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Abstract

Information set decoding (ISD) algorithms currently offer the most powerful tool to
solve the two archetypal problems of coding theory, namely the Codeword Finding
Problem and the Syndrome Decoding Problem. Traditionally, ISD have primarily
been studied for linear codes over finite fields, equipped with the Hamming metric.
However, recently, other possibilities have also been explored. These algorithms
have been adapted to different ambient spaces and metrics, such as the rank
metric or the Lee metric over Zm. In this paper, we show that it is possible to
leverage the ring structure to construct more efficient decoding algorithms than
those obtained by simply adapting ISD. In particular, we describe a framework
that can be applied to any additive metric including Hamming and Lee, and that
can be adapted to the case of the rank metric, providing algorithms to solve the
two aforementioned problems, along with their average computational costs.

Keywords: Ring-linear code, Hamming metric, Locally recoverable codes, Erasure
recovery

1 Introduction

The theory of linear codes is an excellent source of hard problems, with the two most
notable examples being the decoding of an arbitrary linear code and the determination
of whether a given code possesses a codeword of a specified (typically low) weight. These
problems, referred to as the Syndrome Decoding Problem (SDP) and the Codeword
Finding Problem (CFP), are ubiquitous in the context of linear codes; for instance,
in code-based cryptography, both the SDP and CFP have been fundamental security
assumptions for decades [1, 2].

Traditionally, linear codes are algebraic varieties living in a finite-dimensional
vector space over a finite field equipped with Hamming metric. In this context,
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information set decoding (ISD) algorithms currently represent the best-known method
for solving both the SDP and CFP, establishing themselves as powerful tools for
decoding linear codes [3–6]. However, recent research in the coding community has
investigated new directions, exploring different algebraic structure and metrics such
as and the Rank metric [7, 8], the sum-rank metric [9] or Lee metric [10] over the
integer ring Zm. Therefore ISD algorithms have been adapted to account for the new
underlying algebraic structure or new metrics [8, 11–14].

Although preliminary work has been conducted in this direction, the problem of
decoding over rings is relatively new, and the potential of these algorithms remains
largely unexplored. This leaves ample space for developing new algorithms and gaining
a deeper understanding of this emerging area of research. The question motivating our
research is thus:

In the context of ring-linear codes, is it possible to construct decoding algorithms that
outperform those obtained by simply adapting ISD?

Our Contribution

In this work, we answer this question by proposing new decoding algorithms for codes
defined over rings, showing new promising approaches for the decoding problems. For
each of the analyzed metrics, we propose new algorithms that mirror the previous
ones, but derive additional advantages from the structure of the underlying ring.

This work is structured as follows. In Section 2 we introduce the notation used
throughout the paper, briefly describing linear codes defined over a Galois ring, and
then moving on to describe the Hamming, Lee, and rank metrics, as well as the
behaviour of the Gilbert-Varshamov (GV) bound in each of these cases. Section 3
introduces the key problems around which our research hinges, namely SDP and CFP,
describing the algorithms now in use to solve these problems, as well as the related
complexities. Finally, we introduce a new framework for solving these problems and
explore it in each metric mentioned above, respectively in Sections 4, 5 and 6. We
draw some concluding remarks in Section 7.

2 Preliminaries

In this section we are going to focus on the preliminaries we need to state our result. In
order to do this, we will start fixing the notation we are going to use in the remainder
of the article. Afterwards, we are going to introduce some basics concerning codes over
rings. We will then conclude by providing an overview on the GV bound for the three
metrics under analysis.

2.1 Notation

Throughout this paper, we primarily consider codes as submodules over a Galois
extension of the integer ring Zpr := Z/prZ, where p is a prime and r is a positive
integer. From now on, given a Galois ring R and t ∈ R, we will write ⟨t⟩ to refer either
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to the ideal tR or the submodule tRn, depending on the context.
We will also denote the q-binomial coefficient by

[
n
k

]
q
, defined as

[
n

k

]
q

:=

k−1∏
i=0

qn − qi

qk − qi
.

If q is a prime power, this value represents the number of k-dimensional subspaces of Fn
q .

2.2 Codes over Galois rings

An interesting family of finite commutative rings is given by the Galois rings, as they
both generalize finite fields and the rings of integers modulo pr.
Definition 2.1. Let p be a prime, and r,m positive integers. The Galois ring GR(pr,m)
of characteristic pr and with prm elements is the Galois extension of Zpr of degree m.
Example 2.1. The most basic examples of Galois rings are significant special cases.

• If m = 1, GR(pr, 1) is the ring of integers Zpr ;
• If r = m = 1, GR(p, 1) is the prime field Zp;
• If r = 1, GR(p,m) is the Galois extension of Fp of degree m, namely Fpm .
As for the Galois fields, there exists a polynomial construction for Galois rings,

which are indeed a Galois extension of a base ring [15]. More precisely, GR(pr,m)
is isomorphic to Zpr [x]/⟨fm⟩, where f is a monic polynomial of degree m which is
irreducible modulo p.

Galois rings are local rings, with principal maximal ideal pGR(pr,m) = ⟨p⟩. In
fact, GR(pr,m) is a finite chain ring and every non-zero ideal has the form ⟨pi⟩, where
0 ≤ i ≤ r − 1.
Remark 2.1. As for finite fields, any element t ∈ GR(pr,m) can be written in its
additive representation

t = t0 + t1ξ + · · ·+ tm−1ξ
m−1, ti ∈ Zpr for all 0 ≤ i ≤ m− 1 ,

where ξ is a primitive pm-root of unity. As a consequence, GR(pr,m) is a free Zpr -
module and {1, ξ, . . . , ξm−1} is a basis of GR(pr,m).

Finite chain rings, and in particular, Galois rings are the most prominent alphabets
in ring-linear coding theory. Throughout this section, we will denote with R the Galois
ring GR(pr,m).
Definition 2.2. An R-linear code C of length n is an R-submodule of Rn. The free
module Rn is called the ambient space of C, and the elements of C are called codewords.

Unless otherwise specified, from now on, we consider any code to be R-linear. The
R-dimension of the code, defined as

k := log|R| |C| ,

is an analog of the dimension for codes over finite fields. However, the R-dimension
does not fully describe the dimension of a ring-linear code. As a consequence of the
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fundamental Theorem of finite abelian groups, any R-linear code C is isomorphic to
the following direct sum of R-modules

C ∼= (R/prR)k0 × (R/pr−1R)k1 × . . .× (R/pR)kr−1 .

The unique r-tuple (k0, k1, . . . , kr−1) is called the subtype of C. In addition k0 is called
the free-rank of C. A code C ⊆ Rn can be represented by a generating set representing
a subset of codewords that generates C as an R-submodule. We call a generating set
minimal generating set if it is minimal with respect to inclusion.
Definition 2.3. For an R-linear code C, the rank of C is the cardinality of a minimal
generating set of C. More generally, the rank of an R-module is defined as the size of
a minimal generating set for that module.

Notice that the rank K of a module C of subtype (k0, k1, . . . , kr−1) is equal to∑r−1
i=0 ki and hence, it follows 0 ≤ k0 ≤ k ≤ K ≤ n. In particular, a code is said to be

free if its R-dimension is equal to its rank, and in this case k0 = K. Finally the rate of
the code is given by R := k/n. Notice also that, if R is a field, then k0 = k = K and
ki = 0 for every i ∈ {1, . . . , r − 1}.

Similar to the finite field case, ring-linear codes can be represented through a
generator matrix or a parity-check matrix [16].
Definition 2.4. Given a linear code C ⊆ Rn, a matrix G ∈ RK×n whose rows form a
generating set of C is called a generator matrix of the code. A matrix H ∈ R(n−k0)×n

whose kernel coincides with C is called a parity-check matrix of C.
For our purposes, it is convenient to consider generator and parity-check matrices

in standard form, which are defined as follows.
Proposition 2.5. [16, Proposition 3.2] Let R be a finite chain ring and let C ⊆ Rn be
a linear code of length n and subtype (k0, . . . , kr−1). Then C is permutation equivalent
to a code having the following generator matrix in standard form:

G =


Ik0

A0,1 A0,2 A0,3 . . . A0,r−1 A0,r

0 pIk1
pA1,2 pA1,3 . . . pA1,r−1 pA1,r

0 0 p2Ik2
p2A2,3 . . . p2A2,r−1 p2A2,r

...
...

...
...

...
...

0 0 0 0 . . . pr−1Ikr−1 pr−1Ar−1,r

 ,

where Ai,r ∈ (R/pr−iR)ki×(n−K) and Ai,j ∈ (R/pr−iR)ki×kj for j < r. Moreover C
is permutation equivalent to a code having a parity-check matrix in standard form:

H =


B0,0 B0,1 . . . B0,s−1 In−K

pB1,0 pB1,1 . . . pIkr−1
0

...
...

...
...

pr−1Br−1,0 pr−1Ik1
. . . 0 0

 ,

where B0,j ∈ (R/prR)(n−K)×kj , Bi,j ∈ (R/pr−iR)kr−i×kj , for j > 1.
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Given an R-linear code C, for any subset I ⊂ {1, . . . , n} of the coordinates, we
denote by CI the code obtained by deleting in each codeword all but the coordinates
indexed in I.
Definition 2.6. Let C be an R-linear code of rank K. An information set for C is a
subset I ⊆ {1, . . . , n} of the coordinates of size K such that |CI | = |C|.

Using the parity check matrix in standard form, one can find an information set
for the code in the first K columns of H.

2.3 Different ambient spaces and metrics

One of the most important parameters of a code is its minimum distance, as it is
related to the code’s error correction capability. Errors are measured using a metric,
which is generally induced by a weight function.
Definition 2.7. Given R = GR(pr,m), a weight over R is a function wt: R → N
satisfying
1. wt(0) = 0 and wt(x) > 0 for all x ̸= 0;
2. wt(x) = wt(−x);
3. wt(x+ y) ≤ wt(x) + wt(y).
A weight function induces a distance defined as d: R×R → N, where d(x, y) :=

wt(x − y). We may extend the weight and distance functions coordinate-wise, and
these extensions will also be referred to as (additive) weight and (additive) distance,
respectively. In particular, given x ∈ Rn, we define

wt(x) :=

n∑
i=1

wt(xi) .

In coding theory, one of the most classical and important examples of an additive
weight is the Hamming weight, introduced by Hamming in 1950 for codes over finite
fields [17].
Definition 2.8. Given a Galois ring R, the Hamming weight of an element a ∈ R is
given by

wtH(a) :=

{
0 if a = 0,

1 otherwise .

We define the Hamming weight of an n-tuple x ∈ Rn additively by

wtH(x) :=

n∑
i=1

wtH(xi) .

The Hamming support of a vector x ∈ Rn is defined as the set of coordinates where
x is non-zero, namely

supp(x) := {1 ≤ j ≤ n | xj ̸= 0} .
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Note that the Hamming weight of a vector x ∈ Rn is equal to the cardinality of its
support, that is, wtH(x) = |supp(x)|. As an alternative to the classical Hamming metric,
we can endow the ambient space with other metrics. A notable example of additive
distance, when R = Zpr , is the Lee distance, first proposed in [18] as an extension of
the Hamming metric for the binary field. It has recently garnered increasing attention
in code-based cryptography [12, 14, 19, 20].
Definition 2.9. The Lee weight of an element a ∈ Zpr is given by

wtL(a) := min{a, |pr − a|} .

Similarly, we define the Lee weight of an n-tuple x ∈ Zn
pr additively by

wtL(x) :=

n∑
i=1

wtL(xi) .

The following bounds hold for any a ∈ Zpr and x ∈ Zn
pr .

0 ≤ wtL(a) ≤ ⌊pr/2⌋ and wtH(x) ≤ wtL(x) ≤ ⌊pr/2⌋wtH(x). (1)

Another metric that has gained significant attention is the rank metric, which,
unlike the Hamming and Lee metrics, is not additive. Rank-metric codes over finite
fields were first studied in connection with association schemes by Delsarte in 1978
[21]. They were also independently introduced by Gabidulin in [22], where rank-metric
codes are described as Fq-linear spaces of vectors over an extension field. In other
words, codewords are matrices and the distance between two codewords is the rank of
their difference.

Rank-metric codes can also be extended to principal ideal rings [23]. Given R = Zpr ,
let S = GR(pr,m) be the Galois extension of R. In this framework, a rank-metric code
over S is an S-submodule of Sn. As S is a free R-module of rank m, see Remark 2.1,
elements of S can be seen as vectors in Rm. Therefore we can define rank of elements
of S.
Definition 2.10. Given a vector x = (x1, . . . , xn) ∈ Sn we define

• The R-support of x, ⟨x1, . . . , xn⟩R, is the R-submodule of S generated by the
entries of x, namely, suppRx := ⟨x1, . . . , xn⟩R;

• The rank of x, rkR(x) or rk(x) if R is clear from the context, is the rank of the
R-support of x.

Given x, y ∈ Sn, the rank-distance of the vectors x, y ∈ Sn is the rank of their
difference, namely drk(x, y) := rkR(x− y). In particular the rank-weight of x is given
by drk(x, 0) = rk(x). In the following, we will use either drk(x) or rk(x) to refer to the
rank-weight of x.

2.4 The Gilbert-Varshamov bound

In coding theory, the Gilbert-Varshamov (GV) bound is a fundamental result that
provides a lower bound on the maximum size of a code, given its length and minimum

6



distance. In the Hamming metric over finite fields, it is well known that random linear
codes asymptotically achieve the GV bound [24, 25]. The same holds for rank metric
codes over finite fields [26, 27]. The GV bound for codes over rings was first explored
in [28], and later, in [29] it was proved that random codes over rings with an additive
weight also attain the GV bound.

Throughout this section, given q = pm, let R = GR(pr,m) be the Galois ring with
residue field Fq and nilpotency index r. Moreover, assume that the ambient space Rn

is equipped with a translation-invariant distance d. Note that the (closed) ball of center
x and radius ℓ in Rn, namely {y ∈ Rn | d(x, y) ≤ ℓ} has the same size for any center
x. Thus, in the following, we will not specify the center of the ball and we will set

Bd(R, n, ℓ) := |{y ∈ Rn | d(0, y) ≤ ℓ}| ,

that is, given a translation invariant distance, Bd(R, n, ℓ) is the volume of the (closed)
ball of radius ℓ in Rn. Therefore the volumes of the the Hamming, Lee and rank metric
balls in Rn are respectively denoted by BH(R, n, ℓ), BL(R, n, ℓ) and Brk(R, n, ℓ).
Finally, given a translation invariant distance d, we will denote by Ad(R, n, d) the
maximum number of codewords of a code in Rn with minimum distance d. That is,
AH(R, n, d), AL(R, n, d) and Ark(R, n, d) represent the maximum number of codewords
of a code in Rn with minimum distance d in the Hamming, Lee and rank metric
respectively.

Theorem 2.11. (Gilbert-Varshamov bound for additive distances, [29]) For a positive
integer n, assume Rn is equipped with an additive distance d. The maximal size of a
code in Rn having minimum distance d is

Ad(R, n, d) ≥ qrn

Bd(R, n, d− 1)
. (2)

An analogue of the Gilbert-Varshamov bound also holds for rank-metric codes.
Theorem 2.12 (Gilbert-Varshamov bound for rank distance, [26]). Given a positive
integer n, the maximal size of a code in Rn having minimum rank distance d is

Ark(R, n, d) ≥ qrn

Brk(R, n, d− 1)
.

If C is a linear code in Rn equipped with a translation invariant distance d, we will
say that C lies on the GV bound if

|C| − 1 <
qrn

Bd(R, n, d− 1)
≤ |C| .

In the following, we will specify the volume of the n-dimensional balls for each of
the three metrics considered in this work: Hamming, Lee, and rank.
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Proposition 2.13 (Volume of a Hamming-metric ball, [30]). Given n,w positive
integers, the volume of the n-dimensional Hamming ball of radius w in Rn is

BH(R, n, w) =

w∑
i=0

(
n

i

)
(q − 1)i.

Proposition 2.14 (Volume of a Lee-metric ball, [30, 31]). Let n,w be positive integers.
The volume of a radius w Lee-ball in Zn

pr , is BL(Zpr , n, w) =
∑w

i=0 2
i
(
n
i

)(
w
i

)
, for

pr ≥ 2w + 1. Otherwise, for pr < 2w + 1 the volume of the n-dimensional Lee ball is

BL(Zpr , n, w) =

w∑
i=0

2i
(
n

i

) i∑
ℓ=0

(−1)ℓ
(
i

ℓ

)(
w − ℓM

i

)
for pr = 2M + 1,

BL(Zpr , n, w) =

⌊ w
M ⌋∑
i=0

(−1)i
(
n

i

)
BL(Zpr , n, w −Mi) for pr = 2M.

To compute the volume of a rank-metric ball in Rn, where R is a Galois ring with
residue field of size q, we need to introduce some additional notations. We define the
set of compositions of K into r parts, denoted by C(r,K), as

C(r,K) :=

{
(k0, . . . , kr−1) | 0 ≤ ki ≤ K,

r−1∑
i=0

ki = K

}
.

Moreover, given a free R-module F of rank n, we denote by Nn,R(k0, . . . , kr−1) the
number of submodules of F with subtype (k0, . . . , kr−1). As shown in [29], this amount
is given by

Nn,R(k0, . . . , kr−1) := q
∑r−1

i=0 (n−
∑i

j=0 kj)
∑i−1

j=0 kj

r−1∏
i=0

[
n−

∑i−1
j=0 kj

ki

]
q

. (3)

Finally, we denote by W (R, n, i) the number of R-submodules of rank i of the free
R-module F of rank n , which is given by

W (R, n, i) :=
∑

(k0,...,kr−1)∈C(r,i)

Nn,R(k0, . . . , ks−1) . (4)

A proof of the following Proposition is provided in [32] for finite fields, and it can
be generalized to Galois rings as well.
Proposition 2.15 (Volume of a Rank-metric ball). Given n,m,w positive integers,
the volume of a rank metric ball of radius w in GR(pr,m)n is equal to the number
of m × n matrices of rank less or equal than w in Zpr . In particular, for every
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w ∈ {0, . . . ,min{n,m}}, Brk(GR(pr,m), n, w) is equal to

w∑
i=0

W (Zpr , n, i)

 ∑
(k0,...,kr−1)∈C(r,i)

r−1∏
ℓ=0

(
kℓ−1∏
j=0

(pm(r−ℓ) − pm(r−ℓ)(j+
∑ℓ−1

t=0 kt)

) ,

where W (Zpr , n, i) represents the number of Zpr -submodules of Zn
pr of rank i.

For completeness, we explicitly provide the volume of the rank-metric ball for finite
fields.
Proposition 2.16 (Volume of a Rank-metric ball over finite fields, [26]). The volume
of a rank metric ball of radius w in Fn

qm is equal to the number of m× n matrices of
rank less or equal than w in Fq. In particular, for every w ∈ {0, . . . ,min{n,m}},

Brk(Fqm , n, w) =

w∑
i=0

(
i−1∏
j=0

(qn − qj)(qm − qj)

qi − qj

)
.

In its asymptotic form, the GV bound offers a lower limit on the rate of the code,
rather than its cardinality.

Let R = GR(pr,m) be a Galois ring with |R| = qr and d be a distance on Rn,
which can be either an additive distance or the rank distance. In what follows, we
denote by N the maximum weight of an element in Rn. Note that, if d is an additive
distance in Rn and M is the maximum weight of an element in R, then N = nM . On
the other hand, if is the rank metric, then N = min{n,m}. Moreover, let δ be the
relative distance of the code, that is d = δN . We have that

lim
n→∞

1

n
logqr (Ad(R, n, d)) ≥ 1− lim

n→∞

1

n
logqr (Bd(,R, n, d)). (5)

It has been proven that the limit in the right-hand side of the previous equation
exists for an arbitrary additive distance and varies depending on the metric used.
For instance, if d is the Hamming metric the limit in the right hand side of (5) is in
particular the qr-ary entropy function hqr (δ). For the Lee distance, the values of this
limit, along with additional details, can be found in [14, 33]. Finally, the asymptotic
behaviour of rank metric over finite fields is studied in [26, 27].

It is well known that random codes equipped with an additive metric lie on
the GV bound with high probability [29], as do rank metric codes over finite fields
[26, 27]. However, to the best of our knowledge, it remains unknown whether a random
ring-linear code with rank metric achieves the GV bound.

3 Hard problems in Coding Theory

In this work, we will focus on two computationally-hard problems in coding theory,
which are at the basis of many code-based cryptosystems: the Codeword Finding
Problem (CFP) and the Syndrome Decoding Problem (SDP). These problems are known
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to be NP-complete for codes over fields equipped with the Hamming metric [34, 35],
and this result extends to codes over rings equipped with an additive metric as well [14].
Finally, the computational complexity of syndrome decoding and codeword finding in
the rank metric was studied in [36]. In the following, we will present the decisional
variant of these two problems for ring-linear codes equipped with a translation-invariant
metric. Throughout this section, assume that R = GR(pr,m) and d is a translation
invariant distance in Rn.
Problem 3.1 (d-Syndrome Decoding Problem over R – SDPd(R, H, s, w)).
Given H ∈ R(n−k)×n, s ∈ Rn−k and w ∈ N, decide if there exists a vector e ∈ Rn

such that wtd(e) ≤ w and He⊤ = s.
Problem 3.2 (d-Codeword Finding Problem over R – CFPd(R, H,w)). Given
H ∈ R(n−k)×n and w ∈ N, decide if there exists a vector c ∈ Rn such that wtd(c) ≤ w
and Hc⊤ = 0.

In the following, we will refer to generic problems with SDPd over R and CFPd over
R, or, for short, simply with SDP and CFP. For the aims of this work, we will assume
that a solution of fixed weight w always exists for the system Hx⊤ = s⊤. For this reason,
in the remainder of the paper, we will deal with the search variant of the problems,
where it is asked to find a vector solving the given instance. For random codes in Rn,
we can easily estimate the expected number of solutions to these problems, as follows.
Proposition 3.3. Let C ⊆ Rn be a linear code of subtype (k0, . . . , kr−1) and rate R. If
H ∈ R(n−k0)×n is a parity-check for C, s ∈ Rn−k0 , and w ∈ N, consider the syndrome
decoding problem SDPd(R, H, s, w). Denote with S the set made up of all the solutions
to this instance, that is, S := {x ∈ R : xH⊤ = s,wtd(x) ≤ w}. Then, on average

|S| = Bd(R, n, w)

(qr)n−k
.

Proof. The number of expected solutions is given by

E(|S|) = E(|{x ∈ Rn : xH⊤ = s, wtd(x) ≤ w}|)

=

w∑
i=0

E(|{x ∈ Rn : xH⊤ = s, wtd(x)}|)

= Bd(R, n, w)/(qr)n−k.

Note that, if r = 1, one get the expected number of solutions to the syndrome
decoding problem for random codes over finite fields. This result allows us to estimate
a value for which we expect the syndrome decoding problem to have only one solution.
Definition 3.4 (Uniqueness bound). Given C ⊆ Rn with rate R, the SDP Uniqueness
Bound corresponds to

w∗ := max
w∈N

{
Bd(R, n, w)

(qr)n−k
≤ 1

}
.

Notice that w∗ = δN , where δ is the relative distance of the code. Sometimes,
this expression is referred to (with abuse of notation) GV bound; however, this is not
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exactly correct: even if these two quantities coincide, they are semantically different as
the GV bound regards the existence of codes with some guaranteed minimum distance.

3.1 ISD algorithms for additive metrics

To the best of our knowledge, papers that directly address ISD for ring-linear codes
[12, 14, 19, 20] all focus on ISD with the Lee metric. Although these works only
consider the Lee metric, adapting their algorithms to the Hamming metric is quite
straightforward. The syndrome decoding problem has also been studied in its equiva-
lent LPN formulation for lattices over Z2λ with the Hamming metric in [13], which we
will see in more detail in Section 4.

In the following, we generalize the two-blocks algorithm presented in [14], allowing
the code to be equipped with any additive weight, and we analyze the resulting
algorithms. To help account for the asymptotic computational complexity, we focus on
Lee-Brickell and Prange’s ISD variants. Given an instance of SDP or CFP as input,
the Lee-Brickell algorithm aims to find an information set of the code that contains
v errors, and w − v errors outside the information set. Prange is a special case of
Lee-Brickell when v is set to 0. Below we describe these algorithms for codes over
Galois rings equipped with any additive metric, taking in mind that the Lee and
Hamming metrics are special cases of this more general setting.

Given a Galois ring R = GR(pr,m), an additive distance d over R, let M be the max-
imum weight that an element of R can assume. Moreover, for a vector x ∈ Rn, we will
denote by wtd(x) the weight of x with respect to the distance d. Finally, throughout
this section, let q := |R| = pmr. Let C ⊆ Rn be a linear code of rank K and subtype
(k0, k1, . . . , kr−1) and with parity check matrix H. Assume I is an information set for
C and, for convenience, say it consists of the first K columns, that is, I = {1, . . . ,K}.
Set J := IC = {K + 1, . . . , n}. The algorithm involves bringing H ∈ R(n−k0)×n into
systematic form by multiplying by an invertible matrix U ∈ R(n−k0)×(n−k0), so that

(UH)e⊤ =

(
A 1
pB 0

)
e⊤ = Us⊤.

The algorithm is based on the hope that the solution vector e has weight v in the
information set, and w − v in the remaining columns. We can therefore rewrite the
error vector as e = (eI , eJ), and the previous equation as

(UH)e⊤ =

(
A 1
pB 0

)(
e⊤I
e⊤J

)
=

(
s⊤1
ps⊤2

)
,

from which we obtain the following equations:{
Ae⊤I + e⊤J = s⊤1
pBe⊤I = ps⊤2

.
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We then compute the set P given by all vectors of weight v satisfying pBe⊤I = ps⊤2 .
For each eI ∈ P we therefore define eJ := s1 −Ae⊤I . If wtd(eJ ) = w − v then we have
successfully reconstructed the error vector, otherwise we start again from scratch by
selecting a new information set. The algorithm is schematically described in Algorithm 1.
Here T denotes the Galois ring GR(pr−1,m)

Algorithm 1: Lee-Brickell for ring-linear codes with additive distance

Input: H ∈ R(n−k0)×n, s ∈ Rn−k0 w ∈ N, v ≤ min{M ·K,w}
Output: Vector e ∈ Rn such that wtd(e) ≤ w and He⊤ = s⊤

1 Choose an information set I ⊆ [n] of size K and define J := [n] \ J ;

2 Compute a square matrix U ∈ R(n−k0)×(n−k0) such that:

(UH)I =

(
A
pB

)
(UH)J =

(
1n−K

0(K−k0)×(n−K)

)
Us⊤ =

(
s⊤1
ps⊤2

)
,

where A ∈ R(n−K)×K , B ∈ R(K−k0)×K , s1 ∈ R(n−K), s2 ∈ T (K−k0) ;

3 Compute the set P :=
{
e1 ∈ RK : wtd(e1) = v, pBe⊤1 = ps2

}
;

4 for e1 ∈ P do
5 if wtd(s1 −Ae⊤1 ) ≤ w − v then
6 return e such that eI = e1, eJ = s1 −Ae⊤1 ;

7 Start over with Step 1 and a new selection of I.

In the following we derive the time complexity of Algorithm 1. We stress that
this algorithm is a special case of the one shown in [10], and that the complexity
we obtain is simply a particularization of the formulas already present in it. Let us
recall the parameters that characterize the code, assuming they are functions of n:
k(n) = logq(|C|) is the R-dimension of C, k0(n) is the free rank, K(n) =

∑
i ki is the

rank. Since we are interested in estimating the asymptotic computational complexity,
we will work with the following quantities:

R := lim
n→∞

k(n)

n
, R0 := lim

n→∞

k0(n)

n
, RI := lim

n→∞

K(n)

n
.

Finally, regarding the algorithm parameters, w(n) represents the solution weight, while
v(n) is the algorithm’s internal parameter. We will also use the following notation:

W := lim
n→∞

w(n)

n
, V := lim

n→∞

v(n)

n
.

Recall that, given any additive distance d over R, the surface of an n-dimensional
sphere of radius v is given by:

Fd(R, n, v) := |{x ∈ Rn | wtd(x) = v}| .
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To lighten the asymptotic notation we further denote the asymptotic volume of this
ball as

Sd(R, R, V ) := lim
n→∞

1

n
log(Fd(R, k, v)) = R lim

k→∞

1

k
log(Fd(R, k, v)).

Proposition 3.5 (Complexity of Lee-Brickell). The asymptotic average complexity of
Algorithm 1 applied to an R-linear code equipped with an additive distance d is

Sd(R, 1,W )− Sd(R, 1−RI ,W − V ).

Proof. We can obtain the asymptotic complexity by computing the time required to
construct the set P and the time required to reconstruct the vector e in the last phase
of the algorithm. The construction of P requires constructing a sphere of radius v in
RK . The number of elements we need to test is therefore given by

Fd(R,K, v)
n→∞−−−−→ Sd(R, RI , V )

For Lee-Brickell, the number of iterations needed for the last part of the algo-

rithm is given by Fd(R, n, w)
(
Fd(R,K, v) · Fd(R, n−K,w − v)

)−1
, which grows

asymptotically as

Sd(R, 1,W )− Sd(R, RI , V )− Sd(R, 1−RI ,W − V ).

Putting everything together, the thesis follows.

In the following we also present Prange’s algorithm for the case of ring-linear codes
equipped with an additive metric. We stress that Prange is a specific instance of the
Lee-Brickell algorithm described above, obtained by setting the internal parameter v
in the algorithm to zero.

13



Algorithm 2: Prange’s ISD for ring-linear codes with additive metric

Input: H ∈ R(n−k0)×n, s ∈ Rn−k0 w ∈ N
Output: Vector e ∈ Rn such that wtd(e) ≤ w and He⊤ = s⊤

1 Choose an information set I ⊆ [n] of size K and define J := [n] \ J ;

2 Compute a square matrix U ∈ R(n−k0)×(n−k0) such that:

(UH)I =

(
A
pB

)
(UH)J =

(
1n−K

0(K−k0)×(n−K)

)
Us⊤ =

(
s⊤1

0(K−k0)×1

)
,

where A ∈ R(n−K)×K , B ∈ R(K−k0)×K , s1 ∈ R(n−K) ;
3 if wtd(s1) ≤ w then
4 return e such that eI = (0, . . . , 0), eJ = s1 ;

5 Start over with Step 1 and a new selection of I.

As a consequence of Proposition 3.5, we obtain the following asymptotic time
complexity for Prange’s algorithm.
Proposition 3.6. (Complexity of Prange [14, Theorem 4.1]) The asymptotic average
complexity of Algorithm 2 applied to an R-linear code equipped with an additive distance
d is

Sd(R, 1,W )− Sd(R, 1−RI ,W ).

3.2 Algorithms in the rank metric

In the following, we will focus on the rank metric case. Unlike the previous cases, this
metric is not additive and therefore requires a different approach.
Information set decoding algorithms heavily exploit the additivity of the metric, there-
fore they cannot be directly transposed in a context where the code is equipped with
the rank metric. In the case of rank-metric codes over finite fields, it is still possible to
find a sort of generalization, in which the algorithm searches for a set of positions that
contain error support. This generalization was introduced in [37] and then improved in
[7, 38, 39]. In particular, [7] proposes an algorithm that, generalizing classical ISD
algorithms, aims to find the support of an error vector. While for codes equipped with
an additive metric, finding the error support coincides with finding the indices for
which the entries of the error vector are non-zero, in the rank-metric case, it translates
into finding the submodule generated by the coordinates of the vector. In this sense,
a solving algorithm tries to guess the subspace defined by the error support and
subsequently solves a system of linear equations to find the coordinates of that error.

In a recent paper, two new algorithms were introduced to extend the standard
ones to codes over finite principal ideal rings [8]. As solving the Syndrome Decoding
Problem over finite principal ideal rings reduces to solve the same problem over finite
chain rings [8, Proposition 2.9], our focus will be exclusively on finite chain rings, and
especially on Galois rings. The substantial difference between the two new proposals
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lies in the use cases, i.e. when n is greater or less than m. For this work, we consider
only the first case and report below the results necessary to understand the algorithm.

Throughout this section, given positive integers n,m and q = pm, assume that
n ≥ m and S = GR(pr,m) is the Galois ring with residue field Fq and nilpotency
index r. Note that S is a Galois extension of R := Zpr and, in particular, it is a free
R-module of rank m. The following result is taken from [8].
Proposition 3.7. Let C ⊆ Sn be a linear code of subtype (k0, . . . , kr−1) and let H be
a parity-check for C. Given s ∈ Sn−k0 , we want to solve the rank-syndrome decoding
problem SDPrk(S, H, s, w)

He⊤ = s⊤, (6)

where e = (e1, . . . , en) ∈ Sn and rk(e) = w. Let F be a free R-submodule of S of rank
u. Assume that suppR(e) ⊆ F . Let {f1, . . . , fu} be a basis of F and xi,j ∈ R such that,
for all j ∈ {1, . . . , n},

ej =

u∑
i=1

xi,jfi. (7)

Then, Equation (6) with unknown e can be transformed into a system of linear equations
over R (that we denote with E1) with m(n− k0) equations and n× u unknowns xi,j.

Proposition 3.7 allows to describe a decoding algorithm that generalizes ISD also
for codes in the rank metric. We report this algorithm below. In line with [8, 40], we
will set u = ⌊(n− k0)m/n⌋.

Algorithm 3: Error support attack

Input: H ∈ S(n−k0)×n, w ∈ N, s ∈ Sn−k0 .
Output: Vector e ∈ Sn such that rk(e) ≤ w and He⊤ = s⊤

1 Choose a free R-submodule F of S of rank u
Choose a basis {f1, . . . , fu} of F
Solve Equation (E1) of Prop. 3.7
if E1 admits a solution then

2 Use a solution of E1 to compute e as in Eq. 7
if rk(e) ≤ w then

3 return e

4 Start over with Step 1 and a new selection of F .

Below we also report the analysis of the asymptotic complexity of Algorithm 3.
Accordingly to Equations (3) and (4), the number of submodule of rank i of a free
R-module of rank n is given by W (R, n, i), which is equal to

∑
(k0,...,kr−1)∈C(r,i)

q
∑r−1

i=0 (n−
∑i

j=0 kj)
∑i−1

j=0 kj

r−1∏
i=0

[
n−

∑i−1
j=0 kj

ki

]
q

, (8)
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where q is the size of the residue field of R and r is its nilpotency index.
Proposition 3.8. (Complexity of error support attack, [8, Theorem 5.4]) On average,
the complexity of Algorithm 3 is given by

O

(
m(n− k)n2u2 · W (R,m,w)

W (R, u, w)

)
,

where W (R, u, w) and W (R,m,w) are defined as in Eq. (8), and

W (R,m,w)

W (R, u, w)
≈ |R|r⌊

mk0
n ⌋ .

3.3 Solving SDP using subcodes

In this section, we will introduce the fundamental tools for designing new algorithms
for both CFP and SDP, in all the metrics presented previously. The main idea is to
work with subcodes rather than the entire code. This technique results in smaller
instances than the original problem, which can affect the algorithm’s efficiency. In
fact, given a ring-linear code C ⊆ Rn of rank K, it is natural to consider a chain of
subcodes, all of which have rank K, namely the filtration subcodes.

Through this section, let R = GR(pr,m) be the Galois ring with residue field
Fq and nilpotency index r. Recall that R is local and its unique maximal ideal is
⟨p⟩ = pGR(pr,m).
Definition 3.9. Given an R-linear code C, for each 0 ≤ i ≤ r − 1 we define the i-th
filtration subcode Ci of C as

Ci := C ∩ ⟨pi⟩ .

The filtration subcodes form a chain, namely

Cr−1 ⊆ Cr−2 ⊆ · · · ⊆ C1 ⊆ C0 = C .

The r − 1 filtration subcode is referred to as the socle of the code.
Lemma 3.10. ([16, Lemma 2.9]) For any 0 ≤ i ≤ r − 1 there exists an isomorphism
of (R/pr−iR)-modules φ(i) : piRn → (R/pr−iR)n. In particular pr−1Rn and Fn

q are
isomorphic as Fq-vector spaces.

In the following, we will write Tr−i to denote the ring R/pr−iR = GR(pr−i,m).
Remark 3.1. Consider an R-linear code C ⊆ Rn and let Ci be the i-th filtration subcode.
From the Lemma 3.10 follows that Ci can be identified with a code over Tr−i,which
will be denoted with Ci.

In order to make the syndrome decoding problem more feasible, the idea is to reduce
the weight of the solution, which can be done by multiplying by appropriate scalars.
Suitable choices of scalars, not only lead to a reduction in the weight of the solution
but also allow us to transform the instance into a new instance over a smaller alphabet.

In the following, we formally define this framework.
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Definition 3.11. Given a positive integer n, we define the i-th projection onto Tr−1 as

π(i) : Rn −→ T n
r−i, z 7→ z(i) := π(i)(z) ,

where z(i) is the unique element in Tr−i such that piz = piz(i).
Later on with the discussion, to keep the notations simple, we will write x(i) to

denote π(i)(x). Moreover we will set x := x(r−1) and C = Cr−1.

If d is an additive metric or the rank metric, consider a linear code C ⊆ Rn of
subtype (k0, . . . , kr−1) with parity check matrix H. Following the uniqueness bond
3.4, assume e is the unique solution to SDPd(R, H, s, w). Then e(i), the projection of e

onto Tr−i, satisfies piHe(i)
⊤
= pis⊤. Notice that piH is the parity-check of the i-th

filtration subcode identified through φ(i) with a code over Tr−i. In what follows, we will

denote the parity-check of Ci with H
(i)
. Moreover pis can be also seen as a vector with

coordinates in Tr−i. Hence, we find that e(i) is a solution of the Syndrome Decoding

Problem SDPd(H
(i)
, s(i), w) with input Ci. In the following, we will refer to the latter

problem as the projected problem or to the instance over the smaller alphabet as the
projected instance. In the following sections, we will see that, for specific choices of
the metric, such as Hamming or rank, e(i) is the unique solution to the Syndrome
Decoding Problem with input Ci. In the case of the Lee metric, this is not always true
and may require additional assumptions. In particular, if the uniqueness is preserved,
we can exploit the information obtained from solving the projected instance to speed
up the decoding of the original problem.

4 Hamming Case

In this section, we study the practical hardness of solving the codeword finding
problem and the syndrome decoding problem for linear codes equipped with the
Hamming metric. In particular, we will study how the Hamming weight of a vector
decreases when projected onto a smaller ring. We then introduce a new algorithm
that speeds up decoding for codes over rings. The underlying idea is similar to that
presented in [13], but we describe it in terms of linear codes rather than lattices.

Throughout this section, given q = pm, let R = GR(pr,m) be the Galois ring with
residue field Fq and nilpotency index r.

As a consequence of Proposition 3.5, we can determine the complexity of Algorithm
1 in the Hamming metric case.
Corollary 4.1 (Complexity of Lee-Brickell with the Hamming metric). The asymptotic
average complexity of Algorithm 1 applied to an R-linear code equipped with the
Hamming metric is given by:

lim
n→∞

1

n
log

(
qrhqr (

w
n )n

qrhqr (
v
K )Kqrhqr (

w−v
n−K )(n−K)

)
. (9)
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Proof. In the Hamming metric, the asymptotic volume of an n-dimensional ball of
radius t over R can be estimated as BH(R, n, t) ≈ qrhqr (

t
n )n, from which

BH(R, n, t) ≈ qrhqr (
t
n )n − qrh1(

t−1
n )n ≈ qrhqr (

t
n )n.

Therefore, when considering the Hamming metric, Algorithm 1 requires approximately
FH(R,K, v) ≈ qrhqr (

v
K )K operations to construct set P . Similarly, the number of

iterations needed to execute the last part of the algorithm is given by

FH(R, n, w)

(FH(R,K, v) · FH(R, n−K, t− v))
≈ qrhqr (

w
n )n

qrhqr (
v
K )Kqrhqr (

w−v
n−K )(n−K)

.

Asymptotically, the complexity is therefore given by

lim
n→∞

1

n
log

(
qrhqr (

w
n )n

qrhqr (
v
K )Kqrhqr (

w−v
n−K )(n−K)

)
.

The following holds as a consequence of the previous result.
Corollary 4.2 (Complexity of Prange with the Hamming metric). The asymptotic
average complexity of Algorithm 2 applied to an R-linear code equipped with the
Hamming metric is given by:

lim
n→∞

1

n
log

(
qhq(

w
n )n

qhq(
w

n−K )(n−K)

)
. (10)

4.1 Weights and projections

Assume the ambient space is endowed with the Hamming metric, and x is a vector in
Rn. When we project x onto T n

r−i, 0 ≤ i ≤ r − 1, it is clear that the Hamming weight
of the projected vector decreases. In the following, we will provide an estimate of how
the Hamming weight of a vector is reduced when projected onto Tr−i.
Proposition 4.3. Given a random vector e ∈ Rn of Hamming weight w, let e(i) be
the projection of e onto Tr−i. The Hamming weight of e(i) is, on average, reduced to

w(i) := w

(
1− qi − 1

qr − 1

)
.

Proof. In order to find the average weight w(i) of e(i) ∈ Tr−i, we need to find
E
[
wtH(e

(i))| wtH(e) = w
]
. Since the coordinates of e are i.i.d. random variables, it its

sufficient to compute
∑n

j=1 E
[
wtH

(
e
(i)
j

)
| wtH(e) = w

]
. When we project onto Tr−i,
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the qi elements lying in pr−iR are mapped to zero. Therefore, we obtain

w(i) = n · w
n

·
(
qr − 1− (qi − 1)

qr − 1

)
,

and hence, the claim follows.

Corollary 4.4. Given a random vector e ∈ Rn of Hamming weight w, let e be the
projection of e onto its base field R/pR. The Hamming weight of e is, on average,
reduced to

w := w

(
1− qr−1 − 1

qr − 1

)
.

Here is an example illustrating how the weight of a random vector over an integer
residue ring decreases when projected onto its base field.
Example 4.1. Given n = 70 and w ∈ N, consider a vector e ∈ Zn

53 of Hamming weight
w. We have just shown that the Hamming weight of e projected onto the base field
decreases linearly in the weight of the initial vector. Figure 1 provides a graphical
representation of this fact.
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Fig. 1: On the x-axis we put the Hamming weights that a vector can assume, while on
the y-axis we draw (in teal) the expected weight that the same vector will have once
projected on the base field.
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4.2 Solving CFP

In this following, we will show that algorithms for solving the codeword finding
problem over rings are more efficient than algorithms over fields of the same size.
For both problems, we are interested in instances for which the solution is unique, and
consequently we will just consider weights obtained from the uniqueness bound, or
equivalently from the GV bound.

Let Fpm be the Galois field with pm elements and let C be a linear code in Fn
pm

equipped with the Hamming metric. We estimate the minimum distance of C using the
GV bound over finite fields, that is, we will set w = δN = δn, where δ is the relative dis-
tance of the code. Given a random instance CFPH(Fpm , H,w), Proposition 4.1 provides
an estimates of the asymptotic complexity of Lee-Brickell’s algorithm in this context.

We now turn to the codeword finding problem over finite rings. GivenR = GR(pr,m)
with residue field Fpm , let C be an R-linear code equipped with the Hamming metric.
Remark 4.1. Given x ∈ Rn, for any 1 ≤ i ≤ r − 1, it holds that wtH(p

ix) ≤ wtH(x).
As a result, we can always find minimum Hamming-weight codewords in the socle.

Accordingly to Remark 3.1, as the socle can be identified with a linear code over
Fpm , one can simply look for the minimum weight codeword in the code C, taking values
in Fpm . In other words, we have that the complexity to solve CFPH over R is the same
as solving CFPH over Fpm . In particular, increasing r does not lead to modifications for
the time complexity of Lee-Brickell over the rings, since it only depends on the size of
its residue field. As before, Proposition 4.1 returns the complexity of this algorithm.

4.3 Solving SDP

In this section, we study the practical hardness of the syndrome decoding problem,
focusing on instances with a unique solution. In this regime, for both codes over fields
and rings, we will compute the complexity of algorithms that solve this problem. As
shown in Proposition 4.1, Algorithm 1 applied to codes over rings or fields results in the
same level of complexity. However, in the ring case, we can leverage the optimizations
detailed in the previous section, thereby significantly improving upon the “naive”
approach. This results in a more refined and efficient solution, enhancing performance
and reducing computational overhead compared to a straightforward, unoptimized
approach.

To the best of our knowledge, the approach we propose is not known to the coding
community. However, an analogue formulation for lattices defined as Z2λ has been
recently proposed in [13]. In this sense, in this specific metric, our work is not new and
merely offers a different vocabulary to describe the same technique. We describe this
approach in the following.

From now on, let R = GR(pr,m) and Tr−i = R/piR. In line with Definition 3.11,
let π(i) be the i-th projection over Tr−i. Given a linear code C ⊆ Rn, let Ci the i-th
filtration subcode identified with a code over Tr−i. If H ∈ R(n−k0)×n is a parity-check
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for C, we will denote with H
(i)

a parity-check for Ci.

In what follows, we will extensively use the following facts.
Proposition 4.5. Given a linear code C ⊆ Rn, for any 0 ≤ i ≤ r− 1 let Ci be the i-th
filtration subcode. The minimum Hamming distance of C and Ci coincide.

Proof. Let dH(C) and dH(Ci) be the minimum hamming distance of C and Ci respectively.
Since Ci is a subcode of C, one get dH(C) ≤ dH(Ci). On the other hand, let c̃ be a
minimum weight codeword in C. From Remark 4.1 we get that pic̃ is a codeword in Ci
whose weight is less or equal than the weight of c̃, and hence dH(Ci) ≤ dH(C).

Remark 4.2. Let d be the minimum distance of C and Ci. Since the isomorphism φ(i)

preserves the Hamming weight, the minimum distance of Ci is d.
Let C ⊆ Rn be a linear code of subtype (k0, . . . , kr−1) and let H ∈ R(n−k0)×n be a

parity-check matrix for C. Let s ∈ Rn−k0 , w ∈ N obtained according to the uniqueness
bound, and consider the syndrome decoding problem SDPH(R, H, s, w). Below is an
overview of the algorithm we will present.

- Consider the instance with input the i-th filtration subcode identified as a code

over Tr−i, namely SDPH(Tr−i, H
(i)
, s(i), w(i)), where H

(i) ∈ R(n−k0−
∑i

j=1 kj)×n

and s(i) ∈ T n−k0−
∑i

j=1 kj

r−i .

- call ISD to find e(i) ∈ T n
r−i with weight less or equal then w, such that H

(i)
e(i)

⊤
=

s(i);
- exploit e(i) to reconstruct e.

The core intuition behind the procedure is that, if e is a solution of an instance of the

form SDPH(R, H, s, w), then e(i) is the solution of SDPH(Tr−i, H
(i)
, s(i), w(i)) instance.

From Remark 4.2, we know that the minimum distance of C and Ci coincides. Hence,
from uniqueness bound 3.4, it follows that, with high probability e(i) is the unique
vector with weight less or equal than w and with syndrome s(i). After having recovered
e(i), we can retrieve e by considering that

Supp(e(i)) ⊆ Supp(e).

This information can be used to speed-up decoding in the final step. We give an
example of the resulting algorithm, using Prange’s ISD as a subroutine.
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Algorithm 4: Improved Prange for ring linear codes, Hamming metric

Input: H ∈ R(n−k0)×n, s ∈ Rn−k0 , w ∈ N
Output: Vector e ∈ Rn such that wtH(e) ≤ w and He⊤ = s⊤

// Base case

1 if r == 1 then
2 Call Algorithm 2 with input H, s, w to find e with weight ≤ w, such that

He⊤ = s⊤ ;
3 return e

// Recursive step

4 Compute H
(1) ∈ T (n−k0−k1)×n

r−1i ;

5 Compute s(1) = T n−k0−k1
r−1 ;

6 Compute w(1) = w
(
1− qi−1

qr−1

)
;

7 Call Algorithm 4 with input H
(1)

, s(1), w(1) to find e(1) with weight ≤ w(1),

such that H
(1)

e(1)
⊤
= s(1)

⊤
;

// Reconstruct solution

8 Set J ′ = Supp(e(1)), w′ = wtH(e
(1));

9 while True do
10 Sample J ′′ ⊆ {1, . . . , n} \ J ′, with size (n−K − w′);
11 Set J = J ′ ∪ J ′′;

12 Compute a square matrix U ∈ R(n−k0)×(n−k0) such that:

(UH)I =

(
A
pB

)
(UH)J =

(
1n−K

0(K−k0)×(n−K)

)
Us⊤ =

(
s⊤1

0(K−k0)×1

)
,

where A ∈ R(n−K)×K , B ∈ R(K−k0)×K , s1 ∈ R(n−K)

if wtH(s1) ≤ w then
13 return e such that eI = (0, . . . , 0), eJ = s1.

Proposition 4.6. Let w ∈ N be obtained according to the uniqueness bound. Then,
Algorithm 4 runs in time

maxi∈{0,...,r−1}
{
SH(Tr−i, 1−W (i+1),W (i) −W (i+1))− SH(Tr−i, 1−RI ,W

(i) −W (i+1))
}
,

where W (i) = limn→∞

(
w(i)(n)

n

)
.

Proof. We observe that Algorithm 4, with input {H, s, w}, recursively reduces the
initial problem into r subproblems. For i ∈ {1, . . . , r}, we therefore denote by τi the
complexity of the algorithm to solve the i-th level, with i = r − 1 as the base case. We

also denote by {H(i)
, s(i), w(i)} the inputs of these subproblems. Let’s first consider
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the base case. In what follows we will set w(r) = 0 In this case the complexity is the
same as Algorithm 2, and can be estimated using Proposition 3.6 as

τr−1 :=

(
n

w(r−1)

)(
n−K
w(r−1)

) =

(
n

w(r−1)−w(r)

)(
n−K

w(r−1)−w(r)

) ,
which grows asymptotically as

SH(T1, 1,W (r−1))− SH(T1, 1−RI ,W
(r−1)).

At this point, on average w(r−1) positions of the support of the solution vector are
known, which will therefore be excluded from the search in the subsequent steps of the
algorithm. Let us consider the immediately higher level. In this case the complexity of
the reconstruction algorithm is given by

τr−2 :=

(
n−w(r−1)

w(r−2)−w(r−1)

)((n−w(r−1))−(K−w(r−1))

w(r−2)−w(r−1)

) .
The subsequent steps of the algorithm behave in the exact same way, therefore, for
i ∈ {0, . . . , r − 3},

τi =

(
n−w(i+1)

w(i)−w(i+1)

)(
n−K

w(i)−w(i+1)

) ,
which grows asymptotically as

SH(Tr−i, 1−W (i+1),W (i) −W (i+1))− SH(Tr−i, 1−RI ,W
(i) −W (i+1)).

The total complexity is therefore given by the sum of the individual complexities,
which grows asymptotically as maxi∈0≤i≤r−1 {τi}.

5 Rank Case

In this section, we investigate both the codeword finding and syndrome decoding
problems for rank-metric codes over Galois rings. Specifically, we examine how the
rank of a vector reduces when mapped to a smaller ring. Following that, we propose a
novel algorithm designed to accelerate the decoding process for codes over rings.

Throughout this section, given q = pm, let S = GR(pr,m) be the Galois ring
with residue field Fq and nilpotency index r. In particular, S is the Galois extension
of R := Zpr . Moreover, for any 0 ≤ i ≤ r − 1 we will denote by Tr−i the ring
S/piS = GR(pr−i,m). Finally, accordingly to Definition 3.11 we set π(i) to be the i-th
projection onto Tr−i.
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5.1 Weights and projections

If we project the vector x ∈ Sn onto T n
r−i, for 1 ≤ i ≤ r − 1, it is clear that its rank

may decreases. In the following, we will provide an estimate of how the rank of a vector
is reduced when projected onto Tr−i.
Proposition 5.1. Given a random vector e ∈ Sn with rank w, let e(i) be the projection
of e onto Tr−i. The weight of e(i) is, on average, reduced to

w(i) =

w∑
t=0

t ·

∑
k0+···+kr−1−i=t

kr−i+···+kr−1=w−t

Nn,q(k0, k1, . . . , kr−1)∑
(k0,··· ,kr−1)∈C(r,w) Nn,q(k0, . . . , kr−1)

 .

Proof. In order to find the average weight w(i) of e(i) ∈ Zpr−i , we need to find

E[rk(e(i))| rk(e) = w] = E[rk(⟨e(i)1 , . . . , e(i)n ⟩Zpr−i ) | rk(⟨e1, . . . , en⟩R) = w] ,

which can be computed as

w∑
t=0

t · P(rk(⟨e(i)1 , . . . , e(i)n ⟩Zpr−i ) = t | rk(⟨e1, . . . , en⟩R) = w] .

Assume that (e1, . . . , en) is an R-submodule of subtype (k0, . . . , kr−1). Then the Zpr−i -

module (e
(i)
1 , . . . , e

(i)
n ) has rank k0+ · · ·+kr−1−i. Hence (e

(i)
1 , . . . , e

(i)
n ) has rank t if and

only if k0 + · · ·+ kr−1−i = t. As the number of submodules satisfying that condition is∑
k0+···+kr−1−i=t

kr−i+···+kr−1=w−t

Nn,q(k0, k1, . . . , kr−1),

the claim follows.

Corollary 5.2. Given a random vector e ∈ Sn of rank weight w, let e be the projection
of e onto its base field S/pS. The weight of e is, on average, reduced to

w(r−1) =

w∑
t=0

(
t ·
∑

k1+···+kr−1=w−t Nn,q(t, k1, . . . , kr−1)∑
(k0,··· ,kr−1)∈C(r,w) Nn,q(k0, . . . , kr−1)

)
.

Example 5.1. Given n = 70, S = GR(53, 40), and w ∈ N, consider e ∈ Sn of rank
weight w. We have just shown that the rank weight of x decreases (as a function of w)
when projected onto its residue field. Figure 2 provides a graphical representation of
this fact.
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Fig. 2: On the x-axis we put the Hamming weights that a vector can assume, while on
the y-axis we draw (in teal) the expected weight that the same vector will have once
projected on the base field.

5.2 CFP

Analogously to the Hamming metric case, in this section, we will show that algorithms
for solving the codeword finding problem over rings are more efficient than algorithms
over fields of the same size.

Given the Galois field Fpm with prime field Fp, consider a rank-metric code
C ⊆ Fn

pm with parity check H(n−k0)×n. In the following, we will study the codeword
finding problem CFPrk(Fpm , H,w). Since a random code attains the GV bound with
high probability [26, 27], we estimate the minimum value of w for which the instance
is not vacuous (i.e., at least one solution exists with high probability) using the GV
bound. Given a random instance CFPrk(Fpm , H,w), Proposition 3.8 provides an
estimates of the asymptotic complexity of the error support attack in this context.

We now turn to the codeword finding problem over rings. Let S = GR(pr,m) be
the Galois extension of R = Zpr , and consider a linear code C ⊆ Sn equipped with the
rank-metric.
Remark 5.1. Given x ∈ Sn, for any 1 ≤ i ≤ r − 1, we know that rkR(pix) ≤ rkR(x).
As a result, we can always find minimum weight codewords in the socle.

Accordingly to Remark 3.1, as the socle can be identified with a linear code over
Fpm , one can simply look for the minimum weight codeword in the code C, taking values
in Fpm . In other words, the complexity of solving CFPrk(R, H,w) is equivalent to that
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of solving CFPrk(Fpm , H,w). Notably, increasing r does not affect the time complexity
of the error support attack on rings; instead, it is determined solely by the size of the
residue field. As before, Proposition 3.8 returns the complexity of this algorithm.

5.3 SDP

In this section, we introduce a new algorithm for the syndrome decoding problem in
rank metric over Galois rings. The main idea is to transform an SDP instance into an
instance over a smaller alphabet and then solve the problem in this new setting. We
describe the bigger picture of the algorithm in the following.

From now on, let S = GR(pr,m) be the Galois extension of R = Zpr and let
Ti := GR(pr−i,m). In line with Definition 3.11, let π(i) be the i-th projection over
Tr−i. Given a linear code C ⊆ Sn, let Ci the i-th filtration subcode identified with a

code over Tr−i. If H ∈ S(n−k0)×n is a parity-check for C, we will denote with H
(i)

a
parity-check for Ci.

Similar to the Hamming-metric case, our algorithm relies on the following fact, the
proof of which follows the same steps as the proof of Proposition 4.5.
Proposition 5.3. Given a linear code C ⊆ Sn, for any 0 ≤ i ≤ r − 1 let Ci be the i-th
filtration subcode. The minimum rank distance of C and Ci coincide.
Remark 5.2. Let d be the minimum rank-distance of C and Ci. Since the isomorphism
φ(i) preserves the rank weight, the minimum distance of Ci is d.

Let C ⊆ Sn be a linear code of subtype (k0, . . . , kr−1) and let H ∈ S(n−k0)×n be a
parity-check matrix for C. Let s ∈ Rn−k0 , w ∈ N chosen accordingly to the uniqueness
bound, and consider the syndrome decoding problem SDPrk(R, H, s, w).
As for the Hamming case, the main steps of the algorith are:

- Consider the instance with input the i-th filtration subcode identified as a code

over Tr−i, namely SDPrk(Tr−i, H
(i)
, s(i), w(i)), where H

(i) ∈ R(n−k0−
∑i

j=1 kj)×n

and s(i) ∈ T n−k0−
∑i

j=1 kj

r−i .

- call ISD to find e(i) ∈ T n
r−i with weight less then w, such that H

(i)
e(i)

⊤
= s(i);

- exploit e(i) to reconstruct e.
The core intuition behind the procedure is that, if e is a solution of the SDPrk(S, H, s, w)

instance over S, then e(i) is a solution of the SDPrk(Tr−i, H
(i)
, s(i), w(i)) over Tr−i.

From Remark 5.2, we know that the minimum distance of C and Ci coincides.
Therefore, from the uniqueness bound 3.4 it follows that, with high probability, e(i)

is the unique solution to the rank syndrome decoding problem H
(i)
e(i)

⊤
= s(i)

⊤
.

After we find e(i) = (e
(i)
1 , . . . , e

(i)
n ), we can retrieve e by taking into account that the

R-support of e contains the Zpr−i support of e(i). This information can be used to
speed-up decoding in the final step.

We give an example of the resulting algorithm, using the error support attack with

n ≥ m as a subroutine. In line with [8, 40], we will set u = ⌊ (n−k0)m
n ⌋.
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Algorithm 5: Improved error support attack for ring linear codes

Input: H ∈ S(n−k0)×n, w ∈ N, s ∈ Sn−k0

Output: Vector e ∈ Sn such that rk(e) ≤ w and He⊤ = s⊤

// Base case

1 if r == 1 then
2 Call Algorithm 3 with input H, s, w to find e with weight ≤ w, such that

He⊤ = s⊤ ;
3 return e

// Recursive step

4 Compute H
(1) ∈ T (n−k0−k1)×n

r−1 ;

5 Compute s(1) = T n−k0−k1
r−1 ;

6 Compute w(1) as in Equation (5.1) ;

7 Call Algorithm 5 with input H
(1)

, s(1), w(1) to find e(1) with weight ≤ w(1),

such that H
(1)

e(1)
⊤
= s(1)

⊤
;

// Reconstruct solution

8 Set J = Supp(e(1)), w′ = rk(e(1));
9 while True do

10 Choose a free R-submodule F of S of rank u such that J ⊆ F (1) ;
11 Choose a basis {f1, . . . , fu} of F

Solve Equation (E1) of Prop. 3.7
if E1 admits a solution then

12 Use a solution of E1 to compute e as in Eq. (7)
if rk(e) ≤ w then

13 return e

Proposition 5.4. Let w ∈ N be obtained according to the uniqueness bound. Then,
Algorithm 5 runs in time

τ = max
{
qw,m(n−K)n2u2qw

(r−1)⌊mK/n⌋
}
.

Proof. Similarly to the proof of Prop. 4.2, notice that Algorithm 5, with input {H, s, w},
recursively reduces the initial problem into r subproblems. For i ∈ {0, . . . , r − 1}, we
denote by τi the complexity of the algorithm to solve the i-th level, with i = r − 1

as the base case and i = 0 as the last one. We also denote by {H(i)
, s(i), w(i)} the

inputs of these subproblems. We observe that, as i varies in the set {1, . . . , r − 1}, the
dimensions of the inputs of the problem vary accordingly, in particular

(
H

(i)
, s(i)

)
∈
(
T (n−k0+

∑i
j=1 kj)×n

r−i , T n−k0+
∑i−1

j=1 kj

r−i

)
.
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Consider the base case, with input H
(r−1)

, s(r−1), w(r−1), where w(r−1) has been
obtained using Prop. 5.1. The complexity here is the same as Algorithm 3, which can
be estimated using Prop. 3.8 as

τr−1 = m(n−K)n2u2

(
W (T1, u, w(r−1))

W (T1,m,w(r−1))

)
≈ m(n−K)n2u2qw

(r−1)⌊mK/n⌋.

Let e(r−1) be the output produced by this subroutine. We know that e(r−1) =(
e
(r−1)
1 , . . . , e

(r−1)
n

)
has rank w(r−1). Without loss of generality, let us therefore assume

that {e(r−1)
1 , . . . , e

(r−1)

w(r−1)} is a generating set for the support of e(i), namely

⟨e(r−1)
1 , . . . , e(r−1)

n ⟩Zp = ⟨e(r−1)
1 , . . . , e

(r−1)

w(r−1)⟩Zp .

Let us consider the immediately higher level. We observe that the inputs of this

subproblem are given by H
(r−2) ∈ T (n−K+kr−1)×n

2 and s(r−2) ∈ T (n−K+k1)
2 . Notice

that
e(r−2) =

(
e
(r−1)
1 + λ(r−1,1)p, . . . , e

(r−1)
n + λ(r−1,n)p

)
.

When we are asked to find an error of weight w(r−2) and syndrome s(r−2), we must
find a subspace that contains the support of the error vector. As seen at the level
below, the support of e(r−2) can be written as

⟨e(r−1)
1 + λ(r−2,1)p, . . . , e

(r−1)

w(r−1) + λ(r−2,w(r−1))p, λ(r−2,w(r−1)+1)p, . . . , λ(r−2,w(r−2))p⟩Z2
,

where each λ(r−2,j) is an element of the residue field Fq, for each j ∈ {1, . . . , w(r−2)}.
As a consequence, in at most τr−2 = qw

(r−2)

attempts we are able to solve the associated
subproblem. The subsequent steps of the algorithm work in a similar way, with a

complexity respectively given by τi = qw
(i)

, therefore the total complexity can be
expressed as

τ = max
i∈{1,...,r}

τi = max
{
qw,m(n−K)n2u2qw

(r−1)⌊mK/n⌋
}
.

6 Lee Case

In the case of the Lee metric, we consider codes over the integer residue ring Zr
p,

where p is a prime and r is a positive integer. The Lee metric case is more complex
than the Hamming and rank metric cases. Firstly, multiplying a codeword by pr−1

does not necessarily reduce its weight, meaning we cannot always find minimal weight
codewords in the socle. Additionally, the coordinates of vectors with low Lee weight
(i.e., those below the GV bound) are not uniformly distributed in Zpr as low Lee weight
coordinates are more likely. For these reasons, we cannot fully apply the previous
framework to the codeword finding problem or the syndrome decoding problem.
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Proposition 6.1. (Complexity of Lee-Brickell in Lee metric [10, Theorem 4.1]) The
asymptotic average complexity of Algorithm 1 applied to an linear code in Zn

pr equipped
with the Lee metric is given by:

lim
n→∞

1

n
log

(
BL(Zpr , n, w)

BL(Zpr , n−K,w)

)
.

Proposition 6.2. (Complexity of Prange in Lee metric [10, Theorem 4.1]) The
asymptotic average complexity of Algorithm 2 applied to an linear code in Zn

pr equipped
with the Lee metric is given by:

lim
n→∞

1

n
log

(
BL(Zpr , n, w)

BL(Zpr ,K, v)BL(Zpr , n−K,w − v)

)
.

6.1 Weights and projections

In this section, we will show how the Lee weight of a vector decreases when projected
onto a ring with a smaller size.

We start by analyzing the composition of a randomly chosen vector from a Lee-sphere
of a fixed radius.
Lemma 6.3 ([19], Lemma 1). Consider a vector x ∈ Zn

pr chosen uniformly at random
from the n-dimensional Lee sphere of radius w. For any j ∈ Zpr ,

P[xi = j| wtL(x) = w] =
exp(−βwtL(j))∑

ℓ∈Zpr
exp(−βwtL(ℓ))

, (11)

where, given M = ⌊pr/2⌋, β is the unique real solution to the constraint

t/n =

(
M exp ((M + 2))x)− (M + 1) exp((M + 1)x) + exp (x)

(exp (kx)− 1)(exp (x)− 1)

)
.

Proposition 6.4. Given a random vector e ∈ Zn
pr of Lee weight w, let e(i) be the

projection of e onto Zpr−i . The Lee weight of e(i) is, on average, reduced to

w(i) :=
n∑

ℓ∈Zpr
exp(−βwtL(ℓ))

∑
j∈Zp

exp(−βwtL(j)) · wtL(j
(i)
) .

where, given M = ⌊pr/2⌋, β is the unique real solution to the constraint

t/n =

(
M exp ((M + 2))x)− (M + 1) exp((M + 1)x) + exp (x)

(exp (kx)− 1)(exp (x)− 1)

)
.

Proof. In order to find the average weight w(i) of e(i) ∈ Zpr−i , we need to find

E
[
wtL(e

(i))| wtL(e) = w
]
. Since the coordinates of e are i.i.d. random variables, it its
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sufficient to compute
∑n

j=1 E
[
wtL

(
e
(i)
j

)
| wtL(e) = w

]
. Since, for any 1 ≤ j ≤ n,

E
[
wtL

(
e
(i)
j

)
| wtL(e) = w

]
=
∑
ℓ∈Zps

P[ej = ℓ| wtL(e) = w] · wtL(ℓ(i)) ,

the thesis follows from Lemma 6.3.

Example 6.1. Given n = 70 and w ∈ N, consider a vector in Zn
53 of Lee weight w.

Figure 3 represents the marginal distribution of an entry of a random vector for two
different values of w. For vectors with small weights, particularly those below the GV
bound, entries with low Lee weight are much more likely to appear, while larger values
are rarely seen. In contrast, for vectors with high Lee weights, the opposite occurs:
entries with larger Lee weights become more frequent, and smaller values appear with
probability close to zero. Additionally, figure 4 illustrates how the weight of a random
vector in Zn

53 of weight w changes when projected onto the prime field Zp. In particular,
it shows that for vectors with low weight, the weight of the projected vector decreases
only slightly, while for vectors with high Lee weight, the weight of the projected vector
drops significantly.
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P(ei = j | wtL(e) = 60 · n)
P(ei = j | wtL(e) = 31)

Fig. 3: Given the Lee weight of the vector e, the figure represents the marginal distri-
bution of the i-th entry ei ∈ Z125. The black dots represent the marginal distribution
of the i-th entry of a vector e with a small Lee weight, while the green dots represent
the marginal distribution of the i-th entry of a vector e with Lee weight 60 · n, which
is close to the maximum possible Lee weight of a vector in Zn

53 .

6.2 CFP

In the following, we will see that the techniques introduced in Sections 4.2 and 5.2
do not allow us to transform a CFP instance over Zpr into a CFP instance over its
residue field.
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Fig. 4: On the x-axis we put the Lee weight that a vector can assume (truncating this
value from above by 200), while on the y-axis we draw (in teal) the expected weight
that the same vector will have once projected on the base field.

Given positive integers n and k, let C ⊆ Zn
p be a Lee-metric code of dimension k.

Given H(n−k)×n a parity check for C, let s ∈ Zn−k
p . In the following, we will focus on

the codeword finding problem CFPL(Zp, H,w). Since a random code attains the GV
bound with high probability [29], we estimate the minimum value of w for which the
instance is not vacuous (i.e., at least one solution exists with high probability) using
the GV bound. Given a random instance CFPL(Zp, H,w), Proposition 6.1 provides an
estimates of the asymptotic complexity of the Lee-Breekel algorithm in the Lee-metric
case.

We now turn to the codeword finding problem over rings. Given a positive integer n,
we consider a linear code C ⊆ Zn

pr equipped with the Lee-metric. The main difference
compared to the Hamming and rank metric cases is that we cannot always find a
minimum-weight codeword in the socle of the code. Unlike the previous cases, when
multiplying a vector x ∈ Zn

pr by pr−1, we cannot make any deduction on the weight of
the vector pr−1x: its weight can either increase, decrease, or remain the same.
Example 6.2. • The linear code ⟨(1, 3)⟩ ⊆ Z2

9 has all its minimum weight code-
words lying in the socle. In fact, its minimum Lee distance is 3 and it is attained
by the codewords (3, 0) and (6, 0), all lying in the socle.

• The linear code ⟨(1, 2)⟩ ⊆ Z2
9 has all its minimum weight codewords outside the

socle. In fact, its minimum Lee distance is 3 and it is attained by the codewords

31



(1, 2) and (8, 7), all lying outside the socle. Notice that, the codewords lying in
the socle, namely (3, 6) and (6, 3) have Lee-weight equal to 6.

• The linear code ⟨(1, 2, 3)⟩ ⊆ Z3
9 has some minimum weight codewords lying in the

socle and some minimum weight codewords lying outside the socle. In fact, its
minimum distance is 6 which is attained by the codewords (3, 6, 0) and (6, 3, 0)
lying in the socle, and (1, 2, 3) and (8, 7, 6) lying outside the socle.

Therefore, unlike in the previous cases, we cannot simply restrict our search to a
minimum-weight codeword within the socle, and hence, we cannot conclude that the
complexity of solving CFP over a ring is the same as solving it over its base field.

6.3 SDP

The main idea of both improved ISD and improved error support attack algorithms
lies in the observation that, if e is the solution to the Syndrome Decoding Problem,
then its projection e(i) is a solution of the instance with input the i-th filtration
subcode, identified as a code over a smaller alphabet. Furthermore, if e is (with high
probability) the unique solution to the original problem, e(i) is the unique solution to
the projected instance. In fact, the weight of the solution of the projected instance can
only decrease, while the minimum distances of the code and the i-th filtration subcode
as a code over a smaller alphabet coincide. This leads to the conclusion that e(i) is the
unique solution to the projected instance with high probability. We will now discuss
when we can apply this idea in the Lee-metric case.

For a positive integer n, consider a Lee-metric C ⊆ Zn
pr with minimum distance

d(C) and let Ci be the i-th filtration subcode with minimum distance d(C1). Moreover,
let Ci be the i-th filtration subcode identified with a code over Zpr−i . Notice that the

isomorphism φ(i) defined in 3.10 does not preserves the Lee weight. Hence, d(C1) and
d(C1) differs, and, in particular d(C1) < d(C1). Recall that the uniqueness bound 3.4
states that the solution of the syndrome decoding problem is unique if its weight is
sufficiently small (i.e., below the GV bound). As seen in Section 6.1, when projecting
a vector with a low Lee weight, its weight decreases very slightly. The reduction in
distance is not sufficient to compensate for the decrease in the minimum distance of
the projected instance. In certain situations, this causes the weight of the projected
solution to exceed the uniqueness bound. As a result, we cannot conclude that the
projection of the solution is the unique solution to the projected problem. The following
example illustrates this concept.
Example 6.3. Given p = 3 and r = 4, consider the code C over Zpr of length n = 350
and Zpr -dimension k = 250 and parity check H. Let C1, C2, C3 be respectively the 1st,
2nd filtration subcode and the socle of C. We estimate the minimum Lee distance of
C and of the filtration subcodes identified as codes over smaller alphabets using the
GV bound. In particular, we obtain d(C) = 64, d(C1) = 56, d(C2) = 44 and d(C3) = 27.

If w = ⌊d(C)−1
2 ⌋ = 31, acoordingly to the uniqueness bound 3.4, the SDP problem

SDPL(Z34 , H, s, w) has a unique solution e. Accordingly to Proposition 6.4 w(1) ≈ 31,
w(2) ≈ 31 and w(3) ≈ 29.5. From the uniqueness bound 3.4 we get that, with high

probability, e(1) is the unique solution to SDPL(Z33 , H
(1)

, s(1), w(1)), as well as e(2)
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is the unique solution to SDPL(Z32 , H
(2)

, s(2), w(2)) . On the other hand, we cannot

conclude that e(3) is the unique solution of SDPL(Z3, H
(3)

, s(3), w(3)).
The previous example shows that the approach described at the beginning of

this section cannot be applied to every linear code over Zpr . Therefore, we start by
considering some special cases, such as linear codes over Z4.

Let C ⊆ Zn
4 be a linear code of subtype (k0, k1) and parity-check H ∈ Z(n−k0)×n

4 .
Moreover, let C1 be the socle of C and denote with d(C) and d(C1) the minimum distance

of C and C1 respectively. Given w = ⌊d(C)−1
2 ⌋ and s ∈ Zn−k0

4 , we consider the Syndrome
Decoding Problem SDPL(Z4, H, s, w), whose unique solution will be denoted by e. We
now show that, with high probability, e(1) is the unique solution of the SDP instance

SDPL(Z2, H
(1)

, s(1), w(1)) with input C1, which is the socle of the code identified as a
code over Z2. In fact, from Equation 1, we get d(C) ≤ 2dH(C), where dH(C) denotes
minimum the Hamming distance of C. Since, d(C1) = dH(C1) ≥ dH(C) and

w(1) ≤ w =

⌊
d(C)− 1

2

⌋
≤
⌊
2dH(C)− 1

2

⌋
≤ dH(C) ≤ d(C1) .

From the uniqueness bound 3.4, we get that e(i) is, with high probability, the unique

solution to SDPL(Z2, H
(1)

, s(1), w(1)). Therefore we can improve Algorithm 1 for linear
codes over Z4 equipped with the Lee metric.
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Algorithm 6: Improved Prange for ring linear codes, Lee metric

Input: H ∈ Z(n−k0)×n
4 , s ∈ Zn−k0

4 , w ∈ N
Output: Vector e ∈ Zn

4 such that wtL(e) ≤ w and He⊤ = s⊤

// Project and solve

1 Compute H
(1) ∈ Z(n−k0)×n

2 ;

2 Compute s(1) = Zn−k0
2 ;

3 Compute w(1) according to Prop. 6.4 ;

4 Call Algorithm 2 with input H
(1)

, s(1), w(1) to find e(1) with weight ≤ w(1),

such that H
(1)

e(1)
⊤
= s(1)

⊤
;

// Reconstruct solution

5 Set J ′ = Supp(e(1)), w′ = wt(e(1));
6 while True do
7 Sample J ′′ ⊆ {1, . . . , n} \ J ′, with size (n−K − w′);
8 Set J = J ′ ∪ J ′′;

9 Compute a square matrix U ∈ Z(n−k0)×(n−k0)
4 such that:

(UH)I =

(
A
pB

)
(UH)J =

(
1n−K

0(K−k0)×(n−K)

)
Us⊤ =

(
s⊤1

0(K−k0)×1

)
,

where A ∈ Z(n−K)×K
4 , B ∈ Z(K−k0)×K

4 , s1 ∈ Z(n−K)
4

if wtL(s1) ≤ w then
10 return e such that eI = (0, . . . , 0), eJ = s1.

Proposition 6.5 (Complexity of improved Prange with the Lee metric). Let w ∈ N
be obtained according to the uniqueness bound. The asymptotic average complexity of
Algorithm 6 applied to a Z4-linear code equipped with the Lee metric is given by:

max
i∈[2]

{
SL

(
Z2i , 1−W (i+1),W (i) −W (i+1)

)
− SL

(
Z2i , 1−RI ,W

(i) −W (i+1)
)}

,

Here, for i ∈ {0, 1}, W (i) := limn→∞
w(i)(n)

n , where w(i) is obtained according to

Proposition 6.4 and we set W (2) = 0.

Proof. We observe that Algorithm 6, with input {H, s, w}, reduces the initial problem
to one over Z2. Denote by τ1 the complexity of the algorithm to solve this subproblem,

and denote with {H(1)
, s(1), w(1)} its input. In this case the complexity can be estimated

using Proposition 3.6 as

τ1 =
BL(Z2, n, w)

BL(Z2, n−K,w)

n→∞−−−−→ SL(Z2, 1,W
(1))− SL(Z2, 1−RI ,W

(1)) .
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At this point, on average w(1) positions of the support of the solution vector are
known, which will therefore be excluded from the search in the subsequent step of
the algorithm. Let us consider the higher level. In this case the complexity of the
reconstruction algorithm is given by

τ0 =
BL(Z4, n− w(1), w − w(1))

BL(Z4, n−K,w − w(1))

which grows asymptotically as

SL(Z4, 1−W (1),W −W (1))− SL(Z4, 1−RI ,W −W (1)),

The total complexity is therefore given by the sum of the individual complexities,
which grows asymptotically as the maximum of these values.

The following example demonstrates that Algorithm 6 over Z4 cannot be generalized
to any integer rings with quadratic characteristics.
Example 6.4. Given p = 17 and r = 2, consider the code C over Zpr of length n = 250
and Zps -dimension k = 180. Moreover, let C1 be the socle of C and C1 be C1 identified
with a code over Z17. Using the GV bound we estimate the minimum Lee distance of

C and C1 which are respectively d(C) = 146 and d(C1) = 36. If w = ⌊d(C)−1
2 ⌋ = 72 and

s ∈ Zn−k
p , from the uniqueness bound 3.4 follows that SDPL(Z172 , H, s, w) has a unique

solution e. On the other hand, accordingly to Proposition 6.4 w(1) ≈ 72 and hence e(1)

is not the unique solution, with high probability, of SDPL(Z17, H
(1)

, s(1), w(1)) with
input Ci.

The previous example is quite pathological, as the length of the code is smaller
than the size of the alphabet. Therefore, we will try to identify sufficient conditions
under which Algorithm 6 can be generalized to integer rings of quadratic characteristic.

Let C ⊆ Zn
p2 be a linear code of subtype (k0, k1) and Zp2-dimension k. If d is the

minimum Lee-distance of C, from the GV bound (2) we get that, for any w < d ,

p2n

p2kBL(Zp2 , n, w)
< 1 ,

and hence,

pn−k <
√

BL(Zp2 , n, w) . (12)

Given, w = ⌊d−1
2 ⌋, consider the SDP instance SDPL(Zpr , H, s, w) with unique solution

e. Let C1 denotes the socle of C and C1 be C1 identified with a code over Zp. Assume
C1 has minimum distance d. The uniqueness bound 3.4 states that, if d ≥ d/2, then

e(1) is the unique solution of SDPL(Zp, H
(1)

, s(1), w(1)) with input C1. Since |C1| ≤ pk,
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a sufficient condition to ensure that d ≥ d/2 is

pn−k < BL(Zp, n, d/2) .

Finally, from Equation (13), it is sufficient to prove that

√
BL(Zp2 , n, d/2) < BL(Zp, n, d/2) . (13)

Therefore, if there exist values of n, p, and k for which Equation (13) is satisfied, then
Algorithm 6 extends to a larger class of instances.
Open problem 6.6. Let C ⊆ Zp2 be a Lee-metric code of subtype (k0, k1) with

parity-check H. Given s ∈ Zn−k0

p2 , assume that SDPL(Zp2 , H, s, w) has a unique
solution e. Find sufficient conditions on p, n.k0, k1 for which the projected instance

SDPL(Zp, H
(1)

, s(1), w(1)) has a unique solution, which is exactly e(i).
Generalizing this idea, as Example 6.3 also suggests, we may exploit only few

filtration subcodes, rather than the whole filtration, to speed up the decoding.
Open problem 6.7. Let C ⊆ Zpr be a Lee-metric code of subtype (k0, . . . , kr−1)

with parity-check H. Given s ∈ Zn−k0
pr , assume that SDPL(Zpr , H, s, w) has a

unique solution e. Find sufficient conditions on p, n.k0, . . . , kr for which the instance

SDPL(Zpr−i , H
(i)
, s(i), w(i)) with input the i-th filtration subcode has a unique solution,

which is exactly e(i). In particular, find the maximum i ∈ {1, . . . , r − 1} such that e(i)

is the unique solution of SDPL(Zpr−i , H
(i)
, s(i), w(i)).

7 Conclusions

In this paper, we have introduced new decoding algorithms for codes defined over
rings, addressing the challenge of whether it is possible to construct algorithms that
outperform those derived from the transposition of classical ISD. The results we
presented show that ISD algorithms, if appropriately generalized, not only maintain
their effectiveness, but also offer new perspectives for improving efficiency.
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