
Concretely Efficient Asynchronous MPC from Lightweight
Cryptography

Akhil Bandarupalli1, Xiaoyu Ji2, Aniket Kate3, Chen-Da Liu-Zhang4, and Yifan Song5

1 abandaru@purdue.edu, Purdue University
2 jixy23@mails.tsinghua.edu.cn, Tsinghua University

3 aniket@purdue.edu, Purdue University & Supra Research
4 chen-da.liuzhang@hslu.ch, Lucerne University of Applied Sciences and Arts & Web3 Foundation

5 yfsong@mail.tsinghua.edu.cn, Tsinghua University and Shanghai Qi Zhi Institute

Abstract. We consider the setting of asynchronous multi-party computation (AMPC) with op-
timal resilience n = 3t + 1 and linear communication complexity, and employ only “lightweight”
cryptographic primitives, such as random oracle hash.
In this model, we introduce two concretely efficient AMPC protocols for a circuit with |C| multi-
plication gates: a protocol achieving fairness with O(|C| · n + n3) field elements of communication,
and a protocol achieving guaranteed output delivery with O(|C| · n + n5) field elements. These
protocols significantly improve upon the best prior AMPC protocol in this regime communicating
O(|C| · n + n14) elements. To achieve this, we introduce novel variants of asynchronous complete
secret sharing (ACSS) protocols with linear communication in the number of sharings, providing
different abort properties.
By combining the AMPC protocols, one can achieve an AMPC with guaranteed output with an
optimistic communication that is similar to the AMPC with fairness.

1 Introduction

Multi-Party Computation (MPC) [Yao82, GMW87, BGW88, CCD88, RB89] enables n mutually dis-
trustful parties to compute any function on their private inputs. Moreover, it is guaranteed that the
adversary does not learn any information about the inputs apart from what can be inferred from the
output.

The cryptographic literature has studied MPC for more than forty years and the last decade has
seen tremendous progress towards making it practical. However, most existing MPC systems still rely
on strong networking assumptions such as (bounded) synchrony and broadcast channels that make
their practicability questionable, especially for low-latency application scenarios. In the synchronous
model, messages are assumed to be delivered within a fixed time frame. In high-throughput low-latency
application scenarios in the real world, we cannot set synchronous time bounds generously and thus
unpredictable delays must be tolerated. This makes most existing synchronous MPC systems inadequate.
While protocols designed in the asynchronous model are resilient to such delays, the current designs
may not scale as n grows: Indeed, current asynchronous MPC (AMPC) protocols struggle to scale to
hundreds of parties either due to their 1) communication complexity from the information-theoretic (IT)
approach [BKR94, PCR10, PCR08, CP23, GLZS24, LYK+19] which does not rely on any cryptographic
assumptions or 2) computational complexity from the usage of threshold cryptography for common coins,
additive homomorphic encryption/commitments and/or non-interactive zero-knowledge proofs [CP15,
Coh16, BKLZL20, HNP05, HNP08, CHLZ21]. Concretely, the best-known IT-secure AMPC with t < n/3
resilience protocols require O(nC + κn14) [GLZS24] for a circuit with C gates and n parties. Current
computational AMPC protocols [BKR94, PCR10, PCR08, CP15, CP23, LYK+19] rely on significant
“heavy-weight” public-key cryptography and/or non-interactive zero-knowledge proofs and have high
computational costs as n grows.

Lightweight Cryptography. In this space between these two extremes of heavy-weight number-
theoretic public-key cryptography and IT cryptography, hash-based cryptography is an interesting lightweight
middle-ground option: a cryptographic hash computation is 100x to 1000x faster than an exponenti-
ation in the discrete logarithm setting. Recently, hash-based constructions have been considered for
asynchronous distributed random beacons [BBB+24], asynchronous (distributed) agreement on common

subset [DDL+24], and asynchronous verifiable secret sharing [SS24]. Among those, HashRand [BBB+24]
demonstrated that the hash-based design is indeed practically more efficient than both computational
designs as well as information-theoretic designs.

Moreover, as Quantum computer development picks up the pace, the world has begun adopting
post-quantum secure cryptography in many frontiers; e.g., Apple recently converted their messaging
service to be post-quantum secure. It is imperative to develop scalable AMPC protocols with post-
quantum security. As contemporary hash functions like SHA3 also behave as Random Oracles against a
polynomial-time quantum adversary, hash-based AMPC constructions can offer post-quantum security
similar to IT-secure constructions.

However, building an AMPC protocol based on Hash functions with comparable communication
efficiency as heavy-weight cryptography-based AMPC protocols is challenging as hashes are not additively
homomorphic.

1.1 Our Contributions

In this work, we consider the setting of AMPC with linear communication and optimal resilience t < n/3
[BOKR94, ADS20] active corruptions. Given the above considerations, we ask whether it is possible
to construct AMPC based on lightweight cryptography while still maintaining concrete communication
complexity in a similar range as AMPC based on heavyweight cryptography:

Can we achieve concretely efficient AMPC with linear communication and optimal resilience from
lightweight cryptography?

We answer in the affirmative by presenting scalable AMPC protocols that combine the computational
efficiency of IT-secure protocols with practical communication overhead, without compromising post-
quantum security. Our contributions are divided into two parts.
1. Security with Fairness: Our first result features an AMPC with security with fairness and communi-
cation complexity O(n) elements per multiplication, and O(n3) elements of additive overhead. Note that
such an overhead is minimal since any AMPC requires each party to reliably broadcast their input, and
the cost for each reliable broadcast incurs inherently a quadratic term O(n2) [DR85]. More precisely, we
achieve the following:

Theorem 1. Let n = 3t+ 1 and κ denote the security parameter. For a finite field F of size 2Ω(κ) and
any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that is secure
against at most t corrupted parties with security with fairness. Let the input and output size be CI and
CO respectively, the achieved communication complexity is O((|C| + CI) · n + D · n2 + CO · n3) field
elements.

2. Guaranteed Output Delivery: We then move on to the stronger setting of guaranteed output delivery. In
this case, we achieve communication complexity of O(n) elements per multiplication, and O(n5) elements
of additive overhead. More precisely:

Theorem 2. Let n = 3t+ 1 and κ denote the security parameter. For a finite field F of size 2Ω(κ) and
any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
the circuit that is secure against at most t corrupted parties with guaranteed output delivery. Let the input
and output size be CI and CO respectively, the achieved communication complexity is O((|C|+CI +CO) ·
n+D · n2 + n5) field elements.

By executing the asynchronous MPC protocols with fairness and guaranteed output delivery in se-
quence, and using the output from the fair MPC if it did not fail and the guaranteed output MPC
otherwise, we achieve the optimal communication when all parties are honest (additive O(n3) elements
overhead), while achieving guaranteed output delivery.

Corollary 1. Let n = 3t+ 1 and κ denote the security parameter. For a finite field F of size 2Ω(κ) and
any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
the circuit that is secure against at most t corrupted parties with guaranteed output delivery. Let the input
and output sizes be CI and CO respectively. The optimistic communication complexity is O((|C| + CI) ·

2

n+D · n2 +CO · n3) field elements when all parties are honest. In the worst case, the communication is
O((|C| + CI) · n+D · n2 + CO · n3 + n5) field elements.

Computational Efficiency. On top of communication efficiency, our protocols are computationally
efficient. Our AMPC protocol with fairness requires O(n3) Hash computations per party, independent of
circuit size. Further, our AMPC with GOD protocol requires O(n|C|+n5) Hash computations per party.
In comparison, protocols based on homomorphic cryptography like [CP15, AJM+23] require Ω(n|C|)
computations per party, where each such operation is 100× to 1000× more expensive than a Hash
computation.
Reduction to Small Field. All the above results assume a finite field F of size at least 2Ω(κ). In
Section 6, we show how to reduce the field size requirement and obtain the following theorems.

Theorem 3. Let n = 3t + 1 and κ denote the security parameter. For a finite field F of size at least
n+ 1 and any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that
is secure against at most t corrupted parties with security with fairness. Let the input and output size be
CI and CO respectively, the achieved communication complexity is O((|C| + CI) · n + D · n2 + CO · n3)
field elements plus O(κ · n3) bits.

Theorem 4. Let n = 3t + 1 and κ denote the security parameter. For a finite field F of size at least
n+ 1 and any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol
computing the circuit that is secure against at most t corrupted parties with guaranteed output delivery.
Let the input and output size be CI and CO respectively, the achieved communication complexity is
O((|C| + CI + CO) · n+D · n2 + n5) field elements plus O(κ · n5) bits.

1.2 Related Work

The communication complexity in AMPC has been the subject of a very significant line of work.
Information-Theoretic MPC. In the IT setting, the first protocol with optimal resilience t < n/3
was provided by Ben-Or, Kelmer, and Rabin [BKR94]. The works [PCR10, PCR08] achieved O(n5) field
elements per multiplication, which was further improved in [CP23] to O(n4). The works [GLZS24, JLS24]
recently improved the scope to O(n) elements, but the additive overhead is Ω(n14) elements, making
it impractical. In the case of t < n/4 and perfect security, the recent work [AAPP24] achieves linear
communication O(n) elements per multiplication with an additive overhead of O(n5) elements.
Cryptographic MPC. There are several communication-efficient protocols with optimal resilience t <
n/3 under different assumptions. However, these works make use of heavy cryptography, typically in the
form of threshold (somewhat homomorphic) encryption and/or non-interactive zero-knowledge proofs,
which increases considerably the computational overhead. Our protocols only make use of hash functions,
which are orders of magnitude faster.

The works [HNP05, HNP08, CHLZ21] make use of an additive homomorphic encryption, with [HNP08,
CHLZ21] communicating O(n2) elements per multiplication. The work [CP15] achieves O(n) elements
per multiplication at the cost of using somewhat-homomorphic encryption. The work [CHLZ21] also
achieves linear cost using additive-homomorphic encryption for t < (1 − ϵ)n/3, but considers the atomic-
send model. The works [Coh16, BKLZL20] achieve a communication independent of the circuit size using
fully-homomorphic encryption. Finally, the works [LYK+19, DGKN09] introduce AMPC protocols where
the preprocessing phase may not terminate, i.e. they are not live. This undesirable condition is more
critical than the standard security with abort, as in the latter case, parties realize that the protocol failed
(they obtain ⊥ as output).

There also exist works that use homomorphic commitments to achieve ACSS with linear communica-
tion [AJM+23] per secret. However, this protocol requires O(n) discrete-log operations per secret, which
is a scalability bottleneck.
Lightweight Protocols. There are no MPC protocols that make use of lightweight cryptography,
but some have appeared for concrete functionalities, including asynchronous distributed random bea-
cons [BBB+24], asynchronous common subset [DDL+24], and asynchronous verifiable secret sharing [BKP11,
SS24]. The work [BKP11] introduces an ACSS protocol with O(n3L) communication for sharing L secrets.
[SS24] improve this complexity to O(nL + κn2 log(n)) bits when the dealer is honest using Hash-based
Zero-Knowledge proofs and Pseudorandom functions (PRFs). However, a malicious dealer can increase
communication to O(n2L+ κn3) bits, which is too expensive to build linear AMPC.

3

2 Technical Overview

In the following, we use [s]t to denote a degree-t Shamir secret sharing of s and α−t+1, . . . , αn to denote
distinct field elements.

We give a high-level overview of the main techniques used in this work. Following [CP23, GLZS24], an
asynchronous MPC (AMPC) can be obtained from the following three steps. The first step is to realize
an asynchronous complete secret sharing (ACSS) [PCR09] protocol which ensures that all honest parties
can obtain their shares of a degree-t Shamir sharing [s]t distributed by a dealer. Then, the second step is
to prepare Beaver triples [Bea92] with the help of ACSS in the offline phase. After preparing a sufficient
number of Beaver triples, all parties only need to do public reconstruction in the online phase, which can
be achieved with linear communication complexity and high concrete efficiency.

For the preparation of Beaver triples, [GLZS24] first achieves linear communication per triple in
the information-theoretic setting, while for concrete efficiency, the overhead is O(n7) (regardless of the
costs of ACSS). Their idea is to run two different processes for triple generation in parallel and argue
that all parties will eventually get the triples from one process. However, their construction incurs
overheads of O(n5) in the first process and O(n7) in the second process. Our first technical contribution
is a new construction for the second process that is conceptually simpler and more concretely efficient.
Relying on the random oracle hash, we manage to reduce the overheads of both processes to O(n3).
One drawback of our technique, however, is that our construction can only achieve malicious security
with abort (and fairness) rather than guaranteed output delivery as achieved in [GLZS24]. Our second
technical contribution is to use the party-elimination framework [BTH06] to compile our protocol to
achieve guaranteed output delivery with an additive overhead O(n5). To the best of our knowledge, we
are the first to use the party-elimination framework in the asynchronous network setting.

Another problem is the concrete efficiency of ACSS. In the information-theoretic setting, [JLS24] gives
the first ACSS protocol with linear cost per sharing but with an additive overhead of O(n12). We note
that when targeting malicious security with abort, we only need a weaker security guarantee on the ACSS
protocol: Instead of requiring all honest parties to eventually obtain their shares, we only require that all
honest parties will eventually terminate the protocol either with the correct shares or a failure symbol.
Note that this is different from an asynchronous verifiable secret sharing (AVSS) protocol which does
not ensure all honest parties obtain their shares even if all parties follow the protocol. Based on random
oracle hash, we give a concretely efficient ACSS protocol that only achieves malicious security with abort.
Concretely, the cost per sharing is linear and the additive overhead is O(n2). When constructing our
GOD protocol, we upgrade the above ACSS protocol to achieve identifiable abort where an honest party
may either receive his correct shares or a proof that can be used to accuse the corrupted dealer. Our
ACSS protocol with identifiable abort also supports efficient public reconstruction: When the corrupted
deal is accused, all parties may together recover the secrets shared by this dealer with linear cost. This
will be an important building block for our GOD protocol as we will elaborate later.

In the following, we start by recapping the techniques in [GLZS24] and then introduce our new
solution for preparing Beaver triples. Next we show how to achieve malicious security with fairness and
GOD.

2.1 Overview of Previous Approach and Our New Construction

Triple Generation Framework in [GLZS24]. To prepare random Beaver triples, the authors in [GLZS24]
design two processes where each process can achieve a linear cost per triple but does not guarantee ter-
mination when executed alone. On the other hand, they show that the first process will terminate when
at least ϵt corrupted parties participate, while the second process will terminate when no more than ϵt
corrupted parties participate. Then they connect these two processes by requiring that a party can only
participate in the second process if he has participated in the first process. In this way, at least one
process will eventually terminate and all parties will get their triples with linear cost.

In [GLZS24], the first process is adapted from the triple extraction process introduced in [CP17]. At
a high level, the idea is to first let all parties distribute Beaver triples ([a]t, [b]t, [ct]) through ACSS where
c = a · b, and then jointly extract random Beaver triples which are unknown to each party. Recall that in
the asynchronous setting, corrupted parties may never participate in the execution. Therefore, to ensure
termination, all honest parties can only expect to agree on a set of size L = 2t+ 1 of successful dealers

4

and in this case, the triple extraction process can generate (L + 1)/2 − t = 1 random triple. This leads
to a quadratic communication cost per triple in [CP17]. To save a factor of O(n), the idea of the first
process is to let all parties wait for a set of size L = (2 + ϵ)t + 1 of successful dealers. Then all parties
can extract (L + 1)/2 − t = O(n) Beaver triples and thus achieve the linear cost per triple. However,
this requires at least ϵt corrupted parties participating in the first process. Since corrupted parties may
never participate in this process, this process may never terminate.

To counter the above malicious strategy, the second process targets for the case where at most ϵt
corrupted parties participate. In addition, to link these two processes, a party Pi will only accept Pj ’s
messages in the second process if Pi terminates Pj ’s ACSS protocol in the first process. In this way, a
corrupted party must first participate in the first process to participate in the second process.

For the second process, the authors in [GLZS24] adapt the triple extraction process to work with
packed Beaver triples [GPS22], where each packed Beaver triple can be transformed to O(n) standard
Beaver triples. To share packed Beaver triples, the authors in [GLZS24] design an efficient sharing protocol
for degree-(1 + ϵ)t packed Shamir sharings, which only works when the corruption threshold is smaller
than ϵt. Also the smaller corruption threshold allows them to utilize the error correction property for
higher-degree polynomials.
Potential Solution to Achieve Linear Communication Based on [DN07]. We note that the
second process in [GLZS24] is quite involved and complicated. Our starting point is the well-known DN
technique [DN07] to prepare random Beaver triples in the synchronous setting:

1. All parties first prepare random sharings ([a]t, [b]t) and a pair of random double sharings ([r]t, [r]2t).
2. All parties locally compute [z]2t = [a]t · [b]t + [r]2t and send it to Pking. Then Pking reconstructs and

sends z to all parties.
3. After receiving z, all parties locally compute [c]t = z − [r]t.

When using the DN technique [DN07] in the asynchronous setting, we have to address the following
two issues: (1) efficiently preparing double sharings, and (2) avoiding a malicious Pking not sending any
result back. To better explain our idea, let us first assume that all messages sent by corrupted parties
are honestly computed (but corrupted parties may choose to not send some messages). We will consider
the malicious security case in the next subsection.

Following from the observation in [GLO+21], for double sharings, we may instead prepare ([r]t, [o]2t)
where [o]2t is a random degree-2t Shamir secret sharing of 0. This allows us to decouple the relation
of these two sharings. Then we can prepare ([a]t, [b]t, [r]t) through standard techniques in [DN07] and
ACSS, and the remaining problem is how to prepare [o]2t with linear communication. Again, relying on
the techniques in [DN07], this question is further reduced to allowing a single dealer to distribute degree-
2t Shamir sharings of 0 with linear communication. Recall that in the second process, it is sufficient to
deal with the case where there are at most ϵt corrupted parties. Let α−(1−ϵ)t+1, . . . , αn be distinct field
elements, with a smaller corruption threshold, the following simple sharing protocol works:

1. Suppose the dealer D wants to share [o1]2t, . . . , [o(1−ϵ)t]2t. D first encodes these ϵt degree-2t Shamir
sharings into a random degree-(2t, (2−ϵ)t) bivariate polynomial F (x, y) such that F (x, α−i+1) = [oi]2t

for all i ∈ {1, . . . , (1 − ϵ)t}. Then D sends F (x, αi) to Pi.
2. After receiving F (x, αi) from D, Pi broadcasts (support, Pi, D) and sends F (αj , αi) to each party
Pj . If at least 2t+ 1 parties support D, the sharing phase succeeds.

3. After receiving (2 − ϵ)t+ 1 evaluations of F (αj , y), Pj reconstructs F (αj , y) and recovers his shares
of [o1]2t, . . . , [o(1−ϵ)t]2t.

First notice that the communication cost per sharing is linear. To see why it works, note that when 2t+1
parties support D, there are at least 2t + 1 − ϵt honest party Pi who will send F (αj , αi) to Pj . Thus,
every honest Pj can eventually obtain his shares.

For the second issue, we follow the idea in [GLZS24] to let each party perform as Pking to prepare
O(1/n) fraction of random Beaver triples.

2.2 Our Solution for AMPC with Fairness

Towards Malicious Security with Abort. Unfortunately, our new protocol is not sufficient to achieve
malicious security. To see this, note that Pking can only expect to receive 2t+ 1 shares of [z]2t, which are

5

just enough to reconstruct the secret. This means that even a single incorrect share would result in an
incorrect triple and Pking cannot detect it with the 2t+ 1 shares he received.

On the other hand, we manage to show that the random Beaver triples prepared using our approach
achieve malicious security up to additive attacks, i.e., for each triple ([a]t, [b]t, [c]t), the adversary may
choose an arbitrary constant d such that c = a·b+d. Thus, we follow the verification protocol in [GLZS24]
to check the correctness of the prepared triples. If the verification fails, the protocol aborts. This allows
us to achieve malicious security with abort.

One small issue is that the protocol may not terminate due to an honest party aborting the protocol
earlier. Indeed, when an honest party aborts, the corruption threshold of the remaining parties can be
t ≥ n/3. To address this, when an honest party finds the computation fails on his part, he will continue
to participate in the protocol execution while sending a failure symbol whenever he needs to send a
message. A party that receives a failure symbol from some other party will also regard the computation
as failing. This ensures the termination of our final protocol.
Security with Abort ACSS. So far, all previous discussion assumes an ACSS protocol. As we men-
tioned in the introduction, known solutions for ACSS with linear cost either incur a large communication
overhead or a large computation overhead. We note that when targeting for malicious security with abort.
It is sufficient to achieve a weaker guarantee where each honest party will eventually terminate the pro-
tocol with his correct shares or a failure symbol.

Our starting point is a distributed Zero-Knowledge (dZK) proof from [ABCP23], which allows a
prover (the dealer) to prove that a distributed set of verifiers possess shares from a degree-t polynomial.
It works as follows. Verifier Pℓ possesses L shares fi(αℓ) for i ∈ [1, L]. The prover first samples a random
degree-t polynomial Y(x). Then, it generates commitments C[ℓ] to points Y(αℓ) for ℓ ∈ [1, n] using a
Random Oracle H, and broadcasts them. The verifiers sample a random point p and ask the prover to
broadcast r(x) := Y(x)−

∑L
i=1 p

ifi(x). Then, each verifier Pℓ checks if H(r(αℓ)+
∑L

i=1 p
ifi(αℓ))

?= C[ℓ].
If the degrees of fi(x), Y(x) > t and r(x) must have degree-t, then

∑L
i=1 ci · pi = 0, where ci is the

coefficient of the higher degree term in fi(x). However, according to the Schwartz-Zippel lemma, a
non-zero polynomial evaluates to zero on a randomly sampled point with probability ≤ L

|S| . This proof
technique can be made non-interactive by using the Fiat-Shamir heuristic, where the prover creates the
challenge point p by applying H on generated commitments.

This dZK proof technique can be trivially used to build an Asynchronous Verifiable Secret Sharing
(AVSS) protocol. In this protocol, the dealer sends shares of polynomials fi(x) to parties over private
channels and broadcast commitments and the dZK proof using Reliable Broadcast (RBC). At least t+ 1
honest parties that participate in the dealer’s RBC successfully verify and possess valid shares of the
secrets. However, a corrupted dealer might never send shares to t honest parties, and force the protocol
to terminate with t+ 1 honest parties.

We address this issue by enabling the t+ 1 parties who terminated with shares to help other honest
parties interpolate their shares. In this protocol, the dealer encodes the share polynomials into larger
degree-(2t, t) bivariate polynomials Fi(x, y), where each Fi packs t + 1 degree-t share polynomials f.
the dealer sends the row and column polynomials Fi(x, αℓ), Fi(αℓ, y) to party Pℓ. Each party verifies its
shares using the dZK proof. Then, parties participate in a share interpolation phase where they send
common points on each other’s share polynomials. Each party receives a sufficient number of points on
its row polynomials and eventually reconstructs its shares. However, a corrupted party can send wrong
shares to an honest party, which might cause it to output wrong shares. Therefore, each party verifies
its shares using the dZK proof. If the verification succeeds, the party outputs its shares. Otherwise, it
outputs abort. Further, like in AVSS, parties can reconstruct the share polynomials by using dZK proofs
to prove the validity of shares, followed by Lagrange interpolation.

In summary, this protocol utilizes bivariate polynomials over an underlying AVSS protocol to achieve
ACSS with abort. The communication complexity of this construction is linear per sharing plus an
additive overhead O(n2).
From Malicious Security with Abort to Fairness. We note that the above ACSS protocol is also
an AVSS protocol. Our next step is to compile our AMPC protocol to achieve fairness. We focus on the
case where all parties should receive the same function output. At a high level,

1. During the input phase, each party Pi also shares a random degree-t Shamir sharing [ri]t using our
ACSS protocol.

6

2. Without loss of generality, suppose the first t + 1 parties successfully share their random sharings.
We use [r]t := [r1]t + . . .+ [rt+1]t as a random mask for the final output y.

3. After running our AMPC protocol that achieves malicious security with abort, each party either
outputs y + r or a failure symbol. Now all parties run a multi-value BA protocol to agree on the
final output. If the final output is y+ r, all parties verifiably reconstructs r1, . . . , rt+1. Otherwise, all
parties abort.

In this way, if all parties fail to agree on the output y+r, the function output y is perfectly protected
by ri generated by an honest party Pi. On the other hand, after all parties agree on the output y + r,
by the property of AVSS, corrupted parties cannot prevent honest parties from reconstructing the mask
r and learning y.

2.3 From Security with Fairness to GOD

Our next goal is to achieve malicious security with guaranteed output delivery. We note that our current
AMPC protocol may fail due to the following two points:

– The random Beaver triples prepared in the preprocessing phase are incorrect.
– Honest parties do not obtain their shares of degree-t Shamir sharings, leading to failure in the online

phase.

Note that if the random Beaver triples are all correct and all honest parties obtain their shares, then the
protocol is guaranteed to succeed. We will first address the second issue.
Public Reconstruction with Party Elimination Framework. With the help of Beaver triples,
the online phase only involves public reconstruction of degree-t Shamir sharings. In particular, for each
[x]t to be reconstructed in the online phase, it can be written as [x]t =

∑n
i=1[xi]t where [xi]t is a

linear combination of the sharings dealt by Pi. To ensure the success of reconstruction, our idea is to
first augment the ACSS protocol to achieve identifiable abort, where an honest party either receives his
correct shares or a proof that can be used to accuse the corrupted dealer, and support efficient public
reconstruction. Then in the online phase, all parties may perform the public reconstruction of [x]t as
follows.

Step 1: Check the Existence of degree-t Sharing. For i ∈ [n], each party checks whether he
has shares of [xi]t. If true, he computes his shares of [x]t and broadcasts it. Otherwise, he broadcasts
the proof to accuse the corrupted Pi.
Step 2: Do Public Reconstruction with ACSS Proof. Each party waits to receive messages
from others:

• When he first receives enough shares of [x]t and succeeds in reconstructing secret x by online
error correction, he sets the reconstruction result as x.

• When he first receives an ACSS proof, he sets the reconstruction result as ⊥.
Step 3: Agreement on Public Reconstruction Result. All parties run an agreement protocol
to agree on the same reconstruction result in Step 2. If the agreement result is not ⊥, all parties
output the result and terminate. Otherwise, all parties continue to agree on a corrupted dealer Pi.
Step 4: Public Reconstruction of Corrupted Dealer’s Secrets. In case a corrupted dealer Pi

is identified, all parties reconstruct the secrets shared by Pi, compute xi by the linear combination
of Pi’s secrets, and replace their shares of [xi]t by xi.

Note that whenever a corrupted dealer Pi is identified, all parties will replace [xi]t by the constant value
xi. This ensures that the public reconstruction procedure will not fail due to Pi again. Thus, all parties
can eventually reconstruct the secret x by repeating the above four steps and removing corrupted dealers.
To achieve linear communication per reconstruction, we combine our technique with the efficient public
reconstruction protocol in [DN07].
Security with Identifiable Abort ACSS. According to the analysis of the requirements of ACSS for
public reconstruction, we present our next ACSS protocol, which achieves security with identifiable abort.
In this protocol, each honest party outputs its shares when the dealer is honest and only outputs abort
when the dealer behaves maliciously. Further, each party that outputs abort also outputs a verifiable
proof which can implicate a malicious dealer. This proof allows all honest parties to definitively identify

7

that the dealer is malicious, and can be forwarded to and verified by other parties as well. Therefore,
this protocol is strictly stronger than the previous protocol, where any Byzantine faulty party (not just
the dealer) can make an honest party output abort.

We augment the existing protocol by creating dZK proofs for the entire bivariate polynomial. In
this approach, the dealer creates commitments and dZK proofs for bivariate polynomials, which results
in commitments being n × n matrices and the dZK proof polynomial being a degree-(2t, t) bivariate
polynomial. This technique is analogous to using AVSS to share each party’s column polynomials. In
detail, in the column interpolation phase, the dZK proof allows an honest party to distinguish between
valid and invalid shares in its column. As at least t+ 1 honest parties possess valid shares on every other
party’s column polynomial, each party will successfully interpolate its column.

If the dealer is honest, each honest party participates in the row interpolation phase by sending
points on its column polynomial. Again, parties use the dZK proof to identify correct points on their
rows. Eventually, after receiving 2t+ 1 valid points, each party interpolates its rows and shares of fi(x).
However, a corrupted dealer can broadcast invalid commitments for a party Pi’s column. In this case,
Pi will not be able to participate in the row interpolation phase because it cannot generate a valid proof
that these points are on its column. Therefore, parties cannot recognize the difference between correct
and incorrect points on their rows. However, Pi can implicate the dealer by broadcasting the t+ 1 valid
points it received on its column polynomial. Other parties can verify this proof by reconstructing Pi’s
columns and checking if the dealer’s commitments are malformed. Therefore, parties either output shares
or eventually agree that the dealer is corrupted. We ensure that this protocol has linear cost in both
cases by using additional techniques like batching.

Another important requirement for our ACSS is that the reconstruction of the dealer’s secret should
be communication efficient. We introduce an efficient method to publicly reconstruct a batch of L secrets
f1(α0), . . . , fL(α0) with linear cost. We adopt the public reconstruction technique in [DN07] into an
AVSS protocol. In detail, the dealer forms groups of share polynomials fi(x) of size t + 1 and forms
degree-t polynomials gk(x) :=

∑t+1
m=1 fm(x) · αm

k for k ∈ [1, n]. Then, it runs an AVSS protocol for
each gk(x). In the reconstruction phase, parties reconstruct gk(x) to party Pk. Then, Pk reconstructs
gk(α0) =

∑t+1
m=1 fm(α0) · αm−1

k , which is equivalent to evaluating ϕ(x) :=
∑t+1

m=1 fm(α0) · xm−1 at point
αk. Finally, each honest party uses Online Error Correction to reconstruct ϕ(x) and the t + 1 secrets
within it. The amortized costs are linear with the secret number L.

Triple Generation with Party Elimination Framework. Finally, we tackle the first issue: the
prepared random Beaver triples can be incorrect in the preprocessing phase. Recall that the triple
generation step is done by running two processes in parallel and the first process is identical to that
in [GLZS24]. Thus, from the analysis in [GLZS24], the triples generated from the first process are
guaranteed to be correct.

For the second process, our idea is to verify the Beaver triples led by different kings separately. In case
the check fails, all parties help Pking to identify a corrupted party. Then this corrupted party is removed
and all parties restart the preparation step. More concretely, when the verification fails, all parties will
send their shares of ([a]t, [b]t, [r]t, [o]2t) to Pking. The second process may fail due to the following reasons.

– Not all honest parties have their shares of [a]t, [b]t, [r]t.
– A corrupted dealer distributes an incorrect degree-2t Shamir sharing of 0.
– A corrupted party sends an incorrect share to Pking.

For the first case, Pking would receive a proof and he will just use this proof to implicate a corrupted
dealer. For the second case, we augment the sharing protocol for degree-2t Shamir sharings of 0 with
identifiable abort as well. When the verification fails, all parties help Pking to recover the degree-2t Shamir
sharings of 0 dealt by each dealer. Then Pking can generate a proof to implicate a corrupted dealer in
case a corrupted dealer distributes an incorrect degree-2t Shamir sharing of 0. In the third case, after
Pking reconstructs [a]t, [b]t, [r]t and [o]2t, he may compute the correct sharing of [z]2t and check which
party sends an incorrect share. To be able to implicate this corrupted party, when a party Pi sends his
share of [z]2t to Pking, we ask Pi to broadcast a commitment of his share and then provide the opening
to Pking. Later, Pking may use the opening of this commitment to prove that this message is indeed from
Pi.

8

3 Preliminaries

We denote the security parameter by κ and require the field size to be 2Ω(κ).

3.1 Model

We consider protocols among a set P of n parties P1, . . . , Pn. Our protocols are proven secure in the model
by Canetti [Can00]. Parties have access to a network of point-to-point asynchronous and secure channels
(for details of the asynchronous network model, we refer the reader to [CR98]). Asynchronous channels
guarantee eventual delivery, meaning that messages sent are eventually delivered, and the adversary
does the scheduling of the messages. In particular, the adversary can arbitrarily (but finitely) delay all
messages sent and deliver them out of order. We also consider the fully malicious adversary, that can
completely control the behavior of corrupted parties.

Functionality of Asynchronous MPC. We define the functionality for AMPC with fairness in Ap-
pendix C.8 and use the AMPC with GOD in [CP23] (see Appendix D.9).

3.2 Agreement Primitives

Our construction makes use of the following agreement primitives and we give the definitions of them in
Appendix A.1.

– Reliable Broadcast. It allows the parties to agree on the value of a sender without requiring
termination if the sender is corrupted. [DXR21] shows that when t < n/3, there is a t-resilient
protocol with communication complexity O(L · n + κ · n2) for broadcasting L bits messages in the
random oracle model.

– Byzantine Agreement. It allows parties to agree on a common message. For t < n/3, t-resilient
binary asynchronous Byzantine agreement with communication complexity O(n2) can be achieved
given a common coin (see e.g. [MMR15]). Multi-valued Byzantine agreement with communication
complexity O(L ·n+ κ ·n2 log(n)) can be achieved in the random oracle model and given a common
coin, where L is the size of the message (see [NRS+20]).

– Reliable Agreement. Reliable agreement is the agreement version of the reliable broadcast where
all parties have input. Compared to the standard byzantine agreement, a reliable agreement only
guarantees the termination when honest parties provide matching input. For t < n/3, t-resilient
reliable agreement protocol can be achieved with communication complexity O(L · n2) for agreeing
on L bits message (see [DDL+24]).

– Agreement on a Common Set. If allows parties to agree on a set of at least n − t parties that
satisfy a certain property. For t < n/3, t-resilient agreement on a common set protocol can be
achieved with communication complexity O(κ · n3) in the random oracle model (see [DDL+24]).

3.3 Merkle Trees Commitments

In this work, we use Merkle trees to instantiate vector commitments [CF13] and denote it by MT =
(MT.Setup,MT.Com,MT.Open,MT.Vfy). Let n be a power-of-two, given a vector x of size n and collision-
resistant hash function, the Merkle trees commitment is constructed by a binary tree, where the leaves
are something related to elements in x, each node is the hash of its children and the root is commitment.
We denote the i-th element in x as x[i], to promise the hiding property, the leaves are the commitment
of each element x[i]. The commitment of x[i] here can be realized by any standard commitment scheme,
in particular, we can use H(x[i], r) as the commitment of x[i] where H denotes the random oracle and
r is a random element.

The commitment is the root, and the opening of commitment at position i consists of the correspond-
ing leaf xi, random value r, and all the sibling values of all the nodes in the path from this leaf xi till the
root, which is logarithmic in the size of x. In the following, we denote the i-th opening of x[i] as op[x|i].

9

4 Achieving Malicious Security with Fairness

4.1 Security with Abort ACSS

The functionality FACSS-Abort defined below allows each honest party to output either a share of the secret
or abort. The adversary can force an honest party to output abort by sending (abort, Pi) to FACSS-Abort.
Additionally, FACSS-Abort enables parties to reconstruct the shared secrets when requested by t+1 parties.

Functionality FACSS-Abort

Public Input: (α0, . . . , αn), L
FACSS-Abort runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Upon receiving L degree-t polynomials q1(·), . . . , qL(·) from D, for each Pi ∈ P, send an requested-based

delayed output q1(αi), . . . , qL(αi) to Pi.
– Upon receiving a request (abort, Pi) from S, if the output of Pi has not been delivered, change the

output of Pi by abort. Otherwise, ignore this request.
2: Upon receiving Public-Recon from t+1 parties, send an requested-based delayed output q1(·), . . . , qL(·)

to each Pj ∈ P.

For the construction of ACSS with abort. We adopt the distributed Zero-Knowledge Proofs in Atapoor
et al. [ABCP23] to the asynchronous setting. The main idea of this protocol is to combine the dZK proof
with bivariate polynomials, where each honest party has partial information about another honest party’s
shares. Digging deep, the dealer, who wishes to share L degree-t polynomials among the parties denoted
by fi(x), splits the L polynomials into groups of t+1 polynomials and encodes each group into a degree-
(2t, t) bivariate polynomial, denoted by Fi(x, y). Then, the dealer creates an n× n matrix of evaluation
points and distributes the i-th row and column to party Pi.

Protocol ΠACSS-ab

Let α−t, . . . , α0, . . . , αn be distinct field elements.
Dealer D Protocol
1: D possesses a list of L degree-t polynomials f1(x), . . . , fL(x). D divides them into groups containing

t + 1 polynomials each, denoted by fi,j(x) for i ∈ [1, L
t+1], j ∈ [1, t + 1], where fi,j(x) = f(i−1)∗(t+1)+j .

2: Encode Sharings: For each {fi,j}t+1
j=1, D samples a degree-(2t, t) bivariate polynomial Fi(x, y) where

Fi(α−j+1, y) = fi,j(x), for j ∈ [1, t + 1], i ∈ [1, L
t+1].

3: Commitments: Dealer D samples a random degree-(t, t) bivariate polynomial Y(x, y). Then, D com-
putes commitment vector C for the share polynomials as C[i] = H(f1(αi), . . . , fL(αi), Y(α0, αi)), for
i ∈ [1, n].

4: Distributed Zero-Knowledge (dZK) proofs: D runs the following steps.
(a) D samples a random degree-t polynomial f0(x) and a random degree-(t, t) bivariate nonce polyno-

mial Y0(x, y).
(b) It computes vector C as C [i] = H(f0(αi), Y0(α0, αi)), and d = H(C, C).
(c) Finally, it computes polynomial r(x) as follows.

r(x) := f0(x) −
∑

i∈[1,L]

difi(x)

5: Send Shares and Broadcast Commitments: D reliably broadcasts C, C , r(x). Further, D sends
⟨Shares, {Fi(x, αj)}, Y(x, αj), Y0(αj , y)), {Fi(αj , y)}, Y(αj , y), Y0(αj , y))⟩ to party Pj ∈ P.

The dealer then computes unconditionally hiding commitments of shares. It randomly samples a
degree-(t, t) nonce polynomial Y(x, y), and computes commitments C[i] := H(f1(αi), . . . , fL(αi), Y(α0, αi))
for i ∈ [1, n]. These commitments leak no information about the shares because of the pigeon-hole prin-
ciple and H being a random oracle.

10

Protocol ΠACSS-ab

Participant Party Protocol
1: Verifying shares: A participant party Pj that receives a ⟨Shares⟩message executes the following steps

to verify their correctness.
(a) Verify Commitments: For each k ∈ [t + 1], i ∈ [L/(t + 1)], Pj computes f ′

(i−1)∗(t+1)+k(αj) =
F ′

i (α−k+1, αj). It then computes C′[j] = H(f ′
1(αj), . . . , f ′

L(αj), Y ′(α0, αj)) and verifies if C′[j] ?=
C[j].

(b) Verify dZK Proof : Finally, Pj computes d = H(C, C). Then, it verifies if the following equation
is true.

H(r(αj) +
∑

i∈[1,L]

dif ′
i(αj), Y0

′(α0, αj)) ?= C [j]

2: Run Reliable Agreement: Party Pℓ inputs 1 to Fra on successfully verifying its shares. After termi-
nating Fra with output 1, all parties terminate the sharing phase and move to the next phase.

Share Interpolation Phase
In the following, each party who accepts his shares from D before terminating the sharing phase still
participates in the following procedures, but he will not verify their shares again (so he will output his
shares and not abort).

3: Send common shares on rows: Pj computes and sends the message
⟨Row, (F1(αk, αj), . . . , F L

t+1
(αk, αj), Y(αk, αj), Y0(αk, αj))⟩ to party Pk.

4: Reconstruct columns: On receiving t + 1 shares on its column polynomial, Pk reconstructs
F ′

i (αk, y), Y ′(αk, y), Y0
′(αk, y).

5: Send common shares on columns: Pk computes and sends message
⟨Column, (F ′

1(αk, αℓ), . . . , F ′
L

t+1
(αk, αℓ), Y ′(αk, αℓ), Y0

′(αk, αℓ))⟩ to party Pℓ.
6: Reconstruct rows: Upon receiving 2t + 1 valid shares on its row, Pℓ reconstructs the row polynomials

F ′
i (x, αℓ), Y ′(x, αℓ), Y0

′(x, αℓ).
7: Verify commitments and dZK proofs: Pℓ reconstructs its row polynomials and verifies commitments

and dZK proofs. If the verification succeeds, then Pℓ outputs its shares and terminates the protocol.
Otherwise, it outputs ⟨Abort⟩ and terminates.

Public Reconstruction Phase
8: Reconstruction: Each party Pℓ who gets its shares will send the message

⟨P ubRec, (f ′
1(αℓ), . . . , f ′

L(αℓ), Y ′(α0, αℓ), Y0
′(α0, αℓ))⟩ to each Pj .

On receiving a ⟨P ubRec⟩ from party Pℓ, Pj computes commitment C′[ℓ] :=
H(f ′

1(αℓ), . . . , f ′
L(αℓ), Y ′(α0, αℓ)) and checks C′[ℓ] ?= C[ℓ]. Further, it checks the dZK proof by

verifying if H(r(αℓ) +
∑

j∈[1,L] djf ′
j(αℓ), Y0

′(α0, αℓ)) ?= C [ℓ]. If the verification succeeds, Pj accepts the
point. It then waits for t + 1 valid points and interpolates f1(x), . . . , fL(x).

The dealer then generates a dZK proof by randomly sampling a degree-t polynomial f0(x) and a
degree-(t, t) bivariate nonce polynomial Y0(x, y). The dealer generates unconditionally hiding commit-
ments of f0(x) by computing C [i] := H(f0(αi), Y0(α0, αi)). Then, the dealer follows the Fiat-Shamir
heuristic and computes a succinct commitment d = H(C,C) over the commitment transcript to act as
the challenge point for the dZK proof. Finally, the dealer computes r(x) = f0(x) −

∑
i∈[1,L] d

ifi(x). It
uses RBC to broadcast C,C , r, and sends row and column polynomials of Fi, Y, Y0 over private channels.

A party Pℓ receiving shares from dealer verifies them using the dZK proof. If the verification succeeds,
Pℓ inputs 1 to a Reliable Agreement instance Πra. This primitive is the agreement version of reliable
broadcast, where every party has an input and sends an ECHO message for its own input, rather than
the broadcaster’s value. If a party terminates Πra with output 1, then at least t+1 honest parties verified
their shares and input 1 to Πra.

The t + 1 honest parties that received their shares enable all other parties to interpolate their own
shares. Each party Pj first sends Fi(αj , αk) to parties Pk ∈ P. Upon receiving t+1 points on its column,
a party (that did not receive shares from the dealer) interpolates its column polynomial. Then, Pk sends
points on its row polynomials to other parties. Upon receiving 2t + 1 points on its row polynomial, it
interpolates its row polynomials. Finally, it verifies the L interpolated shares of polynomials fi(x) using
the dZK proof broadcast by D. If the verification succeeds, then it outputs the shares, otherwise it aborts
the protocol.

11

In this protocol, all parties output their shares only when D is honest and no other party behaves
maliciously. Note that a single faulty party can make an honest party abort the protocol by sending it
the wrong shares in the column and row interpolation phase, even when the dealer is honest.
Public Reconstruction. An honest party Pj that does not output abort sends its shares and the
corresponding nonces Y(α0, αj), Y0(α0, αj). A party receiving these shares verifies them using the com-
mitments and dZK proofs broadcast by the dealer. Then, it waits for t+1 valid shares and uses Lagrange
interpolation to verify the shares.
Lemma 1. Protocol ΠACSS-ab securely computes FACSS-Abort against a fully malicious adversary A who
corrupts at most t < n/3 parties.

We prove Lemma 1 and analyze the costs in Appendix B.1.

4.2 Preparing Random Degree-t Shamir Sharings and Weak Public Reconstruction
In our construction for AMPC with fairness, we need to let all parties prepare random degree-t Shamir
sharings and do public reconstruction. As we introduced in section 2.2, we only require a weaker
version of them and allow all parties’ output can be a failure symbol. We define the functionality
FrandSh-Weak,FpubRec-Weak and give the corresponding construction ΠrandSh-Weak, ΠpubRec-Weak for them, refer
to Appendix C.1 and C.2 for more details.

4.3 Preparing Random Beaver Triples with Additive Error
We design protocol Πtriple-Add-Weak for preparing random Beaver triples with additive errors which realizes
Ftriple-add-Weak below. The additive errors mean that for each output Beaver triple ([a]t, [b]t, [c]t), the shares
of honest parties form valid degree-t Shamir sharings, and d = c− a · b is known to the adversary.

Functionality Ftriple-add-Weak

Public Input: N
Ftriple-add-Weak runs with parties P = {P1, . . . , Pn} and an adversary S.
1: Wait to receive the number N of random Beaver triples to be prepared and the identities of corrupted

parties.
2: For all i ∈ [N], randomly samples ai, bi, ci such that ci = ai · bi.
3: For all i ∈ [N], wait to receive a set of shares {ui,j , vi,j , wi,j}j∈Corr of corrupted parties from S as well

as an additive error di. Then sample three random degree-t Shamir sharings ([ai]t, [bi]t, [ci + di]t) based
on the shares of corrupted parties and the secrets ai, bi, ci + di.

4: For each party Pj , send a request-based delayed output of shares of {([ai]t, [bi]t, [ci]t)}N
i=1 to Pj .

– Upon receiving a request (Fail, Pj) from S, if the output of Pj has not been delivered, change the
output of Pj by Fail.

Recall that our high-level idea is to run two different processes in parallel. We will ensure that no
matter how corrupted parties behave, at least one of the two processes will succeed, and the successful
process will produce random Beaver triples (with additive errors) and the communication complexity is
linear per triple. The description of these two processes is as follows.
Process 1. As we introduced in section 2.2, here we let all parties wait for L = 2t+ (t− 1)/2 successful
dealers. Since L > 2t+ 1, we cannot use the ACS protocol in a black box way to reach an agreement on
the successful dealers. Instead, we modify the ACS protocol in [DDL+24] and present it in Appendix A.1.
Then all parties extract random Beaver triples from those shared by successful dealers. Note that process
1 will only terminate if at least (t − 3)/2 corrupted parties terminate their FACSS-Abort. The detailed
construction of process 1 ΠtripleExt-Weak is shown in Appendix C.4.
Process 2. In the second process, we will use the DN technique [DN07] to prepare random Beaver
triples. We let all parties invoke FrandSh-Weak to prepare random degree-t Shamir sharings and design
ΠrandShareZero-Weak for the preparation of degree-2t Shamir sharings of zero. Note that only when at most
(t + 1)/2 corrupted parties participate in ΠrandShareZero-Weak, all honest parties can eventually get their
shares of zero. The construction of ΠrandShareZero-Weak (see Appendix C.3) is similar to ΠrandSh-Weak and we
replace FACSS-Abort by ΠSh2tZero-Weak.

12

Protocol ΠSh2tZero-Weak

Let β1, . . . , β(t+1)/2, α0, α1, . . . , αn be distinct field elements and N be the number of degree-2t Shamir
sharings of zero.
Dealer D

1: Distributing Shares: Divide these N sharings into L disjoint sets, each of size (t + 1)/2. For ℓ-th
set of sharings, denoted by [o1]2t, . . . , [o(t+1)/2]2t, prepare random degree-(2t, t + (t − 1)/2) bivariate
polynomials Fℓ(x, y) where Fℓ(x, βi) = [oi]2t for all i ∈ [(t + 1)/2]. Let f

(i)
ℓ (x) = Fℓ(x, αi), g

(i)
ℓ (y) =

Fℓ(αi, y). Then send {f
(i)
ℓ (x)}ℓ∈[L] to party Pi.

Party Pi

1: Receiving Row Polynomial: Upon receiving {f
(i)
ℓ (x)}ℓ∈[L] from the dealer, send {f

(i)
ℓ (αj)}ℓ∈[L] to

party Pj . Then send (support, Pi, D) to all parties.
2: Reconstructing Column Polynomial: Upon receiving {f

(j)
ℓ (αi)}ℓ∈[L] from t + (t + 1)/2 distinct

parties Pj , interpolate column polynomials {g
(i)
ℓ (y)}ℓ∈[L].

3: Termination procedure: Only after accepting {g
(i)
ℓ (y)}ℓ∈[L]: Upon receiving (support, Pj , D) from

2t + 1 distinct parties Pj such that for each Pj , Pi has received outputs from the FACSS-Abort invoked
by dealer Pj in ΠtripleExt-Weak, locally computes his shares of [o1]2t, . . . , [o(t+1)/2]2t (by evaluating each
g

(i)
ℓ (y) at positions β1, . . . , β(t+1)/2 for all ℓ ∈ [L]) and terminates.

Following the DN technique, we ask Pking to help all parties reconstruct the secret of [z]2t = [a]t ·
[b]t + [r]t + [o]2t and design ΠtripleKingDN-Weak as follows.

Process ΠtripleKingDN-Weak

Let N be the number of Beaver triples prepared by Pking and each party’s inputs be
{[aℓ]t, [bℓ]t, [rℓ]t, [oℓ]2t}N

ℓ=1. Each party whose input sharings are ⊥ will output ⊥.
1: Each party Pi locally compute [zℓ]2t := [aℓ]t · [bℓ]t + [rℓ]t + [oℓ]2t.
2: Each party Pi sends his shares of {[zℓ]2t}ℓ∈[N] to Pking.
3: If Pking first receives 2t + 1 parties’ {[zℓ]2t}ℓ∈[N], he reconstructs {zℓ}ℓ∈[N] and reliably broadcast them.

Otherwise, if Pking first receives ⊥ from one party, he reliably broadcasts the failure symbol ⊥.
4: All parties wait to receive the message from Pking, if they receive {zℓ}ℓ∈[N] from the dealer, they locally

compute [cℓ]t = zℓ − [rℓ]t for all ℓ ∈ [N]. Otherwise, they output ⊥ when they receive ⊥.

To prevent corrupted Pking from not broadcasting secrets or a failure symbol, we design ΠtripleDN-Weak.
At a high level, we let each party act as Pking and lead an instance of ΠtripleKingDN-Weak to reconstruct
O(1/n) fraction of the secrets. Since the instances of ΠtripleKingDN-Weak led by corrupted parties may never
terminate, all parties will invoke an ACS protocol to agree on 2t+ 1 kings who successfully reconstruct
the secrets to all parties.

Process ΠtripleDN-Weak

Let N be the number of Beaver triples to be prepared and N ′ = N/(2t + 1).
Preparation
1: All parties invoke FrandSh-Weak to prepare 3N ′ · n random degree-t Shamir sharings, each party who

receives Fail from FrandSh-Weak will send ⊥ to all parties. All parties invoke ΠrandShareZero-Weak to prepare
N ′ · n random degree-2t Shamir sharings of 0.

2: Each party locally divide these Shamir secret sharings into n groups such that each group con-
tains 3N ′ random degree-t sharings and N ′ degree-2t sharings of 0. The i-th group is denoted by
{[a(i)

ℓ]t, [b(i)
ℓ]t, [r(i)

ℓ]t, [o(i)
ℓ]2t}N′

ℓ=1 for i ∈ [n].
Generation
1: Generation of Random Triples:

Each party Pj acts as Pking and leads an instance of ΠtripleKingDN, all parties participates in the ΠtripleKingDN

led by Pj with their shares of {[a(j)
ℓ]t, [b(j)

ℓ]t, [r(j)
ℓ]t, [o(j)

ℓ]2t}N′
ℓ=1.

2: Determine the Set of Successful Kings and Output:

13

Each party sets the property Q as he terminates the ΠtripleKingDN led by one Pking, and all parties
invoke Facs with property Q to agree on a set D of successful kings with size |D| = 2t + 1. Each party
checks whether he gets all shares of Beaver triples from each Pj ∈ D. If true, he outputs his shares of
{[a(j)

ℓ]t, [b(j)
ℓ]t, [c(j)

ℓ]t}N′
ℓ=1 for all Pj ∈ D. Otherwise, he outputs Fail.

Putting it all Together. Based on the above two processes, we give the construction of Πtriple-Add-Weak
which realizes Ftriple-add-Weak. The communication complexity is O(N ·n+n3) field elements plus O(κ ·n3)
bits. We prove lemma 2 and analyze the communication complexity in Appendix C.5.

Protocol Πtriple-Add-Weak

1: Run Process 1 and Process 2:
All parties execute ΠtripleExt-Weak and ΠtripleDN-Weak in parallel to prepare N random Beaver triples.

2: Agree on Successful Process:
For each party Pi, if the first process first succeeds, he sets bi = 0; otherwise, he sets bi = 1. Then Pi

sends bi to Fba. Upon receiving b from Fba, if b = 0, he takes the output of the first process as the final
output; otherwise, he takes the output of the second process as the final output.

Lemma 2. Protocol Πtriple-Add-Weak securely computes Ftriple-add-Weak in the {Fba, Facs, FpubRec-Weak,FACSS-Abort}-
hybrid model against a fully malicious adversary A who corrupts at most t < n/3 parties.

4.4 Generating Beaver Triples without Additive Error

We design Πtriple-Weak to prepare random Beaver triples without additive errors, which realizes Ftriple-Weak
defined below. At a high level, all parties first invoke Ftriple-add-Weak to prepare triples, then check for ad-
ditive errors. If errors are found, they output a failure symbol. The verification process follows the
approach in [NV18, BSFO12] and we give the detailed construction in C.6. The communication com-
plexity of Πtriple-Weak is O(N · n+ n3) field elements plus O(κ · n3) bits. We prove lemma 3 and analyze
the costs in Appendix C.7.

Functionality Ftriple-Weak

Public Input: N
Ftriple-Weak runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Wait to receive the number N of random Beaver triples to be prepared and the identities of corrupted

parties.
2: For all i ∈ [N], randomly samples ai, bi, ci such that ci = ai · bi.
3: For all i ∈ [N], wait to receive a set of shares {ui,j , vi,j , wi,j}j∈Corr of corrupted parties from S. Then

sample three random degree-t Shamir sharings ([ai]t, [bi]t, [ci]t) based on the shares of corrupted parties
and the secrets ai, bi, ci.

4: For each party Pj , send a request-based delayed output of shares of {([ai]t, [bi]t, [ci]t)}N
i=1 to Pj .

– Upon receiving a request (Fail, Pj), if the output of Pj has not been delivered, change the output of
Pj by Fail.

Protocol Πtriple-Weak

Let N be the number of Beaver triples to be prepared.
1: Preparing Random Beaver Triples with Additive Errors:

All parties invoke Ftriple-add-Weak to prepare 2(N + 1) random Beaver triples, denoted by
{[ai]t, [bi]t, [ci]t}2N+1

i=0 . If a party receives Fail in Ftriple-add-Weak, this party uses ⊥ as his input for
ΠtripleVerify-Weak.

2: Verifying the Prepared Beaver Triples:
All parties invoke ΠtripleVerify-Weak and use their shares of {[ai]t, [bi]t, [ci]t}2N+1

i=0 or ⊥ as input. Upon
terminating ΠtripleVerify-Weak, each party will output his shares of {[ai]t, [bi]t, [ci]t}N

i=1 or Fail.

14

Lemma 3. Let κ denote the security parameter, for a finite field F of size 2Ω(κ), protocol Πtriple-Weak
securely computes Ftriple-Weak in the Ftriple-add-Weak-hybrid model against a fully malicious adversary A
who corrupts at most t < n/3 parties.

4.5 Main Protocol for Malicious Security with Fairness

First, we let all parties invoke Ftriple-Weak to prepare Beaver triples during the offline phase. Then, fol-
lowing the brief outline for the online phase introduced in section 2.2, we achieve malicious security with
fairness AMPC with linear communication costs and obtain the following theorem. We refer the reader
to Appendix C.8 for more detailed construction, security proof, and cost analysis.

Theorem 1. Let n = 3t+ 1 and κ denote the security parameter. For a finite field F of size 2Ω(κ) and
any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that is secure
against at most t corrupted parties with security with fairness. Let the input and output size be CI and
CO respectively, the achieved communication complexity is O((|C| + CI) · n + D · n2 + CO · n3) field
elements.

5 From Security with Fairness to Guaranteed Output Delivery

5.1 Security with Identifiable Abort ACSS

In ΠACSS-ab, a single malicious party can make an honest party abort the protocol, even if D was honest.
We strengthen this guarantee to ensure that nodes will output abort only when dealer D is malicious.
Further, we also ensure that every honest party will terminate either with its shares or with verifiable
proof that implicates a malicious dealer. We present the functionality FACSS-id and defer the detailed
protocol description and proof of Lemma 4 to Appendix B.3.

Functionality FACSS-id

Public Input: (α0, . . . , αn), N
FACSS-id runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Upon receiving the set of corrupted parties PCorr, if D ∈ PCorr, initialize Pproof = PCorr. Otherwise,

set Pproof = ∅.
2: Upon receiving N degree-t polynomials q1(·), . . . , qN (·) from D, for each party Pi ∈ P, send an requested-

based delayed output q1(αi), . . . , qN (αi) to Pi.
– Upon receiving a request (proof, Pi) from S, if D ∈ PCorr and the output of Pi has not been

delivered, change the output of Pi by (Corrupt, D) and add Pi in Pproof. Otherwise, ignore this
request.

3: Upon receiving Broadcast-Proof from Pi, if Pi ∈ Pproof, send an requested-based delayed output
(Corrupt, D) to each Pj ∈ P.

4: Upon receiving Public-Recon from t + 1 parties, send an requested-based delayed output
q1(α0), . . . , qN (α0) to each Pj ∈ P.

In this protocol, D generates a dZK proof for the whole share polynomials F(x, y). This dZK proof
enables any honest party to verify if a point is from a given bivariate polynomial. D follows the same
framework as ΠACSS-ab - broadcasts commitments and the dZK proof, while delivering shares over private
channels. In the column interpolation phase, an honest party uses the expanded dZK proof to verify if a
point is on its column polynomial. As at least t+ 1 parties verified their shares before proceeding to this
phase, each party Pi will eventually reconstruct its column. Then, Pi must send points on its column to
enable other parties to interpolate their rows. However, a corrupted D can craft commitments such that
the commitments of specific shares on Pi’s column do not match the broadcast commitments. When this
happens, other parties will not be able to verify Pi’s shares, which prevents row interpolation.

However, Pi can implicate D and prove its malice with the t + 1 valid points it received on its
column polynomial. Pi compiles an ⟨Abort⟩ message by attaching its accepted column shares. A party
that receives this message can verify the commitments and dZK proofs of these points, interpolate the
ith column of all Fis, and verify the malformed commitments/dZK proofs. Note that this scenario can
only occur when D is malicious, i.e., if D is honest, malicious parties cannot compile such a proof.

15

Reducing proof size. The size of the proof required to implicate a corrupted D is O(n) field elements on
each of the L

t+1 polynomials, which is O(L) field elements. If O(n) honest parties broadcast their proofs,
then the overall communication becomes O(n2L) field elements. Therefore, to reduce this complexity, D
splits the L

t+1 bivariate polynomials into n batches, and creates separate commitments and dZK proofs
for each batch. With this change, a party only has to compile a proof for one batch to implicate D, which
only has size O(L

t). Therefore, O(n) honest parties broadcasting their proofs costs O(nL) communication.

Lemma 4. Protocol ΠACSS-id securely computes FACSS-id against a fully malicious adversary A who cor-
rupts at most t < n/3 parties.

5.2 Public Reconstruction and Sub-Circuit Evaluation

We integrate the public reconstruction process into the so-called sub-circuit evaluation protocol which is
mainly used in the online phase. We first show some details for public reconstruction based on the party
elimination framework.

Batch Reconstruction and Agreement with Linear Costs. To ensure the whole public reconstruc-
tion achieves linear communication cost, steps 2 and 3 of public reconstruction introduced in section 2.3
should also achieve linear cost. We design ΠBatchPubRec and ΠAgreement to achieve them, respectively (see
Appendix D.1), which will be used as sub-protocols later. At a high level,

– For ΠBatchPubRec, we batch L degree-t Shamir sharings and follow the idea of weak public recon-
struction, except that each party will set his reconstruction result as ⊥ when he receives an ACSS
proof.

– For ΠAgreement, we invoke two instances of BA protocol. All parties take their reconstruction result
as the input for the first BA. Upon terminating it with an output, they check whether it equals their
reconstruction result. If true, they set input 1 for the second BA and 0 otherwise. This can ensure
that if all parties terminate the second BA with 1, then the output of the first BA must be some
honest party’s input. That can prevent all parties from agreeing on an incorrect result chosen by the
adversary.

Sub-Circuit Evaluation. We note that with the help of Beaver triples, the online protocol only needs
to do public reconstruction. We integrate the public reconstruction protocol into the ΠSubCktEval (see
Appendix D.2), which allows all parties to evaluate a circuit with the help of Beaver triples: In the
beginning, all parties take a target circuit C ′ as input. We assume that all parties hold degree-t Shamir
sharings of the inputs of C ′ as well as a sufficient number of random Beaver triples. If the circuit does
not have an output layer, all parties will skip Step 3. This is the case when evaluating a segment of the
whole circuit in the online phase. If all parties only want to perform public reconstruction, we may think
that the circuit C ′ outputs its inputs. In this case, they can skip the check for Beaver triples in Step 1
and the circuit evaluation in Step 2.

To summarize, later we will use ΠSubCktEval in a black box way to do public reconstruction in the
offline phase to prepare triples. For the online phase, we will divide the circuit into several sub-circuits
and let all parties invoke ΠSubCktEval to evaluate them in order. The benefit is that when all parties fail
at the current sub-circuit, they do not need to re-execute the previous sub-circuits, only the current
sub-circuit.

5.3 Preparation of Beaver Triples

In this subsection, we modify the two processes in Section 4 to guarantee that all parties can eventually
generate Beaver triples without additive errors.

Upgrade Process 1 to GOD. Based on ΠtripleExt-Weak, we do the following adjustments. Refer to
Appendix D.4 for detailed construction and cost analysis.

– We replace FACSS-Abort by FACSS-id to ensure that each party who does not receive his shares from
the corrupted dealer can accuse this dealer later.

16

– We first check whether the triples prepared by each dealer are correct. Following by [CP23], we can
let each dealer additionally prepare {[hi(αℓ)]t}2N ′

ℓ=N ′+1 and then all parties have sufficient shares to
interpolate their shares of [hi(r)]t where r is the challenge point. For each corrupted dealer who
provides incorrect shares, all parties will replace their shares with zero. As a result, there are no
additive errors in the extracted triples.

– We invoke Fcoin (see Appendix A.2) to prepare the challenge point r. For the reconstruction of each
dealer Pi’s {[fi(r)]t, [gi(r)]t, [hi(r)]t}, since there are only n values and we can directly use ΠSubCktEval
to do reconstruction. Under the party elimination framework, it may fail for at most t times while
the communication costs are at most O(n3) field elements.

– For extraction, we do public reconstruction through ΠSubCktEval for each i ∈ [L′ + 2, L] in order. That
is because we need to divide the reconstruction of whole O(N) values into O(n) segments to keep
linear communication costs.

Overview of Process 2 to GOD. Based on ΠtripleDN-Weak, we first replace FrandSh-Weak and FpubRec-Weak
by ΠrandSh (see Appendix D.3) and ΠSubCktEval, then we focus on how to prepare Beaver triples without
additive errors. Recall that we use the party elimination framework here, we divide the generation of N
triples into n segments and all parties will either generate O(N/n) triples or agree on a corrupted party
in each segment. To be more concrete:

First, each party acts as Pking and leads an instance of ΠtripleKingDN to generate O(1/n2) fraction of
triples in each segment. After agreeing on a set of successful kings, all parties invoke ΠtripleVerify (see
Appendix D.5) to check whether the prepared Beaver triples by each Pking in this set are correct. If there
are t+1 distinct Pking provides valid triples, all parties output these Beaver triples. Otherwise, all parties
will help each Pking identify a corrupted party. As a result, they can expect to receive a proof to accuse
a corrupted party from an honest Pking among these t+ 1 distinct kings. Finally, all parties will agree to
eliminate a corrupt party and execute the current segment again.

Recall the three issues introduced in Section 2.3 that cause the additive errors in triples, the first one
is solved by the ACSS proofs. For the latter two issues, to ensure that honest Pking can later convince
all parties which party causes the errors, we let the dealer and parties commit their degree-2t shares of
[o]2t and [z]2t. Later, Pking can open the commitments to prove that the accused corrupted parties indeed
provided incorrect messages.

From ΠrandShareZero-Weak to ΠrandShareZero. To prevent the corrupted dealer from distributing incorrect
shares and allow honest parties to accuse the corrupted dealer later, we modify ΠSh2tZero-Weak by adding
commitments on the shares and get ΠSh2tZero below and ΠrandShareZero (see Appendix D.3).

Protocol ΠSh2tZero

Let β1, . . . , β(t+1)/2, α0, α1, . . . , αn be distinct field elements and N be the number of degree-2t Shamir
sharings of zero.
Dealer D

1: Distributing Shares: The same as ΠSh2tZero-Weak, except that additionally prepare random degree-
(2t, t + (t − 1)/2) bivariate polynomial F̄ℓ(x, y) and let f̄

(i)
ℓ (x) = F̄ℓ(x, αi), ḡ

(i)
ℓ (y) = F̄ℓ(αi, y) for all

ℓ ∈ [L]. Then send {f
(i)
ℓ (x), f̄

(i)
ℓ (x)}ℓ∈[L] to party Pi.

2: Computing Commitments: Define:

f (i)
∗ (αj) := (H(f (i)

1 (αj), f̄
(i)
1 (αj)), . . . , H(f (i)

L (αj), f̄
(i)
L (αj)))

g
(i)
ℓ (β∗) := g

(i)
ℓ (β1)|| · · · ||g(i)

ℓ (β(t+1)/2)

ḡ
(i)
ℓ (β∗) := ḡ

(i)
ℓ (β1)|| · · · ||ḡ(i)

ℓ (β(t+1)/2)

Locally compute:

cm-row(i)
j = MT.Com(f (i)

∗ (αj)) ∀i, j ∈ [n]

cm-col(i)
ℓ = H(g(i)

ℓ (β∗), ḡ
(i)
ℓ (β∗)) ∀i ∈ [n], ℓ ∈ [L]

Reliably broadcast {cm-row(i)
j }i,j∈[n], {cm-col(i)

ℓ }i∈[n],ℓ∈[L].
Party Pi

17

1: Verifying Row Polynomial: Upon receiving {f
(i)
ℓ (x), f̄

(i)
ℓ (x)}ℓ∈[L] and {cm-row(i)

j }j∈[n] from the
dealer, locally verify that cm-row(i)

j

?= MT.Com(f (i)
∗ (αj)) ∀j ∈ [n]. If true, send {f

(i)
ℓ (αj), f̄

(i)
ℓ (αj)}ℓ∈[L]

to each party Pj and (support, Pi, D) to all parties.
2: Reconstructing Column Polynomial: Upon receiving cm-row(j)

i from the dealer and
{f

(j)
ℓ (αi), f̄

(j)
ℓ (αi)}ℓ∈[L] from party Pj , verify that cm-row(j)

i

?= MT.Com(f (j)
∗ (αi)). If true, ac-

cept {f
(j)
ℓ (αi), f̄

(j)
ℓ (αi)}ℓ∈[L] and locally compute the Merkle tree opening op[f (j)

∗ (αi)|ℓ] =
MT.Open(f (j)

∗ (αi), ℓ) ∀ℓ ∈ [L]. Upon accepting it from t + (t + 1)/2 distinct parties Pj , interpolate
column polynomials {g

(i)
ℓ (y), ḡ

(i)
ℓ (y)}ℓ∈[L].

3: Verifying Column Polynomial: Upon interpolating {g
(i)
ℓ (y), ḡ

(i)
ℓ (y)}ℓ∈[L] and receiving

{cm-col(i)
ℓ }ℓ∈[L] from the dealer, locally verify that cm-col(i)

ℓ

?= H(g(i)
ℓ (β∗), ḡ

(i)
ℓ (β∗)) ∀ℓ ∈ [L]. If

true, accept {g
(i)
ℓ (y)}ℓ∈[L]. Otherwise, locally generate ShareProof which contains t + (t + 1)/2 distinct

Pj ’s f
(j)
ℓ (αi), f̄

(j)
ℓ (αi) and the Merkle tree opening op[f (j)

∗ (αi)|ℓ]. Each party who receives this proof
can interpolate Pi’s column polynomial and check whether it matches the dealer’s commitment.

4: Termination procedure: The same as ΠSh2tZero-Weak, except that Pi checks whether he has terminated
the FACSS-id invoked by dealer Pj in ΠtripleExt and Pi will additionally output his column polynomial
{g

(i)
ℓ (y)}ℓ∈[L].

Modification on Preparing Triples with Pking. Compared to the previous construction, we addi-
tionally let each party commit his shares of [z]2t when he sends it to Pking. Then if later Pking detects
a corrupted party sends incorrect shares to him, he can use this commitment to accuse this corrupted
party.

Process ΠtripleKingDN

The construction is same as ΠtripleKingDN-Weak, except that:
1: Denote Pi’s share of [zℓ]2t as z

(i)
ℓ , Pi randomly samples a value ν(i) and computes commitment τ (i) =

H(z(i)
1 || · · · ||z(i)

N , ν(i)). Then Pi reliably broadcasts τ (i) and sends ν(i) to Pking. Pking will accepts if Pi’s
shares {z

(i)
ℓ }N

ℓ=1 match his commitment.
2: When Pking first receives (Proof, D) from Pi and (Corrupt, D) from FACSS-id rather than succeeds in

reconstructing secrets, Pking reliably broadcasts the identity of Pi and lets all parties wait to receive
(Corrupt, D) from FACSS-id.

3: If all parties receive the identity of a party Pi, they wait to receive (Proof, D) from Pi and (Corrupt, D)
from FACSS-id. Once these messages are received, they terminate and output the identity of the corrupted
party D.

Detecting Corruptions. Based on the high-level idea introduced in Section 2.3 about how to detect
corrupted parties, we design ΠfaultLoc (see Appendix D.6) to let all parties help Pking to identify an active
corrupted party.
Upgrade Process 2 to GOD. Finally, we give the construction of ΠtripleDN. During the preparation
phase, we need to let all parties prepare n(n+ t) groups of sharings because we use the party elimination
framework. The factor n is used for all kings and the factor n+ t is because we may fail for additional t
times due to corrupted parties. Refer to Appendix D.7 for detailed cost analysis.

Process ΠtripleDN

Let N be the number of Beaver triples to be prepared and N ′ = N/(t + 1).
Preparation.
1: All parties invoke ΠrandSh and ΠrandShareZero to prepare (6N ′ +3n)(n+t) random degree-t Shamir sharings

and (2N ′ + n)(n + t) random degree-2t Shamir sharings of 0 respectively.
2: For degree-t Shamir sharings, all parties locally divide them into n(n+ t) groups, each of size 6N ′/n+3.

For degree-2t Shamir sharing of 0, all parties have divided them into n(n + t) groups in ΠrandShareZero.
Then we combine every group of degree-t and 2t Shamir sharing and denote the (i, j)-th group as
{[a(i,j)

ℓ]t, [b(i,j)
ℓ]t, [r(i,j)

ℓ]t, [o(i,j)
ℓ]2t}2N′/n+1

ℓ=1 for i ∈ [n + t], j ∈ [n].
Generation.

18

Divide the generation of N random Beaver triples into n segments. For each segment, let i be the group
index, all parties use the (i, ∗)-th group {[a(i,j)

ℓ]t, [b(i,j)
ℓ]t, [r(i,j)

ℓ]t, [o(i,j)
ℓ]2t}ℓ∈[2N′/n+1],j∈[n] to generate

N/n random Beaver triples as follows.
1: Accusation against Corrupted Dealer:

Each party who receives (Corrupt, D) from FACSS-id (during ΠrandSh) reliably broadcasts (Proof, D) and
sends request Broadcast-Proof to the FACSS-id invoked by D. Each party only does this for one active
corrupted D once in each segment.

2: Generation of Random Triples:
Each party Pj acts as Pking and leads an instance of ΠtripleKingDN, all parties participates in the ΠtripleKingDN

led by Pj with their shares of {[a(i,j)
ℓ]t, [b(i,j)

ℓ]t, [r(i,j)
ℓ]t, [o(i,j)

ℓ]2t}ℓ∈[2N′/n+1].
3: Determine the Set of Successful Kings and Outputs:

(1). Each party sets the property Q as he terminates the ΠtripleKingDN led by one Pking, and all parties
invoke Facs with property Q to agree on a set D of successful kings with size |D| = 2t + 1.

(2). For the outputs of each Pking ∈ D, all parties proceed if all kings provide shares of Beaver triples.
Otherwise, assume that Pk is the corrupted party with the smallest index in the outputs, all parties
move to Step 4-(3) with the identity of Pk.

4: Verification on Triples:
All parties execute ΠtripleVerify with (2N ′/n+1)(2t+1) shares of Beaver triples prepared in the instances
of ΠtripleKingDN led by all kings in D:
– If there are at least t+1 kings who pass the verification, all parties store the total N ′/n ·(t+1) = N/n

(output of the triples prepared by the first t + 1 successful kings in ΠtripleVerify), set the group index
i = i + 1 and move to the next segment.

– Otherwise, all parties execute ΠfaultLoc for the first t + 1 king who fails the verification and then the
following steps to agree on a corrupted party.
(1). All parties execute n instances of Fba. Upon learning a corrupted Pk at the end of each instance

of ΠfaultLoc, each party sets his input of the k-th Fba as 1.
(2). If a party terminates any Fba with output 1, he sets his input to 0 for the rest of the Fba (unless

already set to 1) and waits for all instances of Fba to terminate. When all parties terminate all
instances of Fba, assuming that the k-th Fba with the smallest index and output 1, they agree on
the corrupted party Pk.

(3). All parties do the following things for corrupted party Pk:
∗ If Pk has distributed degree-t Shamir sharings, all parties send Public-Recon to the FACSS-id

invoked by Pk and wait to receive his secrets from FACSS-id. Upon receiving the secrets, all
parties locally replace their degree-t Shamir sharings distributed by Pk with the secrets.

∗ If Pk has distributed degree-2t Shamir sharings, all parties change their 2t Shamir sharings
distributed by Pk with zero.

Then all parties set the group index i = i + 1 and execute the current segment again.

Putting it all Together. We give the construction of Πtriple in Appendix D.8 and the communication
complexity is O(N · n+ n5) elements plus O(N · nκ+ κ · n5) bits for preparing N Beaver triples.

5.4 Main Protocol for Malicious Security with GOD

We first let all parties execute Πtriple to prepare triples in the offline phase. Then in the online phase,
we divide the circuit into t disjoint sub-circuits C1, . . . , Ct (sorted by the topology), each containing
|C|/t multiplication gates, then all parties invoke ΠSubCktEval to evaluate each sub-circuit in order. Recall
that when all parties’ output of ΠSubCktEval is the identity of a corrupted party, they will eliminate
this party, locally update their Shamir shares, and evaluate the current sub-circuit again. Therefore,
during the circuit evaluation process, all parties will invoke ΠSubCktEval for at most 2t times and the
communication complexity for the online phase still remains linear. We can do the same thing for the
output reconstruction. As a result, we obtain the following theorem. We refer the reader to Appendix D.9
for detailed construction, security proof, and cost analysis.

Theorem 2. Let n = 3t+ 1 and κ denote the security parameter. For a finite field F of size 2Ω(κ) and
any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
the circuit that is secure against at most t corrupted parties with guaranteed output delivery. Let the input
and output size be CI and CO respectively, the achieved communication complexity is O((|C|+CI +CO) ·
n+D · n2 + n5) field elements.

19

6 Reducing Field Size

In this section, following the techniques in [GLZS24], we show how to relax the requirement of a large
finite field in our constructions. Let F be a finite field of size |F| ≥ n+ 1 and G be an extension field of
F such that |G| ≥ 2κ, where κ is the security parameter. Let m := [G : F] denote the extension degree.

Our goal is to evaluate an arithmetic circuit C over the finite field F.
Step 1: Reduction from G to F in FACSS-Abort,FACSS-id. For any element x ∈ G, it can be viewed as
m elements (x1, . . . , xm) in F. Therefore, for a degree-t Shamir sharing [x]t over G with the underlying
degree-t polynomial f(X) = a0 + · · · + atX

t over G, if we consider each coefficient ak ∈ G as m elements
{ak,j}m

j=1 over F, f(X) can be viewed as m degree-t polynomials {fj(X) = a0,j + · · · + at,jX
t}m

j=1 over
F.

If we assign an evaluation point αi ∈ F ⊂ G to each party Pi, each party can locally splits his share
f(αi) ∈ G to (f1(αi), . . . , fm(αi)) ∈ Fm. Then all parties together transform [x]t over G to {[xj]t}m

j=1
over F.

Therefore, to share degree-t Shamir sharings over F, the dealer can concatenate m degree-t Shamir
sharings over F to a degree-t Shamir sharing over G.
Step 2: Generating Triples Over F From Triples Over G. We follow [GLZS24] to use the technique
of Reverse Multiplication-Friendly Embeddings (RMFE) [CCXY18]. We first review the notion of RMFE
below.

We say a pair of F-linear maps (ϕ, ψ), where ϕ : Fk → G and ψ : G → F k, is a (k,m)-RMFE if for
all x,y ∈ Fk,

x ∗ y = ψ(ϕ(x) · ϕ(y))
where ∗ denotes the coordinate-wise multiplication. From [CCXY18], there exists a family of RMFEs such
that k = Θ(m). Relying on a (k,m)-RMFE, all parties can locally apply the following two operations:

– Let [x1]t, . . . , [xk]t be degree-t Shamir sharings over F. If each party applies ϕ on his k shares, then
all parties together hold a degree-t Shamir sharing of ϕ(x).

– Let [y]t be a degree-t Shamir sharing over G. If each party applies ψ on his share and obtains a
vector of k elements in Fk, then all parties together hold k degree-t Shamir sharings of the elements
in ψ(y).

Based on these two operations, the high-level idea of generating triples over F is as follows. We first
let all parties prepare a sufficient number of random degree-t Shamir sharings over F with the help of
FACSS-Abort,FACSS-id over F. Then we will transform every k of them into one sharing over G. With two
transformed sharings [a]t, [b]t, we consume one random Beaver triple over G to compute [c]t = [a · b]t.
After getting ([a]t, [b]t, [c]t) over G, we can again convert them back to k triples over F.

To be more concrete, suppose all parties want to prepare N random Beaver triples over F. Let m
be the extension degree of G and k be an integer such that there exists a (k,m)-RMFE. By [CCXY18],
k = Θ(m). Let N ′ = ⌈N/k⌉. The construction is as follows.

For the malicious security with fairness construction, we first realize FrandSh-Weak over F based on
FACSS-Abort over F, then:

1. All parties invoke FrandSh-Weak to prepare 2N ′·k random degree-t Shamir sharings {[a(i)
j]t, [b(i)

j]t}i∈[N ′],j∈[k].
2. All parties invoke Ftriple-Weak to prepare N ′ random Beaver triples {[ū(i)]t, [v̄(i)]t, [w̄(i)]t} over G.
3. For all i ∈ [N ′], let u(i) = ϕ(a(i)

1 , . . . , a
(i)
k) and v(i) = ϕ(b(i)

1 , . . . , b
(i)
k). All parties locally convert

{([a(i)
j]t, [b(i)

j]t)}k
j=1 to ([u(i)]t, [v(i)]t) over G.

4. For all i ∈ [N ′], all parties consume a random Beaver triple over G to compute [w(i)]t = [u(i) · v(i)]t
as follows.

(1). Compute their shares of [u(i) + ū(i)]t, [v(i) + v̄(i)]t for all i ∈ [N ′].
(2). Invoke FpubRec-Weak to reconstruct u(i) + ū(i), v(i) + v̄(i) for all i ∈ [N ′].
(3). Locally compute:

[w(i)]t = (u(i) + ū(i)) · (v(i) + v̄(i)) − (u(i) + ū(i))[v̄(i)]t − (v(i) + v̄(i))[ū(i)]t + [w̄(i)]t

5. By the property of RMFEs, we have ψ(w(i)) = (c(i)
1 , . . . , c

(i)
k), where c(i)

j = a
(i)
j · b(i)

j for all j ∈ [k].
For all i ∈ [N ′], all parties locally convert [w(i)]t to [c(i)

1]t, . . . , [c(i)
k]t.

20

6. Each party who gets his shares of ([a(i)
j]t, [b(i)

j]t, [c(i)
j]t) will output them. Otherwise, each party who

receives Fail from FrandSh-Weak,Ftriple-Weak or FpubRec-Weak will output Fail.

For the GOD construction, the differences are as follows:

– In step 1, replace FrandSh-Weak over F by ΠrandSh over F, which can be realized by FACSS-id over F.
– In step 2, replace Ftriple-Weak by Πtriple.
– In step 4, we divide the reconstruction of all {u(i) + ū(i), v(i) + v̄(i)}i∈[N ′] into n segments and all

parties invoke ΠSubCktEval to reconstruct the values in each segment in order. If their output of
ΠSubCktEval is the identity of a corrupted party, all parties first reconstruct the secrets of degree-t
Shamir sharings distributed by this party. Then they update their shares with these secrets locally
and invoke ΠSubCktEval for the current segment again.

Step 3: The Online Phase. After getting a sufficient number of random Beaver triples over F, all
parties follow the online phase of Πmain-Fair or Πmain-GOD to evaluate the circuit.

In summary, we obtain the following theorems based on the above techniques.

Theorem 3. Let n = 3t + 1 and κ denote the security parameter. For a finite field F of size at least
n+ 1 and any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that
is secure against at most t corrupted parties with security with fairness. Let the input and output size be
CI and CO respectively, the achieved communication complexity is O((|C| + CI) · n + D · n2 + CO · n3)
field elements plus O(κ · n3) bits.

Theorem 4. Let n = 3t + 1 and κ denote the security parameter. For a finite field F of size at least
n+ 1 and any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC protocol
computing the circuit that is secure against at most t corrupted parties with guaranteed output delivery.
Let the input and output size be CI and CO respectively, the achieved communication complexity is
O((|C| + CI + CO) · n+D · n2 + n5) field elements plus O(κ · n5) bits.

7 Conclusion

In this work, we presented a suite of concretely efficient Asynchronous MPC protocols using only
lightweight cryptography. Our first protocol offers fairness against a malicious adversary and is hyper-
efficient with a concrete communication overhead of only O(n3) field elements. The second protocol
offers Guaranteed Output Delivery with overhead of only O(n5) field elements. We introduced several
new primitives and techniques in distributed cryptography by employing Hash functions for verifiably
detecting malicious behavior, and collectively handling corrupted parties in an asynchronous network.

Acknowledgements. X. Ji and Y. Song were supported in part by the National Basic Research Program
of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant
61033001, 61361136003. C. Liu-Zhang and Y. Song were supported in part by the ETH Zurich Leading
House Research Partnership Grant RPG-072023-19. A. Bandarupalli and A. Kate were supported in part
by Sui Academic Research Award and NIFA/USDA award number 2021-67021-34252.

References

[AAPP24] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Perfect asynchronous MPC with
linear communication overhead. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part V, volume 14655 of LNCS, pages 280–309. Springer, Cham, May 2024.

[ABCP23] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. VSS from distributed ZK
proofs and applications. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part I, volume
14438 of LNCS, pages 405–440. Springer, Singapore, December 2023.

[ADS20] Ittai Abraham, Danny Dolev, and Gilad Stern. Revisiting asynchronous fault tolerant computation
with optimal resilience. In Yuval Emek and Christian Cachin, editors, 39th ACM PODC, pages
139–148. ACM, August 2020.

21

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo: Adap-
tivity and asynchrony in verifiable secret sharing and distributed key generation. In Advances in
Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part I, page 39–70, Berlin, Heidelberg,
2023. Springer-Verlag.

[BBB+24] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, and Michael K. Reiter. Hashrand:
Efficient asynchronous random beacon without threshold cryptographic setup. ACM CCS 2024 (to
appear), 2024. https://eprint.iacr.org/2023/451.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BKLZL20] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agree-
ment with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part I, volume 12550 of LNCS, pages 353–380. Springer, Cham, November 2020.

[BKP11] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing revisited.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, pages
590–609, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM PODC, pages
183–192. ACM, August 1994.

[BOKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’94, page 183–192, New York, NY, USA, 1994. Association
for Computing Machinery.

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Ad-
vances in Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[BTH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute con-
trol. In Theory of Cryptography Conference, pages 305–328. Springer, 2006.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptol-
ogy, 13:143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva, ed-
itors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426. Springer, Cham, August
2018.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public-Key
Cryptography–PKC 2013: 16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26–March 1, 2013. Proceedings 16, pages 55–72. Springer,
2013.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 998–1021. Springer, Berlin,
Heidelberg, December 2016.

[CHLZ21] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asynchronous
MPC with adaptive security. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 35–65. Springer, Cham, November 2021.

[Coh16] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 183–207. Springer, Berlin, Heidelberg, March 2016.

[CP15] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear communi-
cation complexity. In Proc. Intl. Conference on Distributed Computing and Networking (ICDCN),
pages 1–10, 2015.

[CP17] Ashish Choudhury and Arpita Patra. An efficient framework for unconditionally secure multiparty
computation. IEEE Transactions on Information Theory, 63(1):428–468, 2017.

[CP23] Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure asyn-
chronous mpc with optimal resilience. Journal of Cryptology, 36(2):13, 2023.

22

https://eprint.iacr.org/2023/451

[CR98] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience, 1998.
[DDL+24] Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, and Victor Shoup. Asynchronous

consensus without trusted setup or public-key cryptography. Cryptology ePrint Archive, 2024.
[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous multi-

party computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik, editors,
PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Berlin, Heidelberg, March 2009.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computa-
tion. In Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Com-
puter Science, pages 572–590. Springer, 2007.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM), 32(1):191–204, 1985.

[DXR21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2705–2721. ACM Press, November
2021.

[FY92] Matthew Franklin and Moti Yung. Communication Complexity of Secure Computation (Extended
Abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’92, page 699–710, New York, NY, USA, 1992. Association for Computing Machinery.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. ATLAS:
Efficient and scalable MPC in the honest majority setting. In Tal Malkin and Chris Peikert, edi-
tors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 244–274, Virtual Event, August 2021.
Springer, Cham.

[GLZS24] Vipul Goyal, Chen-Da Liu-Zhang, and Yifan Song. Towards achieving asynchronous MPC with
linear communication and optimal resilience. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part VIII, volume 14927 of LNCS, pages 170–206. Springer, Cham, August 2024.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority MPC with packed secret sharing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 3–32. Springer, Cham, August 2022.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience (extended abstract). In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 322–340. Springer, Berlin, Heidelberg, May 2005.

[HNP08] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation
with quadratic communication. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 473–485. Springer, Berlin, Heidelberg, July 2008.

[JLS24] Xiaoyu Ji, Junru Li, and Yifan Song. Linear-communication asynchronous complete secret sharing
with optimal resilience. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VIII,
volume 14927 of LNCS, pages 418–453. Springer, Cham, August 2024.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and Andrew K.
Miller. Honeybadgermpc and asynchromix: Practical asynchronous MPC and its application to
anonymous communication. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019, pages 887–903.
ACM, 2019.

[MMR15] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary
byzantine consensus with t < n/3, o(n2) messages, and o(1) expected time. J. ACM, 62(4), 8 2015.

[MR17] Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous byzantine systems: from mul-
tivalued to binary consensus with t< n/3 t< n/3, o (nˆ 2) o (n 2) messages, and constant time.
Acta Informatica, 54:501–520, 2017.

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. arXiv preprint arXiv:2002.11321, 2020.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority
mpc by batchwise multiplication verification. In International Conference on Applied Cryptography
and Network Security, pages 321–339. Springer, 2018.

[PCR08] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asynchronous multiparty com-
putation with optimal resilience. Cryptology ePrint Archive, Report 2008/425, 2008.

[PCR09] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. Efficient statistical asynchronous verifi-
able secret sharing with optimal resilience. In International Conference on Information Theoretic
Security, pages 74–92. Springer, 2009.

23

[PCR10] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous verifiable
secret sharing with optimal resilience. In Kaoru Kurosawa, editor, ICITS 09, volume 5973 of LNCS,
pages 74–92. Springer, Berlin, Heidelberg, December 2010.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
[SS24] Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret sharing with optimal

resilience. J. Cryptol., 37(3):27, 2024.
[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd

FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

24

A Additional Preliminaries

A.1 Definitions of Agreement Primitives

We describe functionalities for the agreement primitives, following the descriptions from [CGHZ16,
Coh16].
Reliable Broadcast. We describe the functionality Frbc for reliable broadcast. When a party Ps inputs
a value v to the functionality as the sender, we will say that “Ps (reliably) broadcasts value v”. Moreover,
when some party Pj receives an output v in a reliable broadcast functionality with sender Pi, we will
say that “Pj receives output v from Pi’s reliable broadcast”, and we will omit specifying the sender if
the context is clear.

Functionality Frbc

Frbc proceeds as follows, running with parties P1, . . . , Pn, where one of the parties is the sender Ps, and the
adversary S. Initialize y = ⊥.
1: Upon receiving an input v from party Ps (the sender, or the adversary on behalf of the corrupted

sender), set the output to y = v and send v to the adversary.
2: Upon receiving v from the adversary, if Ps is corrupted and no party has received their output, then

set y = v.
3: When the output is y is set to be some value v, the functionality outputs y as a request-based delayed

output to all parties.

Byzantine Agreement. We describe the functionality Fba for Byzantine agreement.

Functionality Fba

Fba proceeds as follows, running with parties P1, . . . , Pn and the ideal adversary S. Let I = H, where H is
the set of honest parties. For each party Pi, initialize xi and yi to ⊥. Let the message length be L.
1: Upon receiving P ′ from S, with |P ′| ≤ t, if no party has received output, then set I = H \ P ′.
2: Upon receiving a message m ∈ {0, 1}L from party Pi, do as follows.

– If any party or S has received an output y, then ignore this message; otherwise, set xi = m.
– If xi ̸= ⊥ for every Pi ∈ I, then set yj = y for every j ∈ [n], where y = x if all inputs xj = x for

Pj ∈ I, for some x ̸= ⊥. Otherwise, set y = xj for Pj /∈ H with the smallest index.
– Send m to S.

3: When the output yi is set to be some value y, the functionality outputs y as a request-based delayed
output to Pi.

Reliable Agreement. We describe the functionality Fra for Reliable Agreement.

Functionality Fra

Fra proceeds as follows, running with parties P1, . . . , Pn and the ideal adversary S. Let I = H, where H is
the set of honest parties. For each party Pi, initialize xi and yi to ⊥. Set AdvDeliver = 0.
1: Upon receiving P ′ from S, with |P ′| ≤ t, if no party has received output, then set I = H \ P ′.
2: Upon receiving a bit message m from party Pi, do as follows.

– If any party or S has received an output y, then ignore this message; otherwise, set xi = m.
– If xi ̸= ⊥ for every Pi ∈ I, then set yj = y for every j ∈ [n], where y = x if all inputs xj = x for

Pj ∈ I, for some x ̸= ⊥. Otherwise, set AdvDeliver = 1.
– Send m to S.

3: Upon receiving v from the adversary, if AdvDeliver = 1, then set yi = v for every i ∈ [n].
4: When the output yi is set to be some value y, the functionality outputs y as a request-based delayed

output to Pi.

Agreement on a Common Subset. The agreement on a common subset (ACS) primitive allows the
parties to agree on a set of at least n−t parties that satisfy a certain property (a so-called ACS property).

25

Definition 1. Let P be a set of n parties and let Q be a property that can be influenced by multiple
protocols running in parallel. Every party Pi ∈ P can decide for every party Pj ∈ P based on the
protocols running in parallel whether Pj satisfies the property towards Pi or not. If it does, we say Pi

likes Pj for Q or simply Pi likes Pj if the property Q is clear from the context. We require that once a
party likes another party, it cannot unlike it. Such a property Q is called an ACS property if for every
pair of uncorrupted parties (Pi, Pj) ∈ P2 we have that Pi will eventually like Pj.

We state the traditional property-based formalization of ACS.

Definition 2. Let Π be an n-party protocol where all parties take as input a global ACS property Q
and each party Pi outputs a set Si of parties. We say that Π is a t-resilient ACS protocol for Q if the
following holds whenever up to t parties are corrupted:

– Consistency: Each honest party outputs the same set Si = S.
– Set quality: Each output set has size at least n − t, and for each Pi ∈ S there exists at least one

honest party Pj that likes Pi for Q.
– Termination: All honest parties eventually terminate.

We also describe a functionality for ACS. In the functionality, each party can input k ∈ [n]. And it is
guaranteed that every party receives at least n− t such indices. Moreover, any index k input by a party
Pi will also be eventually input by Pj .

For an ACS property Q, we will say that the parties invoke Facs, meaning that each party Pi inputs
k to the functionality as soon as Pi likes Pk.

Functionality Facs

Facs proceeds as follows, running with parties P1, . . . , Pn and the adversary S. Initialize Si = ∅ for every
i ∈ [n], and S = ⊥.
1: Upon receiving an index k from Pi, add index k to Si. Then forward k to S. If |Si| ≥ n − t, then we

say that Pi is ready. If n − t honest parties are ready, set S to be the set of indices k such that there is
some honest party that inputs k.

2: Upon receiving S′ from S, check that |S′| ≥ n − t, and that for every k ∈ S′, there is some honest party
that has input k. If so, then set S = S′.

3: Upon setting S, output it to all parties as a request-based delayed output.

[DDL+24] gives a construction of ACS protocol which only requires random oracle assumption. For
their construction, at a high level, they first design the VABA protocol defined below, which can be
considered as a special ACS protocol that allows all parties to agree on the identity of one party. Then
they let each party propose a potential set and jointly invoke one instance of VABA to agree on one
party’s proposal. As a result, after agreeing on one party’s identity, all parties can wait to receive the set
broadcast by this party. Inspired by their construction, we give ΠQ

acs which only modifies the size of the
agreement set from 2t+ 1 to L (in Step 3) to make it applicable in our construction. The communication
complexity is O(κ · n3).

Definition 3. Let Π be an n-party protocol where all parties take as input a global ACS property Q and
each party Pi outputs the identity of a party Pki

. We say that Π is a t-resilient VABA protocol for Q if
the following holds whenever up to t parties are corrupted:

– Consistency: Each honest party outputs the same party’s identity Pki
= Pk.

– Validity: There exists at least one honest party that likes Pk for Q.
– Termination: All honest parties eventually terminate.

Protocol ΠQ
acs

Let Q be the property needed to be satisfied, L be the size of agreement set.
1: Each party Pi initializes sets Validi = ∅.
2: For each party Pj , when Pi considers Pj satisfies the property Q, he adds Pj to Validi.
3: When |Validi| = L, Pi reliably broadcasts set Ii = Validi. Pi can still update his Validi.

26

4: Each party Pi set the property Q′ as he receives Ij ⊆ Validi, |Ij | = L from Pj . Then all parties invoke
VABA with property Q′ to agree on a party Pk.

5: Upon terminating the VABA protocol and getting the identity of Pk, all parties wait to receive the
agreement set of size L from Pk’s reliable broadcast.

A.2 Preparing Random Coin

The description of Fcoin appears below. Such functionality can be realized by first preparing a random
degree-t Shamir sharing [r]t and then using FpubRec to reconstruct the secrets to all parties. Follow-
ing [CP23], Fcoin can be realized with communication complexity O(n3) elements.

Functionality Fcoin

Fcoin proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S.
1: Upon receiving 2t + 1 parties’ requests, the trusted party samples a random value r.
2: The trusted party sends r to all parties.
3: All honest parties output the results received from the trusted party. Corrupted parties may output

anything they want.

A.3 Shamir Secret Sharing Scheme

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79]. Let n be the number of
parties and F be a finite field of size |F| ≥ 2n. Let α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies that there exists a polyno-
mial f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi

holds a share xi and the whole sharing is denoted by [x]d. We recall the properties of the Shamir secret
sharing scheme:

– Linear Homomorphism:
∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret value of the new sharing is
the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

Packed Shamir Sharings. The packed Shamir secret sharing, introduced by Franklin and Yung [FY92],
is a generalization of the standard Shamir secret sharing scheme. Let k be the number of secrets to pack
in one sharing. Let β1, . . . , βk be k distinct elements that are different from α1, . . . , αn in F. A degree-d
(d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (x1, . . . , xn) for which there
exists a polynomial f(·) ∈ F[X] of degree at most d such that f(βi) = xi for all i ∈ {1, 2, . . . , k}, and
f(αi) = xi for all i ∈ {1, 2, . . . , n}.

Reconstructing a degree-d packed Shamir sharing requires d+ 1 shares and can be done by Lagrange
interpolation. For a random degree-d packed Shamir sharing of x, any d−k+1 shares are independent of
the secret x. If d− (k− 1) ≥ t, then knowing t of the shares does not leak anything about the k secrets.
In particular, a sharing of degree t+ (k − 1) keeps hidden the underlying k secret.

B Proofs of Our Malicious Secure ACSS Construction in the Random
Oracle

In the following, we prove the security of our protocol by constructing an ideal adversary S. S needs
to interact with the environment Z and with the ideal functionalities. S constructs virtual real-world
honest parties and runs the real-world adversary A. For simplicity, we just let S communicate with A on

27

behalf of honest parties and the ideal functionality of sub-protocols in our proof. In order to simulate the
communication with Z, every message that S receives from Z is sent to A, and likewise, every message
sent from A sends to Z is forwarded by S. Each time an honest party needs to send a message to another
honest party, S will tell A that a message has been delivered such that A can tell S the arrival time
of this message to help S instruct the functionalities to delay the outputs in the ideal world. For each
request-based delayed output that needs to be sent to an honest party, we let S delay the output in
default until we say S allows the functionality to send the output.

B.1 Proof for ACSS with Abort
Lemma 5. Protocol ΠACSS-ab securely computes FACSS-Abort in the {Frbc,Fra}-hybrid model and the Ran-
dom Oracle model against a fully malicious adversary A who corrupts at most t = n−1

3 parties.
Proof. Termination: We first show that either all honest parties terminate ΠACSS-ab or no honest party
terminates it. Then, we show that each terminating honest party either outputs a share or ⟨Abort⟩. The
Frbc and Fra functionalities ensure totality i.e. if an honest party terminates, then eventually every honest
party will terminate. The Fra functionality also requires at least t + 1 honest parties to input 1, which
ensures at least t+ 1 honest parties receive their row and column polynomials from the dealer D.

In case honest parties receive output from Fra, they proceed to the share interpolation phase. In this
phase, each honest party receives at least t + 1 points on its column polynomials in the form of ⟨Row⟩
messages. This is because the honest parties that input 1 to Fra will send ⟨Row⟩ messages to every other
honest party. Every honest party will interpolate a column polynomial. Then, each honest party will also
send common points on row polynomials in the form of ⟨Column⟩ messages. As there are 2t+ 1 honest
parties, each party will receive sufficient points on its row polynomials. Therefore, every honest party
will interpolate a row polynomial. It then verifies if its row polynomial is correct based on commitments
delivered by Frbc. Finally, based on the result of this verification, each honest party either outputs its
shares or outputs ⟨Abort⟩.

In case honest parties do not receive output from Fra, no party terminates the protocol.
Next, we prove the security of ΠACSS-ab using a simulator SACSS-Abort and hybrid arguments.
Simulator S

When D is honest
Sharing Phase

1: Let P denote the set of all parties, H denote the set of honest parties, and PCorr denote the set of
corrupted parties. The simulator S receives L shares of corrupted parties PCorr from the functionality
FACSS-Abort. We denote these shares as si,j for i ∈ [1, L] and j ∈ PCorr.

2: Encoding Shares: For each share polynomial i ∈ [1, L], set fi(αj) = si,j for j ∈ PCorr, i ∈ [1, L].
– Row Polynomials: S randomly samples L

t+1 degree-2t row polynomials Fi(x, αj) such that
Fi(−αk+1, αj) = f(i−1)∗(t+1)+k(αj) for j ∈ PCorr.

– Column Polynomials: It also randomly samples degree-t column polynomials Fi(αj , y) :
Fi(αj , αk) = Fi(αk, αj) for Pj , Pk ∈ PCorr.

– Nonce Polynomials: It also randomly samples degree-t nonce polynomials Yi(αj , y) : Yi(αj , αk) =
Yi(αk, αj) and blinding nonce polynomials Y0(αj , y) : Y0(αj , αk) = Y0(αk, αj) for Pj , Pk ∈ PCorr.

3: Commitments: S simulates the random oracle H by randomly sampling n values C[i] for i ∈ [1, n] as
the output of H. For Pj ∈ PCorr, S maps the input (f1(αj), . . . , fL(αj), Y(α0, αj)) to the value C[j]. If
these values have been mapped to some inputs queried by A, S aborts.

4: dZK proofs:
– S next samples a vector of n random values as C [i] for i ∈ [1, n]. If these values have been mapped

to some inputs queried by A, S aborts.
– S samples a random value as d and maps input (C, C) to value d. If d has been mapped to some

inputs queried by A, S aborts.
– S samples a random degree-t polynomial r(x). It also computes f0(αj) := r(αj) +

∑
i∈[1,L] difi(αj)

for Pj ∈ PCorr.
– It maps (f0(αj), Y0(α0, αj)) to value C [j] for j ∈ PCorr.

S also intercepts A′s calls to the RO H and replies with the mapped output if the input is already
mapped. Otherwise, S picks a random value and maps the input to this value.

5: Send shares and broadcast commitments: S sends row, column, and nonce polynomials to parties
Pj ∈ PCorr on behalf of D. Further, S simulates Frbc to deliver C, C , r(x) to parties in PCorr.

28

6: In the following, S honestly simulates Fra. For each honest party, S sets his input for Fra as 1 when this
honest party receives ⟨Share⟩ from the dealer. When S learns the output of Fra is 1, S continues to do
the following simulation.

7: Column Interpolation: S sends common shares on row polynomials to parties in PCorr. Further, S
also notifies A of scheduled messages between the simulated honest parties. Note that the adversary
A controls and provides the order of messages among honest parties to S. Consider the set T of the
first t + 1 ⟨Row⟩ messages received by a simulated honest party Pk. S defines degree-t polynomials
∆F1(αk, y), . . . , ∆F L

t+1
(αk, y) such that for all i ∈ {1, . . . , L

t+1 }, ∆Fi(αk, αℓ) = 0 when Pℓ ∈ T is an
honest party, and ∆Fi(αk, αℓ) is the difference between the received share from Pℓ and the correct share
when Pℓ ∈ T is a corrupted party. Similarly, S also defines ∆Y(αk, y), ∆Y0(αk, y) in a similar way.

8: Row Interpolation Phase: Then, S also sends common shares on column polynomials
⟨Column, (F ′

1(αk, αℓ), . . . , F ′
L

t+1
(αk, αℓ), Y ′(αk, αℓ), Y0

′(αk, αℓ))⟩ to parties in Pℓ ∈ PCorr on behalf of
honest party Pk:

– For all i ∈ {1, . . . , L
t+1 }, S sets F ′

i (αk, αℓ) = Fi(αk, αℓ) + ∆Fi(αk, αℓ).
– S sets Y ′(αk, αℓ) = Y(αk, αℓ) + ∆Y(αk, αℓ) and Y0

′(αk, αℓ) = Y0(αk, αℓ) + ∆Y0(αk, αℓ).
Note that the adversary A controls and provides the order of messages among honest parties to S.
Consider the set T ′ of the first 2t + 1 ⟨Column⟩ messages received by a simulated honest party Pℓ. S
defines degree-2t polynomials ∆F1(x, αℓ), . . . , ∆F L

t+1
(x, αℓ) such that for all i ∈ {1, . . . , L

t+1 }:
– For honest party Pk ∈ T ′, if Pk receives his row polynomials before S learns output 1 from Fra, S

has computed ∆Fi(αk, αℓ). Otherwise, S sets ∆Fi(αk, αℓ) = 0.
– For corrupted party Pk ∈ T ′, ∆Fi(αk, αℓ) is the difference between the received share from Pk and

the correct share.
Similarly, S also defines ∆Y(x, αℓ), ∆Y0(x, αℓ) in a similar way.

Then S verifies that:
– For all i ∈ {1, . . . , L

t+1 }, ∆Fi(−αj+1, αℓ) = 0 for all j ∈ [1, t + 1].
– ∆Y(x, αℓ), ∆Y0(x, αℓ) are of degree-t and ∆Y(α0, αℓ) = 0, ∆Y0(α0, αℓ) = 0.

If any check fails and Pk has not received his shares from the dealer before terminating Fra, S sends
(Abort, Pk) to FACSS-Abort.

Public Reconstruction Phase
1: For each honest party Pj , for each ⟨P ubRec⟩ message received from a corrupted party, S follows the

protocol to check whether it is correct. If it is received from an honest party, S directly considers it to
be correct. When Pj receives t + 1 correct ⟨P ubRec⟩ messages, S delivers the output from FACSS-Abort to
Pj .

2: For each corrupted party Pj , S first receives f1(·), . . . , fL(·) from FACSS-Abort. Then for each honest party
Pℓ who accepts his row polynomials, S randomly samples Pℓ’s Y (α0, αℓ), Y0(α0, αℓ) based on shares of
corrupted parties. Then S sends f1(αℓ), . . . , fL(αℓ), Y (α0, αℓ), Y0(α0, αℓ) to corrupted Pj on behalf of
Pℓ. When corrupted party Pj queries the H with these inputs, S returns the random values C[k], C [k]
he sampled in Step 3 and 4 in the Sharing phase as the output of H. If these inputs have been queried,
S aborts the simulation.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S first generates corrupted parties’ row and column polynomials. Then S

generates the whole bivariate polynomials given corrupted parties’ polynomials and the secrets. We only
change the generation order of bivariate polynomials, which makes no difference. Thus, Hyb1 and Hyb0
are identically distributed.

Hyb2: In this hybrid, we delay the generation of honest parties’ row and column polynomials until
the Share Interpolation Phase. For each honest party Pi, S randomly samples values as C[i],C [i], d. If
these values have been mapped to some inputs queried by A, S aborts the simulation. Assuming that
A can query for poly(κ) times, since the output space of H is at least κ bits, the probability is at most

npoly(κ)
2κ−poly(κ) (applying the union bound on number of honest parties’ commitments), which are all negli-
gible in the security parameter κ. Therefore, the distributions of Hyb2 and Hyb1 are computationally
indistinguishable.

Hyb3: In this hybrid, we change the generation of r(x). S randomly samples r(x) such that r(αj) =
f0(j) −

∑L
i=1 d

ifi(αj) for each Pj ∈ PCorr. Then S re-computes f0(x) and records the map relation
C [i] = H(f0(αj), Y0(α0, αj)) for each honest party Pj . Since f0(x) = r(x)+

∑L
i=1 d

ifi(x), we only change
the generation order of f0(x) and r(x), which makes no difference. Thus, Hyb3 and Hyb2 are identically
distributed.

29

Hyb4: In the following, we focus on the simulation of the Share Interpolation Phase. We further
delay the generation of honest party’s row and column polynomials until the end of this phase.

Hyb4.1: In this hybrid, when an honest party Pj needs to sends ⟨Row⟩ to corrupted party Pk, S uses
Pk’s column polynomial {Fi(αk, y)}L/(t+1)

i=1 , Y (α,y), Y0(αk, y) to compute the ⟨Row⟩ message and sends
it to Pk on behalf of Pj . Hyb4.1 and Hyb3 are identically distributed.

Hyb4.2: In this hybrid, for each honest party Pk who needs to reconstruction his column polynomials,
let T be the set of first t + 1 ⟨Row⟩ messages Pk received. Then S computes ∆Fi(αk, y) based on
{∆Fi(αk, αℓ)}ℓ∈T for all i ∈ [L/(t + 1)]. S does the same thing to compute ∆Y (αk, y), ∆Y0(αk, y).
These ∆Fi(αk, y), ∆Y (αk, y), ∆Y0(αk, y) have not been used so far, Hyb4.2 and Hyb4.1 are identically
distributed.

Hyb4.3: In this hybrid, when an honest party Pk needs to send ⟨Column⟩ to corrupted Pℓ, S first uses
Pℓ’s row polynomial {Fi(x, αℓ)}L/(t+1)

i=1 , Y (x, αℓ), Y0(x, αℓ) to compute Pk’s {Fi(αk, αℓ)}L/(t+1)
i=1 , Y (αk, αℓ), Y0(αk, αℓ),

then S computes F ′
i (αk, αℓ) = Fi(αk, αℓ) +∆Fi(αk, αℓ) for all i ∈ [L/(t+ 1)]. S also does the same thing

to compute Y ′(αk, αℓ), Y ′
0(αk, αℓ). Then S uses these {F ′

i (αk, αℓ)}L/(t+1)
i=1 , Y ′(αk, αℓ), Y ′

0(αk, αℓ) as Pk’s
⟨Column⟩ message and sends it to Pℓ on behalf of Pk. Hyb4.3 and Hyb4.2 are identically distributed.

Hyb4.4: In this hybrid, for each honest party Pℓ who needs to reconstruction his row polynomi-
als, let T ′ be the set of first 2t + 1 ⟨Column⟩ messages Pℓ received. S computes ∆Fi(x, αℓ) based on
{∆Fi(αk, αℓ)}k∈T ′ for all i ∈ [L/(t + 1)]. S also does the same thing to compute Y ′(x, αℓ), Y ′

0(x, αℓ).
Then S only checks whether ∆Fi(−αj+1, αℓ) = 0 for all j ∈ [t+ 1], i ∈ [L/(t+ 1)], ∆Y (x, αℓ), ∆Y0(x, αℓ)
are of degree-t and ∆Y (α0, αℓ) = ∆Y0(α0, αℓ) = 0. If any verification fails, S will send (abort, Pℓ) to
FACSS-Abort. Since the probability of A can find a second pre-image that causes the collision is negligible
in the security parameter κ, therefore, Hyb4.4 and Hyb4.3 are computationally indistinguishable.

Hyb5: In the following, S no longer uses honest dealer’s secrets to compute f0(x) and honest parties’
row and column polynomials since they are never used. Hyb5 and Hyb4.4 are identically distributed.

Hyb6: In this hybrid, S first receives honest dealer’s secrets from FACSS-Abort. Then S computes each
honest party Pℓ’s ⟨PubRec⟩ message (randomly samples values as Y (0, ℓ), Y0(0, ℓ) based on shares of
corrupted parties). For each honest party Pℓ who does not abort during the Share Interpolation Phase,
S sends the ⟨PubRec⟩ to the corrupted parties on behalf of Pℓ. When corrupted parties query H with
these inputs, S returns the random values C[ℓ],C [ℓ] he sampled in the sharing phase as the output of
H. If these inputs have been queried, S aborts the simulation. S also aborts the simulation if shares sent
by a corrupted party pass the verification, and are not equal to the shares sampled by S.

The difference between Hyb6 and Hyb5 is the probability of S abort. This probability equals A
correctly guesses and queries honest parties’ shares and nonce before receiving. Assuming that A can
query for poly(κ) times, since the nonce is κ bits, it is at most poly(κ)

2κ−poly(κ) . Further, a corrupted party
must find a pre-image for at least one of the commitments to pass the commitment and dZK proof
checking. This probability is bounded by npoly(κ)

2κ−poly(κ) . Overall, the probability S aborts is ≤ npoly(κ)
2κ−poly(κ) ,

which is negligible in the security parameter κ. Therefore, the distributions of Hyb6 and Hyb5 are
computationally indistinguishable.

Note that Hyb6 corresponds to the ideal world, then ΠACSS-ab securely computes FACSS-Abort with
error npoly(κ)

2κ−poly(κ) .

Simulator S

When D is corrupted
Sharing Phase

1: Share Recording: For each honest party Pk, the simulator S records shares messages:

⟨Shares, (F1(x, αk), . . . , F L
t+1

(x, αk), Y(x, αk), Y0(x, αk)),

(F1(αk, y), . . . , F L
t+1

(αk, y), Y(αk, y), Y0(αk, y))⟩

received from the D.
2: Simulate Broadcast: S simulates the Frbc functionality when D invokes it to broadcast commitments

and dZK proofs.
3: Verify dZK proofs and construct polynomials: For each honest party Pk’s ⟨Shares⟩ message S

received in Step 1, S follows to protocol to do the verification. If true, S considers this Pk’s message

30

⟨Shares⟩ is correct. When S receives correct ⟨Shares⟩ messages for t + 1 distinct honest party Pk, it
interpolates degree-(2t, t) bivariate polynomials F ′

1(x, y), . . . , F ′
L

t+1
(x, y) and degree-(t, t) bivariate poly-

nomials Y (x, y) and Y0(x, y). S also computes share polynomials f ′
1(x), . . . , f ′

L(x) from these bivariate
polynomials.

4: For each honest party who accepts his shares in Step 3, S sets his input for Fra as 1. Then S honestly sim-
ulates Fra. When S gets output 1 during the simulation of Fra, it sends the polynomials f ′

1(x), . . . , f ′
L(x)

to the functionality FACSS-Abort and deliver the output from FACSS-Abort to each honest party whose input
for Fra is 1.

5: Column and Row Interpolation: S honestly follows the protocol to execute each honest party. For
each honest party Pk who accepts his column polynomials, S additionally checks whether they are equal
to {F ′

i (x, y)}L/(t+1)
i=1 . If not, S aborts the simulation. For each honest party Pk who fails to verify his

shares, S sends (abort, Pk) to FACSS-Abort.
Public Reconstruction Phase

1: For each honest party who receives his output from FACSS-Abort, S follows the protocol to execute
this party to send the ⟨P ubRec⟩ to corrupted parties. Then for each ⟨P ubRec⟩ received from cor-
rupted parties, if an honest party accepts this message but the shares in this message does not lie on
f ′

1(x), . . . , f ′
L(x), S aborts the simulation.

2: S sends the output f ′
1(x), . . . , f ′

L(x) to corrupted parties. For each honest party, when he succeeds in
reconstructing, S delivers the output from FACSS-Abort to him.

We prove the security of ΠACSS-ab using hybrid arguments. We consider the following hybrids.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S uses the first t+1 honest parties who accept their degree-2t row polynomials

to interpolate degree-(2t, t) bivariate polynomial F ′
i (x, y) for all i ∈ [L/(t + 1)]. Later for each honest

party Pk who accepts his column polynomials, S addition checks whether his column polynomials are
equal to F ′

i (k, y). If not, S aborts the simulation.
The difference between Hyb1 and Hyb0 is the probability of S aborts. Assuming that honest party

Pk accepts his row polynomials Fi(x, αk) ̸= F ′
i (x, αk) for some i ∈ [L/(t+ 1)]. Then we know:

H(f1(αk), . . . , fL(αk), Y (α0, αk)) = C[k]

H(r(αk) +
L∑

i=1
difi(αk), Y0(α0, αk)) = C [k]

There are three cases S may abort, for case 1, A first samples d, computes C,C accordingly and
d = H(C,C). Assuming that A can query H for poly(κ) times, the probability is at most:

poly(κ)
2κ − poly(κ)

Which is negligible in the security parameter κ.
For case 2, A first uses Fi(x, k) ̸= F ′

i (x, k) for some Pk and i ∈ [L/(t+ 1)] to compute C,C , but:

r(αk) +
L∑

i=1
difi(αk) = r(αk) +

L∑
i=1

dif ′
i(αk)

This can be considered as a degree-L equation
∑L

i=1(fi(αk) − f ′
i(αk)) · xi = 0, where d is the root. Since

not all coefficients are zero, there are at most L roots. We take the union bound for O(n) honest parties,
and the probability is at most:

Lnpoly(κ)
2κ − poly(κ)

Which is negligible in the security parameter κ. For case 3, A find a collision in the RO, the probability
is at most:

(2t+ 1)poly(κ)
2κ − poly(κ)

Which is also negligible in the security parameter κ. Thus, the distributions of Hyb1 and Hyb0 are
computationally indistinguishable.

31

Hyb2: In this hybrid, in the public reconstruction phase, if an honest party accepts wrong ⟨PubRec⟩
from corrupted parties, S aborts the simulation. The probability of S aborting is at least as much as A
finding a collision in the RO, which equals:

poly(κ)
2κ − poly(κ)

which is negligible in the security parameter κ. Thus, the distributions of Hyb2 and Hyb1 are compu-
tationally indistinguishable.

Note that Hyb2 corresponds to the ideal world, then ΠACSS-ab securely computes FACSS-Abort with
error Ln·poly(κ)

2κ−poly(κ) .

B.2 Cost Analysis

Communication cost. The communication costs include:

– For dealer, during the Sharing phase, it requires O(Ln+ n2) field elements to distribute all parties’
shares, O(n2) field elements plus O(κ · n2) bits to broadcast the commitments.

– All parties invoke one instance of Fra, which requires O(κ · n2) bits.
– For all parties, during the Share Interpolation phase, it requires O(Ln+n2) field elements to exchange

their shares.
– For all parties, during the Public Reconstruction phase, it requires O(Ln2) field elements.

Therefore, the sharing phase and Share Interpolation phase require O(Ln + n2) field elements plus
O(κ · n2) bits in total. For the public reconstruction phase, it requires O(Ln2) field elements.

Computation cost. We also analyze the cryptographic operation complexity of ΠACSS-ab. The dealer
D computes a commitment vector of size O(n), which requires O(n) Hash computations. Each party
verifies its shares by verifying the dZK proof, which costs O(1) Hash computations. Hence, this phase
requires O(n) Hash computations.

B.3 Construction and Proof for ACSS with Identifiable Abort

We describe ΠACSS-id and its security proofs in this section.

Protocol ΠACSS-id

Dealer D protocol

1: D encodes L share polynomials into L
t+1 bivariate polynomials F(x, y). It divides them into n batches,

each with L′ = L
n(t+1) polynomials.

Steps for Public Reconstruction: D constructs polynomials gi,j,k(y) for i ∈ [1, n], j ∈ [1, L′], k ∈
[1, n].

gi,j,k(y) :=
∑

ℓ∈[1,t+1]

Fi,j(α−ℓ+1, y) · αℓ−1
k

2: Commitments: For each batch, D randomly samples Yi(x, y) with degree-(2t, t). and Yk(x) with degree-
t. Then, D computes commitments as follows.

Ci[x, y] = H(Fi,1(x, y), . . . , Fi,L′ (x, y), Yi(x, y)), for x, y ∈ [1, n], i ∈ [1, n]
Ci,k[ℓ] := H(gi,1,k(αℓ), . . . , gi,L′,k(αℓ), Yi,k(αℓ)) for ℓ ∈ [n]

3: dZK Proofs.
(a) Blinding polynomial and commitment: For each batch, D randomly samples

Fi,0(x, y), Yi,0(x, y) with degree-(2t, t) and gi,k,0(x), yi,k,0(x) with degree-t. Then, it com-
putes commitments Ci,0[x, y] := H(Fi,0(x, y), Yi,0(x, y)) and Ci,k,0[ℓ] = H(gi,k,0(αℓ), yi,k,0(αℓ)).
Finally, it computes di = H(Ci, Ci,0) and di,k = H(Ci,k, Ci,k,0).

32

(b) dZK polynomial: D computes Ri(x, y) and rk(x) as follows.

Ri(x, y) := Fi,0(x, y) −
∑

j∈[1,L′]

dj
i Fi,j(x, y) for i ∈ [1, n]

ri,k(x) := gi,k,0(x) −
∑

j∈[1, L
t+1]

dj
i,kgi,j,k(x)

4: Send shares and broadcast commitments: D reliable broadcasts the following.
(a) Commitments ⟨C1, . . . , Cn⟩,⟨C1,1, . . . , Cn,n⟩.
(b) dZK proofs Ci,0, Ri, and Ci,k,0, ri,k for k ∈ [1, n], i ∈ [1, n].
Further, D sends shares ⟨Shares, S1, . . . , Sn⟩, where

Si = ({Fi,j(x, αℓ), Fi,j(αℓ, y)}, Yi(x, αℓ), Yi(αℓ, y), Yi,0(x, αℓ), Yi,0(αℓ, y))

and also nonces {Yi,k(αℓ), yi,k,0(αℓ)}, to all parties Pℓ ∈ P.
Participant party protocol
1: Verify shares: Party Pℓ receiving a ⟨Shares, S ′

1, . . . , S ′
n⟩ message runs the following steps and accepts

them if they succeed.
(a) Verify commitments: Pℓ first computes C′

i[x, ℓ], C′
i[ℓ, y], C′

i,k[ℓ] and checks if they match the
commitments received through RBC.

(b) Verify dZK proofs: Pℓ computes di = H(Ci, Ci,0). Then, it verifies commitments and dZK proofs.

H(Ri(x, αℓ) +
∑

j∈[1,L′]

dj
i F ′

i,j(x, αℓ), Y ′
i,0(x, αℓ)) ?= Ci,0[x, ℓ]

H(ri,k(αℓ) +
∑

j∈[1,L′]

dj
i,kg′

i,j,k(αℓ), y′
i,k,0(αℓ)) ?= Ci,k,0[ℓ]

2: Run Reliable Agreement: Upon accepting its shares, Pℓ inputs 1 to Πra. On terminating Πra with
output 1, parties conduct share interpolation.

Share Interpolation phase
3: Send common shares on row polynomials: Pk sends the message

⟨Shares, {(Fi,j(αℓ, αk), Yi(αℓ, αk), Yi,0(αℓ, αk))}⟩ to party Pℓ ∈ [1, n].
4: Validate shares received from parties: A party Pℓ receiving shares from another party Pk runs the

following checks.
– Commitments: Pℓ computes C′

i[ℓ, k] and checks if they match Ci[ℓ, k].
– dZK proofs: Pℓ computes di and verifies dZK proof.

H(Ri(αℓ, αk) +
∑

j∈[1,L′]

dj
i Fi,j(αℓ, αk), Yi,0(αℓ, αk)) ?= Ci,0[ℓ, k]∀i ∈ [1, n]

5: Reconstruct and verify columns: Upon accepting t + 1 shares, Pℓ reconstructs the column and
nonce polynomials F ′

i,j(αℓ, y) Y ′
i (αℓ, y),Y ′

i,0(αℓ, y). Then, Pℓ verifies commitments and dZK proofs. If
in a batch i, C′

i[ℓ, j] ̸= Ci[ℓ, j] or H(Ri(αℓ, αj) +
∑

k∈[1,L′] dk
i Fi(αℓ, αj), Yi,0(αℓ, αj)) ̸= Ci,0[ℓ, j], then

Pℓ creates an ⟨abort⟩ message using the t + 1 accepted shares. This ⟨abort⟩ message is also an ACSS
proof.

6: Reconstruct rows: Pℓ forwards ⟨Shares, {(Fi,j(αk, αℓ), Yi,j(αk, αℓ))}⟩ to Pk ∈ P. Pℓ interpolates its
rows on receiving 2t + 1 valid points.
Abort verification: If Pℓ has a proof that D is malicious, it forwards it to other parties over private
channels. If Pℓ receives an ⟨Abort⟩ message from Pk, it executes these steps.

– It verifies commitments and dZK proofs of the t + 1 points on Pk’s column.
– It interpolates the whole column and verifies commitments and dZK proofs for the entire column.

If these checks fail, Pℓ accepts the proof.
7: Termination: Pℓ outputs its shares and terminates. If instead Pℓ has an ACSS proof of D cheating, it

forwards ⟨Abort⟩ to other parties and terminates with this proof.
Public Reconstruction phase

8: Reconstruction: Party Pℓ computes g′
i,j,k(αℓ) :=

∑t+1
m=1 F ′

i,j(α−m+1, αℓ) · αm−1
k . Then, it forwards

⟨P ubRec, {{g′
i,j,k(αℓ)}, y′

i,k(αℓ), y′
i,k,0(αℓ)}⟩ to Pk.

On receiving ⟨P ubRec⟩ message from Pℓ, Pk runs the following steps.
– It computes C′

i,k[ℓ] and checks if they match Ci,k[ℓ]. Then, it verifies the dZK proof.

33

– On verifying shares from t + 1 parties, Pk reconstructs gi,j,k(x), for all i, j. It then sends
⟨P ubRecErr, gi,j,k(α0)⟩ to other parties.

– Pk uses online error correction on points received through P ubRecErr messages to reconstruct the
polynomial ϕi,j(x) :=

∑t+1
m=1 Fi,j(α−m+1, α0) · xm−1 for all i, j.

Accusation Phase
9: Accusation: If a party terminates the Share Interpolation phase with an ACSS proof and needs to

accuse the dealer, it reliably broadcasts his ACSS proof.

Security proof. We construct a simulator S, which interacts with the environment Z and with the
ideal functionalities. S constructs virtual real-world honest parties and runs the real-world adversary A.
S communicates with A on behalf of the environment Z by forwarding every message sent by Z. S also
forwards the messages sent by A to Z.
Lemma 6. Protocol ΠACSS-id securely computes FACSS-id in the {Frbc,Fra}-hybrid model and the Random
Oracle model against a fully malicious adversary A who corrupts at most t = n−1

3 parties.
Proof. Termination: We first show that either all honest parties terminate ΠACSS-id or no honest party
terminates it. Then, we show that each terminating honest party either outputs a share or ⟨Abort⟩.
Frbc and Fra ensure totality i.e. if an honest party terminates, then eventually every honest party will
terminate. Fra also requires at least t + 1 honest parties to input 1, which ensures at least t + 1 honest
parties receive their row and column polynomials from the dealer D.

In case honest parties receive output from Fra, they proceed to the share interpolation phase. In this
phase, each honest party receives at least t + 1 points on its column polynomials. This is because the
honest parties that input 1 to Fra will send ⟨Row⟩ messages to every other honest party. Each honest
party reconstructs its column polynomials and cross checks them against the commitments and dZK
proofs received through Frbc. In case the commitments broadcast by the dealer D are malformed, the
party creates an ⟨Abort⟩ message with a verifiable proof and forwards it to other parties. Any party
that receives this proof can verify D’s malicious behavior. Therefore, each honest party will either send
common points on row polynomials in the form of ⟨Column⟩ messages, or will send an ⟨Abort⟩ message
with a verifiable proof that D is malicious. As there are 2t+1 honest parties, each party will either receive
sufficient points on its row polynomials or will receive an ⟨Abort⟩ message with a proof. Therefore, every
honest party will either interpolate a row polynomial and output shares or verify the malicious behavior
of D and output ⟨Abort⟩.

In case honest parties do not receive output from Fra, no party terminates the protocol.
Next, we prove the security of ΠACSS-id using a simulator S and hybrid arguments.
Simulator S

When D is honest
Sharing Phase

1: The simulator S receives L shares of corrupted parties PCorr from the functionality FACSS-id. We denote
these shares as si,j for i ∈ [1, L] and j ∈ PCorr. In the following, when S randomly samples values as
the output of H, if these values have been previously queried by A, S aborts the simulation.

2: Encoding shares: S executes the following steps.
– Row polynomials. S randomly samples L

t+1 degree-2t row polynomials F ′
i,j(x, αℓ), such that

F ′
i,j(α−k+1, αℓ) = f(i−1)·n+(j−1)·(t+1)+k(αℓ) for j ∈ [1, L′], i ∈ [1, n], k ∈ [1, t + 1].

– Column polynomials. S also randomly samples degree-t column polynomials F ′
i,j(αk, y) :

F ′
i,j(αk, αℓ) = F ′

i (αℓ, αk) for Pℓ, Pk ∈ PCorr.
– Nonce polynomials. S samples degree-2t row polynomials Y ′

i (x, αℓ), Y ′
i,0(x, αℓ) for Pℓ ∈ PCorr.

Further, it samples degree-t polynomials Y ′
i (αℓ, y) : Y ′

i (αℓ, αm) = Y ′
i (αm, αℓ), Y ′

i,0(αℓ, y) :
Y ′

i,0(αℓ, αm) = Y ′
i,0(αm, αℓ), for Pℓ, Pm ∈ PCorr.

– Public Reconstruction: For each F ′
i,j(x, αℓ), S computes n points gi,j,k(αℓ) :=∑

m∈[1,t+1] F ′
i,j(α−m+1, αℓ) ·αm−1

k for k ∈ [1, n]. S also randomly samples nonces yi,k(αℓ), yi,k,0(αℓ)
for all i, k.

3: Commitments: For each batch i ∈ [1, n], S executes the following steps.
– S randomly samples n2 values C′

i[x, y] for x, y ∈ [1, n].
– S maps the inputs (F ′

i,1(αj , αk), . . . , F ′
i,L′ (αj , αk), Y ′

i (αj , αk)),
(F ′

i,1(αk, αj), . . . , F ′
i,L′ (αk, αj), Y ′

i (αk, αj)) to outputs C′
i[j, k] and C′

i[k, j] for j ∈ [1, n], Pk ∈ PCorr.
It aborts the simulation if these inputs have already been queried.

34

– PubRec commitments: S randomly samples C′
i,k[ℓ] from {0, 1}κ for k ∈ [1, n], Pℓ ∈ PCorr. Then,

S maps inputs (g′
i,1,k(αℓ), . . . , g′

i,L′,k(αℓ), y′
i,k(αℓ)) to output C′

i,k[ℓ]. It aborts the simulation if these
inputs have already been queried.

If the inputs have been previously queried by A, S aborts the simulation.
4: dZK proofs: For each batch i ∈ [1, n], S executes the following steps.

– S next samples a matrix of n2 random points from {0, 1}κ C′
i,0[x, y] for x, y ∈ [1, n].

– S samples a random value dS,i from {0, 1}κ and maps input (C′
i, C′

i,0) to value dS,i. It aborts the
simulation if the inputs are already mapped.

– S samples a random degree-(2t, t) bivariate polynomial R′
i(x, y). It also computes F ′

i,0(x, αk) :=
R′

i(x, αk) +
∑

j∈[1,L′] dj
SF ′

i,j(x, αk) and F ′
i,0(αk, y) := R′

i(αk, y) +
∑

j∈[1,L′] dj
SF ′

i,j(αk, y) for Pk ∈
PCorr.

– S samples t degree-2t polynomials Yi,0(x, αk) and Yi,0(αk, y) for Pk ∈ PCorr. Then, it maps
inputs (F ′

i,0(αj , αk), Y ′
i,0(αj , αk)),(F ′

i,0(αk, αj), Y ′
i,0(αk, αj)) to outputs C′

i,0[j, k], C′
i,0[k, j] for j ∈

[1, n], Pk ∈ PCorr. It aborts the simulation if the inputs have already been mapped.
– PubRec Simulation:

• S randomly samples C′
i,k,0[ℓ] from {0, 1}κ for k ∈ [1, n] and Pℓ ∈ P, and also randomly samples

dS,i,k from {0, 1}κ. S maps inputs (C′
i,k, C′

i,k,0) to output dS,i,k.
• S also randomly samples degree-t polynomials r′

i,k(x) for k ∈ [1, n]. Then, it sets g′
i,k,0(αℓ) :=

r′
i,k(αℓ) +

∑
j∈[1,L′] dj

S,i,kg′
i,j,k(αℓ) for Pℓ ∈ PCorr.

• Finally, S randomly samples y′
i,k,0(αℓ) and maps input (g′

i,k,0(αℓ), y′
i,k,0(αℓ)) to output C′

i,k,0[ℓ]
for Pℓ ∈ PCorr.

S also intercepts A’s calls to the RO H and replies with the mapped output if the input is already
mapped. Otherwise, S picks a random value and maps the input to this value.

5: Send shares and broadcast commitments: S sends row and column polynomials
F ′

i,j(x, αℓ), F ′
i,j(k, αℓ) and the nonce values Y ′

i (x, αℓ), Y ′
i (αℓ, y), Y ′

i,0(x, αℓ), Y ′
i,0(αℓ, y), yi,k(αℓ), yi,k,0(αℓ)

to parties k ∈ [1, n], j ∈ [1, L′], i ∈ [1, n], Pℓ ∈ PCorr. Further, S simulates Frbc to deliver
C′

i, C′
i,0, C′

i,k, R′
i(x, y), r′

i,k(x) for i ∈ [1, n] to parties in PCorr.
6: S also honestly simulates Fra. For each honest party, S sets its input to Fra as 1 when this party receives

a ⟨Shares⟩ message from dealer D.
7: Column Interpolation: S sends common shares on row polynomials

(F ′
i,j(αk, αℓ), Y ′

i (αk, αℓ), Y ′
i,0(αk, αℓ)) to parties Pk in PCorr, on behalf of honest parties Pℓ. Fur-

ther, S also notifies A of scheduled messages between the simulated honest parties. S honestly runs
the protocol to verify a ⟨Rows⟩ message received from a corrupted party, delivered to a simulated
honest party that did not input 1 to Fra. If the verification succeeds and this message does not
match the shares generated by S, it aborts the simulation. Otherwise, S waits until the party receives
pH + pCorr,V = t + 1 messages and then proceeds to the row interpolation phase.

8: Row Interpolation Phase: Then, S also sends common shares on column polynomials
⟨Col, F ′

i,j(αℓ, αk), Y ′
i (αℓ, αk), Y ′

i,0(αℓ, αk)⟩ to parties in Pj ∈ PCorr, on behalf of honest parties Pℓ.
On receiving a ⟨Columns⟩ message from a corrupted party, S follows the protocol honestly to verify it.
If the verification succeeds and this message does not match the shares generated by S, it aborts the
simulation. S waits until each simulated honest party receives pH + pCorr,V = 2t + 1 correct points on
its row polynomials.

Public Reconstruction
1: S receives the dealer’s secrets f1(α0), . . . , fL(α0) from FACSS-id. Then, it executes the following steps.

– It first samples random degree-(2t, t) bivariate polynomials Fi,j(x, y) based on corrupted parties’
row and column polynomials and the dealer’s secrets.

– It computes gi,j,k(y) :=
∑

m∈[1,t+1] Fi,j(α−m+1, y) · αm
k and samples random nonce polynomials

yi,k(y), yi,k,0(y) such that yi,k(αm) = y′
i,k(αm) for Pm ∈ PCorr. It then computes gi,k,0(y) :=

ri,k(y) +
∑

j∈[1,L′] dj
i,kgi,j,k(y).

– S programs the RO to output Ci,k[ℓ], Ci,k,0[ℓ] for inputs
(gi,1,k(αℓ), . . . , gi,L′,k(αℓ), yi,k(αℓ),(gi,k,0(αℓ), yi,k,0(αℓ) for k ∈ [1, n], i ∈ [1, n]. It aborts the
simulation if these inputs have already been queried.

2: On completing these steps, S sends messages ⟨P ubRec, (gi,1,k(αℓ), . . . , gi,L′,k(αℓ), yi,k(αℓ), yi,k,0(αℓ))⟩
to party Pk ∈ PCorr.

3: For each honest party Pj and for each ⟨P ubRec⟩ message received from a corrupted party, S follows the
protocol to check whether it is correct and aborts the simulation if the verification succeeds with shares
different than what it distributed in the sharing phase. If an honest party receives it, S considers the
message to be correct. When Pj receives t + 1 correct ⟨P ubRec⟩ messages, S delivers the output from
FACSS-id to Pj . Then, it sends ⟨P ubRecErr, gi,j,ℓ(α0)⟩ message from Pℓ to corrupted parties.

35

4: S uses Online Error Correction (OEC) to reconstruct the polynomial ϕi,j(x) :=∑
m∈[1,t+1] Fi,j(α−m+1, α0) · xm−1, and secrets Fi,j(α−m+1, α0). S waits until each simulated

honest party receives enough messages such that OEC terminates. The, S sends Public-Recon to the
functionality FACSS-Abort and requests it to deliver the secrets f1(α0), . . . , fL(α0) to all honest parties.

Accusation
1: If S receives an ⟨Abort⟩ message from a corrupted party, it honestly follows the protocol to verify the

message. If the verification succeeds, S aborts the simulation.

We prove that ΠACSS-id implements FACSS-id through a series of hybrids.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S receives the corrupted parties’ shares from FACSS-id and randomly generates

corrupted parties’ row and column polynomials F ′
i,j(x, αℓ), F ′

i,j(αℓ, y) for Pℓ ∈ PCorr. It also generates
shares for reconstruction polynomials gi,j,k(αℓ). Then, S generates the whole bivariate polynomials given
corrupted parties’ polynomials and secrets. Hyb1 is identical to Hyb0 because the share polynomials of
corrupted parties have been uniformly randomly sampled from the same distribution in both hybrids.

Hyb2: In this hybrid, we delay the generation of honest parties’ shares until the share interpola-
tion phase. For each honest party, S generates commitment matrices by randomly sampling C ′

i[ℓ,m]
and C′

i,k[ℓ] for k, ℓ,m ∈ [1, n] . Further, S also randomly samples row and column nonce polynomials
Y ′

i (x, αℓ), Y ′
i (αℓ, y), y′

i,k(αℓ) for k ∈ [1, n], Pℓ ∈ PCorr. S aborts the simulation if any of sampled commit-
ments have been mapped to other inputs or if the inputs have already been queried. S intercepts queries
to the Random Oracle and returns output C ′

i[ℓ,m] for input (F ′
i,1(αℓ, αm), . . . , F ′

i,L′(αℓ, αm), Y ′
i (αℓ, αm))

for corrupted parties’ shares. S also maps the input (g′
i,1,k(αℓ), . . . , g′

i,L′,k(αℓ), y′
i,k(αℓ)) to output C′

i,k[ℓ].
Assuming A can query the RO for poly(κ) times, the probability that S will abort the simulation is

n3poly(κ)
2κ−poly(κ) . This probability is the result of applying the union bound on the n3 inputs to the RO.
Therefore, Hyb2 and Hyb1 are computationally indistinguishable.

Hyb3: In this hybrid, S changes the process of generation of Ri,ri,k polynomials. S first randomly
samples the commitment matrix C ′

i,0[ℓ,m] and the dZK polynomials R′
i(x, y), r′

i,k(x). Then, it randomly
samples dS,i, dS,i,k. It computes F ′

i,0(x, αℓ), Fi,0(αℓ, y), g′
i,k,0(αℓ) from R′

i, r
′
i,k. It also randomly samples

Y ′
i,0(x, αℓ), Y ′

i,0(αℓ, y), y′
i,k,0(αℓ). Then, it maps inputs (F ′

i,0(αℓ, αm), Y ′
i,0(αℓ, αm)),

(g′
i,k,0(αℓ), y′

i,k,0(αℓ)), (C ′
i, C

′
i,0), (C′

i,k,C′
i,k,0) to outputs C ′

i,0[ℓ,m],C′
i,k,0[ℓ],dS,i, dS,i,k, respectively. S

aborts the simulation if these inputs are already mapped. Assuming A can query the RO for poly(κ)
times, the probability that S will abort the simulation is n3poly(κ)

2κ−poly(κ) . Further, we only change the gener-
ation order of Fi,0(x, y) and Ri(x, y), which makes no difference. Therefore, Hyb3 and Hyb2 only differ
by the probability that S aborts, which is negligible in κ.

Hyb4: In this hybrid, S simulates the Fra functionality and enables the corrupted parties to termi-
nate the protocol. Hyb4 is identically distributed as Hyb3 because Πra securely implements the Fra
functionality.

Hyb5: In the next few sets of hybrids, we simulate the share interpolation phase.
Hyb5.1: In this hybrid, during the column interpolation phase, S uses corrupted party Pj ’s column

or row polynomials ⟨Row⟩ it previously generated to compute these common points and send them to
Pj . Hyb5.1 is identically distributed as Hyb4. This is because the points sampled and sent by S are
uniformly randomly distributed over the shares of corrupted parties, which is equivalent to A’s view in
the real-world.

Hyb5.2: In this hybrid, S verifies each ⟨Rows⟩ message received from a corrupted party by honestly
following the protocol. If a point F ′′

i,j(αℓ, αm) ̸= F ′
i,j(αℓ, αm) passes the verification, then S aborts the

simulation. Otherwise, it counts this message as a valid message. It waits for t+ 1 valid messages on an
honest party’s column polynomial. Further, S also verifies an ⟨Abort⟩ message by following the protocol
honestly. If an ⟨Abort⟩ message passes this verification, S aborts the simulation.

We show the distributions of Hyb5.2 are computationally indistinguishable from Hyb5.1 by proving
that S aborts the simulation with negligible probability. Assuming that honest party Pℓ accepts a set of

36

points F ′′
i,j(αℓ, αm) for some i ∈ [1, n]. Then we know:

H(F ′′
i,1(αℓ, αm), . . . , F ′′

i,L′(αℓ, αm), Y ′′
i (αℓ, αm)) = Ci[ℓ,m]

H(Ri(αℓ, αm) +

L
n(t+1)∑
j=1

dj
S,iF

′′(αℓ, αm), Y ′′
i,0(αℓ, αm)) = Ci,0[ℓ,m]

As honest parties already agreed on the commitments, A can break either condition in only one way:
It must find an alternate set of shares that evaluate the same set of commitments. However, as RO is
collision-resistant for a polynomial-time A, S aborts with probability poly(κ)

2κ−poly(κ) , which is negligible in
κ. Note that any corrupted party that wants to generate a proof for its Abort message must also find a
collision in the RO. Hence, the distributions of Hyb5.2 and Hyb5.1 are computationally indistinguishable.

Hyb5.3: In this hybrid, Pk needs to send ⟨Column⟩ messages to a corrupted party Pℓ. On receiving
t + 1 valid messages on a Pk’s column polynomial, S sends F ′

i,j(αk, αℓ) to Pℓ as a ⟨Column⟩ message.
Hyb5.3 is identically distributed as Hyb5.2.

Hyb5.4: In this hybrid, S verifies each ⟨Column⟩ message received from corrupted parties by honestly
running the protocol. If the received points pass the verification but do not match the shares sampled by
S, S aborts the simulation. Otherwise, it counts the message as valid. S waits until each honest party
receives valid points from 2t+ 1 parties. Hyb5.4 differs from Hyb5.3 only when S aborts the simulation.
This happens only when a corrupted party finds a collision in the RO, which happens only with negligible
probability. Therefore, the distributions of Hyb5.4 are computationally indistinguishable from Hyb5.3.

Hyb6: In this hybrid, S no longer uses the honest dealer’s secrets to compute honest parties’ row
and column polynomials because they are never used. Therefore, Hyb6 and Hyb5.5 are identically
distributed.

Hyb7: In this hybrid, S first receives honest dealer’s secrets from FACSS-id. Then, S computes each
honest party’s Pℓ’s ⟨PubRec⟩ message by randomly sampling yi,k(αℓ) and incorporating corrupted parties’
shares. S sends points gi,j,k(αℓ) to corrupted party Pk, along with the sampled nonces. Further, S
intercepts calls to the RO and returns outputs Ci,k[ℓ] for inputs
(gi,1,k(αℓ), . . . , gi,L′,k(αℓ), yi,k(αℓ)). If A already queried these inputs, then S aborts the simulation. On
receiving a ⟨PubRec⟩ message from a corrupted party, S follows the protocol honestly to validate the
shares. If the verification passes and the shares do not match the ones generated by S, S aborts the
simulation. Further, on receiving t+ 1 valid shares, S interpolates gi,j,ℓ(α0) on behalf of honest party Pℓ.

The main difference between Hyb7 and Hyb6 is the probability of S aborting the simulation. This
happens only when a corrupted party finds second pre-image to the commitment Ci,k[ℓ] or Ci,k,0[ℓ],
which happens only with probability at most n3poly(κ)

2κ−poly(κ) , which is negligible. Therefore, the distributions
of Hyb7 are computationally indistinguishable from Hyb6.

Hyb8: In this hybrid, S sends values gi,j,k(α0) from party Pk to corrupted parties using ⟨PubRecErr⟩
messages. Then, S runs Online Error Correction (OEC) on received shares. As OEC is information-
theoretically secure, Hyb8 is identically distributed as Hyb7.

Hyb9: In this hybrid, during the accusation phase, if S receives ⟨Abort⟩ messages from corrupted
parties, S follows the protocol to do verification. If one of them passes this verification, S aborts the simu-
lation. Note that any corrupted party that wants to generate a proof for its Abort message must also find
a collision in the RO. Thus, the distributions of Hyb9 and Hyb8 are computationally indistinguishable.

Note that Hyb9 corresponds to the view of S in the ideal world. Therefore, ΠACSS-id securely computes
FACSS-id with probability error n3poly(κ)

2κ−poly(κ) .

Simulator S

When D is corrupted
1: Share recording: The simulator S records share polynomials Fi,j(x, αℓ), Fi,j(αℓ, y) and nonce poly-

nomials Yi(x, αℓ), Yi(αℓ, y), Yi,0(x, αℓ), Yi,0(αℓ, y), yi,k(αℓ), yi,k,0(αℓ) for i ∈ [1, n], j ∈ [1, L′], k ∈
[1, n], Pℓ ∈ H received from D.

2: Simulate Broadcast: S simulates the Frbc functionality when D invokes it to broadcast commitments
and dZK proofs.

3: Verify shares and construct polynomials: On receiving a ⟨Shares⟩ message from D, S follows the
protocol to conduct verification. When S receives correct ⟨Shares⟩ messages for t +1 honest parties Pk,

37

it interpolates degree-(2t, t) bivariate polynomials F ′
i,j(x, y). Then, S also interpolates share polynomials

f ′
1(x), . . . , f ′

L(x). If a ⟨Shares⟩ message with polynomials Fi,j(x, αℓ) ̸= F ′
i,j(x, αℓ) passes the verification

for any honest party αℓ, S aborts the simulation.
4: For each honest party who accepts its shares in Step 3, S sets its input to Fra as 1. Then, S honestly sim-

ulates Fra. When S gets output 1 during the simulation of Fra, it sends the polynomials f ′
1(x), . . . , f ′

L(x)
to functionality S and deliver the output from FACSS-id to each honest party whose input for Fra was 1.

5: Commitments and dZK proofs: S also computes F ′
i,0(x, y) := Ri(x, y) +

∑
j∈[1,L′] dj

i F ′
i,j(x, y).

Then, it interpolates nonce polynomials Y ′
i (x, y),Y ′

i,0(x, y), and yi,k(x), yi,k,0(x). Then, it computes
commitments C′

i[x, y], C′
i,0[x, y] from these generated polynomials.

6: Column Interpolation: S sends common shares on row polynomials to corrupted parties as ⟨Row⟩
messages. Note that S sends shares from only those parties that received a valid ⟨Shares⟩ message from
D. When a corrupted party sends ⟨Row⟩ messages to an honest party Pℓ, then S follows the protocol
honestly to validate the message. If this verification succeeds for a point not lie on F ′

i,j(x, y), then S
aborts the simulation. Then, S checks if C′

i[ℓ, m] ̸= Ci[ℓ, m] or C′
i,0[ℓ, m] ̸= C′

i,0[ℓ, m] for any honest
party Pℓ ∈ H, then S adds party Pℓ to the set Pproof. Further, it sends (proof, Pℓ) to the functionality
FACSS-id. S also requests FACSS-id to change the output of Pℓ to (Corrupt, D).

7: Row interpolation: S sends common shares on column polynomials to corrupted parties. Note that S
sends shares from only those parties which successfully interpolated their columns i.e. Pℓ ∈ H \ Pproof.
For each honest party in Pℓ ∈ Pproof, S sends Pℓ’s ACSS proof to all parties. S waits until all honest
parties get their shares or proofs. For each honest party Pℓ who receives a proof, S sends (proof, Pℓ) to
the functionality FACSS-id. S also delivers the outputs from FACSS-id to each honest party.

Public Reconstruction Phase
1: For each honest party who outputs its share, S follows the protocol to send ⟨P ubRec⟩ messages to

corrupted parties.
2: When an honest party Pk receives a ⟨P ubRec⟩ message from a corrupted party Pℓ, S follows the protocol

to verify it. If the verification succeeds and gi,j,k(αℓ) ̸= g′
i,j,k(αℓ), then S aborts the simulation. On

receiving t+1 correct messages on the polynomial g′
i,j,k(x), S sends g′

i,j,k(α0) in a ⟨P ubRecErr⟩ message
to corrupted parties.

3: On receiving a ⟨P ubRecErr⟩ message from a corrupted party, S follows the protocol honestly to recon-
struct the polynomial ϕi,j(x) using Online Error Correction.

4: On reconstructing the secrets, S sends the output f ′
1(α0), . . . , f ′

L(α0) to the corrupted parties. S also
delivers the output from FACSS-id to each honest party that successfully reconstructs its secrets.

Accusation
1: S has got the ACSS proof for each honest party in PProof. When the honest parties in PProof need to

broadcast the ACSS proof, S reliably broadcasts it on behalf of them.

We prove the security of ΠACSS-id using hybrid arguments. We consider the following hybrids.
Hyb0: In this hybrid, we consider the execution in the real-world.
Hyb1: In this hybrid, S receives and records share messages ⟨Shares⟩ from the dealer D. So far, it

does nothing with the recorded shares. Therefore, Hyb1 and Hyb0 are identically distributed.
Hyb2: In this hybrid, S simulates the Frbc functionality and enables D to terminate its broadcast.

Further, S also records the commitments and dZK polynomials. As Πrbc securely implements Frbc, Hyb1
is identically distributed as Hyb0.

Hyb3: In this hybrid, S verifies the recorded shares using commitments and dZK proofs received
through Frbc. It waits until recording t+1 shares whose commitments match the ones broadcast by D. It
then forms degree-(2t, t) polynomials F ′

i,j(x, y). S verifies ⟨Shares⟩ messages by honestly following the
protocol. It aborts the simulation only when the verification succeeds for polynomials not lie on F ′

i,j(x, y).
Hyb3 and Hyb2 only differ by the probability that S aborts the simulation. We show Hyb3 is

computationally identically distributed as Hyb2 by showing S will abort only with negligible probability
i.e. each honest party will accept its shares only if they lie on F ′ polynomials, except with negligible
probability. The shares must satisfy both the following equations.

H(F ′′
i,j(αk, αℓ), . . . , F ′′

i,j(αk, αℓ), Y ′′
i (αk, αℓ)) = Ci[k, ℓ] for k ∈ [1, n]

F ′′
i,0(x, αℓ) − F ′

i,0(x, αℓ)) +
∑

j∈[1,L′]

dj
i (F ′

i,j(x, αℓ) − F ′′
i,j(x, αℓ)) = 0

A can make S abort in two main ways: (a) A first chooses incorrect shares and dj
i to make the above

equations true, and dj
i happens to the random oracle output of the corresponding commitments. Assuming

38

A can invoke H at most poly(κ) number of times, the probability is at most:

poly(κ)
2κ − poly(κ)

This probability is negligible in κ. (b) A finds two F ′′
i,0(αm, αℓ), F ′

i,0(αm, αℓ) and F ′′
i,j(αm, αℓ), F ′

i,j(αm, αℓ)
such that di is the root of the resulting degree-L polynomial δ(α) with variable α. Then, A must choose
the coefficients of term xkyℓ in the bivariate polynomials F ′′

i,j(αk, αℓ), i.e. the coefficients of δ(α), such
that α = di is a root of δ(α). The probability that a randomly chosen α is a root of this polynomial
is L

2κ = negl(κ). Further, di is computed by invoking the Random Oracle H on the commitments of
polynomials dependent on δ(α). This ensures that any change in δ(·) requires A to reinvoke H to
compute di. As A is a polynomial time adversary, it can make at most poly(κ) queries to H. Therefore,
A can find a δ(α) satisfying these conditions with probability at most L′

2κ−poly(κ) = negl(κ). Taking a
union bound on all coefficients in all polynomials, the probability is at most:

n3Lpoly(κ)
2κ − poly(κ)

This probability is negligible in κ. Hence, the distributions of Hyb3 are computationally indistinguishable
from Hyb2.

Hyb4: In this hybrid, S simulates the reliable agreement functionality Fra and allows D to terminate
the sharing protocol. Additionally, S invokes FACSS-id with the interpolated polynomials f ′

1(x), . . . , f ′
L(x)

and requests it to deliver shares to those honest parties that received their shares and participated in
the Πra protocol in Hyb3. Hyb4 is identically distributed as Hyb3 because Πra securely implements
the Fra functionality.

In the following set of hybrids, we simulate the column and row interpolation phases.
Hyb5.1: In this hybrid, S sends common points on row polynomials to corrupted parties in the form

of ⟨Row⟩ messages. S also computes the commitments C ′
i[x, y] and C ′

i,0[x, y] for x, y ∈ [1, n], i ∈ [1, n].
Hyb5.1 is identically distributed as Hyb4 because S sends the same shares as honest parties.

Hyb5.2: In this hybrid, S verifies an incoming ⟨Row⟩ message by following the protocol. If this
verification succeeds for a point not on F ′

i,j polynomials, S aborts the simulation. Otherwise, it waits
until A delivers ⟨Row⟩ t+ 1 valid ⟨Row⟩ messages to each simulated honest party and then reconstructs
the corresponding polynomial and commitments. If for any honest party Pℓ and any y ∈ [1, n] in a
batch i, C ′

i[ℓ, y] ̸= Ci[ℓ, y] or C ′
i,0[ℓ, y] ̸= Ci,0[ℓ, y], then S adds Pℓ to the set Pproof. Further, S sends

Broadcast-Proof to FACSS-id on behalf of Pℓ.
Hyb5.2 and Hyb5.1 only differ by the probability of S aborting the simulation. S aborts with neg-

ligible probability because A can produce an incorrect point that passes the verification with prob-
ability at most n2Lpoly(κ)

2κ−poly(κ) . Therefore, each honest party Pℓ will successfully interpolate its column
polynomials F ′

i,j(αℓ, y), and will construct commitments C ′
i[ℓ, y], C ′

i,0[ℓ, y]. Then, if they do not match
Ci[ℓ, y], Ci,0[ℓ, y], the party uses these mismatched commitments and dZK proofs as proof that D is
corrupt. Hence, Hyb5.2 is computationally identically distributed as Hyb5.1.

Hyb5.3: In this hybrid,S sends common points on columns to parties in PCorr as ⟨Column⟩ messages.
It sends these messages only from honest parties who are not in Pproof. Further, S forwards the proof
of dealer’s malice from each party Pℓ ∈ Pproof to corrupted parties. Hyb5.3 is identically distributed as
Hyb5.2.

Hyb5.4: In this hybrid, S waits until one of the conditions is true: It waits for A to deliver 2t + 1
messages on the interpolated bivariate polynomials F ′

i,j(x, y) (Note that A controls the network and
delivers messages sent by honest parties), or it waits for A to deliver a correct proof message. S outputs
shares or (Corrupt, D) on behalf of honest parties. In Hyb5.2, honest parties detect invalid shares with
overwhelming probability. Further, every honest party either interpolates its column correctly or compiles
a proof that D is corrupt. Each honest party will either interpolate its row or verify that D is corrupt.
Hence, Hyb5.4 is computationally identically distributed as Hyb5.3.

Hyb6: In this hybrid, S sends the message ⟨PubRec⟩ with appropriate shares and nonces to corrupted
parties. It sends these shares from honest parties who received shares from FACSS-id. Hyb6 is identical
to Hyb5.4.

Hyb7: In this hybrid, S verifies a ⟨PubRec⟩ message by following the protocol. If the verification
succeeds for a share g′′

i,j,k(αℓ) not on g′
i,j,k(x), then S aborts the simulation.

39

The only difference between Hyb7 and Hyb6 is the probability of S aborting the simulation. For
shares g′′

i,j,k(αℓ) to pass the verification, similar to the argument in Hyb3, the probability is at most
n3Lpoly(κ)
2κ−poly(κ) . Further, S also aborts the simulation if A already queried inputs that were going to be
mapped by S. Hence, the distributions of Hyb7 are computationally indistinguishable from Hyb6.

Hyb8: In this hybrid, S sends ⟨PubRecErr⟩ messages from each honest party Pk that successfully
interpolates gi,j,k(α0) polynomial. Further, S runs the protocol honestly to interpolate ϕi,j(x). When an
honest party receives enough messages to reconstruct ϕi,j(x), S requests FACSS-id to deliver the secrets
f ′

1(α0), . . . , f ′
L(α0) to the honest parties in the ideal world. Hyb8 is identically distributed as Hyb7

because S follows the protocol.
Hyb8 is identically distributed as S’s view in the ideal world. Therefore, ΠACSS-id securely realizes

FACSS-id with error n3L·poly(κ)
2κ−poly(κ) .

B.4 Cost Analysis

Communication Cost: The communication costs include:
– For dealer, during the Sharing phase, it requires O(Ln + n3) field elements to distribute shares to

all parties. For each batch, it requires O(n3) field elements plus O(κ · n3) bits to broadcast the
commitment, which results in O(n4) field elements plus O(κ · n4) bits in total.

– For all parties, during the Share Interpolation phase, it requires O(Ln+n3) field elements to exchange
their shares.

– For all parties, during the Public Reconstruction phase, it requires O(Ln+ n3) field elements.
Therefore, the Sharing and Share Interpolation phase require O(Ln+n4) field elements plus O(κ·n4) bits.
The public reconstruction requires O(Ln+n3) field elements. When each party executes the Accusation
phase, it requires O(L+ n2) field elements plus O(κ · n2) bits.
Computation cost: We evaluate the Hash computation complexity of ΠACSS-id. Generating commit-
ments for each batch requires O(n2) Hash computations to generate a commitment matrix of size O(n2).
Therefore, for O(n) batches, the dealer D has a computational complexity of O(n3) Hash computations.
Each party must verify the commitments of its shares, which requires O(n) Hash computations per
batch. For O(n) batches, each party requires O(n2) Hash computations. In the public reconstruction
phase, each party performs O(n) Hash computations for verifying commitments.

C Construction and Proofs of Malicious Security with Fairness AMPC
C.1 Construction of ΠrandSh-Weak and Security Proof
We design ΠrandSh-Weak which realizes FrandSh-Weak below. At a high level, to prepare N random degree-t
Shamir sharings, we first ask each party to act as a dealer and invoke FACSS-Abort to distribute N/(t+ 1)
random degree-t Shamir sharings. Then all parties agree on a set of 2t + 1 successful dealers, meaning
all parties receive outputs from FACSS-Abort invoked by these dealers. Finally, we follow the technique
in [DN07] to extract N random sharings.

Functionality FrandSh-Weak

Public Input: N
FrandSh-Weak proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S.
1: For all ℓ ∈ [N], the trusted party randomly samples rℓ.
2: For all ℓ ∈ [N], the trusted party receives a set of shares of corrupted parties from S and samples a

random degree-t Shamir sharing [rℓ]t based on the shares of corrupted parties and the secret rℓ.
3: For all ℓ ∈ [N] and each party Pj , send a request-based delayed output of the j-th share of [rℓ]t to Pj .

– Upon receiving a request (Fail, Pj) from S, if the output of Pj has not been delivered, change the
output of Pj by Fail.

4: All honest parties output the results received from the trusted party. Corrupted parties may output
anything they want.

40

The construction of ΠrandSh-Weak is as follows. During the protocol, each party takes Fail or his
shares of random degree-t Shamir sharings as output, determined by whether he can receive his shares
distributed by each successful dealer in the agreement set D.

Protocol ΠrandSh-Weak

Let N be the number of random degree-t Shamir secret sharings to be prepared.
1: Each party Pi samples N ′ = N/(t + 1) random degree-t Shamir secret sharings [s(i)

1]t, . . . , [s(i)
N′]t. Then

Pi acts as the dealer D, invoking FACSS-Abort to distribute the shares to all parties.
2: Each party Pi sets the property Q as Pi terminating FACSS-Abort when Pj acts as a dealer. Then all

parties invoke Facs with property Q to agree on a set D of successful dealers with size |D| = 2t + 1.
3: Each party waits to receive his output from FACSS-Abort for each dealer Pi ∈ D, if his output is abort,

he outputs Fail and terminates; otherwise, he proceeds.
4: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1) × (2t + 1). For all ℓ ∈ [N ′],

each party computes his shares by following

([rℓ,1]t, . . . , [rℓ,t+1]t) = M · ([s(i)
ℓ]t)i∈D.

Finally, he outputs his shares of {[rℓ,i]t}ℓ∈[N′],i∈[t+1] and terminates.

Cost Analysis. The communication costs of ΠrandSh-Weak equals to n instances of FACSS-Abort and an
instances of Facs. When we instantiate FACSS-Abort by ΠACSS-ab and Facs by construction in [DDL+24],
the communication costs is O(N · n + n3) field elements plus O(κ · n3) bits for generating N random
degree-t Shamir sharings.

Lemma 7. Protocol ΠrandSh-Weak securely computes FrandSh-Weak in the {Facs, FACSS-Abort}-hybrid model
against a fully malicious adversary A who corrupts at most t = (n− 1)/3 parties.

Proof. Termination. We first show that all honest parties will eventually terminate the protocolΠrandSh-Weak.
By the definition of FACSS-Abort, the property Q is an ACS property. Thus in Step 2 of ΠrandSh-Weak, all
honest parties will eventually agree on a set D of successful dealers. By the definition of FACSS-Abort again,
for each dealer in D, all honest parties will eventually receive their shares or abort from FACSS-Abort in-
voked by this dealer. Each party who receives abort will output Fail and terminate at Step 3. Since
Step 4 only involves local computation, each party who receives his shares will also terminate at the end
of Step 4.

Security. Now we show that the protocol ΠrandSh-Weak securely computes FrandSh-Weak. We start with the
construction of the ideal adversary S as follows.

Simulator S

1: In Step 1, S simulates FACSS-Abort as follows:
– For each honest party Pi, S generates random values as the shares of corrupted parties. For each

corrupted party Pi, S waits to receive the sharings distributed by Pi.
– S sends the shares of corrupted parties to them. For each party Pj , when S receives (abort, Pj)

from A, he sends requests (Fail, Pj) to FrandSh-Weak.
2: In Step 2, S honestly simulates Facs and learns the set D of size 2t + 1.
3: In Step 4, S follows the protocol and computes the corrupted parties’ shares of [rℓ,i]t for all ℓ ∈ [N ′], i ∈

[t + 1]. Finally, S sends the shares of [rℓ,i]t of corrupted parties to FrandSh-Weak.
4: S outputs the views of A.

We show that the output in the ideal world is identically distributed to that in the real world by
using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, we follow the protocol and compute the shares of [rℓ,i]t of corrupted parties

for all ℓ ∈ [N ′], i ∈ [t+ 1]. Hyb1 and Hyb0 have the same distribution.
Hyb2: In this hybrid, we change the way of sampling [s(i)

1]t, . . . , [s(i)
N ′]t for each honest party Pi. Note

that in Hyb1, the shares of honest parties are never sent in the first two steps. Then after randomly
sampling the shares of corrupted parties, we delay the generation of the whole sharings until the set D

41

is determined. Let Hsucc denote the set of the first t+ 1 honest parties in D. Then we generate the whole
sharings of honest parties as follows:

– For honest parties not in Hsucc: we generate the whole sharings as Hyb1.
– For honest parties in Hsucc: Since M is a Vandermonde matrix, any (t + 1) × (t + 1) sub-matrix of

M is invertible, then for all ℓ ∈ [N ′], given the sharings {[s(i)
ℓ]t}i ̸∈Hsucc , there is a one-to-one map

between {[rℓ,i]t}t+1
i=1 and {[s(i)

ℓ]t}i∈Hsucc . We first randomly sample {[rℓ,i]t}t+1
i=1 based on the shares of

corrupted parties and then compute the random sharings of honest parties in Hsucc.

This does not change the distribution of the random sharings prepared by honest parties. Thus, Hyb2
and Hyb1 have the same distribution.

Hyb3: In this hybrid, we no longer prepare the shares of [s(i)
1]t, . . . , [s(i)

N ′]t of honest parties not in Hsucc
since they are not used in generating the output of Hyb2. Hyb3 and Hyb2 have the same distribution.

Hyb4: In this hybrid, when S simulates each FACSS-Abort and receives (abort, Pi) from A, instead
of let S send Fail to Pi, S will send (Fail, Pi) to FrandSh-Weak. As a result, Pi can receive Fail from
FrandSh-Weak, which makes no difference. Hyb4 and Hyb3 have the same distribution.

Hyb5: In the last hybrid, we ask FrandSh-Weak to generate {[rℓ,i]t}ℓ∈[N ′],i∈[t+1] based on the shares of
corrupted parties. Note that the way of generating {[rℓ,i]t}ℓ∈[N ′],i∈[t+1] remains unchanged. Hyb5 and
Hyb4 have the same distribution.

Note that Hyb5 corresponds to the ideal world, then ΠrandSh-Weak securely computes FrandSh-Weak.

C.2 Construction of ΠpubRec-Weak and Security Proof

We design ΠpubRec-Weak which realizes FpubRec-Weak as below. This corresponds to the weak public recon-
struction introduced in section 2.2. We assume that for each degree-t Shamir sharing, the shares of honest
parties that are not equal to ⊥ lie on a valid degree-t Shamir sharing. This will be the case when we
invoke FpubRec-Weak in our construction.

Functionality FpubRec-Weak

Public Input: N
FpubRec-Weak proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S.
1: Wait to receive the number N of degree-t Shamir sharings to be reconstructed from all parties.
2: For all i ∈ [N], upon receiving the shares of [si]t from all honest parties (including ⊥), send the shares

of [si]t of honest parties to S. If there are at least t + 1 shares from honest parties, compute the secret
si by using the shares of honest parties. Otherwise, set si =⊥.

3: For each party Pj , send a request-based delayed output {si}N
i=1 to Pj .

– Upon receiving a request (Fail, Pj) from S, if the output of Pj has not been delivered, change the
output of Pj by Fail.

4: All honest parties output the results received from the trusted party. Corrupted parties may output
anything they want.

The communication complexity of ΠpubRec-Weak is O(N · n + n2) field elements plus O(n2) bits for
reconstructing N degree-t Shamir sharings.

Protocol ΠpubRec-Weak

All parties start with N degree-t Shamir sharings and the goal is to reconstruct the secrets. If a party holds
⊥ as input, he sends a failure symbol ⊥ to all other parties and outputs Fail.
1: The Shamir sharings are divided into N/(t + 1) groups where each group contains t + 1 degree-t Shamir

sharings. For each group, all parties execute the following steps.
2: Suppose the degree-t Shamir sharings of this group are [s0]t, [s1]t, . . . , [st]t. All parties locally set a

degree-t polynomial f(·) ∈ F[X] by using s0, . . . , st as coefficients, i.e.,

f(X) = s0 + s1 · X + . . . + st · Xt.

3: Each party whose input sharings are not ⊥ locally compute [f(α1)]t, . . . [f(αn)]t.

42

4: For all i ∈ [N], all parties send their shares of [f(αi)]t to Pi. Then Pi waits to receive 2t + 1 = n − t
shares. If the shares do not lie on a degree-t polynomial, Pi sends a failure symbol ⊥ to all parties and
outputs Fail. Otherwise Pi reconstructs the secret f(αi) and sends f(αi) to all parties.

5: Each party Pi waits to receive messages from all parties:
– When Pi first receives f(αj) from 2t + 1 = n − t different parties Pj , if the received values do

not lie on a degree-t polynomial, Pi outputs a failure symbol Fail. Otherwise, Pi reconstructs the
polynomial f(·) and outputs the coefficients of f(·).

– When Pi first receives a failure symbol ⊥, Pi outputs Fail.

Lemma 8. Protocol ΠpubRec-Weak securely computes FpubRec-Weak against a fully malicious adversary A
who corrupts at most t = (n− 1)/3 parties.

Proof. Termination. We first show that all honest parties will eventually terminate the protocolΠpubRec-Weak.
The first four steps of ΠpubRec-Weak only involve local computation. In Step 5, each party Pi waits to receive
messages from all parties. Since there are at most t corrupted parties, all honest parties’ messages will
be eventually delivered, then each honest party Pi will eventually receive either a failure symbol ⊥ or at
least 2t + 1 shares. In Step 6, each party Pi again waits to receive messages from all parties. Following
the same argument, Pi will eventually receive either ⊥ or 2t+ 1 values of f(αj) and terminate.

Security. Now we show that the protocol ΠpubRec-Weak securely computes FpubRec-Weak. We start with the
construction of the ideal adversary S as follows.

Simulator S

1: S first invokes FpubRec-Weak and receives the shares of each [si]t of honest parties. With honest parties’
inputs, S simply follows the protocol honestly on behalf of each honest party.

2: For each part honest Pj , if S learns Pj fail to do reconstruction, S sends (Fail, Pj) to FrandSh-Weak.
3: S outputs the views of A.

Since S obtains the inputs of honest parties in the beginning, the simulated output of A is identically
distributed to that of A. It is sufficient to argue that given the output of A, the output of honest parties
in the ideal world is identical to that in the real world. We consider two cases.

– Case 1: At most t honest parties hold shares that are not equal to ⊥. In this case, FpubRec-Weak will
always send Fail to all honest parties. We argue that this is also the case in the real world. In Step
5, since each honest party Pi waits to receive 2t+ 1 shares before continuing, Pi must receive at least
one ⊥ from other parties. Thus, all honest parties will terminate with Fail in the real world.

– Case 2: At least t+ 1 honest parties hold shares that are not equal to ⊥. In this case, we show that
all honest parties that do not output Fail would receive {si}N

i=1 in the real world. For each group of
t + 1 degree-t Shamir sharings [s0]t, [s1]t, . . . , [st]t, by assumption, the shares of honest parties that
are not ⊥ form valid degree-t Shamir sharings. Then, for honest parties that do not output Fail,
their shares of [f(α1)]t, . . . [f(αn)]t also form valid degree-t Shamir sharings. Thus for each honest
party Pi that does output Fail in Step 5, he must reconstruct the correct f(αi).
Since f is of degree t and each honest party Pi that does not output Fail has distributed the correct
f(αi) to all parties, in Step 6, all honest parties that do not output Fail must reconstruct the correct
polynomial f(·) and learn s0, . . . , st.

C.3 Construction of ΠrandShareZero-Weak

Protocol ΠrandShareZero-Weak

Let N be the number of total degree-2t Shamir sharings of 0.
1: Each party Pi samples N ′ = N/(t + 1) random degree-2t Shamir sharings of 0, ([o(i)

1]2t, . . . , [o(i)
N′]2t).

Then Pi acts as the dealer D and runs ΠSh2tZero-Weak to distribute the sharings to all parties.
2: Each party Pi sets the property Q as Pi terminating ΠSh2tZero-Weak when Pj acts as a dealer, then all

parties invoke Facs with property Q to agree on a set D of size 2t + 1 which includes successful dealers.

43

3: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1) × (2t + 1). For all ℓ ∈ [N ′],
all parties locally compute

([oℓ,1]2t, . . . , [oℓ,t+1]2t) = M · ([o(i)
ℓ]2t)i∈D.

Finally, all parties output {[oℓ,k]2t}ℓ∈[N′],k∈[t+1].

Costs Analysis. The communication costs of ΠrandShareZero-Weak include n instances of ΠSh2tZero-Weak and
one instances of Facs. For each instance of ΠSh2tZero-Weak, it requires O(N ·n+n2) field elements to prepare
N degree-2t Shamir sharings of zero. Therefore, the total costs of ΠrandShareZero-Weak are O(N · n + n3)
field elements plus O(κ · n3) bits for preparing N random degree-t Shamir sharings of zero.

C.4 Construction of ΠtripleExt-Weak

We give the construction of ΠtripleExt-Weak as follows.

Process ΠtripleExt-Weak

Let N be the number of Beaver triples to be prepared.
1: Distribution:

Let N ′ = 4N/(t + 1), L = 2t + (t − 1)/2, all parties agree on distinct field elements
β1, . . . , β(L+1)/2−t, α0, . . . , α2N′ .
Each party Pi samples two random degree-(N ′ − 1) polynomials fi, gi and computes hi = fi · gi. Then
Pi samples 3N ′ random degree-t Shamir secret sharings:

{[fi(αℓ)]t}N′
ℓ=1, {[gi(αℓ)]t}N′

ℓ=1, {[hi(αℓ)]t}N′
ℓ=1

Finally, Pi acts as a dealer and distributes these 3N ′ degree-t Shamir secret sharings using FACSS-Abort.
2: Determine the Set of Successful Dealers:

All parties set the property Q as terminating FACSS-Abort invoked by each dealer, then they invoke the
modified ΠQ

acs to agree on a set D of size L which contains the successful dealers.
3: Extracting Random Triples:

For all ℓ ∈ [N ′], pick the first unused Beaver triple from each dealer in D and denote them by
{[a(ℓ)

i]t, [b(ℓ)
i]t, [c(ℓ)

i]t}L
i=1. Then execute the following steps to extract N random Beaver triples:

(1). For all i ∈ [L′ + 1] and ℓ ∈ [N ′], all parties set two polynomials of f (ℓ), g(ℓ) of degree L′ = (L − 1)/2
such that [f (ℓ)(αi)]t = [a(ℓ)

i]t and [g(ℓ)(αi)]t = [b(ℓ)
i]t.

(2). For all i ∈ [L′ + 2, L] and ℓ ∈ [N ′], all parties do the following things:
1). Locally compute [f (ℓ)(αi) + a

(ℓ)
i]t, [g(ℓ)(αi) + b

(ℓ)
i]t.

2). Send input sharings [f (ℓ)(αi) + a
(ℓ)
i]t, [g(ℓ)(αi) + b

(ℓ)
i]t to FpubRec-Weak to reconstruct f (ℓ)(αi) +

a
(ℓ)
i , g(ℓ)(αi) + b

(ℓ)
i . Then locally compute:

[f (ℓ)(αi) · g(ℓ)(αi)]t = (f (ℓ)(αi) + a
(ℓ)
i) · (g(ℓ)(αi) + b

(ℓ)
i)

− (f (ℓ)(αi) + a
(ℓ)
i) · [b(ℓ)

i]t
− (g(ℓ)(αi) + b

(ℓ)
i) · [a(ℓ)

i]t + [c(ℓ)
i]t.

(3). For each ℓ ∈ [N ′], all parties set a polynomial h(ℓ) of degree L − 1 such that [h(ℓ)(αi)]t = [c(ℓ)
i]t for

all i ∈ [L′ + 1] and [h(ℓ)(αi)]t = [f (ℓ)(αi) · g(ℓ)(αi)]t for all i ∈ [L′ + 2, L].
(4). Each party finishes the computation in step (3) will output ([f (ℓ)(βi)]t, [g(ℓ)(βi)]t, [h(ℓ)(βi)]t) for all

i ∈ [(L + 1)/2 − t], ℓ ∈ [N ′]. Each party who receives abort from FACSS-Abort for each dealer in D in
Step 2 or receives Fail from FpubRec-Weak in Step 3-(2) will output Fail.

C.5 Proof of Lemma 2 and Costs Analysis

Proof. Termination. We show that all honest parties will eventually terminate the protocolΠtriple-Add-Weak.
It is sufficient to show:

1. Each honest party will eventually terminate ΠtripleExt-Weak or ΠtripleDN-Weak.

44

2. If an honest party terminates one process, all honest parties will eventually terminate this process.

For process 1, the ΠtripleExt-Weak:

– In the first step, all parties invoke FACSS-Abort to distribute their shares.
– In the second step, all parties invoke ΠQ

acs to agree on a set D of size L = 2t + (t − 1)/2 which
contains the successful dealers. Since there are only 2t + 1 honest parties, we need that at least
(t− 3)/2 corrupted parties acting as dealers also terminate their FACSS-Abort and then all parties can
proceed.

– In the third step, all parties extract the triples and the only interactive step is to invoke FpubRec-Weak,
which is guaranteed to terminate.

To summarize, when at least (t − 3)/2 corrupted parties terminate their FACSS-Abort, all parties will
eventually terminate process 1.

For process 2, the ΠtripleDN-Weak:

– All parties invoke FrandSh-Weak and ΠrandShareZero-Weak to prepare random degree-t and 2t Shamir secret
sharings. For ΠrandShareZero-Weak:

• Each party acts as the dealer and invokes ΠSh2tZero-Weak to distribute 2t shares of zero. Each dealer
will encode (t+1)/2 shares of zero into a degree-(2t, t+(t−1)/2) bivariate polynomial. To promise
that each party can eventually reconstruct his column polynomial, at least t + (t + 1)/2 honest
parties should receive their row polynomial from the dealer. We let each party who receives his
row polynomial send support to all parties, but since each party can only expect to receive 2t+1
support from all parties, then among these 2t+ 1 support:

∗ If at most (t + 1)/2 of them come from corrupted parties, that means at least t + (t + 1)/2
honest parties have received their row polynomial and can help all parties reconstruct their
column polynomial.

∗ Otherwise, if more than (t+ 1)/2 of them come from corrupted parties, it is not guaranteed
that all parties can eventually terminate the ΠSh2tZero-Weak when the dealer is corrupted.

• All parties invoke Facs to agree on a set of size 2t + 1 which contains successful dealers. This is
guaranteed to be terminated, but for each corrupted dealer in this set, even if an honest party
receives his shares, according to the above analysis, when there are more than (t+1)/2 corrupted
parties sends support to this honest party, he can not guarantee all parties can get their shares
of zero.

– Each party acts as Pking and leads an instances of ΠtripleKingDN. During the ΠtripleKingDN, the honest
king can always expect to receive 2t + 1 shares of [z]2t or ⊥ from 2t + 1 honest parties. Therefore,
the honest king will eventually reliably broadcast the secret z or ⊥ as the response. Then all parties
invoke Facs to agree on a set D of size 2t+ 1 which contains successful kings, that will be guaranteed
to terminate.

To summarize, when more than (t + 1)/2 corrupted parties send support to honest parties, all parties
are not guaranteed to get their shares of zero. Otherwise, process 2 is guaranteed to terminate.

Therefore, we find that the termination conditions of processes 1 and 2 are mutually exclusive, we
can combine them and require that during process 2, only when each party terminates his FACSS-Abort in
process 1, then the message support he send to all parties in process 2 is valid. As a result, if more than
(t + 1)/2 corrupted parties send support to honest parties, process 2 may not terminate but process 1
will eventually terminate. Vice versa, if less than (t − 3)/2 corrupted sends support to honest parties
in process 2, process 1 may never terminate but process 2 will eventually terminate. All parties will
terminate at least one of the processes.

Then in the second step, all parties invoke Fba to agree on which process they eventually terminate,
this is guaranteed to terminate since each party will take 0 or 1 as his input for Fba. Assuming that the
output of Fba is b, we know that at least one honest party’s input is b, then we need to prove that if this
honest party terminates the corresponding process, the rest of the honest parties can also terminate the
corresponding process.

– If b = 0: that means at least one honest party accepts a set D of size L which contains the successful
dealers, according to the termination property of FACSS-Abort, the rest of honest parties will also
receive their output. Then all parties will eventually terminate the first process ΠtripleExt-Weak.

45

– If b = 1: that means at least one honest party accepts a set D of size 2t + 1 which contains the
successful kings, and for each king, he has received the message broadcast by the king. According to
the termination property of reliably broadcast and Facs, the rest of honest parties will also receive
the message from these kings in D. Since FrandSh-Weak is guaranteed to terminate, then all parties can
locally compute their shares of Beaver triples and terminate.

Security. Now we show that the protocol ΠpubRec-Weak securely computes FpubRec-Weak. We start with the
construction of the ideal adversary S as follows.

Simulator S0

Simulation of ΠtripleExt-Weak

1: In the first step, S simulates each FACSS-Abort as follows:
– For each honest dealer Pi, S randomly samples corrupted parties’ shares of

{[fi(αℓ)]t, [gi(αℓ)]t, [hi(αℓ)]t} for all ℓ and sends them to the corrupted parties.
– For each corrupted dealer Pi, S simulates FACSS-Abort and waits to receive degree-t Shamir secret

sharings.
During the simulation of FACSS-Abort, for each honest party whose output is abort, S sets this honest
party’s input for FpubRec-Weak as ⊥ and the output of ΠtripleExt-Weak as Fail.

2: In the second step, S honestly simulates ΠQ
acs and whenever an honest party terminates ΠQ

acs with a set
D of size L, S continues to simulate the behavior of this party.

3: In the third step, S does the following things:
(1). Compute the corrupted parties’ shares of [f (ℓ)(αi)]t, [g(ℓ)(αi)]t for all i ∈ [L′ + 1], ℓ ∈ [N ′] and

[f (ℓ)(αi) + a
(ℓ)
i]t, [g(ℓ)(αi) + b

(ℓ)
i]t for all i ∈ [L′ + 2, L], ℓ ∈ [N ′].

(2). For each i ∈ [L′ + 2, L], ℓ ∈ [N ′], randomly samples degree-t Shamir secret sharings [f (ℓ)(αi) +
a

(ℓ)
i]t, [g(ℓ)(αi) + b

(ℓ)
i]t based on the corrupted parties’ shares.

(3). Compute each honest party’s shares of [f (ℓ)(αi) + a
(ℓ)
i]t, [g(ℓ)(αi) + b

(ℓ)
i]t, replace it with ⊥ if this

honest party’s output of FACSS-Abort is ⊥.
(4). Honestly simulate FpubRec-Weak. For each honest party whose output of FpubRec-Weak is Fail, S sets

this honest party’s output of ΠtripleExt-Weak as Fail. Then compute corrupted parties’ shares of
([f (ℓ)(βi)]t, [g(ℓ)(βi)]t, [h(ℓ)(βi)]t) for all i ∈ [(L + 1)/2 − t], ℓ ∈ [N ′].

4: For each corrupted party Pi ∈ D, S has received the whole {[fi(αℓ)]t, [gi(αℓ)]t, [hi(αℓ)]t} for all ℓ when
S simulates FACSS-Abort. Then S computes a degree-L polynomial di(·) such that:

– For each honest Pi ∈ D, S sets di(αℓ) = 0.
– For each corrupted Pi ∈ D, S computes di(αℓ) = hi(αℓ) − fi(αℓ) · gi(αℓ).

Finally, S computes the additive errors d(βi) in each Beaver triple ([f (ℓ)(βi)]t, [g(ℓ)(βi)]t, [h(ℓ)(βi)]t).

Simulator S1

Simulation of ΠtripleDN-Weak

Preparation Phase:
1: S simulates FrandSh-Weak, receives shares of corrupted parties from A and sends them to the corrupted

parties.
2: S simulates ΠrandShareZero-Weak as follows:

(1). In the first step, let {[õk]2t}(t+1)/2
k=1 be the degree-2t sharings of zero shared by each honest dealer.

Then S randomly samples corrupted parties’ shares of {[õk]2t}(t+1)/2
k=1 . S simulates ΠSh2tZero-Weak for

each dealer as follows:
• If the dealer is corrupted, S follows the protocol to execute each honest party. For all k ∈ [(t+1)/2]

S defines a vector ∆[ok]2t to the all-0 vector.
• If the dealer is honest, S does the following things:

1). Randomly sample degree-2t row polynomial f
(i)
ℓ (x) and degree-(t+(t−1)/2) column polyno-

mial g
(i)
ℓ (y) based on shares of corrupted parties. Then send row polynomial f

(i)
ℓ (x) to each

corrupted party Pi on behalf of the dealer.
2). For each honest party Pi, when his row polynomials are delivered, send f

(i)
ℓ (αj) = g

(j)
ℓ (αi)

to corrupted Pj on behalf of Pi. Then send (support, Pi, D) to all parties.
3). When each honest party Pi receives f̄

(j)
ℓ (αi) from t+(t+1)/2 distinct parties Pj , consider that

Pi has reconstructed his column polynomials. S computes a degree-(t+(t−1)/2) polynomial
∆g

(i)
ℓ (y) such that, among these t + (t + 1)/2 distinct parties:

46

– For each honest Pj , ∆g
(i)
ℓ (αj) = 0.

– For each corrupted Pj , ∆g
(i)
ℓ (αj) = f̄

(j)
ℓ (αi) − f

(j)
ℓ (αi).

4). For each ℓ and all k ∈ [(t +1)/2], S defines a vector ∆[ok]2t where the j-th entry is ∆g
(j)
ℓ (βk)

if Pj is honest, and 0 otherwise.
(2). In the second step, S honestly simulates Facs and learns a set D of size 2t + 1 which contains

successful dealers.
(3). In the third step, for each output sharing [oℓ,k]2t, note that it is a linear combination of the sharings

[o(i)
ℓ]2t distributed by parties in D. Let [oH

ℓ,k]2t be the linear combination of the sharings distributed
by honest parties in D and [oCorr

ℓ,k]2t be the linear combination of the sharings distributed by cor-
rupted parties in D. Then [oℓ,k]2t = [oH

ℓ,k]2t + [oCorr
ℓ,k]2t. For each [oℓ,k]2t, S also computes ∆[oH

ℓ,k]2t

by using ∆[o(i)
ℓ]2t accordingly.

Note that for [oH
ℓ,k]2t = [õH

ℓ,k]2t + ∆[oH
ℓ,k]2t, S can compute corrupted parties’ shares of [oH

ℓ,k]2t. For
[oCorr

ℓ,k]2t, S only learns the shares of honest parties that successfully terminate all executions of
ΠSh2tZero-Weak led by corrupted parties in D.

Generation Phase:
1: In the first step, rewrite [zℓ]2t = [aℓ]t · [bℓ]t + [rℓ]t + [oH

ℓ]2t + [oCorr
ℓ]2t. Let [z′

ℓ]2t = [aℓ]t · [bℓ]t + [rℓ]t +
[oH

ℓ]2t − ∆[oH
ℓ]2t. Note that S can compute the shares of [z′

ℓ]2t of corrupted parties. On the other hand,
for each honest party Pj that terminates ΠrandShareZero-Weak, S learns the j-th share of [oCorr

ℓ]2t.
Then S simulates each ΠtripleKingDN as follows:
(1). When each party needs to send his share of [zℓ]2t to Pking, randomly sample the whole [z′

ℓ]2t based on
corrupted parties’ shares, then for each honest party Pj who terminates ΠrandShareZero-Weak, compute
his share of [zℓ]2t = [z′

ℓ]2t + ∆[oH
ℓ]2t + [oCorr

ℓ]2t.
(2). For each Pking:

• If Pking is corrupted, send each honest party’s share of [zℓ]2t to Pking. Wait to receive zℓ or ⊥
from Pking. If first receive zℓ, compute the additive error zℓ − z′

ℓ. If first receive ⊥, learn that all
honest parties’ outputs are Fail.

• If Pking is honest, honestly follows the protocol. If first receive 2t+1 shares of [zℓ]2t, compute zℓ,
reliably broadcast it and extract the additive error zℓ − z′

ℓ. If first receive ⊥, reliably broadcast
⊥ and learn that all honest parties’ outputs are Fail.

2: In the second step, S honestly simulates Facs and learns a set D′ of size 2t + 1 which contains successful
kings. Then S computes corrupted parties’ shares of Beaver triples.

Simulator S

Simulation of Πtriple-Add-Weak

1: S invokes S0 and S1 in parallel.
2: S honestly simulates Fba and learns the output b. Then S sends corrupted parties’ shares as well as the

additive errors he gets in Sb to Ftriple-add-Weak. For each honest party Pi whose output is Fail in Sb, S
sends (Fail, Pi) to Ftriple-add-Weak.

3: S outputs the views of A.

We show that the output in the ideal world is identically distributed to that in the real world by
using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In the following hybrid, we focus on the simulation S0 of ΠtripleExt-Weak.
Hyb1.1: In this hybrid, S simulates FACSS-Abort as follows:

– If the dealer is corrupted, S simulates FACSS-Abort and receives the whole sharings.
– If the dealer is honest, S randomly samples shares of corrupted parties, then samples the random

Beaver triples based on shares of corrupted parties. Hyb1.1 and Hyb0 have the same distribution.

Hyb1.2: In this hybrid, for each honest dealer, we delay the generation of random Beaver triples until
the set D is terminated. Hyb1.2 and Hyb1.1 have the same distribution.

Hyb1.3: In this hybrid, for each honest party Pji ∈ D, we further change the way of determining
the first two ([a(ℓ)

i]t, [b(ℓ)
i]t) for all ℓ. At a high level, we first change the way of generating the shared

polynomial [f(·)]t, [g(·)]t and then decide the degree-t Shamir sharings distributed by honest parties
based on [f(·)]t, [g(·)]t.

47

Assuming that D = {Pj1 , . . . , PjL
} and D′ = {Pj1 , . . . , PjL′+1}, for each corrupted party Pji

:

– If Pji
∈ D′, S has received the [a(ℓ)

i]t and can set [f (ℓ)(αi)]t = [a(ℓ)
i]t.

– If Pji ∈ D \ D′, S randomly samples a degree-t Shamir sharing as [f (ℓ)(αi)]t given the shares of
corrupted parties.

Note that for each [f (ℓ)(βi)]t, it is a linear combination of {[f (ℓ)(αi)]t}i∈D′ . Then for all i ∈ [(L+1)/2−t],
S computes corrupted parties’ shares of [f (ℓ)(βi)]t and randomly samples a degree-t Shamir secret sharing
as [f (ℓ)(βi)]t based on the shares of corrupted parties.

Now S has fixed (L+ 1)/2 − t points f (ℓ)(βi), with t′ corrupted parties’ points f (ℓ)(αi), S randomly
samples a degree-L′ polynomial f (ℓ)(·) based on these points and the whole [f (ℓ)(·)]t based on shares of
corrupted parties. Then for all honest party Pji

∈ D′, we set [a(ℓ)
i]t = [f (ℓ)(αi)]. For the rest of honest

parties in D \ D′, S randomly samples a degree-t Shamir sharing [a(ℓ)
i]t based on the shares of corrupted

parties. We do the same thing for [b(ℓ)
i]t.

Finally, for each honest party Pji
∈ D, note that [c(ℓ)

i]t = [a(ℓ)
i ·b(ℓ)

i]t is also a random degree-t Shamir
sharing given t shares of corrupted parties.

To show that Hyb1.3 and Hyb1.2 have the same distribution, it is sufficient to show that the degree-t
Shamir sharings of honest parties generated in the above approach are identically distributed to those in
Hyb1.2. To this end, it is sufficient to show that the distribution of the shared polynomial [f (ℓ)(·)]t in both
hybrids is identical. In Hyb1.2, [f (ℓ)(·)]t is a random shared polynomial given shares of [f (ℓ)(αi)]t for all
corrupted Pji

∈ D′. In Hyb1.3, the only difference is that we additionally fix [f (ℓ)(αi)]t for all corrupted
party Pji ∈ D \ D′ and [f (ℓ)(βi)]t for all i ∈ [(L + 1)/2 − t]. However, those degree-t Shamir sharings
are randomly sampled. Therefore, the obtained shared polynomial [f (ℓ)(·)]t has the same distribution as
that in Hyb1.2.

Hyb1.4: In this hybrid, for each corrupted party Pji
where i ∈ [L′ + 2, L], S first randomly samples

values as f (ℓ)(αi)+a(ℓ)
i , g(ℓ)(αi)+b(ℓ)

i , then computes f (ℓ)(αi) = f (ℓ)(αi)+a(ℓ)
i −a(ℓ)

i , g(ℓ)(αi) = g(ℓ)(αi)+
b

(ℓ)
i −b(ℓ)

i . Finally, S randomly samples [f (ℓ)(αi)]t, [g(ℓ)(αi)]t based on secrets f (ℓ)(αi), g(ℓ)(αi) and shares
of corrupted parties. Hyb1.4 and Hyb1.3 have the same distribution.

Hyb1.5: In this hybrid, for each honest party Pji
where i ∈ [L′ + 2, L], instead of first randomly sam-

pling degree-t Shamir sharings [a(ℓ)
i]t, [b(ℓ)

i]t, S first randomly samples the whole [f (ℓ)(αi)+a(ℓ)
i]t, [g(ℓ)(αi)+

b
(ℓ)
i]t, then compute [a(ℓ)

i]t = [f (ℓ)(αi) + a
(ℓ)
i]t − [f (ℓ)(αi)]t, [b(ℓ)

i]t = [g(ℓ)(αi) + b
(ℓ)
i]t − [g(ℓ)(αi)]t. Hyb1.5

and Hyb1.4 have the same distribution.
Hyb1.6: In this hybrid, for each honest party Pji

∈ D, we change the way of determining the third
sharing [c(ℓ)

i]t in each random Beaver triple as follows. At a high level, we first determine the shared
polynomial [h(·)]t and then decide the degree-t Shamir sharings distributed by honest parties.

S first computes each corrupted party Pji
’s shares of [h(ℓ)(·)]t as follows:

– If Pji ∈ D′, set [h(ℓ)(αi)]t = [c(ℓ)
i]t.

– If Pji
∈ D \ D′, follows the protocol to compute [h(ℓ)(αi)]t.

Then S can compute the linear combination of {[h(ℓ)(αi)]t}i∈D to get corrupted parties’ shares of
[h(ℓ)(βi)]t for all i ∈ [(L+ 1)/2 − t]. S computes a degree-(L− 1) polynomial d(ℓ)(·) such that d(ℓ)(αi) =
c

(ℓ)
i − a

(ℓ)
i · b(ℓ)

i for corrupted Pji
∈ D and d(ℓ)(αi) = 0 for honest Pji

∈ D. Then S computes a
degree-t Shamir sharing [h(ℓ)(βi)]t based on shares of corrupted parties and the secret h(ℓ)(βi) =
f (ℓ)(βi) · g(ℓ)(βi) + d(ℓ)(βi).

Now we have fixed (L + 1)/2 − t + t′ degree-t Shamir sharing in [h(ℓ)(·)]t, S computes h(ℓ)(αi) =
f (ℓ)(αi)g(ℓ)(αi)+d(ℓ)(αi) and randomly samples [h(ℓ)(αi)]t based on the h(ℓ)(αi) and shares of corrupted
parties for the first (L− 1)/2 + t− t′ honest dealers Pji

∈ D. With these L degree-t Shamir sharings, S
interpolates [h(ℓ)(αi)]t for the rest of honest dealers.

Finally, for each honest party Pji
∈ D′, S sets [c(ℓ)

i]t = [h(ℓ)(αi)]t. For each honest party Pji
∈ D \D′,

S sets [c(ℓ)
i]t = [h(ℓ)(αi)]t−(f (ℓ)(αi)+a(ℓ)

i)·(g(ℓ)(αi)+b(ℓ)
i)+(g(ℓ)(αi)+b(ℓ)

i)·[a(ℓ)
i]t+(f (ℓ)(αi)+a(ℓ)

i)·[b(ℓ)
i]t.

To show that Hyb1.6 and Hyb1.5 have the same distribution, it is sufficient to show that the degree-t
Shamir sharings of honest parties generated in the above approach are identically distributed to those in
Hyb1.5. To this end, it is sufficient to show that the distribution of the shared polynomial [h(ℓ)(·)]t in both
hybrids is identical. In Hyb1.5, let d(ℓ)(·) be the degree-(L−1) polynomial defined above. Note that for all

48

i ∈ [L], we have d(ℓ)(αi) = h(ℓ)(αi)−f (ℓ)(αi)·g(ℓ)(αi). Therefore, [h(ℓ)(·)]t is a random shared polynomial
given h(·) = f(·)g(·)+d(·), [h(αi)]t for all corrupted party Pji

∈ D, and the shares of corrupted parties. In
Hyb1.5, the only difference is that we additionally choose [h(βi)]t for all i ∈ [(L+1)/2−t]. However, those
degree-t Shamir sharings are randomly sampled. Therefore, the obtained shared polynomial [h(ℓ)(·)]t has
the same distribution as that in Hyb1.5.

Hyb1.7: In this hybrid, we no longer generate the whole random Beaver triples for each honest party.
Note that these are never used in the simulation. For each output triple ([f (ℓ)(βi)]t, [g(ℓ)(βi)]t, [h(ℓ)(βi)]t),
it is a random multiplication triple given the shares of corrupted parties and the additive error d(ℓ)(βi) =
h(ℓ)(βi) − f (ℓ)(βi) · g(ℓ)(βi). Hyb1.7 and Hyb1.6 have the same distribution.

Hyb2: In the following hybrid, we focus on the simulation S1 of ΠtripleDN-Weak.
Hyb2.1: In this hybrid, we delay the generation of honest parties’ shares of degree-t Shamir sharings

until the Generation phase. S receives corrupted parties’ shares of degree-t Shamir sharings and learns
which honest party’s output si Fail when he simulates FrandSh-Weak. Since honest parties’ shares of
degree-t Shamir sharings are never used in the Preparation phase, Hyb2.1 and Hyb1.7 have the same
distribution.

Hyb2.2: In this hybrid, during the ΠrandShareZero-Weak, for each ΠSh2tZero-Weak led by the honest dealer,
S first randomly samples degree-2t row polynomial f (i)

ℓ (x) and degree-(t+ (t− 1)/2) column polynomial
g

(i)
ℓ (y) for each corrupted party Pi. Then S computes the whole bivariate polynomial Fℓ(x, y) such

that Fℓ(x, αi) = f
(i)
ℓ (x), Fℓ(αi, y) = g

(i)
ℓ (y) for each corrupted party and Fℓ(x, βk) = [ok]2t for all

k ∈ [(t+ 1)/2]. We just change the generation method of bivariate polynomial, which does not affect the
distribution. Hyb2.2 and Hyb2.1 have the same distribution.

Hyb2.3: In this hybrid, during the ΠrandShareZero-Weak, for each ΠSh2tZero-Weak led by the honest dealer,
we do not generate honest parties’ row polynomials.

– When honest party Pi needs to send f
(i)
ℓ (αj) to corrupted party Pj , S sends f (i)

ℓ (αj) = g
(j)
ℓ (αi) to

Pj on behalf of Pi.
– When honest party Pi needs to send f

(i)
ℓ (αj) to honest party Pj , S first compute Pj ’s column

polynomial g(j)
ℓ (y) = F (αj , y), then S sends f (i)

ℓ (αj) = g
(j)
ℓ (αi) to Pj on behalf of Pi.

Since Fℓ(αj , αi) = g
(j)
ℓ (αi) = f

(i)
ℓ (αj), we do not need to generate f (i)

ℓ (x). Hyb2.3 and Hyb2.2 have the
same distribution.

Hyb2.4: In this hybrid, we do not generate the whole bivariate polynomial when S simulatesΠSh2tZero-Weak

for honest dealer. Let {[õk]2t}(t+1)/2
k=1 be the sharings that should be distributed by the dealer, and let

∆[ok]2t defined as above, we set the output of honest parties to be their shares of [õk]2t +∆[ok]2t for all
k ∈ [(t+ 1)/2].

To show that Hyb2.4 and Hyb2.3 have the same distribution, it is sufficient to show [ok]2t = [õk]2t +
∆[ok]2t. During the ΠSh2tZero-Weak, each honest party Pi’s shares of [ok]2t is determined by f̄ (i)

ℓ (αj) received
from t+(t+1)/2 distinct Pj . Here we assume that the real point distributed by the dealer is f (i)

ℓ (αj) and
therefore if Pj is honest, f̄ (i)

ℓ (αj) = f
(i)
ℓ (αj); otherwise, it can be arbitrary value chosen by corrupted Pj .

Then we rewrite f̄ (i)
ℓ (αj) = f

(i)
ℓ (αj) + f̄

(i)
ℓ (αj) − f

(i)
ℓ (αj). Note that [õk]2t is determined by t+ (t+ 1)/2

values of f (i)
ℓ (αj). For f̄ (i)

ℓ (αj)−f (i)
ℓ (αj), we define a degree-(t+(t−1)/2) polynomial ∆g(i)

ℓ (y) determined
by t + (t + 1)/2 values of f̄ (i)

ℓ (αj) − f
(i)
ℓ (αj) and the i-th entry of ∆[ok]2t as ∆g(i)

ℓ (βk). Therefore, we
prove that [ok]2t = [õk]2t +∆[ok]2t.

Hyb2.5: In this hybrid, let H be the set of honest parties in D and H′ be the set of first t+ 1 honest
parties in H, we change the generation method of the [õ(i)

ℓ]2t for the honest dealer Pi ∈ H′. After randomly
sampling the shares of corrupted parties, we delay the generation of the whole sharings until the set D is
determined. For each [oℓ,k]2t, we rewrite it as [oℓ,k]2t = [oH

ℓ,k]2t +[oD\H
ℓ,k]2t = [õH

ℓ,k]2t +∆[oH
ℓ,k]2t +[oD\H

ℓ,k]2t.
Since M is a Vandermonde matrix, there is a one-to-one map between {[õH

ℓ,k]2t}t+1
k=1 and {[õ(i)

ℓ]2t}i∈H′ . For
each honest Pi /∈ H′, we prepare [õ(i)

ℓ]2t in the same way as that in Hyb2.4. Then we randomly samples
{[õH

ℓ,k]2t}t+1
k=1 based on the shares of corrupted parties and compute {[õ(i)

ℓ]2t}i∈H′ from {[õH
ℓ,k]2t}t+1

k=1. This
does not change the distribution of the random sharings prepared by honest parties. Thus, Hyb2.5 and
Hyb2.4 have the same distribution.

49

Hyb2.6: In this hybrid, we no longer prepare the shares of [õ(i)
ℓ]2t for each honest Pi ∈ H′ since they

are not used in generating the output of Hyb2.5. Thus, Hyb2.6 and Hyb2.5 have the same distribution.
Hyb2.7: In this hybrid, during each ΠtripleKingDN, each secret rℓ is generated by first sampling a

random value as aℓ · bℓ + rℓ and then computing rℓ = (aℓ · bℓ + rℓ) − aℓ · bℓ. This does not change the
distribution of {[aℓ]t, [bℓ]t, [rℓ]t}. Hyb2.7 and Hyb2.6 have the same distribution.

Hyb2.8: In this hybrid, during each ΠtripleKingDN, recall that each degree-2t Shamir secret sharing
[oℓ]2t = [oH

ℓ]2t + [oCorr
ℓ]2t = [õH

ℓ]2t + ∆[oH
ℓ]2t + [oCorr

ℓ]2t. In particular, in Hyb2.6, [õH
ℓ]2t is sampled as

a random degree-2t Shamir sharing of 0 based on the shares of corrupted parties. We change the way
of sampling [õH

ℓ]2t as follows. S computes the shares of [z′
ℓ]2t = [aℓ]t · [bℓ]t + [rℓ]t + [õH

ℓ]2t of corrupted
parties, and randomly samples a degree-2t Shamir sharing of aℓ · bℓ + rℓ as [z′

ℓ]2t based on the shares of
corrupted parties. Finally, S computes [õH

ℓ]2t = [z′
ℓ]2t − ([aℓ]t · [bℓ]t + [rℓ]t). Hyb2.8 and Hyb2.7 have the

same distribution.
Hyb2.9: In this hybrid, we change the way of generating [rℓ]t. During each ΠtripleKingDN, after Pking

successfully broadcast zℓ, S first follows the protocol and computes the shares of [cℓ] of corrupted parties.
Then S randomly samples a degree-t Shamir sharing based on the secret cℓ = aℓ · bℓ + zℓ − z′

ℓ and shares
of corrupted parties. Then S computes [rℓ]t = zℓ − [cℓ]t. Hyb2.9 and Hyb2.8 have the same distribution.

Hyb2.10: In this hybrid, we no longer generate [oH
ℓ]2t and [rℓ]t since they are never used in the

simulation. Note that for each output triple ([aℓ]t, [bℓ]t, [cℓ]t), it is a random multiplication triple given
the shares of corrupted parties and the additive error cℓ − aℓ · bℓ = zℓ − z′

ℓ. Hyb2.10 and Hyb2.9 have
the same distribution.

Hyb3: In the following hybrid, we focus on the simulation S of ΠtripleExt-Weak. After invoking S0 and
S1, S honestly simulates Step 2 of the Generation phase in Πtriple-Add-Weak and therefore learns which
process success. Assuming that S gets output b when he simulates Fba, then S no longer generates honest
parties’ shares of Beaver triples but sends corrupted parties’ shares of Beaver triples, the additive errors
and (Fail, Pi) for all honest party Pi whose output is Fail during the simulation to Ftriple-add-Weak. Since
those triples are generated in the same way. Hyb3 and Hyb2.10 have the same distribution.

Note that Hyb3 corresponds to the ideal world, then Πtriple-Add-Weak securely computes Ftriple-add-Weak.

Cost Analysis. We start by analyzing the communication complexity of each sub-protocol. Πtriple-Weak
includes one instance of ΠtripleExt-Weak, ΠtripleDN-Weak and Fba.

For ΠtripleExt-Weak, to prepare N random Beaver triples:

– In the first step, we require n instances of FACSS-Abort, after instantiating them by ΠACSS-ab, that
requires O(N · n+ n3) field elements plus O(κ · n3) bits.

– In the second step, we require an instance of Πacs, which requires O(κ · n3) bits.
– In the third step, we require an instance of FpubRec-Weak, after instantiating it by ΠpubRec-Weak, that

requires O(N · n+ n2) field elements.

To summarize, ΠtripleExt-Weak requires O(N · n + n3) field elements plus O(κ · n3) bits for preparing N
random Beaver triples.

For ΠtripleDN-Weak, to prepare N Beaver triples:

– In the Preparation phase, all parties invoke an instance of FrandSh-Weak to prepare O(N) random
degree-t Shamir sharings, after instantiating it by ΠrandSh-Weak, that requires O(N · n + n3) field
elements plus O(κ · n3) bits. All parties invoke an instance of ΠrandShareZero-Weak to prepare O(N)
degree-2t Shamir sharings, which contains n instances of ΠSh2tZero-Weak and an instance of Facs. Since
for each ΠSh2tZero-Weak, it requires O(N ′ · n + n2) field elements for sharing N ′ sharings. Then the
whole ΠrandShareZero-Weak requires O(N · n+ n3) field elements plus O(κ · n3) bits.

– In the first step of the Generation phase, all parties invoke n instances of ΠtripleKingDN. For each
ΠtripleKingDN, it requires O(N ′ · n) field elements plus O(κ · n2) bits for preparing N ′ random Beaver
triples. Then it requires O(N · n) field elements plus O(κ · n3) bits in total.

– In the second step of the Generation phase, all parties invoke an instance of Facs, which requires
O(κ · n3) bits.

To summarize, ΠtripleDN-Weak requires O(N · n + n3) field elements plus O(κ · n3) bits for preparing N
random Beaver triples.

The Fba here can be instantiated by a binary BA protocol, which requires O(n3) bits, therefore, the
whole communication complexity of Πtriple-Add-Weak is O(N · n+ n3) field elements plus O(κ · n3) bits.

50

C.6 Construction of ΠtripleVerify-Weak

We give the construction of ΠtripleVerify-Weak as follows. At a high level, to prepare N random Beaver
triples, let all parties first prepare 2N + 1 random Beaver triples with additive errors, denoted by
{[ai]t, [bi]t, [ci]t}2N

i=0.
The verification process is very similar to the triple extraction process. Let α0, . . . , α2N be 2N + 1

distinct field elements. All parties set two polynomials f, g of degree N such that [f(αi)]t = [ai]t and
[g(αi)]t = [bi]t for all i ∈ [0, N]. Then for all i ∈ [N + 1, 2N], all parties locally compute [f(αi)]t, [g(αi)]t
and use the i-th triple ([ai]t, [bi]t, [ci]t) to compute [f(αi) · g(αi)]t. Now all parties set a degree-2N
polynomial h such that [h(αi)] = [ci]t for all i ∈ [0, N], and [h(αi)]t = [f(αi) · g(αi)]t.

The main observation is that, if all random Beaver triples are correct, then we have h = f · g and
vice versa. Therefore, to check whether all Beaver triples are correct, it is sufficient to check whether
h = f ·g. By Schwartz-Zippel lemma, it is sufficient to test a random evaluation point. Each party locally
computes and sends his share of ([f(r)]t, [g(r)]t, [h(r)]t) to all parties. All parties will use online error
correction to reconstruct the secrets f(r), g(r), h(r) and check whether h(r) = f(r) · g(r).

Protocol ΠtripleVerify-Weak

Let N be the number of Beaver triples that need to be verified, all parties agree on 2N + 1 distinct field
elements α0, . . . , α2N and use their shares of {[ai]t, [bi]t, [ci]t}2N+1

i=0 or ⊥ as inputs.
1: Build Polynomials:

(1). All parties set two polynomials of f , g of degree N such that [f(αi)]t = [ai]t and [g(αi)]t = [bi]t for
all i ∈ [0, N].

(2). For all i ∈ [N + 1, 2N], all parties locally compute [f(αi)]t, [g(αi)]t. Then they execute FpubRec-Weak
with input sharings [f(αi) + ai]t, [g(αi) + bi]t or ⊥ to reconstruct f(αi) + ai, g(αi) + bi. Each party
who has all shares of ([ai]t, [bi]t, [ci]t) and receives f(αi) + ai, g(αi) + bi from FpubRec-Weak locally
computes:

[f(αi) · g(αi)]t = (f(αi) + ai) · (g(αi) + bi) − (f(αi) + ai) · [bi]t
− (g(αi) + bi) · [ai]t + [ci]

Otherwise, he sets his output as a failure symbol ⊥.
(3). All parties set a polynomial h of degree 2N such that [h(αi)]t = [ci]t for all i ∈ [0, N] and [h(αi)]t =

[f(αi) · g(αi)]t for all i ∈ [N + 1, 2N].
2: Verification and Output Phase:

All parties locally set [r]t := [a2N+1]t and execute FpubRec-Weak with input sharing [r]t or ⊥ to reconstruct
r. Each party who receives Fail or r ∈ {α1, . . . , αN } from FpubRec-Weak will set his output as ⊥.
(1). Each party locally computes his share of ([f(r)]t, [g(r)]t, [h(r)]t) (if he can). Then all parties

execute FpubRec-Weak with input sharings ([f(r)]t, [g(r)]t, [h(r)]t) or ⊥ to reconstruct the secrets
f(r), g(r), h(r). Similarly, each party who receives abort from FpubRec-Weak sets his output as ⊥.

(2). Each party checks whether h(r) = f(r) · g(r). If true and he has his shares of {[ai]t, [bi]t, [ci]t}N
i=1,

he uses them as output. Otherwise, he must have set his output as ⊥ in the previous steps and will
use Fail as output.

C.7 Proof of Lemma 3 and Costs Analysis

Proof. Termination. We first show that all honest parties will eventually terminate the protocolΠtriple-Weak.
In Step 1, all parties invoke Ftriple-add-Weak to prepare Beaver triples, each party will eventually get his
shares of Beaver triples or output Fail. Then in Step 2, when all parties invoke ΠtripleVerify-Weak to check
their Beaver triples, since all parties only invoke FpubRec-Weak to do public reconstruction and the rest of
the steps are just local computation, each party will eventually terminate with Fail or get his shares of
Beaver triples (without additive errors).

Security. Now we show that the protocol ΠpubRec-Weak securely computes FpubRec-Weak. We start with the
construction of the ideal adversary S as follows.

51

Simulator S

Denote N as the number of Beaver triples.
1: In Step 1, S simulates Ftriple-add-Weak and learns which honest party’s output is Fail, corrupted parties’

shares of Beaver triples and the additive errors di for all i ∈ [0, 2N + 1].
2: In Step 2, during the ΠtripleVerify-Weak:

– In Step 1 of ΠtripleVerify-Weak:
(1). For each corrupted party, S locally computes his shares of [f(αi)]t, [g(αi)]t for all i ∈ [0, 2N]. Then

for all i ∈ [N + 1, 2N], S computes the corrupted parties’ shares of [f(αi) + ai]t, [g(αi) + bi]t and
randomly sample two degree-t Shamir secret sharings based on corrupted parties’ shares.

(2). S computes each honest party’s shares of [f(αi) + ai]t, [g(αi) + bi]t and replaces it with ⊥ if this
honest party’s output of Ftriple-add-Weak is Fail.

(3). S honestly simulates FpubRec-Weak and learns which honest party’s output is Fail.
(4). S defines a polynomial d(·) of degree-2N such that for all i ∈ [0, 2N], d(αi) = di. S also follows the

protocol and computes corrupted parties’ shares of [h(αi)]t for all i ∈ [0, 2N].
– In Step 2 of ΠtripleVerify-Weak:

(1). S randomly samples a degree-t Shamir sharings as [r]t := [a2N+1]t based on the shares of corrupted
parties. Then S computes each honest party’s shares of [r]t and replaces it with ⊥ if this honest
party’s output of Ftriple-add-Weak is Fail.

(2). S honestly simulates FpubRec-Weak and learns which honest party’s output is Fail. If r ∈ {α1, . . . , αN },
S sets all honest parties’ outputs as ⊥. Otherwise, S computes d(r), samples two random values as
f(r), g(r) and computes h(r) = f(r) · g(r) + d(r).

(3). S randomly samples three degree-t Shamir secret sharings [f(r)]t, [g(r)]t, [h(r)]t based on the shares
of corrupted parties and the secrets f(r), g(r), h(r).

(4). S computes each honest party’s shares of [f(r)]t, [g(r)]t, [h(r)]t and replaces it with ⊥ if this honest
party’s output has been set to ⊥.

(5). S honestly simulates FpubRec-Weak and learns which honest party’s output is Fail.
(6). S checks whether h(r) = f(r) · g(r), if true and d(·) ≡ 0, S sends corrupted parties’ shares of

([ai]t, [bi]t, [ci]t)N
i=1 to Ftriple-Weak. If h(r) = f(r) · g(r) but d(·) ̸≡ 0, S aborts the simulation. If

h(r) ̸= f(r) · g(r), S sets all honest parties’ output as ⊥.
3: For each honest party whose output has been set to ⊥, S sends (Fail, Pi) to Ftriple-Weak. S also outputs

the views of A.

We show that the output in the ideal world is identically distributed to that in the real world by
using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, let d(·) be defined as above. Then d = h−f ·g. If r /∈ {α1, . . . , αN }, d(·) ̸≡ 0 and

d(r) = 0, S aborts the simulation. By the Schwartz-Zipple lemma, the probability is at most 2N
2κ−N , which

is negligible in the security parameter κ. Thus, the distributions of Hyb1 and Hyb0 are statistically
close.

Hyb2: In this hybrid, we delay the generation of ([ai]t, [bi]t, [ci]t) for i ∈ [N + 1, 2N]:
In the first step of ΠtripleVerify-Weak, For i ∈ [N + 1, 2N] S randomly samples two degree-t Shamir

secret sharings [f(αi)+ai]t, [g(αi)+bi]t based on corrupted parties shares. Then S computes each honest
party’s shares of [f(αi)+ai]t, [g(αi)+bi]t and [ai]t = [f(αi)+ai]t − [f(αi)]t, [bi]t = [g(αi)+bi]t − [g(αi)]t
for all i ∈ [N + 1, 2N]. Since for i ∈ [N + 1, 2N], [ai]t, [bi]t are random values, we just change the
generation order, which does not influence the distribution of [ai]t, [bi]t.

For i ∈ [N+1, 2N], S computes degree-t Shamir secret sharing [h(αi)]t based on t shares of corrupted
parties and the secret h(αi) = f(αi) ·g(αi)+di. Then S computes [ci]t = [h(αi)]t − (f(αi)+ai) · (g(αi)+
bi) + (g(αi) + bi)[ai]t + (f(αi) + ai)[bi]t. Note that ci = ai · bi + di and [ci]t is a random degree-t Shamir
secret sharing of ci given the shares of corrupted parties.

Finally, S honestly simulates FpubRec-Weak and computes corrupted parties’ shares of [h(αi)]t for all
i ∈ [0, 2N]. Hyb2 and Hyb1 have the same distribution.

Hyb3: In this hybrid, we delay the generation of ([a0]t, [b0]t, [c0]t). When r /∈ [α1, . . . , αN], we have
f(r) is a linear combination of f(α0) = a0, . . . , f(αN) and the coefficient of f(α0) is non-zero. S first
randomly samples [f(r)]t based on the shares of corrupted parties and then computes [f(α0)]t by using
[f(α1)]t, . . . , [f(αN)]t. S also generates [g(α0)]t in a similar way. Finally, S generates [c0]t accordingly.
Hyb3 and Hyb2 have the same distribution.

52

Hyb4: In this hybrid, we change the way to generate [c0]t and compute [h(r)]t when r ̸∈ {α0, . . . , α2N }.
Recall that h = f · g + d, S first randomly samples a degree-t Shamir secret sharing [h(r)]t based on t
corrupted parties’ shares and the secret h(r) = f(r) · g(r) + d(r). Finally, S computes [c0]t = [h(α0)]t
as a linear combination of [h(r)]t, [h(α1)]t, . . . , [h(α2N)]t. In Hyb3, [h(r)]t is the linear combination of
[h(α0)]t, . . . , [h(α2N)]t. When r /∈ {α0, . . . , α2N }, the coefficient of [h(α0)]t is not zero. Since [c0]t is
sampled as a random degree-t Shamir sharing of h(α0) given the shares of corrupted parties in Hyb3,
[c0]t generated in Hyb4 has the same distribution as that in Hyb3. Hyb4 and Hyb3 have the same
distribution.

Hyb5: In this hybrid, S does not generate honest parties’ shares of {[a0]t, [b0]t, [c0]t}∪{[ai]t, [bi]t, [ci]t}2N
i=N+1

since they are never used. Hyb5 and Hyb4 have the same distribution.
Hyb6: In this hybrid, S does not generate honest parties’ shares of {[ai]t, [bi]t, [ci]t}N

i=1, just provides
shares of {[ai]t, [bi]t, [ci]t}N

i=1 of corrupted parties to Ftriple-Weak. For each honest party whose output is
Fail, S sends (Fail, Pi) to Ftriple-Weak. Hyb6 and Hyb5 have the same distribution.

Note that Hyb6 corresponds to the ideal world, then Πtriple-Weak securely computes Ftriple-Weak.

Cost Analysis.Πtriple-Weak contains one instance of Ftriple-add-Weak andΠtripleVerify-Weak. For Ftriple-add-Weak,
it requires O(N · n + n3) field elements plus O(κ · n3) bits for preparing O(N) random Beaver triples.
For ΠtripleVerify-Weak:

– In the first step, all parties invoke one instance of FpubRec-Weak to reconstruct O(N) field elements,
which requires O(N · n+ n3) field elements plus O(n2) bits.

– In the second step, all parties invoke one instance of FpubRec-Weak to reconstruct a field element, which
requires O(n2) field elements plus O(n2) bits.

Therefore, ΠtripleVerify-Weak requires O(N ·n+n3) field elements plus O(n2) bits. The total communication
complexity of Πtriple-Weak is O(N · n+ n3) field elements plus O(κ · n3) bits.

C.8 Construction of Main protocol

We first define the functionality FAMPC-Fair we want to achieve below.

Functionality FAMPC-Fair

FAMPC-Fair proceeds as follows, running with parties P = {P1, . . . , Pn}, an adversary S and a n-party function
f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗ ∪ {⊥}. For each party Pi, initialize an input value x(i) =⊥.
1: Upon receiving an input v from Pi ∈ P, if CoreSet has not been recorded yet or if Pi ∈ CoreSet, set

x(i) = v.
2: Upon receiving an input CoreSet from S, verify that CoreSet is a subset of P of size at least n − t, else

ignore the message. If CoreSet has not been recorded yet, then record CoreSet and for every Pi /∈ CoreSet,
set x(i) = 0.

3: If the CoreSet has been recorded and the value x(i) has been set to a value different from ⊥ for every
Pi ∈ CoreSet, compute y = f(x(1), . . . , x(n)). Then for each Pi ∈ P, send a requested-based delayed
output y to Pi.
– Upon receiving the request Fail, if the output has not been delivered to any party, change the output

of all parties by Fail. Otherwise, ignore this request.
4: All honest parties output the results received from the trusted party. Corrupted parties may output

anything they want.

Then we recall the brief outline of our AMPC with fairness and give the detailed construction as
follows.

Step 1: Preparing Random Beaver Triples. In the offline phase, all parties invoke Ftriple-Weak
to prepare a sufficient number of random Beaver triples.
Step 2: Distributing Input t-Sharings. In the input phase, each party invokes FACSS-Abort to
distribute his input as well as a random mask. Then all parties execute an ACS protocol to agree
on a set of n − t successful dealers. Later all parties will sum up the mask shared by the first t + 1
successful dealers as a random mask of output.

53

Step 3: Evaluation of the Circuit. In the computation phase, all parties compute each addition
gate locally and jointly use Beaver triples to compute each multiplication gate. They will invoke
FpubRec-Weak to do public reconstruction.
Step 4: Output of the Circuit. Here we assume that all parties’ outputs are the same. In the
output phase, each party adds his share of the random mask to his shares of output and sends the
result to all parties. Then he waits to receive 2t + 1 output shares and checks whether they lie on
a degree-t polynomial. If true, he sets his output as the reconstruction result; otherwise, he sets his
output as ⊥.
Step 5: Termination Process. In the termination phase, to achieve fairness, we first let all parties
invoke the byzantine agreement to agree on a message that is either ⊥ or the correct output plus a
mask. If all parties agree on ⊥, they will terminate with Fail. Otherwise, all parties jointly reconstruct
the mask and recover the output.

Protocol Πmain-Fair

Let CO be the output size.
Offline Phase
1: Let C denote the circuit to be computed. All parties invoke Ftriple-Weak to prepare |C| random Beaver

triples and assign one random triple with each multiplication gate in the circuit. In the following, if a
party receives Fail from Ftriple-Weak, this party sets his output as ⊥ and proceeds.

Input Phase
1: Each party Pi acts as a dealer invokes two instances of FACSS-Abort to distribute his shares xi and CO

random value ri respectively.
2: Each party Pi sets the property Q as Pi terminating FACSS-Abort where the dealer is Pj . Then all parties

invoke Facs with property Q to agree on a set D of size 2t + 1 and each party in this set has successfully
shared their inputs. For every Pi ̸∈ D, all parties set their shares of Pi’s input as 0.

3: If party Pi terminates FACSS-Abort for any dealer in D with abort, he sets his output as ⊥ and proceeds.
Computation Phase

Each party who has set his output as ⊥ will send ⊥ to FpubRec-Weak and do not compute [zi]t.
1: For every addition gate with input sharings [x]t, [y]t, all parties locally compute [z]t = [x]t + [y]t.
2: For a group of at most n − 2t = t + 1 multiplication gates, suppose the input degree-t Shamir sharings

are denoted by ([xi]t, [yi]t)t+1
i=1. Let ([ai]t, [bi]t, [ci]t)t+1

i=1 denote the random Beaver triples assigned to
these t + 1 gates.

1. All parties locally compute [xi + ai]t = [xi]t + [ai]t and [yi + bi]t = [yi]t + [bi]t for all i ∈ [t + 1].
2. All parties invoke FpubRec-Weak to reconstruct {xi + ai, yi + bi}t+1

i=1.
3. For all i ∈ [t + 1], all parties locally compute:

[zi]t = (xi + ai)(yi + bi) − (xi + ai)[bi]t − (yi + bi)[ai]t + [ci]t.

Output Phase
1: For each output wire [y]t, we assign the random masks {[ri]t}i∈D. For the first t + 1 successful dealer

Pi ∈ D, each party checks whether he has shares of [ri]t for each Pi. If true, he computes [r]t =
∑t+1

i=1[ri]t
and proceeds; otherwise, he sets his output as ⊥ and proceeds.

2: For output [y]t, each party who has shares of [y]t, [r]t will send his share of [y + r]t = [y]t + [r]t to all
parties. Each party who has set his output as ⊥ will send ⊥ to all parties.

3: For each party, if he first receives 2t+1 shares of [y+r]t and these shares lie on a degree-t polynomial, he
reconstructs and outputs the secret y + r. Otherwise, if he first receives ⊥ or fails to do reconstruction,
he sets his output as ⊥ and proceeds.

Termination Phase.
1: All parties invoke Fba to agree on the output. For each party Pi, if his output is y′ = y + r, he sets

yi = 1|y′. Otherwise, if his output has been set to ⊥, he sets yi as a zero string of size |y′| + 1. Then he
sends yi to Fba.

2: Upon receiving ȳ from Fba, if the first bit of ȳ is 1, all parties proceed. Otherwise, all parties terminate
with output Fail.

3: Each party Pi checks whether ȳ = yi. If true, Pi sets bi = 1; otherwise, he sets bi = 0. Then all parties
invoke another Fba to agree on whether the output is valid (meaning that the output comes from an
honest party). Each party Pi sends bi to Fba.

54

4: Upon receiving b from Fba, if b = 0, all parties terminate with output Fail. Otherwise, each party sends
Public-Recon to FACSS-Abort invoked by the first t+1 dealer in D and therefore learns secret r1, . . . , rt+1.
Then all parties locally compute r = r1 + · · · + rt+1 and terminate with output y = ȳ − r.

Cost Analysis. For the communication costs of Πmain-Fair:

– In the offline phase, all parties invoke Ftriple-Weak to prepare |C| random Beaver triples, which requires
O(|C| · n+ n3) field elements plus O(κ · n3) bits.

– In the input phase, all parties invoke n instances of FACSS-Abort to shares their inputs and an instance
of Facs to agree on a set, let CI , CO be the input and output size, that requires O((CI +CO) ·n+n3)
field elements plus O(κ · n3) bits.

– In the computation phase, for each layer, all parties invoke ΠpubRec-Weak to do public reconstruction.
Assuming that there are Ck multiplication gates in the k-th layer, it requires O(Ck · n + n2) field
elements plus O(n2) bits. Then for all k ∈ [D], where D is the depth of the circuit and

∑D
k=1 Ck = |C|,

the whole communication complexity is O(|C| · n+D · n2) field elements plus O(n2) bits. Note that
the overhead of O(n2) bits is the cost of all parties sending ⊥ to each other, each party will only
send ⊥ to all parties once and this term is independent of the circuit depth.

– In the output phase, all parties send shares of [y + r]t to each other, which requires O(CO · n2) field
elements.

– In the termination phase, all parties invoke two instances of Fba to agree on the output. Here we
require a binary BA and a multi-valued BA, let CO be the output size, that requires O(CO · n)
field elements plus O(κ · n2 logn + n3) bits in total. For the reconstruction of all masks, it requires
O(CO · n3) field elements.

Therefore, the whole communication complexity of Πmain-Fair is O((|C| +CI) · n+D · n2 +CO · n3) field
elements plus O(κ · n3) bits.

For the computation costs of Πmain-Fair:

– For ΠACSS-ab: each dealer invokes O(n) hash to compute the commitments, each party performs O(1)
hash to do verification. Therefore, for all dealers, each party requires O(n) hash.

– We require O(1) instance of Fba and Πacs, which requires O(n3) hash in total.

Therefore, the whole computation costs of Πmain-Fair are O(n3) hash per party.

Lemma 9. Protocol Πmain-Fair securely computes FAMPC-Fair in the {Facs, Fba, FACSS-Abort,FpubRec-Weak,Ftriple-Weak}-
hybrid model against a fully malicious adversary A who corrupts at most t < n/3 parties.

Proof. Termination. We first show that all honest parties will eventually terminate the protocolΠmain-Fair.

– In the offline phase, all parties are guaranteed to terminate Ftriple-Weak.
– In the input phase, the FACSS-Abort invoked by honest dealers will eventually terminate. Since there

are at least n − t = 2t + 1 honest parties, by the termination property of Facs when the agreement
set is 2t+ 1, all parties will eventually agree on the set D. Each party will also eventually receive his
output from FACSS-Abort invoked by all dealers in set D.

– In the computation phase, all parties are guaranteed to finish FpubRec-Weak, which is the only inter-
active step.

– In the output phase, each honest party will send his share of [y]t or ⊥ to all parties. Since there are
at least 2t + 1 honest parties, then each party is guaranteed to receive 2t + 1 messages. If he first
receives 2t + 1 shares, he can check whether these shares lie on a degree-t polynomial and decide
whether output ⊥. If he first receives ⊥, he will output ⊥.

– In the termination phase, each party will either use 1|y′ or zero string as his input for the first Fba.
When all honest parties have inputs, by the termination property of Fba, each party will eventually
agree on the same output ȳ. Then each party locally checks whether ȳ equals his input for the
first Fba and decides whether the input is 1 or 0 for the second Fba. Similarly, the second Fba will
eventually finish and each party can get the output b. If b = 0, all parties will terminate with output
⊥. Otherwise, all parties send requests to FACSS-Abort invoked by the first t + 1 successful dealers in
D and therefore eventually learn the secret r1, . . . , rt+1. Then all parties can compute the output y
accordingly.

55

Security. Finally, we show that the protocol Πmain-Fair securely computes FAMPC-Fair. We start with
constructing the ideal adversary S as follows.

Simulator S

Denote |C| as the number of Beaver triples. Let Corr denote the set of corrupted parties, then |Corr| = t′ ≤ t.
Let Corr′ be the set of all corrupted parties together with the first t − t′ honest parties, then |Corr′| = t

1: In the offline phase, during the simulation of Ftriple-Weak, S receives shares of corrupted parties and learns
which honest party’s output is Fail. For each honest party in Corr′ \ Corr, S samples random values
as his shares of Beaver triples.

2: In the input phase, S simulates each FACSS-Abort as follows:
– For each honest party, for all parties in Corr′, S randomly samples values as their shares. Then S

sends corrupted parties’ shares to parties in Corr on behalf of FACSS-Abort.
– For each corrupted party, S waits to receive degree-t Shamir secret sharings from him and honestly

follows FACSS-Abort. For each honest party in Corr′ \ Corr, S computes his input shares.
Then S simulates Facs and learn a set D of size 2t + 1. For each honest party, if his output of FACSS-Abort
for any dealer in D is abort, S sets this honest party’s output as ⊥.

3: In the computation phase:
– For each addition gate, S follows the protocol and computes the shares of parties in Corr′.
– For each multiplication gate, S follows the protocol and computes the shares of [x + a]t, [y + b]t of

parties in Corr′. Then S randomly samples two degree-t Shamir secret sharings as [x + a]t, [y + b]t
based on the shares of parties in Corr′. Finally, S honestly simulates FpubRec-Weak and learns which
honest party’s output is ⊥. After terminating FpubRec-Weak, S follows the protocol to compute shares
of [z]t for each party in Corr′.

4: In the output phase, for the first t + 1 successful dealer Pi ∈ D and all parties in Corr′, S first computes
their shares of [r]t = [r1]t + · · · + [rt+1]t and [ȳ]t = [y]t + [r]t, then randomly samples the whole [ȳ]t
based on shares of parties in Corr′. Finally, for each honest party not in Corr′ \ Corr, S computes his
shares of [ȳ]t and replaces it with ⊥ if this honest party’s output is ⊥. Then S sends it to all corrupted
parties on behalf of each honest party. S waits to receive messages from all parties, for each honest
party:

– If first receive 2t + 1 shares of [ȳ]t, check whether these shares lie on a degree-t polynomial. If true,
S continues to do the simulation of this party. Otherwise, S sets this honest party’s output as ⊥.

– If first receive ⊥, S sets this honest party’s output as ⊥.
5: In the termination phase, S simulates these two Fba and follows the protocol to determine all honest

parties’ output is ȳ or Fail. If the output is Fail, S sends Fail to FAMPC-Fair. Otherwise, if the output
is ȳ, S sends the inputs of corrupted parties and the set D to FAMPC-Fair and receives the output y. Let
D′ be the set of the first t + 1 dealers in D′ and Corr∗ be the set of corrupted parties in D′. S simulates
FACSS-Abort invoked by dealers in D as follows:

– For each dealer Pi ∈ Corr∗, S sends [ri]t to corrupted parties.
– For all dealer Pi ∈ D′\Corr∗, S randomly samples ri such that ȳ−y =

∑
i∈D′\Corr∗ ri+

∑
j∈Corr∗ rj .

Then S computes [ri]t given the shares of parties in Corr′ and the secret ri and sends [ri]t to all
corrupted parties.

When each honest party receives [r1]t, . . . , [rt+1]t, S delivers the output from FAMPC-Fair to this party.
6: S outputs the views of A.

We show that the output in the ideal world is identically distributed to that in the real world by
using the following hybrid arguments.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, when S receives degree-t Shamir sharings from a corrupted dealer, S records

the first t− t′ honest parties’ shares. Hyb1 and Hyb0 have the same distribution.
Hyb2: In this hybrid, in the input phase, for each honest dealer, after randomly sampling shares

of parties in Corr′, S delays the generation of shares of the rest of honest parties until the set D is
determined. Since these honest parties’ shares are not used in the input phase, Hyb2 and Hyb1 have
the same distribution.

Hyb3: In this hybrid, in the input phase, for each honest dealer not in D, S does not generate shares
of honest parties. Since these honest parties’ sharings are never used, Hyb3 and Hyb2 have the same
distribution.

Hyb4: In this hybrid, in the computation phase, for every multiplication gate and each honest party
not in Corr′ \ Corr, S delays the generation of his shares of [a]t, [b]t, [c]t. S first randomly samples two

56

degree-t Shamir secret sharings [x + a]t, [y + b]t based on shares of parties in Corr′, then computes the
rest of honest parties’ shares of [a]t = [x+a]t − [x]t, [b]t = [y+ b]t − [y]t. In Hyb3 we first sample random
[a]t, [b]t then computing [x + a]t, [y + b]t, while in Hyb4 we change the order and first sample random
[x+ a]t, [y + b]t then computing [a]t, [b]t, which makes no difference.

Then S randomly samples a degree-t Shamir secret sharing [z]t based on shares of parties in Corr′

and the secret z = x · y. Finally, S computes [c]t = [zt] − (x+ a)(y + b) + (y + b)[a]t + (x+ a)[b]t. Note
that c = a · b and [c]t is a random degree-t Shamir secret sharing given the shares of corrupted parties.
Thus, Hyb4 and Hyb3 have the same distribution.

Hyb5: In this hybrid, in the computation phase, for every multiplication gate, S follows the protocol
to compute shares of [z]t of parties in Corr′. Then S determines the rest of honest parties’ shares of
[z]t by using the secret z = x · y and shares of parties in Corr′. Since a degree-t Shamir sharing is fully
determined by these t shares and secret, this does not change the distribution of the shares of honest
parties. Hyb5 and Hyb4 have the same distribution.

Hyb6: In this hybrid, in the computation phase, for each honest party not in Corr′ \ Corr, S does
not generate their shares of ([a]t, [b]t, [c]t) since they are never used. Hyb6 and Hyb5 have the same
distribution.

Hyb7: In this hybrid, in the output phase, let Corr∗ = {Pj1 , . . . , PjL
} and D′\Corr∗ = {Pi1 , . . . , PiL′ },

S first randomly samples [r]t, [ri2]t, . . . , [riL′]t
based on shares of corrupted parties, then compute [ri1]t =

[r]t −
∑L′

k=2[rik
]t −

∑L
k=1[rjk

]t. In both Hyb6 and Hyb7, S samples [ri2]t, . . . , [riL′]t in the same way
and [r]t, [ri1]t are both uniformly distributed, then Hyb7 and Hyb6 have the same distribution.

Hyb8: In this hybrid, in the output phase, we change the generation of [r]t. For each party in Corr′,
S first computes their shares of [y + r]t = [y]t + [r]t, then randomly samples the whole [y + r]t based
on shares of parties in Corr′. Finally, S computes [r]t = [y + r]t − [y]t. Hyb8 and Hyb7 have the same
distribution.

Hyb9: In this hybrid, we delay the generation of [y]t until all parties agree on the output ȳ in
termination phase. During the termination phase, if all parties agree on Fail, then all parties will not
ask FACSS-Abort to distribute the secrets r1, . . . , rt+1, then these secrets sampled by honest dealer Pi are
never used and there is no need to use [y]t to compute [r]t. Thus, Hyb9 and Hyb8 have the same
distribution.

Hyb10: In this hybrid, in the termination phase, when all parties agree on the output ȳ, S uses inputs
for parties in D to compute the output y. Then S computes the whole [y]t based on secret y and shares
of parties in Corr′. Finally S computes [r]t = [ȳ]t − [y]t. With [r]t, S gets all [ri]t distributed by dealers
in D′ and can send [ri]t to all parties on behalf of FACSS-Abort. Each party can locally computes output
y = ȳ − r1 − · · · − rt+1. Hyb10 and Hyb9 have the same distribution.

Hyb11: In this hybrid, S no longer computes the whole sharings in the input phase and computation
phase except the shares of parties in Corr′. Note that they are not needed in producing the output in
Hyb10. Hyb11 and Hyb10 have the same distribution.

Hyb12: In this hybrid, if S learns that all parties agree on Fail during the termination phase, S
sends Fail to FAMPC-Fair. Otherwise, S sends corrupted parties’ inputs and the set D to FAMPC-Fair to
learn the output y, and S delivers the output y to all parties. Since FAMPC-Fair computes the function in
the same way as S does in Hyb11, Hyb12 and Hyb11 have the same distribution.

Note that Hyb12 corresponds to the ideal world, then Πmain-Fair securely computes FAMPC-Fair.

D Construction and Proofs of Malicious Security with GOD AMPC

D.1 Construction of Public Reconstruction and Agreement

Batch Reconstruction. Given a parameter L, we batch L secrets for public reconstruction to achieve
amortized linear communication costs.

Protocol ΠBatchPubRec

For each party Pi:
1: Initialize a vector mi of size L and divide it into L/(t + 1) sub-vectors, each of size t + 1, denoted by

mi = (mi,1, . . . , mi,L/(t+1)). Divide [x(1)]t, . . . , [x(L)]t into L/(t + 1) groups, each of size t + 1. For all
k ∈ [L/(t + 1)], Pi does the following.

57

(1). Let [s(0)]t, . . . , [s(t)]t denote the k-th group of degree-t Shamir secret sharings. Define f(X) =
s(0) + s(1) · X + · · · + s(t) · Xt. Pi sends his share of [f(αj)]t = [s(0)]t + [s(1)]t · αj + · · · + [s(t)]t · αt

j

to each Pj .
(2). To reconstruct f(αi), Pi waits to receive messages:

– Upon receiving new shares of [f(αi)]t, Pi uses online error correction on all received shares of
[f(αi)]t to reconstruct f(αi). If succeeds, Pi sends f(αi) to all parties and moves to Step 1.(3).
Otherwise, Pi keeps waiting for more messages.

– Upon receiving (Proof, D) from a party and (Corrupt, D) from FACSS-id, Pi sets mi = ⊥ and
moves to Step 2.

(3). To reconstruct f(X), Pi waits to receive messages from all parties:
– Upon receiving f(αj) from Pj , Pi uses online error correction on all received f(αj) to reconstruct

f(X). If succeeds, Pi sets the k-th sub-vector mi,k as (s(0), . . . , s(t+1)) (the coefficients of f(x)).
Otherwise, Pi keeps waiting for more messages.

– Upon receiving (Proof, D) from a party and (Corrupt, D) from FACSS-id, Pi sets mi = ⊥ and
moves to Step 2.

2: Output mi.

Agreement on Public Reconstruction Result. The construction of the agreement step is as follows.
Actually, we invoke two Fba to realize the non-intrusion BA protocol [MR17] with linear costs.

Protocol ΠAgreement

1: All parties invoke Fba and party Pi uses mi as his input. Upon receiving result m from Fba, Pi checks
whether m = mi. If true, he sets bi = 1. Otherwise, he sets bi = 0.

2: All parties invoke Fba and party Pi uses bi as his input. Upon receiving the result b from Fba, if b = 1,
Pi outputs m. Otherwise, Pi uses ⊥ as his output.

3: When the output is not ⊥, all parties terminate. Otherwise, all parties follow the steps to agree on the
identity of a corrupted party.
(1). All parties invoke n instances of Fba. Upon receiving (Proof, Pi) from a party and (Corrupt, Pi)

from FACSS-id, each party sets his input of the i-th Fba as 1.
(2). If a party receives output 1 from Fba, he sets his input to 0 for the rest of Fba (unless already set

to 1) and waits for outputs from all instances of Fba.
(3). Let j be the smallest index such that the j-th Fba outputs 1. All parties output the identity of Pj .

D.2 Construction and Analysis of ΠSubCktEval

We give the construction of ΠSubCktEval as follows.
Protocol ΠSubCktEval

1: Check Shares.
Given a circuit C′ of depth D′ with |C′| multiplication gates and C′

O output gates, all parties hold
degree-t Shamir sharings of the inputs of C′ and |C′| random Beaver triples. Each party Pi checks:

– Whether he has all shares of the Beaver triples,
– And whether he has all shares of the input degree-t Shamir sharings for the circuit C′.

If true, he moves to Step 2. Otherwise, he sets the output mi = ⊥, reliably broadcasts (Proof, D) to all
parties and sends Broadcast-Proof to FACSS-id invoked by an active corrupted dealer D know by him,
and moves to Step 4.

2: Circuit Evaluation.
From k = 1 to D′, for the k-th layer in the circuit C′:

– For every addition gate with input sharings [x]t, [y]t, locally compute

[z]t = [x]t + [y]t.

– Let L be the number of multiplication gates in the k-th layer. Suppose the input degree-t Shamir
sharings are denoted by ([xi]t, [yi]t)L

i=1. Let ([ai]t, [bi]t, [ci]t)L
i=1 denote the random Beaver triples

assigned to these L gates. Each party Pj executes ΠBatchPubRec with his shares of ([xi + ai]t, [yi +
bi]t)L

i=1, and gets output m
(k)
j after terminating ΠBatchPubRec.

• If m
(k)
j = ⊥, Pj moves to Step 4.

58

• Otherwise, for all i ∈ [L], Pj parses m
(k)
j to get {xi + ai, yi + bi}L

i=1 and locally compute

[zi]t = (xi + ai)(yi + bi) − (xi + ai)[bi]t − (yi + bi)[ai]t + [ci]t.

3: Output Reconstruction.
For the output layer in the circuit C′ (if have):

– Each party Pj executes ΠBatchPubRec with his output sharings and gets output m
(D′+1)
j after termi-

nating ΠBatchPubRec.
4: Agreement on Output.

Each party Pj checks whether ∃k ∈ [D′ + 1], m
(k)
j = ⊥. If true, Pj sets mj = ⊥. Otherwise, Pj sets

mj = (m(1)
j , . . . , m

(D′+1)
j) and executes ΠAgreement with input mj and gets the output after terminating

ΠAgreement:
– If the output is the identity of a corrupted dealer, all parties output this identity.
– Otherwise, all parties terminate ΠSubCktEval with the output.

Termination of ΠSubCktEval. Here we prove that each instance of ΠSubCktEval will eventually terminate,
and all parties will either agree on the output of this sub-circuit or the identity of a corrupted party.

– In Step 1, each party with his degree-t sharings just does some local computation, and each party
who learns a corrupted dealer will invoke FACSS-id to let all parties learn a corrupted dealer.

– In Step 2, for each layer in the sub-circuit, the only thing that all parties need to interact with is
using ΠBatchPubRec to do public reconstruction. During the ΠBatchPubRec, for party Pi:

• For the reconstruction of f(αi), if all honest parties have sent their shares of [f(αi)]t to Pi, then
Pi will eventually reconstruct f(αi) and proceed. If at least one honest party requests FACSS-id,
Pi can eventually learn a corrupted party from FACSS-id and proceed. Note that in this step, the
corrupt party may help Pi to reconstruct f(αi) when not all honest parties have sent their shares
of [f(αi)]t to Pi.

• For the reconstruct of f(X), this is similar to the reconstruction of f(αi) and Pi will eventually
get f(X) or learn a corrupted party.

Therefore, all honest parties will eventually terminate Step 2.
– In Step 3, all parties invoke ΠBatchPubRec to reconstruct the output of the sub-circuit, this is similar

to Step 2 and all parties will eventually terminate Step 3.
– In Step 4, since each party will eventually terminate Step 3, each party Pj will either set mj to ⊥

or a meaningful vector. Then all parties invoke ΠAgreement:
• For the first Fba, since all parties have inputs, then Fba will eventually terminate and send output
m to all parties.

• Upon receiving m from Fba, each party will locally check whether m equals to his input for the
first Fba. Therefore, each party honest Pi will eventually get his input bi for the second Fba. Then
all honest parties can also terminate the second Fba with output b. Then each honest party can
follow the protocol to determine his output.

• When the output is ⊥, all parties invoke n instances of Fba to agree on a corrupted party. In this
case, we can ensure that at least one honest party’s input for the first Fba is ⊥. Otherwise, the
output of the first Fba should equal all honest parties’ common inputs and therefore the second
Fba will also output b = 1. If one honest party’s input for the first Fba is ⊥, he must receive the
identity of a corrupted party from FACSS-id or request FACSS-id to let all parties learn a corrupted
party. Then all honest parties will eventually receive the identity of this corrupted party from
FACSS-id. Therefore, all parties will set their input for the corresponding Fba as 1, and that Fba
will eventually terminate with output 1. For each party who first terminates any instances of Fba
with 1, he will set his input for the rest of Fba as 0. Then all instances of Fba will eventually
terminate and all parties will agree on the Fba with the smallest index and output 1. Note that
if the output of Fba is 1, then at least one honest party’s input is 1 and this honest party learns
the corresponding dealer is corrupted.

Therefore, all honest parties will eventually terminate Step 4 with the output of the sub-circuit or
the identity of a corrupted party.

Costs Analysis. The communication costs include:

59

– In Step 1, after we instantiate FACSS-id with our construction, it requires O(n) instances of RBC of
ACSS proofs. The overhead of RBA is O(κ · n3) bits.

– In Step 2 and Step 3, D′ + 1 instances of ΠBatchPubRec, which requires O((|C ′| + C ′
O)) · n + D′ · n2)

field elements.
– In Step 4, one instance of Fba on (|C ′| + C ′

O) field elements, which requires O((|C ′| + C ′
O) · n) field

elements plus O(κ · n2 log(n) + n3) bits. n+ 1 instances of Fba on 1 bit, which requires O(n4) bits.

In addition to the cost of broadcasting O(n) ACSS proof, the total communication costs is O((|C ′| +
C ′

O) · n+D′ · n2) field elements plus O(κ · n3 + n4) bits.

D.3 Construction of ΠrandSh and ΠrandShareZero

The construction ofΠrandSh is as follows which is the same asΠrandSh-Weak except that we replace FACSS-Abort
by FACSS-id. For ΠrandShareZero, we let each party record their column polynomials during the ΠSh2tZero,
then they locally divide them into n(n+ t) groups and do extraction for each group. We require n(n+ t)
groups because we use the party elimination framework which may fail for t times and there are n kings
in each segment.

Protocol ΠrandSh

Let N be the number of degree-t random Shamir sharings to be prepared.
1: Each party Pi samples N ′ = N/(t + 1) random degree-t Shamir secret sharings [s(i)

1]t, . . . , [s(i)
N′]t. Then

Pi acts as the dealer D and invokes FACSS-id to distribute the shares to all parties.
2: Each party Pi sets the property Q as Pi terminating FACSS-id when Pj acts as a dealer. Then all parties

invoke Facs with property Q to agree on a set D of successful dealers with size |D| = 2t + 1.
3: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1) × (2t + 1). For all

ℓ ∈ {1, . . . , N ′}, all parties locally compute

([rℓ,1]t, . . . , [rℓ,t+1]t) = M · ([s(i)
ℓ]t)i∈D.

Finally, all parties output {[rℓ,i]t}ℓ∈{1,...,N′},i∈{1,...,t+1}.

Protocol ΠrandShareZero

Let N be the number of degree-2t Shamir sharings of 0 to be prepared, β1, . . . , β(t+1)/2 be distinct field
elements.
1: Each party Pi samples N ′ = N/(t + 1) random degree-2t Shamir sharings of 0. Then Pi acts as the

dealer D and runs ΠSh2tZero to distribute the sharings to all parties.
2: Each party Pi sets the property Q as Pi terminating ΠSh2tZero when Pj acts as a dealer, then all parties

invoke Facs with property Q to agree on a set D of size 2t + 1 which includes successful dealers.
3: Assume that for each dealer Pi ∈ D, each party Pj ’s output of ΠSh2tZero are degree-(t+(t−1)/2) column

polynomials {g
(i)
ℓ,j}ℓ∈[2N′/(t+1)]. For each dealer Pi, Pj locally divide these 2N ′/(t+1) column polynomials

into n(n+ t) groups, each of size 2N ′/(n(n+ t)(t+1)). For each group, each party evaluates the column
polynomial at β1, . . . , β(t+1)/2 to get degree-2t Shamir sharings of zero [o(i)

1]2t, . . . , [o(i)
N′/(n(n+t))]2t.

4: All parties agree on (the inverse of) a Vandermonde matrix M of size (t + 1) × (2t + 1). For each group
and for all ℓ′ ∈ [N ′/(n(n + t))], all parties locally compute

([o(i)
ℓ′,1]2t, . . . , [o(i)

ℓ′,t+1]2t) = M · ([o(i)
ℓ′]2t)i∈D.

Finally, all parties output {[oℓ′,k]2t}ℓ′∈[N′/(n(n+t))],k∈[t+1] for all n(n + t) groups.

60

D.4 Construction of ΠtripleExt

Process ΠtripleExt

When all parties invoke ΠSubCktEval to do public reconstruction but the output is the identity of an active
corrupted dealer. All parties send Public-Recon to the FACSS-id invoked by this corrupted dealer and
wait to receive the secrets from FACSS-id. Then all parties locally update their shares by these secrets
and invoke ΠSubCktEval again until they succeed in reconstruction.

1: Distribution:
Let N ′ = 4N/(t + 1), L = 2t + (t − 1)/2, all parties agree on distinct field elements
β1, . . . , β(L+1)/2−t, α0, . . . , α2N′ .
Each party Pi samples two random degree-N ′ polynomials fi, gi and computes hi = fi · gi. Then Pi

samples 4N ′ + 3 random degree-t Shamir secret sharings:

{[fi(αℓ)]t}N′
ℓ=0, {[gi(αℓ)]t}N′

ℓ=0, {[hi(αℓ)]t}2N′
ℓ=0

Finally, Pi acts as a dealer and invokes FACSS-id to distribute these 4N ′ + 3 degree-t Shamir sharings.
2: Determine the Set of Successful Dealers:

All parties set the property Q as terminating FACSS-id invoked by each dealer, then they invoke the
modified ΠQ

acs to agree on a set D of size L which contains the successful dealers.
3: Verify Triples:

(1). Upon agreeing on set D, for each Pi in D, each party Pj waits for the termination of FACSS-id where
Pi acts as the dealer. Then Pj sends request to Fcoin.

(2.) Upon receiving r from Fcoin, if r ∈ {α1, . . . , αN′ }, all parties request Fcoin again. Otherwise, all
parties locally compute {[fi(r)]t, [gi(r)]t, [hi(r)]t}Pi∈D and invoke ΠSubCktEval with input sharings
[fi(r)]t, [gi(r)]t, [hi(r)]t to reconstruct {fi(r), gi(r), hi(r)}Pi∈D.

(3). For each Pi ∈ D, if fi(r) · gi(r) = hi(r), all parties set ([a(i)
ℓ]t, [b(i)

ℓ]t, [c(i)
ℓ]t)N′

ℓ=1 =
([fi(αℓ)]t, [gi(αℓ)]t, [hi(αℓ)]t)N′

ℓ=1. Otherwise, all parties set ([a(i)
ℓ]t, [b(i)

ℓ]t, [c(i)
ℓ]t)N′

ℓ=1 to be all-0 shar-
ings.

4: Extracting Random Triples:
For all k ∈ [N ′], pick the first unused Beaver triple from each dealer in D and denote them by
{[a(k)

i]t, [b(k)
i]t, [c(k)

i]t}L
i=1. Then execute the following steps to extract N random Beaver triples:

(1). For each k ∈ [N ′], all parties set two polynomials of f (k), g(k) of degree L′ = L−1
2 such that

[f (k)(αi)]t = [a(k)
i]t and [g(k)(αi)]t = [b(k)

i]t for all i ∈ [L′ + 1].
(2). From i = L′ + 2 to L, all parties do the following things:

1). For all k ∈ [N ′], locally compute [f (k)(αi)]t, [g(k)(αi)]t.
2). Executing ΠSubCktEval with input sharings [f (k)(αi) + a

(k)
i]t, [g(k)(αi) + b

(k)
i]t to do public recon-

struction. Upon terminating with output {f (k)(αi) + a
(k)
i , g(k)(αi) + b

(k)
i }N′

k=1, locally compute:

[f (k)(αi) · g(k)(αi)]t = (f (k)(αi) + a
(k)
i) · (g(k)(αi) + b

(k)
i) + [c(k)

i]t
− (f (k)(αi) + a

(k)
i)[b(k)

i]t − (g(k)(αi) + b
(k)
i)[a(k)

i]t

Finally, set i = i + 1.
(3). For each k ∈ [N ′], all parties set a polynomial h(k) of degree L − 1 such that [h(k)(αi)]t = [c(k)

i]t for
all i ∈ [L′ + 1] and [h(k)(αi)]t = [f (k)(αi) · g(k)(αi)]t for all i ∈ [L′ + 2, L].

(4). All parties output ([f (k)(βi)]t, [g(k)(βi)]t, [h(k)(βi)]t) for all i ∈ [(L + 1)/2 − t], k ∈ [N ′].

Communication Cost of ΠtripleExt. The communication costs include:

– In Step 1, n instances of FACSS-id, which requires O(N · n+ n5) field elements plus O(κ · n5) bits.
– In Step 2, n instances of Fba, which requires O(n4) bits.
– In Step 3, one instance of Fcoin, which requires O(n3) bits.
– In Step 3 and 4, at most t + 1 instances of ΠSubCktEval, in addition to the costs of ACSS proofs, it

requires O(N · n+ n3) field elements plus O(κ · n4 + n5) bits. For O(n2) broadcast of ACSS proofs,
it requires O(N · n) field elements.

Therefore, the whole communication costs of ΠtripleExt is O(N ·n+n5) field elements plus O(κ ·n5) bits.

61

D.5 Construction of Triples Verification

The verification method of triples is the same at ΠtripleVerify-Weak introduced in 4.4. The communication
complexity of ΠtripleVerify equals the number of times ΠSubCktEval is executed plus one instance of Fcoin
for verifying O(N) Beaver triples.

Protocol ΠtripleVerify

When all parties invoke ΠSubCktEval to do public reconstruction, they may fail to get the reconstruction re-
sult and output the identity of an active corrupted dealer. In this case, all parties will send Public-Recon
to the FACSS-id invoked by this corrupted dealer and wait to receive his secrets from FACSS-id. Then all
parties locally update their shares by these secrets and invoke ΠSubCktEval again until they succeed in
reconstructing.

1: Build Polynomials:
Let N be the number of Beaver triples that need to be verified and N ′ = (N/(2t + 1) − 1)/2, all parties
agree on 2N ′ + 1 distinct field elements α0, . . . , α2N′ . Then all parties run the following steps:
(1). All parties have 2t+1 groups of Beaver triples, for the k-th group, it contains 2N ′ +1 Beaver triples

and denoted it by {[a(k)
i]t, [b(k)

i]t, [c(k)
i]t}2N′

i=0 .
(2). All parties set two polynomials of f (k), g(k) of degree N ′ such that [f (k)(αi)]t = [a(k)

i]t and
[g(k)(αi)]t = [b(k)

i]t for all i ∈ [N ′], k ∈ [2t + 1].
(3). For all i ∈ [N ′ + 1, 2N ′], k ∈ [2t + 1], all parties locally compute [f (k)(αi)]t, [g(k)(αi)]t. Then they

execute ΠSubCktEval with input sharings [f (k)(αi)+a
(k)
i]t, [g(k)(αi)+b

(k)
i]t to do public reconstruction,

upon terminating with output {f (k)(αi) + a
(k)
i , g(k)(αi) + b

(k)
i }i∈[N′+1,2N′],k∈[2t+1], locally compute:

[f (k)(αi) · g(k)(αi)]t = (f (k)(αi) + a
(k)
i) · (g(k)(αi) + b

(k)
i) + [c(k)

i]t
− (f (k)(αi) + a

(k)
i)[b(k)

i]t − (g(k)(αi) + b
(k)
i)[a(k)

i]t

(4). All parties set a polynomial h(k) of degree 2N such that [h(k)(αi)]t = [c(k)
i]t for all i ∈ [N ′] and

[h(k)(αi)]t = [f (k)(αi) · g(k)(αi)]t for all i ∈ [N ′ + 1, 2N ′], k ∈ [2t + 1].
2: Verification Phase:

– All parties send a request to Fcoin. Upon receiving r from Fcoin, if r ∈ {α1, . . . , αN′ }, he sets v
(k)
i = 0

for all k ∈ [2t + 1]. Otherwise:
(1). For all k ∈ [2t + 1], each party locally compute his share of ([f (k)(r)]t, [g(k)(r)]t, [h(k)(r)]t).

Then all parties execute ΠSubCktEval with input sharings {([f (k)(r)]t, [g(k)(r)]t, [h(k)(r)]t)}2t+1
k=1 to

reconstruct the secrets {f (k)(r), g(k)(r), h(k)(r)}2t+1
k=1 .

(2). Each party checks whether h(k)(r) = f (k)(r) ·g(k)(r) for each k ∈ [2t+1]. If true, he sets v
(k)
i = 1.

Otherwise, he sets v
(k)
i = 0.

3: Output Phase:
For each party Pi and k ∈ [2t + 1], if v

(k)
i = 1, he outputs his shares of {[a(k)

i]t, [b(k)
i]t, [c(k)

i]t}N′
i=1. If

v
(k)
i = 0, Pi outputs Fail.

D.6 Construction of Detecting Corruptions

Protocol ΠfaultLoc

Let D be the set generated during the ΠrandShareZero, N be the number of Beaver triples prepared by each
Pking.
Each Party Pj

All parties help Pking to detect the corrupted party.

1. For each dealer in D, if Pi has accepted his column polynomials, send {g
(i)
ℓ (y), ḡ

(i)
ℓ (y)}ℓ∈[2N/(t+1)2] to

Pking. Otherwise, send a ShareProof to Pking.
2. If Pj has his shares of {([aℓ]t, [bℓ]t, [rℓ]t)}N

ℓ=1, sends them to Pking.

Party Pking

Pking detects the corrupted party and sends proof to convince all parties. In the following, when Pking receives
(Proof, Pc) from a party Pi and (Corrupt, Pc) from FACSS-id invoked by dealer Pc, Pking reliably broadcasts

62

the identity of Pi, lets all parties wait to receive the message (Corrupt, Pc) from FACSS-id and terminates.
Pking also reliably broadcasts (Corrupt, 1, Pc).

(a). Invalid 2t Shares of Zero.
(1). For each dealer in D: wait to receive messages from all parties:

∗ Upon receiving {g
(i)
ℓ (y), ḡ

(i)
ℓ (y)}ℓ∈[2N/(t+1)2] from Pi and {cm-row(i)

j }j∈[n] from the dealer, verify
that:

cm-col(i)
ℓ

?= H(g(i)
ℓ (β∗), ḡ

(i)
ℓ (β∗)) ∀ℓ ∈ [2N/(t + 1)2]

If true, accept Pi’s {g
(i)
ℓ (y)}ℓ∈[2N/(t+1)2].

∗ Upon receiving ShareProof from party, record it.
(2). If Pking first receives a ShareProof for a dealer Pc ∈ D, he sends this proof to all parties,

reliably broadcasts (Corrupt, 0, Pc) and terminates. Otherwise, for each dealer, Pking first ac-
cept 2t + 1 distinct Pi’s column polynomials, he reconstructs dealer’s bivariate polynomials
{Fℓ(x, y), F̄ℓ(x, y)}ℓ∈[2N/(t+1)2]. Then Pking checks whether the secrets encoded in each Fℓ(x, y)
are all zero. If not, Pking moves to Step (4).

(3). For each dealer, Pking computes the rest of t parties’ {g
(i)
ℓ (y), ḡ

(i)
ℓ (y)}ℓ∈[2N/(t+1)2] and verify that:

cm-col(i)
ℓ

?= H(g(i)
ℓ (β∗), ḡ

(i)
ℓ (β∗)) ∀ℓ ∈ [2N/(t + 1)2]

If true, Pking computes all parties’ shares of zero {[o(j)
k]2t}k∈[N],Pj ∈D and moves to Step (b). Other-

wise, Pking moves to Step (4).
(4). Pking generates the SecretProof which includes the 2t + 1 distinct parties’ column polynomials he

accepted in Step (2). Each party can follow Steps (2)-(3) to verify this proof. Then Pking sends this
proof to all parties, reliably broadcasts (Corrupt, 0, Pc) and terminates.

(b). Wrong Shares of [zℓ]2t.
(1). Pking waits to receive messages from all parties, when Pking succeeds in using online error correction

to reconstruct all degree-t sharings {([aℓ]t, [bℓ]t, [rℓ]t)}N
ℓ=1, he proceeds.

(2). With {[o(j)
k]2t}k∈[N] distributed by each Pj ∈ D, Pking locally compute each party’s shares of [z̃ℓ]2t

for all ℓ ∈ [N]. For all shares of [zℓ]2t received from 2t + 1 distinct parties during the ΠtripleKingDN,
Pking records the identity of the first party who provided shares of [zℓ]2t ̸= [z̃ℓ]2t. Let the index of
first [zℓ]2t ̸= [z̃ℓ]2t be idx and this corrupted party’s share of [oidx]2t := [z̃idx]2t − [aidx]t · [bidx]t − [ridx]t.

(3). Assuming that the identity of this corrupted party is Pc, Pking generates ShareRecProof: including
Pc’s column polynomials which are used to extract [oidx]2t and distributed by each dealer in D.
Each party receiving this proof can first verify that the shares in these columns match each dealer’s
commitment. Then, each party can reconstruct Pc’s extracted shares of zero.

(4). Pking sends the idx, the whole sharings {([aidx]t, [bidx]t, [ridx]t)}, Pc’s shares {z
(c)
ℓ }N

ℓ=1, Pc’s opening
ν(c) (corresponding to the commitment of {z

(c)
ℓ }N

ℓ=1), and the ShareRecProof to all parties. Pking
also reliably broadcasts (Corrupt, 0, Pc).

Each Party
Each party waits for valid proof against an active corrupted party from Pking. Each party may receive a
proof for case (a) and (b) from Pking or notified by Pking to wait to receive (Corrupt, Pc) from FACSS-id. For
the former, each party Pi does the following verification and sets his input bi = 0 if he accepts the proof.
For the latter, Pi will set bi = 1.

– For case (a): Upon receiving ShareProof or SecretProof and (Corrupt, 0, Pc). from Pking, each party
checks whether it is valid. If true, he records the identity of the corresponding corrupted dealer Pc.

– For case (b):
(1). Upon receiving the idx and {([aidx]t, [bidx]t, [ridx]t)} from Pking, each party checks whether his shares of

{([aidx]t, [bidx]t, [ridx]t)} is correct. If true, he reliably broadcast OK to all parties. Each party proceeds
if he receives OK from 2t + 1 distinct parties.

(2). Upon receiving (Corrupt, 0, Pc), Pc’s shares {z
(c)
ℓ }ℓ∈[N], opening ν(c) from Pking and τ king

c which is
the Pc’s commitment for Pking, each party checks whether τ king

c = H(z(c)
1 || · · · ||z(c)

L , ν(c)). If true, he
proceeds.

(3). Upon receiving the valid ShareRecProof from Pking, each party locally computes Pc’s share of [oidx]2t.
Then he checks whether [zidx]2t = [aidx]t · [bidx]t + [ridx]t + [oidx]2t. If not, he records the identity of
the corrupted party Pc.

All parties jointly invoke Fba, each party Pi sends bi to Fba. Let the output of Fba be b, then all parties wait
to receive (Corrupt, b, Pc) from Pking and output the identity of Pc.

63

Communication Cost of ΠfaultLoc. The communication costs include:

– For all parties Pj , it requires O(N · n+ n2 log(N/n2)) field elements.
– For Pking, in case (a), it requires O(N + n2 log(N/n2)) field elements. In case (b), assuming that

the size of idx is N elements, since the proof size of ShareRecProof (Pc’s real column polynomial
received from 2t+ 1 dealers) is O(n2) field elements, it requires O(N ·n+n3) field elements in total.

– For all parties, they send OK to each other, which requires O(n2) bits. Pking broadcasts the identity
of corrupted parties, which requires O(n2) bits.

Since N · n+ n3 = n2(N/n+ n) ≥ 2n2
√
N > n2 log(N/n2), the whole costs of ΠfaultLoc is O(N · n+ n3)

field elements plus O(n2) bits.

D.7 Cost Analysis of ΠtripleDN

We first analyse the communication costs of ΠSh2tZero and ΠtripleKingDN as follows:
For ΠSh2tZero:

– For dealer, in Step 1, it requires O(N · n + n2) field elements. In Step 2, it requires one instance of
RBC, which requires O(N · nκ+ κ · n3) bits.

– For the parties, in Step 1, it requires O(N · n+ n2) field elements.

The total communication costs of ΠSh2tZero are O(N · n+ n2) field elements plus O(N · nκ+ κ · n3) bits.
For ΠtripleKingDN:

– In Step 1, it requires O(N · n) field elements plus O(κ · n3) bits.
– In Step 2, it requires O(N · n) field elements plus O(κ · n2) bits.

The total communication costs of ΠtripleKingDN are O(N · n) field elements plus O(κ · n3) bits.
Then the whole communication costs of ΠtripleDN include:

– In the Preparation, one instance of ΠrandSh costs O(N ·n+n5) field elements plus O(κ ·n5) bits, one
instance of ΠrandShareZero costs O(N · n+ n3) field elements plus O(N · n · κ+ κ · n4) bits.

– In the Generation, in each segment, it requires:
• All parties broadcast ACSS proofs require O(N + n3) field elements plus O(κ · n3) bits.
• n instance of ΠtripleKingDN: O(N + n2) field elements plus O(κ · n4) bits.
• One instance of Facs: O(κ · n3) bits.
• One instance of ΠtripleVerify: one instance of Fcoin plus the times of ΠSubCktEval.
• t+ 1 instances of ΠfaultLoc: O(N + n4) field elements plus O(n3) bits.
• n instances of Fba: O(n4) bits.

For n segments, there are at most O(n) times of ΠSubCktEval, which requires O(N · n + n3) field
elements plus O(κ · n3 + n4) bits. Also, there are at most t times of reconstruction of corrupted
parties’ secrets, which requires O(N · n + n4) field elements. In total, for n segments, it requires
O(N · n+ n5) field elements plus O(κ · n5) bits.

Therefore, the whole communication costs of ΠtripleDN are O(N · n + n5) field elements plus O(N · n ·
κ+ κ · n5) bits.

D.8 Construction of Πtriple

Based on Πtriple-Add-Weak, after replacing ΠtripleExt-Weak, ΠtripleDN-Weak with ΠtripleExt, ΠtripleDN, we get
the construction of Πtriple.

Protocol Πtriple

Let N be the number of Beaver triples to be prepared.
1: Run Process 1 and Process 2:

All parties execute ΠtripleExt and ΠtripleDN in parallel to prepare N random Beaver triples.
2: Agree on Successful Process:

64

For each party Pi, if the first process first succeeds, he sets bi = 0; otherwise, he sets bi = 1. Then Pi

sends bi to Fba. Upon receiving b from Fba, if b = 0, he takes the output of the first process as the final
output; otherwise, he takes the output of the second process as the final output.

D.9 Construction and Security Proof of Main Protocol

The functionality for AMPC with GOD [CP23] is below and we design Πmain-GOD to realize it.

Functionality FAMPC

FAMPC proceeds as follows, running with parties P = {P1, . . . , Pn}, an adversary S, and a n-party function
f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗ ∪ {⊥}. For each party Pi, initialize an input value x(i) =⊥ and output value
y(i) =⊥.
1: Upon receiving an input v from Pi ∈ P, if CoreSet has not been recorded yet or if Pi ∈ CoreSet, set

x(i) = v.
2: Upon receiving an input CoreSet from S, verify that CoreSet is a subset of P of size at least n − t, else

ignore the message. If CoreSet has not been recorded yet, then record CoreSet and for every Pi /∈ CoreSet,
set x(i) = 0.

3: If the CoreSet has been recorded and the value x(i) has been set to a value different from ⊥ for every
Pi ∈ CoreSet, then compute y = f(x(1), . . . , x(n)) and generate a request-based delayed output y(i) = y
for every Pi ∈ P.

4: All honest parties output the results received from the trusted party. Corrupted parties may output
anything they want.

Protocol Πmain-GOD

Offline Phase
Let C denote the circuit to be computed. All parties invoke Πtriple to prepare |C| random Beaver triples
and assign one random triple with each multiplication gate in the circuit.

Online Phase
1: Distributing Inputs. Each party Pi invokes FACSS-id to shares his secret xi.
2: Each party Pi sets the property Q as Pi terminates FACSS-id where Pj acts as the dealer. Then all parties

invoke Facs with property Q to agree on a set D of parties that successfully share their inputs. For every
Pi /∈ D, all parties set their shares of Pi’s input as 0.

3: Divide the circuit C into t disjoint sub-circuits C1, . . . , Ct (sorted by topology) such that each sub-circuit
contains |C|/t multiplication gates.

4: Circuit Evaluation. From k = 1 to t, for each sub-circuit Ck, let ([ai]t, [bi]t, [ci]t)|C|/t
i=1 denote the

random Beaver triples assigned to multiplication gates in Ck, all parties execute ΠSubCktEval with shares
of inputs for Ck and these |C|/t random Beaver triples to evaluate Ck.
– If the output of ΠSubCktEval is the identity of a corrupted party, all parties send Public-Recon to the

FACSS-id invoked by this corrupted party and wait to receive his secrets from FACSS-id. Then they locally
update their sharings by these secrets and invoke ΠSubCktEval for the current Ck again.

– Otherwise, all parties set k = k + 1.
5: Output Reconstruction. Upon all parties terminating the last sub-circuit Ck and learning their

output shares, they divide CO output wires into t segments and invoke ΠSubCktEval as above for each
segment to do public reconstruction in order. As a result, all parties get all CO outputs.

Costs Analysis of Πmain-GOD. The communication costs include:
Assuming that the input and output size are CI and CO respectively, during the online phase, the

circuit C is divided into C1, . . . , Ct, the depth of each Ck is Dk:

– For Πtriple, it requires O(|C| · n+ n5) field elements plus O(|C| · nκ+ κ · n5) bits.
– For the input phase, there are n instances of ΠACSS-id, which costs O(CI · n+ n5) field elements plus

O(κ · n5) bits.
– One instance of Facs, which costs O(κ · n3) bits.

65

– During the circuit evaluation, at most 2t instance of ΠSubCktEval, since
∑t

k=1 |Ci| = |C|,
∑t

k=1 Dk =
O(D + n), the communication costs are O(|C| · n+D · n2 + n3) field elements plus O(κ · n4) bits.

– During the output reconstruction, at most 2t times of ΠSubCktEval, which requires O(CO ·n+n3) field
elements plus O(κ · n4) bits.

– Public Reconstruction for at most t corrupted parties’ secrets, which costs O(|C| · n + n5) field
elements plus O(κ · n5) bits.

To see why
∑t

k=1 Dk = O(D + n), Let L(Ci) and L(Ci+1) denote the layers of circuits Ci and
Ci+1, respectively. The number of layers at the intersection of Ci and Ci+1 can be expressed as L(Ci) ∩
L(Ci+1) = {0, 1}, then

t∑
k=1

Dk = D +
t−1∑
i=1

L(Ci) ∩ L(Ci+1) < D + t.

Therefore, the total communication costs of Πmain-GOD is O((|C| + CI + CO) · n + D · n2 + n5) field
elements plus O(|C| · nκ+ κ · n5) bits.

For the computation costs of Πmain-GOD:

– For ΠACSS-id: the dealer invokes O(n3) hash to compute the commitments, each party performs O(n2)
hash to do verification. Therefore, for all dealers, each party requires O(n3) hash.

– For ΠSh2tZero: to prepare |C| triples, the size of L is |C|/n2, the dealers invokes O(|C|) hash to
compute the commitments, each party performs O|C|/n hash to verify his row polynomials and
O|C|/n hash to interpolate and verify column polynomials. Therefore, for all dealers, each party
requires O(|C|n) hash. Note that to verify the ShareProof, it requires O(n log(|C|/n2)) hash.

– For ΠtripleKingDN, for each Pking in each segment, each party requires O(1) hash. Therefore, there is
O(n2) hash in total.

– For ΠfaultLoc, each Pking in each segment may verify O(n) distinct ShareProof, which requires
O(n2 log(|C|/n2)) hash. For the SecretProof, ShareRecProof generated by Pking, each party re-
quires O(n) hash for verification. Therefore, there is O(n4 log(|C|/n2)) hash in total.

– There are O(n2) instances of Fba and O(n) instances of Facs, which requires O(n4) hash.
– For the verification of ACSS proofs, each time it requires O(n) hash to verify. Since each party sends

ACSS proofs to all parties with at most O(n) times, each party will receive at most O(n2) ACSS
proofs and require O(n3) hash for verification in total.

Therefore, the whole computation costs of Πmain-GOD are O(|C|n+ n4 log(|C|/n2)) hash per party.

Lemma 10. Let κ denote the security parameter, for a finite field F of size 2Ω(κ), protocol Πmain-GOD
securely computes FAMPC against a fully malicious adversary A who corrupts at most t < n/3 parties.

Proof. Termination. We first show that all honest parties will eventually terminate the protocolΠmain-GOD.
We first analyze the termination of the offline phase and then the online phase.

All parties invoke Πtriple during the offline phase to prepare random Beaver triples. It contains one
instance of ΠtripleExt, ΠtripleDN and Fba. In the following, we only analyze why each party will eventually
terminate one of the processes, the reason why when an honest party terminates one process, all parties
will eventually terminate that process is similar to the analysis in Appendix C.5.

For process 1, the ΠtripleExt:

– In Step 1, all parties invoke FACSS-id to distribute degree-t Shamir sharings.
– In Step 2, all parties invoke Facs to agree on a set D of size L which contains successful dealers. When

at least L− (2t+ 1) = (t− 3)/2 corrupted dealers also terminate their FACSS-id, all parties can agree
on such a set.

– In Step 3, all parties invoke Fcoin and eventually get a random value r. Then they do local computation
and invoke ΠSubCktEval to do public reconstruction. We have analyzed the termination of ΠSubCktEval
in Appendix D.2, then all parties will either succeed in reconstructing {fi(r), gi(r), hi(r)}Pi∈D or
agree on a corrupted party:

• For the former case, all parties can proceed to do verification and move to Step 4.
• For the latter case, all parties will reconstruct the secret distributed by this corrupted dealer and

the next reconstruction will not fail again due to this corrupted party. Therefore, after at most
t times ΠSubCktEval, all parties will eventually get the reconstruction results and proceed.

66

Therefore, at the end of Step 3, all parties will terminate with their shares of Beaver triples distributed
by each dealer in D. Note that some honest parties may still not know their shares, but they will
know the public reconstruction succeeds and can proceed.

– In Step 4, all parties only invoke ΠSubCktEval to do public reconstruction. After at most t times
ΠSubCktEval, they will eventually get the reconstruction results and proceed. Similarly, some honest
parties may not know their shares of Beaver triples, but they can terminate after getting public
reconstruction results.

To summarize, if all parties can agree on the set of size L in Step 2, they will eventually terminate
ΠtripleExt.

For process 2, the ΠtripleDN:

– In the preparation phase, all parties invoke ΠrandSh and ΠrandShareZero to prepare degree-t and 2t
Shamir sharings. Similar to the analysis in Appendix C.5, all parties will eventually terminate ΠrandSh.
For ΠrandShareZero, if less than (t−1)/2 corrupted parties participate, all honest parties will eventually
get their degree-2t Shares of zero distributed by each dealer.

– In the following, we prove that during the generation phase, in each segment, all parties will eventually
output shares of Beaver triples or agree on a corrupted party.

• In Step 1, each party who does not have degree-t sharings will request FACSS-id to let all parties
learn a corrupted dealer.

• In Step 2, each party acts Pking and leads an instance of ΠtripleKingDN:
∗ Each honest party who can compute shares of [zℓ]2t will send them to Pking, each party who

can not compute the sharings has requested FACSS-id in Step 1 and sent (Proof, D) to Pking.
Therefore, Pking can always expect to receive messages from honest parties. If he first receives
2t+ 1 shares of [zℓ]2t, he can reconstruct zℓ and proceed. If he first receives (Proof, D) from
a party and the identity of a corrupted party from FACSS-id invoked by D, he can notify all
parties to wait for the same output (Corrupt, D) from FACSS-id.

∗ When Pking is honest, they can eventually receive the secrets reconstructed by Pking or the
message (Corrupt, D) from FACSS-id.

• In Step 3, since the instances of ΠtripleKingDN invoked by honest Pking will eventually terminate, all
parties can agree on such a set of size 2t+1. For each king in this set, if the output they get from
this king is the identity of a corrupted party, all parties will reconstruct the secret distributed
by this corrupted party and invoke the current segment again. Otherwise, they can proceed.

• In Step 4, all parties invoke ΠtripleVerify to check whether there exists additive errors. Similar to
ΠtripleVerify-Weak, after replacing FpubRec-Weak by ΠSubCktEval, all parties will eventually terminate
ΠtripleVerify with valid shares of Beaver triples or Fail for each Pking in the set.

• In Step 4, after terminating ΠtripleVerify, if at least t + 1 distinct Pking provides valid shares
of Beaver triples, all parties can output their shares and terminate. Otherwise, if the prepared
triples provided by at least t+1 distinct Pking are incorrect, all parties will invoke ΠfaultLoc to help
these t+ 1 distinct Pking to find a corrupted party. Since there is at least one honest Pking among
these t+1 corrupted parties, we focus on the reason why honest Pking can find a corrupted party.
Here honest Pking may identify a corrupted party in two different ways, one is the corrupted party
that does not honestly distribute degree-2t Shamir sharings or sends incorrect shares of [zℓ]2t to
him. The other is the corrupted party received from FACSS-id. If Pking identifies a corrupted party
Pk in the former case, he will reliably broadcasts (Corrupt, 0, Pk). If he learns a corrupted party
Pk from FACSS-id, he will reliably broadcasts (Corrupt, 1, Pk). Pking may reliably broadcast both
of these two messages. Pking does the following things to identify a corrupted party Pk:

(1). First, each party sends their degree-2t shares of zero distributed by each dealer to Pking, and
each party who does not have his shares of zero will send a ShareProof to Pking (we consider
the case when all parties terminate ΠrandShareZero). As a result, Pking can eventually receive
2t + 1 honest parties’ messages and either reconstruct the secrets based on 2t + 1 shares of
zero or get a valid proof ShareProof:
· For the former case, Pking can proceed to do checks for each dealer.
· For the latter case, Pking will use this proof to accuse a corrupted party.

If Pking finds that all dealers behave honestly, he moves to the next step.
(2). Second, all parties send their degree-t Shamir Sharings to Pking, each party who does not have

his sharings has requested FACSS-id and sends (Proof, Pk) to all parties in Step 1. Therefore,

67

Pking can eventually receive all honest parties’ messages and either succeed in reconstructing
the secret or learn a corrupted dealer Pk from FACSS-id:
· For the former case, Pking proceeds.
· For the latter case, Pking notifies all parties to wait for the messages (Proof, Pk) and

(Corrupt, Pk) from FACSS-id and terminate.
After reconstructing the degree-t Shamir sharings, Pking will follow the protocol to check which
party provides incorrect shares of [zℓ]2t and send the corresponding proof to all parties.

To prevent corrupted Pking provides wrong degree-t Shamir sharings, each party will locally check
whether his share is correct (if have). If true, each party will send OK to all parties and when he
receives OK from 2t+1 distinct parties, he can believe that Pking provides correct degree-t Shamir
sharings. Note that when Pking is honest, the problem here is that maybe not all honest parties
have sharings and each party can not expect to receive OK from 2t + 1. But in this case, each
honest party who does not send OK to all parties must have sent (Proof, Pk) to all parties and
request FACSS-id in Step 1. Since honest Pking will eventually receive (Corrupt, Pk) from FACSS-id
and broadcast (Corrupt, 1, Pk), each party can wait to receive (Corrupt, 1, Pk) from Pking and
wait until he receives (Corrupt, Pk) from FACSS-id. Then we ensure that for honest Pking, each
honest party will eventually receives (Corrupt, 0, Pk) from Pking and agree on the proof provided
by Pking or receives (Corrupt, 1, Pk) from Pking and agree on it after he receives (Corrupt, Pk)
from FACSS-id. We let each party Pi set his input bi to be 0 or 1 determined by which line he first
agrees. Then we let all parties invoke an instance of Fba to agree on which line they eventually
agree and therefore all parties will eventually agree on a corrupted party.

• In Step 4, finally, all parties invoke n instances of Fba to agree on one corrupted party accused
by Pking, similar to the previous analysis, all parties will eventually terminate and agree on the
same corrupted party.

– Now we prove that all parties will eventually get their shares of Beaver triples or agree on a corrupted
party. If they agree on a corrupted party, they can eliminate this corrupted party and execute the
current segment again. If this corrupted party had previously distributed degree-t Shamir sharings, all
parties would have jointly reconstructed his secrets. If this corrupted party had previously distributed
degree-2t Shamir sharings, all parties would change their shares by zero. The next time all parties
will not fail due to this corrupted party.

To summarize, if all parties can terminate ΠrandShareZero, they will eventually terminate ΠtripleExt.
In Appendix C.5, we have proved that at least one process will eventually terminate, and therefore

all parties will terminate Πtriple.
Then in the online phase, we divide the circuit into t sub-circuit. All parties invoke ΠSubCktEval to

evaluate each sub-circuit in sequence. Each time when they fail to get the result in ΠSubCktEval, they will
agree on a corrupted party and reconstruct all degree-t Shamir sharings distributed by this corrupted
party. Then all parties will not fail in ΠSubCktEval due to this corrupted party next time. As a result, all
parties will eventually terminate all instances of ΠSubCktEval and get the final results.
Security. Then we show that the protocol Πmain-GOD securely computes FAMPC. We start with constructing
the ideal adversary S as follows.

Simulator SSubCktEval

Let Corr′ be a set of size at most t and S learns all shares for parties in Corr′. For public reconstruction, S
takes the whole degree-t output Shamir sharings as inputs and skips Step 2. For circuit evaluation, S takes
shares of degree-t Shamir sharings ([x(i)]t, [y(i)]t) and ([a(i)]t, [b(i)]t, [c(i)]t for parties in Corr′ as inputs.
Simulation of ΠSubCktEval

1: In Step 1, S honestly follows the protocol to execute each honest party to check their shares. When each
party Pi reliably broadcasts (Proof, D) and sends Broadcast-Proof to FACSS-id, S reliably broadcasts
(Proof, D) on behalf of Pi. Then S simulates FACSS-id invoked by D and sends the secrets he received
from D to all parties.

2: In Step 2, in each layer, for every addition gate, S computes shares of [z(i)]t for each party in Corr′.
For a group of L multiplication gates, S first computes shares of [x(i) + a(i)]t, [y(i) + b(i)]t for parties in
Corr′, then randomly samples the whole [x(i) + a(i)]t, [y(i) + b(i)]t based on shares of parties in Corr′

and simulates ΠBatchPubRec with honest parties’ shares. Then S computes shares of [z(i)]t for parties in
Corr′.

68

3: In Step 3, S honestly simulates ΠBatchPubRec with honest parties’ output sharings.
4: In Step 4, S follows the protocol to compute each honest party Pj ’s input mj . Then S honestly simulates

ΠAgreement and learns each honest party’s output.

Simulator S0

Simulation of ΠtripleExt

1: In Step 1, S simulates FACSS-id as follows:
– For each honest dealer, S randomly samples shares of corrupted parties. For each corrupted dealer,

S waits to receive degree-t Shamir sharings.
– For corrupted parties, S sends their sharings to them on behalf of FACSS-id and learns the identity

of honest party whose output is (Corrupt, D).
2: In Step 2, S honestly simulates ΠQ

acs and whenever an honest party terminates ΠQ
acs with a set D of size

L, S continues to simulate the behavior of this party.
3: In Step 3, S first sends request to Fcoin on behalf of each honest party. Then S randomly samples a

value r and sends it to all parties on behalf of Fcoin. If r ∈ [N ′], S aborts the simulation. Otherwise, S
does the following things:

– For each honest dealer in D, S randomly samples fi(r), gi(r) and computes hi(r) = fi(r)·gi(r). Then
S randomly samples the whole ([fi(r)]t, [gi(r)]t, [hi(r)]t) based on the secrets (fi(r), gi(r), hi(r))
and shares of corrupted parties. For each corrupted dealer in D, S computes the whole
([fi(r)]t, [gi(r)]t, [hi(r)]t).

– S invokes SSubCktEval with each dealer Pi’s ([fi(r)]t, [gi(r)]t, [hi(r)]t):
• If S learns that all parties agree on a corrupted dealer during SSubCktEval, S sends Public-Recon

to FACSS-id invoked by this dealer on behalf of each honest party. When S receives t+1 requests,
S sends this corrupted dealer’s secrets to all parties on behalf of FACSS-id and locally updates
each honest party’s shares. Then S invokes SSubCktEval again.

• Otherwise, S proceeds.
– For each dealer in D, S checks whether fi(r) · gi(r) = hi(r) and if not, S changes all honest parties’

degree-t sharings distributed by this dealer with 0. For corrupted dealer Pi, if fi(r) · gi(r) = hi(r)
but hi ̸= fi · gi, S aborts the simulation.

4: In Step 4, for i ∈ [L′ + 2, L]:
– If Pi is honest, S first randomly samples the whole [f (k)(αi) + a

(k)
i]t based on shares of corrupted

parties.
– If Pi is corrupted, S first randomly samples a value as f (k)(αi) + a

(k)
i , then he computes f (k)(αi) =

f (k)(αi)+a
(k)
i −a

(k)
i . Finally S randomly samples the whole [f (k)(αi)]t based on shares of corrupted

parties and computes [f (k)(αi) + a
(k)
i]t = [f (k)(αi)]t + [a(k)

i]t.
S does the same thing for [g(k)(αi) + b

(k)
i]t and invokes SSubCktEval with the whole sharings ([f (k)(αi) +

a
(k)
i]t, [g(k)(αi)+b

(k)
i]t) to do public reconstruction. Upon terminating SSubCktEval, S computes corrupted

parties’ shares of Beaver triples.

Simulator SRandShare

Simulation of ΠrandSh

1: In Step 1, S simulates FACSS-id as follows:
– For each honest dealer, S randomly samples shares of corrupted parties. For each corrupted dealer,

S waits to receive degree-t Shamir sharings.
– For corrupted parties, S sends their sharings to them on behalf of FACSS-id and learns the identity

of honest party whose output is (Corrupt, D).
2: In Step 2, S simulates Facs and learns the set D of size 2t + 1.
3: In Step 3, S follows the protocol and computes corrupted parties’ output shares.

Simulator SRandShareZero

Simulation of ΠrandShareZero

69

1: In Step 1, for each corrupted dealer, S honestly executes each honest party. When an honest party
terminates ΠSh2tZero, S will either learn this honest party’s degree-2t shares of zero distributed by this
dealer or the ShareProof against this dealer.

2: For each honest dealer D, S samples corrupted parties’ degree-2t shares of zero and simulates ΠSh2tZero

as follows:
(1). S randomly samples degree-2t row polynomials f

(i)
ℓ (x), f̄

(i)
ℓ (x) and degree-t+(t−1)/2 column poly-

nomials g
(i)
ℓ (y), ḡ

(i)
ℓ (y) for each corrupted party Pi based on his shares. Then S sends f

(i)
ℓ (x), f̄

(i)
ℓ (x)

for all ℓ ∈ [L] to Pi on behalf of D.
(2). For each corrupted party Pi, S honestly simulates the random oracle H(·) to get Pi’s

{cm-row(i)
j }n

j=1, {cm-col(i)
ℓ }L

ℓ=1.
(3). For each honest party Pi and the index j where Pj is corrupted, S computes cm-row(i)

j as follows:
S sets:

f (i)
∗ (αj) = (H(g(j)

1 (αi), ḡ
(j)
1 (αi)), . . . , H(g(j)

L (αi), ḡ
(j)
L (αi)))

Then S follows the protocol to compute cm-row(i)
j . For the rest of index j when Pj is honest,

S randomly samples a vector of values as f
(i)
∗ (αj) and computes cm-row(i)

j accordingly. S also
randomly samples values as each honest party Pi’s {cm-col(i)

ℓ }L
ℓ=1. For each node in the Merkle

trees and the commitments, if any value has been mapped to some inputs queried by A previously,
S aborts the simulation. Then S reliably broadcasts these commitments on behalf of D.

(4). For each corrupted party Pj , S computes (f (i)
ℓ (αj), f̄

(i)
ℓ (αj)) = (g(j)

ℓ (αi), ḡ
(j)
ℓ (αi)) and sends them

to Pj on behalf of each honest party Pi.
(5). For each honest party Pi, when his row polynomials are delivered, S considers Pi accepts his row

polynomials and sends support to all parties.
(6). For each honest party Pi, for f

(j)
ℓ (αi), f̄

(j)
ℓ (αi) which Pi received from corrupted Pj , S follows the

protocol to check whether it is correct. For the sharings Pi received from honest Pj , S directly
considers it to be correct. When Pi receives t + (t + 1)/2 distinct Pj ’s correct f

(j)
ℓ (αi), f̄

(j)
ℓ (αi), S

considers Pi has reconstructed the column polynomial.
(7). S follows the protocol for each honest party for the termination procedure.

3: In Step 2, S honestly simulates Facs and learns a set D of size 2t + 1.
4: In Step 4, according to the analysis in Appendix C.5, for each output wire [oℓ,k]2t = [oH

ℓ,k]2t + [oCorr
ℓ,k]2t,

S can compute corrupted parties’ shares of [oH
ℓ,k]2t. For [oCorr

ℓ,k]2t, S only learns the shares of honest
parties that successfully terminate all executions of ΠSh2tZero led by corrupted parties in D.

Simulator SFaultLoc

Simulation of ΠfaultLoc

For each corrupted Pking, S does the following things:
(1). For each honest dealer, S randomly samples a degree-(2t, t+(t−1)/2) bivariate polynomial Fℓ(x, y)

based on corrupted parties’ row and column polynomials and degree-2t Shamir sharings of zero. S
also randomly samples degree-(2t, t + (t − 1)/2) bivariate polynomials F̄ℓ(x, y) based on corrupted
parties’ row and column polynomials. Then S computes each honest party Pi’s degree-(t+(t−1)/2)
column polynomials g

(i)
ℓ (y), ḡ

(i)
ℓ (y). For each corrupted dealer, S uses g

(i)
ℓ (y), ḡ

(i)
ℓ (y) he received from

the dealer. S checks whether these shares have been queried by A during the simulation of random
oracle, if true, S aborts the simulation. Otherwise, S follows the protocol to send g

(i)
ℓ (y), ḡ

(i)
ℓ (y) or

ShareProof to Pking on behalf of each honest party Pi.
(2). For the degree-t Shamir sharings, S randomly samples the whole ([aℓ]t, [bℓ]t, [rℓ]t) based on shares

of corrupted parties. For each honest party, if his output of FACSS-id is not (Corrupt, D), S computes
and sends this honest party’s degree-t Shamir sharings to Pking.

(3). For each honest dealer, when corrupted Pking asks Random Oracle H(·) to verify the commitment
cm-col(i)

ℓ on honest party Pi’s degree-2t Shamir sharings g
(i)
ℓ (β∗), ḡ

(i)
ℓ (β∗), S sends the commitment

cm-col(i)
ℓ he randomly sampled during ΠSh2tZero to Pking as the output of Random Oracle H(·).

(4). S honestly executes each honest party and waits to receive the identity of the corrupted party and
valid proof from Pking.

For each honest Pking, S does the following things:
(1). S executes the following two things in parallel:

• For each corrupted dealer Pc who distributes degree-2t Shamir sharings during SRandShareZero, S
has learnt the output of each honest party who terminates the ΠSh2tZero invoked by Pc. If at least
one honest party’s output is the ShareProof and this messages first delivered to Pking, S will send

70

this proof to all parties on behalf of Pking. Otherwise, S waits until Pking receives enough correct
column polynomials to generate SecretProof. According to the analysis of Termination property,
if the simulation of ΠtripleExt can never terminate due to corrupted dealers not terminating their
FACSS-id, then all honest parties will eventually receive their degree-2t shares in SRandShareZero. Then
S can eventually use these 2t + 1 honest parties’ shares to generate the SecretProof and send
it to all parties. Finally, S reliably broadcasts (Corrupt, 0, Pc) on behalf of Pking. Otherwise, S
follows the protocol to check which corrupted party Pc provides incorrect shares of [zidx]2t. Then
S randomly samples the whole ([aidx]t, [bidx]t, [ridx]t) based on shares of corrupted parties, sends
them as well as the rest of proof to all parties and reliably broadcasts (Corrupt, 0, Pc). For each
honest party who receives these degree-t Shamir sharings, S sends OK to all parties on behalf of
this honest party.

• When S receives (Proof, Pc) from a party Pi and (Corrupt, Pc) from FACSS-id, he reliably broad-
casts the identity of Pi and (Corrupt, 1, Pc) on behalf of Pking. S also sends (Corrupt, Pc) to all
parties on behalf of FACSS-id.

(2). S follows the protocol, honestly simulates Fba with each honest party Pi’s input bi and learns the
corrupted party all parties agree on.

Simulator S1

Simulation of ΠtripleDN

1: In the Preparation phase, S invokes SRandShare and SRandShareZero.
2: In each segment of the Generation phase:

– In Step 1, for each honest party, if S learns his output of FACSS-id is (Corrupt, D), S reliably broadcasts
(Proof, D) on behalf of this honest party. S also sends (Corrupt, D) to all parties on behalf of the
corresponding FACSS-id.

– In Step 2, S simulates each ΠtripleKingDN as follows:
(1). When each party Pi needs to send his share of [zℓ]2t to Pking, S first randomly samples the whole

[z′
ℓ]2t = [aℓ]t · [bℓ]t +[rℓ]t +[oH

ℓ]2t based on shares of corrupted parties. Then for each honest party
who has terminated ΠrandShareZero, S computes his shares of [zℓ]2t = [z′

ℓ]2t + [oCorr
ℓ]2t and sends it

to Pking. Finally, S honestly executes honest party Pi to sample ν(i) and simulates the random
oracle to sample τ (i).

(2). For each Pking:
∗ If Pking is honest and he first receives 2t + 1 shares of [zℓ]2t, S reconstructs the secret zℓ and

reliably broadcasts it on behalf of Pking. Otherwise, S follows the protocol to broadcast the
identity of a party.

∗ If Pking is corrupted, S waits to receive zℓ or the identity of a party from Pking.
(3). If S receives the secret zℓ on behalf of each party, he locally computes corrupted parties’ shares

of Beaver triples and records the additive error dℓ = zℓ − z′
ℓ. Otherwise, S learns the identity of

a party and waits to receive (Corrupt, D).
– In Step 3, S honestly simulates Facs and learns a set D of size 2t + 1. Then S follows the protocol to

check whether the output of ΠtripleKingDN led by each Pking ∈ D is the identity of a corrupted party:
• If true, S sends Public-Recon to FACSS-id on behalf of each honest party. Upon receiving t + 1

requests from all parties, S sends the secrets to all parties on behalf of FACSS-id. Then S follows the
protocol to update each honest party’s shares and simulates the current segment again.

• Otherwise, S proceeds.
– In Step 4, S first simulates ΠtripleVerify as follows:

• In Step 1, S first randomly samples the whole ([f (k)(αi)+a
(k)
i]t, [g(k)(αi)+b

(k)
i]t) based on shares of

corrupted parties. Then S invokes SSubCktEval with the whole sharings {[f (k)(αi) + a
(k)
i]t, [g(k)(αi) +

b
(k)
i]t}i∈[N′+1,2N′],k∈[2t+1] to do public reconstruction:
∗ If S learns that all parties agree on a corrupted dealer during SSubCktEval, S sends Public-Recon

to FACSS-id invoked by this dealer on behalf of each honest party. When S receives t+1 requests,
S sends this corrupted dealer’s secrets to all parties on behalf of FACSS-id and locally updates
each honest party’s shares. Then S invokes SSubCktEval again.

∗ Otherwise, S proceeds.
Finally, for all i ∈ [0, 2N ′], k ∈ [2t + 1], S follows the protocol to compute corrupted parties’ shares
of [h(k)(αi)]t. S computes a degree-2N ′ polynomial d(k)(·) such that d(k)(αi) = d

(k)
i .

• In Step 2, S sends requests to Fcoin on behalf of each honest party. Then S randomly samples a
value r and sends it to all parties on behalf of Fcoin. If r ∈ [α1, . . . , αN′], S aborts the simulation.
Then for all k ∈ [2t + 1], S first randomly samples value f (k)(r), g(k)(r), then computes h(k)(r) =

71

f (k)(r) · g(k)(r) + d(k)(r) and randomly samples the whole ([f (k)(r)]t, [g(k)(r)]t, [h(k)(r)]t) based on
the secrets (f (k)(r), g(k)(r), h(k)(r)) and shares of corrupted parties. Finally, S invokes SSubCktEval

with the whole ([f (k)(r)]t, [g(k)(r)]t, [h(k)(r)]t) to do public reconstruct as above.
• In Step 3, S follows the protocol to determine each honest party’s output. For each k ∈ [2t + 1], if

f (k)(r) ·g(k)(r) = h(k)(r) but d(k)(·) ̸≡ 0, S aborts the simulation. Otherwise, S computes corrupted
parties’ shares of Beaver triples.

– In Step 4, after the simulation of ΠtripleVerify. If S learns that at least t+1 distinct kings in D provides
correct Beaver triples, S follows the protocol and proceeds. Otherwise, S invokes SFaultLoc for the first
t + 1 kings in D who generate incorrect Beaver triples. Then S follows the protocol to simulates n
instances of Fba and eventually agree on a corrupted party Pk:
• If Pk has distributed degree-t Shamir sharings, S sends Pubic-Recon to FACSS-id invoked by Pk on

behalf of each honest party. Then S sends Pk’s secrets to all parties on behalf of FACSS-id. Then S
locally updates each honest party’s shares.

• If Pk has distributed degree-2t Shamir sharings of zero, S locally changes each honest parties’
degree-2t shares of zero with 0.

Then S simulates the current segment again.

Simulator STriple

Simulation of Πtriple

1: S invokes S0 and S1 in parallel.
2: S honestly simulates Fba and learns the output b. Then S outputs shares of corrupted parties he

computed during Sb.

Simulator S

Let Corr denote the set of corrupted parties, then |Corr| = t′ ≤ t. Let Corr′ be the set of all corrupted
parties together with the first t − t′ honest parties, then |Corr′| = t.
Simulation of Πmain-GOD

1: In the offline phase, S invokes STriple and learns corrupted parties’ shares of Beaver triples. For each
honest party in Corr′ \ Corr, S randomly samples values as his shares of Beaver triples. S also learns
which honest party does not get his shares but an ACSS proof during STriple.

2: In the online phase, S does the following things:
– In Step 1, S simulates FACSS-id as follows:

• For each honest dealer, S randomly samples shares of parties in Corr′.
• For each corrupted dealer, S waits to receive degree-t Shamir sharings and learns the identity of

the honest party whose output is (Corrupt, D). S uses these degree-t Shamir sharing to compute
the shares of honest parties in Corr′.

– In Step 2, S honestly simulates Facs and learns a set D of size 2t + 1.
– In Steps 3 and 4, for each sub-circuit Ck and k ∈ [t], S invokes SSubCktEval with shares of parties in

Corr′ for Ck:
• If S learns that all parties agree on a corrupted dealer during SSubCktEval, S sends Public-Recon to

FACSS-id invoked by this dealer on behalf of each honest party. When S receives t + 1 requests, S
sends this corrupted dealer’s secrets to all parties on behalf of FACSS-id. Then S updates each honest
party’s shares distributed by this corrupted dealer with secrets. Finally, S invokes SSubCktEval again.

• Otherwise, S proceeds.
– In Step 5, For all parties in Corr′ and output wires [y]t, after getting their shares of output [y]t, S

sends the inputs of corrupted parties and the set D to FAMPC and receives the output y. Then S
computes the whole [y]t based on the secret y and shares of parties in Corr′ and honestly follows the
protocol to invoke SSubCktEval.

3: S outputs the views of A.

We use the following hybrid arguments to show that the output distribution in the ideal and real
world is computationally indistinguishable.

Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, when S simulates FACSS-id on behalf of honest dealers, S first randomly samples

corrupted parties’ shares and then generates the whole sharings based on shares of corrupted parties and

72

the secrets. According to the property of Shamir sharing, the distribution of the whole sharing is the
same. Therefore, the distributions of Hyb1 and Hyb0 are identical.

Hyb2: In the following, we focus on the simulation of ΠtripleExt:
Hyb2.1: In this hybrid, we delay the generation of honest parties’ degree-t Shamir sharings until the

set D is determined. After S learns the set D of size L, S does not generate honest parties’ Shamir
sharings distributed by each honest dealer not in D. Since these Shamir sharings are never used, the
distributions of Hyb2.1 and Hyb1 are identical.

Hyb2.2: In this hybrid, for each honest dealer Pi ∈ D, we change the generation of {[fi(α0)]t, [gi(α0)]t, [hi(α0)]t}.
In Hyb2.1, [fi(r)]t is the linear combination of {[fi(αℓ)]t}N ′

ℓ=0. If r /∈ {α1, . . . , αN ′}, the coefficient of
[fi(α0)]t is non-zero. Then [fi(α0)]t is also the linear combination of {[fi(αℓ)]t}N ′

ℓ=1 and [fi(r)]t. So we
first randomly sample [fi(r)]t and then recompute [fi(α0)]t. We do the same thing for [gi(α0)]t. Then S
computes the secret hi(α0) = fi(α0)·gi(α0) and randomly samples the whole [hi(α0)]t based on the secret
and shares of corrupted parties. The distributions of {[fi(α0)]t, [gi(α0)]t, [hi(α0)]t} remain unchanged,
so the distributions of Hyb2.2 and Hyb2.1 are identical.

Hyb2.3: In this hybrid, for each honest dealer Pi ∈ D, we change the generation of [hi(r)]t. In Hyb2.2,
[hi(r)]t is the linear combination of {[hi(αℓ)]t}2N ′

ℓ=0. If r /∈ {α1, . . . , αN ′}, at least one coefficient of [hi(α0)]t
and {[hi(αℓ)]t}2N ′

ℓ=N ′+1 is non-zero. To be more concrete, if r = αk, where k ∈ {0} ∪ {N ′ + 1, . . . , 2N ′},
then [hi(r)]t = [hi(αk)]t and S can randomly samples [hi(r)]t based on the secret hi(r) = fi(r) ·gi(r) and
shares of corrupted parties. If r /∈ {α0, . . . , α2N ′}, then we know the coefficient of [hi(α0)]t is non-zero
and S can first randomly sample [hi(r)]t as above and recompute [hi(α0)]t by the linear combination
of [hi(r)]t and {[hi(αℓ)]t}2N ′

ℓ=1. The distribution of [hi(r)]t and {[hi(αℓ)]t}2N ′

ℓ=0 remain unchanged, so the
distributions of Hyb2.3 and Hyb2.2 are identical.

Hyb2.4: In this hybrid, for each corrupted dealer Pi ∈ D. If r /∈ {α1, . . . , αN ′}, hi ̸= fi · gi but
hi(r) = fi(r) · gi(r), S aborts the simulation. By the Schwartz-Zipple lemma, the probability is at most

2N ′n
2κ−N ′ , which is negligible in the security parameter κ. Thus, the distributions of Hyb2.4 and Hyb2.3
are statistically close.

Hyb2.5: In this hybrid, for each honest dealer in D, we change the generation of honest parties’ degree-
t Shamir sharings [a(k)

i]t, [b(k)
i]t as follows. At a high level, S will first randomly samples [f (k)(·)]t, [g(k)(·)]t

and then computes [a(k)
i]t, [b(k)

i]t. To be more concrete,
Let D = {Pj1 , . . . , PjL

} and D′ = {Pj1 , . . . , PjL′+1}, then for each corrupted dealer Pji
∈ D:

– If Pji ∈ D′, set [f (k)(αi)]t = [a(k)
i]t.

– If Pji /∈ D′, S first uses corrupted parties’ shares of {[f (k)(αi)]t}i∈D′ to compute their shares of
{[f (k)(αi)]t}i∈D\D′ , then randomly samples [f (k)(αi)]t based on shares of corrupted parties.

S computes corrupted parties’ shares of [f (k)(βj)]t for all j ∈ [(L + 1)/2 − t], k ∈ [N ′] by the linear
combination of {[f (k)(αi)]t}i∈D′ . Then S randomly samples the whole [f (k)(βj)]t based on shares of
corrupted parties. Finally, S randomly samples a degree-L′ polynomial f (k)(·) based on (L + 1)/2 − t
points f (k)(βj) and corrupted party Pji ’s f (k)(αi).

With f (k)(·), for each honest dealer Pji ∈ D:

– If Pji
∈ D′, set [a(k)

i]t = [f (k)(αi)]t.
– If Pji

/∈ D′, randomly sample [a(k)
i]t based on shares of corrupted parties.

We do the same thing for [b(k)
i]t. Then S computes c(k)

i = a
(k)
i ·b(k)

i and randomly samples the whole [c(k)
i]t

based on the secret c(k)
i and shares of corrupted parties. Similar to the previous analysis in Appendix C.5,

the distributions of Hyb2.5 and Hyb2.4 are identical.
Hyb2.6: In this hybrid, for all i ∈ [L′ + 2, L] where Pji

is honest dealer, S first randomly samples
[f (k)(αi) + a

(k)
i]t, [g(k)(αi) + b

(k)
i]t based on shares of corrupted parties. Then S computes [a(k)

i]t =
[f (k)(αi) + a

(k)
i]t − [f (k)(αi)]t, [b(k)

i]t = [g(k)(αi) + b
(k)
i]t − [g(k)(αi)]t. The distributions of Hyb2.6 and

Hyb2.5 are identical.
Hyb2.7: In this hybrid, for all i ∈ [L′+2, L] where Pji

is corrupted dealer, S first randomly samples val-
ues as f (k)(αi)+a(k)

i , g(k)(αi)+b(k)
i , then computes f (k)(αi) = f (k)(αi)+a(k)

i −a(k)
i , g(k)(αi) = g(k)(αi)+

b
(k)
i − b

(k)
i and randomly samples the whole [f (k)(αi)]t, [g(k)(αi)]t based on the secrets f (k)(αi), g(k)(αi)

and shares of corrupted parties. The distributions of Hyb2.7 and Hyb2.6 are identical.

73

Hyb2.8: In this hybrid, we further change the generation of honest parties’ degree-t Shamir sharings
[c(k)

i]t as follows. At a high level, S will first randomly samples [h(k)(·)]t and then computes [c(k)
i]t. To

be more concrete,
For each corrupted dealer Pji ∈ D:

– If Pji ∈ D′, set [h(k)(αi)]t = [c(k)
i]t.

– If Pji
/∈ D′, S computes h(k)(αi) = f (k)(αi) · g(k)(αi) and randomly samples the whole [h(k)(αi)]t

based on the secret h(k)(αi) and shares of corrupted parties.

S computes corrupted parties’ shares of {[h(k)(βj)]t}(L+1)/2−t
j=1 by the linear combination of {h(k)(αi)}i∈D.

Then S randomly samples the whole [h(k)(βj)]t for all j ∈ [(L + 1)/2 − t] based on share of corrupted
parties and secrets h(k)(βj) = f (k)(βj) · g(k)(βj). Finally, S computes h(k)(αi) = f (k)(αi) · g(k)(αi) and
randomly samples [h(k)(αi)]t based on h(k)(αi) and shares of corrupted parties for the first (L−1)/2+t−t′
honest dealers Pji ∈ D. With these L degree-t Shamir sharings, S interpolates the whole [h(k)(·)] and
computes each honest dealer Pji ’s [c(k)

i]t as follows:

– If Pji ∈ D′, set [c(k)
i]t = [h(k)(αi)]t.

– If Pji
/∈ D′, S computes [c(k)

i]t = [h(k)(αi)]t−(f (k)(αi)+a(k)
i)(g(k)(αi)+b(k)

i)+(f (k)(αi)+a(k)
i)[b(k)

i]t+
(g(k)(αi) + b

(k)
i)[a(k)

i]t.

Similar to the previous analysis in Appendix C.5, the distributions of Hyb2.8 and Hyb2.7 are identical.
Hyb2.9: In this hybrid, for each honest dealer in D, we no longer generate honest parties’ sharings

since they are never used. The distributions of Hyb2.9 and Hyb2.8 are identical.
Hyb3: In the following, we focus on the simulation of ΠrandShareZero:
Hyb3.1: In this hybrid, during the ΠSh2tZero, for each honest dealer, S first randomly samples cor-

rupted parties’ degree-2t row and degree-(t+ (t− 1)/2) column polynomials, then randomly samples the
whole degree-(2t, t+ (t− 1)/2) bivariate polynomials based on corrupted parties’ row, column polynomi-
als and the input degree-2t Shamir sharings of zero. According to the property of Shamir sharings, the
distributions of Hyb3.1 and Hyb2.9 are identical.

Hyb3.2: In this hybrid, during the ΠSh2tZero, when the dealer is honest, we delay the generation of
honest parties’ row and column polynomials until the commitment is computed. For each honest party
Pi:

– For each party Pj , if Pj is honest party, S randomly samples a vector of values as f
(i)
∗ (αj) and com-

putes cm-row(i)
j accordingly. Otherwise, S uses corrupted party Pj ’s column polynomial to compute

Pi’s f (i)
ℓ (αj), f̄ (i)

ℓ (αj) for all ℓ ∈ [L], then S follows the protocol to get cm-row(i)
j .

– S randomly samples values as Pi’s cm-col(i)
ℓ .

Upon generating all cm-row(i)
j , cm-col(i)

ℓ for all honest party Pi, S additionally checks whether these
values have been mapped to some inputs queried by A, if true, S aborts the simulation. For honest
dealer and each honest Pi’s cm-row(i)

j , S samples 2L− 1 randomly values for the Merkle tree. Then there
are (2L− 1)(2t+ 1)2 values in total. For cm-col(i)

ℓ , there are L(2t+ 1)2 values in total. Assuming that A
can query poly(κ) times, the probability of collision is at most:

(3L− 1)(2t+ 1)2

2κ − poly(κ) − (3L− 1)(2t+ 1)2 ≤ poly(κ)
2κ − poly(κ)

which is negligible in the security parameter. The distributions of Hyb3.2 and Hyb3.1 are computation-
ally indistinguishable.

Hyb3.3: In this hybrid, during the ΠSh2tZero, when the dealer is honest, we further delay the gener-
ation of honest parties’ row and column polynomials until the termination procedure. When an honest
party Pi needs to send {f (i)

ℓ (αj), f̄ (i)
ℓ (αj)} to corrupted party Pj , S computes {f (i)

ℓ (αj), f̄ (i)
ℓ (αj)} =

{g(j)
ℓ (αi), ḡ(j)

ℓ (αi)} and sends them to Pj on behalf of Pi. For each honest party Pi, when he receives
{g(j)

ℓ (αi), ḡ(j)
ℓ (αi)} from honest Pj , S directly consider it is correct. When he receives them from cor-

rupted party Pj , S follows the protocol to check whether it is correct. When Pi receives t+(t+1)/2 correct

74

{g(j)
ℓ (αi), ḡ(j)

ℓ (αi)}, S considers Pi has reconstructed his column polynomials. Note that when corrupted
parties send incorrect shares to an honest party, since the probability that A can find a second pre-image
which can cause collision is negligible in the security parameter κ, S can detect it with overwhelming
probability. Thus, the distributions of Hyb3.3 and Hyb3.2 are computational indistinguishable.

Hyb3.4: In this hybrid, during the ΠrandShareZero, for each honest dealer in D, S delays the generation
of honest parties’ row and column polynomials until the set D is determined. For each honest dealer
not in D, S does not generate honest parties’ row and column polynomials. Since these honest parties’
column and row polynomials have not been used so far, the distributions of Hyb3.4 and Hyb3.3 are
identical.

Hyb3.5: In this hybrid, let H be the set of the honest parties in D and H′ be the set of the first
t + 1 parties in H, we change the generation of honest parties’ sharings for dealers in H′. Recall that
{[oℓ,j]2t}t+1

j=1 = [oH
ℓ]2t + [oCorr

ℓ]2t, since M is a Vandermonde matrix, there is a one to one map between
[oH

ℓ]2t and {[o(i)
ℓ]2t}i∈H′ . We first randomly sample [oH

ℓ]2t based on shares of corrupted parties and then
compute {[o(i)

ℓ]2t}i∈H′ . This does not change the distribution of [oH
ℓ]2t, {[o(i)

ℓ]2t}i∈H′ , so the distributions
of Hyb3.5 and Hyb3.4 are identical.

Hyb4: In the following, we focus on the simulation of ΠrandSh:
Hyb4.1: In this hybrid, for each honest dealer, S first randomly samples shares of corrupted par-

ties, then randomly samples the whole degree-t Shamir sharings based on shares of corrupted parties.
According to the property of Shamir sharings, the distributions of Hyb4.1 and Hyb3.5 are identical.

Hyb4.2: In this hybrid, for each honest dealer in D, S delays the generation of honest parties’ sharings
until the set D is determined. For each honest dealer not in D, S does not generate honest parties’
sharings. Since these honest parties’ sharings have not been used so far, the distributions of Hyb4.2 and
Hyb4.1 are identical.

Hyb4.3: In this hybrid, let H be the set of the first t+1 honest parties in D, we change the generation
of honest parties’ sharings for dealers in H. Since M is a Vandermonde matrix, any (t + 1) × (t + 1)
sub-matrix of M is invertible, then for all ℓ ∈ [N ′], given shares of {[s(i)

ℓ]t}i/∈H, there is a one to one map
between {[rℓ,i]t}t+1

i=1 and {[s(i)
ℓ]t}i∈H. We first randomly sample {[rℓ,i]t}t+1

i=1 based on shares of corrupted
parties and then compute {[s(i)

ℓ]t}i∈H. Since this does not change the distribution of {[rℓ,i]t}t+1
i=1 and

{[s(i)
ℓ]t}i∈H, the distributions of Hyb4.3 and Hyb4.2 are identical.
Hyb4.4: In this hybrid, for each honest dealer in D, we no longer generate honest parties’ degree-t

Shamir sharings. Since they are never used in the simulation, the distributions of Hyb4.4 and Hyb4.3
are identical.

Hyb5: In the following, we focus on the simulation of ΠtripleDN:
Hyb5.1: In this hybrid, we change the generation of each secret r(i,j)

ℓ by letting S first randomly
sample a random value as a(i,j)

ℓ · b(i,j)
ℓ +r

(i,j)
ℓ , then compute r(i,j)

ℓ = a
(i,j)
ℓ · b(i,j)

ℓ +r
(i,j)
ℓ −a

(i,j)
ℓ · b(i,j)

ℓ . This
does not change the distribution of {[a(i,j)

ℓ]t, [b(i,j)
ℓ]t, [r(i,j)

ℓ]t}, the distributions of Hyb5.1 and Hyb4.4
are identical.

Hyb5.2: In this hybrid, during the ΠtripleKingDN, recall that each [oℓ]2t can be rewritten as [oℓ]2t =
[oH

ℓ]2t +[oCorr
ℓ]2t, where [oH

ℓ]2t is randomly sampled based on the secret 0 and shares of corrupted parties
in Hyb5.1. Here we change the generation method of [oH

ℓ]2t. S first computes corrupted parties’ shares of
[z′

ℓ]2t = [aℓ]t · [bℓ]t + [rℓ]t + [oH
ℓ]2t, then randomly samples the whole [z′

ℓ]2t based on the secret aℓ · bℓ + rℓ

and shares of corrupted parties. Finally, S computes [oH
ℓ]2t = [z′

ℓ]2t − [aℓ]t · [bℓ]t − [rℓ]t. This does not
change the distribution of [oH

ℓ]2t, so the distributions of Hyb5.2 and Hyb5.1 are identical.
Hyb5.3: In this hybrid, we delay the generation of honest parties’ shares of ([aℓ]t, [bℓ]t, [rℓ]t) until the

set D is determined. When an honest party who terminates ΠrandShareZero needs to send his shares of
[zℓ]t to Pking, S computes this party’s shares of [zℓ]t by [z′

ℓ]t + [oCorr
ℓ]2t. The distributions of Hyb5.3 and

Hyb5.2 are identical.
Hyb5.4: In this hybrid, we change the way of sampling [rℓ]t. If Pking first receives 2t + 1 shares of

[zℓ]2t and succeeds in broadcasting the secret zℓ, S follows the protocol to compute corrupted parties’
shares of [cℓ]t, then randomly samples the whole [cℓ]t based on the shares of corrupted parties and secret
cℓ = aℓ · bℓ + zℓ − z′

ℓ. Finally, S computes [rℓ]t = zℓ − [cℓ]t. This does not change the distribution of [rℓ]t,
the distributions of Hyb5.4 and Hyb5.3 are identical.

Hyb5.5: In this hybrid, we no longer generate honest parties’ shares of [oℓ]2t since they are never
used. The distributions of Hyb5.5 and Hyb5.4 are identical.

75

Hyb6: In the following, we focus on the simulation of each ΠtripleVerify in ΠtripleDN:
Hyb6.1: In this hybrid, let d(k)(·) be defined as above. Then d = h−f ·g. If r /∈ {α1, . . . , αN }, d ̸≡ 0 and

d(r) = 0, S aborts the simulation. By the Schwartz-Zipple lemma, the probability is at most 2Nn
2κ−N , which

is negligible in the security parameter κ. Thus, the distributions of Hyb6.1 and Hyb5.5 are statistically
close.

Hyb6.2: In this hybrid, we delay the generation of ([a(k)
i]t, [b(k)

i]t) for all k ∈ [2t+1], i ∈ [N ′ +1, 2N ′]:
For [a(k)

i]t, [b(k)
i]t, S first follows the protocol to compute corrupted parties’ shares of [f (k)(αi) +

a
(k)
i]t, [g(k)(αi)+b

(k)
i]t for all k ∈ [2t+1], i ∈ [N ′ +1, 2N ′]. Then S randomly samples values as f (k)(αi)+

a
(k)
i , g(k)(αi) + b

(k)
i and recomputes a(k)

i , b
(k)
i . Finally S randomly samples the whole [a(k)

i]t, [b(k)
i]t based

on the secrets a(k)
i , b

(k)
i and shares of corrupted parties.

To compute [c(k)
i]t, S first computes c(k)

i = a
(k)
i · b(k)

i + d
(k)
i and then samples the whole [c(k)

i]t based
on the secret c(k)

i and shares of corrupted parties. The distributions of ([a(k)
i]t, [b(k)

i]t, [c(k)
i]t) remain

unchanged, so the distributions of Hyb6.2 and Hyb6.1 are identical.
Hyb6.3: In this hybrid, we delay the generation of ([c(k)

i]t) for all k ∈ [2t+1], i ∈ [N ′ +1, 2N ′]. S first
follows the protocol to compute corrupted parties’ shares of [h(k)(αi)]t, then randomly samples the whole
[h(k)(αi)]t based on the secret h(k)(αi) = f (k)(αi) · g(k)(αi) + d(k)(αi) and shares of corrupted parties.
Finally S computes [c(k)

i]t = [h(k)(αi)]t − (f (k)(αi) + a
(k)
i) · (g(k)(αi) + b

(k)
i) + (f (k)(αi) + a

(k)
i)[b(k)]t +

(g(k)(αi) + b
(k)
i)[a(k)]t. The distributions of Hyb6.3 and Hyb6.2 are identical.

Hyb6.4: In this hybrid, we change the generation of ([a(k)
0]t, [b(k)

0]t, [c(k)
0]t). If r /∈ {α1, . . . , αN ′}, f (k)(r)

is a linear combination of {f (k)(αi)}N ′

i=0 and the coefficient of f(α0) = a0 is non-zero. Then f(α0) also can
be computed by the linear combination of {f (k)(αi)}N ′

i=1 and f (k)(r). We let S first compute corrupted
parties’ shares of [f (k)(r)]t by the linear combination of {[f (k)(αi)]t}N ′

i=0, then randomly samples the whole
[f (k)(r)]t based on shares of corrupted parties. S does the same thing to generate [g(k)(r)]t. Finally, S
computes [a(k)

0]t, [b(k)
0]t by the linear combination of {[f (k)(αi)]t, [g(k)(αi)]t}N

i=1 and {[f (k)(r)]t, [g(k)(r)]t}.
S also computes c(k)

0 = a
(k)
0 · b(k)

0 + d
(k)
0 and randomly samples the whole [c(k)

0]t based on the secret c(k)
0

and shares of corrupted parties. The distributions of Hyb6.4 and Hyb6.3 are identical.
Hyb6.5: In this hybrid, we change the generation of [h(k)(r)]t. When r ̸∈ {α0, . . . , α2N ′}, we let S

randomly sample [h(k)(r)]t based on the secret h(k)(r) = f (k)(r) ·g(k)(r)+d(k)(r) and shares of corrupted
parties. Since [h(k)(r)]t is a linear combination of {[h(k)(αi)]t}2N ′

i=0 and when r /∈ {α0, . . . , α2N ′}, the coeffi-
cient of [h(k)(α0)]t is non-zero. S computes [h(k)(α0)]t by a proper linear combination of {[h(k)(αi)]t}2N ′

i=1
and [h(k)(r)]t. Note that in Hyb6.4, [h(k)(r)]t is a random degree-t Shamir sharings given shares of
corrupted parties and the secret h(k)(r). The distributions of Hyb6.5 and Hyb6.4 are identical.

Hyb6.6: In this hybrid, we no longer generate honest parties’ shares of {[a(k)
0]t, [b(k)

0]t, [c(k)
0]t} ∪

{[a(k)
i]t, [b(k)

i]t, [c(k)
i]t}2N ′

i=N ′+1 since they are never used. The distributions of Hyb6.6 and Hyb6.5 are
identical.

Hyb7: In the following, we focus on the simulation of each ΠfaultLoc in ΠtripleDN:
Hyb7.1: In this hybrid, when Pking is corrupted, for each honest dealer D who distributes degree-2t

Shamir sharings of zero, we delay the generation of honest parties’ row and column polynomials until
now. For each honest party Pi who terminates ΠrandShareZero, S computes his columns g(i)

ℓ (y), ḡ(i)
ℓ (y)

distributed by D and sends them to Pking. When Pking queries the random oracle with honest party Pi’s
g

(i)
ℓ (β∗), ḡ(i)

ℓ (β∗), S returns the random value cm-coliℓ he sampled during ΠSh2tZero. If these values have
been previously queried by the corrupted parties, S aborts the simulation. Assuming that corrupted par-
ties can query the random oracle for poly(κ) times, for all honest dealers and all parties, the probability
of abortion is at most:

(2t+ 1) · n · N
n

· poly(κ)
2κ − poly(κ) ≤ N · n · poly(κ)

2κ − poly(κ)

which is negligible in the security parameter κ. Thus, the distributions of Hyb7.1 and Hyb6.6 are
computationally indistinguishable.

Hyb7.2: In this hybrid, we delay the generation of honest parties’ shares of ([aℓ]t, [bℓ]t, [rℓ]t). When
honest parties need to send their sharings to corrupted Pking, S randomly the whole ([aℓ]t, [bℓ]t, [rℓ]t) based
on shares of corrupted parties. Then S computes honest parties’ shares of ([aℓ]t, [bℓ]t, [rℓ]t) and sends

76

them to corrupted Pking. Since ([aℓ]t, [bℓ]t, [rℓ]t) are random degree-t Shamir sharings, the distributions
of Hyb7.2 and Hyb7.1 are identical.

Hyb7.3: In this hybrid, for honest Pking, S only samples ([aidx]t, [bidx]t, [ridx]t) when he needs to broad-
cast them on behalf of Pking. The distributions of Hyb7.3 and Hyb7.2 are identical.

Hyb8: In the following, we focus on the simulation of Πmain-GOD:
Hyb8.1: In this hybrid, in the input phase, for each honest dealer, after randomly sampling shares of

parties in Corr′, S delays the generation of the rest of honest parties’ shares until the set D is determined.
Since these honest parties’ shares are not used in the input phase, the distributions of Hyb8.1 and Hyb7.3
are identical.

Hyb8.2: In this hybrid, in the input phase, for each honest dealer not in D, S does not generate
shares of honest parties. Since these honest dealers’ sharings are never used, the distributions of Hyb8.2
and Hyb8.1 are identical.

Hyb8.3: In this hybrid, in the computation phase, S invokes SSubCktEval to simulate each ΠSubCktEval.
Similar to the analysis in Appendix C.8, the distributions of Hyb8.3 and Hyb8.2 are identical.

Hyb8.4: In this hybrid, S first computes y = f(x1, . . . , xn), then computes the whole [y]t based on
secret y and shares of parties in Corr′. For honest parties not in Corr′ \ Corr, we also no longer generate
their shares during each ΠSubCktEval since they are never used. The distributions of Hyb8.4 and Hyb8.3
are identical.

Hyb9: In this hybrid, for honest parties not in Corr′ \ Corr, we no longer generate their shares of
Beaver triples since they are never used. The distributions of Hyb9 and Hyb8.4 are identical.

Hyb10: In this hybrid, S sends the inputs of corrupted parties and the set D to FAMPC and receives
the output y. Since FAMPC computes y in the same way as S, S no longer needs honest parties’ inputs.
The distributions of Hyb10 and Hyb9 are identical.

Note that Hyb10 corresponds to the ideal world, then Πmain-GOD securely computes FAMPC.

77

	Concretely Efficient Asynchronous MPC from Lightweight Cryptography
	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Overview of Previous Approach and Our New Construction
	Our Solution for AMPC with Fairness
	From Security with Fairness to GOD

	Preliminaries
	Model
	Agreement Primitives
	Merkle Trees Commitments

	Achieving Malicious Security with Fairness
	Security with Abort ACSS
	Preparing Random Degree-t Shamir Sharings and Weak Public Reconstruction
	Preparing Random Beaver Triples with Additive Error
	Generating Beaver Triples without Additive Error
	Main Protocol for Malicious Security with Fairness

	From Security with Fairness to Guaranteed Output Delivery
	Security with Identifiable Abort ACSS
	Public Reconstruction and Sub-Circuit Evaluation
	Preparation of Beaver Triples
	Main Protocol for Malicious Security with GOD

	Reducing Field Size
	Conclusion
	Additional Preliminaries
	Definitions of Agreement Primitives
	Preparing Random Coin
	Shamir Secret Sharing Scheme

	Proofs of Our Malicious Secure ACSS Construction in the Random Oracle
	Proof for ACSS with Abort
	Cost Analysis
	Construction and Proof for ACSS with Identifiable Abort
	Cost Analysis

	Construction and Proofs of Malicious Security with Fairness AMPC
	Construction of randSh-Weak and Security Proof
	Construction of pubRec-Weak and Security Proof
	Construction of randShareZero-Weak
	Construction of tripleExt-Weak
	Proof of Lemma 2 and Costs Analysis
	Construction of tripleVerify-Weak
	Proof of Lemma 3 and Costs Analysis
	Construction of Main protocol

	Construction and Proofs of Malicious Security with GOD AMPC
	Construction of Public Reconstruction and Agreement
	Construction and Analysis of SubCktEval
	Construction of randSh and randShareZero
	Construction of tripleExt
	Construction of Triples Verification
	Construction of Detecting Corruptions
	Cost Analysis of tripleDN
	Construction of triple
	Construction and Security Proof of Main Protocol

