
Testing Robustness of Homomorphically
Encrypted Split Model LLMs

Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

University of Delaware, Newark, DE 19716, USA
{folkerts,tsoutsos}@udel.edu

Abstract. Large language models (LLMs) have recently transformed
many industries, enhancing content generation, customer service agents,
data analysis and even software generation. These applications are of-
ten hosted on remote servers to protect the neural-network model IP;
however, this raises concerns about the privacy of input queries. Fully
Homomorphic Encryption (FHE), an encryption technique that allows
for computations on private data, has been proposed as a solution to
the challenge. Nevertheless, due to the increased size of LLMs and the
computational overheads of FHE, today’s practical FHE LLMs are im-
plemented using a split model approach. Here, a user sends their FHE
encrypted data to the server to run an encrypted attention head layer;
then the server returns the result of the layer for the user to run the rest
of the model locally. By employing this method, the server maintains
part of their model IP, and the user still gets to perform private LLM
inference. In this work, we evaluate the neural-network model IP protec-
tions of single layer split model LLMs, and demonstrate a novel attack
vector that makes it easy for a user to extract the neural network model
IP from the server, bypassing the claimed protections for encrypted com-
putation. In our analysis, we demonstrate the feasibility of this attack,
and discuss potential mitigations.

Keywords: Large Language Models · Model Extraction Attack · Fully Homo-
morphic Encryption · Split-Model Architecture

1 Introduction

Large language models (LLMs) have delivered transformative solutions for how
we work, assisting with both daily tasks and automating complex analyses. Built
on the transformer machine learning architecture [28], these models boast bil-
lions of parameters and are trained on vast datasets. As a result, they excel at
text analysis and generation, providing efficient ways to perform unique data an-
alytics, generate content, and author source code for novel applications [8,20,25].

Despite their numerous benefits, LLMs pose significant privacy risks. These
models are often hosted on remote servers to protect the intellectual prop-
erty (IP) of the underlying model [2]. Consequently, cloud servers receive input

https://orcid.org/0009-0000-8781-8398
https://orcid.org/0000-0002-5769-0124


queries from users, which may contain sensitive and private information [6,9,26].
In this scenario, a curious LLM provider could potentially breach user confiden-
tiality by storing and analyzing these queries. Alternatively, LLMs can be run
locally [22]; however, this requires model owners to open-source their models,
resulting in a loss of control over their IP.

Recent research advancements have focused on developing Fully Homomor-
phic Encryption (FHE), a privacy-preserving form of cryptography, as a potential
solution. FHE allows computations to be performed on encrypted data without
needing to decrypt it first. In this approach, the user’s query is encrypted and
sent to the remote server. The remote server can then perform calculations on
the encrypted queries without leaking any information about the underlying
query. Finally, the encrypted result is sent back to the user, who can decrypt
and analyze it.

Many FHE-based machine learning works focus on convolutional neural net-
works (CNNs) for image classification [1,7, 15,23]. One of the main libraries for
FHE machine learning, ConcreteML [30], expanded upon the CNNs to offer sup-
port for many popular machine learning models, including boosted trees, neural
networks, and large language models (LLMs). The LLM implemented as part
of their library operates using a split-model approach. A split model typically
divides the model into three segments. The user runs the first segment locally,
then sends the first segment’s output to the server to run the middle segment.
Finally, the user receives the middle segment’s output to finish the computation
locally. This process is illustrated in Figure 1.

Split models have been proposed for training neural networks with the goal
of providing some protection for crowdsourced training data [21,29]. In contrast,
ConcreteML utilizes this approach for neural network inference. This method
ensures user privacy by dividing the model into segments, where sensitive data
is processed locally by the user before being sent to the server for further com-
putation. In this scenario, the user’s sensitive data is never fully exposed to the
server, thus maintaining confidentiality. Additionally, this approach can limit the
computational burden on the user’s local device, as only a portion of the model
is run locally. This balance between privacy and efficiency makes the split-model
approach a promising solution for secure and scalable machine learning applica-
tions.

In this work, we investigate and evaluate the vulnerability of this approach to
model extraction attacks in ConcreteML. In ConcreteML, only a small segment
of the network, including the attention segment of a single layer, is encrypted.
While this keeps the computational overhead low and guarantees user privacy,
our work demonstrates that this does not necessarily ensure the protection of
the data due to the high dimensionality of inputs and outputs. To highlight
this issue, we develop a novel attack vector that allows users to extract the full
model, bypassing the presumed guarantees of FHE computation.

Roadmap: The rest of the paper is organized as follows: Section 2 provides the
necessary background on ConcereteML and the GPT2-Small Model, including
their structures and functionalities. Section 3 details our overall methodology



Fig. 1. Split Model LLMs: ConcreteML is using a Split Model approach for its large
language model implementations. Here, a user runs attention of a single layer on the
cloud, allowing for practical LLMs. In this work, we evaluate the model IP security of
this approach, allowing us to steal the entire model.

and attack setup, describing how our exfiltration technique works. Section 4
presents our experimental results, along with our analysis of the attack’s feasi-
bility and potential mitigations. Finally, Section 5 discusses related works, and
our concluding remarks are presented in Section 6.

2 Preliminaries

2.1 ConcreteML

2.1.1 Privacy Preserving Machine Learning Model

The privacy-preserving machine learning model addresses the following scenario:
a remote server (e.g., an LLM service provider) owns a trained machine learning
model, which provides access to paid users. These users pay credits to upload
their unique inputs and receive the generated outputs from the machine learn-
ing model. In this scenario, both the user and the machine learning server are
assumed to be honest but curious. The machine learning server will carry out
the computation but is incentivized to snoop on user data (e.g., for advertising
purposes). Meanwhile, the user will upload correctly formed input data but may
try to extract the machine learning algorithm parameters.

For user privacy protection, the ConcreteML library relies on the TFHE en-
cryption scheme [4, 5]. TFHE is a fully homomorphic scheme, which means it



allows for basic computations such as additions, multiplications, and univariate
activation functions on encrypted data, while still providing cryptographic hard-
ness that makes it computationally infeasible for the server to learn information
about the user’s input. By default, ConcreteML parameterizes TFHE to provide
128-bits of cryptographic security.

For machine learning IP privacy, the machine learning server maintains own-
ership of all or part of the model IP, including the weights and biases. It is
assumed by the ConcreteML library and other FHE works [1,7,13,23] that this
is sufficient protection for model IP.

2.1.2 Supported Algorithms

ConcreteML [30] is recognized as one of the leading open-source libraries for
fully homomorphic encryption (FHE) in the context of machine learning infer-
ence. This innovative library leverages the capabilities of the scikit-learn ma-
chine learning library for plaintext training, providing users with access to a
diverse array of models. Among these models are foundational algorithms such
as linear regression and logistic regression, as well as more complex structures
like decision trees and feed-forward neural networks. Notably, ConcreteML also
includes implementations of attention mechanisms, expanding its utility for ap-
plications involving large language models and other architectures that benefit
from attention-based techniques.

As already mentioned, ConcreteML operates using the TFHE encryption
scheme [4, 5] for encrypted inference. Under the hood, this scheme is developed
around lattice-based cryptography, utilizing the learning with errors problem as
its foundational structure. TFHE operates on shortint data types, which consists
of ciphertexts encoding bits of information [3]. To create a high-precision inte-
ger, multiple shortints are combined within a structured data format. However,
encrypted floating-point operations are not supported in this encryption frame-
work, presenting a challenge given the nature of training data typically utilized
in scikit-learn.

To address this limitation, ConcreteML takes the trained scikit-learn mod-
els, along with several sample inputs, and compiles them into a custom FHE
assembly code. This process includes converting the data into a high-precision
fixed-point representation, effectively discretizing the input data based on heuris-
tics derived from the sample inputs. Such discretization is crucial for maintaining
the integrity of the model’s performance when operating under the constraints
of the TFHE scheme.

To mitigate potential discretization errors – particularly in deeper models,
where such errors can significantly impact performance – it is necessary to retrain
the discretized model. This fine-tuning process helps ensure that the model can
adequately adjust to the fixed-point representation, optimizing its performance
and reliability when deployed in a fully homomorphic encrypted environment.
By following this approach, ConcreteML aims to preserve the efficacy of machine
learning models while leveraging the security benefits of FHE.



Fig. 2. Single Attention Head: ConcreteML encrypts a single attention head in its
overall architechture. This diagram shows the encrypted operations.

2.2 GPT2-Small Model

The GPT2-Small [18,19] language model is constructed using 12 decoder blocks
(Figure 3), or layers, that facilitate the processing of input data. Each of these
blocks consists of multiple attention heads (Figure 2) [28], with additional layers
in between to manage the gradient and normalize the data, further enhancing
the model’s capacity for learning complex patterns.

The initial step in this transformer architecture is the GPT2 embedding,
which transforms words or tokens into a lower-dimensional numeric represen-
tation. For training, each word or token from the English dictionary (totaling
50,257 tokens for GPT2) is encoded as a one-hot vector e. A single-layer neural
network is trained to convert this large one-hot representation into a compressed
token embedding vector, which has a dimension of 768 for GPT2-Small. During
plaintext inference, this embedding table functions as a lookup table, allowing
the model to quickly retrieve the corresponding embedding for each token in the
input sequence.

This token embedding process is applied to sequences of words, resulting
in a tensor of dimensions RN×De , where N represents the length of the input
sequence (i.e., the number of words in the user’s input query) and De denotes
the dimension of the token embeddings. Following this, positional information
is incorporated into the data to provide context regarding the order of tokens
within the sequence. The final output, denoted as X ∈ RN×De , serves as the
input to the subsequent decoder layers, allowing the model to leverage both the
semantic and positional aspects of the input data effectively.

Then the data is passed through the decoder layers. Each layer comprises
several key components, as illustrated in Figure 3. The first component is the
attention head. Each attention head processes the input X to generate a key,



Fig. 3. GPT2 Decoder Layer: This diagram shows the entire GPT2 decoder layer.
Only the attention segment is encrypted. W1 and W2 are weights learned in training
(arbitrary subscripts); they become a linear layer through the subsequent matrix mul-
tiplication.

query, and value tuple via matrix multiplication, represented as:

K = XWk (1)

Q = XWq (2)

V = XWv (3)

Here, K,Q, V ∈ RN×Dv , where Dv denotes the dimensionality of the key, query,
and value vectors. Once these vectors are obtained, the attention mechanism can
be applied:

Attention = softmax(
QKT

√
Dv

+M)V. (4)

In this equation, M represents an optional mask that consists of large negative
integers applied to any values that should be excluded from consideration during
the attention calculation. This masking is particularly useful in scenarios where
certain tokens in the sequence should not attend to others.



Several single-attention heads can operate in parallel, forming what is known
as multi-head attention [28]. The outputs from all the individual attention heads
are concatenated and processed through a subsequent linear layer. This allows
the model to capture a richer set of relationships and dependencies within the
input data, enhancing its overall ability to generate contextually relevant re-
sponses.

The remaining components of the GPT2 decoder block, as depicted in Fig-
ure 3, include residual connections (recurrent addition), layer normalization, and
linear layers. After the multi-head attention mechanism, a residual connection
is applied, where the input X is added to the output of the attention layer. This
addition helps facilitate better gradient flow during training, allowing the model
to learn more effectively. Following this, layer normalization is applied to stabi-
lize and accelerate training by normalizing the summed output. Next, a linear
layer transforms the output from the attention mechanism. This transformation
prepares the data for subsequent processing. Finally, a final residual connection
and normalization are applied.

3 Methodology

3.1 ConcreteML’s Model

ConcreteML presents a compelling use case example featuring GPT2-Small, a
widely recognized open-source generative pretrained transformer language model.
GPT2-Small is notable for its ability to generate coherent and contextually rele-
vant text, making it a valuable tool for various applications in natural language
processing. The architectural details of GPT2, including its multi-layer decoder
transformer structure and the mechanisms that facilitate text generation, are
discussed in depth in Section 2.2, while the dynamics of user-server interactions,
which play a critical role in the deployment and security of the model, are elab-
orated in Section 2.1.1.

While model extraction attacks are a well-established concern in the realm
of image classification, the application of such attacks to large language models
(LLMs) presents a considerably greater challenge. This complexity arises from
the substantial size and intricate architectures of LLMs, which often encompass
billions of parameters and a multitude of layers. The extensive training data
and the sophisticated mechanisms employed in these models make them less
susceptible to straightforward extraction methods. Consequently, attackers face
heightened difficulty in reverse-engineering the model’s functionality or replicat-
ing its behavior, as they must navigate the vast parameter space and complex
interactions within the architecture.

ConcreteML’s implementation of GPT2-Small retains ownership of a single
attention block, providing users access to the rest of the model, while restricting
direct control over this critical component. This design choice effectively pre-
vents users from running the language model independently; instead, they must
depend on the server to perform computations of the missing attention layer ho-
momorphically. As a result, the user has the ability to run a private LLM with



minimal computation cost, while the server maintains a level of IP protection
via its ownership of the missing layer.

Since the cloud retains ownership of a part of the LLM, our key observa-
tions is that the parameters of this attention head are the only thing required to
create a counterfeit LLM. The input and output vectors of this attention head
are characterized by relatively high dimensional space compared to model ex-
traction attacks, specifically R8×768 for inputs and R8×64 for outputs. This high
dimensionality presents a potential vulnerability, as it can inadvertently leak
considerable information about the underlying model parameters to the user,
facilitating model extraction in our attack.

3.2 Our Attack Setup

In ConcreteML’s design, the user has access to the majority of the model, allow-
ing for a comprehensive examination of its architectural nuances. This access,
combined with knowledge of the input and output dimensions of the encrypted
segment, enables the user to infer details about the architecture in great detail.
Moreover, given that many large language model (LLM) architectures, such as
GPT2-Small, exhibit repetitive patterns, it is reasonable to assume that the user
can infer the architectural design of the encrypted server component. For GPT2-
Small, the encrypted segment is a single attention head, pictured in Figure 2.

With the architecture of the missing segment established, the objective of our
attack shifts towards re-engineering a copy of the weights that remain under the
control of the remote server. Specifically, these weights include Wk, Wq, and Wv,
which correspond to the key, query, and value weights for the single attention
head in GPT2-Small.

To achieve this, we train a shadow model that incorporates the attention
head architecture, as shown in Figure 4. This shadow model serves as a proxy
to approximate the behavior of the original GPT2 model on the server. For
training data, we generate a dataset of random values for inputs, denoted as X,
and submit these values as a set of encrypted queries to the GPT2 model. The
corresponding outputs, denoted ytarget, captured from the attention layer form
input-output pairs, which correspond to the training set for our shadow model.
Additional queries can be used for a validation set.

To train the shadow model effectively, it is also essential to select an appro-
priate loss function. Given that the primary objective is to replicate the weights
of the missing attention head, robustness against outliers is less critical, and
overfitting is allowed. In light of this, we have opted for the Mean Squared Error
(MSE) loss function [12], defined as

LossMSE =
1

Nout

Nout∑
i=1

(Attention(X)− ytarget)
2. (5)

Here, ytarget represents the target output vector, and Nout denotes the out-
put vector dimensions. This formulation calculates the average of the squared
differences between the predicted outputs from the attention mechanism and



Fig. 4. ConcreteML Model Extraction: This figure shows an overview of our at-
tack. The thief (black boxes) generates and sends a random query X to the encrypted
model on the remote server (blue box), and subsequently receives the result Y . This
(X,Y ) dataset is used to train a shadow model with identical weights to the cloud
model. The high dimensionality of inputs and outputs in ConcreteML’s GPT2-Small
model, as well as a limited encrypted segment, make this attack feasible.

the corresponding target values. By focusing on minimizing this loss, we can
effectively train the shadow model to approximate the behavior of the attention
head.

To optimize the training process, we have chosen the AdamW optimizer [14],
a standard choice for gradient descent methods. AdamW incorporates adaptive
learning rates and weight decay, which can enhance convergence speed and model
generalization. This combination of the MSE loss function and the AdamW
optimizer provides a solid foundation for training our shadow model, ultimately
facilitating the extraction of the missing weights Wk, Wq, and Wv.

4 Results and Discussion

4.1 Experimental Setup

In our study, we assumed that the attacker possesses no prior knowledge of
the dataset. To generate inputs for our model, we utilized a vector compris-
ing uniformly random integers within the range of -63 to 32. These randomly
generated inputs were subsequently encrypted wuth TFHE and transmitted to
the remote model segment, from which we received the corresponding results.
The input-output pairs obtained through this process constitute our dataset,
which we utilized to train the shadow model. Additionally, we sent a total of one
thousand queries to establish a validation dataset, which played a crucial role in
assessing the efficacy of all training methodologies employed in our analysis.

Following the model training parameters discussed in the previous section, we
conduct experiments with varying dataset sizes: specifically, one thousand, ten
thousand, and fifty thousand queries (Figure 5). Our findings, shown in Figure
6, indicate that the model successfully trained on the provided data, achieving



Fig. 5. Model Extraction Attack: This graph shows the training vs. validation MSE
loss for our model extraction attack. We achieve a minimal loss function of 0.0018,
indicating that the our trained Torch model closely matches the ConcreteML target
model (minus discretization errors). This increases slightly to 0.0020 when the training
set size is limited to 1000 samples, indicating a bound to where more samples would
lead to a higher fidelity shadow model.

Fig. 6. MSE Loss: Mean square error loss function convergence. The training and
validation set start diverging at 1k samples, indicating more samples are needed.

a mean square error (MSE) of 0.0018. This level of accuracy is sufficiently low
to demonstrate the discretization error between the encrypted integer model
and the floating-point shadow model. These results highlight the effectiveness of
our approach and the potential for further improvements in model training and
performance assessment.



4.2 Analysis of our Results

The utilization of random input data, along with our model’s training designed
to overfit, means that the training and validation sets perform similarly in the
case of successful model extraction. Notably, in the experiments involving a large
number of queries in the dataset, both the training and validation datasets ex-
hibited a consistent downward trajectory during gradient descent, despite being
independently distributed. This observation indicates that the model’s weights
were trending towards known values.

Conversely, in the attack scenario involving a dataset limited to one thou-
sand queries, we observed that the validation set lagged behind the training set,
despite eventually converging to the correct weights. This discrepancy indicates
that the model encountered greater difficulty in predicting previously unseen
information. Such a finding implies that we may be approaching the threshold
of the minimum number of queries necessary for a successful dataset.

Regarding the limit of one thousand queries, this can be considered a reason-
able size in the context of language models such as ChatGPT. In this framework,
it is essential to note that one query corresponds to a single token, with the total
token limit per prompt set at 4,096 tokens. Thus, a malicious user would be able
to extract this key information under the guise of a single prompt.

4.3 Mitigations

There are two main factors that enable our model extraction attack. The first is
the high dimensionality of input and output values, while the second is the size
and complexity of the model.

Reducing the dimensionality of the internal layers of a high-dimensional LLM
is challenging without compromising model performance. However, we expect
this issue to become more challenging as the GPT model size grows. For instance,
increasing the model size from GPT-Small to GPT-ExtraLarge increases the
token embedding size from 768 to 1600, providing malicious users with more
information.

To enhance robustness against model extraction attacks, it is important to
recognize that the current research on extracting entire LLMs is still ongoing,
due to their inherent complexity. To adequately protect its data, existing models,
such as the one in ConcreteML, must incorporate more complexity and a higher
number of parameters in their encrypted segment than a single attention head.

To achieve this, one potential approach would be to implement an efficient
LayerNorm feature and add it to the target framework (ConcreteML in our
case). This LayerNorm function would facilitate the analysis of multiple layers
within the model, thereby increasing its capacity to learn and process more in-
tricate patterns in the data. By integrating LayerNorm, the target framework
can enhance its training stability and performance, enabling the model to effec-
tively manage the interactions between various layers while preserving critical
information.



Implementing multiple, subsequent attention heads across layers would allow
the model to capture a broader range of dependencies and relationships within
the input data. This multi-head approach can provide a richer representation and
make it more challenging for potential attackers to extract sensitive information.

5 Related Work

Model extraction attacks have been extensively studied in the context of im-
age classification using convolutional neural networks (CNNs). The core idea is
to collect sufficient data samples by querying the model, enabling attackers to
replicate its classification results. However, these previous works often require
a significantly higher number of queries, as the label-only classification outputs
provide limited information to the user. This limitation means that extracting a
model’s internal behavior accurately necessitates more extensive querying, which
can be resource-intensive.

Papernot et al. [17] conducted one of the first studies on model extraction
attacks using synthetic data based on a small subset of real MNIST digit images.
They achieved a modest accuracy of 81.20% with 6,400 queries. Building on
this, Juuti et al. [10] increased the number of queries to 102,400, resulting in a
significant improvement to 97.9% accuracy. Both studies innovated by generating
synthetic datasets of MNIST digits that closely mimic real numbers.

CIFAR-10 has also been a target for model extraction studies. For instance,
Shokri et al. [24] developed a membership inference attack, achieving about 60%
test set accuracy with 15,000 queries. Truong et al. [27] tackled the more complex
CIFAR-10 dataset by utilizing surrogate images from the CIFAR-100 dataset,
reaching an accuracy of 88.1%, but at the cost of requiring an extensive 20 million
queries. These previous studies, which primarily focus on image classification
tasks, often require a substantially higher number of queries to achieve high-
fidelity model extraction. For instance, methods involving thousands or even
millions of queries may yield only modest accuracy improvements, making the
process both resource-intensive and time-consuming.

These previous studies, which primarily focus on image classification tasks,
often require a substantially higher number of queries to achieve high-fidelity
model extraction. For instance, methods involving thousands or even millions of
queries may yield only modest accuracy improvements, making the process both
resource-intensive and time-consuming.

Conversely, our work represents a significant advancement in this domain.
We achieve high-quality model extraction with just 1,000 queries, a remarkable
reduction that enhances both efficiency and practicality. Our unique focus on
stealing the exact weights of the model—rather than simply aiming for correct
classifications—enables us to leverage the mean squared error loss function. This
choice facilitates quick convergence within our limited query set, allowing us to
extract model parameters with impressive precision.

Moreover, we are among the first to apply model extraction techniques to
large language models, an area that has been relatively underexplored in the



literature. By addressing the specific challenges posed by LLMs, our research
not only expands the scope of model extraction but also uncovers critical vul-
nerabilities in this vital field of machine learning.

Finally, several related studies propose techniques such as prediction poi-
soning or adaptive misinformation to mitigate malicious inputs and prevent
model extraction attacks [11, 16]. These attacks primarily target image classifi-
cation systems; when an out-of-band image is provided (i.e., a random malicious
query), the cloud service intentionally generates an irrelevant response. How-
ever, for ConcreteML’s application, implementing such defenses is considerably
more challenging. Firstly, the encrypted segment resides within an intermediate
layer, complicating the identification of out-of-band information. Secondly, any
out-of-band detection algorithm must be executed homomorphically, limiting the
types of algorithms available. Finally, the availability of text data for training
large language models (LLMs) is significantly greater than that of image data,
rendering this defense against synthetic data less effective.

6 Conclusion

In this paper, we explore the vulnerability of the split-model approach in Con-
creteML to model extraction attacks. Our goal is to assess the security impli-
cations of using TFHE in protecting user data during neural network inference.
By generating random input data and training a shadow model, we are able to
demonstrate that it is possible to extract the full model, highlighting a signifi-
cant privacy risk. Our experiments reveal that even with a limited dataset of one
thousand queries, the model could eventually converge to the correct weights,
demonstrating a successful model extraction scenario. This finding underscores
the importance of addressing the high dimensionality of input and output values
and the complexity of the model to enhance security.

To mitigate these risks, we propose incorporating more complexity and a
higher number of parameters in the encrypted segment of the model. Implement-
ing an efficient LayerNorm feature and multiple attention heads across layers can
improve the model’s robustness against extraction attacks. These enhancements
will enable the model to capture a broader range of dependencies and relation-
ships within the input data, making it more challenging for attackers to extract
sensitive information. Our work emphasizes the need for ongoing research and
development to ensure the security and privacy of machine learning models in
practical applications.

Acknowledgments

L. Folkerts and N.G. Tsoutsos would like to acknowledge the support of the
National Science Foundation (Award 2239334).



References

1. Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash,
Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A
tile tensors framework for large neural networks on encrypted data. arXiv preprint
arXiv:2011.01805, 2020.

2. Jawid Ahmad Baktash and Mursal Dawodi. Gpt-4: A review on advancements and
opportunities in natural language processing. arXiv preprint arXiv:2305.03195,
2023.

3. Ilaria Chillotti. Tfhe deep dive - part i - ciphertext types, May 2022.

4. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe:
fast fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, 2020.

5. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

6. Adam Derose. These companies have banned or limited ChatGPT at work. Morn-
ing Brew, May 2023.

7. Lars Folkerts, Charles Gouert, and Nektarios Georgios Tsoutsos. Redsec: Running
encrypted discretized neural networks in seconds. Cryptology ePrint Archive, 2021.

8. Jorge Jinchuña Huallpa et al. Exploring the ethical considerations of using chat
gpt in university education. Periodicals of Engineering and Natural Sciences,
11(4):105–115, 2023.

9. JaxonAI. Companies that have banned ChatGPT, Jun 2023.

10. Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting
against dnn model stealing attacks. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 512–527. IEEE, 2019.

11. Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model stealing
attacks with adaptive misinformation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 770–778, 2020.

12. Taehyeon Kim, Jaehoon Oh, NakYil Kim, Sangwook Cho, and Se-Young Yun.
Comparing kullback-leibler divergence and mean squared error loss in knowledge
distillation. arXiv preprint arXiv:2105.08919, 2021.

13. Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.
Privacy-preserving machine learning with fully homomorphic encryption for deep
neural network. IEEE Access, 10:30039–30054, 2022.

14. I Loshchilov. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

15. Qian Lou and Lei Jiang. SHE: A Fast and Accurate Deep Neural Network for
Encrypted Data. Advances in Neural Information Processing Systems, 32:10035–
10043, 2019.

16. Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poison-
ing: Towards defenses against dnn model stealing attacks. arXiv preprint
arXiv:1906.10908, 2019.

17. Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519, 2017.



18. Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

19. Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

20. Partha Pratim Ray. Chatgpt: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope. Internet of Things
and Cyber-Physical Systems, 2023.

21. Daniele Romanini, Adam James Hall, Pavlos Papadopoulos, Tom Titcombe, Abbas
Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, and Michael A Hoeh.
Pyvertical: A vertical federated learning framework for multi-headed splitnn. arXiv
preprint arXiv:2104.00489, 2021.

22. Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

23. Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. TAPAS: Tricks
to accelerate (encrypted) prediction as a service. In International Conference on
Machine Learning, pages 4490–4499. PMLR, 2018.

24. Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE, 2017.

25. Tristen Taylor. The top types of ai-generated content in marketing, Oct 2023.
26. Taylor Telford and Pranshu Verma. Employees want ChatGPT at work. Bosses

worry they’ll spill secrets. The Washington Post, Jul 2023.
27. Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot.

Data-free model extraction. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 4771–4780, 2021.

28. A Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

29. Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split
learning for health: Distributed deep learning without sharing raw patient data.
arXiv preprint arXiv:1812.00564, 2018.

30. Zama. Concrete ML: a privacy-preserving machine learning library using fully
homomorphic encryption for data scientists, 2022. https://github.com/zama-ai/
concrete-ml.

https://github.com/zama-ai/concrete-ml
https://github.com/zama-ai/concrete-ml

	Testing Robustness of Homomorphically Encrypted Split Model LLMs

