in Section A. The ⌧ value in the theorem bounds the max divergence between the sum of n
discrete Gaussians each with scale �/� and one discrete Gaussian with scale

p
n�/�. The following

theorem is proved in Section B.

Theorem 1. Consider a query matrix A 2 RT⇤⇥T⇤
along with a fixed factorization A = BC with

� = sens1�(C). Let ⌧ := 10 ·
Pn�1

k=1 e
�2⇡2 �2

�2 · k
k+1 and

ĉ
2 := min

⇢
c
2 +

1

4
�
2
d+

p
2 log(1/�) · � · (c+ 1

2
�

p
d), (c+ �

p
d)2
�
,

Assume that the number of corruptions in each committee tc and number of dropouts (of honest

parties) in each committee td is such that tc + td < (1/2 � µ) · n for 0 < µ < 1/2. Then ⇧PPFL

satisfies
1
2"

2
-concentrated differential privacy for " := min

⇢q
�2ĉ2

n�2 + 2⌧d, �ĉp
n�

+ ⌧
p
d

�
.
3

Accuracy We now extend the theoretical analysis of the accuracy of the Distributed DP mechanism
from [33] to our Distributed Matrix Mechanism (DMM). First, we explain an additional parameter:
m is the bit-width of the finite field F used in ⇧PPFL. The following theorem is proved in Section B.
Theorem 2. Let n,m, d, T

⇤ 2 N, and c, " > 0 satisfy:

m � Õ

max

T2[T⇤]
||A[T :,]||2

p
nT + max

T2[T⇤]
||B[T :,]||2

p
d�

"

!
.

Let ⇧PPFL be instantiated with parameters � = Õ

⇣
maxT2[T⇤] ||A[T :,]||2c

p
nT

m
p
d

+
maxT2[T⇤] ||B[T :,]||2c�

"m

⌘
,

� ⇥
�
1
n

�
and � = ⇥̃

✓
c�
"
p
n
+
q

d
n · ��

"

◆
. Then ⇧PPFL satisfies

1
2"

2
-concentrated differential

privacy and attains the following accuracy. Let each gT,i 2 Rd
have ||gT,i||2 c for all

T 2 [T ⇤], i 2 [n]. Then
PT⇤

T=1 E
h����⇧PPFL(X)�A[T,:]

Pn
i=1 Xi

����2
2

i
 O

⇣
||B||2F c2�2d

"2

⌘
.

3We note that, just as in [33] and all other works using Secure Aggregation to obtain DP guarantees via
aggregated noises, we actually obtain computational DP [42].

8

Figure 3: Test accuracies on EMNIST across different " for the DDG mechanism and our DMM
instantiated with the optimal factorization and the Honaker online factorization.

6 Experiments

Here we empirically evaluate our Distributed Matrix Mechanism (DMM) for Federated Learning
on the Federated EMNIST public benchmark [12], as in [33]. We provide additional experimental
details and results in Section D. Federated EMNIST is an image classification dataset containing
671,585 training handwritten digit/letter images over 64 classes grouped into N = 3400 clients by
their writer. We use the standard dataset split provided by TensorFlow. We compare to the Distributed
Discrete Gaussian Mechanism for FL [33] that also obtains local DP, but with independent noise
and reliance upon privacy amplification via sampling [1, 35, 7]. In this setting, users are randomly
sampled to participate in each round with replacement (and thus may participate multiple times),
without the adversary knowing their identities, which leads to a lower " for DP.

As in [33], we train a small convolutional net with two 3 ⇥ 3 conv layers with 32/64 channels
followed by two fully connected layers with 128/62 output units; a 2⇥ 2 max pooling layer and two
dropout layers with drop rate 0.25/0.5 are added after the first 3 trainable layers, respectively. The
total number of parameters is d = 1018174. We use namely momentum 0.9, 1 client training epoch
per round, client learning rate ⌘c = 0.02, server learning rate ⌘s = 1, and client batch size to 16. For
⇧PPFL, we assume that µ = 1/6; i.e., the number of corrupted parties and dropout parties per round
satisfies tc + td < 1/3n.

Matrix Factorizations We use two different matrix factorizations A = BC for our experiments.
The first is the optimal with respect to the loss function L(B,C) = sens�(C)||B||2F for the b-min-
sep-participation schema �, as introduced by [14]. The second is the Honaker Online mechanism [34,
30], where C is essentially the binary tree matrix. This mechanism has the benefit that it allows
for implementations with only log(T ⇤) overhead; i.e., in the T -th round, the released model can be
computed using at most d · log(T ⇤) values. Thus, the size of the secret vectors that must be reshared
from one committee to the next are at most d · log(T ⇤) instead of d · T ⇤, which greatly increases
efficiency, as we will see below. For both factorizations, we measure sens1�(C) with respect to the
b-min-sep-participation schema using [14, Theorems 2 and 3].

Results Figure 3 shows that for several different " privacy levels, our DMM significantly outper-
forms the DDGauss Mechanism in terms of classification accuracy, due to the use of correlated noise
across rounds. We also see that the Honaker mechanism only sees slight accuracy degradation com-
pared to the mechanism based on the optimal b-min-sep-participation matrix factorization. Therefore,
the tree mechanism might be best in practice due to much better efficiency. These experiments all use
n = 40 clients per round. For the tree mechanism, we use T ⇤ = 29 = 512 and for the optimal matrix
factorization, we use T

⇤ = 765; this corresponds to b = 85 and b = 85, respectively.

Efficiency Table 1 shows the computation and communication costs of ⇧PPFL and also the SecAgg
protocol Lerna [36]. We run the ⇧PPFL experiments on an Ubuntu machine with a 3.0 GHz Intel Xeon
GHz processor and 192 GiB of memory, and use 32 bits to represent field values. We take an average

9

Setting ⇧PPFL

Comp.
SecAgg
Comp.

⇧PPFL

Comm.
SecAgg
Comm.

n = 40
Opt.

160 s N/A 2.1 GB N/A

n = 40
Honaker

1.8 s N/A 24 MB N/A

n = 20K
Opt.

0.85 s 10 s 4.3 MB 37 MB

n = 20K
Honaker

0.01 s 10 s 60 KB 37 MB

Table 1: Client computation and communication of ⇧PPFL and SecAgg for different committee sizes
(n = 40 and n = 20K). SecAgg stats are extrapolated from LERNA SecAgg protocol [36].

over 10 runs for each reported value. The Lerna paper reports that experiments were run on a 3.9
GHz processor with 32 GB of memory. We start with the n = 40 setting, with which we actually train
the FL model whose results we discuss above. In this setting, we see the optimal matrix factorization
results in an almost 100x increase in both the computation and communication per client compared
to the Honaker online factorization. This suggests that the small increase in accuracy from using the
optimal matrix factorization may not be worth it in terms of the added efficiency costs. Unfortunately,
Lerna did not run experiments for n this small, or d as large as our model for EMNIST.

Lerna did, however, run experiments for n = 20K and various settings of d. From these, we can
extrapolate to d = 1018174 to see the reported values in the table. We also ran ⇧PPFL for d = 1018174
and n = 20 and report the values. For this setting, we can see that the cost of ⇧PPFL for both the
optimal matrix factorization and the Honaker online factorization are quite small compared to that of
SecAgg, and this is especially the case for Honaker Online.

We also see that the costs of ⇧PPFL for the n = 20K setting are lower than the n = 40 setting, by
a 100X factor. This is because the number of secrets that can fit in a single instance of our PSS
protocol is proportional to n

2. We also point out that basic multi-threading of our implementation
would divide the computation costs by the number of threads.

Disclaimer

Disclaimer: This paper was prepared for informational purposes by the Artificial Intelligence Research
group of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a recommendation, offer
or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’16, page 308–318, New York,
NY, USA, 2016. Association for Computing Machinery.

[2] Apple. Differential privacy, 2016.

[3] Shahab Asoodeh, Jiachun Liao, Flavio P. Calmon, Oliver Kosut, and Lalitha Sankar. A better
bound gives a hundred rounds: Enhanced privacy guarantees via f-divergences. In 2020 IEEE

International Symposium on Information Theory (ISIT), page 920–925. IEEE Press, 2020.

10

[4] T.F.F. Authors. Tensorflow federated stack overflow dataset, 2019.

[5] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis testing
interpretations and renyi differential privacy. In Silvia Chiappa and Roberto Calandra, editors,
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-

tics, volume 108 of Proceedings of Machine Learning Research, pages 2496–2506. PMLR,
26–28 Aug 2020.

[6] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. How to withstand
mobile virus attacks, revisited. In Proceedings of the 2014 ACM Symposium on Principles of

Distributed Computing, PODC ’14, page 293–302, New York, NY, USA, 2014. Association for
Computing Machinery.

[7] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual

Symposium on Foundations of Computer Science, FOCS ’14, page 464–473, USA, 2014. IEEE
Computer Society.

[8] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly)logarithmic overhead. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20, page
1253–1269, New York, NY, USA, 2020. Association for Computing Machinery.

[9] Alexander Bienstock, Daniel Escudero, and Antigoni Polychroniadou. On linear communication
complexity for (maximally) fluid mpc. In Advances in Cryptology – CRYPTO 2023: 43rd Annual

International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20–24,

2023, Proceedings, Part I, page 263–294, Berlin, Heidelberg, 2023. Springer-Verlag.

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17, page 1175–1191, New York, NY, USA,
2017. Association for Computing Machinery.

[11] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Proceedings, Part I, of the 14th International Conference on Theory of

Cryptography - Volume 9985, page 635–658, Berlin, Heidelberg, 2016. Springer-Verlag.

[12] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný, H. B. McMahan, Virginia Smith, and
Ameet Talwalkar. Leaf: A benchmark for federated settings. ArXiv, abs/1812.01097, 2018.

[13] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for dif-
ferential privacy. In Proceedings of the 34th International Conference on Neural Information

Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[14] Christopher A. Choquette-Choo, Arun Ganesh, Ryan McKenna, H. Brendan McMahan, Keith
Rush, Abhradeep Thakurta, and Zheng Xu. (amplified) banded matrix factorization: A unified
approach to private training. In 37th Conference on Neural Information Processing Systems

(NeurIPs 2023), 2023.

[15] Christopher A. Choquette-Choo, H. Brendan McMahan, Keith Rush, and Abhradeep Thakurta.
Multi-epoch matrix factorization mechanisms for private machine leanring. In 40th International

Conference on Machine Learning, 2023.

[16] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk.
Fluid mpc: Secure multiparty computation with dynamic participants. page 94–123, Berlin,
Heidelberg, 2021. Springer-Verlag.

[17] Sergey Denisov, Brendan McMahan, Keith Rush, Adam Smith, and Abhradeep Guha Thakurta.
Improved differential privacy for sgd via optimal private linear operators on adaptive streams.
In 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2023.

11

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography,
pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[19] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In Proceedings of the Forty-Second ACM Symposium on Theory of

Computing, STOC ’10, page 715–724, New York, NY, USA, 2010. Association for Computing
Machinery.

[20] Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887,
2016.

[21] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy
via anonymity. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,

2019, pages 2468–2479. SIAM, 2019.

[22] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. In Neural Information

Processing Systems, 2020.

[23] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model poisoning
attacks to byzantine-robust federated learning. In Proceedings of the 29th USENIX Conference

on Security Symposium, SEC’20, USA, 2020. USENIX Association.

[24] Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple
and nearly optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual

Symposium on Foundations of Computer Science (FOCS), pages 954–964, 2022.

[25] Matthew Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of

Computing, STOC ’92, page 699–710, New York, NY, USA, 1992. Association for Computing
Machinery.

[26] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. In Proceedings of the

Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 495–504, New
York, NY, USA, 2014. Association for Computing Machinery.

[27] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. Yoso: You only speak once. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, pages 64–93, Cham, 2021. Springer International
Publishing.

[28] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, USA, 2004.

[29] Google. Learn how gboard gets better, 2023.

[30] James Honaker. Efficient use of differentially private binary trees, 2015.

[31] T-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, Automata, Languages and Programming, pages 405–417, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[32] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kannan Ramchandran.
Fastsecagg: Scalable secure aggregation for privacy-preserving federated learning. CoRR,
abs/2009.11248, 2020.

[33] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism
for federated learning with secure aggregation. In 38th International Conference on Machine

Learning (ICML 2021), 2021.

12

[34] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng
Xu. Practical and private (deep) learning without sampling or shuffling. In 38th International

Conference on Machine Learning (ICML 2021), 2021.

[35] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826, jun 2011.

[36] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. Lerna: Secure single-
server aggregation via key-homomorphic masking. In Advances in Cryptology – ASIACRYPT

2023: 29th International Conference on the Theory and Application of Cryptology and Infor-

mation Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part I, page 302–334,
Berlin, Heidelberg, 2023. Springer-Verlag.

[37] Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li, and Xiaowei Li. SASH: efficient
secure aggregation based on SHPRG for federated learning. In James Cussens and Kun Zhang,
editors, Uncertainty in Artificial Intelligence, Proceedings of the Thirty-Eighth Conference on

Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August 2022, Eindhoven, The Netherlands,
volume 180 of Proceedings of Machine Learning Research, pages 1243–1252. PMLR, 2022.

[38] Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin. Flamingo: Multi-round single-
server secure aggregation with applications to private federated learning. In 2023 IEEE Sympo-

sium on Security and Privacy (SP), pages 477–496, Los Alamitos, CA, USA, may 2023. IEEE
Computer Society.

[39] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels,
and Dawn Song. Churp: Dynamic-committee proactive secret sharing. In Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, page
2369–2386, New York, NY, USA, 2019. Association for Computing Machinery.

[40] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International

Conference on Artificial Intelligence and Statistics, 2016.

[41] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations

Symposium (CSF), pages 263–275, 2017.

[42] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational differential
privacy. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 126–142, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[43] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’91, page 51–59, New York, NY, USA, 1991. Association for Computing Machinery.

[44] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for dishonest majority. In
Advances in Cryptology – CRYPTO 2022: 42nd Annual International Cryptology Conference,

CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I, page
719–749, Berlin, Heidelberg, 2022. Springer-Verlag.

[45] Sashank Reddi, Zachary Burr Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and Brendan McMahan, editors. Adaptive Federated Optimization,
2021.

[46] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society

for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[47] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. arXiv: Learning, 2018.

[48] Jinhyun So, Ramy E. Ali, Basak Güler, and Amir Salman Avestimehr. Secure aggregation for
buffered asynchronous federated learning. CoRR, abs/2110.02177, 2021.

13

[49] Jinhyun So, Başak Güler, and A. Salman Avestimehr. Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning. IEEE Journal on Selected Areas in Information

Theory, 2(1):479–489, 2021.

[50] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks
against federated learning systems. In Computer Security – ESORICS 2020: 25th European

Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September

14–18, 2020, Proceedings, Part I, page 480–501, Berlin, Heidelberg, 2020. Springer-Verlag.

[51] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled renyi differential
privacy and analytical moments accountant. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of the Twenty-Second International Conference on Artificial Intelligence

and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 1226–1235.
PMLR, 16–18 Apr 2019.

[52] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and Salman Avestimehr.
Lightsecagg: Rethinking secure aggregation in federated learning. CoRR, abs/2109.14236,
2021.

[53] Yizhou Zhao and Hua Sun. Information theoretic secure aggregation with user dropouts. In
2021 IEEE International Symposium on Information Theory (ISIT), pages 1124–1129, 2021.

[54] Yuqing Zhu and Yu-Xiang Wang. Poission subsampled rényi differential privacy. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7634–
7642. PMLR, 09–15 Jun 2019.

14

Protocol 2 Client Gradient Processing

Input: Gradient gi 2 Rd.

Parameters: model dimension d, clipping threshold c > 0, granularity �, modulus m, noise scale
� > 0 and bias � 2 [0, 1).

1. Clip and scale gradient: g0i =
1
� min{1, c

||gi||2 } · gi 2 Rd.

2. Flatten vector: g00i = U · g0i 2 Rd.
3. Repeat:

(a) Let g̃i 2 Zd be a randomized rounding of g00i . i.e., g̃i is a product distribution with
E[g̃i] = g

00
i and ||g̃i � g

00
i ||1 < 1.

until |||g̃||2 min{c/� +
p
d,

q
c2/�2 + 1

4d+
p
2 log(1/�) · (c/� + 1

2

p
d)}.

4. Output: g̃i.

Protocol 3 Server Aggregate Noisy Release Value Processing

Input: Vector dAXT .

Parameters: model dimension d, clipping threshold c > 0, granularity �, modulus m, noise scale
� > 0 and bias � 2 [0, 1).

1. Map Zm to {1�m/2, 2�m/2, . . . ,�1, 0, 1, . . . ,m/2� 1,m/2} so that dAXT is mapped
to dAX

0
T 2 [�m/2,m/2]d \ Zd (and we have dAX

0
T mod m = dAXT .

Output: � · U|dAX
0
T 2 Rd.

Supplementary Material

A Discretization Details of [33]

We use the randomized rounding strategy from [33] for discretization in ⇧PPFL. At a high-level, each
client first clips and scales their input gradient. Then, the clients flatten their gradient vectors using
some unitary matrix U (intuitively, this minimizes the risk of modulo overlap in vector elements that
are particularly large). Finally, the clients use a randomized process to round their gradient vectors in
Rd to Zd. On the sever side, after receiving the aggregated, noise outputs ÂXT in each round, the
server unflattens the vector by applying U

T and then descales. Protocols 2 and 3 give more detail,
but we refer the readers to [33] for full details on possible flattening matrices U and the randomized
rounding procedure used.

To help with the analysis, [33] uses the following definitions to represent the conditional randomized
rounding. We present them verabtim.
Definition 1 (Randomized Rounding). Let � > 0 and d 2 N. Define R� : Rd ! �Zd

(where

�Zd := {(�z1, �z2, . . . , �zd) : z1, . . . , zd 2 Z} ✓ Rd
) as follows. For x 2 [0, �]d, R�(x) is

a product distribution on {0, �}d with mean x; that is, independently for each i 2 [d], we have

Pr[R�(x)i = 0] = 1 � xi� and Pr[R�(x)i = �] = xi/�. In general, for x 2 Rd
, we have

R�(x) = �bx/�c+R�(x� �bx/�c); here �bx/�c 2 �Zd
is the point x rounded down coordinate-

wise to the grid.

Definition 2 (Conditional Randomized Rounding). Let � > 0 and d 2 N and G ✓ Rd
. Define

R
G
� : Rd ! �Zd \G to be R� conditioned on the hte output being in G. That is, Pr[RG

� (x) = y] =

Pr[R�(x) = y]/Pr[R�(x) 2 G] for all y 2 �Zd \G, where R� is as in Definition 1.

15

B Proofs for Section 5

Proof of Theorem 1

First we recall the notion of Rényi Divergences and Concentrated Differential Privacy [11, 20], as
well as some other standard DP notions. We also define the Discrete Gaussian and provide its DP
guarantees. See [33] for more details. Then we prove Thoerem 1
Definition 3 (Rényi Divergences). Let P and Q be probability distributions on some common domain

⌦. Assume that P is absolutely continuous with respect to Q so that the Radon-Nikodym derivative

P (x)/Q(x) is well-defined for x 2 ⌦.

For ↵ 2 (1,1), we define the Rényi Divergence of order ↵ of P with respect to Q as:

D↵(P ||Q) :=
1

↵� 1
logEX P

"✓
P (X)

Q(x)

◆↵�1
#

We also define

D⇤(P ||Q) := sup
↵2(1,1)

1

↵
D↵(P ||Q)

Definition 4 (Concentrated Differential Privacy [11, 20]). A randomized algorithm M : X ⇤ ! Y
satisfies

1
2"-concentrated differential privacy iff, for all x, x

0 2 X differing by the addition or removal

of a single user’s records, we have D⇤(M(x)||M(x0)) 1
2"

2
.

Definition 5 (Rényi Differential Privacy [41]). A randomized algorithm M : X ⇤ ! Y satisfies

(↵, ")-Rényi differential privacy iff, for all x, x
0 2 X differing by the addition or removal of a single

user’s records, we have D↵(M(x)||M(x0)) 1
2"

2
.

Definition 6 (Differential Privacy [18]). A randomized algorithm M : X ⇤ ! Y satisfies (", �)-
differential privacy iff, for all x, x

0 2 X differing by the addition or removal of a single user’s records,

we have

Pr[M(x) 2 E] e
" Pr[M(x0) 2 E] + �,

for all events E ⇢ Y . We refer to (", 0)-DP as pure DP and (", �)-DP for � > 0 as approximate DP.

We remark that 1
2"

2-concentrated DP is equivalent to satisfying (↵, 1
2"

2
↵)-Rényi DP simultaneously

for all ↵ 2 (1,1). We also have the following conversion lemma from concentrated to approximate
DP [5, 13, 3].
Lemma 1. If M satisfies (", 0)-DP, then it satisfies

1
2"

2
-concentrated DP. If M satisfies

1
2"

2
-DP

then, for any � > 0, M satisfies ("aDP (�), �)-DP, where

"aDP (�) = inf
↵>1

1

2
"
2
↵+

log(1/↵�)

↵� 1
+ log(1� 1/↵) " · (

p
2 log(1/�) + "/2).

Discrete Gaussian Here we define the Discrete Gaussiasn [13] and give its DP guarantees.
Definition 7 (Discrete Gaussian). The discrete Gaussian with scale parameter � > 0 and location

parameter µ 2 Z is a probability distribution supported on the integers Z denoted by NZ(µ,�2) and

defined by

8x 2 Z Pr
X NZ(µ,�2)

(X = x) =
exp

⇣
�(x�µ)2

2�2

⌘

P
y2Z exp

⇣
�(y�µ)2

2�2

⌘ .

Proposition 1 ([33], Proposition 14). Let � � 1
2 . Let XI,j NZ(0,�2) independently for each i

and j. Let Xi = (Xi,1, . . . , Xi,d) 2 Zd
. Let Zn =

Pn
i=1 Xi 2 Zd

. Then, for all � 2 Zd
and all

↵ 2 (1,1),

D↵(Zn||Zn +�) min{↵||�||22
2n�2

+ ⌧d,

↵

2
·
✓
||�||22
n�2

+ 2
||�||1p

n�
· ⌧ + ⌧

2
d

◆
,

↵

2
·
✓
||�||2p

n�
+ ⌧

p
d

◆2

}

16

where ⌧ := 10 ·
Pn

k=1 e
�2⇡2�2 k

k+1 . An algorithm M that adds Zn to a query with `p sensitivity �p

satisfies
1
2"

2
-concentrated DP for

" =min{
r

||�||22
n�2

+ 2⌧d,
s

�2
2

n�2
+ 2

�1p
n�

· ⌧ + ⌧2d,

�2p
n�

+ ⌧

p
d}

Proof of Theorem 1

Proof. First, it is sufficient to show that the computation CG + Z satisfies 1
2"

2-concentrated DP,
due to the post processing property of DP. Now consider two datasets G and H differing in one data
record according to participation schema �.4 By assumption in the theorem statement, we have

sens1�(C) = �, and thus sens�(C) = c
0 ·�,

where c
0 is the bound on the `2 norm of individual gradient vectors that are aggregated. Since we

use the randomized rounding techniques from Section A, gradients that are clipped to `2 norm c can
actually end up having `2 norm c

0 = ĉ after rounding, where ĉ is as in the theorem statement. With
the bound on the total sensitivity above, we know from [33, Proposition 14] (reproduced above) that
the computation is 1

2"
2-concentrated DP, with the " from the theorem statement.

Proof of Theorem 2

We first prove the following exact result for the error:

Theorem 3. Let � 2 [0, 1), �2 � �/2 > 0, and c > 0. Let n, d 2 N and ⇢ � 1. Let gT,i 2 Rd
with

||gT,i||2 c for each T 2 [T ⇤], i 2 [n]. Let U 2 Rd⇥d
be a random unitary matrix such that

8x 2 Rd 8i 2 [d] 8t 2 R E[exp(t(Ux)i)] exp(t2⇢||x||22/2d).

Let

� = sens1�(C)

⌧ = 10 ·
n�1X

k=1

e
�2⇡2 �2

�2 · k
k+1

ĉ
2 = min

⇢
c
2 +

1

4
�
2
d+

p
2 log(1/�) · � · (c+ 1

2
�d), (c+ �

p
d)2
�

" = min

(r
�2ĉ2

n�2
+ 2⌧d,

�ĉp
n�

+ ⌧

p
d

)
.

Then ⇧PPFL satisfies
1
2"

2
-concentrated differential privacy.

Let

�̂
2(x) :=

⇢ · ||A[T,:]||22
d

TX

⌧=1

nX

i=1

||g⌧,i||22 +
✓
�
2 · ||A[T,:]||22

4
+ �

2 · ||B[T,:]||22
◆
· n

⇢||A[T,:]||22

d
c
2
nT +

✓
�
2 · ||A[T,:]||22

4
+ ||B||22 · �2

◆
· n

4
G and H really consist of entries that are sums of records.

17

If �̂
2(x) r

2
then

E

2

4
�����

�����⇧PPFL(x)�A[T,:]

nX

i=1

xi

!�����

�����

2

2

3

5 dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

We start with a modified version of Proposition 26 in [33].
Proposition 2. Let R

G
� be as in Definition 2 and G = {y 2 Rd : ||y||22 �2

ĉ
2
}. Let ⇧PPFL

0(X)
be ⇧PPFL up to the point of modular clipping. Consider the parameters from Theorem 3. Then

⇧PPFL
0(X) satisfies

1
2"

2
-concentrated differential privacy. Also the following holds.

E

2

4
�����

�����⇧PPFL
0(X)�A[T,:]

nX

i=1

Xi

�����

�����

2

2

3

5 ||A[T,:]||22 ·

�
2 · d · n

4(1� �)
+

✓
�

1� �
�

p
dn

◆2
!

+ ||B[T,:]||22 · n · d · �2
.

8t 2 Rd E
"
exp

 *
t,⇧PPFL

0(X)�A[T,:]

nX

i=1

Xi

+!#

exp((
�2·||A[T,:]||22

8 +
�2·||B[T,:]||22

2) · ||t||22 · n)
(1� �)nT

.

Proof. First, the differential privacy claim follows from [33, Proposition 14].

Now, for the utility analysis, we have

E

2

4
�����⇧PPFL

0(X)�A[T,:]

nX

i=1

Xi

�����

2

2

3

5 = E

2

4
�����

TX

⌧=1

AT,⌧ ·

nX

i=1

(RG
� (g⌧,i)� g⌧,i)

!
+BT,⌧ ·

nX

i=1

� · z⌧,i

�����

2

2

3

5

TX

⌧=1

A
2
T,⌧ · E

2

4
�����

nX

i=1

R
G
� (g⌧,i)� g⌧,i

�����

2

2

3

5+B
2
T,⌧ · n · �2

��A[T,:]

��2
2
·

�
2 · d · n

4(1� �)
+

✓
�

1� �
�

p
dn

◆2
!

+
��B[T,:]

��2
2
· n · �2

,

where the last inequality is due directly to Proposition 26 of [33].

Now, for each i 2 [n], ⌧ 2 [T], we have that R�(g⌧,i) 2 �bg⌧,i/�c + {0, �}d and is a product
distribution with mean g⌧,i. Thus, R�(g⌧,i)� g⌧,i 2 {0, �}d and is a product distribution with mean
0. Therefore, by Hoeffding’s lemma, we have:

8t 2 Rd E[exp(ht,
TX

⌧=1

AT,⌧

nX

i=1

R�(g⌧,i)� g⌧,ii)] exp(
�
2

8
· n · ||A[T,:]||22 · ||t||22).

Thus,

8t 2 Rd E[exp(ht,
TX

⌧=1

AT,⌧

nX

i=1

R
G
� (g⌧,i)� g⌧,ii)]

E[exp(ht,
PT

⌧=1 AT,⌧
Pn

i=1 R�(g⌧,i)� g⌧,ii)]
Pr[R�(g⌧,i) 2 G 8⌧, i]

exp(�

2

8 · n · ||A[T,:]||22 · ||t||22)
(1� �)nT

.

Moreover, we have that [13]:

8t 2 Rd E[exp(ht,
TX

⌧=1

BT,⌧

nX

i=1

� · z⌧,ii)] exp(
�
2

2
· n · ||B[T :,]||22 · ||t||22).

18

Finally, we are able to prove a modified version of Theorem 36 from [33].

Proof of Theorem 3. First, the differential privacy follows from Proposition 2 and the post-processing
property of DP.

Now, for the utility, by assumption, we have that

8x 2 Rd 8j 2 [d] 8t 2 R E[exp(t(Ux)j)] exp(t2⇢||x||22/2d).

Therefore,

E[exp(t · (
TX

⌧=1

AT,⌧ · (U
nX

i=1

g⌧,i)j)] =
TY

⌧=1

·
nY

i=1

E[exp(t ·AT,⌧ · (Ug⌧,i)j)]

TY

⌧=1

·
nY

i=1

exp(t2 ·A2
T,⌧ · ⇢ · ||g⌧,i||22/2d)

= exp(t2 · ||A[T,:]||22 · ⇢ ·
TX

⌧=1

nX

i=1

||g⌧,i||22/2d).

Combining with the result of Proposition 2, we have

8t 2 R 8j 2 [d] E[exp(t · (A(Ux))j)] exp(
t
2 · ||A[T,:]||22 · ⇢

2d
·

TX

⌧=1

nX

i=1

||g⌧,i||22)

·
exp((

�2·||A[T,:]||22
8 +

�2·||B[T,:]||22
2) · t2 · n)

(1� �)nT

Recall �̂2(x) =
⇢·||A[T,:]||22

d

PT
⌧=1

Pn
i=1 ||g⌧,i||22 + (

�2·||A[T,:]||22
4 + �

2 · ||B[T,:]||22) · n.

By Proposition 35 of [33], for all j 2 [d],

E[(M[a,b](⇧PPFL
0(Ux))j �⇧PPFL

0(Ux)j)
2] (b� a)2 · 1

(1� �)nT
· e�(b�a)

2/8�̂2(x) · (e
a2�b2

4�̂2 + e

b2�a2

4�̂2),

where a = �r and b = r here. Summing over j 2 [d] gives

E[||M[�r,r](⇧PPFL
0(Ux))�⇧PPFL

0(Ux)||22] 4r2 · d

(1� �)nT
· e�r

2/2�̂2(x) · 2

Continuing with the proof from [33], we get:

E[||⇧PPFL(x)�A[T,:]

X

i=1

Xi||22]

(8r2 · d

(1� �)nT
· e�r

2/2�̂2(x))1/2 +

✓
||A[T,:]||22 ·

✓
�
2 · d · n

4(1� �)
+

✓
�

1� �
�

p
dn

◆2◆
+

||B[T,:]||22 · n · d · �2

◆1/2
!2

=
dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

With this error bound, assuming that � 1/
p
n and �̂

2(x) r
2
/4 log(r

p
n/�

2), we get

E[||Ã(x)�A[T,:]

X

i=1

Xi||22] O(dn((||A[T,:]||22 · �2 + ||B[T,:]||22 · �2)).

19

Proof of Theorem 2. Note that r = 1
2�m. We verify that setting the parameters as specified yields

1
2"

2-concentrated DP and the desired accuracy. First, we have that

"
2 �2

ĉ
2

n�2
+ 2⌧d �2(c+ �

p
d)2

n�2
+ 20nde�⇡

2(�/�)2 2�2
c
2

n�2
+

2d�2

n(�/�)2
+ 20nde�⇡

2(�/�)2
.

Thus the privacy requirement is satisfied as long as � � 2c�/"
p
n and (�/�)2 � 8d�2

/"
2
n, and

20nde�⇡
2(�/�)2 "

2
/4. So we can set

� = max{ 2c�
"
p
n
,
��
p
8d

"
p
n

,
�

⇡2
log(

80nd

"2
)} = ⇥̃(

c�

"
p
n
+

r
d

n
· ��

"
+ � log(

nd

"2
).

We set � = min{1/n, 1/2} = ⇥(1n).

Next,

�̂
2

⇢||A[T,:]||22
d

c
2
nT + (

�
2||A[T,:]||22

4
+ �

2||B[T,:]||22) · n

⇢||A[T,:]||22

d
c
2
nT + �

2||A[T,:]||22n+ �
2||B[T,:]||22 · n

 O(
⇢||A[T,:]||22

d
c
2
nT + �

2||A[T,:]||22n+ ||B[T,:]||22(
c
2�2

"2
+

�
2
d�

"2
+ �

2
n log2(

nd

"2
))

 O(
⇢||A[T,:]||22

d
c
2
nT + ||B[T,:]||22

c
2�2

"2
)) + �

2 ·O(||A[T,:]||22n+ ||B[T,:]||22(
d�

"2
+ n log2(

nd

"2
)).

Now we work out the asymptotics of the accuracy guarantee:

E[||⇧PPFL(X)�A[T,:]

X

i=1

Xi||22]

 dn

1� �

2
p
2 · r · e�r2/4�̂2(x)

p
n(1� �)nT�1

+

✓
||A[T,:]||22 ·

✓
�
2

4
+

�
2 · �2

n

1� �

◆
+ ||B[T,:]||22 · �2

◆1/2
!2

.

 O(nd(
re
�r2/4�̂2

p
n

+
q
||A[T :,]||22�2 + ||B[T :,]||22�2))

 O(nd(
r
2
e
�r2/2�̂2

n
+ ||A[T :,]||22�2 + ||B[T :,]||22�2))

 O(nd(
�
2
m

2

n
exp(

��2
m

2

8�̂2
) + ||A[T :,]||22�2 + ||B[T :,]||22(

c
2�2

"2n
+

d�
2�2

"2n
+ �

2 log2(
nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ �

2
nd(

m
2

n
exp(

��2
m

2

8�̂2
) + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

Similarly to the analysis of Theorem 2 in [33], if

m
2 � O((||A[T :,]||22n+ ||B[T :,]||22(

d�

"2
+ n log2(

nd

"2
))) · log(1 +m

2
/n)

= Õ(||A[T :,]||22n+ ||B[T :,]||22(
d�

"2
+ n)),

then we can set

�
2 = O(

⇢||A[T :,]||22c2nT
d

+
||B[T :,]||22c2�2

"2
) · log(1 +m

2
/n)

m2

so that m2

n exp(��
2m2

8�̂

2
) 1.

20

This gives us,

E[||Ã(x)�A[T,:]

X

i=1

Xi||22]

 O(||B[T :,]||22
c
2�2

d

"2
+ �

2
nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ (

⇢||A[T :,]||22c2nT
d

+
||B[T :,]||22c2�2

"2
)·

log(1 +m
2
/n)

m2
nd(1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

 O(||B[T :,]||22
c
2�2

d

"2
+ ||B[T :,]||22

c
2�2

d

"2
(
log(1 +m

2
/n)

m2
n · (⇢||A[T :,]||22T+

1 + ||A[T :,]||22 + ||B[T :,]||22(
d�2

"2n
+ log2(

nd

"2
)))))

 O(||B[T :,]||22
c
2�2

d

"2
(1 +

log(1 +m
2
/n)

m2
n

· (⇢||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(
d�2

"2n
+ log2(

nd

"2
))))).

So, if

m
2 � O(log(1 +m

2
/n)n · (⇢||A[T :,]||22T + 1 + ||A[T :,]||22 + ||B[T :,]||22(

d�2

"2n
+ log2(

nd

"2
))))

= Õ(⇢||A[T :,]||22nT + ||B[T :,]||22
d�2

"2
),

then the mean squared error is O(||B[T :,]||22 c2�2d
"2), as required. The final bound is obtained by simply

summing the above over each round from T = 1 to T = T
⇤.

C Resharing Security Model and Proof

Security proofs

We first provide an intuition on the current analysis for proving the security of cryptographic protocols.
In the security proof, we compare between an n-party function f(x1, . . . , xn) = (y1, . . . , yn) and
a protocol P (x1, . . . , xn) that allegedly privately computes the function f . Intuitively, a protocol
P correctly and privately computes f if the following hold: (a) Correctness: For every input ~x =
(x1, . . . , xn), the output of the parties at the end of the protocol interaction P is the same as f(~x);
(b) Privacy: There exists a simulator S that receives the input and output of the corrupted parties,
and can efficiently generate the messages that the corrupted parties received during the protocol
execution. The simulator does not know the input/outputs of the honest parties. Intuitively, the fact
that the messages sent by the honest parties can be generated from the input/output of the corrupted
parties implies that these messages do not contain any additional information about the inputs of the
honest parties besides what is revealed from the output of the computation.

Security Model

We now introduce the formal security model. We first note that we consider robustness checks on
inputs out of the scope of our security model; i.e., we do not cover poisoning attacks,which have
been extensively studied in the literature, e.g., [50, 23]. Indeed, it is the case that malicious parties
can input to the protocol whatever they want as their gradients and noise x, z, which can lead to a
meaningless model.

We follow the standard real/ideal world security paradigm of [28]. Consider some multi-party protocol
⇧ that is executed by some parties P1, . . . , PN that are grouped into committees C1, . . . , CT⇤ from
round 1 to round T

⇤ and a server S. Note: the committees can be arbitrarily chosen, but our protocol
only provides security if the assumption that the number of parties A corrupts is at most t holds;

21

in other words, we abstract out the committee selection process.5 Each of these parties has inputs
x1, . . . ,xN , and they want to evaluate some given functionality F . In our case, the functionality
FPPFL is resharing the inputs from all previous committees to the next committee, in each round, and
then outputting the dAXT value to the sever in each round T , given some factorization A = BC. The
security of protocol ⇧ is defined by comparing the real-world execution of the protocol with an ideal-
world evaluation of F by a trusted party (ideal functionality), who receives the inputs x1, . . . ,xN

from the parties in the clear and simply sends the relevant parties their outputs F(x1, . . . ,xN)
periodically. There is an adversary A that chooses to corrupt at most t < N of the parties P1, . . . , PN .
This adversary A sees all of the messages and inputs and outputs of the corrupted parties and is
allowed to act arbitrarily on their behalf. We also assume that the server is corrupted and thus A
can see all of the messages sent to the server and all of its outputs. Informally, it is required that for
every adversary that corrupts some parties during the protocol execution, there is an adversary S , also
referred to as the simulator, which can achieve the same effect and learn the same information in
the ideal-world. This simulator only sees what the corrupted parties send to the honest parties and
the output y vectors, not the inputs x of the honest parties.We now formally describe the security
definition.

Real Execution. In the real execution, ⇧ is executed in the presence of the adversary A. The view

of a party P during an execution of ⇧, denoted by View
⇧
P consists of the messages P receives from

the other parties during the execution and P ’s input. The execution of ⇧ in the presence of A on
inputs (x1, . . . ,xN) denoted Real⇧,A(x1, . . . ,xN) is defined as {View⇧

P }P2C. The output of ⇧ in
the presence of A on inputs (x1, . . . ,xN) is noted as Output.

Ideal Execution. In the ideal execution, the parties and an ideal world adversary S interact with a
trusted party (ideal functionality). The ideal execution proceeds as follows: As a committee CT comes
online, the parties PT,1, . . . , PT,n in that committee send their inputs xT,1, . . . ,xT,n to the trusted
party, who computes the output F(x1,1, . . . ,xT,n) to the server for that round. S is also allowed to
release a vector �, which will be added to the output, to simulate additive attacks.
Definition 8. Protocol ⇧ securely computes F if for every adversary A there exists a simulator S
such that

SD(({View⇧
P }P2C,Output), (S({xT⇤,j}T,j2C(T),F(x1,1, . . . ,xT⇤,n),F(x1,1, . . . ,xT⇤,n)+�)) negl(�), 6

where SD is the statistical distance between the two distributions and C(T) is the set of corrupted

parties in round T .

Additional Protocol Details for Active Security

Before proving the security of our protocol, we provide additional details that are needed for an
adversary that is allowed to act arbitrarily on behalf of the corrupted parties, or an active adversary.
For active security, our protocol relies on four main techniques/properties:

1. More on Packed Secret Sharing: We first give a property of packed secret sharing relevant
to active security that we omitted from Section 2. A packed secret sharing [z] is actually
equivalent to a Reed-Solomon Encoding [46] of the underlying secret z. This means that
packed secret sharings inherit the error-detection property of Reed Solomon codes. Indeed,
writing n = w + tc + k, if w � tc, and at most tc of the shares are changed before one
attempts to use them to reconstruct the underlying secret z, then either the reconstruction
succeeds, or the reconstructor knows that at least one of the shares was tampered with.

2. Parity Check Matrices: Now, we have the following, which is essentially the check that the
reconstructor performs to see if any of the shares were tampered with. Let H 2 F(n�tc�k)⇥n

be the parity check matrix of the Reed Solomon code such that H · z = 0 if and only
if z 2 Fn is a valid codeword. This matrix intuitively takes the first tc + k shares in z,
computes what the other n � (tc + k) shares should be (which can be done with Reed
Solomon codes), and compares them to those that are actually in z.

5In practice, the committee selection is done by the server.
6negl(�) is any function in �!(1)

22

3. Commitments: Commitments are a two-stage protocol where first a party Pi commits to
some value x by using c Comm(x) and sending c to the other parties. The important
property is that Comm(x) hides x from the other parties. Next, the party Pi can open c by
using o Open(c, x) and sending (o, x) to the other parties. The important property is that
Pi cannot convince the other parties that it committed to another value x0 6= x in its original
commitment c. There are several well-known constructions of commitments.

4. Random Linear Combinations: If � 2 F is random and unknown to all, then to check that
some secret sharings Share(�j) for j 2 [n � d � 1] each share 0, we can compute and
reconstruct Share(�j)

Pn�d�1
j=1 �

j · Share(�j), then check that the reconstructed value
is 0. Intuitively, we are evaluating the polynomial defined by the �j on random point �. So if
some �j 6= 0, then by the Schwartz-Zippel Lemma, the reconstructed value will be non-zero
with high probability.

With these tools in hand, we can describe the modifications to our passively-secure protocol above, to
make it actively secure. After committee CT+1 receives the re-shared ([Z1

[1,k]], . . . , [Z
n
[1,k]]) from each

Pi in committee CT , each party Pj in committee CT+1 samples random �j , sends c Comm(�j) to
the other parties of committee CT+1 and finally opens �j to the other parties. The parties of CT+1

then agree on the m parties from CT that actually sent them reshared values7 and compute

([y1], . . . , [ym�tc�k]) H · ([Z1
[1,k]], . . . , [Z

n
[1,k]]).

Note that since the secret sharing is linear, by the properties of parity check matrices above, the
shared yl will be equal to 0 if and only if the underlying shares of the Zi

1, . . .Z
i
k correspond to valid

codewords and thus shares that were not tampered with. Finally, the parties compute

[y]
d(m�tc�k)/(4µ2n2)X

l=1

�
l · [yl],

then reconstruct it to the server who check if the reconstructed value is 0, and aborts if not. Otherwise,
they abort.

Security Intuition Let tc1 be the number of corrupted parties in committee CT that do not send to
enough parties in CT+1 and m = n� td� tc1 be the number of parties from committee CT that do not

drop out (including those corrupted parties that do not send to enough parties). Writing m = w+tc+k,
we have that w = m� tc� k = n� td� tc1 � ((1/2+µ)n) = (1/2�µ)n� td� tc1 > tc2 , where
tc2 is the number of corrupted parties that do send to enough parties in CT+1, and thus tc1 + tc2 = tc.
The last inequality holds, since we assume that td+ tc < (1/2�µ)n. This means that if the corrupted
parties from committee CT that do send to enough parties, do not reshare their actual shares to
committee CT+1, then the parity check sharing will not share yi = 0. This is because the number
of honest parties who do not drop out is at least tc + k and thus their shares completely define the
correct codeword and so if the corrupted parties’ shares do not match with this codeword, it will be
reflected.Using similar logic, the server in round CT+1 will be able to either successfully reconstruct
the parity check sharing, or otherwise detect malicious behavior during the reconstruction.

Added Communication Complexity Note that most of the updates to achieve active security are
done locally. The only added communication is for committing to and opening the randomness �i,
then reconstructing the y. Moreover, if we use the passively-secure protocol many times in parallel,
then we can use the same � to take the random linear combination across all such instances. Thus the
total communication complexity of the actively secure protocol is marginally changed with respect to
the passively secure protocol, as long as if enough instances of the passive protocol are used at the
same time.

Security Proof

Theorem 4 (Security). ⇧PPFL securely computes FPPFL with functionalities FSecAgg and FComm.

7This can be done by each party sending to the other parties those identities from which they received
reshared values, then including an identity if at least n� tc parties said they received from that identity.

23

Proof. We first build the simulator S. We first note that we model the SecAgg protocol as a trusted
functionality FSecAgg which takes inputs a1, . . . ,am from some parties via SecAgg.Enc and outputs
their sum

Pm
i=1 ai to the server S via SecAgg.Dec. We also model commitments as a trusted

Functionality FComm that in the first stage takes in x from Pi and then does not reveal x to the other
parties until the next stage. Indeed, the simulator emulates these trusted functionalities and thus can
see whatever the corrupted parties input to them.

We describe the simulator for the first rounds T = 1 and then inductively for the rest. Throughout,
we will (inductively) show that the simulator knows all of the corrupted parties’ shares. We start with
the case of a corrupted server S.

Corrupted Server In round 1, S simulates the shares sent by honest parties of round 1 to corrupted
parties of round 2 by sampling random values from the field F. In round 2, S receives on behalf of
the honest parties in committee C2 the shares sent by corrupted parties from round 1. Note that the
honest shares completely (and exactly) define these sharings since the number of honest parties is
exactly tc + k, and thus S can compute the corrupted parties’ shares.

In subsequent rounds T > 1, S first simulates the resharing of honest parties of round T to corrupted
parties of round T + 1 by sampling random values from the field F. In round T + 1, S first inputs to
FComm random �i on behalf of the honest parties. It also receives on behalf of the honest parties in
committee CT+1 the reshared shares sent by corrupted parties from round T . Note that the honest
shares completely (and exactly) define these sharings since the number of honest parties is exactly
tc + k, and thus S can compute the corrupted parties’ shares as well as the actual underlying reshared
shares Z̃

i
1, . . . , Z̃

i
k of each corrupted party Pi in CT . Note that these might be different from the

actual underlying shares Ẑi
1, . . . , Ẑ

i
k of the corrupted parties which, inductively, S knows. Thus, S

can compute e
i
m Ẑ

i
m � Z̃

i
m for each m 2 [k]. We have for k 2 [m]:8

H · (Z̃1
m, . . . , Z̃

n
m)| = H · (Ẑ1

m + e
1
m, . . . , Ẑ

1
m + e

n
m)| = H(e1m, . . . , e

n
m)|.

Since these are the underlying values of the shared vectors when the parties compute H ·
([Z1

[1,k]], . . . , [Z
n
[1,k]])

|, S can compute the underlying values of the shared vector defined by the
shares [y] (also by using �). Thus, along with the corrupted parties’ shares yj , which it can compute
manually with the corrupted parties’ shares Ẑm

j
and � which it knows, it can reconstruct the honest

parties’ shares yj and send these to the corrupted server.

Now we show that this is a good simulation. By the properties of Shamir Secret Sharing, we know that
the at most tc shares that the adversary receives in the real world for every sharing will be distributed
randomly. Thus the shares that S sends are distributed the same way. Also the y

j shares that S sends
to the corrupted server are computed exactly as they are in the real world, since S can compute the
e
i
m exactly and also inductively computes the corrupted parties’ shares of all sharings exactly. Thus

S perfectly simulates the real world.

Honest Server In the case of an honest server, we can use all of the same simulation above, except
we do not need to simulate the messages sent to the server. We do need to show that, even in the
presence of honest dropout parties, the random linear combinations of the parity checks do indeed
reconstruct to 0 if and only if the adversary did not tamper with its shares (which the simulator can
trivially check and abort if so, since it keeps track of the corrupted parties’ shares). Since the packed
secret sharing scheme we use is linear, it is clear that applying the parity check matrix to the shares
of shares will result in shares of 0 if and only if the adversary reshared the correct underlying shares:
Let tc1 be the number of corrupted parties in committee CT that do not send to everyone in CT+1

and m = n� td � tc1 be the number of parties from committee CT that do not drop out (including
those corrupted parties that do not send to enough parties). Writing m = tc + k + w, we have that
w = m� tc � k = n� td � tc1 � ((1/2 + µ)n) = (1/2� µ)n� td � tc1 > tc2 , where tc2 is the
number of corrupted parties that do send to CT+1, and thus tc1 + tc2 = tc. The last inequality holds,
since we assume that td + tc < (1/2� µ)n. This means that if the corrupted parties from committee
CT that do send, do not reshare their actual shares to committee CT+1, then the parity check sharing
will not share yi = 0. This is because the number of honest parties who do not drop out is at least
t+k and thus their shares completely define the correct polynomial and so if the corrupted parties’

8For honest parties, ei
m = 0.

24

shares do not match with this polynomial, it will be reflected. Using similar logic, the server in round
CT+1 will be able to either successfully reconstruct the parity check sharing, or otherwise detect
malicious behavior during the reconstruction.

In fact, this holds even after the parties take the random linear combination [y]
Pd(n�tc�k)/4µ2n2

l=1 �
l · [yl], where d is the dimension of the model. This is because � was ran-

dom and unknown to the adversary before it generated its shares of shares. Thus, the underlying
values of this linear combination can be seen as the evaluation of a polynomial defined by coefficients
being the underlying values of the yl, on a random input �. By the Schwartz-Zippel Lemma, if any
of the underlying values of the yl 6= 0, then the result of this polynomial evaluation will not be 0
with probability d(n� tc � k)/(4µ2

n
2 · |F|).9 Thus, if the adversary does not tamper with its shares

y
j , then the reconstruction to the server will be 0 if and only if the adversary reshared the correct

shares. If the adversary does tamper with its shares yj , then we know by the properties of packed
secret sharing that the server will detect this and abort.

We also need to show that the output of the server is the same in the real and ideal worlds. Indeed, if
an adversary tampers with its shares before inputting them to SecAgg.Enc, the worst this can achieve
is an additive attack [26]: Let’s consider the reconstruction of the shares of some dAXT through
SecAgg, assuming w.l.o.g., that the first d parties are honest:

nX

i=1

�
j
i · dAX

i,tamp

T =
dX

i=1

�
j
i · dAX

i

T +
nX

i=d+1

�
j
i · (dAX

i

T + �
i) = dAXT + �.

Indeed, since S sees the values input to SecAgg.Enc by the corrupted parties and also inductively
knows what the corrupted parties’ real input values should be, it can compute

Pn
i=d+1 �

j
i · �i and

thus �. This completes the security proof.

D Additional Experimental Results

Here we empirically evaluate our Distributed Matrix Mechanism (DMM) for Federated Learning
on the Stack Overflow Next Word Prediction public benchmark [4], as in [33, 15]. Stack Overflow
is a large-scale text dataset based on the question answering site Stack Overflow. It contains over
108 training sentences extracted from the site grouped by the N = 342477 users, and each sentence
has associated metadata such as tags. The task of SO-NWP involves predicting the next words given
the preceding words in a sentence We use the standard dataset split provided by TensorFlow. We
compare to the Distributed Discrete Gaussian Mechanism for FL [33] that also obtains local DP, but
with independent noise and reliance upon privacy amplification via sampling [1, 35, 7], as well as the
central DP version of our paper for multiple epochs [15], where noise is correlated, but the server
applies it.

As in [33, 15], we use the LSTM architecture defined in [45] directly, which has a model size of
d = 4050748 parameters (slightly under 222). We use namely momentum 0.9, 1 client training epoch
per round, client learning rate ⌘c = 0.02, server learning rate ⌘s = 1, and client batch size to 16. For
⇧PPFL, we assume that µ = 1/6; i.e., the number of corrupted parties and dropout parties per round
satisfies tc + td < 1/3n.

Matrix Factorizations We use the optimal matrix factorization A = BC with respect to the
loss function L(B,C) = sens�(C)||B||2F for the b-min-sep-participation schema �, introduced
in [14].Again, we compute sens1�(C) based on [14, Theorems 2 and 3].

Results Figure 4 shows that for several different " privacy levels, our DMM significantly outper-
forms the DDGauss Mechanism in terms of prediction accuracy, while getting close to that of the
central-DP matrix mechanism of [15]. For the optimal matrix factorization, we use T

⇤ = 1500; this
corresponds to b = 85.

9We assume that |F| > �.

25

Figure 4: Test accuracies on SO NWP across different " for the DDG mechanism [33], the central-DP
matrix mechanism for multiple epochs [15], and our DMM instantiated with the optimal factorization
for multiple epochs and the Honaker online factorization.

E Attacks on Other Approaches and Future Work

Instead of maintaining secret-shared versions of the aggregated gradients and noise vectors, the
server could preserve the aggregated noise vectors and gradients of previous training iterations within
the system by masking them with an appropriate mask mk invoking a secure aggregation protocol
SecAgg1. The masks mk themselves would be secret shared and reshared among the clients. That
said, the black-box secure aggregation SecAgg1 protocol would output aggregated gradients G and
noise vectors masked by mk, i.e., G+mk to the server. When it is time to aggregate in each training
iteration, another black-box SecAgg2 protocol is called in which the server would input the masked
aggregated gradients and noise vectors along and the clients would input the negative shares of the
masks mk. This ensures that the secure aggregation SecAgg2 protocol outputs the unmasked (the
masks of the gradients and noise vectors from previous iterations would cancel out) noisy aggregate
for the current iteration to the server.

However, this approach faces a fundamental issue: the server holds the masked aggregated noise and
gradients and could input any dishonest combination into the aggregation protocol to undermine DP.
Specifically, the server might:

• Selective Noise Cancellation: In the matrix mechanism, noise is added directly by the clients
in the current training iteration, and past aggregated correlated noise is added to enhance
utility by canceling out some of the total noise. If the server has access to the masked
aggregated noise, it could selectively include or exclude certain masked noises as input
to the secure aggregation protocol SecAgg2, effectively canceling out noise terms across
training iterations. This would enable selective noisy cancellation, potentially weakening
the overall differential privacy guarantees.

• Manipulation of Scaled Aggregated Gradients: The server might multiply the aggregated
masked gradients by a malleable value when inputting them into the secure aggregation
protocol SecAgg2, causing the noise to be incorrectly scaled relative to the proper sensitivity.
This manipulation could reveal information about the current iteration’s aggregated gradients,
thereby compromising the privacy guarantees.

26

Future work An alternative method for rolling noise forward to the next committee is to encrypt
the noise rather than secret-sharing it based on our resharing protocol. However, an efficient solution
is not straightforward, as the noise must remain encrypted while being used by the clients. The
challenge lies in determining which keys to use for encryption. If the noise is encrypted using the
server’s key, the server could decrypt it, compromising privacy. Conversely, if it is encrypted under
the client’ keys, they would be able to decrypt it. Identifying an advanced encryption scheme that can
maintain privacy and offer better efficiency remains an open question for future research.

27

