
Modelings for generic PoK and Applications:
Shorter SD and PKP based Signatures

Slim Bettaieb1, Loïc Bidoux1, Philippe Gaborit2, and Mukul Kulkarni1

1 Cryptography Research Center, Technology Innovation Institute, UAE
{slim.bettaieb,loic.bidoux,mukul.kulkarni}@tii.ae

2 XLIM, University of Limoges
philippe.gaborit@unilim.fr

Abstract. The Multi-Party Computation in the Head (MPCitH)
paradigm has proven to be a versatile tool to design proofs of knowl-
edge (PoK) based on variety of computationally hard problems. For in-
stance, many post-quantum signatures have been designed from MPC
based proofs combined with the Fiat-Shamir transformation. Over the
years, MPCitH has evolved significantly with developments based on
techniques such as threshold computing and other optimizations. Re-
cently, Vector Oblivious Linear Evaluation (VOLE) and the VOLE in
the Head framework has spurred further advances. In this work, we in-
troduce three VOLE-friendly modelings for generic and communication
efficient PoK to prove the knowledge of secret witness in the form of
elementary vectors, vectors of Hamming weight at most ω, and permu-
tation matrices. Remarkably, these modelings scale logarithmically with
respect to the original witness sizes. Specifically, our modeling for elemen-
tary vectors of size n transforms the witness size to O(log2(n)), in case
of vectors of size n and Hamming weight at most ω the reduced witness
is of size O (ω log2(n)) while our modeling for permutation matrix of size
n×n results in an (equivalent) witness of size O(n log2(n)), which leads
to small proofs in practice. To achieve this, we consider modelings with
higher multiplicative depth d > 2. Even if this increases the proof size, we
show that our approach compares favorably with existing proofs. Such
design choices were mostly overlooked in previous comparable works,
maybe because prior to the VOLEitH framework, multiplications were
often emulated with Beaver’s triples causing the proof size to scale poorly
with d. We also provide several applications for our modelings namely
i) post-quantum signature schemes based on the SD (Syndrome Decod-
ing) problem and PKP (Permuted Kernel Problem), ii) PoK of secrets
key for code-based key encapsulation mechanism (KEM), and iii) ring
signatures from SD and PKP. Our signatures based on SD over F2 and
PKP feature sizes of 3.9 kB and 3.6 kB for NIST-I security level which
is respectively 26% and 38% shorter than state-of-the-art alternatives.
Our PoK of secret key of BIKE and HQC are twice shorter than similar
PoK for Kyber. In addition, we obtain the smallest ring signature based
on SD and the first ring signature based on PKP.

1 Introduction

Introduced in 1985 [GMR85,GMR89], Zero-Knowledge Proofs of Knowledge (ZK
PoK) have been extensively used in cryptography through applications such as
authentication systems, digital signatures [FS87,FFS88], CCA-secure encryption
schemes [NY90], variety of privacy-preserving schemes (group signatures [Cv91],
ring signatures [RST01] etc.), verifiable computing, decentralized storage, vot-
ing systems or blockchains. One of the most popular applications of ZK PoK is
digital signatures. Digital signatures can be constructed by Fiat-Shamir transfor-
mation [FS87] of an interactive public-coin honest-verifier zero-knowledge PoK
system. Informally, a ZK PoK for a NP relation R is an interactive protocol
that allows a prover to demonstrate knowledge of a witness w for some public
statement x such that (x,w) ∈ R, without revealing any additional information
about the witness.

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07,IKOS09]
is a generic method to design ZK proofs for NP relations using techniques from
secure Multi-Party Computation (MPC). Informally, the MPC protocol is used
to compute the verification of an NP relation and its privacy guarantee is used
to achieve the zero-knowledge property. In order to do so, the prover splits its
witness into N parties using a secret sharing scheme. Then, it simulates locally
(“in-its-head”) all the parties of the MPC protocol and commits to their views in
the MPC protocol. The verifier chooses a random subset of N ′ < N parties and
asks to reveal their corresponding views. This allows the verifier to check that
the views of the revealed parties are consistent with each other and consistent
with an honest execution of the MPC protocol yielding the expected output.

VOLE-in-the-Head (VOLEitH) introduced in [BBD+23b] is another recent
paradigm to design efficient ZK PoK systems. It uses preprocessed random cor-
relations (Vector Oblivious Linear Evaluations – VOLE [BCGI18]) in commit-
and-prove framework since the VOLEs can be seen as information-theoretically
secure commitments. The linear homomorphic property of VOLE commitments
enables constructions of efficient protocols. The main idea is to commit to the
witness using VOLE and then compute the linear relation using the homomor-
phic properties of the commitments. Quicksilver [YSWW21] showed an efficient
way to check relations represented as low degree polynomials using VOLE corre-
lations generated by an ideal functionality. Later, Softspoken [Roy22] described
how to share VOLE correlations using GGM tree (N − 1 out of N OTs). How-
ever, this approach was somewhat limited as it operated in the designated veri-
fier setting, which meant that signatures could not be built as the Fiat-Shamir
transformation could not be applied (because it needs public-coin PoK and des-
ignated verifier implies that the verifier holds secret state). This barrier was
removed in [BBD+23b] which built upon the techniques introduced in Quicksil-
ver and Softspoken without relying on the designated verifier setting thus giving
public-coin efficient ZK PoK from VOLE.

In response to the threat posed by quantum computing, the NIST has
launched a Post-Quantum Cryptography standardization effort in 2016. Sev-
eral signatures designed using the MPCitH, TCitH (Threshold Computation in

2

the Head, an improvement over standard MPCitH relying on threshold secret
sharing) paradigms have been proposed in this context. These signatures relies
on various security assumptions such as the Multivariate Quadratic (MQ) prob-
lem [FR23a], the Syndrome Decoding (SD) problem [AFG+23], the Permuted
Kernel Problem (PKP) [ABB+23a], the MinRank problem [ABB+23c,ARV+23,
BFG+24], the Rank Syndrome Decoding (RSD) problem [ABB+23b] or other
assumptions [ZCD+20, BKPV23, KCC+23]. Notably, the approach presented
by [BBD+23b] was used to design the FAEST signature scheme [BBd+23a] which
is the only candidate scheme using VOLEitH framework.

Contributions. In this work, we consider the following question: What kind of
VOLE-friendly modelings will be useful in constructions of generic and commu-
nication efficient PoK? Such proofs can constitute versatile building blocks which
support the design of privacy preserving protocols or short post-quantum signa-
tures. To answer this question we provide: i) a modeling to prove the knowledge
of a secret permutation and, ii) a modeling to prove the knowledge of a secret
vector of Hamming weight at most ω. Our new modelings are based on a simpler
modeling to prove the knowledge of a secret elementary vector (binary vector of
Hamming weight 1). We present several applications of our modelings, namely
shorter signatures based on the SD and PKP problem, short PoK of secret keys
of code-based Key Encapsulation Mechanisms (KEMs) and short ring signa-
tures; which demonstrate their versatility and utility in designing cryptographic
protocols.

• Modelings and resulting PoK. Our main motivation is to find modelings
which can lead to efficient TCitH or VOLEitH signatures from SD or PKP
since this has been a challenging task for the post-quantum cryptography
researchers over the years. In order to achieve it, we design three VOLE-
friendly modelings to prove the knowledge of secret i) elementary vectors, ii)
vectors of Hamming weight at most ω, and iii) permutations. Interestingly,
our modelings feature a logarithmic scaling with respect to their witness size.
Therefore, our modelings lead to compressed representation of the secret wit-
nesses which translates in shorter proof sizes. Specifically, our modeling for
elementary vectors of size n uses an (equivalent) representative witness of
size O(log2(n)), our modeling for vectors of size n and Hamming weight
at most ω translates to an (equivalent) representative of size O (ω log2(n))
while our modeling for permutation matrix of size n×n results in an (equiva-
lent) witness of size O(n log2(n)), which leads to small proofs in practice. To
achieve this, we consider modelings with multiplicative depth d > 2. With
the notable exception of [BBM+24], almost all existing modelings used in
the design of post-quantum cryptographic schemes use multiplicative depth
d = 2. This might be explained by the fact that, prior to the introduction of
the VOLEitH framework, multiplications were often emulated with Beaver’s
triples [Bea92] causing the proof size to scale poorly with d. As a conse-
quence, our modelings are instantiated using degree-d VOLE correlations.
Intuitively this seems counter-productive since increasing the degree of the

3

considered VOLE correlations increases the size of the proof, however we ex-
plore an interesting trade-off between multiplicative depth and witness sizes,
as illustrated by our applications that outperform existing constructions. In
addition, we emphasize that our modelings are generic enough to find many
applications beyond our initial goal of constructing shorter post-quantum
signatures. Indeed, elementary vectors and permutations are used exten-
sively in privacy preserving protocols (for example to achieve anonymity via
secret shuffling), and verifiable computation (working with one out of many
values secretly).

• Shorter SD and PKP based signatures. We design PoK of a solution of the SD,
and PKP instances based on our modelings for vector of Hamming weight
at most ω, and for permutation matrices, respectively. We obtain short sig-
natures based on the SD and PKP problems, by instantiating our modelings
in the VOLEitH framework and applying the Fiat-Shamir transformation.
As shown in Table 1, our signatures improve the SDitH and PERK schemes
currently considered in the NIST Post Quantum Standardization project.
Indeed, our signatures based on SD are 26% shorter than the best signa-
ture from SD [FJR22, FR23b] while our signature based on PKP are 31%
to 38% shorter than PERK depending on the desired security level and
do not require the relaxed version of PKP assumption r-IPKP considered
in [ABB+23a].

Security Assumption Scheme sk pk Signature

NIST-I

SD

SDitH [AFG+23] 0.4 kB 0.1 kB 8.5 kB

[FJR22,FR23b] 16 B 0.1 kB 5.3 kB

This work 16 B 0.1 kB 3.9 kB

r-IPKP PERK [ABB+23a] 16 B 0.2 kB 5.8 kB

PKP This work 16 B 0.1 kB 3.6 kB

NIST-V

SD

SDitH [AFG+23] 0.8 kB 0.2 kB 33.9 kB

[FJR22,FR23b] 32 B 0.2 kB 21.9 kB

This work 32 B 0.2 kB 16.2 kB

r-IPKP PERK [ABB+23a] 32 B 0.5 kB 23.0 kB

PKP This work 32 B 0.2 kB 15.9 kB

Table 1: Comparison of our signatures with respect to SDitH and PERK

• Short PoK of secret keys of code-based KEMs. Our PoK for SD can also be
used to prove the knowledge of the secret key associated with the code-
based KEMs BIKE [ABB+22] and HQC [AAB+22]. As both BIKE and

4

HQC rely on codes whose length is a magnitude of order bigger than the
code length used to design signatures, this setting highlights the advantage
of our modeling namely its logarithmic scaling with respect to the witness
size. Taking HQC as an example, our PoK is 73% to 82% shorter than proofs
that can be constructed from the best modeling available in the literature
depending on the considered security level (see Table 8). In particular, we
obtain proof-size of 8.5 kB for HQC with NIST-I security level while similar
proof for Kyber [SAB+22] requires 17.8 kB [GHL+22]. This is significant
as it suggests that advanced protocols using PoK of secret keys of KEM
(KEMTLS [SSW20], verifiable encryption) may have a smaller footprint
when instantiated with code-based KEMs instead of lattice-based KEMs.

• Shorter ring signature. We propose two ring signatures by extending our
signatures based on the SD and PKP problems. In order to achieve this, we
modify these signatures so that they use a secret keypair (pki∗ , ski∗) where
i∗ denotes the index of the signer within the ring of n̄ users whose public key
is defined as pkR = (pk0, . . . , pkn̄−1). The public key pki∗ can be computed
from the ring key pkR along with the secret position i∗ using our modeling
for elementary vectors. We obtain the shortest ring signatures based on the
SD problem (see Table 9) as our signatures are 29% to 41% shorter than
existing ones depending on the considered ring size. In addition, to the best
of our knowledge, we provide the first ring signature based on PKP.

Concurrent work. Hereafter, we briefly discuss a concurrent work studying
code-based PoK from VOLEitH [OTX24]. In this work, a modeling to prove the
correctness of a regular encoding process is described and used to improve the
commitment scheme, accumulator scheme, ring signature and group signature
constructions from [NTWZ19] and the fully dynamic attribute-based signature
from [LNP+24]. In addition, a PoK to prove the knowledge of a plaintext of a
variant of the McEliece scheme [McE78] and a signature based on the Regular
SD problem are provided. Although their modeling for regular encoding is based
on boolean functions and our modeling for elementary vectors is based on a
binary tree construction, both produce proofs of similar size which is not entirely
surprising given that regular words and elementary vectors describe the same
objects (vectors with only one non zero coordinate equal to one). Except for
this similarity, the two works differ in terms of scope and goals. They use their
modeling to improve many code-based constructions based on the Regular SD
problem (a variant of the SD problem with additional structure). Even if the
SD problem has been studied extensively over the years, the Regular SD variant
has not received the same amount of scrutiny yet and best known attacks have
been improved recently [BØ23,ES24]. While elementary vectors can be used by
themselves in many applications, our modeling for elementary vectors is mainly
used as a building block to design other modelings. As a consequence, we consider
a different set of applications or whenever there is an overlap between considered

5

primitives, we build them from different security assumptions. Interestingly, our
PoK for the SD problem is versatile enough to handle both the (unstructured)
SD problem and the (structured) Regular SD problem (we exploit this property
in the design of our signature from SD, see Section 4 for additional details).
Thus, applications targeted in [OTX24] can also be constructed from our work
while the opposite is not true.

Paper organization. We provide background on several hard problems used
in post-quantum cryptography and the VOLEitH paradigm in Section 2. Next,
we present our modellings and their associated PoK in Section 3. We describe
our signatures based on the SD and PKP problems in Section 4. The application
of our modellings to PoK of secret keys of code-based KEMs is discussed in
Section 5 while their application to ring signatures is detailed in Section 6.

2 Preliminaries

Notations and conventions

Let a positive integer λ be the security parameter. For integers i, j let [i, j] denote
the set of integers k such that i ≤ k ≤ j and let [n] be a shorthand for [1, n]. For
a vector x its Hamming weight is defined as the number of non-zero coordinates,
and we denote the Hamming weight of x by wH

(
x
)
. Let Sn denote the group

of permutations of the set [n] and let Snω(F2) denote the set of vector of Fn
2 of

Hamming weight at most ω. Let Fq denote the finite field of q elements where q

is the power of a prime. If X is a finite set, let x
$←− X denote that x is chosen

uniformly at random from X. Similarly, let x
$,θ←− X denote that x is sampled

pseudo-randomly from the set X based on the seed θ. Vectors are denoted by bold
lower-case letters and matrices by bold capital letters (e.g., v = (vi)i∈[n] ∈ Fn

q

and A = (aij)i∈[m],j∈[n] ∈ Fm×n
q). Let PRG denote a pseudo-random generator.

2.1 Hard problems for cryptography

We give the definitions of the computationally hard problems underlying the
security of our proposed signature schemes namely the Permuted Kernel Problem
(PKP) and the Syndrome Decoding (SD) problem. We also define the Regular
SD problems which is a variant of the SD problem.

Definition 2.1 (Permuted Kernel Problem (PKP)). Let (q,m, n) be pos-
itive integers such that m < n, H ∈ Fm×n

q , x ∈ Fn
q and π ∈ Sn be a per-

mutation such that H
(
π[x]

)
= 0. Given (H,x), the Permuted Kernel Problem

PKP(q,m, n) asks to find π̃ ∈ Sn such that H
(
π̃[x]

)
= 0.

Hereafter, we interprete the PKP problem in matrix form namely the secret
permutation π is seen as a permutation matrix P ∈ Fn×n

2 such that HPx = 0

6

Definition 2.2 (Syndrome Decoding (SD)). Let (q, n, k, ω) be positive
integers such that k < n, H ∈ F(n−k)×n

q , x ∈ Fn
q such that wH

(
x
)
≤ ω and

y ∈ F(n−k)
q such that y = Hx. Given (H,y), the Syndrome Decoding problem

SD(q, n, k, ω) asks to find x̃ ∈ Fn
q such that wH

(
x̃
)
≤ ω and Hx̃ = y.

Definition 2.3 (Regular SD). Let (q, n, k, ω) be positive integers such that
k < n and ω |n, H ∈ F(n−k)×n

q , x = (x1, · · · ,xω) ∈ Fn
q such that ∀i ∈ [ω],

xi ∈ Fn/ω
q , wH

(
xi

)
= 1 and y ∈ F(n−k)

q such that y = Hx. Given (H,y),
the Regular SD(q, n, k, ω) asks to find x̃ = (x̃1, · · · , x̃ω) ∈ Fn

q such that ∀i ∈ [d],

x̃i ∈ Fn/ω
q , wH

(
x̃i

)
= 1 and Hx̃ = y.

2.2 Overview of the VOLEitH framework

VOLE correlations. A VOLE correlation over a finite field F2κ are random
values u ∈ F2, and v,∆, q ∈ F2κ , such that q = u∆+ v. This can be generalized
to obtain VOLE correlations of arbitrary length ℓ where, u ∈ Fℓ

2, v, q ∈ Fℓ
2κ ,

and ∆ ∈ F2κ such that qi = ui + ∆vi for i ∈ [ℓ]. Sometimes we write this in
vector notation as q = u∆ + v. The values u,v are given to the prover, and
the verifier is given ∆, q. As the values are chosen randomly and split between
the two parties, the VOLE correlations can be used as linearly homomorphic
commitments. Informally, the relation q = u∆ + v serves as commitment by
prover to value u with a random mask v. Since the verifier does not know v, the
commitment is hiding. In order to provide an opening v′ for some u′ ̸= u such
that q = u′∆+ v′, the prover will have to guess ∆ which provides binding. The
linear homomorphic property follows from the fact that the VOLE correlation
is linear. In the following, we denote the prover by P and the verifier as V.

In an ideal scenario, the VOLE correlation q = u∆ + v, with u ∈ Fℓ
2,

v, q ∈ Fℓ
2κ , and ∆ ∈ F2κ would have been generated by a trusted party (or an

ideal functionality FVOLE) which would then send u,v to the prover and q, ∆
to the verifier privately. Looking ahead, all our protocols and (interactive) proof
of knowledge systems are secure in the so-called FVOLE-hybrid model, which
assumes existence of such ideal functionality.

In practice, the VOLE correlations are generated by one of the parties (say
the prover) with the help of puncturable pseudorandom functions (puncturable
PRF), which are instantiated from pseudorandom generators (PRG) using GGM
trees [GGM84]. The GGM tree allows the prover to commit to N PRG seeds ar-
ranged as leaves of a binary tree, by simply committing to the root of the tree by
computing its hash using a collision-resistant hash function. More importantly,
after committing to these N seeds, the prover can open N − 1 of those seeds
(all except one) by sending only O(log n) bits (essentially siblings of nodes on
path from root to the hidden leaf). This allows the verifier to reconstruct the
tree (except the hidden leaf node) and after obtaining the auxiliary information
(commitment to the hidden node) from the prover, the verifier can recompute
the commitment to the root and check if it matches, thus verifying that the
opened N − 1 seeds are consistent with those committed by the prover. The

7

VOLE correlations can be obtained from the seeds. Let ri = PRG(seedi) be ℓ-bit
pseudorandom strings for i ∈ [0, N − 1]. The prover computes u,v as

u =

N−1∑
i=0

ri, v =

N−1∑
i=0

i · ri.

The verifier chooses ∆ ∈ [0, N − 1] uniformly at random and receives all the
seeds seedi for i ∈ [0, N − 1] \∆ from the prover. The verifier can then compute

q =

N−1∑
i=0

(∆− i) · ri.

Note that the prover should be given ∆ (to receive all the remaining seeds)
only after the prover has committed to all the seeds and main steps which rely
on the binding of VOLE commitments are performed since knowing ∆ trivially
allows him to cheat. We denote the above process by GenAuthVOLE to indicate
that prover and verifier have received their respective authentic shares for VOLE
correlation. And from now onward, we assume that for protocols and schemes
used, the prover and verifier always start with authentic VOLE shares as inputs.

Operations on VOLE correlations. Algorithm LinearCombination (see Ap-
pendix A) shows how VOLE correlations for linear functions of secret values
u1, . . . , un ∈ F2 can be computed as given in [BBd+23a]. Standard VOLE cor-
relation corresponds to degree-1 commitment to u given by fu(X) = uX + v,
with the evaluation q = fu(∆) given to the verifier. We denote degree-1 com-
mitment to s by JsK. Following the notation of [BBM+24], we write JsK(d) to
denote a degree-d commitment to a secret value s ∈ F2 where the prover holds
fs(X) =

∑d
i=0 aiX

i with coefficients ai ∈ F2κ and ad equal to s lifted to F2κ

while the verifier holds qs = fs(∆) ∈ F2κ . It is possible to perform homomorphic
operations on the degree-d-commitments locally by the prover and the verifier
with the help of the Algorithms Add and Multiply given in Appendix A.

Let JwK(d) be a degree-d-commitment to some secret value w ∈ F2 with
fw(X) := a0 + a1X + · · · + adX

d, where ai ∈ F2κ for i ∈ [0, d − 1] and ad = w
lifted to F2κ . Algorithms P.CheckZero and V.CheckZero can be used to check
that the secret value w = 0.

Algorithm 2.1: P.CheckZero
(
JwK(d), (JsiK)i∈[0,d−2]

)
Public information and inputs

Public information: Degree of input VOLE correlations d.

Prover’s input: Degree-d VOLE correlation JwK(d), (d− 1) random VOLE correlation repre-

sented as fsi (X) = ri + siX where both ri, si ∈ F
2λ

for i ∈ [0, d− 2].

Output

Prover’s output: VOLE correlation JaK.

8

1 : fmask(X) =
∑d−2

i=0 fsi (X) ·Xi

2 : JaK = fw(X) + fmask(X)

3 : return JaK

Algorithm 2.2: V.CheckZero
(
JaK(d), qw, (qsi)i∈[0,d−2], ∆

)
Public information and inputs

Public information: Degree of input VOLE correlations d.

Verifier’s input: VOLE correlation JaK, qa, qsi = fsi (∆) for i ∈ [0, d− 2], ∆.

Output

Verifier’s output: Boolean indicating if leading coefficient of fa is equal to zero or not.

1 : q = qw +
∑d−2

i=0 qsi ·∆
i

2 : b←
(
q

?
= f(∆)

)
3 : return b

VOLEitH framework. Given a VOLE correlation q = u∆ + v for a random
u ∈ F2, it is possible to embed arbitrary value w ∈ F2. To do so, the prover
computes t = w ⊕ u and sends t to the verifier. Since u is uniform random and
unknown to the verifier, t does not leak any information about w. The verifier
then computes qw = q + t∆. Note that the prover and verifier now possess
their respective parts for the VOLE correlation qw = w∆ + v. In the rest of
the paper, we will assume that the prover and verifier receive the VOLE shares
corresponding to values w of prover’s choice, since they can receive the VOLE
correlations for random u from the ideal functionality (realized using vector
commitments based on GGM tree) and then embed any value of prover’s choice.

After embedding the witness w, one can use the VOLE correlations to estab-
lish PoK of the witness for relations which can be modeled as linear functions
of the witness. These proofs provide soundness error of |F2κ |−1. And therefore,
soundness amplification is needed to achieve the negligible soundness error by
repeating the protocol (say τ times). This however increases communication cost
since we need to send the VOLE correlations for τ repetitions. An optimization
introduced in [BBd+23a] allows to reduce this communication by sending one
VOLE correlation input (say u0) and only corrections for remaining τ−1 VOLE
inputs with respect to the u0. However, since the prover can cheat while sending
corrections, the verifier needs to check for consistency of all the received VOLE
inputs q0, . . . , qτ−1 by checking random linear combination of the inputs. For
more details, we refer the interested readers to Section 2.2 of [BBd+23a]. We
denote the above process by VOLEConsistencyCheck to indicate that prover and
verifier have carried out the consistency check by taking random linear combi-
nations, successfully, on their authentic VOLE inputs.

9

VOLE correlations provide a powerful tool to construct efficient PoK and
signatures as depicted in Algorithm 2.3 which is an abstraction of the design
of the FAEST signature scheme [BBd+23a]. The framework can be split into
parts that are problem independent thus can be designed and used generically,
which allow all the proof systems based on the framework to design a unified
interfaces. Also, the schemes can benefit from any optimization or technical
improvements in this parts in problem-agnostic way (see for instance the GGM
related optimization from [BBM+24]). This allows PoK designers to focus on
the modeling associated to the problem they are addressing. In the next section,
we focus on the problem specific design part and then instantiate our modeling
with the VOLEitH framework in Sections 4, 5 and 6.

Algorithm 2.3: VOLE Based PoK Framework

[Problem independent] - Computing commitments

- Generate VOLE correlations using GenAuthVOLE to achieve targeted soundness.

- Commit to the VOLE correlations and send corrections with respect to u0.

- Run VOLEConsistencyCheck to ensure all VOLE correlations are consistent with u0.

[Problem dependent] - Computing Proof

- Prover P embeds the witness w in u0 then compute linear relations on VOLE inputs to

obtain its proof (Verifier V will perform analogous steps during verification).

[Problem independent] Opening commitments

- Send openings to commitments, auxiliary information for verification of consistency

checks, and proof to the verifier.

3 Modelings for compact PoK of elementary vectors,
vectors of Hamming weight at most ω and permutations

We present modelings that can be used to prove the knowledge of an elementary
vector (a vector whose coordinates are all equal to “0” except one coordinate that
is equal to “1”), the knowledge of a vector over F2 of Hamming weight at most
ω and the knowledge of a permutation matrix. Our modelings leverage com-
pressed representation of the secret witnesses which translates in shorter proof
sizes. Specifically, our modeling for elementary vectors of size n generates an
(equivalent) representative witness of size O(log2(n)), our modeling for vectors
of size n and Hamming weight at most ω translates to an (equivalent) represen-
tative of size O (ω log2(n)) while our modeling for permutation matrix of size
n× n results in an (equivalent) witness of size O(n log2(n)).

In addition, we show how to model the linear relations satisfied by the witness
of our modelings in VOLE-friendly objects. Generally, this boils down to starting
from VOLE correlations (which can be seen as degree-1 or linear polynomials)
corresponding to the witness and computing low-degree polynomials from these

10

VOLE correlations, which will correspond to intermediate steps computing the
relation that is being checked, leading to the final VOLE correlations, which can
help verify the validity of the witness. We describe how the modeling can be used
by the prover and the verifier to locally update their VOLE correlation inputs
and obtain the VOLE correlations corresponding to the final result.

3.1 Modeling for PoK of elementary vectors

Hereafter, we present a modeling that can be used to design a ZK PoK that a
vector is elementary namely v has one coordinate equal to 1 and all its other
coordinates equal to 0. This modeling only requires inputs of size log(n).

Notations. Let n be a positive integer and let d = log2(n). Let B : [0, n− 1]→
Fd
2 be the function that given a value x ∈ [0, n − 1] returns the vector in Fd

2

corresponding to its binary representation which we call Bx. Let x : Fd
2 → Fd

2

be the function that given a vector x ∈ Fd
2 returns its complement namely

x = (1⊕ x0, · · · , 1⊕ xd−1).

Modeling. Let pos ∈ [0, n − 1] be the position of the 1 in the secret vector.
Given as input w = Bpos ∈ Fd

2, compute z ∈ Fn
2 as:

∀j ∈ [0, n− 1], zj =

d−1∏
k=0

(
Bjk ⊕ wk

)
.

We now explain why such a characterization leads to the expected result.
Let’s start by building a binary tree with n leaves (assuming that n is a power
of two for simplicity) and depth d = log(n). In such a graph, each node (except
the leaves) spans two children nodes. We label the corresponding edges with 0
and 1 respectively. In addition, we associate to each leaf the vector in Fd

2 whose
coordinates are the label values of the path from the root node to the considered
leaf. Doing so, one can see in Figure 1 that whenever leaves are labelled (from
left to right) from 0 to n − 1, each leaf i is associated with a unique vector
corresponding to Bi the binary representation of i.

As we are working over F2, it is readily seen that adding Bi to its complement
Bi leads to the vector 1d = (1, · · · , 1) ∈ Fd

2 while adding any other vector to Bi
results in a vector having at least one zero coordinate. As such, given a vector
w ∈ Fd

2, the product of the coordinates of (Bi ⊕w) is equal to 1 when w = Bi
and 0 otherwise. Hence, given as input pos ∈ [0, n − 1] and w = Bpos ∈ Fd

2, the
vector z ∈ Fn

2 constructed as ∀j ∈ [0, n− 1], zj =
∏d−1

k=0

(
Bjk ⊕wk

)
contains a 1

at position pos and 0’s in all its remaining coordinates.

We can use this idea to create degree-d VOLE correlations JzK(d) of an ele-
mentary vector given a secret position pos. Looking ahead, these VOLE corre-
lations will be used in several protocols leveraging ZK PoK to verify the knowl-
edge of some secret held by a prover P. Algorithm P.VOLE-ElementaryVector

11

111110

0 1

101100

0 1

0 1

011010

0 1

001000

0 1

0 1

0 1

Fig. 1: Binary tree of depth d = 3 with n = 8 leaves. Each leaf contains the
vector associated to its path which is also the binary representation of its number
whenever leaves are labelled from left to right from 0 to n− 1. In blue, the 4th

leaf (leaf number 3 starting from 0) is associated with B3 = (011).

shows how to construct the VOLE correlation JzK(d) with help of d random
VOLE correlations (JukK)k∈[0,d−1]. Its output contains the masked secret t de-
rived from the position pos. The verifier can use V.VOLE-ElementaryVector to
retrieve the VOLE correlations qz associated to JzK(d) using the VOLE correla-
tions (quk

)k∈[0,d−1] associated (JukK)k∈[0,d−1] after receiving the masked secret
t from the prover.

Algorithm 3.1: P.VOLE-ElementaryVector
(
pos, (JukK)k∈[0,d−1]

)
Public information and inputs

Public information: Length of the vector n, d = ⌈logn⌉.

Prover’s input: Secret position pos ∈ [0, n − 1], d VOLE correlations JukK for random

(uk, vk) ∈ F2 × F
2λ

represented as polynomials fuk
(X) = ukX + vk for k ∈ [0, d− 1].

Output

Prover’s output: Masked secret t ∈ Fd
2 , degree-d VOLE correlations JzK(d).

12

Compute masked secret

1 : w = Bpos

2 : t = w ⊕ u

Compute elementary vector

3 : for j ∈ [0, n− 1]

4 : for k ∈ [0, d− 1]

5 : βk = Bj
k ⊕ wk

6 : fβk
(X) = βkX + vk

7 : endfor

8 : JzjK(d) =
∏d−1

k=0 fβk
(X)

9 : endfor

10 : JzK(d) = (Jz0K(d), . . . , Jzn−1K(d))

11 : return (t, JzK(d))

Algorithm 3.2: V.VOLE-ElementaryVector
(
t, (quk

)k∈[0,d−1], ∆
)

Public information and inputs

Public information: Length of the vector n, d = ⌈logn⌉.

Verifier’s input: Masked secret t ∈ Fd
2 , quk

= fuk
(∆) for k ∈ [0, d− 1], ∆.

Output

Verifier’s output: VOLE correlations qz.

Compute VOLE correlations for z

1 : for j ∈ [0, n− 1]

2 : for k ∈ [0, d− 1]

3 : γk = Bj
k ⊕ tk

4 : qβk
= quk

+ γk ·∆

5 : endfor

6 : qzj =
∏d−1

k=0 qβk

7 : endfor

8 : qz = (qz0 , . . . , qzn−1
)

9 : return qz

3.2 Modeling for PoK of vectors of Hamming weight at most ω

In this section, we present a modeling for proving that a vector z over F2 has
Hamming weight at most ω namely z ∈ Snω(F2). In order to do so, we build

13

upon the technique from Section 3.1 by constructing ω elementary vectors (one
for each non-zero coordinate in z) and combining them together. One should
note that due to the triangle inequality, adding ω vectors of Hamming weight 1
produces a vector of Hamming weight at most ω thus giving the expected result.
This modelling uses ω log(n) bits as inputs.

Modeling. Let s = (pos0, . . . , posω−1) ∈ [0, n − 1]ω be the secret support of
z represented as positions. Given w = (Bpos0 , . . . ,Bposω−1) ∈ (Fd

2)
ω as input,

compute zi ∈ Sn1 (F2) and z ∈ Snω(F2) as:

∀(i, j) ∈ [0, ω − 1]× [0, n− 1], zi,j =

d−1∏
k=0

(
Bjk ⊕ wi,k

)
and zj =

ω−1∑
i=0

zi,j .

Algorithms P.VOLE-HammingWeight and V.VOLE-HammingWeight ex-
plain how to build the degree-d VOLE correlations JzK(d) associated to this
modeling using ω · d random VOLE correlations by describing the prover P and
verifier V sides respectively.

Algorithm 3.3: P.VOLE-HammingWeight
(
z, (Jui,kK)i∈[0,ω−1],k∈[0,d−1]

)
Public information and inputs

Public information: Upper bound on vector’s weight ω, length of the vector n, d = ⌈logn⌉.

Prover’s input: Secret vector z represented as ω positions (pos0, . . . , posω−1), ω · d VOLE

correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as polynomials fui,k
(X) =

ui,kX + vi,k for (i, k) ∈ [0, ω − 1]× [0, d− 1].

Output

Prover’s output: Masked secret t ∈ (Fd
2)

ω , degree-d VOLE correlations JzK(d).

Compute ω elementary vectors

1 : for i ∈ [0, ω − 1]

2 : (ti, JziK(d))← P.VOLE-ElementaryVector
(
posi, (Jui,kK)k∈[0,d−1]

)
3 : endfor

Compute z such that wH

(
z
)
≤ ω

4 : for j ∈ [0, n− 1]

5 : JzjK(d) =
∑ω−1

i=0 Jzi,jK(d)

6 : endfor

7 : t = (t0, · · · , tω−1)

8 : JzK(d) = (Jz0K(d), . . . , Jzn−1K(d))

9 : return (t, JzK(d))

14

Algorithm 3.4: V.VOLE-HammingWeight
(
t, (qui,k

)i∈[0,ω−1],k∈[0,d−1], ∆
)

Public information and inputs

Public information: Upper bound on vector’s weight ω, length of the vector n, d = ⌈logn⌉.

Verifier’s input: Masked secret t ∈ (Fd
2)

ω , qui,k
= fui,k

(∆) for (i, k) ∈ [0, ω−1]×[0, d−1], ∆.

Output

Verifier’s output: VOLE correlations qz.

Compute VOLE correlations for elementary vectors

1 : for i ∈ [0, ω − 1]

2 : qzi
← V.VOLE-ElementaryVector

(
ti, (qui,k

)k∈[0,d−1], ∆
)

3 : endfor

4 : Compute VOLE correlations for z

5 : for j ∈ [0, n− 1]

6 : qzj =
∑ω−1

i=0 qzi,j

7 : endfor

8 :

9 : qz = (qz0 , . . . , qzn−1
)

10 : return qz

3.3 Modeling for PoK of permutation matrices

A permutation matrix can be seen as a n× n matrix containing an elementary
vector on each row with the additional constraints that all its column-wise sums
of coefficients are equals to 1. As a consequence, by using n times the charac-
terization from Section 3.1, one gets a modeling that can be used to prove the
knowledge of a permutation matrix using input size n log(n).

Modeling. Let P = (pos0, . . . , posn−1) ∈ [0, n− 1]n be the secret permutation
matrix represented by the positions of its 1 on each row. Given as input the
vector w = (Bpos0 , . . . ,Bposn−1) ∈ (Fd

2)
n, compute z ∈ Fn×n

2 as:

∀(i, j) ∈ [0, n− 1]× [0, n− 1], zi,j =

d−1∏
k=0

(
Bjk ⊕ wi,k

)
.

One can verify that P is a permutation matrix by checking that:

∀i ∈ [0, n− 1],

n−1∑
j=0

zi,j = 1.

This modeling can be instantiated to create VOLE correlations JzK(d) using
n·d random VOLE correlations as described in Algorithm 3.5 and Algorithm 3.6.

15

Algorithm 3.5: P.VOLE-Permutation
(
P , (Jui,kK)i∈[0,n−1],k∈[0,d−1]

)
Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉.

Prover’s input: Secret permutation matrix P represented as n positions (pos0, . . . , posn−1),

n·d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as polynomials

fui,k
(X) = ui,kX + vi,k for (i, k) ∈ [0, n− 1]× [0, d− 1].

Output

Prover’s output: Masked secret t ∈ (Fd
2)

n, VOLE correlations (JzK(d), JColCheckK(d)).

Compute P row-wise as n elementary vectors

1 : for i ∈ [0, n− 1] :

2 : (ti, JziK(d))← P.VOLE-ElementaryVector
(
posi, (Jui,kK)k∈[0,d−1]

)
3 : endfor

Compute P columns check

4 : for j ∈ [0, n− 1] :

5 : JColSumjK(d) =
∑n−1

i=0 Jzi,jK(d)

6 : JColCheckjK(d) = JColSumjK(d) − 1 ·Xd

7 : endfor

8 : t = (t0, · · · , tn−1)

9 : JzK(d) = (Jz0K(d), . . . , Jzn−1K(d))

10 : JColCheckK(d) = (JColCheck0K(d), . . . , JColCheckn−1K(d))

11 : return (t, JzK(d), JColCheckK(d))

Algorithm 3.6: V.VOLE-Permutation
(
t, (qui,k

)i∈[0,n−1],k∈[0,d−1], ∆
)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉,

Verifier’s input: Masked secret t ∈ (Fd
2)

n, qui,k
= fui,k

(∆) for (i, k) ∈ [0, n−1]×[0, d−1], ∆.

Output

Verifier’s output: VOLE correlations qz and qColCheck.

16

Compute VOLE correlations for P ’s coefficients

1 : for i ∈ [0, n− 1]

2 : qzi
← V.VOLE-ElementaryVector

(
ti, (qui,k

)k∈[0,d−1], ∆
)

3 : endfor

Compute VOLE correlations for P ’s columns check

4 : for j ∈ [0, n− 1]

5 : qColSumj
=

∑n−1
i=0 qi,j

6 : qColCheckj = qColSumj
−∆d

7 : endif

8 : qz = (qz0
, . . . , qzn−1

)

9 : qColCheck = (qColCheck0 , . . . , qColCheckn−1
)

10 : return (qz, qColCheck)

3.4 Resulting PoK from our modelings

Our modelings can be embedded into any proof systems (for instance MPCitH,
TCitH or VOLEitH) in order to produce their corresponding PoK. Given that
our modelings have multiplicative depth logarithmic with respect to their input
size, the VOLEitH framework is well suited for them. One can build VOLEitH
based PoK from our modelings by instantiating Algorithm 2.3. This is straight-
forward for our modelings for elementary vectors (using Algorithms P.VOLE-
ElementaryVector and V.VOLE-ElementaryVector) and vectors of Hamming
weight at most ω (using Algorithms P.VOLE-HammingWeight and V.VOLE-
HammingWeight). The case of permutation is slightly more involved as Algo-
rithms P.Check-Permutation and V.Check-Permutation have to be combined
with the CheckZero protocol (see Appendix B for a detailed description of the
PoK). These proposed PoK are knowledge sound and zero-knowledge in FVOLE-
hybrid model. We omit the proofs for showing these properties since they are
identical to the proofs of protocols in [YSWW21,Roy22,BBD+23b,BBd+23a].

4 Application to SD and PKP based signatures

In this section, we describe signatures for the SD and PKP problems. In order
to do so, we instantiate the VOLEitH framework presented in Section 2 with
proofs built upon the modelings detailed in Sections 3.2 and 3.3 respectively.
Our proofs use VOLE correlations with coefficients u ∈ F2 and v ∈ F2κ and
τ repetitions are considered in order to obtain correlations over F2κτ . Using as
input a witness of size |w|, our proofs produce degree-d VOLE correlations JaK
starting from a GGM tree with N leaves. The padding parameter B affects the
security of the VOLE consistency check and is fixed to B = 16 similarly to what

17

is done in [BBd+23a]. In addition, parameters (w′, Topen) refers to the generic
optimizations presented in [BBM+24]. In particular, this allows to reduce the
cost associated to the GGM tree from τ · (λ log(N) + 2λ) to λ · Topen + τ · 2λ.
This optimization is independent of the problem considered and can be used by
all of the schemes. We defer the interested reader to [BBd+23a, BBM+24] for
additional details. All things considered, our signatures have size:

Size = 4λ+ (τ − 1) ·
[
|w|+ (d− 1) · κτ + (κτ +B)︸ ︷︷ ︸
VOLE correction strings

]
+ (κτ +B)︸ ︷︷ ︸

VOLE consistency check

+ |w|︸︷︷︸
Masked witness t

+ d · κτ︸ ︷︷ ︸
Proof correlation JaK

+λ · Topen + τ · 2λ︸ ︷︷ ︸
GGM tree

.

4.1 Signature based on the SD problem

Since the seminal work of Stern [Ste94, Ste96], signatures built from PoK for
the SD problem have been studied extensively [Vér97, GG07, AGS11, CVE11,
BBBG21,BGKS22,GPS21,BGKM23,FJR22,BG23,FJR23,AFG+23,AGH+23,
CCJ23, FR23b, CLY+24, BCC+24, OTX24]. Hereafter, we focus our compari-
son on signatures based on the SD over F2 which we consider to be the most
conservative setting. For the sake of conciseness, we only consider the short-
est signature from the literature which, to date, is obtained using the model-
ing from [FJR22,FR23b]. We also report numbers for SDitH [AFG+23] as this
scheme is a candidate in the ongoing NIST’s PQC standardization of additional
signature schemes project. We propose a new signature scheme based on the SD
problem by instantiating the VOLEitH framework with our modeling for vectors
of Hamming weight at most ω using Algorithms P.Check-SD and V.Check-SD.

On the versatility of our modeling. While we are mainly considering the
modeling from Section 3.2 in the context of SD over F2, one should note that the
modeling is quite versatile and can also be used to design signatures based on SD
over Fq or the d-split SD which generalizes the Regular SD problem. Regarding
SD over Fq, the proof described in Algorithms P.Check-SD and V.Check-SD can
be seen as computing VOLE correlations Jz1K associated to the support of the se-
cret vector (output by P.VOLE-HammingWeight and V.VOLE-HammingWeight
in line 1). We can also embed the actual values in Fq associated to each non-zero
coordinates in VOLE correlations Jz2K, then one only needs to modify P.Check-
SD to include the multiplication of Jz1K and Jz2K in order to extend it to vectors
over Fq. The d-split SD and Regular SD are variants of SD in which the se-
cret vector is structured into d blocks of similar Hamming weight. The Regular
SD (see Definition 2.3) constitutes the most structured case with ω blocks of
weight 1. Our modeling can be adapted for this setting by running it d times
on vector of size n/d which in the case of Regular SD reduce the witness size
from ω · log2(n) to ω · log2(n/w) and the degree of the VOLE correlations from
log2(n) to log2(n/ω). A full description of this variant is given in Appendix C.

18

On the parameter optimization for our modeling. We now highlight an
observation allowing us to reduce the input size of our proof by exploiting the
fact that the witness size of our modeling scales logarithmictly with n. Contrarily
to existing modelings that are optimal when considering codes of rate 1/2, our
case benefits from increasing the length n of the code and minimize the error
weight ω as our modeling use a witness of size ω · log2(n). As a result, we
consider codes of low error rate ω/n. Before continuing with our observation,
we have to mention that the Regular SD problem can be reduced to the SD
problem easily, see for instance the proof from [FJR22]. Given an SD instance
(H,y), one can apply a random permutation on the columns of H and submit
the resulting instance to a Regular SD oracle. The probability to transform an
SD instance into a Regular SD one is equal to the probability that a random
word in Snω(F2) is regular namely

(
n/ω
1

)ω
/
(
n
ω

)
. In most cases, this reduction is

not tight enough to be useful as the proportion of structured words is too small
with respect to the number of words of Hamming weight ω. Interestingly, as we
are considering codes of low error rate ω/n, we are using a large blocksize n/w
which improves the tightness of the reduction and make it exploitable efficiently.
As a consequence, we can use the Regular SD to benefit from a proof with
input size ω · log2(n/w) and degree log2(n/ω) while choosing parameters large
enough (compensating the security loss due to the tightness) to benefit from the
reduction to the SD problem. While this approach might seem counter-intuitive
given that the reduction is not tight, it turns out to be more efficient than using
the SD problem directly as reported in Table 3. This is explained by the fact
that reducing the multiplicative depth of the modeling compensate for the larger
witness size induced by the choice of bigger parameters.

Signature based on SD over F2. We provide parameters for signatures based
on SD and corresponding witness sizes in Tables 2 and 3 respectively. For our
work, we provide two parameter sets for NIST-I security level namely one based
directly on SD (Param 1) and one based on SD using the Regular SD structure
along with its reduction to SD (Param 2). We stress that the security of both
approaches relies on the SD over F2 problem. In addition, we provide the result-
ing signature sizes for NIST-I and NIST-V security levels in Table 4. In order
to provide a fair comparison, we have added the optimization from [BBM+24]
to the [FR23b] scheme. Numbers for the SDitH scheme are given without any
modification or optimization as they are intended to serve as a reference.

Signature based on Regular SD over F2. Regarding Regular SD, our model-
ing leads to a signature of size 3.2 kB using parameters (n = 1120, k = 700, ω =
140, κ = 11, τ = 11, w′ = 6, Topen = 100) for NIST-I security level. The schemes
from [CLY+24] and [OTX24] feature similar signature sizes although one should
note that these schemes differs on the optimizations used, the performance/size
trade-offs used in their choice of MPC parameters or their targeted security level
hence are not fully commensurable. Indeed, the signature from [CLY+24] fea-

19

tures a size of 4.0 kB for NIST-I security level and the signature from [OTX24]
is 3.0 kB long for a security level of λ = 128.

Algorithm 4.1:
P.Check-SD

(
x, pk, Jui,kKi∈[0,ω−1],k∈[0,d−1], (Jsk′K)k′∈[0,d−2], seed

)
Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn⌉.

Prover’s input: Secret vector x represented as ω positions (pos0, . . . , posω−1), public key

pk = (H,y) ∈ Fm×n
2 ×Fm

2 , ω ·d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as polynomials fui,k
(X) = ui,kX+vi,k for (i, k) ∈ [0, ω−1]× [0, d−1], (d−1)

VOLE correlations Jsk′K for random rk′ , sk′ ∈ F
2λ

represented as fs
k′ (X) = sk′X + rk′

for k′ ∈ [0, d− 2], seed ∈ F
2λ

.

Output

Prover’s output: Proof (JaK, t, seed) that x is a solution to the SD instance defined by pk.

Compute x from its support

1 : (t, JxK(d))← P.VOLE-HammingWeight
(
x, (Jui,kK)i∈[0,ω−1],k∈[0,d−1]

)
Compute Hx− y

2 : for i ∈ [0,m− 1]

3 : fi(X) =
∑n−1

j=0 hi,j · JxjK(d) − yi ·Xd

4 : endfor

Merge polynomials and run CheckZero

5 : α
$,seed←− ∈ Fm

2λ

6 : f(X) =
∑m−1

i=0 αi · fi(X)

7 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d−2]

)
8 : proof = (JaK, t, seed)

9 : return proof

Algorithm 4.2:
V.Check-SD

(
proof, pk, (qui,k

)i∈[0,ω−1],k∈[0,d−1], (qsk′)k′∈[0,d−2], ∆
)

Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn⌉.

Verifier’s input: proof = (JaK, t, seed), public key pk = (H,y) ∈ Fm×n
2 ×Fm

2 , qui,k
= fui,k

(∆)

for (i, k) ∈ [0, ω − 1]× [0, d− 1], qs
k′ = fs

k′ (∆) for k′ ∈ [0, d− 2], ∆.

Output

20

Verifier’s output: Boolean indicating if proof is a valid proof of a SD solution.

Compute VOLE correlations for x

1 : qx ← V.VOLE-HammingWeight
(
t, (qui,k

)i∈[0,ω−1],k∈[0,d−1], ∆
)

Compute VOLE correlations for Hx− y

2 : for i ∈ [0,m− 1]

3 : qi =
∑n−1

j=0 hi,j · qxj
− yi ·∆d

4 : endfor

Merge polynomials and run CheckZero

5 : α
$,seed←− ∈ Fm

2λ

6 : q =
∑m−1

i=0 αi · qi

7 : b← V.CheckZero
(
JaK, q, (qs

k′)k′∈[0,d−2], ∆
)

8 : return b.

Scheme Security n k ω N κ τ w′ Topen

[FJR22,FR23b]
NIST-I 1280 640 132 2048 11 11 5 100

NIST-V 2400 1200 266 2048 11 23 0 214

This work (Param 1)
NIST-I 4096 3737 46 2048 11 11 6 100

NIST-V 4096 3280 128 2048 11 23 2 214

This work (Param 2)
NIST-I 6080 5379 95 2048 11 11 6 100

NIST-V 12160 10755 190 2048 11 23 2 214

Table 2: Parameter sets for SD based signatures

4.2 Signature based on PKP

Since the seminal work of Shamir [Sha90], several signatures based on the
PKP problem have been proposed namely PKP-DSS [BFK+19], SUSHYFISH
[Beu20] or the unnamed ones from [BG23] and [Fen24]. To date, PERK
[BBD+24,ABB+23a] features the smallest signature sizes amongst these schemes
although it relies on a slightly weaker assumption denoted r-IPKP for relaxed in-
homegeneous PKP. Hereafter, we design a new signature scheme based on PKP
by instantiating the VOLEitH framework along with our modeling from Sec-
tion 3.3 using Algorithms P.Check-PKP and V.Check-PKP.

21

Modeling
Witness Mul. depth

Formula Size Formula Value

[FJR22,FR23b] k + w · log2(F2κ) 262 B - 2

This Work (Param 1) w · log2(n) 69 B log2(n) 12

This Work (Param 2) w · log2(n/w) 72 B log2(n/w) 6

Table 3: Modelings for SD over F2 and witness sizes (for NIST-I security level)

Scheme Assumption Security sk pk Signature

SDitH SD over Fq

NIST-I 0.4 kB 0.1 kB 8.5 kB

NIST-V 0.8 kB 0.2 kB 34.0 kB

[FJR22,FR23b] SD over F2

NIST-I 16 B 0.1 kB 5.3 kB

NIST-V 32 B 0.2 kB 21.9 kB

This work (Param 1) SD over F2

NIST-I 16 B 0.1 kB 4.9 kB

NIST-V 32 B 0.2 kB 21.7 kB

This work (Param 2) SD over F2

NIST-I 16 B 0.1 kB 3.9 kB

NIST-V 32 B 0.2 kB 16.2 kB

Table 4: Comparison of SD based signatures

For the sake of conciseness, we only compare our new signature to PERK as
it is the smallest PKP based signature. Our scheme brings three improvements
with respect to PERK as (i) it relies on the PKP assumption (with q = 2k)
rather than the weaker r-IPKP one, (ii) it is compatible with the recent VOLEitH
framework which is not the case of PERK and (iii) it features a smaller witness
size. Parameters for our schemes are given in Table 5 while parameters for PERK
are from [ABB+23a]. Comparison of modelings and resulting signatures are given
in Tables 6 and 7.

Algorithm 4.3:
P.Check-PKP

(
P , pk, Jui,kKi∈[0,n−1],k∈[0,d−1], (Jsk′K)k′∈[0,d−2], seed

)
Public information

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉.

Prover’s input: Secret permutation matrix P represented as n positions (pos0, . . . , posn−1),

public key pk = (H,x), n · d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2 × F
2λ

22

represented as polynomials fui,k
(X) = ui,kX+vi,k for (i, k) ∈ [0, n−1]× [0, d−1], (d−1)

VOLE correlations Jsk′K for random rk′ , sk′ ∈ F
2λ

represented as fs
k′ (X) = sk′X + rk′

for k′ ∈ [0, d− 2], seed ∈ F
2λ

.

Output

Prover’s output: Proof (JaK, t, seed) that P is a solution to the PKP instance defined by pk.

Compute P in matrix form

1 : (t, JzK(d), JColCheckK(d))← P.VOLE-Permutation
(
P , (Jui,kK)i∈[0,n−1],k∈[0,d−1]

)
2 : Parse JColCheckK(d) as (f0(X), f1(X), . . . , fn−1(X))

Compute x′ = Px

3 : for i ∈ [0, n− 1]

4 : Jx′
iK

(d) =
∑n−1

j=0 Jzi,jK(d) · xj

5 : endfor

Compute y = Hx′

6 : for i ∈ [0,m− 1]

7 : JyiK(d) = fi+n(X) =
∑n−1

j=0 hi,j · Jx′
jK(d)

8 : endfor

Merge polynomials and run CheckZero

9 : α
$,seed←− ∈ Fn+m

2λ

10 : f(X) =
∑n+m−1

j=0 αj · fj(X)

11 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d−2]

)
12 : proof = (JaK, t, seed)

13 : return proof

Algorithm 4.4:
V.Check-PKP

(
proof, pk, (qui,k

)i∈[0,n−1],k∈[0,d−1], (qsk′)k′∈[0,d−2], ∆
)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉.

Verifier’s input: proof = (JaK, t, seed), public key pk = (H,x), qui,k
= fui,k

(∆) for (i, k) ∈

[0, n− 1]× [0, d− 1], qs
k′ = fs

k′ (∆) for k′ ∈ [0, d− 2], ∆.

Output

Verifier’s output: Boolean indicating if proof is a valid proof of a PKP solution.

23

Compute VOLE correlations for P

1 : (qz, qColCheck)← V.VOLE-Permutation
(
t, (qui,k

)i∈[0,n−1],k∈[0,d−1], ∆
)

Compute VOLE correlations for x′ = Px

2 : for i ∈ [0, n− 1]

3 : qx′
i
=

∑n−1
j=0 qi,j · xj

4 : endfor

Compute VOLE correlations for y = Hx′

5 : for i ∈ [0,m− 1]

6 : qyi
=

∑n−1
j=0 hi,j · qx′

j

7 : endfor

Merge polynomials and run CheckZero

8 : α
$,seed←− ∈ Fn+m

2λ

9 : q =
∑n−1

j=0 αj · qColCheckj +
∑n+m−1

j=n αj · qyj−n

10 : b← V.CheckZero
(
JaK, q, (qs

k′)k′∈[0,d−2], ∆
)

11 : return b.

Security q n m N κ τ w′ Topen

NIST-I 2048 64 27 2048 11 11 6 100

NIST-V 4096 109 49 2048 11 23 2 214

Table 5: Parameter sets for our PKP based signature

Modeling Witness Size

PERK [ABB+23a] n log2(n) + n log2(q) 136 B

This work n log2(n) 48 B

Table 6: Modelings for PKP and resulting witness sizes (for NIST-I security level)

24

Scheme Assumption Security sk pk Signature

PERK [ABB+23a] r-IPKP
NIST-I 16 B 0.2 kB 5.8 kB

NIST-V 32 B 0.5 kB 23.0 kB

This work PKP
NIST-I 16 B 0.1 kB 3.6 kB

NIST-V 32 B 0.2 kB 15.9 kB

Table 7: Comparison of PKP based signatures

5 Application to PoK of secret keys of KEMs

In the shift toward post-quantum cryptography, [SSW20] introduced the
KEMTLS protocol as an alternative to the TLS 1.3 handshake, utilizing key
encapsulation mechanisms (KEMs) for authentication in place of digital signa-
tures. However, KEMTLS requires certificates to contain KEM keys, presenting
the challenge of proving possessing a KEM key. In [GHL+22], a non-interactive
proof of possession of a KEM certificate was proposed for lattice-based KEMs.
For the code-based KEMs BIKE and HQC, currently under consideration in the
fourth round of NIST’s Post-Quantum Standardization project, our approach
provides compact short proofs, achieving a size of less than 10 kilobytes for
NIST-I security level. Interestingly, a comparable proof for Kyber is 17.8 kB
long [GHL+22] which suggests that advanced protocols using PoK of secret keys
of KEM may have a smaller footprint when instantiated with code-based KEMs
instead of lattice-based KEMs.

Indeed, similarly to what was detailed in Section 4, our new modelling can
be used to prove the knowledge of the secret keys associated to BIKE and HQC.
Doing so requires to prove the knowledge of a solution of a 2-QCSD over F2

instance (where QCSD stands for Quasi-Cyclic Syndrome Decoding). This can
be achieved using our modelling for the SD twice as the solution is composed
of two blocks of similar weight. Interestingly, this setting highlights one of the
advantages of our modelling namely that it scales logarithmically with the length
of the considered code while existing modelings feature a polynomial scaling. As
both BIKE and HQC uses quasi-cyclic codes whose lengths are more than 10
times greater than the lengths typically considered when designing signatures,
our modelling leads to significant improvement with respect to existing ones in
this setting. This is illustrated in Table 8 using HQC parameters (n = 35338, k =
17669, ω = 132) and (n = 115274, k = 57637, ω = 262) for NIST-I and NIST-V
security levels respectively along with MPC parameters (κ = 11, τ = 12) and
(κ = 11, τ = 24) for NIST-I and NIST-V security levels.

25

Modeling Code
Length Security Witness

Size
PoK
Size

[FJR22,FR23b]
4 418 B NIST-I 2.4 kB 31.7 kB

14 410 B NIST-V 7.6 kB 193 kB

This work
4 418 B NIST-I 248 B 8.6 kB

14 410 B NIST-V 524 B 35.5 kB

Table 8: Comparison of PoK of HQC’s secret key

6 Application to Ring Signatures

An interesting application of our modelings given in Section 3 is ring signatures.
Informally, a ring signature allows a user to anonymously sign a message on
behalf of a group, making it impossible to determine who in the group signed
the message. Let some user Alice be a part of a group of n̄ users (ring R for
the ring signature), with each user useri holding its corresponding public and
private keys (pki, ski). Let Alice’s index be i∗ ∈ [0, n̄ − 1] and let d̄ = ⌈log(n̄)⌉.
Note that Alice should be able to sign a message using ski∗ which can be verified
by anyone holding the set of public keys pkR := (pk0, pk1, . . . , pki∗ , . . . , pkn̄−1)
without revealing i∗. Following the technique introduced in [BS13] and used
in [FR23b], this can be achieved as follows:

1. Alice shares her secret key as Jski∗K ;
2. Alice shares the selection vector ei∗ ∈ {0, 1}n̄ (i.e. the vector of size n̄ which

has all its coordinates equal to zero except for the i∗th one set to 1) as Jei∗K ;
3. Alice uses Jei∗K to select Jpki∗K from pkR without revealing i∗ by running

some interactive protocol with the verifier ;
4. The verifier uses Jpki∗K to check the signature generated using Jski∗K.

Note that, the selection vector ei∗ ∈ {0, 1}n̄ can be generated from VOLE
correlations with P.VOLE− ElementaryVector using the secret position i∗ as in-
put. Therefore, one can construct VOLEitH based ring signatures as follows:

1. Generate random VOLE correlations then send the prover’s inputs to the
signer and the verifier’s inputs to the verifier of the ring signature scheme ;

2. Compute Jei∗K using P.VOLE− ElementaryVector ;
3. Compute the verification key as JvkRK =

∑n̄−1
i=0 Jei∗K · pki ;

4. Compute the signature using the secret key Jski∗K corresponding to JvkRK.

Doing so, we can convert the signatures based on SD and PKP from Section 4
into ring signatures. The main modification consists to update the polynomial
constraints to take into account the fact that the public key is now a VOLE

26

correlation rather than a public value. Hereafter, we briefly explain how to do
it and refer the interested reader to the full description of the ring signatures
provided in Appendices D.1 and D.2 respectively.

Ring signature based on SD. Each user useri in the ring possesses a key pair
defined as pki = (Hi,yi) and ski = xi. The polynomial constraints of the proof
are defined as follows:

fi(X) =

n−1∑
j=0

Jhi,jK(d̄) · JxjK
(d) − JyiK

(d̄) ·Xd ∀i ∈ [0,m− 1]

where JxjK is computed as in P.Check-SD using the secret key xi∗ and (Jhi,jK,
JyiK) are computed using pkR and P.VOLE-ElementaryVector with input i∗ as
described previously.

Ring signature based on PKP. Each user useri in the ring possesses a key
pair defined as pki = (Hi,xi) and ski = Pi The polynomial constraints of the
proof are defined as follows:

JyiK(d+2·d̄) = fi+n(X) =

n−1∑
j=0

Jhi,jK(d̄) · Jx′jK
(d+d̄) ∀i ∈ [0,m− 1].

where (Jhi,jK, JxK) are computed using pkR and P.VOLE-ElementaryVector with
i∗ as input and Jx′jK is computed as in P.Check-PKP using Pi∗ and JxK.

Several post-quantum ring signatures have been proposed over the years, see
for instance [KKW18, GGHAK22, LAZ19, EZS+19, BKP20, BBN+22, BESV22,
LN22,FR23b]. To date, the shortest ring signatures are obtained using the MQ
problem using the work from [FR23b]. As described in Table 9, our modelings
lead to the shortest ring signature based on the SD problem and the first ring
signature based on the PKP problem.

Scheme 23 26 28 210 212 220 Assumption

[FR23b]
4.30 4.33 4.37 4.45 4.60 5.62 MQ

7.37 7.51 7.96 8.24 8.40 10.09
SD

This work
4.34 4.85 5.18 5.52 5.85 7.20

4.62 5.62 6.29 6.96 7.63 10.30 PKP

Table 9: Comparison of ring signature sizes (in kB) for NIST-I security level

Acknowledgement. The authors would like to thank Thibauld Feneuil for fruit-
ful discussions concerning the impact of the multiplicative depth of our modelings
as well as Andre Esser for fruitful discussions regarding the PKP assumption.

27

References
AAB+22. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux,

Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-
Marc Robert, and Pascal Veron. HQC. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-4-submissions.

ABB+22. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron,
Tim Guneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo Per-
sichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin
Vasseur, Santosh Ghosh, and Jan Richter-Brokmann. BIKE. Technical
report, National Institute of Standards and Technology, 2022. available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-4-submissions.

ABB+23a. Najwa Aaraj, Slim Bettaieb, Loïc Bidoux, Alessandro Budroni, Vic-
tor Dyseryn, Andre Esser, Philippe Gaborit, Mukul Kulkarni, Vic-
tor Mateu, Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich.
PERK. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

ABB+23b. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-
Domínguez, Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, An-
toine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte.
RYDE. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

ABB+23c. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-
Domínguez, Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Ro-
maric Neveu, Matthieu Rivain, and Jean-Pierre Tillich. MIRA.
Technical report, National Institute of Standards and Technology,
2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

AFG+23. Carlos Aguilar-Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron,
James Howe, David Joseph, Antoine Joux, Edoardo Persichetti, Tovo-
hery H. Randrianarisoa, Matthieu Rivain, and Dongze Yue. SDitH —
Syndrome Decoding in the Head. Technical report, National Institute of
Standards and Technology, 2023. available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures.

AGH+23. Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing,
David Joseph, and Dongze Yue. The return of the SDitH. In Hazay and
Stam [HS23], pages 564–596.

AGS11. Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-
knowledge code based identification scheme with reduced communication.
In IEEE Information Theory Workshop, 2011.

ARV+23. Gora Adj, Luis Rivera-Zamarripa, Javier Verbel, Emanuele Bellini, Ste-
fano Barbero, Andre Esser, Carlo Sanna, and Floyd Zweydinger. MiRitH
— MinRank in the Head. Technical report, National Institute of Stan-
dards and Technology, 2023. available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures.

28

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

BBBG21. Slim Bettaieb, Loïc Bidoux, Olivier Blazy, and Philippe Gaborit. Zero-
Knowledge Reparation of the Véron and AGS Code-based Identifica-
tion Schemes. In IEEE International Symposium on Information Theory
(ISIT), 2021.

BBd+23a. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem,
Michael Klooß, Christian Majenz, Shibam Mukherjee, Emmanuela Orsini,
Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter
Scholl. FAEST. Technical report, National Institute of Standards
and Technology, 2023. available at https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures.

BBD+23b. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem,
Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl.
Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. In Helena Handschuh and Anna Lysyanskaya, edi-
tors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 581–615.
Springer, Cham, August 2023.

BBD+24. Slim Bettaieb, Loïc Bidoux, Victor Dyseryn, Andre Esser, Philippe Ga-
borit, Mukul Kulkarni, and Marco Palumbi. PERK: compact signature
scheme based on a new variant of the permuted kernel problem. Designs,
Codes and Cryptography, pages 2131–2157, 2024.

BBM+24. Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini,
Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter
Scholl. One tree to rule them all: Optimizing GGM trees and OWFs for
post-quantum signatures. Cryptology ePrint Archive, Report 2024/490,
2024.

BBN+22. Alessandro Barenghi, Jean-Francois Biasse, Tran Ngo, Edoardo Per-
sichetti, and Paolo Santini. Advanced signature functionalities from the
code equivalence problem. Cryptology ePrint Archive, Report 2022/710,
2022.

BCC+24. Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and
Antoine Joux. Short signatures from regular syndrome decoding, revisited.
Cryptology ePrint Archive, Report 2024/252, 2024.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In Lie et al. [LMBW18], pages 896–912.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Berlin, Heidelberg, August 1992.

BESV22. Emanuele Bellini, Andre Esser, Carlo Sanna, and Javier A. Verbel. MR-
DSS - smaller MinRank-based (ring-)signatures. In Jung Hee Cheon
and Thomas Johansson, editors, Post-Quantum Cryptography - 13th In-
ternational Workshop, PQCrypto 2022, pages 144–169. Springer, Cham,
September 2022.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy sig-
nature schemes. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 183–211. Springer,
Cham, May 2020.

BFG+24. Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, and
Matthieu Rivain. Dual support decomposition in the head: Shorter sig-
natures from rank SD and MinRank. Cryptology ePrint Archive, Report
2024/541, 2024.

29

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

BFK+19. Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles Macario-
Rat, Jacques Patarin, and Ludovic Perret. PKP-based signature scheme.
In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, IN-
DOCRYPT 2019, volume 11898 of LNCS, pages 3–22. Springer, Cham,
December 2019.

BG23. Loïc Bidoux and Philippe Gaborit. Compact Post-quantum Signatures
from Proofs of Knowledge Leveraging Structure for the PKP, SD and
RSD Problems. In Codes, Cryptology and Information Security (C2SI),
pages 10–42. Springer, 2023.

BGKM23. Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Víctor Mateu. Code-
based signatures from new proofs of knowledge for the syndrome decoding
problem. DCC, 91(2):497–544, 2023.

BGKS22. Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Nicolas Sendrier.
Quasi-Cyclic Stern Proof of Knowledge. In IEEE International Sympo-
sium on Information Theory (ISIT), pages 1459–1464, 2022.

BKP20. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 464–492. Springer, Cham, December 2020.

BKPV23. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Bis-
cuit. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

BØ23. Pierre Briaud and Morten Øygarden. A new algebraic approach to the
regular syndrome decoding problem and implications for PCG construc-
tions. In Hazay and Stam [HS23], pages 391–422.

BS13. Slim Bettaieb and Julien Schrek. Improved lattice-based threshold ring
signature scheme. In Philippe Gaborit, editor, Post-Quantum Cryptogra-
phy - 5th International Workshop, PQCrypto 2013, pages 34–51. Springer,
Berlin, Heidelberg, June 2013.

CCJ23. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures
from regular syndrome decoding in the head. In Hazay and Stam [HS23],
pages 532–563.

CLY+24. Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang, Yu Yu, and Kaiyi Zhang.
ReSolveD: Shorter signatures from regular syndrome decoding and VOLE-
in-the-head. In Tang and Teague [TT24], pages 229–258.

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265.
Springer, Berlin, Heidelberg, April 1991.

CVE11. Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui.
A zero-knowledge identification scheme based on the q-ary syndrome de-
coding problem. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,
editors, SAC 2010, volume 6544 of LNCS, pages 171–186. Springer, Berlin,
Heidelberg, August 2011.

ES24. Andre Esser and Paolo Santini. Not just regular decoding: Asymptotics
and improvements of regular syndrome decoding attacks. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VI, volume
14925 of LNCS, pages 183–217. Springer, Cham, August 2024.

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K.
Liu, and Dongxi Liu. MatRiCT: Efficient, scalable and post-quantum

30

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

blockchain confidential transactions protocol. In Lorenzo Cavallaro, Jo-
hannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 567–584. ACM Press, November 2019.

Fen24. Thibauld Feneuil. Building MPCitH-based signatures from MQ, Min-
Rank, and rank SD. In Christina Pöpper and Lejla Batina, editors,
ACNS 24International Conference on Applied Cryptography and Network
Security, Part I, volume 14583 of LNCS, pages 403–431. Springer, Cham,
March 2024.

FFS88. Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77–94, June 1988.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decod-
ing in the head: Shorter signatures from zero-knowledge proofs. In Yev-
geniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 541–572. Springer, Cham, August 2022.

FJR23. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permuta-
tion for syndrome decoding: new zero-knowledge protocol and code-based
signature. DCC, 91(2):563–608, 2023.

FR23a. Thibauld Feneuil and Matthieu Rivain. MQOM — MQ on my
Mind. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

FR23b. Thibauld Feneuil and Matthieu Rivain. Threshold computation in
the head: Improved framework for post-quantum signatures and zero-
knowledge arguments. Cryptology ePrint Archive, Report 2023/1573,
2023.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, edi-
tor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Berlin,
Heidelberg, August 1987.

GG07. Philippe Gaborit and Marc Girault. Lightweight code-based identification
and signature. In IEEE International Symposium on Information Theory
(ISIT), 2007.

GGHAK22. Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel
Kaptchuk. Efficient set membership proofs using MPC-in-the-head.
PoPETs, 2022(2):304–324, April 2022.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479.
IEEE Computer Society Press, October 1984.

GHL+22. Tim Güneysu, Philip W. Hodges, Georg Land, Mike Ounsworth, Douglas
Stebila, and Greg Zaverucha. Proof-of-possession for KEM certificates
using verifiable generation. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 1337–1351. ACM Press,
November 2022.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208,
1989.

31

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

GPS21. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practi-
cal code-based signature scheme from zero-knowledge proofs with trusted
setup. Cryptology ePrint Archive, Report 2021/1020, 2021.

HS23. Carmit Hazay and Martijn Stam, editors. EUROCRYPT 2023, Part V,
volume 14008 of LNCS. Springer, Cham, April 2023.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June
2007.

IKOS09. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM Journal on
Computing, 39(3):1121–1152, 2009.

KCC+23. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon,
Byeonghak Lee, Joohee Lee, Jooyoung Lee, Sangyub Lee, Dukjae Moon,
Mincheol Son, and Hyojin Yoon. AIMer. Technical report, National In-
stitute of Standards and Technology, 2023. available at https://csrc.
nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In Lie et al. [LMBW18], pages 525–537.

LAZ19. Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-
based (linkable) ring signature. In Robert H. Deng, Valérie Gauthier-
Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19International
Conference on Applied Cryptography and Network Security, volume 11464
of LNCS, pages 110–130. Springer, Cham, June 2019.

LMBW18. David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors. ACM CCS 2018. ACM Press, October 2018.

LN22. Vadim Lyubashevsky and Ngoc Khanh Nguyen. BLOOM: Bimodal lattice
one-out-of-many proofs and applications. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages
95–125. Springer, Cham, December 2022.

LNP+24. San Ling, Khoa Nguyen, Duong Hieu Phan, Khai Hanh Tang, Huaxiong
Wang, and Yanhong Xu. Fully dynamic attribute-based signatures for
circuits from codes. In Tang and Teague [TT24], pages 37–73.

McE78. Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. The deep space network progress report 42-44, Jet Propulsion
Laboratory, California Institute of Technology, January/February 1978.
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF.

NTWZ19. Khoa Nguyen, Hanh Tang, Huaxiong Wang, and Neng Zeng. New code-
based privacy-preserving cryptographic constructions. In Steven D. Gal-
braith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume
11922 of LNCS, pages 25–55. Springer, Cham, December 2019.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

OTX24. Ying Ouyang, Deng Tang, and Yanghong Xu. Code-Based Zero-
Knowledge from VOLE-in-the-Head and Their Applications: Simpler,
Faster, and Smaller. Cryptology ePrint Archive, Report 2024/1414, 2024.

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field
silent VOLE in the minicrypt model. In Yevgeniy Dodis and Thomas

32

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
657–687. Springer, Cham, August 2022.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
552–565. Springer, Berlin, Heidelberg, December 2001.

SAB+22. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

Sha90. Adi Shamir. An efficient identification scheme based on permuted ker-
nels (extended abstract) (rump session). In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 606–609. Springer, New York,
August 1990.

SSW20. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS
without handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1461–1480.
ACM Press, November 2020.

Ste94. Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages
13–21. Springer, Berlin, Heidelberg, August 1994.

Ste96. Jacques Stern. A new paradigm for public key identification. IEEE Trans-
actions on Information Theory (IEEE IT), 42(6):1757–1768, 1996.

TT24. Qiang Tang and Vanessa Teague, editors. PKC 2024, Part I, volume
14601 of LNCS. Springer, Cham, April 2024.

Vér97. Pascal Véron. Improved Identification Schemes Based on Error-Correcting
Codes. Applicable Algebra in Engineering, Communication and Comput-
ing, 1997.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 2986–3001. ACM Press, November 2021.

ZCD+20. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov,
and Daniel Kales. Picnic. Technical report, National In-
stitute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

33

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

A Additional details on operations on VOLE correlations

Algorithm A.1: LinearCombination(c0, c1, . . . , cn)

Prover’s computation: P.LinearCombination(c0, c1, . . . , cn, (u1, v1), . . . , (un, vn))

Prover’s input: Coefficients of linear combination c0, c1, . . . , cn ∈ F2, VOLE correlation in-
puts (u1, v1), . . . , (un, vn) ∈ (F2 × F2κ)n.

Prover’s output: VOLE correlations (u, v) for the linear combination of secret inputs.

Computes u = c0 +
∑n

i=1 ciui and v =
∑n

i=1 civi.

Verifier’s computation: V.LinearCombination(c0, c1, . . . , cn, ∆, q1, . . . , qn)

Verifier’s input: Coefficients of linear combination c0, c1, . . . , cn ∈ F2, VOLE correlation
inputs ∆, q1, . . . qn ∈ Fn+1

2κ

Verifier’s output: VOLE correlation q for linear combination of secret inputs.

Computes q = c0∆ +
∑n

i=1 ciqi.

In the following, let d1 ≥ d2 without loss of generality, also let d = d1 + d2.

Algorithm A.2: Add
(
Js1K(d1), Js2K(d2)

)
Public information:

Degrees of input VOLE correlations d1, d2.

Prover’s computation: P.Add
(

Js1K(d1), Js2K(d2)
)

Prover’s input: VOLE correlations represented as polynomials fs1 (X) and fs2 (X).

Prover’s output: VOLE correlation JsK(d1) for addition of secret inputs.

Computes JsK(d1) = fs(X) = fs1 (X) + fs2 (X)Xd1−d2 where s = s1 + s2.

Verifier’s computation: V.Add
(
∆, qs1 , qs2

)
Verifier’s input: ∆, qs1 = fs1 (∆), and qs2 = fs2 (∆)

Verifier’s output: VOLE correlation qs for addition of secret inputs.

Computes qs = qs1 + qs2∆
d1−d2 .

Algorithm A.3: Multiply
(
Js1K(d1), Js2K(d2)

)
Public information:

Degrees of input VOLE correlations d1, d2.

34

Prover’s computation: P.Multiply
(

Js1K(d1), Js2K(d2)
)

Prover’s input: VOLE correlations represented as polynomials fs1 (X) and fs2 (X).

Prover’s output: VOLE correlation JsK(d1) for multiplication of secret inputs.

Computes JsK(d) = fs(X) = fs1 (X)fs2 (X) where s = s1s2.

Verifier’s computation: V.Multiply
(
∆, qs1 , qs2

)
Verifier’s input: ∆, qs1 = fs1 (∆) and qs2 = fs2 (∆)

Verifier’s output: VOLE correlation qs for multiplication of secret inputs.

Computes qs = qs1qs2 .

B PoK of secret permutation

Algorithm B.1:
P.Check-Permutation

(
P , (Jui,kK)i∈[0,n−1],k∈[0,d−1], (Jsk′K)k′∈[0,d−2], seed

)
Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉.

Prover’s input: Secret permutation matrix P represented as n positions (pos0, . . . , posn−1),

n·d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as polynomials

fui,k
(X) = ui,kX+vi,k for (i, k) ∈ [0, n−1]× [0, d−1], (d−1) VOLE correlations Jsk′K for

random rk′ , sk′ ∈ F
2λ

represented as fs
k′ (X) = sk′X + rk′ for k′ ∈ [0, d− 2], seed ∈ F

2λ
.

Output

Prover’s output: Proof (JaK, t, seed) that P is a permutation matrix.

Compute VOLE correlations for P

1 : (t, JzK(d), JColCheckK(d))← P.VOLE-Permutation
(
P , (Jui,kK)i∈[0,n−1],k∈[0,d−1]

)
2 : Parse JColCheckK(d) as (f0(X), f1(X), . . . , fn−1(X))

Merge polynomials and run CheckZero

3 : α
$,seed←− ∈ Fn

2λ

4 : f(X) =
∑n−1

j=0 αj · fj(X)

5 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d−2]

)
6 : proof = (JaK, t, seed)

7 : return proof

35

Algorithm B.2:
V.Check-Permutation

(
proof, (qui,k

)i∈[0,n−1],k∈[0,d−1], (qsk′)k′∈[0,d−2], ∆
)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉.

Verifier’s input: proof = (JaK, t, seed), qui,k
= fui,k

(∆) for (i, k) ∈ [0, n − 1] × [0, d − 1],

qs
k′ = fs

k′ (∆) for k′ ∈ [0, d− 2], ∆.

Output

Verifier’s output: Boolean indicating if proof is a valid proof for some permutation matrix P .

Compute VOLE correlations for P

1 : (qz, qColCheck)← V.VOLE-Permutation
(
t, (qui,k

)i∈[0,n−1],k∈[0,d−1], ∆
)

Merge polynomials and run CheckZero

2 : α
$,seed←− ∈ Fn

2λ

3 : q =
∑n−1

j=0 αj · qColCheckj
4 : b← V.CheckZero

(
JaK, q, (qs

k′)k′∈[0,d−2], ∆
)

5 : return b.

C PoK for the Regular SD problem

Algorithm C.1:
P.Check-Regular-SD

(
x, pk, Jui,kKi∈[0,ω−1],k∈[0,d−1], (Jsk′K)k′∈[0,d−2], seed

)
Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn/ω⌉.

Prover’s input: Secret vector x represented as ω positions (pos0, . . . , posω−1), public key

pk = (H,y) ∈ Fm×n
2 ×Fm

2 , ω ·d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as polynomials fui,k
(X) = ui,kX+vi,k for (i, k) ∈ [0, ω−1]× [0, d−1], (d−1)

VOLE correlations Jsk′K for random rk′ , sk′ ∈ F
2λ

represented as fs
k′ (X) = sk′X + rk′

for k′ ∈ [0, d− 2], seed ∈ F
2λ

.

Output

Prover’s output: Proof (JaK, t, seed) that x is a solution to the given Regular SD instance.

36

Compute elementary vector xi for each block

1 : for i ∈ [0, ω − 1]

2 : (ti, JxiK(d))← P.VOLE-ElementaryVector
(
posi, (Jui,kK)k∈[0,d−1]

)
3 : endfor

Concatenate xi into x such that wH

(
x
)
≤ ω

4 : JxK = (Jx0K || · · · || Jxω−1K)

5 : t = (t0, · · · , tω−1)

6 : Compute Hx− y

7 : for i ∈ [0,m− 1]

8 : fi(X) =
∑n−1

j=0 hi,j · JxjK(d) − yi ·Xd

9 : endfor

Merge polynomials and run CheckZero

10 : α
$,seed←− ∈ Fm

2λ

11 : f(X) =
∑m−1

i=0 αi · fi(X)

12 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d−2]

)
13 : proof = (JaK, t, seed)

14 : return proof

Algorithm C.2:
V.Check-Regular-SD

(
proof, pk, (qui,k

)i∈[0,ω−1],k∈[0,d−1], (qsk′)k′∈[0,d−2], ∆
)

Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn/ω⌉.

Verifier’s input: proof = (JaK, t, seed), public key pk = (H,y) ∈ Fm×n
2 ×Fm

2 , qui,k
= fui,k

(∆)

for (i, k) ∈ [0, ω − 1]× [0, d− 1], qs
k′ = fs

k′ (∆) for k′ ∈ [0, d− 2], ∆.

Output

Verifier’s output: Boolean indicating if proof is a valid proof of a Regular SD solution.

37

Compute VOLE correlations for xi

1 : for i ∈ [0, ω − 1]

2 : qxi
← V.VOLE-ElementaryVector

(
ti, (qui,k

)k∈[0,d−1], ∆
)

3 : endfor

4 : Compute VOLE correlations for x

5 : qx = (qx0 || · · · || qxω−1
)

6 : Compute VOLE correlations for Hx− y

7 : for i ∈ [0,m− 1]

8 : qi =
∑n−1

j=0 hi,j · qxj
− yi ·∆d

9 : endfor

Merge polynomials and run CheckZero

10 : α
$,seed←− ∈ Fm

2λ

11 : q =
∑m−1

i=0 αi · qi

12 : b← V.CheckZero
(
JaK, q, (qs

k′)k′∈[0,d−2], ∆
)

13 : return b.

D Ring Signatures

D.1 SD-based scheme

Algorithm D.1: P.Ring-Share-PublicKey-SD
(
i∗, (JukK)k∈[0,d̄−1], pkR

)
Public information and inputs

Public information: Length of the vector n̄, d̄ = ⌈log n̄⌉.

Prover’s input: Secret position i∗ ∈ [0, n̄−1], d̄ VOLE correlations JukK for random (uk, vk) ∈

F2 × F
2λ

represented as polynomials fuk
(X) = ukX + vk for k ∈ [0, d̄ − 1], a ring of n̄

public keys pkR = ((H0,y0), . . . , (Hi∗ ,yi∗), . . . (Hn̄−1,yn̄−1)).

Output

Prover’s output: Masked secret t̄ ∈ Fd̄
2 , JHK(d̄), JyK(d̄).

38

Compute selection vector

1 : (t̄, JzK(d̄))← P.VOLE-ElementaryVector
(
i∗, (JukK)k∈[0,d̄−1]

)
Compute H and y

2 : JHK(d̄) =
∑n̄−1

i=0 JziK(d̄) ·Hi // Multiply each coordinates of Hi by JziK(d̄)

JyK(d̄) =
∑n̄−1

i=0 JziK(d̄) · yi

3 : return (t̄, JHK(d̄), JyK(d̄))

Algorithm D.2: P.Check-Ring-SD(xi∗ , pkR, Jui,kKi∈[0,ω−1],k∈[0,d−1],
JukKk∈[0,d̄−1], (Jsk′K)k′∈[0,d+d̄−2], seed)

Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn⌉, size n̄ of the

ring R and d̄ = ⌈log n̄⌉.

Prover’s input: Secret vector xi∗ represented as ω positions (pos0, . . . , posω−1), pkR =

((H0,y0), . . . , (Hi∗ ,yi∗), . . . (Hn̄−1,yn̄−1)) where ∀i ∈ [0, n̄ − 1] (Hi,yi) ∈ Fm×n
2 × Fm

2 ,

ω · d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2 × F
2λ

represented as poly-

nomials fui,k
(X) = ui,kX + vi,k for (i, k) ∈ [0, ω − 1] × [0, d − 1], d̄ VOLE correlations

JukK for random (uk, vk) ∈ F2 × F
2λ

represented as polynomials fuk
(X) = ukX + vk for

k ∈ [0, d̄ − 1], (d + d̄ − 1) VOLE correlations Jsk′K for random rk′ , sk′ ∈ F
2λ

represented

as fs
k′ (X) = sk′X + rk′ for k′ ∈ [0, d + d̄− 2], seed ∈ F

2λ
.

Output

Prover’s output: Proof (JaK, t, t̄, seed) that xi∗ is a solution to the SD instance defined by

pki∗ = (Hi∗ ,yi∗) and pki∗ ∈ pkR.

39

Compute x from its support

1 : (t, JxK(d))← P.VOLE-HammingWeight
(
xi∗ , (Jui,kK)i∈[0,ω−1],k∈[0,d−1]

)
Compute H and y

2 : (t̄, JHK(d̄), JyK(d̄))← P.Ring-Share-PublicKey-SD
(
i∗, (JukK)k∈[0,d̄−1], pkR

)
Compute Hx− y

3 : for i ∈ [0,m− 1]

4 : fi(X) =
∑n−1

j=0 Jhi,jK(d̄) · JxjK(d) − JyiK(d̄) ·Xd

5 : endfor

Merge polynomials and run CheckZero

6 : α
$,seed←− ∈ Fm

2λ

7 : f(X) =
∑m−1

i=0 αi · fi(X)

8 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d+d̄−2]

)
9 : proof = (JaK, t, t̄, seed)

10 : return proof

Algorithm D.3: V.Check-Ring-SD(proof, pkR, (qui,k
)i∈[0,ω−1],k∈[0,d−1],

(quk
)k∈[0,d̄−1], (qsk′)k′∈[0,d+d̄−2], ∆)

Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn⌉, size n̄ of the

ring R and d̄ = ⌈log n̄⌉.

Verifier’s input: proof = (JaK, t, t̄, seed), pkR := ((H0,y0), . . . , (Hi∗ ,yi∗), . . . (Hn̄−1,yn̄−1))

where ∀i ∈ [0, n̄−1] (Hi,yi) ∈ Fm×n
2 ×Fm

2 , qui,k
= fui,k

(∆) for (i, k) ∈ [0, ω−1]×[0, d−1],

quk
= fuk

(∆) for k ∈ [0, d̄− 1], qs
k′ = fs

k′ (∆) for k′ ∈ [0, d + d̄− 2], ∆.

Output

Verifier’s output: Boolean indicating if proof is a valid proof of a SD solution for ring R.

40

Compute VOLE correlations for x

1 : qx ← V.VOLE-HammingWeight
(
t, (qui,k

)i∈[0,ω−1],k∈[0,d−1], ∆
)

Compute VOLE correlations for selection vector

2 : q∗ ← V.VOLE-ElementaryVector
(
t̄, (quk

)k∈[0,d̄−1], ∆
)

3 :

Compute VOLE correlations for H and y

4 : qH =
∑n̄−1

i=0 q∗i ·Hi

qy =
∑n̄−1

i=0 q∗i · yi

Compute VOLE correlations for Hx− y

5 : for i ∈ [0,m− 1]

6 : qi =
∑n−1

j=0 qH i,j · qxj
− qyi

·∆d

7 : endfor

Merge polynomials and run CheckZero

8 : α
$,seed←− ∈ Fm

2λ

9 : q =
∑m−1

i=0 αi · qi

10 : b← V.CheckZero
(
JaK, q, (qs

k′)k′∈[0,d+d̄−2], ∆
)

11 : return b.

D.2 PKP-based scheme

Algorithm D.4: P.Ring-Share-PublicKey-PKP
(
i∗, (JukK)k∈[0,d̄−1], pkR

)
Public information and inputs

Public information: Length of the vector n̄, d̄ = ⌈log n̄⌉.

Prover’s input: Secret position i∗ ∈ [0, n̄−1], d̄ VOLE correlations JukK for random (uk, vk) ∈

F2 × F
2λ

represented as polynomials fuk
(X) = ukX + vk for k ∈ [0, d̄ − 1], a ring of n̄

public keys pkR = ((H0,x0), . . . , (Hi∗ ,xi∗), . . . (Hn̄−1,xn̄−1)).

Output

Prover’s output: Masked secret t̄ ∈ Fd̄
2 , JHK(d̄), JxK(d̄).

41

Compute selection vector

1 : (t̄, JzK(d̄))← P.VOLE-ElementaryVector
(
i∗, (JukK)k∈[0,d̄−1]

)
Compute H and x

2 : JHK(d̄) =
∑n̄−1

i=0 JziK(d̄) ·Hi // Multiply each coordinates of Hi by JziK(d̄)

3 : JxK(d̄) =
∑n̄−1

i=0 JziK(d̄) · xi

4 : return (t̄, JHK(d̄), JxK(d̄))

Algorithm D.5: P.Check-Ring-PKP(Pi∗ , pkR, Jui,kKi∈[0,n−1],k∈[0,d−1],
JukKk∈[0,d̄−1], (Jsk′K)k′∈[0,d+2·d̄−2], seed)

Public information and inputs

Public information: Matrix dimension n of the secret permutation matrix, d = ⌈logn⌉, size n̄

of the ring R and d̄ = ⌈log n̄⌉.

Prover’s input: Secret permutation matrix Pi∗ represented as n positions (pos0, . . . , posn−1),

pkR = ((H0,x0), . . . , (Hi∗ ,xi∗), . . . (Hn̄−1,xn̄−1)) where ∀i ∈ [0, n̄ − 1] (Hi,xi) ∈

Fm×n
q ×Fn

q , n ·d VOLE correlations Jui,kK for random (ui,k, vi,k) ∈ F2×F
2λ

represented as

polynomials fui,k
(X) = ui,kX + vi,k for (i, k) ∈ [0, n− 1]× [0, d− 1], d̄ VOLE correlations

JukK for random (uk, vk) ∈ F2 × F
2λ

represented as polynomials fuk
(X) = ukX + vk for

k ∈ [0, d̄− 1], (d+2 · d̄− 1) VOLE correlations Jsk′K for random rk′ , sk′ ∈ F
2λ

represented

as fs
k′ (X) = sk′X + rk′ for k′ ∈ [0, d + 2 · d̄− 2], seed ∈ F

2λ
.

Output

Prover’s output: Proof (JaK, t, t̄, seed) that Pi∗ is a solution to the PKP instance defined by

pki∗ = (Hi∗ ,xi∗) and pki∗ ∈ pkR.

42

Compute P in matrix form

1 : (t, JzK(d), JColCheckK(d))← P.VOLE-Permutation
(
Pi∗ , (Jui,kK)i∈[0,n−1],k∈[0,d−1]

)
2 : Parse JColCheckK(d) as (f0(X), f1(X), . . . , fn−1(X))

Compute H and x

3 : (t̄, JHK(d̄), JxK(d̄))← P.Ring-Share-PublicKey-PKP
(
i∗, (JukK)k∈[0,d̄−1], pkR

)
Compute x′ = Px

4 : for i ∈ [0, n− 1]

5 : Jx′
iK

(d+d̄) =
∑n−1

j=0 Jzi,jK(d) · JxjK(d̄)

6 : endfor

Compute y = Hx′

7 : for i ∈ [0,m− 1]

8 : JyiK(d+2·d̄) = fi+n(X) =
∑n−1

j=0 Jhi,jK(d̄) · Jx′
jK(d+d̄)

9 : endfor

Merge polynomials and run CheckZero

10 : α
$,seed←− ∈ Fn+m

2λ

11 : f(X) =
∑n+m−1

j=0 αj · fj(X)

12 : JaK← P.CheckZero
(
f(X), (Jsk′K)k′∈[0,d+2·d̄−2]

)
13 : proof = (JaK, t, t̄, seed)

14 : return proof

Algorithm D.6: V.Check-Ring-PKP(proof, pkR, (qui,k
)i∈[0,n−1],k∈[0,d−1],

(quk
)k∈[0,d̄−1], (qsk′)k′∈[0,d+2·d̄−2], ∆)

Public information and inputs

Public information: Weight of the vector ω, length of the vector n, d = ⌈logn⌉, size n̄ of the

ring R and d̄ = ⌈log n̄⌉.

Verifier’s input: proof = (JaK, t, t̄, seed), pkR := ((H0,x0), . . . , (Hi∗ ,xi∗), . . . (Hn̄−1,xn̄−1))

where ∀i ∈ [0, n̄−1] (Hi,xi) ∈ Fm×n
q ×Fn

q , qui,k
= fui,k

(∆) for (i, k) ∈ [0, ω−1]×[0, d−1],

quk
= fuk

(∆) for k ∈ [0, d̄− 1], qs
k′ = fs

k′ (∆) for k′ ∈ [0, d + 2 · d̄− 2], ∆.

Output

Verifier’s output: Boolean indicating if proof is a valid proof of a PKP solution for ring R.

43

Compute VOLE correlations for P

1 : (qz, qColCheck)← V.VOLE-Permutation
(
t, (qui,k

)i∈[0,n−1],k∈[0,d−1], ∆
)

Compute VOLE correlations for selection vector

2 : q∗ ← V.VOLE-ElementaryVector
(
t̄, (quk

)k∈[0,d̄−1], ∆
)

3 :

Compute VOLE correlations for H and x

4 : qH =
∑n̄−1

i=0 q∗i ·Hi

qx =
∑n̄−1

i=0 q∗i · xi

Compute VOLE correlations for x′ = Px

5 : for i ∈ [0, n− 1]

6 : qx′
i
=

∑n−1
j=0 qi,j · qxj

7 : endfor

Compute VOLE correlations for y = Hx′

8 : for i ∈ [0,m− 1]

9 : qyi
=

∑n−1
j=0 qHi,j

· qx′
j

10 : endfor

Merge polynomials and run CheckZero

11 : α
$,seed←− ∈ Fn+m

2λ

12 : q =
∑n−1

j=0 αj · qColCheckj +
∑n+m−1

j=n αj · qyj−n

13 : b← V.CheckZero
(
JaK, q, (qs

k′)k′∈[0,d+2·d̄−2], ∆
)

14 : return b.

44

	Modelings for generic PoK and Applications: Shorter SD and PKP based Signatures

