
Multi-party Setup Ceremony for Generating Tokamak

zk-SNARK Parameters

Muhammed Ali Bingol

Tokamak Network

muhammed@tokamak.network

Abstract

This document provides a specification guide for the Multi-party Computation (MPC) setup
ceremony for the Tokamak zk-SNARK scheme [1]. It begins by revisiting the MMORPG protocol
proposed in BGM17 [2] for Groth16 setup generation, which leverages a random beacon to ensure
public randomness. Additionally, it explores the alternative design approach presented in the “Snarky
Ceremonies” paper KMSV21 [3], which removes the need for a random beacon. The document
includes detailed pseudocode and workflow for each stage of parameter generation in the Tokamak
zk-SNARK protocol.

Tokamak zk-SNARK employs a universal setup through sub-circuits, which allows for CRS reuse
across multiple circuits. This approach reduces the need for repeated trusted setups and emphasizes
efficiency in verifier preprocessing. The document also introduces pseudocodes for various types of
parameter generation during the MPC setup. This includes the generation of parameters like Powers
of τ , circuit-specific parameters, and different types of mappings across both the random beacon
and non-random beacon approaches. These pseudocodes ensure clarity in the protocol’s step-by-step
process, from the computation of shared parameters to the verification of correctness.

Finally, the document presents a sketch security analysis of both protocols, relying on the Algebraic
Group Model (AGM) and the Random Oracle Model (ROM) to prove knowledge soundness and
security of the generated CRS. The analysis considers potential attacks and demonstrates that, even
without a random beacon, the setup remains secure under the assumptions of these models.

Keywords: Multi-party computation, zk-SNARKs, setup ceremony, cryptographic protocol

1 Introduction

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKs) have become a cor-
nerstone in modern cryptographic systems due to their ability to efficiently and succinctly verify the
correctness of computations without revealing any additional information beyond the fact that the com-
putation was performed correctly. zk-SNARKs are highly valued for their conciseness, efficiency, and
public verifiability, making them indispensable in fields such as privacy-preserving protocols, decentral-
ized systems, and particularly, blockchain technologies. Recent advancements in zk-SNARKs, particularly
Groth16 [4], have further driven their adoption in practical applications due to their small proof size and
fast verification times.

However, the deployment of zk-SNARKs requires a crucial setup phase known as the generation of a
Common Reference String (CRS), or public parameters, which are essential for both the proof construction
and verification processes. This setup phase introduces a significant vulnerability: the entity responsible
for generating the CRS gains access to secret trapdoor information, commonly referred to as ”toxic waste.”
This toxic waste can be exploited to forge fraudulent proofs, an issue that poses a critical security risk in
sensitive applications such as cryptocurrencies, where such an attack could result in undetected financial
losses worth billions of dollars.

Groth16, introduced at EUROCRYPT 2016 [4], represents the current state-of-the-art zk-SNARK
and is widely deployed in practice. Despite its efficiency, Groth16 still requires a trusted setup process,
in which both proving and verification keys are generated. The security of this setup is of paramount
importance, as the trusted party must delete the toxic waste securely. Failure to do so could enable the
creation of fraudulent proofs that would be indistinguishable from valid ones by any verifier.

To mitigate this risk, Multi-Party Computation (MPC) protocols are often employed during the setup
phase to distribute the responsibility of generating the CRS among multiple participants. If at least one

1

participant in the setup ceremony is honest and securely deletes their portion of the toxic waste, the
integrity of the system is guaranteed. A prominent example of this approach is the MMORPG (Multi-
Party Mathematical Operations with Random Public Generation) protocol, proposed by Bowe, Gabizon,
and Miers in [2]. MMORPG operates in random beacon mode, providing a decentralized and publicly
verifiable setup, which has been widely adopted in zk-SNARK setups like Zcash, Semaphore, and others.

The use of a random beacon in the MMORPG protocol helps ensure the randomness and integrity
of the setup. However, obtaining a secure random beacon is a non-trivial problem, as it introduces its
own set of challenges. Alternatives, such as using blockchain block headers or verifiable delay functions
(VDFs), have been explored, but these come with their own limitations, such as susceptibility to bias or
the need for specialized hardware.

This document builds upon these works by presenting a secure and scalable MPC protocol for
Groth16’s parameter generation, specifically designed for practical implementation in real-world applica-
tions. The proposed protocol operates in both random beacon and non-random beacon modes, enabling
greater flexibility and reducing the dependency on secure randomness sources. By distributing the setup
process across multiple participants, the protocol ensures that the toxic waste cannot be reconstructed
unless all participants collude, thus enhancing the overall security of the zk-SNARK system.

Furthermore, we explore recent improvements in ceremony protocols, such as the Snarky Ceremonies
framework [3], which removes the dependency on a random beacon and introduces optimizations for
handling distributed setups. The framework also simplifies security proofs by extending the Algebraic
Group Model (AGM) and the Random Oracle Model (ROM) to handle zk-SNARK setups. By adopting
these improvements, we aim to provide a robust and adaptable MPC setup protocol that can be applied
to a wide range of zk-SNARK systems, including the Groth16 and Tokamak zk-SNARK schemes.

In this document, we present a comprehensive protocol design for conducting a secure, decentralized,
and scalable MPC setup scheme, both with and without the use of a random beacon. We first revisit the
Groth16 setup ceremonies based on BGM17 [2] and the “Snarky Ceremonies” framework [3]. We then
introduce our own MPC setup ceremony design for the recent Tokamak Network protocol [1]. Detailed
pseudocode is provided for the MPC setup ceremony for the Tokamak zk-SNARK, outlining the key steps
in the parameter generation and verification phases for both the random beacon and beaconless cases.
We present the pseudocodes for each different type of parameter. After that, we give a detailed step-by-
step parameter generation flow and map the algorithm types in each parameter generation. Additionally,
we present the security analysis, focusing on its resilience within the Algebraic Group Model (AGM)
and Random Oracle Model (ROM), and the steps necessary to ensure soundness and zero-knowledge
properties under various adversarial scenarios. Through this, we aim to contribute to the ongoing efforts
to make Tokamak zk-SNARK setups secure and scalable for real-world applications.

Organization of the document. The rest of the document is organised as follows: Section 2 covers
the cryptographic preliminaries, notation, and definitions necessary for understanding the protocols,
including a high-level overview of the Groth16 [4] setup phase and its key parameters. Section 3 introduces
the proposed MPC scheme for Groth16, detailing both random beacon and beaconless designs, and
discusses their adaptation to the Tokamak zk-SNARK protocol[1] with a focus on its universal setup and
CRS reuse. Section 4 presents the non-random beacon design from the Snarky Ceremonies [3] framework,
with optimizations and a discussion on its impact on soundness and security in the Algebraic Group Model
(AGM). Section 5 provides pseudocode for generating and verifying parameters in both Groth16 and
Tokamak ceremonies to ensure secure contributions by participants. Section 6 offers a security analysis
of the protocols, emphasizing assumptions in the AGM and Random Oracle Model (ROM) and ensuring
knowledge soundness under adversarial conditions. Section 7 includes detailed pseudocode for the MPC
setup ceremony in the Tokamak zk-SNARK, outlining key steps in parameter generation and verification.
Section 8 concludes with a sketch security analysis of the update proofs, focusing on soundness and
zero-knowledge properties under the AGM and ROM models, and preventing adversarial manipulation.

2 Definitions and notation

Our operations will be conducted within bilinear groups G1, G2 or GT each of prime order p, together
with respective generators G1, G2 and GT . These groups are equipped with a non-degenerate bilinear
pairing e : G1×G2 → GT with e(G1, G2) = GT . We write G1 and G2 additively, and GT multiplicatively.
For k ∈ Fp, we denote [K]1 := k · G1, [K]2 := k · G2. We use the notation G : G1 × G2. Given an
element h ∈ G, we denote by h1(h2) the G1(G2) element of h. We denote G∗

1, G∗
2 the non-zero elements

of G1, G2 and denote G∗ : G∗
1 ×G∗

2.

2

2.1 Preview of the setup phase in the Groth16 scheme

In this section, we provide an overview of the parameters used in the setup phase of the Groth16 protocol
without going into detail. We present a pairing-based non-interactive zero-knowledge (NIZK) argument
for quadratic arithmetic programs∑m

i=0 aiui(X) ·
∑m
i=0 aivi(X) =

∑m
i=0 aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X).
Let {ui, vi, wi}i∈[0...m] and {t} be the polynomials of a degree n QAP over Fp, where t is the degree

n target polynomial of the QAP and the other polynomials have degree smaller than n. Suppose that
are the indices of the public input.

2.2 Groth’s Setup Phase:

Choose random α, β, γ, δ, x ←− Z∗
p. τ = (α, β, γ, δ, x) and compute ([σ1]1 , [σ2]2), [σ1]1 = σ1 · G1 and

[σ1]2 = σ1 ·G2 where

σ1 =

Ñ
α, β, δ,

{
xi
}n−1

i=0
,
¶
βui(x)+αvi(x)+wi(x)

γ

©ℓ
i=0¶

βui(x)+αvi(x)+wi(x)+wi(x)
δ

©m
i=l+1

,
{
xit(x)
δ

}n
i=0

é
i=0

, σ2 =

Å
β, γ, δ,

{
xi
}n−1

i=0

ã
.

3 Multi-party Computation for Parameters Generation of Groth16
Scheme

In this section, we present the application of BGM17’s [2] multiparty computation (MPC) scheme, called
MMORP, on Groth16 [4], which is a well-known zk-SNARK scheme.

Contributor 1 Verifier

Coordinator

Contributor 2 Verifier

Coordinator

... Contributor N Verifier

Coordinator

CRS/SRS

Figure 1: Multi-party Setup Ceremony Flow for Generating zk-SNARK Parameters

According the MPC protocol, the CRS is generated through two stages. The initial phase, known
as “Powers of Tau”, generates universal setup parameters applicable to all circuits within the scheme,
up to a specified size. The ”Powers of Tau” ceremony offers several improvements compared to previous
schemes. Firstly, participants are not required to be pre-selected; instead, the protocol utilizes a random
beacon that generates public, random values at regular intervals, enabling a continuous ceremony. This
means that participants do not need to always be present and connected on-line. The use of the random
beacon also guarantees the coordinator’s public verifiability. Consequently, the protocol can theoretically
accommodate hundreds or even thousands of participants. The subsequent phase transforms the results
from the Powers of Tau phase into a CRS specific to the NP-relation.

In this protocol, a central protocol coordinator facilitates the communication of messages between
participants. Instead, the protocol employs a random beacon that generates public random values at
predetermined intervals to sustain an ongoing ceremony. However, there is no requirement to trust
the coordinator, as any individual can subsequently confirm the accuracy of the protocol coordinator’s
messages within the protocol transcript. Specifically, the protocol verifier’s responsibilities will encompass,
beyond the explicitly outlined procedures, independently computing the protocol coordinator’s messages
and verifying their correctness.

This setup allows participants not always to be required to be online and available. The random beacon
also guarantees the public verifiability of the coordinator. Consequently, the protocol can theoretically
accommodate hundreds or even thousands of participants.

3.1 The MPC Protocol Description

We present the MMORGMPC protocol designed to compute the common reference string (CRS) elements
of Groth16.

The resulting output will be structured as follows:

3

{[
xi
]}
i∈[0..n−1]

,
{[
xi
]
1

}
i∈[n..2n−2]

,
{[
αxi

]
1

}
i∈[0..n−1]

,

[β] ,
{ [
βxi

]
1

}
i∈[1...n−1]

,
{ [
xi · t(x)/δ

]
1

}
i∈[0...n−2]

,¶î
βui(x)+αvi(x)+wi(x)

δ

ó
1

©
i∈[ℓ+1..m]

We execute the protocol in two rounds, and each round we compute M1 and M2 set of parameters,
respectively. M is an output in G1, G2 or G. We denote [M]j the ”partial M ” after N participants
P1, P2, ..., PN have contributed their shares, where j ∈ [N]. [M]0 will be initialized to a predetermined
value as outlined in the protocol description. It is assumed that g is publicly known.

3.1.1 First Round: Powers of τ

We will compute the M1:

M1 =

ß
{[xi]}i∈[0...n−1], {[xi]1}i∈[n·2n−2],

{[αxi]1}i∈[0..n−1], [β] , [δ] {[δxi]1}i∈[1...n−1]

™
Initialization:

We first initialize the parameters with the following public values.

1. [xi]0 := g, i ∈ [1...n− 1].

2. [xi]0 := G1, i ∈ [n...2n− 2].

3. [αxi]0 := G1, i ∈ [1...n− 1].

4. [β]
0
:= g.

5.
[
βxi

]0
:= G1, i ∈ [1...n− 1] .

Computations:

Then, the participants (j ∈ [N], Pj) perform the below computations:

1. [αj]1 , [βj]1 , [xj]1

2. yα,j := POK(αj , transcript1,j−1)

3. yβ,j := POK(βj , transcript1,j−1)

4. yx,j := POK(xj , transcript1,j−1)

5. For each i ∈ [1..2n− 2], [xi]j := xij · [xi]j−1

6. For each j ∈
[
0..m− 1

]
,
[
αxi

]j
:= αjx

i
j ·

[
αxi

]j−1

7. For each j ∈
[
0..m− 1

]
,
[
βxi

]j
:= βjx

i
j ·

[
βxi

]j−1

Let J − 1 be the time-slot where PN sends their message. Let (x′, α′, β′) := RandomBeacon(J, 3)

1.
[
xi
]
:= x′i ·

[
xi
]N
, i ∈ [1..2n− 2].

2.
[
αxi

]
:= α′x′i ·

[
αxi

]N
, i ∈ [0...n− 1].

3.
[
βxi

]
:= β′x′i ·

[
βxi

]N
, i ∈ [0...n− 1].

4

Verifications:

The protocol verifier computes for each j ∈ [N],

rα,j := R([αj]1 , transcript1,j−1),
rβ,j := R([βj]1 , transcript1,j−1),
rx,j := R([xj]1 , transcript1,j−1),

and checks j ∈ [N] that

1. CheckPOK([αj]1 , transcriptt1,j−1, yα,j),

2. CheckPOK([βj]1 , transcriptt1,j−1, yβ,j),

3. CheckPOK([xj]1 , transcriptt1,j−1, yx,j),

4. Consistent([α]j−1 − [α]j ; (rα,j , yα,j)),

5. Consistent([β]j−1 − [β]j ; (rβ,j , yβ,j)),

6. Consistent([x]j−1 − [x]j ; (rx,j , yx,j)),

7. For each i ∈ [1..2n− 2], Consistent
(
[xi−1]j − [xi]j; t[x]j

)
,

8. For each i ∈ [1...n− 1], Consistent
(
[xi]j1 − [αxi]j; [α]j

)
,

9. For each i ∈ [1...n− 1], Consistent
(
[xi]j1 − [βxi]j; [β]j

)
,

3.1.2 Second Round

During this subsequent phase of the protocol, parameters specific to the circuit will be generated.
We will compute the M2:

M2 =
¶
[δ] ,

{
[Ki]1

}
i∈[ℓ+1...m]

,
{
[Hi]1

}
i∈[0...n−2]

}
, where

Ki :=
βui(x)+αvi(x)+wi(x)

δ , where i ∈ [ℓ+ 1...m], and

Hi :=
t(x)xi

δ , where i ∈ [ℓ+ 0...n− 2].

Initialization:

1. [Ki]
0 := K ′

i, i ∈ [ℓ+ 1..m].

2. [Hi]
0 := H ′

i, i ∈ [ℓ+ 1..m].

3. [δ]
0
:= g.

Computations:

For j ∈ [N], Pj outputs:

1. [δj]1 .

2. yδ,j := POK(δj , transcript2,j−1).

3. [δ]j := [δ]j−1/δj.

4. For each i ∈ [ℓ+ 1...m], [Ki]
j := ([Ki]

j−1
)/δj .

5. For each i ∈ [ℓ+ 0...n− 2], [Hi]
j := ([Hi]

j−1
)/δj .

Finally, J − 1 be the time-slot where PN sends their message.
Let δ′ := RandomBeacon(J, 1)

1.
[
δ
]
:=

[
δ
]N
/δ′.

2. [Ki]1 := [Ki]
N
/δ′.

3. [Hi]1 := [Hi]
N
/δ′.

5

Verifications:

The protocol verifier computes for each j ∈ [N],

rδ,j := R([δj]1 , transcript2,j−1),

and for each j ∈ [N] checks that

1. CheckPOK([δj]1 , transcriptt2,j−1, yδ,j).

2. For j ∈ [N], Consistent
(
[δ]j−1 − [δ]j; (rδ,j , yδ,j)

)
,

3. For each i ∈ [ℓ+ 1..m], j ∈ [N], Consistent([Ki]
j − [Ki]

j−1; [δj]).

4. For each i ∈ [ℓ+ 0..n− 2], j ∈ [N], Consistent([Hi]
j − [Hi]

j−1; [δj]).

4 Second version: Removing the Random Beacon requirement

In this section, we present the second design which is based on Kohlweiss, Maller, Siim and Volkhov’s [3]
MPC scheme which is also known as the “Snarky Ceremonies” (KMSV21).

They re-examine the ceremony protocol of Groth’s SNARK [2]. Their analysis reveals that the
original construction can be both simplified and optimized, and we subsequently establish its security
within their new framework. In particular, their construction eliminates the need for the random beacon
model employed in the original work. Their work simplifies the widely used scheme of MMORPG [2] and
establishes it on a more robust security foundation.

They separate the SRS into a universal component srsu, which is independent of the specific relation
being proven, and a specialized component srss, which is dependent on a specific relation R. Both
srsu and srss are updatable; however, the initial srss must be derived from srsu and the relation R.
Consequently, parties must first update srsu, and only after sufficient updates can they proceed to update
srss. The universal srsu has the potential to be reused for other relations.

tdu,1 tdu,2 tdu,n

(srsu,1, ρu,1) (srsu,n ρu,n)

tds,1 tds,2 tds,n

(srss,1, ρs,,1) (srss,n, ρs,n)srss,0

R

Their protocol diverges from [3] in several key aspects related to both performance and security. In
addition to the RO switch to G1 and the optional inclusion of ⊤∏ in the evaluation of RO. They eliminate
the update with the random beacon at the end of each phase. Although this may introduce a slight bias
in the SRS, they demonstrate that this bias is insufficient to compromise the argument’s security. They
consider this to be the most significant contribution of their work, as obtaining random beacons poses
substantial challenges in both theory and practice. Their approach circumvents this issue entirely by
proving the protocol without relying on the random beacon model.

RQAP =

(ϕ,w) |

ϕ = (a0 = 1, a1, . . . , aℓ) ∈ Z1+ℓ
p ,

w = (aℓ+1, · · ·, am) ∈ Zm−ℓ
p ,

∃h(X) ∈ Zp[X] of degree ≤ n − 2 such that
(
∑m
i=0 aiui(X)) (

∑m
i=0 aivi(X)) =

∑m
i=0 aiwi(X) + h(X)t(X)

4.1 Groth’s zk-SNARK setup description

We present the Groth’s zk-SNARK setup description in term of [3]’s notation. Setup(RQAP):

Sample τ = (α, β, δ, x) ←− (Z∗
p)

4 and returns (srs −→ (srsu, srss) , τ) s.t.

6

srsu ←
(
{Gxi

, Hxi}2n−2
i=0 , {Gαxi

, Gβx
i

, Hαxi

, Hβxi}n−1
i=0

)
,

srss ←
Å
Gδ, Hδ, {G

βui(x)+αvi(x)+ωi(x)

δ }mi=ℓ+1, {G
xi t(x)

δ }n−2
i=0

ã
4.2 KMSV21’s setup description

They present default SRS and update algorithm for Groth’s SNARK as below:
if φ = 1:

1. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0 };

2. sample α
′
, β

′
, x

′
,←− Z∗

p;

3. For (ι∈ |α, β, x};πι′ ←− Prove
RO(·)
dl (Gι

′
, Hι′ , ι′);

4. ρα′ ←− (Gα
′

αx:0, G
α′
, Hα′

, πα′);

5. ρβ′ ←− (Gβ
′

βx:0, G
β′
, Hβ′

, πβ′);

6. ρx′ ←− (Gx
′

αx:0, G
x′
, Hx′

, πx′);
7. ρ← (ρα′ , ρβ′ , ρx′);

8. srs′u ←
(
{G(x′)i

x;i , H
(x′)i

x;i }
2n−2
i=0 , {Gα

′(x′)t

αx;i , G
β′(x′)i

βx;i , H
α′(x′)i

δx;i }n−1
i=0

)
;

9. srs′s ← Specialize(QAP, srs′u);
10. return ((srs′u, srs

′
s) , ρ);

if φ = 2:

11. Parse srss =
Ä
Gδ, Hδ, {Gsum:i}mi=ℓ+1 ,

{
Gt(x):i

}n−2

i=0

ä
12. δ′ ←− Z∗

p;

13. πδ′ ←− Prove
RO(·)
dl (Gδ

′
, Hδ′ , δ′)

14. ρ← (Gδ
′

δ , G
δ′ , Hδ′ , πδ′)

15. srs′s =

Å
Gδ

′

δ , H
δ′

δ ,
¶
G

1/δ′

sum:i

©m
i=ℓ+1

,
¶
G

1/δ′

t(x):i

©n−2

i=0

ã
16. return ((srsu, srs

′
s) , ρ);

Specialize((RQAP , srsu)): //computes srss with δ = 1

17. Parse srsu =
(
{Gx:i, Hx:i}2n−2

i=0 , {Gαx:i, Gβx:i, Hαx:i, Hβx:i}n−1
i=0 };

18. srss ←
(
G, H,

{∏n−1
j=0 G

u∗j
ij

βx:j ·G
vij
αx:j ·G

wij

x:j

}m
i=ℓ+1

,
{∏n

j=0 G
ℓ∗j ···′
x:(i+j)

}n−2

i=0

}
19. return srss;
Their security proof for update knowledge-soundness employs a combination of the algebraic group

model (AGM) [5] and the random oracle (RO) model. Already the original AGM paper [5] proved
knowledge soundness of the Groth16 SNARK. Also, Fuchsbauer et al. [5] show how to integrate the
AGM with the random oracle (RO) model. In the AGM model (assuming a trusted SRS), they proved
it under the q-discrete logarithm assumption, which involves a discrete logarithm challenge of the form
(Gz, Gz

2

, . . . , Gz
q

). The main idea behind the reduction is that Gz can be embedded in the SRS of the
SNARK.

Bowe et al. [2] demonstrated that the proof system is secure under a Knowledge-of-Exponent as-
sumption. However, their analysis does not account for the possibility that an attacker might leverage
additional knowledge obtained from the ceremony to compromise the update proof. Kohlweiss et al.’s
analysis is more comprehensive and considers this additional knowledge. As a result, they cannot rely
solely on the Knowledge-of-Exponent assumption. Instead, they utilize the algebraic group model (AGM),
which is currently the weakest idealized model in which Groth16 has provable security. Therefore, they
do not consider this reliance to be a theoretical drawback.

5 The Security Analysis of The Update Proofs

In this section, we focus on the security of the update proofs in BGM17 [2] and subsequently examine
the security of Groth’s ceremonial protocol.

The authors of BGM17 establish the security of the proof system based on the Knowledge-of-Exponent
assumption. However, their analysis does not consider the potential for an attacker to leverage additional
knowledge acquired during the ceremony to undermine the update proof. For this reason, we think
that [3]’s security approach is more appropriate. Their analysis is more comprehensive and considers
this additional knowledge, requiring us to move beyond the simple Knowledge-of-Exponent assumption.
Consequently, they claimed that they utilize the algebraic group model (AGM), which, to date, is the
most lenient idealized model in which Groth’s protocol can be proven secure. Therefore, they do not
regard this as a theoretical limitation. The proof of knowledge pertains to the discrete logarithm relation

7

Rdl = {(ϕ = (m,Gy1 , Hy2), w) | y1 = y2 = w}, where m is an auxiliary input that was used in the original
[2] proof of knowledge. The auxiliary input is redundant but we retain it to maintain consistency with
the original protocol. We also aim to validate the security of ceremony protocols that are already in use.

We adopt their [3] following security definitions and formal description of the BKM17 protocol.

Definition 5.1. An argument Ω for R is perfectly complete if for any adversary A, it has the following
properties:
Update completeness:

Pr

ï
(φ, srs, {ρi}i)← A(1λ), (srs′, ρ′)← Update(φ, srs, {ρi}i) :

VerifySRS(srs, {ρi}i) = 1 ∧VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

ò
= 0.

Prover completeness:

Pr

ï
(srs, {ρi}i, ϕ, w)← A(1λ), (π)← Prove(srs, ϕ, w) :

VerifySRS(srs, {ρi}i) = 1 ∧ (ϕ,w) ∈ R ∧Verify(srs, ϕ, π) ̸= 1

ò
= 0.

Definition 5.2. An argument Ω for R is perfectly complete in the random oracle model, if for any
adversary A,

Pr
î
(ϕ,w)← ARO(·), π ← ProveRO(·)(ϕ,w) : (ϕ,w) ∈ R ∧VerifyRO(·)(ϕ, π) ̸= 1

ó
= 0.

Definition 5.3. An argument Ω for R is perfectly zero-knowledge in the random oracle model if for all

probabilistic polynomial time (PPT) adversaries A, ε0 = ε1, where εb := Pr
î
AOb(·),RO(·)

(1λ) = 1
ó
. Ob

is a proof oracle that takes as an input (ϕ,w) and only proceeds if (ϕ,· w) ∈ R. If b = 0, Ob returns an

honest proof ProveRO(·) (ϕ,w) and when b = 1, it returns a simulated proof SimRO1(·)(ϕ).

Sim is allowed to have access to RO discrete logarithms. They mention the following formal description
of the BKM17 protocol in [3].

Definition 5.4. Formal description of the BKM17 scheme:

• Prove
RO(·)
dl (ϕ,w) outputs Grw, while generating Gr ← RO(ϕ).

• Verify
RO(·)
dl (ϕ = (·, Gy1 , Hy2), π) checks that ê(Gy1 , H) = (G,Hy2)∧ ê(π,H) = ê(Gr, Hy2), while

using Gr ← RO(ϕ).

• Sim
RO1(·)
dl (ϕ = (·, Gy1 , Hy2)) outputs π ← (Gy1)rϕ , by asserting ê(Gy1 , H) = (G,Hy2) and using

rϕ ← RO1(ϕ).

Theorem 5.1.
∏
dl =

Ä
Prove

RO(·)
dl ,Verify

RO(·)
dl ,Sim

RO1(·)
dl

ä
is complete, perfect zero-knowledge argument

in random oracle model.

Proof. Completeness and perfect zero-knowledge are directly derived from the construction of the prover,
verifier, and simulator algorithms. Completeness are provided straightforwardly. Moreover, it is easy to
see that

∏
dl is perfect zero-knowledge with respect to Simulator. When the simulator obtains an input

ϕ = (m,Gw, Hw), it queries r for Gr = RO(ϕ) using random oracle, and has Gwr. The adversary cannot
distinguish between honest and simulated proofs because of its equality.

Theorem 5.2. Groth’s SNARK has perfect completeness, i.e. it has update completeness and prover
completeness.

Proof. Let’s first note that if a bitstring s = (srs, {ρi}i) satisfies VerifySRS(s) = 1, then there are unique
values α, β, x, δ ∈ Z∗

p that define a well-formed srs.
If the SRS passes the VerifySRS check, it constitutes a valid Groth’s SNARK SRS.
We prove the statement following VerifySRS:

1. Gx:1 ̸= [0]1, Gαx:0 ̸= [0]1, Gβx:0 ̸= [0]1. Assume that their values are are x, α, and β respectively
(Line 4 confirms)

2. Gx:i has the exponent as Hx:i, it is x too, and that exponent of Gx:i is exponent of Gx:i−1 multiplied
by x. Hence, Gx:i =

[
xi
]
1
, and Hx:i =

[
xi
]
2
(Line 5 confirms)

3. Likewise, line 6 guarantees that Gιx:i has the exponent as Hιx:i , and that exponent of Gιx:i is ιx
i.

Thus, Hιx:i is ιx
i too.

8

4. Gδ ̸= [0] and that exponent of Hδ] is the same (Line 9 confirms).

5. Gsum:i is the ith x-power of
∑n−1

0 (βu(x) + αv(x) + w(x))/δ (Line 10 confirms).

6. Likewise, line 11 guarantees that Gt(x):i = t(x)xi/δ.

Thus, the SRS is in the exact same format as in the Setup.
Update completeness: Once more, we are examining Update in conjunction with VerifySRS.

• for φ = 1:
First, we will verify that the new SRS is well-formed. Line 8 begins by multiplying each Gx

i

and
Hxi

by x′i replacing x with xx′. Next it updates each ιxi to ιι′(xx′)i in Gιx
i

and Hιxi

for ι ∈ α, β.
Specialize simply recomputes srss from srsu and its correctness is easy to verify. Hence, the new
srs is well-formed. Additionally, the update proof is correct because for each ι: First, the proof of
knowledge created on line 3 will be correct because it is applied to the same instance; Secondly,
for i > 1, assuming the previous update was correct, the verification equation will verify that the

exponent of G
(i)
ι is equal to exponent of G

(i−1)
ι (ι) multiplied by the exponent of H(i)

i′
(ι′).

• for φ = 2: Likewisely, the SRS itself updates δ to δδ′, and proofs are verified exactly in the same
manner, but for δ instead of α, β, and x.

Prover completeness: Suppose that the Adversary Adv outputs
(srs, {ρi}i , ϕ, w) s.t. (ϕ,w) ∈ RQAP, and VerifySRS(srs, {ρi} ,) = 1. It follows that the SRS is well-
formed for Groth’s SNARK. Consequently, the prover completeness is derived from the completeness
proof in [4].

Update Proofs of Knowledge

A key component of the setup ceremony is the proof of update knowledge, designed to ensure that the
adversary knows the values used to update the SRS. In this section, we have examined the proof of
knowledge proposed by [2]. Their proof was shown to be secure only against adversaries that can make
random oracle queries. However, this definition is inadequate for ensuring security, as adversaries could
potentially manipulate other users’ proofs or update elements to cheat. Therefore, we define a much
stronger property that is sufficient for proving the security of our update ceremony

Security is established against algebraic adversaries [5] within the random oracle model. Knowledge
soundness and subversion zero-knowledge are ensured by requiring at least one honest party in each phase
of the protocol. Unlike [2], dependence on a random beacon is avoided; instead, potential insecurity of a
random beacon is addressed by treating it as an additional malicious entity. This approach offers robust
security validation for real-world protocols used in cryptocurrencies. Moreover, in [2], a novel discrete
logarithm argument was used to prove knowledge of update contributions, with knowledge soundness
established under the knowledge of exponent assumption in the random oracle model. However, proving
the security of the ceremony protocol requires even stronger security properties: the argument must
be zero-knowledge and straight-line simulation extractable, ensuring knowledge soundness even with
simulated proofs. Additionally, simulation-extractability must hold even when the adversary receives
group elements as auxiliary input without knowing their discrete logarithms. To achieve these stronger
properties, the original argument is slightly modified and shown to be secure within the algebraic group
model with random oracles.

Definition 5.5 (Update Knowledge Soundness). An argument Ψ for R is update knowledge-sound if for

all PPT adversaries A, there exists a PPT extractor EA such that Pr
î
GameA,EA

uks (1λ) = 1
ó
is negligible in

λ, where

GameA,EA
uks (1λ) :=

 (ϕ, π)← AOsrs(·)(1λ);
get (srs, ϕ) from Osrs;w ← EA(viewA);
return Verify(srs, ϕ, π) = 1 ∧ (ϕ,w) /∈ R ∧ ϕ > ϕmax

 .
SRS update oracle Osrs is described in Algorithm 1. In this definition of update knowledge soundness,

it is required that an honest verifier cannot be convinced by any adversary of a statement unless either
(1) a valid witness is known; (2) the SRS fails the setup ceremony verification VerifySRS; or (3) none of
the phases included any honest updates. It should be noted that completeness and zero-knowledge are
maintained for any SRS that passes the setup ceremony verification, even in the absence of any honest
updates. Furthermore, if φmax = 1, the standard concept of update knowledge soundness is achieved.
For the remainder of this analysis, we focus solely on the case where φmax = 2. Specifically, in the first
phase, a universal SRS srsu = srs1 is generated, which is independent of the relation, and in the second
phase.
EA(viewA)

9

1. Extract the set of algebraic coefficients Tπ ← EagmA (viewA) and obtain {Ci:x:j}m1,m
i,j=(1,1),(1,l+1) from

it, corresponding to the elements {(βui(x) + αvi(x) + wi(x))/δ} in the second phase, where m1 is
the number of update queries made in the first phase, and m is the QAP parameter.

2. From viewA, deduce icrit2 → Osrs query index that corresponds to the last honest update in the
final SRS.

3. Return coefficients w = {Cicrit2 :x:j}
m
j=l+1.

Algorithm 1 SRS update oracle Osrs given to the adversary in Definition 5.

1: Input: (intent, srs∗,Q∗) ▷ Initially Q1 = · · · = Qφmax
= ∅; φ = 1

2: if φ > φmax then return ⊥ ▷ SRS already finalized for all phases
3: end if
4: srsnew ← (srs1, . . . , srsφ−1, srs

∗, . . . , srsφmax)
5: if VerifySRS(srsnew,Q∗) = 0 then return ⊥ ▷ Invalid SRS
6: end if
7: if intent = UPDATE then
8: (srs′, ρ′)← Update(φ, srsnew,Q∗); Qφ ← Qφ ∪ {ρ′}
9: return (srs′, ρ′)

10: end if
11: if intent = FINALIZE ∧Qφ ∩Q∗ ̸= ∅ then
12: Assign srsφ ← srs∗;φ← φ+ 1
13: end if

SRS update oracle Osrs given to the adversary in Definition 5.5. Update returns A an honest update
for φ, and Finalize finalizes the current phase. Current phase φ and current SRS srs are shared with
the KS challenger. {Qφi

}i is a local set of proofs for honest updates, one for each phase.

Theorem 5.3. Let us assume the (2n − 1, 2n − 2)-edlog assumption holds. Then Groth’s SNARK has
update knowledge soundness with respect to all PPT algebraic adversaries in the random oracle model.

Proof. Let A be an algebraic adversary against update knowledge soundness and let us denote the update
knowledge soundness game Gameuks by Game0. We construct an explicit white-box extractor EA and
prove it to succeed with an overwhelming probability. The theorem statement is thus AdvGame0

A,EA
(λ) =

negl(λ). We assume that A makes at most q1 update queries in phase 1 and at most q2 in phase 2. Often
we will use ι to denote any of the elements x, α, β or δ.

6 The MPC Setup Ceremony for the Tokamak zkSNARK

The Multi-Party Computation (MPC) setup ceremony is a crucial process for establishing the trust and
security of the Tokamak zkSNARK protocol. This ceremony involves multiple independent participants
who collaboratively generate the public parameters required for the zkSNARK protocol without any
single party being able to compromise the setup.

In this section, we explore the structure and significance of the MPC setup ceremony within the Toka-
mak zkSNARK framework. We will cover the roles of participants, the steps involved in the generation
of parameters, and the security guarantees provided by the ceremony. The goal of the MPC setup is
to ensure that the final parameters are free from bias or manipulation, making them secure for use in
zero-knowledge proofs on the Tokamak platform.

6.1 The differences of TOKAMAK zk-SNARK from Groth16 related to the
setup procedure

Recently the Tokamak team’s zk-SNARK paper “An Efficient SNARK for Field-Programmable and RAM
Circuits” has been published in [1]. In this section, we first present a brief summary of the paper and
then we highlight the difference in the paper’s setup from Groth’s.

Groth’s scheme [4] relies on a circuit-specific setup using a Common Reference String (CRS), which
must be generated for each new circuit. This setup cannot be updated or reused for different circuits.
One (Groth16) is a non-universal and relies on a one-time non-updatable setup for specific circuits.

Tokamak scheme [1] utilizes a universal setup, allowing a single CRS to be used for multiple circuits.
This reduces the dependence on trusted setups for every new computation. In this design, the authors

10

present a SNARK that aims to efficiently manage the dependency on verifier preprocessing, which is often
a critical aspect in SNARK systems. To achieve this, they utilize a method called field-programmable
circuit derivation. This approach begins with a universal circuit that is composed of multiple subcircuits.
From this universal circuit, a program-specific circuit can be generated by duplicating these subcircuits
and establishing connections between them. One key point of their design is that, while it does not
support updatable CRS, the field-programmable circuit derivation significantly reduces the amount of
data that the verifier needs to preprocess. Instead of dealing with the entire circuit, the preprocessing
mainly focuses on the wiring and connections of the subcircuits, thus reducing the dimensionality of the
data involved. The authors suggest that this reduction in preprocessing dependency could help alleviate
the high communication complexity typically encountered in scenarios involving verifiable RAM compu-
tations, particularly in distributed computing networks where nodes may not be trusted. Additionally,
they propose that the verifier preprocessing step can be completely eliminated without altering the core
SNARK structure. This can be achieved by increasing the complexity of the subcircuit designs to handle
unrolling instructions, which refers to expanding repetitive processes into a single, more complex struc-
ture. This approach streamlines the verification process and enhances efficiency without compromising
the underlying SNARK protocol.

In this paper, the authors introduce a SNARK that efficiently manages verifier preprocessing through
field-programmable circuit derivation, which starts with a universal circuit composed of subcircuits and
derives program-specific circuits by replicating and connecting these subcircuits. While the setup does
not support updatability, it significantly reduces the data dimensionality for verifier preprocessing, ad-
dressing high communication complexity in verifiable RAM computation within distributed networks of
untrusted nodes. By integrating a permutation argument, they transform a SNARK with a common
reference string, like Groth16, into one with a universal setup, separating circuit configuration into two
algorithms—setup and verifier—allowing adjustable security dependencies. their SNARK achieves state-
of-the-art communication and computation efficiency with verifier preprocessing and surpasses others
when preprocessing is eliminated. It combines R1CS and Plonkish circuit representations, using a per-
mutation map for wiring, which reduces data dimensionality compared to PlonK or Marlin but sacrifices
setup updatability. This SNARK is highly efficient, suitable for verifiable machine computation, and
particularly effective in distributed networks like blockchains, where it reduces the burden of verifier
preprocessing data on network resources.

The paper defines a probabilistic algorithm Setup(ppλ,L) 7→ (τ ,σ) to generate an encoded reference
string σ of the library subcircuit polynomials in L.

Setup(ppλ,L) takes as input the bilinear pairing group ppλ = (H,G1,G2,GT , e,G,H) and the sub-
circuit library L = {uj(X), vj(X), wj(X)}mD−1

j=0 , picks uniform random parameters

τ := (x, y, z, α, β, γ, δ, η0, η1, µ, ν, ψ0, ψ1, ψ2, ψ3, κ)
§−→ (F∗)16,

and returns σ = ([σA,I]1, [σC]1, [σzk]1, [σν]2), where

oj (X) := βuj (X) + ανj (X) + wj (X) ,

Mj(X,Z) :=
∑lD−1
k=l,k ̸=j

ok(X)
lD−l

(
ωk

ZKj−l(Z)−ωj
ZKk−l(Z)

ωj
Z−ωk

Z

)
,

The three vectors σAI , σC , and σzk will be utilized for distinct purposes: σAI will address arithmetic
constraints and inner-product arguments, σC will be used for copy constraint arguments, and σzk will
incorporate zero-knowledge elements.

σA,I :=

α,
(
xhyi

)n−1,smax−1

h=0,i=0
,(

γ−1L0(y)oj(x)
)lin−1

j=0
,
(
γ−1L−1(y)oj(x)

)l−1

j=lin
,
(
η−1
1 Li(y)oj(x)

)smax−1,lD−1

i=0,j=l
,
(
δ−1Li(y)oj(x)

)smax−1,mD−1

i=0,j=lD
,(

η−1
0 Li(y)oj(x)

(
K2
j−1(z)− 1

))smax−1,lD−1

i=0,j=l
,(

δ−1xhyitX (x)
)n−2,smax−1

h=0,i=0
,
(
δ−1xhyitY(y)

)2n−2,smax−2

h=0,i=0
,
(
η−1
0 Li(y)Mj(x, z)tZ(z)

)smax−1,lD−1

i=0,j=l

σC :=

(
µ−1Li(y)Kj(z)

)smax−1,lD−l−1

i=0,j=0
,(

v−1yizjtY(y)
)smax−2,2lD−2l−2

i=0,j=0
,
(
v−1yizjtZ(z)

)2smax−2,j=0

i=0,j=2(lD−l)−3
,(

ψ−1
0 κhyizj

)1,2smax−3,3(lD−1)−1

h=0,i=0,j=0
,
(
ψ−1
1 zj

)3(lD−1)−4

j=0
,
(
ψ−1
2 κ2yizj

)smax−2,lD−l−1

i=0,j=0
,
(
ψ−1
3 κhzj

)2,lD−l−2

h=1,j=0

11

σzk :=

β, δ, η1,
(
µ−1yitY(y)

)l
i=0

, η−1
0 tY(y)

lD−1∑
j=1

Mj(x, z)tZ(z),

η−1
1 tY(y)

lD−1∑
j=l

oj(x), η
−1
0 tY(y)

lD−1∑
j=0

oj(x)
(
K2
j−l(z)− 1

)
,

(
v−1yizjtY(y)

)smax+1,2lD−2l−2

i=smax−1,j=0
,
(
ψ−1
0 κhyizj

)1,2smax,3(lD−l−1)

h=0,i=2smax−2,j=0
,
(
ψ−1
2 κ2yizj

)smax−1,lD−l−1

i=smax−1,j=0

σV :=

β, γ, δ, η1, µη0, µη1,

(
xhyi

)n−1,smax−1

h=0,i=0
, µ2

lD−1∑
j=l

oj(x)Kj−l(z)),

µ3v,
(
µ4κh

)2
h=0

,
(
µ3ψhy

izj
)3,1,1
h=0,i=0,j=0

7 Pseudocode for Tokamak Scheme MPC Setup

In this section, we will present the pseudocode for Tokamak scheme MPC setup ceremony. We assume
that all parties can access to the same oracle R during the ceremony protocol. The oracle R takes as
input strings of arbitrary length and output is a uniform independent elements of G∗

2.
Note that we use the notation G : G1 ×G2 and G := (G1, G2).
We denote by transcriptℓ,i the transcript of the protocol up to the point where player i sent his

message in phase ℓ. [α]j ∈ G1 or [α]j ∈ G, If [α]j ∈ G1; then [α]j := α1 · α2 . . . αj−1 · αj · G1. [αxi]j :=
(α0x

i
0)(α1x

i
1)...(αjx

i
j)G1.

We define the following key algorithms (Algorithm-2, Algorithm-3, Algorithm-4, Algorithm-5 [2]) to
utilize computation and verification algorithms in the form of types, from Algorithms 7.1.1 to Algo-
rithms 7.11.2. In Algorithm-2, a proof of knowledge for α is constructed, and the verification of the proof
is performed using Algorithm-3.

Algorithm 2 Construct a proof of knowledge of α

1: function POK(α, v) ▷ Where α is the input, v is a string
2: y ← R([α]1, v) ∈ G∗

2 ▷ [α]1 := α ·G1

3: return (α · y)
4: end function

Algorithm 3 Verify a proof of knowledge of α

1: function CheckPOK(A, v, B) ▷ Where A ∈ G∗
1, B ∈ G∗

2

2: y ← R(A, v) ∈ G∗
2

3: return SameRatio((G1, A), (y,B))
4: end function

Moreover, the same ratio between two sets of points can be verified using Algorithm-4, while the
consistency of the ratio between two different sets of points is controlled by Algorithm-5, which also
utilizes Algorithm-4.

Algorithm 4 Determine if x ∈ F∗
p exists such that B = x ·A, and D = x · C.

1: function SameRatio((A,B), (C,D)) ▷ Where A,B ∈ G1 and C,D ∈ G2

2: if e(A,D) = e(B,C) then ▷ A,B,C,D are not the identity elements.
3: return True
4: else
5: return False
6: end if
7: end function

Using the algorithms described above, we will construct different types of algorithms for generating
the parameters in the setup ceremony for the Tokamak scheme. We define below types of algorithms,
each consisting of two sub-algorithms: compute and verify. Each participant Pj computes and can verify
all parameters by using the algorithms according to their respective types. We present the structure
of each algorithm set using a generic parameter representation, including forms such as α, αβ, xi, αxi,
xiyk, αf(y)oi(x), x

iyk, and others. Table 1 presents the parameter list for the Tokamak setup scheme
in relation to the types of algorithms. A summary of all types and their corresponding parameters is
provided in Table 2.

12

Algorithm 5 Check whether the ratio between A and B is the s ∈ F∗
p that is encoded in C.

1: function Consistent((A−B;C)) ▷ Where A,B ∈ G2
1 or A,B ∈ G2. And C ∈ G∗

2 or C ∈ (G∗
2)

2

2: if C ∈ (G∗
2)

2 then
3: r ← SameRatio((A1, B1), (C1, C2))
4: else
5: r ← SameRatio((A1, B1), (G1, C2))
6: end if
7: if A,B ∈ G1 then
8: return r
9: else

10: return r AND SameRatio((A1, B1), (A2, B2))
11: end if
12: end function

For instance, the first type (Type-1: α) category is consist of computation and verification algorithms.
Accordingly, Algorithm 7.1.1 and Algorithm 7.2.1 are executed sequentially to compute and verify the
setup parameters (σAI , σC , σzk, and σV ; see 6.1) in the form of “α.”

7.1 Type-1: α

Let [α]0 = G1 or [α]0 = G.

Algorithm 7.1.1 The participant Pj computes all parameters for Type-1 parameter ([α]1 := α ·G1)

1: function Compute1([α]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: αj ∈R F∗

p ▷ pick α random number
3: y = POK(αj , vrd,j−1)
4: [α]j = αj · [α]j−1

5: return ([α]j, [αj]1, y)
6: end function

Algorithm 7.1.2 The protocol verifier verifies for each j ∈ [N] for a single parameter ([α]1 := α ·G1))

1: function Verify1([α]j−1, [α]j, [αj]1, vrd,j−1, yα,j) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: rα,j = R([αj]1 , vrd,j−1)
3: if (CheckPOK([αj]1 , vrd,j−1, yα,j)) then

4: return Consistent
(
[α]j−1 − [α]j; (rα,j , yα,j)

)
5: else
6: return False
7: end if
8: end function

7.2 Type-2: αβ

Let [αβ]0 = G1 or [αβ]0 = G

Algorithm 7.2.1 The Pj computes parameters for (Type-2: αβ)

1: function Compute2([αβ]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: αj , βj ∈R F∗

p ▷ pick random numbers
3: yα = POK([αj]1, vrd,j−1)
4: yβ = POK([βj]1, vrd,j−1)
5: [αβ]j = αjβj · [αβ]j−1

6: return ([αβ]j, [αj]1, [βj]1, [αjβj]2, yα, yβ)
7: end function

7.3 Type-3: xi

Let [xi]0 = G1 or [xi]0 = G

13

Algorithm 7.2.2 Verification for each j ∈ [N] for a power of parameter (Type-2: αβ)

1: function Verify2(([αβ]j−1, [αβ]j, [αj]1, [βj]1, [αjβj]2, yα, yβ))
2: rα = R([αj]1 , vrd,j−1)
3: if ((CheckPOK([αj]1 , vrd,j−1, yα) AND (CheckPOK([βj]1 , vrd,j−1, yβ)) then

4: if e([αj]1, yβ) == e(rαG1, [αjβj]2) then
5: return Consistent

(
[αβ]j−1 − [αβ]j; (G2, [αjβj]2)

6: else
7: return False
8: end if
9: end if

10: end function

Algorithm 7.3.1 The Pj computes parameters for (Type-3: [xi]1 := xiG1, where i ∈ [1, ..., n])

1: function Compute2([x]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: xj ∈R F∗

p ▷ pick random numbers
3: yx = POK(xj , vrd,j−1)
4: [xi]j = xij · [xi]j−1, for each i ∈ [1, ..., n]

5: return ([xi]j, [xij]1, yx), for each i ∈ [1, ..., n]
6: end function

Algorithm 7.3.2 Verification for each j ∈ [N] for a power of parameter
(Type-3: [xi]1 := xiG1, where i ∈ [1, ..., n])

1: function Verify2(([xi]j, [xi]j−1, yx))
2: rx = R([xj]1 , vrd,j−1)
3: if (CheckPOK([xj]1 , vrd,j−1, yx) then

4: if Consistent
(
[xi]j−1 − [xi]j; (rx, yx)) then ▷ for each i ∈ [1, ..., n]

5: return Consistent
(
[xi−1]j − [xi]j; [x]j)

6: else
7: return False
8: end if
9: end if

10: end function

7.4 Type-4: αxi

Let [xi]0 = G1 or [xi]0 = G
Let [αxi]0 = G1 or [αxi]0 = G

Algorithm 7.4.1 The Pj computes Type-4 parameter s.t. ([αxi]1 := αxiG1, where i ∈ [1, ..., n])

1: function Compute4([αxi]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: αj , xj ∈R F∗

p ▷ pick random numbers
3: yα = POK([αj]1, vrd,j−1)
4: [x]j = xj · [x]j−1,
5: [αxi]j = αjx

i
j · [αxi]j−1, i ∈ [1, ..., n]

6: return ([αxi]j, [x]j, [α]j, yα), i ∈ [1, ..., n]
7: end function

7.5 Type-5: xiyk

Let [xi]0 = G1 or [xi]0 = G
Let [xiyk]0 = G1 or [xiyk]0 = G

14

Algorithm 7.4.2 Verification for each j ∈ [N] for a power of parameter Type-4 s.t. ([αxi]1 := αxiG1,
where i ∈ [1, ..., n]))

1: function Verify4([αxi]j, [α]j, [x]j, [xi−1]j, vrd,j−1, yα)
2: rα = R([αj]1 , vrd,j−1)
3: if CheckPOK([αj]1 , vrd,j−1, yα) then

4: if Consistent
(
[xi−1]j − [xi]j; [x]j) then ▷ for each i ∈ [1, ..., n]

5: return Consistent
(
[xi]j − [αxi]j; [α]j)

6: end if
7: end if
8: end function

Algorithm 7.5.1 The Pj computes Type-5 parameter s.t. (xiyk, where i ∈ [1, ..., n], k ∈ [1, ...,m])

1: function Compute5([ykxi]j−1, [xi]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
2: yj , xj ∈R F∗

p ▷ pick random numbers

3: ykj = POK([ykj]1, vrd,j−1), k ∈ [1, ...,m]

4: [x]j = xj · [x]j−1

5: [ykxi]j = ykj x
i
j · [ykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

6: return ([ykxi]j, [yk]j, [x]j, ykj), i ∈ [1, ..., n], k ∈ [1, ...,m]
7: end function

Algorithm 7.5.2 Verification for each j ∈ [N] for a power of parameter Type-5 s.t.
(xiyk, where i ∈ [1, ..., n], k ∈ [1, ...,m]))

1: function Verify5([ykxi]j, [yk]j, [x]j, [xi]j, vrd,j−1, ykj)
2: rkj = R([ykj]1 , vrd,j−1), k ∈ [1, ...,m]

3: if CheckPOK([ykj]1 , vrd,j−1, ykj) then ▷ for each k ∈ [1, ...,m]

4: if Consistent
(
[xi−1]j − [xi]j; [x]j) then ▷ for each i ∈ [1, ..., n]

5: return Consistent
(
[xi]j − [ykxi]j; [yk]j)

6: end if
7: end if
8: end function

7.6 Type-6: αf(y)oi(x)

Let [α]0 = G1 or [α]0 = G
Let [Hi]

0 := H ′
i, where H

′
i := [f(y)oi(x)]1, Hi = αf(y)oi(x).

Algorithm 7.6.1 The Pj computes Type-6 parameter s.t. (αf(y)oi(x), where i ∈ [1, ..., n])

1: function Compute6([Hi]
j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}

2: αj ∈R F∗
p ▷ pick random numbers

3: yα = POK([αj]1, vrd,j−1)
4: [α]j = αj · [α]j−1,
5: [Hi]

j = αj · [Hi]
j−1, i ∈ [1, ..., n]

6: return ([Hi]
j, [α]j, [αj]1, yα), i ∈ [1, ..., n]

7: end function

Algorithm 7.6.2 Verification for each j ∈ [N] for a power of parameter Type-6 s.t.
(αf(y)oi(x), where i ∈ [1, ..., n]))

1: function Verify6([Hi]
j−1, [Hi]

j, [α]j, [αj]1, vrd,j−1, yα) ▷ vrd,j−1 := transcript1,j−1, where
rd ∈ {1, 2}

2: if (CheckPOK([αj]1 , vrd,j−1, yα) then

3: return Consistent
(
[Hi]

j−1 − [Hi]
j; [α]j

)
, i ∈ [1, ..., n]

4: else
5: return False
6: end if
7: end function

15

7.7 Type-7: αxiyk

Let [α]0 = G1 or [α]0 = G, [x]0 = G1 or [x]0 = G, [xi]0 = G1 or [xi]0 = G
Let [ykxi]0 = G1 or [ykxi]0 = G
Let [αykxi]0 = G1 or [αykxi]0 = G

Algorithm 7.7.1 The Pj computes Type-7 parameter s.t. (αxiyk, where i ∈ [1, ..., n], k ∈ [1, ...,m])
Let out := [αykxi]j, [ykxi]j, [yk]j, [xi−1]j, [xi]j, [x]j, [α]j, yαj , ykj , vrd,j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Compute7([αykxi]j−1, [ykxi]j−1, [xi]j−1, [x]j−1, vrd,j−1)
2: αj , yj , xj ∈R F∗

p ▷ pick random numbers
3: yαj = POK([αj]1, vrd,j−1)
4: ykj = POK([ykj]1, vrd,j−1), k ∈ [1, ...,m]

5: [α]j = αj · [α]j−1

6: [x]j = xj · [x]j−1

7: [xi]j = xij · [xi]j−1, i ∈ [1, ..., n]

8: [ykxi]j = ykj x
i
j · [ykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

9: [αykxi]j = αjy
k
j x

i
j · [αykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

10: return (out)
11: end function

Algorithm 7.7.2 Verification for each j ∈ [N] for a power of parameter Type-7 s.t.
(αxiyk, where i ∈ [1, ..., n], k ∈ [1, ...,m]))
Let in := [αykxi]j, [ykxi]j, [yk]j, [xi−1]j, [xi]j, [x]j, [α]j, yαj , ykj , vrd,j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

1: function Verify7(in)
2: if not CheckPOK([αj]1 , vrd,j−1, yαj) then
3: return False
4: end if
5: if not CheckPOK([ykj]1 , vrd,j−1, ykj) then ▷ for each k ∈ [1, ...,m]
6: return False
7: end if
8: if Consistent

(
[xi−1]j − [xi]j; [x]j) then ▷ for each i ∈ [1, ..., n]

9: if Consistent
(
[xi]j − [ykxi]j; [yk]j) then ▷ for each i ∈ [1, ..., n], k ∈ [1, ...,m]

10: return Consistent
(
[ykxi]j − [αykxi]j; [α]j) ▷ for each i ∈ [1, ..., n], k ∈ [1, ...,m]

11: end if
12: else
13: return False
14: end if
15: end function

16

7.8 Type-8: αxiykf(x)

Let [α]0 = G1 or [α]0 = G
Let [ykxi]0 = G1 or [ykxi]0 = G
Let [αykxi]0 = [f(x)]1.

Algorithm 7.8.1 The Pj computes Type-8 parameter s.t. (αxiykf(x), where i ∈ [1, ..., n], k ∈ [1, ...,m])

1: function Compute8([αykxi]j−1, [ykxi]j−1, [x]j−1, vrd,j−1) ▷ vrd,j−1 := transcript1,j−1, where
rd ∈ {1, 2}

2: αj , yj , xj ∈R F∗
p ▷ pick random numbers

3: yαj = POK([αj]1, vrd,j−1)
4: ykj = POK([ykj]1, vrd,j−1), k ∈ [1, ...,m]

5: [α]j = αj · [α]j−1

6: [x]j = xj · [x]j−1

7: [ykxi]j = ykj x
i
j · [ykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

8: [αykxi]j = αjy
k
j x

i
j · [αykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

9: return ([αykxi]j, [ykxi]j[yk]j, [xi−1]j, [xi]j, [x]j, [α]j, yαj , ykj), i ∈ [1, ..., n], k ∈ [1, ...,m]
10: end function

Algorithm 7.8.2 Verification for each j ∈ [N] for a power of parameter Type-8 s.t.
(αxiykf(x), where i ∈ [1, ..., n], k ∈ [1, ...,m]))

1: function Verify8([αykxi]j, [ykxi]j[yk]j, [xi−1]j, [xi]j, [x]j, [α]j, yαj , ykj , vrd,j−1)
2: rαj = R([yαj]1 , vrd,j−1)

3: rkj = R([ykj]1 , vrd,j−1), k ∈ [1, ...,m]

4: if CheckPOK([αj]1 , vrd,j−1, yαj) AND CheckPOK([ykj]1 , vrd,j−1, ykj) then

5: if Consistent
(
[xi−1]j − [xi]j; [x]j) then ▷ for each i ∈ [1, ..., n], k ∈ [1, ...,m]

6: if Consistent
(
[xi]j − [ykxi]j; [yk]j) then

7: return Consistent
(
[ykxi]j − [αykxi]j; [α]j)

8: end if
9: end if

10: end if
11: end function

7.9 Type-9: αzhxiyk

Let [α]0 = G1 or [α]0 = G, [x]0 = G1 or [x]0 = G, [xi]0 = G1 or [xi]0 = G
Let [ykxi]0 = G1 or [ykxi]0 = G
Let [ykxi]0 = G1 or [ykxi]0 = G
Let [zhxiyk]0 = G1 or [zhxiyk]0 = G
Let [αzhxiyk]0 = G1 or [αzhxiyk]0 = G

17

Algorithm 7.9.1 The Pj computes Type-9 parameter s.t. (αzhxiyk, where i ∈ [1, ..., n], k ∈ [1, ...,m])
Let out := ([αzhykxi]j, [zhykxi]j, [ykxi]j, [yk]j, [zh]j, [xi]j, [x]j, [α]j, [αj]1, [z

h
j]1, [y

k
j]1, yαj , ykj , vrd,j−1), i ∈

[1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m]
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Compute9([αykxi]j−1, [ykxi]j−1, [xi]j−1, [x]j−1, vrd,j−1)
2: αj , zj , yj , xj ∈R F∗

p ▷ pick random numbers
3: yαj = POK([αj]1, vrd,j−1)
4: yκj = POK([zhj]1, vrd,j−1), h ∈ [1, ..., s]

5: ykj = POK([ykj]1, vrd,j−1), k ∈ [1, ...,m]

6: [α]j = αj · [α]j−1

7: [x]j = xj · [x]j−1

8: [xi]j = xij · [xi]j−1, i ∈ [1, ..., n]

9: [ykxi]j = ykj x
i
j · [ykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m]

10: [zhykxi]j = zhj y
k
j x

i
j · [zhykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m], h ∈ [1, ..., s]

11: [αykxi]j = αjy
k
j x

i
j · [αykxi]j−1, i ∈ [1, ..., n], k ∈ [1, ...,m], h ∈ [1, ..., s]

12: return (out)
13: end function

Algorithm 7.9.2 Verification for each j ∈ [N] for a power of parameter Type-9 s.t.
(αzhxiyk, where h ∈ [1, ..., s], i ∈ [1, ..., n], k ∈ [1, ...,m]))
Let in := ([αzhykxi]j, [zhykxi]j, [ykxi]j, [yk]j, [zh]j, [xi]j, [x]j, [α]j, [αj]1, [z

h
j]1, [y

k
j]1, yαj , ykj , vrd,j−1), h ∈

[1, ..., s], i ∈ [1, ..., n], k ∈ [1, ...,m]

1: function Verify9(in)
2: if not CheckPOK([αj]1 , vrd,j−1, yαj) then
3: return False
4: end if
5: if not CheckPOK([zhj]1 , vrd,j−1, yzj) then ▷ for each h ∈ [1, ..., s]
6: return False
7: end if
8: if not CheckPOK([ykj]1 , vrd,j−1, ykj) then ▷ for each k ∈ [1, ...,m]
9: return False

10: end if
11: if Consistent

(
[xi−1]j − [xi]j; [x]j) then ▷ for each i ∈ [1, ..., n]

12: if Consistent
(
[xi]j − [ykxi]j; [yk]j) then ▷ for each i ∈ [1, ..., n], k ∈ [1, ...,m]

13: if Consistent
(
[ykxi]j − [zhykxi]j; [zh]j) then ▷ h ∈ [1, ..., s], i ∈ [1, ..., n], k ∈ [1, ...,m]

14: return Consistent
(
[zhykxi]j − [αzhykxi]j; [α]j)

15: end if
16: end if
17: else
18: return False
19: end if
20: end function

7.10 Type-10: αfi(x)gk(y)ph(z)

Let [α]0 = G1 or [α]0 = G
Let H ′

i := [fi(x)gk(y)ph(z)]1, Hi := αfi(x)gk(y)ph(z), i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m].
Let [Hi]

0 := H ′
i.

7.11 Type-11: αfi(x, z)gk(y)ph(z)

Let [α]0 = G1 or [α]0 = G
Let H ′

i := [fi(x, z))gk(y)ph(z)]1, Hi := αfi(x, z)gk(y)ph(z), i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m].
Let [Hi]

0 := H ′
i.

The Table 1 provides a comprehensive overview of the parameters that need to be generated as part of
the setup in a MPC ceremony for the Tokamak scheme. Each parameter listed in the table is associated
with a specific type and formula represantation, and for each type, there are corresponding computation

18

Algorithm 7.10.1 The Pj computes Type-10 parameter s.t. (αfi(x)gk(y)ph(z),
where i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m])
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Compute10([Hi]

j−1, vrd,j−1)
2: αj ∈R F∗

p ▷ pick random numbers
3: yα = POK([αj]1, vrd,j−1)
4: [α]j = αj · [α]j−1,
5: [Hi]

j = αj · [Hi]
j−1, i ∈ [1, ..., n]

6: return ([Hi]
j, [α]j, [αj]1, yα), i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m]

7: end function

Algorithm 7.10.2 Verification for each j ∈ [N] for a power of parameter Type-10 s.t. (αfi(x)gk(y)ph(z)
, where i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m],
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Verify10([Hi]

j−1, [Hi]
j, [α]j, [αj]1, vrd,j−1, yα)

2: if (CheckPOK([αj]1 , vrd,j−1, yα) then

3: return Consistent
(
[Hi]

j−1 − [Hi]
j; [α]j

)
, i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m]

4: else
5: return False
6: end if
7: end function

Algorithm 7.11.1 The Pj computes Type-11 parameter s.t. (αfi(x, z)gk(y)ph(z),
where i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m])
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Compute11([Hi]

j−1, vrd,j−1)
2: αj ∈R F∗

p ▷ pick random numbers
3: yα = POK([αj]1, vrd,j−1)
4: [α]j = αj · [α]j−1,
5: [Hi]

j = αj · [Hi]
j−1, i ∈ [1, ..., n]

6: return ([Hi]
j, [α]j, [αj]1, yα), i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m]

7: end function

Algorithm 7.11.2 Verification for each j ∈ [N] for a power of parameter Type-11 s.t.
(αfi(x, z)gk(y)ph(z), where i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m],
vrd,j−1 := transcript1,j−1, where rd ∈ {1, 2}
1: function Verify11([Hi]

j−1, [Hi]
j, [α]j, [αj]1, vrd,j−1, yα)

2: if (CheckPOK([αj]1 , vrd,j−1, yα) then

3: return Consistent
(
[Hi]

j−1 − [Hi]
j; [α]j

)
, i ∈ [1, ..., n], h ∈ [1, ..., s], k ∈ [1, ...,m]

4: else
5: return False
6: end if
7: end function

and verification algorithms. The table categorizes these parameters into different types, where each type
defines the scope and role of the parameters in the setup. The algorithms listed alongside each type
are used to either compute or verify the parameters, ensuring that the setup is performed accurately
and securely. This clear mapping of parameters to types and algorithms allows for an organized and
systematic approach to the multi-party generation process.

The parameters are represented using a variety of forms, such as α, αβ, xi, and combinations like xiyk

or αf(y)oi(x), which are key to constructing the proof system. Each participant in the setup ceremony
follows the computation and verification steps for their assigned type, ensuring that all parameters are
computed and verified across multiple parties. This design ensures a secure, decentralized generation of
the Tokamak scheme parameters, avoiding any single point of trust. The table serves as a reference for
participants to know which algorithms they must execute and which parameters they are responsible for
during the setup, enabling a transparent and auditable process. The sigmas column shows the group of
the parameters sets of σAI , σC , σzk, and σV (see 6.1). Param column shows the each parameter of the

19

Tokamak scheme. The following two columns (Types and Formula) show the type and and formula of
each parameter, respectively.

Table 1: The parameter list for the Tokamak setup scheme in relation to the types of algorithms.
Sigmas Param No Param Types Formula
σA,I param 1 α Type-1 α

σA,I param 2
(
xhyi

)n−1,smax−1

h=0,i=0
Type-5 xiyk

σA,I param 3
(
γ−1L0(y)oj(x)

)lin−1

j=0
Type-10 αfi(x)gk(y)ph(z)

σA,I param 4
(
γ−1L−1(y)oj(x)

)l−1

j=lin
Type-10 αfi(x)gk(y)ph(z)

σA,I param 5
(
η−1
1 Li(y)oj(x)

)smax−1,lD−1

i=0,j=l
Type-10 αfi(x)gk(y)ph(z)

σA,I param 6
(
δ−1Li(y)oj(x)

)smax−1,mD−1

i=0,j=lD
Type-10 αfi(x)gk(y)ph(z)

σA,I param 7
(
η−1
0 Li(y)oj(x)

(
K2
j−1(z)− 1

))smax−1,lD−1

i=0,j=l
Type-10 αfi(x)gk(y)ph(z)

σA,I param 8
(
δ−1xhyitX (x)

)n−2,smax−1

h=0,i=0
Type-8 αxiykf(x)

σA,I param 9
(
δ−1xhyitY(y)

)2n−2,smax−2

h=0,i=0
Type-8 αxiykf(x)

σA,I param 10
(
η−1
0 Li(y)Mj(x, z)tZ(z)

)smax−1,lD−1

i=0,j=l
Type-11 αfi(x, z)gk(y)ph(z)

σC param 11
(
µ−1Li(y)Kj(z)

)smax−1,lD−l−1

i=0,j=0
Type-10 αfi(x)gk(y)ph(z)

σC param 12
(
v−1yizjtY(y)

)smax−2,2lD−2l−2

i=0,j=0
Type-8 αxiykf(x)

σC param 13
(
v−1yizjtZ(z)

)2smax−2,j=0

i=0,j=2(lD−l)−3
Type-8 αxiykf(x)

σC param 14
(
ψ−1
0 κhyizj

)1,2smax−3,3(lD−1)−1

h=0,i=0,j=0
Type-9 αzhxiyk

σC param 15
(
ψ−1
1 zj

)3(lD−1)−4

j=0
Type-4 αxi

σC param 16
(
ψ−1
2 κ2yizj

)smax−2,lD−l−1

i=0,j=0
Type-9 αzhxiyk

σC param 17
(
ψ−1
3 κhzj

)2,lD−l−2

h=1,j=0
Type-7 αxiyk

σzk param 18 β Type-1 α
σzk param 19 δ Type-1 α
σzk param 20 η1 Type-1 α

σzk param 21
(
µ−1yitY(y)

)l
i=0

Type-8 αxiykf(x)

σzk param 22 η−1
0 tY(y)

∑lD−1
j=1 Mj(x, z)tZ(z) Type-11 αfi(x, z)gk(y)ph(z)

σzk param 23 η−1
1 tY(y)

∑lD−1
j=l oj(x) Type-10 αfi(x)gk(y)ph(z)

σzk param 24 η−1
0 tY(y)

∑lD−1
j=0 oj(x)

Ä
K2
j−l(z)− 1

ä
Type-10 αfi(x)gk(y)ph(z)

σzk param 25
(
v−1yizjtY(y)

)smax+1,2lD−2l−2

i=smax−1,j=0
Type-8 αxiykf(x)

σzk param 26
(
ψ−1
0 κhyizj

)1,2smax,3(lD−l−1)

h=0,i=2smax−2,j=0
Type-9 αzhxiyk

σzk param 27
(
ψ−1
2 κ2yizj

)smax,lD−l−1

i=smax−1,j=0
Type-9 αzhxiyk

σV param 28 β Type-1 α
σV param 29 γ Type-1 α
σV param 30 δ Type-1 α
σV param 31 η1 Type-1 α
σV param 32 µη0 Type-2 αβ
σV param 33 µη1 Type-2 αβ

σV param 34
(
xhyi

)n−1,smax−1

h=0,i=0
Type-5 xiyk

σV param 35 µ2
∑lD−1
j=l oj(x)Kj−l(z) Type-10 αfi(x)gk(y)ph(z)

σV param 36 µ3v Type-2 αβ

σV param 37
(
µ4κh

)2
h=0

Type-4 αxi

σV param 38
(
µ3ψhy

izj
)3,1,1
h=0,i=0,j=0

Type-9 αzhxiyk

Furthermore, the relationship between the types, parameters, and the corresponding computation
and verification algorithms is summarized in Table 2. In addition to Table 1, Table 2 specifies which
parameters are generated and verified according to each type. For example, parameters numbered
[1, 18, 19, 20, 28, 29, 30, 31] belong to Type-1, and their computation and verification are handled using
the Compute-1 and Verify-1 algorithms, respectively.

20

Table 2: Summary of Types, Parameters, Computation, and Verification Algorithms
Type Parameter No Computation Algorithm Verification Algorithm
Type-1 [1, 18, 19, 20, 28, 29, 30, 31] Compute1 Verify1
Type-2 [32, 33, 36] Compute2 Verify2
Type-3 [−−−] Compute3 Verify3
Type-4 [15, 37] Compute4 Verify4
Type-5 [2, 34] Compute5 Verify5
Type-6 [−−−] Compute6 Verify6
Type-7 [17] Compute7 Verify7
Type-8 [8, 9, 12, 13, 21, 25] Compute8 Verify8
Type-9 [14, 16, 26, 27, 38] Compute9 Verify9
Type-10 [3, 4, 5, 6, 7, 11, 23, 24, 35] Compute10 Verify10
Type-11 [10, 22] Compute11 Verify11

7.12 First Version: MPC Setup Ceremony flow with Random Beacon

In this section, we introduce the Multi-Party Computation (MPC) protocol tailored for the Tokamak
zkSNARK scheme [1] using Random Beacon based on the paper [2]. We present the MPC protocol
for the Tokamak zkSNARK in two phases: the initial round, known as ”Powers of τ”, which generates
universal setup parameters applicable to all circuits within the scheme, and the subsequent phase that
generates circuit-specific parameters. This protocol ensures the secure and decentralized generation of
the common reference string (CRS) elements required for the Tokamak zkSNARK, thereby enhancing
the overall security and integrity of the setup process.

7.12.1 First Round: Powers of τ

Initialization:

1. [α]
0
:= G1, [γ]

0
:= G2 (Type-1)

2. [β]
0
:= G, [δ]

0
:= G, [η1]

0
:= G (Type-1)

3. [µη0]
0
:= G2, [µη1]

0
:= G2 (Type-2)

4.
[
µ3v

]0
:= G2 (Type-2)

5.
[
µ4κh

]0
:= G2, h ∈ [0...2] (Type-4)

6. [xhyi]0 := G, h ∈ [0...n− 1], i ∈ [0...smax − 1] (Type-5)

7.
[
ψ−1
1 zk

]0
:= G1, k ∈ [0, 3(lD − 1)− 4] (Type-4)

8.
[
ψ−1
3 κhzi

]0
:= G1, h ∈ [1, 2], i ∈ [0, lD − l − 2] (Type-7)

9.
[
ψ−1
0 κhzkyi

]0
:= G1, h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3] (Type-9)

10.
[
ψ−1
0 κhzkyi

]0
:= G1, h ∈ [0, 1], k ∈ [0, 3(lD − l − 1)], i ∈ [2smax − 2, 2smax] (Type-9)

11.
[
ψ−1
2 κ2zhyi

]0
:= G1, h ∈ [0, lD − l − 1], i ∈ [0, smax − 2] (Type-9)

12.
[
ψ−1
2 κ2zhyi

]0
:= G1, h ∈ [0, lD − l − 1], i ∈ [smax − 1, smax] (Type-9)

13.
[
µ3ψhz

kyi
]0

:= G2, h ∈ [0, 3], k ∈ [0, 1], i ∈ [0, 1] (Type-9)

Computations:

The participant Pj , performs the below computations, where j ∈ [N]:

1. Compute1([α]j−1, v1,j−1) →
(
[α]j, [αj]1, yαj

)
2. Compute1([γ]j−1, v1,j−1) →

(
[γ]j, [γj]1, yγj

)
3. Compute1([β]j−1, v1,j−1) →

(
[β]j, [βj]1, yβj

)
21

4. Compute1([δ]j−1, v1,j−1) →
(
[δ]j, [δj]1, yδj

)
5. Compute1([η1]

j−1, v1,j−1) →
(
[η1]

j, [η1j]1, yη1j
)

6. Compute2([µη0]
j−1, v1,j−1) →

(
[µη0]

j, [µj]1, [η0j]1, [µjη0j]2, yµj , yη0j
)

7. Compute2([µη1]
j−1, v1,j−1) →

(
[µη0]

j, [µj]1, [η1j]1, [µjη1j]2, yµj , yη1j
)

8. Compute2([µ3v]j−1, v1,j−1) →
(
[µ3v]j, [µ3

j]1, [v1j]1, [µ
3
jvj]2, yµ3j , yv1j

)
9. Compute4([µ4κh]j−1, v1,j−1) →

(
[µ4κh]j, [κ]j, [µ4]j, yµ4j

)
, h ∈ [0...2]

10. Compute5([yixh]j−1, [xh]j−1, v1,j−1) →
(
[yixh]j, [yi]j, [x]j, yhj

)
, h ∈ [0...n− 1], i ∈ [0...smax − 1]

11. Compute4([ψ−1
1 zk]j−1, v1,j−1) →

Ä
[ψ−1

1 zk]j, [z]j, [ψ−1
1]j, yψ−1

1 j

ä
, k ∈ [0, 3(lD − 1)− 4]

12. Compute7([ψ−1
3 ykxi]j−1, [ykxi]j−1, [xi]j−1, [x]j−1, vrd,j−1) →Ä

[ψ−1
3 κhzi]j, [κhzi]j, [κh]j, [zi−1]j, [zi]j, [z]j, [ψ−1

3]j, yψ−1
3 j , yhj , v1,j−1

ä
, h ∈ [1, 2], i ∈ [0, lD − l − 2]

13. Compute9([ψ−1
0 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1

0]j, [ψ0
−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [2smax − 2, 2smax]

14. Compute9([ψ−1
0 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1

0]j, [ψ0
−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3]

15. Compute9([ψ−1
2 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1

2]j, [ψ2
−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [0, smax − 2]

16. Compute9([ψ−1
2 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1

2]j, [ψ2
−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [smax − 1, smax]

17. Compute9([ψhz
kyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψhµ
3zkyi]j, [µ3zkyi]j, [zkyi]j, [zk]j, [µ3]j, [yi]j, [y]j, [ψh]

j, [ψhj]1, [µ
3
j]1, [z

k
j]1, yψ−1

h j , ykj , v1,j−1

ä
,

k ∈ [0, 1], i ∈ [0, 1]

Let J − 1 be the time-slot where PN sends their message.
Let (α′, γ′, β′, δ′, η1

′) := RandomBeacon(J, 5)
Let ((xhyi)′) := RandomBeacon(J, 1)
Let (ψ−1

0 κhzk)′ := RandomBeacon(J, 1), for each h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1]
Let (ψ−1

1)′ := RandomBeacon(J, 1)
Let (ψ−1

2 κ2zh)′ := RandomBeacon(J, 1), for each h ∈ [0, lD − l − 1]
Let (ψ−1

3 κh)′ := RandomBeacon(J, 1), for each h ∈ [1, 2]
Let (ψ−1

0 κhzk)′ := RandomBeacon(J, 1), for each h ∈ [0, 1], k ∈ [0, 3(lD − l − 1)]
Let (ψ−1

2 κ2zh)′ := RandomBeacon(J, 1), for each h ∈ [0, lD − l − 1]
Let (µ3ψhz

k)′ := RandomBeacon(J, 1), for each h ∈ [0, 3], k ∈ [0, 1]

1.
[
α
]
:= α′ ·

[
α
]N

,
[
γ
]
:= γ′ ·

[
γ
]N

2.
[
β
]
:= β′ ·

[
β
]N

,
[
δ
]
:= δ′ ·

[
δ
]N

,
[
η1
]
:= η1

′ ·
[
η1
]N

3.
[
µη0

]
:= µη0

′ ·
[
µη0

]N
4.

[
µη1

]
:= µη1

′ ·
[
µη1

]N
5.

[
µ3v

]
:= (µ3v)′ ·

[
µ3v

]N
22

6.
[
µ4κh

]
:= (µ4κh)′ ·

[
µ4κh

]N
, h ∈ [0...2]

7.
[
xhyi

]
:= (xhyi)′ ·

[
xhyi

]N
, h ∈ [0...n− 1], i ∈ [0...smax − 1]

8.
[
ψ−1
1 zk

]
1
:=

[
ψ−1
1 zk

]N · (ψ−1
1)′, k ∈ [0, 3(lD − 1)− 4]

9.
[
ψ−1
3 κhzi

]
1
:=

[
psi−1

3 κhzi
]N · (ψ−1

3 κh)′, h ∈ [1, 2], i ∈ [0, lD − l − 2]

10.
[
ψ−1
0 κhzkyi

]
1
:=

[
ψ−1
0 κhzkyi

]N · (ψ−1
0 κhzk)′, h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1]

11.
[
ψ−1
0 κhzkyi

]
1
:=

[
ψ−1
0 κhzkyi

]N · (ψ−1
0 κhzk)′, h ∈ [0, 1], k ∈ [0, 3(lD − l − 1)]

12.
[
ψ−1
2 κ2zhyi

]
1
:=

[
ψ−1
2 κ2zhyi

]N · (ψ−1
2 κ2zh)′, h ∈ [0, lD − l − 1], i ∈ [0, smax − 2]

13.
[
ψ−1
2 κ2zhyi

]
1
:=

[
ψ−1
2 κ2zhyi

]N · (ψ−1
2 κ2zh)′, h ∈ [0, lD − l − 1], i ∈ [smax − 2, smax]

14.
[
µ3ψhz

kyi
]
1
:=

[
µ3ψhz

kyi
]N · (µ3ψhz

k)′, h ∈ [0, 3], k ∈ [0, 1], i ∈ [0, 1]

Verifications:

The protocol verifier runs the following algorithms for each j ∈ [N],

1. Verify1
(
[α]j−1, [α]j, [αj]1, v1,j−1, yα,j

)
2. Verify1

(
[γ]j−1, [γ]j, [γj]1, v1,j−1, yγ,j

)
3. Verify1

(
[β]j−1, [β]j, [βj]1, v1,j−1, yβ,j

)
4. Verify1

(
[δ]j−1, [δ]j, [δj]1, v1,j−1, yδ,j

)
5. Verify1

(
[η1]

j−1, [η1]
j, [η1j]1, v1,j−1, yη1,j

)
6. Verify2

(
[µη0]

j−1, [µη0]
j, [µj]1, [η0j]1, [µjη0j]2, yµj , yη0j

)
7. Verify2

(
[µ3v]j−1, [µ3v]j, [µ3

j]1, [vj]1, [µ
3
jvj]2, yµ3j , yvj

)
8. Verify4

(
[µ4κh]j, [µ4]j, [κ]j, [κh−1]j, v1,j−1, yµ4j

)
, h ∈ [0...2]

9. Verify5
(
[yixh]j, [yi]j, [x]j, [xh]j, v1,j−1, yij

)
, h ∈ [0...n− 1], i ∈ [0...smax − 1]

10. Verify4
Ä
[ψ−1

1 zk]j, [ψ−1
1]j, [z]j, [zh−1]j, v1,j−1, yψ−1

1 j

ä
, k ∈ [0, 3(lD − 1)− 4]

11. Verify7
Ä
[ψ−1

3 κhzi]j, [κhzi]j, [κh]j, [zi−1]j, [zi]j, [z]j, [ψ−1
3]j, yψ−1

3 j , yhj , v1,j−1

ä
,

h ∈ [1, 2], i ∈ [0, lD − l − 2]

12. Verify9
Ä
[ψ−1

0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1
0]j, [ψ0

−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3]

13. Verify9
Ä
[ψ−1

0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1
0]j, [ψ0

−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [2smax − 2, 2smax]

14. Verify9
Ä
[ψ−1

2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1
0]j, [ψ2

−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [0, smax − 2]

15. Verify9
Ä
[ψ−1

2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1
0]j, [ψ2

−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [smax − 1, smax]

23

7.12.2 Second Round

Initialization:

1. [δ−1]0 := G1, [v
−1]0 := G1, [µ

−1]0 := G1

2. [ykxh]0 := G1, h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. [δ−1yixh]0 := [tX (x)]1, h ∈ [0, n− 2], i ∈ [0, smax − 2] (Type-8)

4. [δ−1yixh]0 := [tY(y)]1, h ∈ [0, 2n− 2], i ∈ [0, smax − 2] (Type-8)

5. [v−1yizh]0 := [tY(y)]1, h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2] (Type-8)

6. [v−1yizh]0 := [tZ(z)]1, h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2] (Type-8)

7. [v−1yizh]0 := [tZ(z)]1, h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1] (Type-8)

8. [µ−1yizh]0 := [tY(y)]1, h = 0, i ∈ [0, l] (Type-8)

9. [γ−1]0 = G1,

10. [η−1
0]0 = G1, [η

−1
1]0 = G1

11. [µ2]0 = G1, [µ
−1]0 = G1

12. H1i := γ−1L0(y)oi(x)
[H1i]

0 := [L0(y)oi(x)]1, i ∈ [0, lin − 1] (Type-10)

13. H2i := γ−1L−1(y)oi(x)
[H2i]

0 := [L−1(y)oi(x)]1, i ∈ [lin, l − 1] (Type-10)

14. H3ik := η−1
1 Li(y)ok(x)

[H3ik]
0 := [Li(y)ok(x)]1, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

15. H4ik := δ−1Li(y)ok(x)
[H4ik]

0 := [Li(y)ok(x)]1, i ∈ [0, smax − 1], k ∈ [lD,mD − 1] (Type-10)

16. H5ik := η−1
0 Li(y)ok(x)

(
K2
k−1(z)− 1

)
[H5ik]

0 :=
[
Li(y)ok(x)

(
K2
k−1(z)− 1

)]
1
, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

17. H6 := η−1
0 tY(y)

∑lD−1
k=0 ok(x)

(
K2
k−l(z)− 1

)
[H6]

0 :=
î
tY(y)

∑lD−1
k=0 ok(x)

(
K2
k−l(z)− 1

)ó
1
, (Type-10)

18. H7 := η−1
1 tY(y)

∑lD−1
k=l ok(x)

[H7]
0 := [tY(y)

∑lD−1
k=l ok(x)]1, (Type-10)

19. H8 := µ2
∑lD−1
k=l ok(x)Kk−l(z)

[H8]
0 :=

î∑lD−1
k=l ok(x)Kk−l(z)

ó
2
, (Type-10)

20. H9ik := µ−1Li(y)Kk(z)
[H9ik]

0 := [Li(y)Kk(z)]1, i ∈ [0, smax − 1], k ∈ [0, lD − l − 1] (Type-10)

21. H10ik := η−1
0 Li(y)Mk(x, z)tZ(z)

[H10ik]
0 := [Li(y)Mk(x, z)tZ(z)]1, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

22. H11 := η−1
0 tY(y)

∑lD−1
k=1 Mk(x, z)tZ(z)

[H11]
0 :=

î
tY(y)

∑lD−1
k=1 Mk(x, z)tZ(z)

ó
1

(Type-10)

24

Computations:

For j ∈ [N], Pj outputs:

1. Compute8([δ−1yixh]j−1, [yixh]j−1, [x]j−1, v2,j−1) →(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij

)
, h ∈ [0, n− 2], i ∈ [0, smax − 2]

2. Compute8([δ−1yixh]j−1, [yixh]j−1, [x]j−1, v2,j−1) →(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij

)
, h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]

4. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]

5. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [0, 2lD−2l−2], i ∈ [smax−1, smax+1]

6. Compute8([µ−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[µ−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [µ−1]j, yv−1j , yij

)
, h = 0, i ∈ [0, l]

7. Compute10([H1i]
j−1, v2,j−1) → ([H1i]

j, [γ−1]j, [γ−1
j]1, yγ−1), i ∈ [0, lin − 1]

8. Compute10([H2i]
j−1, v2,j−1) → ([H2i]

j, [γ−1]j, [γ−1
j]1, yγ−1), i ∈ [lin, l − 1]

9. Compute10([H3ik]
j−1, v2,j−1) → ([H3ik]

j, [η−1
1]j, [η−1

1j]1, yη−1
1

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

10. Compute10([H4ik]
j−1, v2,j−1) → ([H4ik]

j, [δ−1]j, [δ−1
j]1, yδ−1), i ∈ [0, smax − 1], k ∈ [lD,mD − 1]

11. Compute10([H5ik]
j−1, v2,j−1) → ([H5ik]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

12. Compute10([H6]
j−1, v2,j−1) → ([H6]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

),

13. Compute10([H7]
j−1, v2,j−1) → ([H7]

j, [η−1
1]j, [η−1

1j]1, yη−1
1

),

14. Compute10([H8]
j−1, v2,j−1) → ([H8]

j, [µ2]j, [µ2
j]1, yµ2),

15. Compute10([H9ik]
j−1, v2,j−1) → ([H9ik]

j, [µ−1]j, [µ−1
j]1, yµ−1), i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]

16. Compute11([H10ik]
j−1, v2,j−1) → ([H10ik]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

17. Compute11([H11]
j−1, v2,j−1) → ([H11]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

),

Finally, J − 1 be the time-slot where PN sends their message.

Let (δ−1xhyi)′ := RandomBeacon(J, 1), for each h ∈ [0, n− 2], i ∈ [0, smax − 2]
Let (δ−1xhyi)′ := RandomBeacon(J, 1), for each h ∈ [0, 2n− 2], i ∈ [0, smax − 2]
Let (v−1zhyi)′ := RandomBeacon(J, 1), for each h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]
Let (v−1zhyi)′ := RandomBeacon(J, 1), for each h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]
Let (v−1zhyi)′ := RandomBeacon(J, 1), for each h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1]
Let (µ−1zhyi)′ := RandomBeacon(J, 1), for each h = 0, i ∈ [0, l]
Let (H1i)

′ := RandomBeacon(J, 1), for each i ∈ [0, lin − 1]
Let (H2i)

′ := RandomBeacon(J, 1), for each i ∈ [lin, l − 1]
Let (H3ik)

′ := RandomBeacon(J, 1), for each i ∈ [0, smax − 1], k ∈ [l, lD − 1]
Let (H4ik)

′ := RandomBeacon(J, 1), for each i ∈ [0, smax − 1], k ∈ [lD,mD − 1]
Let (H5ik)

′ := RandomBeacon(J, 1), for each i ∈ [0, smax − 1], k ∈ [l, lD − 1]
Let (H6)

′ := RandomBeacon(J, 1),
Let (H7)

′ := RandomBeacon(J, 1),
Let (H8)

′ := RandomBeacon(J, 1),
Let (H9ik)

′ := RandomBeacon(J, 1), for each i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]
Let (H10ik)

′ := RandomBeacon(J, 1), for each i ∈ [0, smax − 1], k ∈ [l, lD − 1]
Let (H11)

′ := RandomBeacon(J, 1),

25

1.
[
δ−1xhyi

]
1
:= (δ−1xhyi)′ ·

[
δ−1xhyi

]N
, h ∈ [0, n− 2], i ∈ [0, smax − 2]

2.
[
δ−1xhyi

]
1
:= (δ−1xhyi)′ ·

[
δ−1xhyi

]N
, h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3.
[
v−1zhyi

]
1
:= (v−1zhyi)′ ·

[
v−1zhyi

]N
, h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]

4.
[
v−1zhyi

]
1
:= (v−1zhyi)′ ·

[
v−1zhyi

]N
, h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]

5.
[
v−1zhyi

]
1
:= (v−1zhyi)′ ·

[
v−1zhyi

]N
, h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1]

6.
[
µ−1zhyi

]
1
:= (µ−1zhyi)′ ·

[
µ−1zhyi

]N
, h = 0, i ∈ [0, l]

7. [H1i]1 := (H1i)
′ · [H1i]

N
, i ∈ [0, lin − 1]

8. [H2i]1 := (H2i)
′ · [H2i]

N
, i ∈ [lin, l − 1]

9. [H3ik]1 := (H3ik)
′ · [H3ik]

N
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

10. [H4ik]1 := (H4ik)
′ · [H4ik]

N
, i ∈ [0, smax − 1], k ∈ [lD,mD − 1]

11. [H5ik]1 := (H5ik)
′ · [H6]

N
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

12. [H6]1 := (H6)
′ · [H6]

N

13. [H7]1 := (H7)
′ · [H7]

N

14. [H8]1 := (H8)
′ · [H8]

N

15. [H9ik]1 := (H9ik)
′ · [H9ik]

N
, i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]

16. [H10ik]1 := (H10ik)
′ · [H10ik]

N
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

17. [H11]1 := (H11)
′ · [H11]

N

,

Verifications:

The protocol verifier runs the following algorithms for each j ∈ [N],

1. Verify8
(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij , v2,j−1

)
,

h ∈ [0, n− 2], i ∈ [0, smax − 2]

2. Verify8
(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij , v2,j−1

)
,

h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]

4. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]

5. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1]

6. Verify8
(
[µ−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [µ−1]j, yµ−1j , yij , v2,j−1

)
, h = 0, i ∈ [0, l]

7. Verify10
Ä
[H1i]

j−1, [H1i)]
j, [γ−1]j, [γ−1

j]1, v2,j−1, yγ−1

ä
, i ∈ [0, lin − 1]

8. Verify10
Ä
[H2i]

j−1, [H2i)]
j, [γ−1]j, [γ−1

j]1, v2,j−1, yγ−1

ä
, i ∈ [lin, l − 1]

9. Verify10
Ä
[H3ik]

j−1, [H3ik)]
j, [η−1

1]j, [η−1
1j]1, v2,j−1, yη−1

1

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

10. Verify10
Ä
[H4ik]

j−1, [H4ik)]
j, [δ−1]j, [δ−1

j]1, v2,j−1, yδ−1

ä
, i ∈ [0, smax − 1], k ∈ [lD,mD − 1]

26

11. Verify10
Ä
[H5ik]

j−1, [H5ik)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

12. Verify10
Ä
[H6]

j−1, [H6)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
13. Verify10

Ä
[H7]

j−1, [H7)]
j, [η−1

1]j, [η−1
1j]1, v2,j−1, yη−1

1

ä
14. Verify10

(
[H8]

j−1, [H8)]
j, [µ2]j, [µ2

j]1, v2,j−1, yµ2

)
15. Verify10

Ä
[H9ik]

j−1, [H9ik)]
j, [µ−1]j, [µ−1

j]1, v2,j−1, yµ−1

ä
, i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]

16. Verify11
Ä
[H10ik]

j−1, [H10ik)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

17. Verify11
Ä
[H11]

j−1, [H11)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
7.13 Second Version: MPC Setup Ceremony flow without Random Beacon

7.13.1 First Round: Powers of τ

Initialization:

1. [α]
0
:= G1, [γ]

0
:= G2 (Type-1)

2. [β]
0
:= G, [δ]

0
:= G, [η1]

0
:= G (Type-1)

3. [µη0]
0
:= G2, [µη1]

0
:= G2 (Type-2)

4.
[
µ3v

]0
:= G2 (Type-2)

5.
[
µ4κh

]0
:= G2, h ∈ [0...2] (Type-4)

6. [xhyi]0 := G, h ∈ [0...n− 1], i ∈ [0...smax − 1] (Type-5)

7.
[
ψ−1
1 zk

]0
:= G1, k ∈ [0, 3(lD − 1)− 4] (Type-4)

8.
[
ψ−1
3 κhzi

]0
:= G1, h ∈ [1, 2], i ∈ [0, lD − l − 2] (Type-7)

9.
[
ψ−1
0 κhzkyi

]0
:= G1, h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3] (Type-9)

10.
[
ψ−1
0 κhzkyi

]0
:= G1, h ∈ [0, 1], k ∈ [0, 3(lD − l − 1)], i ∈ [2smax − 2, 2smax] (Type-9)

11.
[
ψ−1
2 κ2zhyi

]0
:= G1, h ∈ [0, lD − l − 1], i ∈ [0, smax − 2] (Type-9)

12.
[
ψ−1
2 κ2zhyi

]0
:= G1, h ∈ [0, lD − l − 1], i ∈ [smax − 1, smax] (Type-9)

13.
[
µ3ψhz

kyi
]0

:= G2, h ∈ [0, 3], k ∈ [0, 1], i ∈ [0, 1] (Type-9)

Computations:

The participant Pj , performs the below computations, where j ∈ [N]:

1. Compute1([α]j−1, v1,j−1) →
(
[α]j, [αj]1, yαj

)
2. Compute1([γ]j−1, v1,j−1) →

(
[γ]j, [γj]1, yγj

)
3. Compute1([β]j−1, v1,j−1) →

(
[β]j, [βj]1, yβj

)
4. Compute1([δ]j−1, v1,j−1) →

(
[δ]j, [δj]1, yδj

)
5. Compute1([η1]

j−1, v1,j−1) →
(
[η1]

j, [η1j]1, yη1j
)

6. Compute2([µη0]
j−1, v1,j−1) →

(
[µη0]

j, [µj]1, [η0j]1, [µjη0j]2, yµj , yη0j
)

7. Compute2([µη1]
j−1, v1,j−1) →

(
[µη0]

j, [µj]1, [η1j]1, [µjη1j]2, yµj , yη1j
)

8. Compute2([µ3v]j−1, v1,j−1) →
(
[µ3v]j, [µ3

j]1, [v1j]1, [µ
3
jvj]2, yµ3j , yv1j

)
9. Compute4([µ4κh]j−1, v1,j−1) →

(
[µ4κh]j, [κ]j, [µ4]j, yµ4j

)
, h ∈ [0...2]

27

10. Compute5([yixh]j−1, [xh]j−1, v1,j−1) →
(
[yixh]j, [yi]j, [x]j, yhj

)
, h ∈ [0...n− 1], i ∈ [0...smax − 1]

11. Compute4([ψ−1
1 zk]j−1, v1,j−1) →

Ä
[ψ−1

1 zk]j, [z]j, [ψ−1
1]j, yψ−1

1 j

ä
, k ∈ [0, 3(lD − 1)− 4]

12. Compute7([ψ−1
3 ykxi]j−1, [ykxi]j−1, [xi]j−1, [x]j−1, vrd,j−1) →Ä

[ψ−1
3 κhzi]j, [κhzi]j, [κh]j, [zi−1]j, [zi]j, [z]j, [ψ−1

3]j, yψ−1
3 j , yhj , v1,j−1

ä
, h ∈ [1, 2], i ∈ [0, lD − l − 2]

13. Compute9([ψ−1
0 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1

0]j, [ψ0
−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [2smax − 2, 2smax]

14. Compute9([ψ−1
0 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1

0]j, [ψ0
−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3]

15. Compute9([ψ−1
2 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1

2]j, [ψ2
−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [0, smax − 2]

16. Compute9([ψ−1
2 zkyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψ−1
2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1

2]j, [ψ2
−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [smax − 1, smax]

17. Compute9([ψhz
kyi]j−1, [zkyi]j−1, [yi]j−1, [y]j−1, v1,j−1) →Ä

[ψhµ
3zkyi]j, [µ3zkyi]j, [zkyi]j, [zk]j, [µ3]j, [yi]j, [y]j, [ψh]

j, [ψhj]1, [µ
3
j]1, [z

k
j]1, yψ−1

h j , ykj , v1,j−1

ä
,

k ∈ [0, 1], i ∈ [0, 1]

Verifications:

The protocol verifier runs the following algorithms for each j ∈ [N],

1. Verify1
(
[α]j−1, [α]j, [αj]1, v1,j−1, yα,j

)
2. Verify1

(
[γ]j−1, [γ]j, [γj]1, v1,j−1, yγ,j

)
3. Verify1

(
[β]j−1, [β]j, [βj]1, v1,j−1, yβ,j

)
4. Verify1

(
[δ]j−1, [δ]j, [δj]1, v1,j−1, yδ,j

)
5. Verify1

(
[η1]

j−1, [η1]
j, [η1j]1, v1,j−1, yη1,j

)
6. Verify2

(
[µη0]

j−1, [µη0]
j, [µj]1, [η0j]1, [µjη0j]2, yµj , yη0j

)
7. Verify2

(
[µ3v]j−1, [µ3v]j, [µ3

j]1, [vj]1, [µ
3
jvj]2, yµ3j , yvj

)
8. Verify4

(
[µ4κh]j, [µ4]j, [κ]j, [κh−1]j, v1,j−1, yµ4j

)
, h ∈ [0...2]

9. Verify5
(
[yixh]j, [yi]j, [x]j, [xh]j, v1,j−1, yij

)
, h ∈ [0...n− 1], i ∈ [0...smax − 1]

10. Verify4
Ä
[ψ−1

1 zk]j, [ψ−1
1]j, [z]j, [zh−1]j, v1,j−1, yψ−1

1 j

ä
, k ∈ [0, 3(lD − 1)− 4]

11. Verify7
Ä
[ψ−1

3 κhzi]j, [κhzi]j, [κh]j, [zi−1]j, [zi]j, [z]j, [ψ−1
3]j, yψ−1

3 j , yhj , v1,j−1

ä
,

h ∈ [1, 2], i ∈ [0, lD − l − 2]

12. Verify9
Ä
[ψ−1

0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1
0]j, [ψ0

−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [0, 2smax − 3]

13. Verify9
Ä
[ψ−1

0 κhzkyi]j, [κhzkyi]j, [zkyi]j, [zk]j, [κh]j, [yi]j, [y]j, [ψ−1
0]j, [ψ0

−1
j]1, [κ

h
j]1, [z

k
j]1, yψ−1

0 j , ykj , v1,j−1

ä
,

h ∈ [0, 1], k ∈ [0, 3(lD − 1)− 1], i ∈ [2smax − 2, 2smax]

28

14. Verify9
Ä
[ψ−1

2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1
0]j, [ψ2

−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [0, smax − 2]

15. Verify9
Ä
[ψ−1

2 κ2zkyi]j, [κ2zkyi]j, [zkyi]j, [zk]j, [κ2]j, [yi]j, [y]j, [ψ−1
0]j, [ψ2

−1
j]1, [κ

2
j]1, [z

k
j]1, yψ−1

2 j , ykj , v1,j−1

ä
,

k ∈ [0, lD − l − 1], i ∈ [smax − 1, smax]

7.13.2 Second Round

Initialization:

1. [δ−1]0 := G1, [v
−1]0 := G1, [µ

−1]0 := G1

2. [ykxh]0 := G1, h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. [δ−1yixh]0 := [tX (x)]1, h ∈ [0, n− 2], i ∈ [0, smax − 2] (Type-8)

4. [δ−1yixh]0 := [tY(y)]1, h ∈ [0, 2n− 2], i ∈ [0, smax − 2] (Type-8)

5. [v−1yizh]0 := [tY(y)]1, h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2] (Type-8)

6. [v−1yizh]0 := [tZ(z)]1, h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2] (Type-8)

7. [v−1yizh]0 := [tZ(z)]1, h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1] (Type-8)

8. [µ−1yizh]0 := [tY(y)]1, h = 0, i ∈ [0, l] (Type-8)

9. [γ−1]0 = G1,

10. [η−1
0]0 = G1, [η

−1
1]0 = G1

11. [µ2]0 = G1, [µ
−1]0 = G1

12. H1i := γ−1L0(y)oi(x)
[H1i]

0 := [L0(y)oi(x)]1, i ∈ [0, lin − 1] (Type-10)

13. H2i := γ−1L−1(y)oi(x)
[H2i]

0 := [L−1(y)oi(x)]1, i ∈ [lin, l − 1] (Type-10)

14. H3ik := η−1
1 Li(y)ok(x)

[H3ik]
0 := [Li(y)ok(x)]1, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

15. H4ik := δ−1Li(y)ok(x)
[H4ik]

0 := [Li(y)ok(x)]1, i ∈ [0, smax − 1], k ∈ [lD,mD − 1] (Type-10)

16. H5ik := η−1
0 Li(y)ok(x)

(
K2
k−1(z)− 1

)
[H5ik]

0 :=
[
Li(y)ok(x)

(
K2
k−1(z)− 1

)]
1
, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

17. H6 := η−1
0 tY(y)

∑lD−1
k=0 ok(x)

(
K2
k−l(z)− 1

)
[H6]

0 :=
î
tY(y)

∑lD−1
k=0 ok(x)

(
K2
k−l(z)− 1

)ó
1
, (Type-10)

18. H7 := η−1
1 tY(y)

∑lD−1
k=l ok(x)

[H7]
0 := [tY(y)

∑lD−1
k=l ok(x)]1, (Type-10)

19. H8 := µ2
∑lD−1
k=l ok(x)Kk−l(z)

[H8]
0 :=

î∑lD−1
k=l ok(x)Kk−l(z)

ó
2
, (Type-10)

20. H9ik := µ−1Li(y)Kk(z)
[H9ik]

0 := [Li(y)Kk(z)]1, i ∈ [0, smax − 1], k ∈ [0, lD − l − 1] (Type-10)

21. H10ik := η−1
0 Li(y)Mk(x, z)tZ(z)

[H10ik]
0 := [Li(y)Mk(x, z)tZ(z)]1, i ∈ [0, smax − 1], k ∈ [l, lD − 1] (Type-10)

22. H11 := η−1
0 tY(y)

∑lD−1
k=1 Mk(x, z)tZ(z)

[H11]
0 :=

î
tY(y)

∑lD−1
k=1 Mk(x, z)tZ(z)

ó
1

(Type-10)

29

Computations:

For j ∈ [N], Pj outputs:

1. Compute8([δ−1yixh]j−1, [yixh]j−1, [x]j−1, v2,j−1) →(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij

)
, h ∈ [0, n− 2], i ∈ [0, smax − 2]

2. Compute8([δ−1yixh]j−1, [yixh]j−1, [x]j−1, v2,j−1) →(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij

)
, h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]

4. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]

5. Compute8([v−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij

)
, h ∈ [0, 2lD−2l−2], i ∈ [smax−1, smax+1]

6. Compute8([µ−1yizh]j−1, [yizh]j−1, [z]j−1, v2,j−1) →(
[µ−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [µ−1]j, yv−1j , yij

)
, h = 0, i ∈ [0, l]

7. Compute10([H1i]
j−1, v2,j−1) → ([H1i]

j, [γ−1]j, [γ−1
j]1, yγ−1), i ∈ [0, lin − 1]

8. Compute10([H2i]
j−1, v2,j−1) → ([H2i]

j, [γ−1]j, [γ−1
j]1, yγ−1), i ∈ [lin, l − 1]

9. Compute10([H3ik]
j−1, v2,j−1) → ([H3ik]

j, [η−1
1]j, [η−1

1j]1, yη−1
1

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

10. Compute10([H4ik]
j−1, v2,j−1) → ([H4ik]

j, [δ−1]j, [δ−1
j]1, yδ−1), i ∈ [0, smax − 1], k ∈ [lD,mD − 1]

11. Compute10([H5ik]
j−1, v2,j−1) → ([H5ik]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

12. Compute10([H6]
j−1, v2,j−1) → ([H6]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

),

13. Compute10([H7]
j−1, v2,j−1) → ([H7]

j, [η−1
1]j, [η−1

1j]1, yη−1
1

),

14. Compute10([H8]
j−1, v2,j−1) → ([H8]

j, [µ2]j, [µ2
j]1, yµ2),

15. Compute10([H9ik]
j−1, v2,j−1) → ([H9ik]

j, [µ−1]j, [µ−1
j]1, yµ−1), i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]

16. Compute11([H10ik]
j−1, v2,j−1) → ([H10ik]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

), i ∈ [0, smax − 1], k ∈ [l, lD − 1]

17. Compute11([H11]
j−1, v2,j−1) → ([H11]

j, [η−1
0]j, [η−1

0j]1, yη−1
0

),

Verifications:

The protocol verifier runs the following algorithms for each j ∈ [N],

1. Verify8
(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij , v2,j−1

)
,

h ∈ [0, n− 2], i ∈ [0, smax − 2]

2. Verify8
(
[δ−1yixh]j, [yixh]j[yi]j, [xh−1]j, [xh]j, [x]j, [δ−1]j, yδ−1j , yij , v2,j−1

)
,

h ∈ [0, 2n− 2], i ∈ [0, smax − 2]

3. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [0, 2lD − 2l − 2], i ∈ [0, smax − 2]

4. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [2(lD − l)− 3, 0], i ∈ [0, 2smax − 2]

5. Verify8
(
[v−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [v−1]j, yv−1j , yij , v2,j−1

)
,

h ∈ [0, 2lD − 2l − 2], i ∈ [smax − 1, smax + 1]

6. Verify8
(
[µ−1yizh]j, [yizh]j[yi]j, [zh−1]j, [zh]j, [z]j, [µ−1]j, yµ−1j , yij , v2,j−1

)
, h = 0, i ∈ [0, l]

30

7. Verify10
Ä
[H1i]

j−1, [H1i)]
j, [γ−1]j, [γ−1

j]1, v2,j−1, yγ−1

ä
, i ∈ [0, lin − 1]

8. Verify10
Ä
[H2i]

j−1, [H2i)]
j, [γ−1]j, [γ−1

j]1, v2,j−1, yγ−1

ä
, i ∈ [lin, l − 1]

9. Verify10
Ä
[H3ik]

j−1, [H3ik)]
j, [η−1

1]j, [η−1
1j]1, v2,j−1, yη−1

1

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

10. Verify10
Ä
[H4ik]

j−1, [H4ik)]
j, [δ−1]j, [δ−1

j]1, v2,j−1, yδ−1

ä
, i ∈ [0, smax − 1], k ∈ [lD,mD − 1]

11. Verify10
Ä
[H5ik]

j−1, [H5ik)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

12. Verify10
Ä
[H6]

j−1, [H6)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
13. Verify10

Ä
[H7]

j−1, [H7)]
j, [η−1

1]j, [η−1
1j]1, v2,j−1, yη−1

1

ä
14. Verify10

(
[H8]

j−1, [H8)]
j, [µ2]j, [µ2

j]1, v2,j−1, yµ2

)
15. Verify10

Ä
[H9ik]

j−1, [H9ik)]
j, [µ−1]j, [µ−1

j]1, v2,j−1, yµ−1

ä
, i ∈ [0, smax − 1], k ∈ [0, lD − l − 1]

16. Verify11
Ä
[H10ik]

j−1, [H10ik)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
, i ∈ [0, smax − 1], k ∈ [l, lD − 1]

17. Verify11
Ä
[H11]

j−1, [H11)]
j, [η−1

0]j, [η−1
0j]1, v2,j−1, yη−1

0

ä
8 Security Analysis of the MPC setup for Tokamak scheme

In this section, we present a sketch security analysis of the MPC setup ceremony for the Tokamak zk-
SNARK scheme. A key aspect of many SNARK protocols is the setup phase, which generates the SRS
necessary for proving statements succinctly and efficiently. The security of this setup phase is important,
as it underpins the reliability of the entire cryptographic system. A trusted setup for generating CRS
or SRS is avoided, as multiparty computation can substitute for the need for trust. The SRS generation
typically involves MPC protocols, which allow multiple participants to collaboratively create the SRS
in a manner that ensures security even if some participants are dishonest. The setup phase’s security
is primarily concerned with preventing adversaries from tampering with the SRS, which could lead to
catastrophic failures such as forging proofs or bypassing verification checks. Multi-party computation
protocols for SRS generation address these concerns by distributing trust among multiple parties, ensuring
that as long as at least one party remains honest, the setup remains secure.

In conducting the security analysis of the Tokamak SNARK setup ceremony protocol, we based our
work on the [2, 3] mentioned above. Briefly speaking, BGM17 [2] is currently commonly used in practice,
present a Groth16 setup ceremony scheme by proposing random beacon paradigm. Kohlweiss et al. [3]
prove the security of the Groth16 SNARK with a setup ceremony of BGM17 that they do not require
the use of a random beacon.

In this security analysis, we analyze the Tokamak SNARK setup ceremony with respect to algebraic
adversaries [5] in the random oracle model. Already the original AGM paper [5] proved knowledge
soundness of the Groth16 SNARK in the AGM model (assuming trusted SRS). The algebraic group
model (AGM) is a computational model in which all adversaries are modeled as algebraic.

We will employ the AGM to demonstrate the security of Tokamak SNARK setup ceremony protocol.
In this model, we focus exclusively on algebraic algorithms that can provide a linear representation for
each group element they generate. Specifically, if an algorithm Aalg has already received group elements
G1, . . . , Gn ∈ G and outputs a new group element Gn+1 ∈ G, it must also provide a vector of integer

coefficients C⃗ = (c1, . . . , cn) such that Gn+1 =
∏n
i=1G

ci
i . We employ AGM in a pairing-based context

where we distinguish between group elements from G1 and G2. Formally, the coefficients C⃗ are derived by
using the algebraic extractor C⃗ ← EagmA (viewA), which is guaranteed to exist for any algebraic adversary
A. This extractor is white-box, meaning it operates with full access to A’s internal view.

ROt(ϕ) // Initially QRO = ∅
if QRO[ϕ] ̸=⊥ then r ← QRO[ϕ];
else r ← $Zp; QRO[ϕ]← r;
if t = 1 then return r else return Gr

Figure 2: The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) : {0, 1}∗ → Zp.

31

Fuchsbauer et al. [5] also describe how to integrate AGM with the random oracle (RO) model.
Our interest lies in random oracles that output group elements. Group elements produced by RO(ϕ) are
incorporated into the set of received group elements. To simulate update proofs, we use a modified version
of the programmable RO model, which we call a transparent RO, as shown in Figure 1. For simplicity,
we define RO(·) := RO0(·). The simulator has access to RO1(·) and can determine the discrete logarithm
r by querying RO1(x). It may query RO0(x) for G

r, but it can also calculate this value independently.
In all security definitions, both the constructions and the adversary A only have access to the restricted
oracle RO0(·).

We revisit the (q1, q2)-discrete logarithm assumption as described in [3]

Definition 8.1 ((q1, q2) − dlog). The (q1, q2)-discrete logarithm assumption holds for BGen if for any
PPT A, the following probability is negligible in λ,

Pr
î
bp← BGen(1λ); z ← $Zp; z′ ← A(bp, {Gz

i}q1i=1, {Hzi}q2i=1) : z = z′
ó
.

Definition 8.2 ((q1, q2)− dlog). The (q1, q2)-extended discrete logarithm assumption holds for BGen if
for any PPT A, the following probability is negligible in λ,

Pr

ñ
bp← BGen(1λ); z, r, s← $Zp s.t. rz + s ̸= 0;

z′ ← A
Ä
bp, {Gzi}q1i=1, {Hzi}q2i=1, r, s,G

1
rz+s , H

1
rz+s

ä
: z = z′

ô
.

Theorem 8.1. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog assumption holds.

We also present two lemmas that are frequently useful when working with AGM proofs.

Lemma 8.1 ([6]). Let Q be a non-zero polynomial in Zp[X1, . . . , Xn] of total degree d. Define Q′(Z) :=
Q(R1Z+S1, . . . , RnZ+Sn) in the ring (Zp[R1, . . . , Rn, S1, . . . , Sn])[Z]. Then the coefficient of the highest
degree monomial in Q′(Z) is a degree d polynomial in Zp[R1, . . . , Rn].

Lemma 8.2 (Schwartz-Zippel). Let P be a non-zero polynomial in Zp[X1, . . . , Xn] of total degree d.
Then,

Pr[x1, . . . , xn ← $Zp : P (x1, . . . , xn) = 0] ≤ d

p
.

The update proof of knowledge that ensures validity of each sequential SRS update is the central
ingredient of the ceremony protocol.

Ose(ϕ) OG1

poly(f(Z1, . . . , Zd(λ))) OG2

poly(g(Z1, . . . , Zd(λ)))

// Initially Q = ∅ if deg(f) > d(λ) if deg(g) > d(λ)
π ← SimRO1(·)(ϕ) return ⊥ return ⊥
Q← Q ∪ {(ϕ, π)} else return Gf(z1,...,zd(λ)) else return Hg(z1,...,zd(λ))

return π

Figure 3: Simulation-extraction oracle and two d-Poly oracles — for G1 and G2.

The proof of knowledge (PoK) protocol does not depend on a reference string; instead, it uses a
random oracle as its setup. Therefore, we will enhance the standard NIZK definitions by incorporating
ROt(·), as defined in Figure 2.

Even with enhanced capabilities, this adversary should not be able to generate a proof of knowledge
unless it possesses the corresponding witness. Note that Opoly is separate from the random oracle ROt
and does not provide the adversary with any information regarding the random oracle’s outputs. Overall,
Opoly strictly enhances the adversary’s capabilities.

Definition 8.3. An argument Ψ for R is straight-line simulation extractable in the (RO, d-Poly)-model,

if for all PPT A, there exists a PPT extractor EA such that Pr
î
GameASE(1

λ) = 1
ó
= negl(λ), where

GameASE(1
λ) =

Q← ∅; z1, . . . , zd(λ) ← Zp;
(ϕ, π)← AOse,RO,OG1

poly,O
G2
poly(1λ);

w ← EA(viewA);

VerifyRO(·)(ϕ, π) = 1 ∧ (ϕ,w) /∈ R ∧ (ϕ, π) /∈ Q

The oracles Ose,OG1

poly,O
G2

poly are defined on Figure 3

32

Essentially, the adversary wins if it can provide a valid statement and proof without knowing a cor-
responding witness, ensuring that the proof hasn’t been obtained from a simulation oracle. Additionally,
there can be up to d(λ) random variables chosen initially, which allow the adversary to query an oracle
for arbitrary polynomial evaluations up to a degree of d(λ) in the group.

In terms of comparing this definition to more conventional ones, two points are notable. First, our
definition operates as a white-box model (since the extractor EA uses the adversary’s view, viewA) and is
strong (meaning proofs cannot be randomized). Second, our concept inherently includes strong simulation
extractability (strong-SE) in the context of a random oracle (RO), corresponding to the case of GamesSE
without Opoly, thus closely resembling the standard strong-SE variant without an RO.

We permit the final SRS to deviate from a uniform random distribution as long as the adversary
does not gain any significant advantage in compromising the soundness of the SNARK. Essentially, this
extends the updatability definitions from [7] to ceremonies that involve multiple rounds. .

We examine NP-languages L and their associated relations R = (ϕ,w), where w serves as an NP-
witness for the statement ϕ ∈ L.

• The probabilistic polynomial-time (PPT) parameter generator algorithm Setup(ppλ,L) takes as
input the bilinear pairing group ppλ = (H,G1,G2,GT , e,G,H) and the subcircuit library L =
{uj(X), vj(X), wj(X)}mD−1

j=0 , picks uniform random parameters

τ := (x, y, z, α, β, γ, δ, η0, η1, µ, ν, ψ0, ψ1, ψ2, ψ3, κ)
§−→ (F∗)16,

and returns σ = ([σA,I]1, [σC]1, [σzk]1, [σν]2), where the security parameter 1λ.

• A PPT SRS update algorithm Update that takes as input a phase number φ ∈ 1, 2, the current
SRS srs, and the proofs of prior updates {ρi}i. It outputs a new SRS srs′ along with an update
proof ρ′. It is assumed that Update enforces a specific order of phases, such as a sequential order.

• A deterministic polynomial-time (DPT) SRS verification algorithm VerifySRS that accepts an SRS
srs and update proofs {ρi}i, and returns either 0 or 1.

• A PPT prover algorithm Prove that accepts an SRS srs, a statement ϕ, and a witness w, and
generates a proof π.

• A DPT verification algorithm Verify that takes as input an SRS srs, a statement ϕ, and a proof π,
and produces either 0 or 1.

The specification of a setup protocol includes a default setting srsd = (srsdφ1, srs
dφ2). We require

that a secure scheme upholds the properties of completeness, zero-knowledge, and knowledge soundness.
Our definitions operate within the random oracle model, as the final SRS update protocol relies on RO-
dependent proof of knowledge. Consequently, all algorithms in this section can access the random oracle,
if needed by certain sub-components of a scheme.

We require that a secure scheme meets the following criteria for completeness, zero-knowledge, and
knowledge soundness. We will prove that Tokamak ceremony scheme provides the following properties:
completeness, zero-knowledge, and knowledge soundness. The Tokamak ceremony protocol for a relation
R consists of the following algorithms.

Theorem 8.2. Tokamak ceremony scheme is perfectly complete.

Proof. The Tokamak scheme provides both Update completeness and Prover completeness. Completeness
of Tokamak ceremony scheme requires that Update and Prove always satisfy verification. Let’s begin with
a general observation: if a certain bitstring s = (srs, {ρi}i) fulfills VerifySRS(s) = 1, then there exists a
unique σA,I ,σC ,σzk and σV ∈ Z∗

p that define a well-formed srs. Let A be an adversary that outputs
s = (srs, {ρi}i) such that VerifySRS(s) = 1 and the probability of A is

Pr

ï
(φ, srs, {ρi}i)← A(1λ), (srs′, ρ′)← Update(φ, srs, {ρi}i) :

VerifySRS(srs, {ρi}i) = 1 ∧VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

ò
= 0.

Again, we are analysing Update together with VerifySRS and Tokamak scheme satisfies Prover com-
pleteness because the probability of A is

Pr

ï
(srs, {ρi}i, ϕ, w)← A(1λ), (π)← Prove(srs, ϕ, w) :

VerifySRS(srs, {ρi}i) = 1 ∧ (ϕ,w) ∈ R ∧Verify(srs, ϕ, π) ̸= 1

ò
= 0.

33

Our definition of subversion zero knowledge (Sub-ZK) is based on [8]. Intuitively, it asserts that
an adversary who produces a well-formed SRS must know the simulation trapdoor τ , enabling them to
simulate a proof independently, without needing the witness. Consequently, the proofs do not disclose
any additional information. From a technical perspective, we split the adversary into two parts: an
efficient SRS subverter Z, which generates the SRS (since knowing τ is only meaningful for an efficient
adversary), and an unbounded distinguisher A. We allow Z to send st to communicate with A.

Prove
RO(·)
dl (ϕ,w) Verify

RO(·)
dl (ϕ = (·, Gy1 , Hy2), π) Sim

RO1(·)
dl (ϕ = (·, Gy1 , Hy2))

Gr ← RO(ϕ); Gr ← RO(ϕ); Assert ê(Gy1 , H) = (G,Hy2);
return Grw; Verify that rϕ ← RO1(ϕ);

ê(Gy1 , H) = (G,Hy2)∧ return π ← (Gy1)rϕ ;
ê(π,H) = ê(Gr, Hy2);

Figure 4: A discrete logarithm proof of knowledge Πdl

Theorem 8.3. Tokamak ceremony scheme provides subversion zero knowledge (Sub-ZK) property.

Proof. The Tokamak scheme is subversion zero knowledge since for all PPT subverters Z, there exists a
PPT extractor EZ such that for any (unbounded) adversary A, the difference |ϵ0 − ϵ1| is negligible in λ,
where

ϵb := Pr
î
(srs, {ρi}i, st)← Z(1λ), τ ← EZ(viewZ) : VerifySRS(srs, {ρi}i) = 1 ∧ AOb(srs,τ,·)(st) = 1

ó
.

Here, Ob is a proof oracle that accepts as input (srs, τ, (ϕ,w)) and only proceeds if (ϕ,w) ∈ R. If
b = 0, the oracle Ob returns an honest proof Prove(srs, ϕ, w), and if b = 1, it provides a simulated
proof Sim(srs, τ, ϕ). It is important to note that Sim is permitted access to the discrete logarithms of
the random oracle (RO). Moreover, it is evident that Πdl achieves perfect zero-knowledge relative to the
simulator described in Figure 4. When the simulator receives an input ϕ = (m,Gw, Hw) (where ϕ ∈ L by
definition, meaning the exponent w is the same for both Gw and Hw), it retrieves r such that Gr = RO(ϕ)
using RO1, and outputs Gwr. Because the simulated and honest proofs are identical, an adversary cannot
differentiate between them.

We analyze security against algebraic adversaries A. The statement elements ϕ (Gy, Hy) and the
proof π ∈ G1 produced by A are expected to lie within the span of elements that A has queried from
oracles. The coefficients of these spans are accessible within A’s view viewA because A is algebraic. We
define an extractor EA that takes viewA as input and extracts the coefficient k corresponding to the
element RO(ϕ) = Gr. The remainder of the proof centers on demonstrating that k serves as the witness
y. Broadly speaking, the approach involves designing a discrete logarithm adversary C that incorporates a
(randomized) discrete logarithm challenge Gc into each of the random oracle queries made by A. We show
that that unless k = y, C is able to compute the discrete logarithm c from viewA with an overwhelming
probablity.

Bellare et al. [9] demonstrated that it is feasible to achieve both soundness and subversion zero-
knowledge simultaneously. However, they also proved that subversion soundness is incompatible with
(even non-subversion) zero-knowledge. The concept of updatable knowledge soundness from [7] can be
viewed as a relaxation of subversion soundness, designed to circumvent this impossibility result.

Theorem 8.4. Tokamak ceremony scheme provides update knowledge soundness.

Proof. The Tokamak scheme is update knowledge sound since for all PPT adversaries A, there exists a

PPT extractor EA such that Pr
î
GameA,EA

uks (1λ) = 1
ó
is negligible in λ, where

GameA,EA
uks (1λ) :=

ï
(ϕ, π)← AOsrs(·)(1λ); get (srs, φ) from Osrs; w ← EA(viewA);
return Verify(srs, ϕ, π) = 1 ∧ (ϕ,w) ̸∈ R ∧ φ > φmax

ò
.

The SRS update oracle Osrs is described in Algorithm 1.

We extend the concept of update knowledge soundness to multiple phases of SRS generation. The
SRS begins as empty (or can be initialized to a default value srsd). In each phase φ, the adversary
is responsible for setting a portion of the SRS, denoted by srsφ, ultimately constructing the final SRS.
The adversary can request honest updates for its proposed srs∗φ, but it must pass the verification by
VerifySRS. The adversary may query honest updates via the UPDATE query through a special oracle

34

Osrs, as described in Algorithm 1. Eventually, the adversary can propose a candidate srs∗φ with update
proofs Q∗ to be finalized using a FINALIZE query. The oracle finalizes srs∗φ if Q∗ includes at least one
honest update proof from the current phase. Once this condition is met, srsφ cannot be altered further,
and phase φ + 1 commences. When the complete SRS is established, A outputs a statement ϕ and a
proof π. The adversary succeeds if (srs, ϕ, π) passes verification, but no PPT extractor EA can extract a
witness, even when given the view of A.

References

[1] Jehyuk Jang and Jamie Judd. An efficient SNARK for field-programmable and RAM circuits. Cryp-
tology ePrint Archive, Paper 2024/507, 2024. https://eprint.iacr.org/2024/507.

[2] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK param-
eters in the random beacon model. Cryptology ePrint Archive, Paper 2017/1050, 2017. https:

//eprint.iacr.org/2017/1050.

[3] Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky ceremonies. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 98–127,
Cham, 2021. Springer International Publishing.

[4] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings, Part II, of the
35th Annual International Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume
9666, page 305–326, Berlin, Heidelberg, 2016. Springer-Verlag.

[5] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages
33–62, Cham, 2018. Springer International Publishing.

[6] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assumptions
in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, pages 121–151, Cham, 2020. Springer International Publishing.

[7] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-snarks. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 698–728, Cham, 2018. Springer
International Publishing.

[8] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant
SNARK. Cryptology ePrint Archive, Paper 2017/599, 2017.

[9] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an untrusted crs: Security
in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 777–804, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

35

