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Abstract

Homomorphic Encryption (HE) enables operations on encrypted data without requiring de-
cryption, thus allowing for secure handling of confidential data within smart contracts. Among
the known HE schemes, FHEW and TFHE are particularly notable for use in smart contracts
due to their lightweight nature and support for arbitrary logical gates. In contrast, other HE
schemes often require several gigabytes of keys and are limited to supporting only addition and
multiplication. As a result, there has been significant work implementing smart contract func-
tionalities over HE, broadening the potential applications of blockchain technology. However, a
significant drawback of the FHEW/TFHE schemes is the need for bootstrapping after the exe-
cution of each binary gate. While bootstrapping reduces noise in the ciphertext, it also becomes
a performance bottleneck due to its computational complexity.

In this work, we propose an efficient new bootstrapping method for FHEW/TFHE that
takes advantage of the flexible scaling factors of encrypted data. The proposed method is
particularly beneficial in circuits with consecutive XOR gates. Moreover, we implement Keccak
using FHEW/TFHE, as it is one of the most important functions in smart contracts. Our
experimental results demonstrate that the proposed method reduces the runtime of Keccak over
HE by 42%. Additionally, the proposed method does not require additional keys or parameter
sets from the key-generating party and can be adopted by the computing party without need
for any extra information.
Keywords. Homomorphic encryption, bootstrapping, cryptographic hash function

1 Introduction

Homomorphic Encryption.

Homomorphic encryption (HE) is a cryptographic technique that allows operations to be performed
on encrypted data without requiring decryption. Among HE schemes, those based on learning with
errors (LWE) are the strongest candidates. However, one limitation of these HE schemes is the
accumulation of noise in the ciphertext during operations, thus the message is usually separated
from the noise by multiplying it with a large value known as the scaling factor. Despite this, noise
accumulates during the evaluation of homomorphic circuits, increasing the likelihood of decryption
failure. To address this, Gentry introduced the bootstrapping technique, which allows for the
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construction of fully homomorphic encryption (FHE) systems capable of performing an unlimited
number of operations [Gen09].

Since Gentry’s breakthrough, various FHE schemes have been developed. Notable examples
include the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [BGV12] and the Brakerski-Fan-
Vercauteren (BFV) scheme [FV12], both are FHE over integers. Another prominent scheme is
CKKS [CKKS17], proposed by Cheon et al., which supports FHE over real numbers. Additionally,
the FHEW/TFHE and its variants [DM15, MP21, LMK+23, CGGI17, CGGI20] provide efficient
FHE for boolean (or larger) gate operations. Various libraries, such as SEAL [SEA23], TFHE-
rs [Zam22], and OpenFHE [Ope22], are available, facilitating the development of a wide range of
FHE applications.

Applications.

FHE has become a foundational cryptographic tool, applied in many fields such as secure multiparty
computation and private information retrieval. It is also actively being adopted in domains such
as artificial privacy-preserving intelligence and machine learning [LKL+22, CKK+23], as well as in
symmetric key cryptosystems like AES usually for the purpose of transciphering [GHS12, TCBS23]
and cryptographic hash functions like SHA256, for example, in the Zama bounty program.

While public blockchains offer high integrity and support a wide range of applications via smart
contracts, they suffer from a significant limitation: all data stored on the blockchain is publicly
accessible. HE, however, allows for computation on encrypted data, enabling smart contracts
to process confidential information while preserving privacy. This enhances the utility of smart
contracts for handling confidential data.

For example, extensive research is being conducted on fhEVM [DDD+23], which aims to execute
the Ethereum Virtual Machine (EVM), the environment for running smart contracts, using FHE.
In this context, FHEW/TFHE schemes play a crucial role due to their low memory requirements
and efficient handling of arbitrary boolean gate operations.

Our Contribution.

In this paper, we propose a novel circuit evaluation method for the FHEW/TFHE schemes by
flexibly adjusting the message scaling factor during its bootstrapping step. Our contributions are
summarized as follows:

1. Evaluation of symmetric gate with reduced failure probability: The proposed method
is particularly efficient in scenarios where consecutive X(N)OR gate operations are prevalent.
Such operations are commonly found in binary circuits, especially in cryptographic hash func-
tions like Keccak, SHA3. Our technique can be applied to a wide range of algorithms and
does not require additional key generation, thus imposing no extra burden on the client. In
FHEW/TFHE schemes, the first step of gate bootstrapping between two ciphertexts typi-
cally involves addition, subtraction, or multiplication by a constant, followed by functional
bootstrapping with gate evaluation. Our method optimizes this process for XOR gates by
replacing the initial step of subtracting two noisy ciphertexts and multiplying by a constant
with a simpler addition operation. By adjusting the message scaling factor during the func-
tional bootstrapping process, we reduce the noise introduced during these operations, thereby
lowering the failure probability of XOR gate operations. Importantly, this adjustment uses
only public information and does not require any additional computation.
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2. Overlapped bootstrapping: Cheon et al. [CCP+24] highlighted the relatively high com-
putational failure probability of FHEW/TFHE, which prevents it from achieving IND-CPAD

security (indistinguishability under chosen plaintext attack with decryption oracle). To mit-
igate this, parameter adjustments were made to reduce the failure probability to negligible
levels. Applying our technique in this context further reduces the failure probability without
sacrificing performance.

In response to these challenges, we propose a novel approach that allows multiple XOR gate
operations to be performed with a single bootstrapping operation, a technique we refer to as
overlapped bootstrapping. Empirical results show that the overlapped bootstrapping reduces
the runtime of circuits with consecutive XORs a lot, especially, it reduces the runtime of
Keccak256 up to 44%.

1.1 Organization

The rest of the paper is organized as follows. Section 2 presents the basics of lattice-based HE, prior
FHEW/TFHE bootstrapping methods, and the Keccak algorithm. Our proposed bootstrapping
method is detailed in Section 3. In Section 4, we provide implementation results and analyze
runtime performance. Finally, we conclude the paper in Section 5 with remarks.

2 Preliminaries

The inner product between two vectors is denoted by ⟨·, ·⟩, and the multiplication of two polynomials
is either denoted by a dot (·) or omitted depending on the context. Let the polynomial ring be
R = Z[X]/(XN + 1), where XN + 1 is the 2N -th cyclotomic polynomial for some power of two
N . We denote the residue ring of R modulo an integer Q as RQ = R/QR. Elements in RQ are
represented in bold, such as a ∈ RQ, and the i-th coefficient of the element a is denoted by ai.
Vectors are represented by −→v , and their i-th element is written as vi. We use x ← χ to indicate
that x is sampled from the distribution χ; x ← S denotes that x is uniformly sampled from a set
S.

2.1 Basic (Ring-)LWE Encryption

Let q and n be positive integers. We define LWE encryption as follows:

LWE−→s (m) = (−→a , b) = (−→a , ⟨−→a ,−→s ⟩+m+ e) ∈ Zn+1
q ,

where m ∈ Zq is the message, −→s ← χsk is the secret key, −→a ← Zn
q is a random vector, and e← χe

is the noise term. Note that χe is typically a discrete Gaussian distribution with variance σ2 and
zero mean, and χsk is typically chosen as B = {0, 1}, T = {−1, 0, 1}, or larger secret key sets.
We omit the subscript −→s when it is obvious. The decryption of the LWE ciphertext is defined as
follows:

LWE−1(−→c ,−→s ) = b− ⟨−→a ,−→s ⟩ = m+ e ≈ m,

where −→c = (−→a , b) ∈ Zn+1
q is the LWE ciphertext. Through this process, we can obtain a message

with some errors included.
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Ring-LWE (RLWE) encryption is an extension of LWE encryption to Rq, and we define RLWE
ciphertext of message m under secret s as follows:

RLWE(m) = (a, b) = (a,a · s+m+ e) ∈ R2
q ,

where m ∈ Rq is the message, s ∈ Rq is the secret key, a ∈ Rq is a polynomial with random
coefficients, and e ∈ Rq is the noise. Note that N is the degree of Rq, so the number of messages
in the RLWE scheme is N . Similar to LWE, we define RLWE decryption as follows:

RLWE−1(c, s) = b− a · s = m+ e ≈m,

where c = (a, b) ∈ R2
q is the RLWE ciphertext.

2.2 FHEW-like Cryptosystems

FHEW and TFHE are HE schemes that support homomorphic operations on boolean gates. In
FHEW/TFHE, the message is defined as m ∈ B, and the LWE encryption for FHEW/TFHE is
defined as follows:

LWE(m) = (−→a , b) = (−→a , ⟨−→a ,−→s ⟩+m ·∆+ e) ∈ Zn+1
q ,

where ∆ = q
4 is the scaling factor used for binary messages.

2.2.1 FHEW-like Bootstrapping.

Ducas and Micciancio first proposed an HE scheme with bootstrapping that operates in less than a
second and uses a small key size, called FHEW [DM15]. This bootstrapping process consists of three
main functions: accumulator initialization, blind rotation, and LWE extraction. The definitions of
each function are given as follows.

Accumulator Initialization. In FHEW/TFHE, the accumulator is defined as ACC← RLWE(h),
where the initial polynomial h is determined by a mapping function f satisfying f(v+ q

2) = −f(v).
Details about the mapping function are discussed in the blind rotation step.

Blind Rotation. The blind rotation is a core technique to refresh a high-noise ciphertext. This
involves performing a homomorphic multiplication of the monomial Xu on the previously defined
accumulator, where u = −⟨−→a ,−→s ⟩. After this process, the constant term of the accumulator is
f(b− ⟨−→a ,−→s ⟩) = f(m+ e), and the result is encrypted in RLWE. To refresh the noise, f is defined
as the decryption function. In FHEW/TFHE, different f functions are defined for each boolean
gate, and they are called mapping functions. For example, the mapping function f for AND gate
is defined as follows:

f(m∗) =

{
q
8 if 3q

8 ≤ m∗ < 7q
8

− q
8 if − q

8 ≤ m∗ < 3q
8 ,

with ∆ = q
4 . The definition of the mapping function for all gate operations can be found in Table 1.
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Table 1: Boolean Gate Operations and Mappings [MP21]. Note that in [MP21], the mapping ranges
for the X(N)OR gate are set to [q/8, 5q/8) and [−3q/8, q/8). In this case, it must satisfy |e| < q

8 ;
however, if the range is set to [q/4, 3q/4) and [−q/4, q/4), it only needs to satisfy |e| < q

4 , making
it more efficient.

Gate Computation(⊙) maps to q
8 maps to − q

8

AND c1 + c2 [3q/8, 7q/8) [−q/8, 3q/8)
NAND c1 + c2 [−q/8, 3q/8) [3q/8, 7q/8)

OR c1 + c2 [q/8, 5q/8) [−3q/8, q/8)
NOR c1 + c2 [−3q/8, q/8) [q/8, 5q/8)

XOR 2(c1 − c2) [q/4, 3q/4) [−q/4, q/4)
XNOR 2(c1 − c2) [−q/4, q/4) [q/4, 3q/4)

LWE Extraction. The decrypted message, processed by homomorphic operations, is located in
the constant term of the RLWE polynomial after blind rotation. The process of extracting this
into LWE is called LWE extraction, and it can be performed without introducing additional noise.

Note that the function f used in the blind rotation step must satisfy f(v + q
2) = −f(v). To

meet this condition, we set the value of the function to q
8 and − q

8 . After the blind rotation step
and LWE extraction, to correct the scaling factor, we add q

8 to the LWE ciphertext, which is the
output of LWE extraction.

2.2.2 RLWE′ and RGSW.

The blind rotation generates significant noise because it involves homomorphic multiplication.
Therefore, we use variants of RLWE, called RLWE′ and RGSW, which utilize gadget decom-
position. Let g = (g0, g1, . . . , gℓ−1) denote the gadget vector, and (d0, . . . , dℓ−1) be the gadget
decomposition of d =

∑ℓ−1
i=0 digi, where ℓ = logB q is the gadget length. Now we can define RLWE′

as follows:

RLWE′(m) = (RLWE(g0m),RLWE(g1m), · · · ,RLWE(gℓ−1m)).

The RGSW encryption of m is defined as follows:

RGSW(m) = (RLWE′(−s ·m),RLWE′(m)).

The operations between RLWE and RGSW enable the multiplication of messages to be performed
with relatively small noise [DM15]. We denote this operation as RLWE⊗ RGSW.

2.2.3 Bootstrapping procedure.

We represent FHEW-like bootstrapping in Figure 1. To understand the FHEW-like bootstrapping
procedure, we define two new functions: ModSwitch and KeySwitch.

ModSwitch. ModSwitch, also known as modulus switching, is a function to switch modulus
such that modSwitch : ZQ −→ Zq. We define the modulus switching function as modSwitch(x) =⌊

q
Q · x

⌉
, where x ∈ Zq. modSwitch is naturally expended to LWE ciphertexts.
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(−→a1, b1) ∈ Zn+1
q

(−→a2, b2) ∈ Zn+1
q

⊙ (−→a3, b3) ∈ Zn+1
q (a1, b1) ∈ R2

Q

(a2, b2) ∈ R2
Q

(
−→
a′1, b

′
1) ∈ ZN+1

Q(
−→
a′2, b

′
2) ∈ ZN+1

Qks
(
−→
a′3, b

′
3) ∈ Zn+1

Qks

ACC Initialization

Blind Rotation

LWE Extraction

Mod SwitchingKey Switching

Mod Switching

Figure 1: This figure represents FHEW-like bootstrapping procedure. Note that this procedure is
expressed in the same manner as described in [MP21]. In practice, after LWE extraction, performing
the ⊙ operation followed by mod switching and key switching can further reduce the noise. Here,
the ⊙ operation is a predefined operation based on the gate operation that needs to be performed.
Detailed information on this can be found in Table 1.

KeySwitch. KeySwitch, also known as the key switching algorithm, performs a private key
change from LWE−→

s′
−→ LWE−→s . To perform this algorithm, one requires a key switching key,

denoted as KSKi,j,v, which is defined as KSKi,j,v := LWE−→s (vs
′
iB

j
ks), where v ∈ [0, Bks), i ∈ [0, N),

and j ∈ [0, dks). As a result, we compute (0, b) −
∑

i,j KSKi,j,ai,j , where LWE−→s (m) = (−→a , b),
yielding LWE−→s (m).

2.3 SHA3 and Keccak algorithm

SHA3 is the most recent member of the Secure Hash Algorithm family of standards by NIST in
2015. It is based on the Keccak algorithm [BDPVA13], which employs a novel method called
sponge construction. This construction deviates from previous SHA algorithms and is notable for
its reliance on boolean gate operations. Because of this feature, unlike prior SHA algorithms, it
is not susceptible to length-extension attacks and offers enhanced resilience against other types of
cryptographic attacks. We briefly describe the structure of Keccak, and for more comprehensive
details, we refer the readers to [BDPVA13].

2.3.1 The function Keccak-f.

The Keccak-f function is the core permutation function of the Keccak algorithm, which serves as
the foundation of SHA3. It operates on a fixed-size state and applies a sequence of invertible
transformations to produce a pseudo-random permutation. To enhance understanding, key terms
describing the state in detail are illustrated in Figure 2.

Let b represent the width of the state, where b = 25 · 2l for some l = 0, 1, . . . , 6. The state can
be represented as a three-dimensional array A[5][5][w], where w = 2l is the lane size. The Keccak-f
permutation of b consists of nr = 12 + 2l rounds. Each round:

1. Takes an input consisting of b = r+ c bits, where r and c represent the bit rate and capacity,
respectively.

2. Is composed of five steps: θ, ρ, π, χ, and ι.
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Figure 2: This figure shows various labels that represent the state, with the x and y axes each
having a size of 5x5, and the z axis having a size of 64, resulting in a total size of 1600 bits.

Theta(θ) Step. The θ step aims to achieve bit diffusion across the entire state. It can be broken
down into the following three steps:

• First, we compute C[x] for x = 0, 1, 2, 3, 4:

C[x] =
4⊕

y=0

A[x, y],

where A[x, y] refers to a w-bit lane in the state, and ⊕ denotes the bitwise XOR operation of
two w-bit operands.

• Next, we compute D[x] as follows:

D[x] = C[(x− 1) mod 5]⊕ rot(C[(x+ 1) mod 5], 1),

where rot(C[], 1) denotes a rotation of the operand by 1 bit along the z-axis.

• Finally, we apply D[x] to update the array A:

A[x, y] = A[x, y]⊕D[x].

Rho(ρ) and Pi(π) Step. The ρ and π steps work together to ensure diffusion:

• ρ: rotates each lane by a specific offset.

• π: rearranges the positions of lanes within the state.

These operations mix the bits across the entire state, enhancing the overall security of the hash
function. This can be represented as a single operation:

B[y, (2x+ 3y) mod 5] = rot(A[x, y], r[x, y]),

where x, y = 0, 1, 2, 3, 4 and r[x, y] is a predefined rotation constant for each lane.
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Chi(χ) Step. The Chi step introduces non-linearity:

A[x, y] = B[x, y]⊕ ((B̄[(x+ 1) mod 5, y]) ∧B[(x+ 2) mod 5, y]),

where B̄[i, j] denotes the bitwise complement of the lane at address [i, j], and ∧ is the bitwise AND
operation.

Iota(ι) Step. The ι step breaks symmetry by adding round constants:

A′[0, 0] = A[0, 0]⊕ RC[ir],

where RC[ir] is the round constant for round ir. Note that, since the round constant RC[ir] is a
known value, the XOR operation can be efficiently implemented using a NOT gate.

2.3.2 Sponge Construction.

The Keccak hash function utilizes the sponge construction with the Keccak-f permutation. The
process consists of two phases:

• Absorbing phase: The input message is padded and divided into r-bit blocks, which are
then operated XOR into the first r bits of the state, interleaved with applications of Keccak-f.

• Squeezing phase: The first r bits of the state are output as blocks, interleaved with appli-
cations of Keccak-f, until the desired output length is reached.

The sponge construction is described as:

Z = SPONGE[h,pad, r](M,d),

where h is the Keccak-f permutation, pad is the padding function, r is the bitrate, M is the input
message, and d is the desired output length. The padding function pad appends a 1 bit to the
message M , followed by as many 0 bits as necessary, and a final 1 bit to ensure the message length
is a multiple of r.

3 Overlapped Bootstrapping

In this section, we propose a variant of blind rotation that effectively optimizes circuits with con-
secutive XOR gate operations. The proposed method exploits the scaling factor of the message
in LWE encryption, while in previous works, the scaling factor ∆ is rather a fixed value (q/4) to
determine plaintext space. We take advantage of the fact that the mapping function f can be freely
set during blind rotation without incurring additional cost.

3.1 New Blind Rotation Technique

In Table 1, we present the operations and mapping ranges that define gate operations in previous
works [MP21, Ope22]. The operation to perform an XOR gate is defined as c0 ⊙ c1 = 2(c0 − c1).
This operation introduces larger noise because it involves multiplication by 2 after subtraction.
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We focus on the fact that the output of the XOR gate operation is symmetric, and many
algorithms, such as SHA3, are preplanned algorithms. In other words, this means that we can
know in advance when the XOR gate operation will be executed.

For the symmetric1 gate operations such as XOR and XNOR, by slightly adjusting the scaling
factor ∆ to q/2, the original operation between input LWE ciphertexts, c0⊙ c1 = 2(c0− c1), can be
modified to c0+c1. Unfortunately, we need to revert the scaling factor to q/4 for other binary gates,
and most circuits utilize various gate operations. To address this, we define a mapping function f∆
that allows for the free modification of the scaling factor, for example:

f∆(m
∗) =

{
∆
2 if 3q

8 ≤ m∗ < 7q
8

−∆
2 if − q

8 ≤ m∗ < 3q
8 .

The above equation is an example of a mapping function for AND gate, and we can find mapping
functions for other gates following to Table 1. For the blind rotation for any binary gates prior to
X(N)OR gate, we perform blind rotation with the mapping function fq/2 to set the scaling factor
to q/2. Then, before a gate other than X(N)OR, we perform blind rotation with the mapping
function fq/4 to revert the scaling factor to q/4. We refer to this technique as flexible scaling. Note
that this process does not introduce any extra computational costs, as the mapping function can
be freely set by the computing party during the blind rotation process.

3.1.1 Symmetric Result and Scaling Factor.

The result of the XOR and XNOR gate operations exhibits symmetry. When the scaling factor ∆
is q/4 instead of q/2, we can modify the ⊙ operation to c0 + c1. This reduces the variance of noise
by a factor of four. Therefore, in cases where X(N)OR gates are frequently used, we adjust the
scaling factor to q

2 instead of q
4 to gain performance advantages.

3.1.2 Noise Analysis and Failure Probability.

FHEW/TFHE will fail to decrypt if the noise does not satisfy |e| < q
8 or |e| < q

4 , where the
condition |e| < q

8 applies to AND and OR gate, and |e| < q
4 applies to the XOR gate. We can use

the complementary error function (erfc) to calculate the expected failure probability, which can

be expressed as erfc
(

q/8√
2σtotal

)
for AND and OR gates, and erfc

(
q/4√
2σtot

)
for the XOR gate. Here,

σtot is the standard deviation of the noise in ciphertext after bootstrapping:

σ2
tot = 2

(
q2

Q2
ks

(
Q2

ks

Q2
σ2
ACC + σ2

MS1 + σ2
KS

)
+ σ2

MS2

)
,

where σ2
ACC is the noise variance of blind rotation, σ2

MS1
and σ2

MS2
are the noise variance of modulus

switching, σ2
KS is the noise variance of key switching, and Qks is the key switching modulus. For

details regarding noise, we refer to [MP21] and [DM15].
For XOR gate in previous works, since the operation is defined as 2(c0 − c1) using the conven-

tional method, the total variance is defined as follows:

σ2
tot-XOR = 8

(
q2

Q2
ks

(
Q2

ks

Q2
σ2
ACC + σ2

MS1 + σ2
KS

)
+ σ2

MS2

)
.

1This means that if the number of ones is odd, the output is one; otherwise, the output is zero.
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Since 8 is multiplied, the variance itself is large, but as long as |e| < q
4 is satisfied, the failure

probability is the same as for other gate operations.
We propose to modify the scaling factor ∆ = q/2, and then the ⊙ is changed to c0 + c1, thus

the noise variance is reduced as follows:

σ2
tot-ours = 2

(
q2

Q2
ks

(
Q2

ks

Q2
σ2
ACC + σ2

MS1 + σ2
KS

)
+ σ2

MS2

)
,

which is equal to σ2
tot. However, the failure condition is reduced to |e| < q

4 for X(N)OR, and thus
has less failure probability.

We can delay the RLWE to LWE conversion, as suggested in [LMK+23], and can minimize
noise as:

σ∗2tot =

(
q2

Q2
ks

(
2
Q2

ks

Q2
σ2
ACC + σ2

MS1 + σ2
KS

)
+ σ2

MS2

)
.

3.1.3 Overlapped Operations and Flexible Scaling.

Previously, most HE libraries, including OpenFHE, used parameters with a manageable but not
particularly convenient failure probability. However, Cheon et al. demonstrated in [CCP+24] that
the failure probability, FP, must be negligibly small, and since then, the parameters have been
revised.

In the homomorphic evaluation of cryptographic hash functions like SHA3, it is crucial to
minimize the failure probability, as even a single bit of failure can trigger the avalanche effect,
drastically altering the final result and leading to unreliable outcomes. This is especially important
when using parameters that have relatively high failure probabilities (e.g., 2−40) in the past.

The proposed technique reduces the failure probability of the X(N)OR gate from erfc
(

q/4√
2σtot-XOR

)
to erfc

(
q/4√
2σtot

)
(or to erfc

(
q/4√
2σ∗tot

)
). When the failure probability is already sufficiently low, fur-

ther reduction is unnecessary.
Interpreting this situation from another perspective, it means that since the failure probability

has been reduced beyond what is necessary, there is no need to perform bootstrapping every time an
XOR gate operation is executed. We exploit here that addition is equivalent to XOR when ∆ = q

2 ,
thus functional bootstrapping is not required for gate evaluation, but only for noise reduction. The
proposed technique secures more noise margin by modifying the scaling factor, thus a functional
bootstrapping can be performed in a lazy manner.

In particular, when XOR gates are performed consecutively, we first set ∆ = q
2 . Instead of

performing bootstrapping after each XOR gate operation, we replace a sequence of XOR gate
operations with additions and perform bootstrapping in one step. We refer to this technique as
overlapped bootstrapping. The overlapped bootstrapping procedure is illustrated in Figure 3. In this
figure, four nested additions followed by a single bootstrapping with ∆ = q

2 replaces four individual
bootstrapping operations with ∆ = q

4 .
We apply flexible scaling in this process, although with a slight variation. Before performing an

XOR gate, we adjust the scaling factor to q/2. Before other gates, we use functional bootstrapping
to scale q/4. While performing consecutive X(N)OR gates but if the noise meets a certain bound,
we do functional bootstrapping with q/2 scaling to reduce the noise. We present a simple example
of flexible scaling in Figure 4.
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a

b c d e

f

Prior : f ←− FBS(2(e− FBS(2(d− FBS(2(c− FBS(2(a− b)))))))) where ∆ =
q

4

Overlapped : f ←− FBS(a+ b+ c+ d+ e) where ∆ =
q

2

Figure 3: This figure illustrates how sequential XOR gate operations are processed by the prior
technique and by our proposed overlapped bootstrapping, respectively. Here, FBS refers to the
bootstrapping function, which consumes a significant amount of computational resources. When
performing four XOR gate operations, the prior technique executes the 2(c1−c2) calculation followed
by bootstrapping after each gate operation. In contrast, overlapped bootstrapping performs the
calculation using (c1 + c2), resulting in relatively less noise, allowing it to operate with only one
bootstrapping.

FBS∆←q/4
FBS∆←q/4 FBS∆←q/4 FBS∆←q/4

FBS∆←q/2

FBS∆←q/2

i1

i2 i3 i4 i5 i6 i7 i8 i9

i10i11i12i13i14i15i16i17

∆ = q
2

∆ = q
4

∆ = q
2∆ = q

2

Figure 4: This figure shows how the flexible scaling is performed. Here, where FBS∆← q
2
(and

FBS∆← q
4
) refers to bootstrapping that uses a mapping function to set ∆ to q

2 (and q
4). Note that

to use overlapped bootstrapping, ∆ must be q
2 when performing the X(N)OR gate, and ∆ must be

q
4 when performing the other gates.

The XOR gate is simply replaced by an addition in overlapped bootstrapping. Hence, the
variance noise introduced by the evaluation of XOR of n ciphertexts is given as follows:

σ∗2tot;n =

(
q2

Q2
ks

(
n
Q2

ks

Q2
σ2
ACC + σ2

MS1 + σ2
KS

)
+ σ2

MS2

)
.

4 Implementation of Keccak with Overlapped Bootstrapping

In this section, we describe the implementation of the SHA3 algorithm (Keccak256, also known
as SHAKE128) using FHEW/TFHE and discuss the computational speed benefits that can be
achieved through overlapped bootstrapping. A detailed implementation of the SHA3 algorithm
using FHEW/TFHE is provided in Appendix A.

Number of Nested Additions.

One of the key factors that must first be determined to utilize the overlapped bootstrapping we
propose is the number of additions to be performed in a nested manner. As presented in [CCP+24],
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the failure probability must be negligibly small for IND-CPAD security. To safely use overlapped
bootstrapping, it is essential to thoroughly understand the configuration of the system being used
and to appropriately determine the number of nested additions.

In the case of SHA3, boolean gate operations are performed only in the θ, χ, and ι steps.
However, the round constants used in the ι step are public values, and thus, the XOR operation
can be replaced by a NOT operation, reducing the number of bootstrapping operations (detailed
in Appendix A). Therefore, the steps that need practical consideration are the θ and χ steps. The
θ step can be expressed by the following equations:

C[i]←− H[i]⊕H[i+ 1]⊕H[i+ 2]⊕H[i+ 3]⊕H[i+ 4], (1)

D[i]←− C[i− 1]⊕ rotate left(C[i+ 1], 1),

H ′[i]←− H[i]⊕D[i]︸ ︷︷ ︸
FBS∆← q

4

. (2)

The above process is performed independently for each lane. Assume H are fresh ciphertexts with
scale q/2, then, if all the ⊕ operation is replaced with addition, the noise is maximal in (2) as
variance σ∗2tot;11. Since an AND gate operation is planned to be performed in the χ step after the
θ step, bootstrapping must be performed after the θ step (2) to adjust the scaling factor to ∆ = q

4 .
Next, the χ step can be expressed by the following equations:

A[i]←− H[i]× 2, (3)

H ′[i]←− A[i]⊕ (H[i+ 2] ∧H[i+ 1]︸ ︷︷ ︸
FBS∆← q

2

) (4)

H ←− FBS∆← q
2
(H ′). (5)

Note that the reason for multiplying state H by two in (3) is that the scaling factor has to be
∆ = q

2 , in order to perform the XOR gate operation in (4). The AND gate operation in (4) should
be done by FPS∆← q

2
for the next XOR; then, the noise variance is given as σ∗2tot;5. We perform

FBS∆← q
2
in (5) to reduce the noise before the next θ step, then the noise is maximal in (2) as

σ∗2tot;11, we refer this as model11. For further reduction of runtime, FBS∆← q
2
in (5) can also be

ignored. Then, the noise in in (2) is increase to σ∗2tot;55, we call it model55.

4.1 Implementation Results

We implemented Keccak256 and compared the cases where overlapped bootstrapping is used and
not used, analyzing each step in detail. For reference, we compared performance based on the cases
when overlapped bootstrapping is used, especially model11 and model55.

Our implementation2 uses OpenFHE library v1.2.0, and the parameters were set using the
LPF STD128 provided by the OpenFHE. Details about LPF STD128 can be found in Table 2.
Our evaluation environment was configured with an Intel(R) Core(TM) i9-14900K processor, 64GB
RAM, and Ubuntu 22.04.2 LTS. The code was compiled with clang++ 14, using the CMake flags
NATIVE SIZE=32 for ciphertext modulo less than 31 bits, and WITH OMP=OFF, which means

2Source code: https://gitlab.com/anonymous11112222/fhew-sha3
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Table 2: This table presents the details of LPF STD128. FP represents the failure probability,
with FP∗model11

and FP∗model55
denotes the failure probability of XOR gate withmodel11 andmodel55,

respectively. Note that ∗ refers to the failure probability in the case where the ⊙ operation is
performed after LWE extraction.

n q N log2Q log2Qks Bg Bks Br FP FP∗model11
FP∗model55

LPF STD128 556 2048 1024 27 15 27 26 26 2−144 2−483 2−140

Table 3: Step-by-step performance comparison before and after applying overlapped bootstrap-
ping, as well as before and after replacing XOR gate operations with NOT gate operations. For the
θ and χ steps, the runtime represents the average time per execution, while for the ι step, it reflects
the time required for a single round function. The ρ and π steps are excluded, as they involve only
bit rotations.

θ (avg.) χ (avg.) ι Total

Prior arts 194.20s 186.37s 123.96s 9327.93s

model11 110.51s 184.10s 4.39×10−5s 7082.45s

(Improvements) (43.1%) (-) (-) (24.1%)

model55 108.43s 108.28s 9.66×10−5s 5201.04s

(Improvements) (44.2%) (41.9%) (-) (44.2%)

single thread. We use DM blind rotation method for the bootstrapping [DM15], but other methods
like CGGI [CGGI17] and LMKCDEY [LMK+23] can also be applied.

Table 2 shows that the failure probability of XOR gates using overlapped bootstrapping with
model11 is lower than other gates, and thus the total failure probability is upper bounded by other
gates. Also, the failure probability with model55 is still negligible (less than 2−128).

4.1.1 Runtime per Steps

The performance results for the θ and χ steps, both before and after applying overlapped boot-
strapping, as well as the performance results before and after replacing the XOR gate operations
with NOT gate operations in the ι step, can be found in Table 3. Note that in model11, the runtime
of the χ step remains almost unchanged because bootstrapping (5) is performed after the XOR gate
operation in the χ step to prevent the noise from increasing further. In the case of model55, the
runtime of the χ step is reduced because bootstrapping (5) after the XOR gate operation is omitted.
Note that it took 24 rounds (for one round function) to complete the Keccak256 algorithm. This
number of rounds increases proportionally with the size of the input data.

It should be noted that the proof-of-concept implementation in Table 3 is relatively slow be-
cause we use the DM bootstrapping method, which is known to be slower, and the experiment
was conducted on a single-threaded CPU. Faster bootstrapping methods, such as CGGI and
LMKCDEY [CGGI17, LMK+23], as well as faster implementations using NTRU-based HE [BIP+22],
would significantly improve the runtime. The proposed technique can be easily applied to these
variants of the FHEW scheme. Additionally, leveraging GPU or other hardware acceleration tech-
niques could further enhance performance [DS16].
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Figure 5: This figure shows the runtime for processing large input data, with and without applying
overlapped bootstrapping. A single round function consists of a total of 24 rounds, with each round
performing θ, π, ρ, χ, and ι once.

4.1.2 Runtime per Rounds

As mentioned above, the runtime of the Keccak256 algorithm is proportional to the input data size.
The number of rounds is determined by the input length, and this process cannot be parallelized.
Therefore, the runtime of the Keccak256 can only be improved by efficiently designing each round
function.

Figure 5 shows the difference in runtime when processing large input data, with and without ap-
plying overlapped bootstrapping. This runtime was measured using 32 threads for multi-threading.
When overlapped bootstrapping is applied, the runtime of a single round function decreases, making
it more efficient than without overlapped bootstrapping when processing large input data.

5 Conclusion

We proposed a flexible scaling method to improve the runtime and reduce noise in symmetric gates
such as XOR and XNOR. By utilizing this technique, we set the scaling factor ∆ to q/2 for X(N)OR
gate operations. For other gates, ∆ is reverted to q/4 without introducing any overhead. Since
most circuits use a combination of different gate operations, maintaining consistent scaling factors
is essential for proper functionality. Fortunately, the computing party typically knows the structure
of the circuit in advance, which is a fundamental assumption of HE compilers.

We also introduced overlapped bootstrapping as a method to enhance the runtime of the SHA3
algorithm over HE. This technique is effective not only for secure hash functions but also for
scenarios involving consecutive XOR gate operations, as it reduces the number of bootstrapping
operations required.

Many circuits, including symmetric key algorithms such as AES, rely on consecutive XOR gate
operations. Even for a single XOR gate operation, using flexible scaling can significantly reduce the
failure probability. By adopting this method, both runtime and failure probability across various
applications can be optimized, providing valuable strategies for compiler design in HE systems.

Future work will focus on applying the flexible scaling technique and overlapped bootstrapping
to other key functions in smart contracts, with the aim of improving the efficiency of processing
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confidential data in blockchain environments. Additionally, developing HE compilers that leverage
the proposed techniques would also be a significant contribution to advancing the field.
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A Implementation of SHA3 Algorithm

This section describes the detailed implementation of the SHA3 algorithm using FHEW/TFHE.
To aid understanding, the definition of the state used in the algorithm described later is provided
in Figure 6.

18 19 15 16 17

23 24 20 21 22

3 4 0 1 2

8 9 5 6 7

13 14 10 11 12

Figure 6: This figure represents the definition of a state. A single state consists of 25 lanes, and
each lane is made up of 64 bits, in other words, 64 LWE ciphertexts. Each number within the 5 ×
5 matrix indicates the position of each of the 25 lanes.

A.1 Basic Functions.

Note that the 1600-bit state used in Keccak256 is represented as a vector of LWE ciphertexts with
a length of 1600. This allows the rotation operation included in the θ step, as well as the π and ρ
steps, to be performed easily.

We have detailed the θ step in Algorithm 1. The laneXOR function mentioned in the algorithm
takes two lanes as input and performs a bit-wise XOR operation. If overlapped bootstrapping is not
used, it requires 64 bootstrapping operations to complete. When using overlapped bootstrapping,
the number of bootstrapping operations can be reduced because bootstrapping is performed after
a suitable number of additions. More details on this will be described later.

As previously mentioned, the state is implemented as a vector, making the π and ρ steps easy
to implement. We have described the π step and ρ step in Algorithms 2 and 3, respectively. The
rotate left function within the algorithm takes a lane and an integer as inputs and performs a left
shift by the amount specified by the input integer.

We have described the χ step in Algorithm 4. The laneAND function used here, similar to the
laneXOR function, takes two lanes as input and performs a bit-wise AND operation. The same
applies to laneNOT, which can be performed without bootstrapping.

As mentioned above, the round constants used in the ι step are well-known values. Therefore,
the original XOR operation can be converted to a NOT operation. This reduces the number of
bootstrapping operations. The ι step is detailed in Algorithm 5, and one of the inputs to the
algorithm, the round constant position, indicates the location where the NOT gate operation is
performed based on the round constant. The round constant position can be found in detail in
Table 4.
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Algorithm 1: θ step

Input: Current state H
Output: New state H ′

1 State C,D,H ′

2 for i = 0; i < 5; i = i+ 1 do
3

C[i]←−laneXOR(H[i],

laneXOR(H[i+ 5],

laneXOR(H[i+ 10],

laneXOR(H[i+ 15], H[i+ 20]))))

4 for i = 0; i < 5; i = i+ 1 do
5

D[i]←− laneXOR(C[(i− 1) mod 5], rotate left(C[(i+ 5) mod 5], 1))

6 for i = 0; i < 5; i = i+ 1 do
7

H ′[i]←− laneXOR(H[i], D[i])

H ′[i+ 5]←− laneXOR(H[i+ 5], D[i])

H ′[i+ 10]←− laneXOR(H[i+ 10], D[i])

H ′[i+ 15]←− laneXOR(H[i+ 15], D[i])

H ′[i+ 20]←− laneXOR(H[i+ 20], D[i])

8 return H ′

Algorithm 2: π step

Input: Current state H
Output: New state H ′

1 State H ′

2 H ′[01]←− H[06], H ′[06]←− H[09], H ′[09]←− H[22], H ′[22]←− H[14]
3 H ′[14]←− H[20], H ′[20]←− H[02], H ′[02]←− H[12], H ′[12]←− H[13]
4 H ′[13]←− H[19], H ′[19]←− H[23], H ′[23]←− H[15], H ′[15]←− H[04]
5 H ′[04]←− H[24], H ′[24]←− H[21], H ′[21]←− H[08], H ′[08]←− H[16]
6 H ′[16]←− H[05], H ′[05]←− H[03], H ′[03]←− H[18], H ′[18]←− H[17]
7 H ′[17]←− H[11], H ′[11]←− H[07], H ′[07]←− H[10], H ′[10]←− H[01]
8 return H ′
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Algorithm 3: ρ step

Input: Current state H
Output: New state H ′

1 State H ′

2 H ′[01]←− rotate left(H[01], 01), H ′[02]←− rotate left(H[02], 62)
3 H ′[03]←− rotate left(H[03], 28), H ′[04]←− rotate left(H[04], 27)
4 H ′[05]←− rotate left(H[05], 36), H ′[06]←− rotate left(H[06], 44)
5 H ′[07]←− rotate left(H[07], 06), H ′[08]←− rotate left(H[08], 55)
6 H ′[09]←− rotate left(H[09], 20), H ′[10]←− rotate left(H[10], 03)
7 H ′[11]←− rotate left(H[11], 10), H ′[12]←− rotate left(H[12], 43)
8 H ′[13]←− rotate left(H[13], 25), H ′[14]←− rotate left(H[14], 39)
9 H ′[15]←− rotate left(H[15], 41), H ′[16]←− rotate left(H[16], 45)

10 H ′[17]←− rotate left(H[17], 15), H ′[18]←− rotate left(H[18], 21)
11 H ′[19]←− rotate left(H[19], 08), H ′[20]←− rotate left(H[20], 18)
12 H ′[21]←− rotate left(H[21], 02), H ′[22]←− rotate left(H[22], 61)
13 H ′[23]←− rotate left(H[23], 56), H ′[24]←− rotate left(H[24], 14)
14 return H ′

Algorithm 4: χ step

Input: Current state H
Output: New state H ′

1 Lane a0, a1, a2, a3, a4
2 Lane A0, A1

3 State H ′

4 for i = 0; i < 25; i = i+ 5 do
5 a0 ←− H[i+ 0], a1 ←− H[i+ 1]
6 a2 ←− H[i+ 2], a3 ←− H[i+ 3], a4 ←− H[i+ 4]
7 A0 ←− H[i+ 0], A1 ←− H[i+ 1]
8 H ′[0 + i]←− laneXOR(a0, laneAND(H[2 + i], laneNOT(A1)))
9 H ′[1 + i]←− laneXOR(a1, laneAND(H[3 + i], laneNOT(H[i+ 2])))

10 H ′[2 + i]←− laneXOR(a2, laneAND(H[4 + i], laneNOT(H[i+ 3])))
11 H ′[3 + i]←− laneXOR(a3, laneAND(A0, laneNOT(H[i+ 4])))
12 H ′[4 + i]←− laneXOR(a4, laneAND(A1, laneNOT(A0)))

13 return H ′

Algorithm 5: ι step

Input: Current state H, Round constant position RCp, round r
Output: New state H ′

1 for i = 0; i < RCp.size(); i = i+ 1 do
2 H ′[0][RCp[r][i]]←− NOT(H[0][RCp[r][i]])

3 return H ′
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Table 4: Round constant and NOT operation positions

RC[0] 0x0000000000000001 63 RC[12] 0x000000008000808b 32, 48, 56, 60, 62, 63

RC[1] 0x0000000000008082 48, 56, 62 RC[13] 0x800000000000008b 0, 56, 60, 62, 63

RC[2] 0x800000000000808a 0, 48, 56, 60, 62 RC[14] 0x8000000000008089 0, 48, 56, 60, 63

RC[3] 0x8000000080008000 0, 32, 48 RC[15] 0x8000000000008003 0, 48, 62, 63

RC[4] 0x000000000000808b 48, 56, 60, 62, 63 RC[16] 0x8000000000008002 0, 48, 62

RC[5] 0x0000000080000001 32, 63 RC[17] 0x8000000000000080 0, 56

RC[6] 0x8000000080008081 0, 32, 48, 56, 63 RC[18] 0x000000000000800a 48, 60, 62

RC[7] 0x8000000000008009 0, 48, 60, 63 RC[19] 0x800000008000000a 0, 32, 60, 62

RC[8] 0x000000000000008a 56, 60, 62 RC[20] 0x8000000080008081 0, 32, 48, 56, 63

RC[9] 0x0000000000000088 56, 60 RC[21] 0x8000000000008080 0, 48, 56

RC[10] 0x0000000080008009 32, 48, 60, 63 RC[22] 0x0000000080000001 32, 63

RC[11] 0x000000008000000a 32, 60, 62 RC[23] 0x8000000080008008 0, 32, 48, 60
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