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Abstract. In the present work, we establish a new relationship among
the Beyond UnForgeability Features (BUFF) introduced by Cremers et
al. (SP’21). There, the BUFF notions have been shown to be indepen-
dent of one another. On the other hand, the analysis by Aulbach et al.
(PQCrypto’24) reveals that one of the BUFF notions—message-bound
signatures (MBS)—is achieved by most schemes. To achieve BUFF secu-
rity, there is the generic BUFF transform that achieves all the beyond
unforgeability features. The BUFF transform works by signing a hash
of the public key and the message (rather than just the message), and
appending this hash value to the signature. The need for appending
the hash comes from the intuitive notion of weak keys that verify all
message-signature pairs. We explain that MBS security effectively rules
out the possibility of weak keys. This opens the possibility for a more
efficient transform to achieve BUFF. We show that this transform, first
introduced by Pornin and Stern (ACNS’05), indeed suffices to achieve
BUFF security, if the original signature schemes satisfies MBS. Only in
the malicious setting of exclusive ownership, we present an attack on
UOV, even after applying the PS-3 transform.

1 Introduction

The IT security infrastructure of our days heavily depends on signature schemes.
They provide authenticity and integrity in many different use cases. The appli-
cations of signature schemes can be so diverse that any form of compromised
signature may have severe consequences for the security of the users. It is clear
that standard unforgeability notions are essential for all signature schemes ever
to be used. Indeed, if an adversary can sign a message, no authenticity can be
ensured by the signature scheme. Protocols can use signatures in a way that un-
forgeability is not sufficient to ensure the security of that protocol. A priori, this
shifts the responsibility to show security to the developers of the protocols, who
are not necessarily experts in designing secure protocols. To avoid this problem,
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a strategy is to ensure that signatures have additional security features—like
BUFF—which make it hard to use them in insecure ways.3

Beginning with [6, 18, 21] the first advanced security notions have been con-
sidered, namely exclusive ownerships (EO) which ensures that a given signature
cannot be claimed by another party with its own, possibly maliciously generated,
public key.

Only more than a decade later, this type of advanced security got into the
focus of research again, when in [16] further attacks due to insecure protocol
designs have been presented. In [9], three distinct classes of advanced security
notions were introduced formally and called Beyond UnForgeability Features, or
BUFF for short. Besides exclusive ownership explained above, the notions cover
message-bound signatures (MBS) and non resignability (NR). These notions have
been shown to be orthogonal to each other, and neither does unforgeability imply
any of the BUFF notions. An analysis of the 3rd round NIST candidates showed
that many of the schemes do not provide all BUFF notions. Since then, NIST has
declared BUFF security as a desired property in its additional call for signatures.
Many of the new candidates have been analyzed in [1] and again, only a few
schemes satisfy full BUFF security.

Back in [21], transforms of signatures have been introduced to ensure different
formalizations/versions of exclusive ownership. One of the transforms called PS-3
transform since [9], has the benefit that it does not increase the signature size
and needs only an additional hash computation during signing and verification.
This PS-3 transform is the focus of our work. In general, the PS-3 transform
does not ensure security with respect to any of the BUFF notions, as was noted
in [9].4 This gap is remedied by the BUFF transform introduced in [9], which
ensures full BUFF security for arbitrary unforgeable signature schemes. Both,
the PS-3 and BUFF transform, are conceptually simple and require only a hash
function which, in most cases, is already part of the original scheme. Both only
make changes in the signing and verification algorithms, while the key generation
is not touched. More explicitly, the PS-3 transform signs the hash of the message
together with the public key. The BUFF transform additionally takes the same
hash digest and appends it to the signature. This appended value is compared
to the hash digest recomputed during verification. Thus, the main distinction
between the two transforms is the additional hash value in the signature and the
additional comparison step in the verification.

The BUFF notions EO, MBS, and NR have been shown to be unrelated in
[9]. However, the analysis of the BUFF security of various schemes has shown
that MBS plays a special role. Schemes that do not achieve MBS, neither achieve

3 Similarly to this, committing security [3] for authenticated encryption as well as
binding properties [8] for key-encapsulation mechanisms were developed to ensure
security against misuse on the protocol level.

4 The results regarding the PS-3 from [21] rely on an additional property of the
underlying signature scheme; thus the claim in [9] does not contradict [21] but argues
that not all signature schemes have this property. MBS—which has been defined
much later—implies the property defined in [21]; this fact follows from our results.
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EO or NR. Examples for these are GeMSS [7], Wave [2], and SQUIRRELS [14],
as shown in [9, 1]. Conversely, all other schemes that satisfy either EO or NR,
satisfy MBS, too, see [9, 1]. While this suggests that MBS is easier to achieve, the
results show even more: After the PS-3 transform, schemes that achieve exclusive
ownership notions and non resignability, if the original scheme satisfies MBS
security. This was done in [1] for NIST’s additional round signature candidates
and in [13] for FALCON. In the case of FALCON, a malicious version of EO was
considered, which was not taken into account in [1]. These practical observations
raise the question of whether the PS-3 transform is sufficient to achieve BUFF
security conditioned on the underlying signature scheme achieving MBS.

1.1 Contribution

In this work, we answer this question: We show that, up to quadratic security loss,
one can reduce S-UEO of the PS-3 transformed scheme, which covers the most
common variants of exclusive ownership, to MBS of the underlying signature
scheme. On the other hand, the malicious variant, M-S-UEO, does not reduce
to MBS. We show this by analyzing UOV, a multivariate scheme that satisfies
MBS, but even after PS-3 transform, its M-S-UEO security can be efficiently
attacked. Note that M-S-UEO seems more of theoretical interest as, to the best
of our knowledge, all known attacks are modelled by S-UEO. Further, we show
that non resignability reduces to MBS security, again with a quadratic loss.

Our results shed new light on the relation between the beyond unforgeability
features. Particularly, it displays the prominent role of MBS, which is not a mere
coincidence, but reflects an idea that has been present since [21] and [9], namely
weak keys. In [21], a property P5 loosely related to weak keys has been formalized
to show that PS-3 transform implies UEO6 under this property. Without the
property P, the PS-3 transform does not achieve S-UEO, as is already acknowl-
edged in [21] and outlined in more detail in [9]. However, no formalization of weak
keys is (explicitly) presented in any of the prior works. We claim that MBS is a
good formalization of (effective) weak keys: Indeed, MBS ensures that no public
key can be found by an adversary that verifies two distinct messages with the
same signature. The informal description of weak keys as public keys that verify
many messages independently of the signature is thus excluded by MBS. The
results here show that indeed, with MBS in hand, the PS-3 transform ensures
many BUFF notions.

The reductions follow the basic idea that after applying the PS-3 transform,
an adversary is required to choose a new public key before it knows the target
message which is given as the hash of the message and the public key. Using the
random oracle model, this essentially means that for a given signature, a public
key is given, which verifies a uniformly randomly chosen message. Choosing two
messages randomly, hence with a quadratic loss, yields an attack against MBS.
5 Simply speaking, the property states that a fixed public key and a fixed signature

verify a random message only with negligible probability.
6 UEO is a weaker form of S-UEO where the adversary is not given access to a signing

oracle but receives random message-signature pairs as input.
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As MBS and the PS-3 transform are not sufficient to ensure M-S-UEO, we re-
turn to the initial problem which security guarantees should be demanded by the
signature scheme. Following a strict highest possible security paradigm, we should
require M-S-UEO security. Then, the attack on the M-S-UEO security of UOV
shows that the PS-3 transform is not sufficient and the BUFF transform should
be used if a direct proof cannot be provided for M-S-UEO. On the other hand,
S-UEO, NR, and MBS have been shown to have real-world implications, while
to date, no use case of M-S-UEO is known. Thus, from a practical perspective,
demanding M-S-UEO seems to be overkill.

Applications The analysis of BUFF security of various schemes provides us
with an abundance of schemes that satisfy MBS, while neither exclusive own-
ership nor non resignability is achieved. Among the 3rd round candidates7 of
the NIST competition, FALCON achieves BUFF security after applying the PS-3
transform [13]. SPHINCS+ already computes the hash of the public key and
message. The digest is then signed. Thus, implicitly, SPHINCS+ applies the PS-3
transform and satisfies therefore S-UEO and wNR security without any changes.
The BUFF security of SPHINCS+ has been open since [9], and is finally answered
by our results, except M-S-UEO.

Further, the candidates LESS, MEDS, HuFu, MAYO, QR-UOV, SNOVA, TUOV,
UOV, and VOX of NIST’s additional call8 can achieve S-UEO and wNR efficiently
and without increasing the signature sizes. Finally, SQIsign can increase its BUFF
security by applying the PS-3 transform since it suffers from attacks against its
non-resignability, and is not known to be S-CEO secure, while it satisfies MBS [1].

1.2 Related Work

The analysis of advanced security notions for signatures as considered here goes
back to [6, 18, 21]. The PS-3 transform is defined in [21] and a reduction of UEO
security to a general property of the signature scheme in question is presented.
We do not work with the property, although we regard it as a good information-
theoretic formalization of weak keys.

In [9], the BUFF notions have been formalized first, a transform that generi-
cally ensures BUFF security is developed. The non resignability notion defined
there was shown in [11] to be inachievable by a generic attack. A new formal-
ization has been presented in [11]. In [1], many of the candidates of NIST’s
additional round for signatures have been analyzed. For non resignability, the
authors used the weaker notion called weak non resignability (wNR) avoiding the
subtle issues of the original definition. In [13], yet another formalization has been
given. It reflects well the original motivation for non resignability and it is shown
implicitly that this new variant essentially reduces to wNR. Finally, [10] have
shown that the BUFF transform achieves yet another new formalization of NR.
7 We excluded GeMSS as it is severely broken by now.
8 See [1] for the MBS security and vulnerabilities regarding other BUFF notions of

these schemes.
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In this work, we prefer to work with the wNR definition here. The developments
in [13] suggest that wNR security is closely related to the new NR version there,
which models the real-world use case of non resignability. In Remark 14 we give
an outline of this.

Advanced security properties such as BUFF security aim for enhanced secu-
rity guarantees and a protection against misuse on protocol level applications of
cryptographic primitives. Other such advanced security notions regarding vari-
ous primitives have been studied in recent years. By now, many cryptographic
schemes in the ongoing and recently concluded NIST standardization processes
have been inspected with this focus: Cremers et al. [9] analyzed the PQC finalists
with respect to their BUFF security while Aulbach et al. [1] analyzed the addi-
tional PQC signatures. The binding properties of Kyber have been analyzed by
Schmieg [23] and Cremers et al. [8]. Krämer et al. [17] analyzed the committing
security of the NIST LWC finalists while Naito et al. [19] and Dunkelman et
al. [12] gave dedicated analyses for Ascon and TinyJambu, respectively.

2 Background

2.1 Notation

In this paper, we will always assume the message space to be bounded. Fixing
a space H as the target of hash functions and random oracles, respectively, we
assume that the message space is just H. We assume that #H = 2n for a fixed
constant n. Further, we set ∆H = 2−n, which is the probability that a uniformly
randomly chosen element in H matches a given fixed value. In particular, the
probability of finding collisions for randomly chosen elements is

√
∆H. We will

make use of this notation in Propositions 7, 9, and 13. We assume that the
hash function always takes pairs of public keys pk of the signature scheme and
messages msg ∈ H, which reflects our use case for hash functions.

Security is defined w.r.t. a security parameter 1λ. We take this value as
understood and omit it, for instance, as input to the algorithms of a signature
scheme. Adversaries are considered to be probabilistic polynomial-time (ppt)
algorithms.

Definition 1. A signature scheme Σ is a triple (Σ.KGen, Σ.Sign, Σ.Verify), with

– (sk, pk)←$ Σ.KGen() a probabilistic algorithm that returns a key pair,
– sig←$ Σ.Sign(sk, msg) a probabilistic algorithm that takes a secret key and a

message, and returns a signature,
– b← Σ.Verify(pk, msg, sig) a (deterministic) algorithm that takes a public key,

a message, and a signature, and returns a bit b ∈ {0, 1}.

A signature sig under a public key pk and validates a message msg, if the verifi-
cation Σ.Verify(pk, msg, sig) is 1. A signature scheme is δ-correct, if

P (Σ.Verify(pk, msg, Σ.Sign(sk, msg)) = 1 | (sk, pk)←$ Σ.KGen()) ≥ δ.

A signature scheme is called correct if it is 1-correct.
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Game MBS

(pk, msg1, msg2, sig)← A()
v1 ← Σ.Verify(pk, msg1, sig)
v2 ← Σ.Verify(pk, msg2, sig)
return (v1 = 1 ∧ v2 = 1 ∧msg1 ̸= msg2)

Fig. 1. Security game MBS for Σ = (Σ.KGen, Σ.Sign, Σ.Verify).

Throughout this work, we assume the signatures to achieve existential un-
forgeability. In the following, we introduce security features for signature schemes
that go beyond unforgeability.

2.2 Beyond UnForgeability Features

The Beyond UnForgeability Features (BUFF) have been formalized first in [9],
while exclusive ownership notions partially go back to [21] and non resignability
was described in [16].

Message-Bound Signatures Notion. We begin with the notion message-bound
signatures (MBS) to which we reduce other beyond unforgeability features of
transformed versions of the signatures.

Definition 2 (Message-Bound Signatures). A signature scheme Σ satisfies
MBS, if for any polynomial time adversary A, the advantage of winning the
game MBS depicted in Fig. 1 is negligible, i.e., there is a negligible function η
such that

AdvMBS
Σ (A) ≤ η.

Exclusive Ownership Notions. For exclusive ownership, there are a few different
variants. First of all, there are strong conservative exclusive ownership (S-CEO)
and strong destructive exclusive ownership (S-DEO), where the adversary is given
an honestly generated public key and access to a signing oracle. The adversary is
required to create a distinct, possibly malicious public key, that verifies a message-
signature pair created using the signing oracle for S-CEO, and a new message
which one of the queried signatures verifies with the new public key for S-DEO. A
generalized version strong universal exclusive ownership (S-UEO) implies both S-
CEO and S-DEO. In Section 3, we reduce S-UEO security of a PS-3 transformed
signature scheme to the MBS security of the original scheme. We refer to [9] for
the definitions of S-CEO and S-DEO and only give the definition of S-UEO, as
we work with this variant.

Besides the aforementioned, there is the malicious version called malicious
strong universal exclusive ownership (M-S-UEO), and its variants for S-CEO and
S-DEO, which we will not explicitly use. In M-S-UEO the adversary is required
to produce two distinct, possibly malicious public keys, two messages, and a
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Game S-UEO

Q ← ∅
(sk, pk)← Σ.KGen()

(pk, msg, sig)← AΣ.Sign(sk,·)(pk)

v1 ← Σ.Verify(pk, msg, sig)
v2 ← Valid(sig)

return (v1 = 1 ∧ v2 = 1 ∧ pk ̸= pk)

Oracle Σ.Sign(sk, msg)

sig← Σ.Sign(sk, msg)
Q ← Q∪ {sig}
return sig

Valid(sig)

if sig ∈ Q
return 1

return 0

Fig. 2. Security game S-UEO for Σ = (Σ.KGen, Σ.Sign, Σ.Verify).

Game M-S-UEO

(pk1, pk2, msg1, msg2, sig)← A()
v1 ← Σ.Verify(pk1, msg1, sig)
v2 ← Σ.Verify(pk2, msg2, sig)
return (v1 = 1 ∧ v2 = 1 ∧ pk1 ̸= pk2)

Fig. 3. Security game M-S-UEO for Σ = (Σ.KGen, Σ.Sign, Σ.Verify).

single signature, which verifies either message with the according public key. The
main distinction to the non-malicious form is that both public keys are produced
by the adversary. Thus, both can be maliciously chosen or a secret key for both
may be available. The notions are formalized as follows.

Definition 3 (Strong-Universal Exclusive Ownership). A digital signature
scheme Σ satisfies S-UEO, if for any polynomial time adversary A, the advan-
tage of winning the game S-UEO depicted in Fig. 2 is negligible, i.e., there is a
negligible function η such that

AdvS-UEO
Σ (A) ≤ η.

In [21], UEO is defined without oracle access. Instead, the adversary is given
the public key and a collection of message-signature pairs as input.

Definition 4 (Malicious-Strong-Universal Exclusive Ownership). A sig-
nature scheme Σ satisfies M-S-UEO, if for any polynomial time adversary A,
the advantage of winning the game M-S-UEO depicted in Fig. 3 is negligible, i.e.,
there is a negligible function η such that

AdvM-S-UEO
Σ (A) ≤ η.
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Non Resignability Notion. The non resignability (NR) feature is the most subtle
notion in terms of its correct definition. The reason is that the adversary is given
a public key and a signature of an unknown message, but additionally, it receives
auxiliary data about the choice of the message and the signing procedure. This
auxiliary data turns out to be difficult to formalize, as it is required to contain
only very restricted information about the message. The initial formalization
in [9] is unachievable as presented in [11], as it was possible to let the auxiliary
data contain the signature that the adversary tries to generate. A weak ver-
sion of non resignability was recently introduced in [1] which analyzes the new
signature schemes submitted to NIST’s additional round for signature schemes.
In [13], another definition of NR was given that formalizes unpredictability and
computationally-independence of auxiliary data. Essentially, this new form re-
duces to weak non resignability of [1], except that the message is not necessarily
chosen uniformly, but according to some other, sufficiently wide distribution.
Currently, the last formalization has been developed in [10], which also shows
that the BUFF transform satisfies their new definition. In this work, we use weak
non resignability and give an outline in Remark 14, describing that the reduction
regarding non resignability applies to the version defined in [13]. For the other
version of NR in [10], further analysis is required.

Definition 5 ((Weak) Non Resignability). A signature scheme Σ satisfies
wNR, if for any polynomial time adversary A, the advantage of winning the
Game wNR depicted in Fig. 4 is negligible, i.e., there is a negligible function η
such that

AdvwNR
Σ (A) ≤ η.

Game wNR

(sk, pk)← KGen()
msg←$H
sig← Σ.Sign(sk, msg)

(sig, pk)← A(pk, sig)

v← Σ.Verify(pk, msg, sig)

return (pk ̸= pk ∧ v = 1)

Fig. 4. Security game wNR for Σ = (Σ.KGen, Σ.Sign, Σ.Verify).

2.3 Signature Transforms towards BUFF

To achieve BUFF security there is the generic BUFF transform that takes an
arbitrary signature scheme and a secure hash function and returns a new signature
scheme that satisfies MBS, M-S-UEO, and NR.
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In this work, we are interested in one of the transforms by Pornin and
Stern [21], which is called PS-3 transform by [9]. It is closely related to the
BUFF transform. Like the BUFF transform, the PS-3 transform takes a signature
scheme and a hash function but avoids appending a hash to the signature. The
details of the PS-3 transform are described in Fig. 5. The BUFF transform
additionally appends the hash value to the signature in the signing algorithm.
In the verification algorithm, this appended hash value is compared with the
recomputed hash digest. For the PS-3 transformed signature scheme Σ using
the hash function H, we write PS-3[Σ, H]. The reason for Pornin and Stern to
introduce the PS-3 transform in [21] was to achieve exclusive ownership notions.
While [9] explains that the PS-3 transform generically is not sufficient, [21]
describes a property on the underlying signature scheme that ensures that after
the PS-3 transform, the resulting scheme satisfies UEO. We formalize their
definition in terms of security games in Section 3, and reduce those to MBS
security of the original scheme.

We note here, that the PS-3 transform does not imply M-S-UEO, even if the
underlying scheme has MBS, which we show by analyzing multivariate signature
schemes regarding M-S-UEO security in Section 3.2.

Σ′.KGen():

(sk, pk)←$ KGen()
return (sk, pk)

Σ′.Sign(sk, msg):

h← H(pk, msg)

sig←$ Σ.Sign(sk, h )
return sig

Σ′.Verify(pk, msg, sig):

h← H(pk, msg)

return Σ.Verify(pk, h , sig) = 1

Fig. 5. The PS-3 transform Σ′ := PS-3[Σ, H] applied to Σ = (Σ.KGen, Σ.Sign, Σ.Verify)
with hash function H. The modifications are depicted in green boxes .

2.4 Existential Unforgeability of the PS-3 Transform

The EUF-CMA security of the PS-3 transform has not yet been formally pre-
sented. We provide the proof in the standard model. Note that the special case
for FALCON is shown in [13]. Fig. 6 depicts the EUFCMA game.

Definition 6 (Existential Unforgeability under Chosen Message At-
tack). A signature scheme Σ satisfies EUF-CMA, if the advantage of any ppt
adversary playing the EUFCMA game is negligible.

Proposition 7. Let Σ be a signature scheme and H a hash function. Further,
let Σ′ = PS-3[Σ, H] be the PS-3 transform of Σ. Then, for an adversary A
against EUF-CMA of Σ′, there is an adversary B against EUF-CMA of Σ and
an adversary C against the collision-resistance CR of H such that

AdvEUFCMA
Σ′ (A) ≤ AdvEUFCMA

Σ (B) + AdvCR
H (C).
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EUFCMA:

Q ← ∅, (sk, pk)←$ Σ.KGen()

(msg, sig)←$ASign(sk,·)(pk)

v ← Σ.Verify(pk, msg, sig)

return
[
v = 1 ∧ msg /∈ Q

]

Sign(sk, msg):

sig←$ Σ.Sign(sk, msg)
Q ← Q∪ {msg}
return sig

Fig. 6. The existential unforgeability game EUFCMA for a signature scheme Σ.

Proof. We make a game hop first, where A loses the game, if she makes signa-
ture queries msgi, for i = 1, . . . , q and outputs a new message msg such that
H(pk, msg) = H(pk, msgi) for some i. If we denote G this modified game, then

AdvEUFCMA
Σ′ (A) ≤ AdvG

Σ′(A) + AdvCR
H (C),

with the algorithm C that returns the collision H(pk, msg) = H(pk, msgi), if it
exists, or ⊥ otherwise.

We proceed by constructing an adversary B against the unforgeability of Σ
as follows. B runs A with the same public key as input. For any query of A with
message msg, B computes h← H(pk, msg) and forwards the hash to its signing
oracle. B returns to A the signature it receives for h. If A returns a pair (msg, sig),
B returns (H(pk, msg), sig). If A wins game G, then B breaks the unforgeability
of Σ. Putting the advantages together, we conclude the statement. ⊓⊔

2.5 Indistinguisability of Statistically Close Distributions

Given two distributions D1 and D2 on a set finite S, we define their statistical
distance as ∆(D1,D2) := 1

2
∑

x∈S |D1(x)−D2(x)|.
In the distinguishing game Dist between two distributions D1 and D2, a ppt

adversary is given samples from one of the distributions and is supposed to decide
which distribution it is. The advantage AdvDist

D1,D2
(A) of an adversary A is its

winning probability.

Proposition 8. Let D1, D2 be distributions on a finite set S. Then, the advan-
tage of any ppt adversary A playing the distinguishing game Dist between D1 and
D2 is bounded by the statistical distance, i.e., AdvDist

D1,D2
(A) ≤ ∆(D1, D2).

The proof can be found, for example, in [20, Lemma 4].

3 Exclusive Ownership after PS-3

In this section, we show that if Σ is a signature scheme that satisfies message-
bound signatures, then the PS-3 transformed Σ′ = PS-3[Σ, H] satisfies S-UEO,
when H is modeled as a random oracle. In particular, this implies S-CEO and
S-DEO security of Σ′.
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Before diving into the rigorous analysis, we explain the intuitive idea of the
reduction. To attack the S-UEO security of Σ′ an adversary with input a public
key pk is supposed to produce a distinct public key pk and a message msg which
is validated by one of the signatures received from the signing oracle. Explicitly,
this means that Σ.Verify(pk, H(pk, msg), sig) = 1. Intuitively, the attacker is thus
required to pick pk before it can know H(pk, msg), which ultimately plays the
role of the message that is checked for the underlying signature scheme. As the
hash digest cannot be controlled by the attacker, it can be replaced (essentially)
by a random value. Thus, the attacker outputs a public key pk for which the
underlying signature scheme verifies an afterwards randomly chosen message.
This however, requires the public key pk to be particularly weak: it accepts many
messages for a given signature—e.g., two messages with the square of the success
probability of S-UEO. Hence, we have an attacker against MBS security of the
underlying scheme.

After formally proving that S-UEO security of Σ′ reduces to MBS security of
the underlying scheme, we show at the end of this section that the PS-3 transform
does not suffice to achieve security against the malicious version M-S-UEO of
exclusive ownership. Indeed, we provide an attack against M-S-UEO security
of the MBS secure scheme UOV. Similar attacks can be constructed for other
multivariate schemes if the oil space is sufficiently small compared to the total
space. On the other hand, the attack makes use of properties specific to UOV,
and in [13], it is shown that FALCON achieves M-S-UEO security after PS-3
transform. Still, the attack opens up a new potential for discussion: To date, no
real-world use case of M-S-UEO has been presented. Indeed, M-S-UEO allows an
adversary to choose two distinct public keys for which two messages are verified
under the same signature. This, however, might be too strong to be useful for
applications, where one key is from an user, hence honestly generated.

On the other hand, the BUFF notions are defined to ensure security in all
possible fields of applications of signature schemes. Our conclusion is that to be
certain that no design-level properties can cause vulnerabilities, it makes sense
to require M-S-UEO. Thus, a small gap that has yet to be filled is the question of
which property on the signature scheme ensures M-S-UEO after PS-3 transform.

3.1 S-UEO Security

In this section, we present the reduction of the S-UEO security of PS-3[Σ, H]
to the MBS security of Σ. This implies in particular the S-CEO and S-DEO
security of PS-3[Σ, H]. The reduction in the random oracle model proceeds by
avoiding hash values that verify under any of a predefined set of signatures.
This approach resembles that for any public key and signature, randomly chosen
messages should not be verified, which is the key property introduced in [21].
Here, we proceed further by relating this concept implicitly to MBS. Due to
a forking argument at the end, we get a quadratic loss in the security. The
reduction additionally involves the distinguishing advantage of two statistically
close distributions.
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Proposition 9. Let Σ be a signature scheme and H a random oracle. Let Σ′ :=
PS-3[Σ, H] be the PS-3 transformed signature scheme of Σ using the random
oracle H. Let A be an adversary against S-UEO which, on input pk, makes t
queries to the random oracle of the form (pk, msgi) or signature queries for msgi,
and q further random oracle queries. Then, there exist a distinguisher D between
the uniform distribution U on H and the uniform distribution χ on H\St, where
St ⊆ H is a set of size t, and an adversary B against MBS security of Σ such
that

AdvS-UEO
Σ′ (A) ≤ qAdvDist(U,χ)(D) + q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
.

In particular, letting q̃ = qt be the total number of all queries

AdvS-UEO
Σ′ (A) ≤ 2q̃∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
.

Before giving the proof of Proposition 9, we note that U and χ are statistically
close. Explicitly, assuming t < #H

2 = 2n−1, we have

∆(U , χ) ≤ t∆H.

In particular, using Proposition 8, the advantage of any ppt distinguisher D is

AdvDist(U,χ)(D) ≤ t∆H.

Therefore, it suffices to proof the first bound on AdvS-UEO
Σ′ (A).

Proof. The reduction B against MBS proceeds as follows. First, B generates
(sk, pk)←$ Σ.KGen(). B samples uniformly random elements ri ∈ H and creates
sigi ← $ Σ.Sign(sk, ri), for i = 1, . . . , t. Now, B runs A on input pk. When A
queries hash values for (pk, msgi), B responds with the initially chosen ri. As
the ri have been chosen uniformly, A is incapable of distinguishing these values
from newly generated random values. If A sends msgi to its signature oracle
for Σ′, B picks the signature sigi in a consistent way, i.e., if (pk, msgi) has been
queried to H before with response ri, then sigi is a signature under Σ for ri.
Conversely, if msgi has not been queried to H, the hash value H(pk, msgi) is set
to ri. B responds with the signature sigi of ri, created at the beginning of the
game. Thus, B is consistent in all its responses, as A makes exaclty t random
oracle queries of the form (pk, msgi). Finally, if A makes queries to H of the
form (pk′

i, msg′
i) with pk′

i ̸= pk, B responds as follows. First, B samples t + 1
distinct, uniformly random values h0, . . . , ht and checks, if for some ℓ = 0, . . . , t,
Σ.Verify(pk′

i, hℓ, sigj) = 0 for all j = 1, . . . , t. If this holds, say, for ℓ, then B
responds with hℓ ← H(pk′

i, msg′
i). Otherwise, B halts A as there is a successful

solution for MBS: Indeed, for t+1 values h0, . . . , ht, at least one of the t+1 values
Σ.Verify(pk′

i, hℓ, sigj) is 1. By the pigeonhole principle, there is one index j∗ and
two distinct ℓ1, ℓ2 with Σ.Verify(pk′

i, hℓ1 , sigj∗) = 1 and Σ.Verify(pk′
i, hℓ2 , sigj∗) =

1. Then, B returns (pk′
i, hℓ1 , hℓ2 , sigj∗). In the case that there is some hℓ with

12



Σ.Verify(pk′
i, hℓ, sigj) = 0 for all j = 1, . . . , t, we argue that A cannot distinguish

hℓ from uniform. Indeed, let G1 be the S-UEO game with the modification that
the hash queries are responded as described. Then, there exists a distinguisher
D such that

|AdvS-UEO
Σ′ (A)−AdvG1

Σ′(A)| ≤ qAdvDist(U,χ)(D).

Here, χ is the distribution that picks t+1 distinct uniformly random values from
H and returns one of them. We remark that any of the hash queries (pk′

i, msg′
i)

with pk′
i ≠ pk made by A are not part of a successful attack against S-UEO, by

the construction above, as the hash values of (pk′
i, msg′

i) are set to not verify
under any of the possible t signatures. Thus, a successful adversary A outputs
(pk, msg, sig) with pk ̸= pk, and has never queried (pk, msg) to the random oracle.
B sets h1 ←$ H(pk, msg) uniformly, and rewinds to set h2 ←$ H(pk, msg), again
chosen uniformly. By [4, Lemma 1], we have

AdvG1
Σ′(A) ≤ q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
.

In total we thus have

AdvS-UEO
Σ′ (A) ≤ qAdvDist(U,χ)(D) + q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
as claimed. ⊓⊔

3.2 M-S-UEO (In-)Security

In this section, we show that PS-3 transformed versions of schemes that are MBS
secure, do not necessarily satisfy M-S-UEO. We present the signature scheme
UOV and explain an attack on its M-S-UEO security before and after the PS-3
transform. Note that the relationship between MBS and M-S-UEO after applying
the PS-3 transform depends on the scheme. For example, in [13], it is shown that
FALCON [22] satisfies M-S-UEO after applying the PS-3 transform, which the
original version of FALCON does not satisfy.

We begin with introducing an (information-theoretic) condition on the sig-
nature scheme. It provides a generic bound for the advantage of any M-S-UEO
adversary.

Definition 10. Let Σ = (Σ.KGen, Σ.Sign, Σ.Verify) be a signature scheme. Let
PΣ be the maximum probability that for any9 two distinct public keys pk1 and
pk2, and two uniformly random values h1 and h2, there exists a signature sig
such that Verify(pki, hi, sig) = 1, for i = 1, 2. In other words,

PΣ := max
pk1 ̸=pk2

P({(h1, h2) | ∃sig : Verify(pki, hi, sig) = 1, for i = 1, 2}),

where hi are chosen uniformly randomly from H.
9 Note that these public keys are not necessarily generated using the key generation

algorithm.
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We have the following simple relation.

Lemma 11. Let Σ be a signature scheme and H a random oracle. Let Σ′ =
PS-3[Σ, H] be the PS-3 transformed signature. Then, for any adversary A against
M-S-UEO that makes qH queries to the random oracle, the advantage satisfies

AdvM-S-UEO
Σ′ (A) ≤ q2

HPΣ .

Proof. The adversary making qH queries of the form (pki, msgi) produces random
values hi, for i = 1, . . . , qH. Thus, we have less than q2

H pairs of instances pairs
pk1 and pk2 and random messages h1 and h2. For A to be successful with either
of such pairs, there must exist a signature sig with Verify(pki, hi, sig), for i = 1, 2.
Hence, the result follows. ⊓⊔

A partial converse of the above helps us to attack M-S-UEO security of PS-3
transformed signature schemes. On a high level, the idea is as follows: if for certain
pk1 and pk2, and (sufficiently many) randomly chosen h1 and h2, it is easy to find
sig with Σ.Verify(pki, hi, sig) = 1, then, M-S-UEO security of Σ′ = PS-3[Σ, H]
can be attacked. Indeed, pick such pk1 and pk2 for which finding sig is easy for
random messages. Pick two msg1 and msg2 and set hi = H(pki, msgi), for i = 1, 2.
Then, find sig for pk1 and pk2 as public keys, and h1 and h2 as messages.

We exploit this strategy for UOV, by constructing specific public keys that
allow to find a signature that validates one given random message for each of
the two public keys. In the following, we give a description of UOV using the
oil space representation of Beullens [5]. Then, we explain how malicious choices
allow us to pick two distinct public keys that allow an M-S-UEO attack.

The UOV Signature Scheme. Until the end of this section, we use new
notation, which we introduce here.10 Let k be a finite field of q elements. Let n,
m be integers with n ≈ 2.5m.11 We let H denote a hash function with output space
km. We continue with a brief description of the UOV signature following [15].

Key Gen. The secret key of the UOV signature scheme is a matrix O ∈ kn−m×m.

We write O =
[

O
Im

]
∈ kn×m, with Im the identity matrix in dimension m. The

image of O is called oil space.
Abstractly, the public key consists of quadratic polynomials pi ∈ k[x1, . . . , xn]

such that pi(Ox) = 0 for all x ∈ km, with i = 1, . . . , m. To any such quadratic
form pi, one can associate a matrix

Pi :=
[

P
(1)
i P

(2)
i

0 P
(3)
i

]
(1)

10 In particular, n will not denote the bit size of the space H here.
11 The attack requires n > 2m, which is true for all parameter sets of UOV.
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where P
(1)
i and P

(3)
i are upper triangular, P

(1)
i ∈ kn−m×n−m, P

(2)
i ∈ kn−m×m,

and P
(3)
i ∈ km×m. The matrix Pi satisfies pi(x) = x⊤Pix, for any x ∈ kn.

Conversely, any such matrix gives a quadratic form by the same formula.
The condition pi(Ox) = 0 is ensured if and only if the matrix

[
O⊤ Im

]
Pi

[
O
Im

]
= O⊤P

(1)
i O + P ⊤P

(2)
i + P

(3)
i (2)

is skew-symmetric. The public keys are set to be Pi for i = 1, . . . , m where
for each i, the matrices P

(1)
i and P

(2)
i are chosen randomly, with P

(1)
i upper

triangular, and P
(3)
i is the unique solution to Equation (2) under the condition

to be upper triangular.

Signing. Let O =
[

O
Im

]
be a secret key and Pi the public matrices such that

(Ox)⊤PiOx = 0 for all x ∈ km. The signature of a message msg is a vector s ∈ kn

such that

(s⊤Pis)i=1,...,m = H(msg). (3)

We explain, how the knowledge of O helps to find such s. First, let us set
t = H(msg) as the target value. Then, a vector v ∈ kn−m is chosen randomly.

We set s =
[
v
0

]
+ Ox where we explain the choice of x ∈ km now. Setting

Si =
(

P
(1)
i + (P (1)

i )⊤
)

O + P
(2)
i and yi = v⊤P

(1)
i v, we find that Equation (3) is

satisfied, if and only if
v⊤Six = ti − yi

for all i = 1, . . . , m. Thus, we have m linear equations for the m variables of x.
Solving this system of equations, we find x and, consequently s. If no solution
for x exists, the procedure is repeated with a new choice of v.

Verification. Given the public matrices Pi, a message msg, and the signature s,
the verification simply checks Equation (3).

M-S-UEO Attack. As we gathered a basic understanding of the UOV signature
scheme, we can explain the attack. The basic idea is to pick an oversized oil space
of dimension 2m, which helps to sign simultaneously for two public keys. We
stress that this is a malicious choice and it is very unlikely that such an oversized
oil space will be the result of an honest key generation.

Malicious Key Generation. We set O ∈ kn−2m×2m and O =
[

O
I2m

]
∈ kn×2m.

Thus, the oil space, which is the image of O, has dimension 2m. Note that we
use that the parameters satisfy n > 2m.
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We continue to define two public keys pk = (Pi)i=1,...,m and pk = (Qi)i=1,...,m

such that O
⊤

PiO = 0 and O
⊤

QiO = 0, for all i. Thus, O is the oil space for
both, pk and pk. For this, we write the Pi and Qi as in Equation (1), where for
Qi we have the matrices Q

(1)
i , Q

(2)
i , and Q

(3)
i . The dimensions of these subma-

trices change and satisfy P
(1)
i , Q

(1)
i ∈ kn−2m×n−2m, P

(2)
i , Q

(2)
i ∈ kn−2m×2m, and

P
(3)
i , Q

(3)
i ∈ k2m×2m. Again, Equation (2) is utilized to define the 2m public keys

by first picking the P
(1)
i and P

(2)
i randomly and solving for P

(3)
i , and analogously

for Qi.

Simultaneous Signing. Given two targets t, t ∈ km, we explain how s ∈ kn can be
found such that (s⊤Pis)i=1,...,m = t and (s⊤Qis)i=1,...,m = t. The strategy is the

same as above, picking v ∈ kn−2m randomly and setting s =
[
v
0

]
+Ox for x ∈ k2m

which is determined as follows. First, we set Si =
(

P
(1)
i + (P (1)

i )⊤
)

O + P
(2)
i ,

Ti =
(

Q
(1)
i + (Q(1)

i )⊤
)

O + Q
(2)
i , and yi = v⊤P

(1)
i v, zi = v⊤Q

(1)
i v. Then, the

verification holds with s for both targets t and t, under the respective public
keys pk and pk, if x ∈ k2m satisfies

v⊤Six = ti − yi and v⊤Tix = ti − zi.

These yield 2m linear equations in 2m variables, hence solving this system of
linear equations results in x and, consequently, we find s. If the system of linear
equations does not have a solution, we repeat with a new choice of v.

Applying the strategy to t = H(msg) and t = H(msg) yields an attack
against M-S-UEO of UOV. Further, applying the same to t = H(pk, msg) and
t = H(pk, msg) gives an attack against M-S-UEO of PS-3[UOV, H]. Thus we
conclude with the following.

Proposition 12. Let H be any hash function. There exists an adversary A which
runs in a similar time as the key generation and signing algorithms of UOV, and
breaks M-S-UEO of PS-3[UOV, H] with probability 1.

4 Weak Non Resignability after PS-3

In this final section, we present the reduction of weak non resignability (wNR) of
the PS-3 transformed scheme Σ′ to MBS security of the original scheme Σ, with
a quadratic loss due to a forking argument. The argument proceeds similarly to
the reduction in Section 3. The basic idea is that given a signature sig under Σ′

and public key pk, an adversary can at most recover the hash value H(pk, msg)
of pk and the unknown message msg, but not msg itself. Thus, at the point
where the adversary outputs a new public key, the target value given by the
hash of the new public key pk and the unknown message has never been queried
to the random oracle. A rewinding argument allows to set two distinct values
for H(pk, msg), giving two distinct messages for the underlying scheme verifying
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under the same (the new) public key pk and signature, thus breaking MBS
security of the underlying scheme.

Proposition 13. Let Σ be a signature scheme and H a random oracle. Further,
let Σ′ := PS-3[Σ, H] be the PS-3 transform of Σ with random oracle H. Then,
for any adversary A against wNR of Σ′ making q queries to the random oracle,
there is an adversary B against MBS of Σ such that

AdvwNR
Σ′ (A) ≤ 2q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
.

Proof. We begin with a game hop where A on input (pk, sig) where sig is a
signature for the message msg12, makes no query to the random oracle that
involves msg. Indeed, we may define G1 as the same as wNR but A loses, if it
makes a query involving msg. The advantage of A is then given as

AdvwNR
Σ′ (A) ≤ q∆H + AdvG1

Σ′(A).

Indeed, in terms of the underlying signature scheme, A only receives the signature
of H(pk, msg). Thus, even if A can recover the hash digest H(pk, msg), A would
need to find a preimage, which is hard for a random oracle.

We bound the advantage of A playing G1 by constructing an adversary B
against MBS of Σ. The reduction B begins with creating new key pair (sk, pk)←
$ Σ.KGen(), uniformly samples a message msg and sets sig ←$ Σ.Sign(sk, msg).
Then, B runs A with input (pk, sig), simulating the random oracle H for A. Note
that A never queries the random oracle on (·, msg) as this would result in a loss in
game G1 and we are only concerned with successful adversaries. After A outputs
(pk, sig), B sets h1 ← H(pk, msg) and, after rewinding, h2 ← H(pk, msg) Note that
the rewinding happens after A is finished and the output is determined, hence,
for both messages, the verification holds with the advantage of A. Adversary
B wins game MBS if the following hold: h1 ̸= h2, Σ.Verify(pk, h1, sig) = 1, and
Σ.Verify(pk, h2, sig) = 1. Assuming that A makes q queries to the random oracle,
we have

AdvG1
Σ′(A) ≤ q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
by [4, Lemma 1]. The ∆H in the square root term handles the case that the
randomly chosen message h1 and h2 by B are equal. In combination, we have

AdvwNR
Σ′ (A) ≤ q∆H + AdvG1

Σ′(A)

≤ q∆H + q∆H +
√

q
(

AdvMBS
Σ (B) + ∆H

)
= 2q∆H +

√
q

(
AdvMBS

Σ (B) + ∆H

)
,

thus finishing the proof. ⊓⊔
12 That means, sig is a signature for msg under pk for the signature scheme Σ′ =

PS-3[Σ, H].
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We finish with the following remark on a stronger version of non resignability.

Remark 14. Let D be a message distribution that picks a messages and produces
auxiliary data depending on the message and the public key. Under unpredictabil-
ity, i.e., that the message cannot be recovered given auxiliary information and the
key pair, and computationally indistinguishability of the auxiliary information,
i.e., the auxiliary data of two distinct messages are computationally indistinguish-
able, we argue that the above reduction holds for non resignability as defined
in [13]. Indeed, we only require that the adversary will not make a hash query
on an input containing the message. Even with the auxiliary data, an adversary
would be required to break the unpredictability and computationally indistin-
guishability to gain knowledge about the message, before such a query could be
made. The line of argument is very similar to [13, Proposition 18], specifically
the first part of the reduction. See also [13, Remark 19], for a note on auxiliary
information and the use of H during the key generation.
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