
Another L makes it better? Lagrange meets LLL and may improve BKZ
pre-processing

Sébastien Balny∗ Claire Delaplace† Gilles Dequen‡

Abstract
We present a new variant of the LLL lattice reduction algo-
rithm, inspired by Lagrange notion of pair-wise reduction,
called L4. Similar to LLL, our algorithm is polynomial in
the dimension of the input lattice, as well as in logM , where
M is an upper-bound on the norm of the longest vector of
the input basis. We experimentally compared the norm of
the first basis vector obtained with LLL and L4 up to dimen-
sion 200. On average we obtain vectors that are up to 16%
shorter. We also used our algorithm as a pre-processing step
for the BKZ lattice reduction algorithm with blocksize 24.
In practice, up to dimension 140, this allows us to reduce the
norm of the shortest basis vector on average by 3%, while
the runtime does not significantly increases. In 10% of our
tests, the whole process was even faster.
Keywords. Lattice Reduction. LLL. Short lattice vectors.

Acknowledgement: We would like to thank the
MatriCS HPC Platform from UPJV1 that provided
computational resources needed to exhibit the exper-
imental results of this works. Resources are publicly
available at the following link:

https://zenodo.org/records/13847623

1 Introduction
A lattice is a discrete subgroup of Rn. Usually it is
defined as the set

L(B) =
{
Bu : u ∈ Zd

}
,

where B is an n-by-d full-rank matrix with d ≤ n,
called the basis of the lattice. There are infinitely many
bases of a given lattice Λ. Those bases are said to
be equivalent. However, it does not mean that they
all share the same qualities. In most applications, we
are interested in finding either short lattice vectors or a
lattice vector which is close to some target in Rn. These
problems are known to be hard to solve given a random
basis B of Λ, but become easier if B satisfy some “good”
properties, typicallyB consisting of short and “somehow
orthogonal” vectors. Such a basis is called reduced basis.

The idea of lattice reduction is not new and can be
traced back as early as the 1850’s with a first definition

∗MIS, Université de Picardie Jules Verne, Amiens, France
†MIS, Université de Picardie Jules Verne, Amiens, France
‡MIS, Université de Picardie Jules Verne, Amiens, France
1https://www.matrics.u-picardie.fr/

of size reduction proposed by Hermite [14]. Korkine and
Zolotarev [17, 18] later gave a stronger notion which is
called the HKZ (for Hermite-Korkine-Zolotarev) reduc-
tion. Amongst other properties, it has the following:
if a basis B = [b1, . . . ,bd] is HKZ reduced, then b1

is a non zero-vector with minimal norm in L(B). How-
ever computing an HKZ-reduced basis from an arbitrary
one is not an easy task. Using basic enumeration, it re-
quires 2O(d2) operations. Kannan later showed how to
decrease this complexity down to 2O(d log d) using a re-
cursive procedure [15]. The famous LLL algorithm [19],
called after its designers Lenstra, Lenstra and Lovász,
offers a weaker, yet more practical reduction. This al-
gorithm has known many variants and improvements
along the years (e.g., [23, 25, 26]), and has many fields
of application, such as cryptography, polynomial factori-
sation, as well as Integer Linear Programming. Another
well-known lattice reduction algorithm, called Block-
Korkine-Zolotarev (BKZ) [27, 28] and its later improve-
ment BKZ2.0 [7] offers a tradeoff between efficiency and
quality. Roughly speaking, BKZ with blocksize β (BKZ-
β) computes blockwise HKZ-reductions on smaller β-
dimensional sub-lattices of the original lattice Λ. The
closer β is to the dimension d, the better reduction,
however the time complexity grows super-exponentially
in β. Finally, even prior to Hermite’s work, the partic-
ular case of 2-dimensional lattices had been studied by
Lagrange [8]. Lagrange’s Algorithm, often wrongly at-
tributed to Gauss, allows to compute an HKZ-reduced
lattice basis quite efficiently, but this method does not
seem easy to generalize to higher dimensions d, although
some attempts have been made when d is small [24, 29].

Arguably the most famous lattice problem is the
Shortest Vector Problem (SVP). Given as input a basis
of a lattice Λ, the goal is to find a non-zero vector
of Λ whose norm is minimal. This problem has been
proved to be NP-Hard under randomized reductions
for the Euclidean Norm by Ajtai [3]. As such various
relaxations of the problem have been defined, where the
goal is to find any vector whose norm is at most γ times
(an estimation of) the norm of the shortest non-zero
vector. If γ is a constant, these γ-approximate variants
are known to remain NP-Hard [20]. However it can

https://zenodo.org/records/13847623
https://www.matrics.u-picardie.fr/

be solved in poly(d) operations if γ = Θ(2d) [19]. We
do not know the exact difficulty of these approximate
variants for other parameters, although there are several
theoretical results that suggest that they cease to be
NP-Hard as soon as γ = Ω(

√
d/ log d) [2, 12]. Another

famous problem is the Closest Vector Problem (CVP),
where the goal is to find the closest lattice vector to
target in Rn. This problem is also NP-Hard [31, 16],
and has several relaxations and variants, such as the
Approximate Closest Vector Problem, or the Bounded
Distance Decoding Problem. We can see why lattice
problems are easier to solve if we are given as input
a basis which already consists of small vectors. If by
chance, the basis already contains a vector of minimal
norm, then SVP is trivially solved. Thus, an important
part of lattice’s algorithms focuses on reducing the input
basis.

1.1 Our contributions. We present a new variant
of the LLL algorithm, inspired by the two-dimensional
notion of Lagrange-reduction, which we call the L4
algorithm, for Lagrange-LLL. For a given lattice, if we
denote by BL3

an LLL-reduced basis, and BL4

the
output of our L4 algorithm, empirically, we see that the
first vector of BL4

is up 16% shorter on average than
the first vector of BL3

for dimension 200.
More interestingly, we also notice that, when used

as a pre-processing step for BKZ, our algorithm slightly
improves the quality of the output, compared to BKZ
with LLL as a preprocessing. More precisely for dimen-
sion 60 to 140 we obtain on average a shortest basis vec-
tor which is 3% shorter while the runtime of the overall
process is only slightly slower, and there are even cases
where it is faster than BKZ-24. Furthermore, we argue
that the gap in performance could possibly be bridged
with a better implementation of L4, since our code was
made mostly for testing the quality of the output and
we did not try to optimise it. All in all, we think that,
even though the gain seems incremental, L4 offers an el-
egant alternative to LLL when used as a pre-processing
to BKZ, and leaves room to further improvements.

1.2 Experiments. In this paper, we are mostly in-
terested in the cryptographic setting. As such, all ex-
periments were performed on random lattices gener-
ated using the Darmstadt SVP Challenge generator [5].
The lattices are random in the sense of Goldstein and
Mayer [13], which are known to provide hard instances
for the Shortest Vector Problem. Our algorithm has
been implemented in Python, using the FPyLLL li-
brary [9] and the code is available here:

https://zenodo.org/records/138476232

Most of our tests were run on an Intel(R) Xeon(R)
cluster with a 2.40 GHz processor. We used 32 GB
of RAM for tests up to dimension 170 and 128 GB
for dimension 180 and more. This first machine is
referred to as Computer 1 in this paper. Some additional
tests were performed on an Intel i5-6300U laptop, with
3.0 GHz, using 8 GB of RAM. We call this machine
Computer 2.

2 Preliminary
2.1 Notation. Let v be a vector of Rn, we denote by
‖v‖ the euclidean norm of v. For a set of vectors S, we
denote by #S the cardinal of S and by Nmax(S) (resp.
Nmin(S)) the norm of the longest (resp. the shortest)
vector in S. Formally

Nmax(S) = max
v∈S
{‖v‖} and Nmin(S) = min

v∈S
{‖v‖}

For any column vector v (resp. matrix M), we denote
the transpose vector (resp. transpose matrix) by vt

(resp. Mt). For any two vectors v and w, vtw
represents the dot product between v and w. Given
two vectors u and v, u± v is the vector such that

(2.1) u± v =

{
u− v if utv ≥ 0,

u + v otherwise.

If we denote by | · | the absolute value, notice that

‖u± v‖2 = ‖u‖2 + ‖v‖2 − 2|utv| ≤ ‖u‖2 + ‖v‖2.

We call u± v the difference between u and v. For any
square matrix M of Rn×n, we denote by det(M) the
determinant of M.

2.2 Lattices background. Given two positive inte-
gers, 0 < d ≤ n, and a set B = [b1,b2, . . . ,bd] of d
linearly independent vectors of Rn, we define Λ, the lat-
tice spanned by B as

Λ = L(B) =

{
d∑
i=1

xibi : xi ∈ Z

}
.

We say that B is a basis of Λ, d ≤ n its dimension or
rank. If d = n, we say that Λ is full-rank. We call
integral lattice a lattice spanned by a basis B whose
vectors consist only of integer coefficients. These are the
lattices that are interesting in the cryptographic setting.

Given two bases B1 and B2, L(B1) = L(B2) if and
only if there is an unimodular matrix U ∈ Zd×d (i.e.,

2Also available via github https://github.com/sbalny/L4

https://zenodo.org/records/13847623
https://github.com/sbalny/L4

det(U) = ±1) such that B2 = B1U. We say that B1

and B2 are equivalent, since they are both bases of the
same lattice.

Form ≥ d, we call generating set of a d-dimensional
lattice Λ any set S = {v1, . . . ,vm} such that any vector
w ∈ Λ is an integer linear combination of the vectors of
S, and vice-versa. We use the following notation

Λ = L(S).

Given a lattice Λ = L(B), the volume of Λ is defined
as

vol(Λ) = det(BtB)1/2.

For a specific lattice, this value is a constant and thus
does not depend on the basis B.

For a given lattice Λ, we denote by λ1(Λ) the norm
of the shortest non-zero vector. We usually do not
know the exact value of λ1(Λ), but we have some rather
precise estimations. Minkowski’s First Theorem [21]
gives us an upper bound stating that, if Λ = L(B) is a
full-rank lattice of dimension n, λ1(Λ) ≤

√
n ·vol(Λ)1/n.

Additionally, if Λ is a full-rank lattice of dimension
n, the Gaussian Heuristic gives us an estimation of
the number of lattice points that can be found inside
any measurable subset of Rn leading to the following
estimation of λ1(Λ):

(2.2) GH(Λ) =
Γ(n/2 + 1)1/n√

n
vol(Λ)1/n.

Similar results can also be obtained for lattices of rank
d < n [4, 22, 6].

2.3 Shortest Vector Problem. One of the most
famous lattice problem is the Shortest Vector Problem
(SVP) defined as follows.

Definition 2.1. (Shortest Vector Problem)
Given a d-dimensional lattice Λ represented by a basis
B, find a vector v0 ∈ Λ such that ‖v0‖ = λ1(Λ).

As previously mentioned, we usually do not know
λ1(Λ). Furthermore, since this problem is hard to
solve, several relaxations have been introduced. For
instance, the Approximate Shortest Vector Problem,
with approximation factor γ ≥ 1 (ASVPγ), consists in
finding a non zero vector v ∈ Λ such that ‖v‖ ≤ γλ1(Λ).
For a full-rank lattice Λ of dimension n, the Hermite
Shortest Vector Problem (HSVPγ) aims to find a non-
zero vector v ∈ Λ such that ‖v‖ ≤ γvol(Λ)1/n.

In section 4, we consider the variant proposed in the
Darmstadt SVP Challenge [1], where the goal is to find
a non zero vector in a full-rank lattice whose norm is
less than γGH(Λ).

2.4 Lattice Reduction. In the case of a vector
space, there is a well known algorithm that takes as in-
put a random basis B and reduces it in order to produce
a basis B∗ whose vectors are all pair-wise orthogonal.
This is the Gram-Schmidt orthogonalization process we
recall below.

Definition 2.2. For a sequence of d linearly inde-
pendent vectors b1,b2, . . . ,bd, we define their Gram-
Schmidt Orthogonalization (GSO) as the sequence of
vectors b∗1,b

∗
2, . . . ,b

∗
d such that

b∗1 = b1 and b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

where µi,j =
btib

∗
j

‖b∗j‖2
.

One may be tempted to apply a similar method to
reduce the basis of a lattice. However, the issue here
lies in the fact that the µi,j coefficients are rational, not
integers.

Special case of dimension 2. Consider first the case
of dimension 2. Given a basis B = [b1,b2], Assuming
that ‖b1‖2 ≤ ‖b2‖2, Lagrange’s [8] following algorithm
can be seen as a discrete variant of the GSO process.

1. Reduce b2 by setting b2 ← b2 − bµ2,1eb1.

2. If ‖b2‖2 < ‖b1‖2 swap the two vectors and go to
step 1.

3. Stop when |bt1b2| ≤ min(‖b1‖2, ‖b2‖2)/2.

At the end, the vectors cannot be reduced anymore.

Definition 2.3. (L-reduction) A pair of vectors
(b1,b2) is Lagrange (L)-reduced if

|bt1b2| ≤
min

(
‖b1‖2, ‖b2‖2

)
2

We first extend this definition to the following

Definition 2.4. (Pair-wise L-reduction) A set of
linearly independent vectors S is said to be L-reduced if
for all (u,v) ∈ S2, (u,v) is L-reduced.

In [29], Semaev gave a similar definition for a set S
consisting only of three vectors. We generalize it to any
set of linearly independent vectors. We also make the
following trivial remark, which is a special case of [29]
Lemma 1.

Lemma 2.1. If the pair (u,v) is L-reduced, then

‖u± v‖ ≥ max(‖u‖, ‖v‖).

In higher dimension. The LLL Algorithm [19], can
be seen as an extension of Lagrange’s algorithm to
higher dimensions. Lenstra, Lenstra and Lovász give
the following notion of lattice reduction.

Definition 2.5. (LLL-reduction) We say that B =
[b1,b2, . . . ,bd] is a δ-LLL reduced basis if the following
holds:

1. |µi,j | ≤ 1
2 (size reduction)

2. ∀ 1 ≤ i ≤ d, δ‖b∗i ‖2 ≤ ‖µi+1,ib
∗
i +b∗i+1‖2 (Lovász’s

condition).

where B∗ is the GSO of B, and the µi,j coefficients are
defined as in Definition 2.2.

For simplicity, if there exists a 1/4 < δ < 1 such that
B is δ-LLL reduced we say that B is LLL-reduced.
Taking as input an arbitrary basis, the LLL Algorithm
outputs an LLL-reduced basis in time poly(d) where
d is the dimension of the lattice. Furthermore, these
conditions imply that b1 is a solution to the ASVPγ
with γ = O(2

d
2).

‖b1‖2 ≤
(

2

(4δ − 1)1/2

)d−1
λ1(Λ).

As such, with the usual choice of δ = 3/4 the LLL
Algorithm 1 solves the ASVPγ problem, with a 2

d−1
2

approximation factor.

Algorithm 1 The LLL algorithm

Require: a lattice basis B = [b1, . . . ,bd] ∈ Zn×d
Ensure: δ-LLL reduced basis of L(B)

Start : Compute the GSO B∗ = [b∗1, . . . ,b
∗
d] of B

Reduction Step:
for i = 2 to d do

for j = i− 1 down to 1 do
bi ← bi − ci,jbj where ci,j = dbtib∗j/‖b∗j‖2c

end for
end for
Swap Step:
if ∃i ∈ {1, . . . , d} s.t. δ‖b∗i ‖2 > ‖µi+1,ib

∗
i + b∗i+1‖2

then
bi ↔ bi+1

go to Start
end if

In this paper, we use a variant of LLL introduced
by Pohst [25], which extends the algorithm when the
input is not a basis of a given lattice Λ, but rather
a generating family. This variant was later refined by
Nguyen and Stehlé [23], where the authors also present

a “quadratic variant” of LLL, which they refer to as
the L2 algorithm. The L2 algorithm also takes into
account difficulties related to dealing with floating point
arithmetic. More precisely, their algorithm outputs an
LLL-reduced basis B of a lattice of dimension d in time

(2.3) TBasis = O
(
d4n(d+ logM) logM

)
,

where M is an upper bound on the norm of the
vectors in the input basis. The algorithm is said to be
“quadratic” as it grows only quadratically with respect
to logM without relying on fast integer-multiplication.

Now, given as input a generating set S of m > d
vectors, [23] variant of Pohst algorithm outputs an LLL-
reduced basis in time

(2.4) TSet = O
(
nd2(d+ logM)(d2 logM +m2)

)
.

where M = Nmax(S).

Remark 2.1. The FPLLL implementation [9] of LLL
we used in our tests is actually based on [23] variant.

Since all of these algorithms rely on the original idea
of Lenstra, Lenstra and Lovász and compute an LLL-
reduced basis from a set of generating vectors, we will
indiscriminately call them all LLL reduction in the rest
of the paper.

Computational model. Since our complexity
analysis uses result from [23, 30], we consider the same
bit-complexity model, where all integers we deal with
are less than some upper bound M ≥ Nmax(B), B be-
ing the input basis. Thus, each integer can be stored
using O(logM) bits. We also use naive integer multi-
plication, following [30].

We focus on integral lattice. This means that the
vectors we deal with all have integer coefficients. As
such, apart from the floating point arithmetic arising
in the LLL computation, which is handled by [23, 30],
all the operations we perform in our algorithm are on
integers, and we do not need to worry about inaccuracies
arising from floating point arithmetic. We stress that
these methods could be extended to deal with other kind
of lattices, but, as we are interested in the cryptographic
setting we did not investigate real lattices any further.

3 A new basis reduction algorithm
The idea behind our work comes from the following
simple observation. Even if B = [b1, . . . ,bd] is a LLL-
reduced basis of some d-dimensional lattice Λ, though
the (b1,bj) pairs are L-reduced, this is not the case in
general for (bi,bj) with 1 < i < j ≤ d. In fact, with
the classical choice of δ = 3/4, even for relatively small

dimensions d we are able to find some pairs (bi,bj) for
which the following ‖bi±bj‖ ≤ max (‖bi‖, ‖bj‖) holds.

For instance, in dimension 40, the average number
of such pairs out of 1000 instances is 22. In dimension
200, it grows up to 465. So it is far from being a small
amount especially when the dimension grows.

From here, we came up with the following straight-
forward idea to improve the quality of an LLL-reduced
basis. Compute a generating set S consisting of all the
input basis vectors, plus short new ones generated as
the difference between two non L-reduced lattice vec-
tors. Our first intuition was to construct S as

(3.5) S = B∪{u = bi±bj : ‖u‖ ≤ max(‖bi‖, ‖bj‖)},

for all 1 < i < j ≤ d, as it seemed quite natural. We
call this method the Inflate Procedure. However, we
came up an alternative process which provides better
results, for a similar runtime.

Once S is constructed, we sort it by increasing norm
and perform an LLL-reduction to obtain an updated
basis B′. We restart the whole process with B′ as input.
We call this whole algorithm L4.

Termination. The main point of concern is when to
terminate the algorithm. The first idea that comes to
mind would be to repeat the process until B′ is pair-
wise L-reduced. However, our experiments show that
such an algorithm is likely to never terminate, even in
small dimension. In fact, the number of pairs (bi,bj)
that are not L-reduced does not seem to decrease with
the number of iterations. Instead, we repeat the whole
process while the norm of the first vector of the output
basis is strictly smaller than the norm of the first vector
of the input basis.

Algorithm 2 L4

Require: An LLL-reduced basis B = [b1, . . . ,bd] in
Zn×d.

Ensure: An LLL-reduced basis B′ = [b′1, . . . ,b
′
d] such

that L(B) = L(B′) and ‖b′1‖ ≤ ‖b1‖.
1: Nnew ← ‖b1‖2
2: do
3: N ← Nnew
4: S ← Sample(B)
5: B← LLLReduce(S)
6: Nnew ← ‖b1‖2
7: while Nnew < N

A full description of the L4 is given in Algorithm 2.
At the end, the basis B′ we obtain is still not pair-
wise L-reduced. However, we have already improved the
quality of the reduction, in the sense that the shortest

vector is shorter than the one obtained after a simple
LLL-reduction. We discuss this gain in more details in
Section 4.

3.1 Construction of S. It is clear that the bottom
line of our algorithm is the construction of the gener-
ating set S, as the quality of the basis B′ we obtain
at the end of an iteration will depend on the vectors
in this set. We have the following requirements: (1)
S must be a generating set of our input lattice Λ, (2)
Nmax(S) = Nmax(B), whereB is the input LLL-reduced
basis, (3) Nmin(S) ≤ Nmin(B), (4) the construction of
S must be fast. Typically we did not want to com-
pute more than O(d2) differences, which would be the
number of differences required to compute S as given in
Equation 3.5.

We start by initialising S to B, but then, instead
of inflating S with all bi ± bj of norm smaller than
max(‖bi‖, ‖bj‖), we sample new vectors u = w ± v,
where w and v are drawn uniformly at random from
S. We append u to S only if its norm is smaller
than max(‖v‖, ‖w‖). Picking our starting points w
and v from S instead of B allows us to possibly choose
newly generated short vectors to perform the reduction,
increasing the set of possibilities. We call this step the
Sample procedure. It is fully described in Algorithm 3.

More precisely, we fix a constant 0 < α1 ≤ 1, and
pick α1d starting points w at random in S. Then,
for each of these starting points, we pick α2d, with
0 < α2 ≤ 1 new random vectors v and compute
the difference between w and v, before testing if it
is worth keeping it. We could have chosen to have a
single loop where we pick two random vectors at each
of the α1α2d

2 iterations, but this leads to similar overall
results while being slightly slower so we settled for this
method instead.

We chose α1 = 1 and α2 = 1/2, in order to compute
roughly the same amount of differences than with the
Inflate procedure. We also noticed that increasing α2

to 1 does not change the overall quality of the output,
while it gets significantly slower. Furthermore, we also
tried to increase the number of differences to O(d3) and
this did not improve our basis reduction at all. This is
probably due to the fact that, by the Birthday Paradox,
the same vectors are picked over again, and thus most
of the operations are redundant.

3.2 Analysis of L4. We claim that the L4 algorithm
always terminates and furthermore outputs a basis of
“better quality” than LLL, in the sense that the first
basis vector would be shorter. We also argue that the
runtime of our algorithm remains polynomial in the
dimension of the lattice, also using a polynomial amount

Algorithm 3 Sample

Require: LLL-reduced lattice basis B = [b1, . . . ,bd]
of a lattice Λ.

Ensure: S a set of m ≥ d vectors such that Nmax(S) =
Nmax(B) and L(S) = Λ.
Fix two constants α1 and α2, such that 0 < αi ≤ 1,
for i ∈ {1, 2}.
S ← {b1, . . . ,bd}
repeat α1d times

w
$←− S

repeat α2d times
v

$←− S
u← w ± v
if 0 < ‖u‖2 ≤ max(‖w‖2, ‖v‖2) then

if u /∈ S then
S ← S ∪ {u}

end if
end if

end
end
Sort(S) . S sorted by increasing norm
return S

of memory. More precisely we show the following:

Theorem 3.1. (Analysis of L4) Given as input an
n-by-d basis B of an integral lattice Λ, such that
Nmax(B) = M , the L4 algorithm terminates after a fi-
nite number k of iterations and outputs an LLL-reduced
basis B′ such that Nmin(B′) ≤ Nmin(B).

Furthermore, its time complexity is given by

T = O(kTset),

where Tset = O(nd4(d+logM)(d2 +logM)) is the time
complexity required to compute an LLL-reduced basis of
Λ from a generating set of O(d2) vectors. The memory
required is O(d2n logM).

We start by showing the termination and the cor-
rectness of our algorithm.

Lemma 3.1. Given as input a basis B of an integral
lattice Λ, the Sample procedure returns a generating
set S of Λ.

Proof. If B is a basis of Λ, since S is initialized with the
vectors of B, it is clear that Λ ⊂ L(S). Furthermore,
for all vectors w ∈ L(S), we claim that w ∈ Λ.

Let us assume that S consists of m ≥ d vectors
v1, . . . ,vm. Having w ∈ L(S) means that w is an
integer linear combination of the vj vectors. Now, by
construction all vj are integer linear combinations of the

vectors from B. It follows that w is an integer linear
combination of vectors from B. Hence we also have
L(S) ⊂ Λ.

Lemma 3.2. (Correctness) The L4 Algorithm ter-
minates. Furthermore, given as input an LLL-reduced
basis B = [b1, . . . ,bd] it outputs an LLL-reduced basis
B′ = [b′1, . . . ,b

′
d], such that ‖b′1‖ ≤ ‖b1‖.

Proof. We call B = [b1, . . . ,bd] the input basis, and
denote by Λ the lattice generated by B. We also denote
by B(i) = [b

(i)
1 , . . . ,b

(i)
d] the basis computed during step

line 5 of the i-th iteration of Algorithm 2. We assume
that b1 is the shortest vector of B.

From Lemma 3.1, we can show that, if B(i) is
a basis of Λ, then the set S(i) generated during the
Sample procedure is a generating set of Λ. Thus,
after processing S(i) with LLL, we obtain a basis
B(i) of L(S) = Λ. Furthermore, this basis is LLL-
reduced. From here, it is clear that if the L4 Algorithm
terminates, its output would be an LLL-reduced basis
of Λ.

We now show that there is an if , such that the
algorithm terminates at the end of if -th iteration, and
that the norm of the first vector b(if)

1 of B(if) is smaller
than the norm of the first vector b1 of the input basis.
Let us denote by (Ni)i the sequence such that N0 =

‖b1‖2, and for all i > 0, Ni =
∥∥∥b(i)

1

∥∥∥2. We claim that
(Ni)i is a decreasing sequence of integers. Indeed, if
we consider the set S computed during i-th iteration of
Algorithm 2, we have

(3.6) Ni ≤ min
(
‖w‖2 : w ∈ S

)
.

Indeed, during the LLL-reduction process, b(i)
1 is first

initialised at w1, the first vector of S. Since S has first
been sorted by increasing norm,

‖w1‖2 = min
(
‖w‖2 : w ∈ S

)
.

From here, there are two possible cases. In the first
scenario, b

(i)
1 is still equal to w1 at the end of the

LLL-reduction step, then Equation 3.6 holds and is
an equality. The second possibility is that b

(i)
1 has

been swapped with b
(i)
2 at some point during the LLL-

reduction. This mean that Lovász condition has been
violated and, at this point,

δ
∥∥∥b(i)∗

1

∥∥∥2 >∥∥∥b(i)∗
2 + µ2,1b

(i)∗
1

∥∥∥2
δ
∥∥∥b(i)

1

∥∥∥2 >∥∥∥b(i)
2

∥∥∥2 .
With δ = 3/4, we get that b(i)

1 and b
(i)
2 are swapped dur-

ing the LLL-reduction only if (3/4)
∥∥∥b(i)

1

∥∥∥2 > ∥∥∥b(i)
2

∥∥∥2,

and thus
∥∥∥b(i)

1

∥∥∥ > ∥∥∥b(i)
2

∥∥∥. In this case, after the LLL-

reduction has terminated, we have
∥∥∥b(i)

1

∥∥∥ < ‖w1‖.

We have then proved that
∥∥∥b(i)

1

∥∥∥ ≤ Nmin(S).

Then, since b
(i−1)
1 belongs to S by construction, Ni ≤∥∥∥b(i−1)

1

∥∥∥2 thus Ni ≤ Ni−1.
Since Λ is a integral lattice, (Ni)i is a decreasing

sequence of positive integers, and thus there is an index
if such that:{

Ni < Ni−1, ∀ 1 ≤ i < i0

Nif = Nif−1

It follows that the algorithm terminate after iteration
if , and the norm

√
Nif of the first vector of the output

basis is smaller or equal than
√
N0, the norm of the first

vector in the input basis.

We move on to discuss the complexity. We first
show the following.

Lemma 3.3. Given as input an LLL-reduced basis B
of an integral lattice Λ, the Sample procedure outputs
a set S of O(d2) vectors in time O(d2n log2M) and
memory O(d2n logM), where M is an upper bound on
Nmax(B).

Proof. Most of the time spent in this algorithm is in
the double for-loop, which takes a total of d2 iterations.
This corresponds to the amount of vectors w ± v
computed during this step, which is an upper bound
on the number of vectors appended to S. As such, in
the end, S may contain at most d + d2 vectors whose
coefficients can each be stored in less than logM bits,
thus #S = O(d2).

The operations performed inside the loops are mem-
ory accesses, and differences of vectors consisting of n
integers, as well as norm computations. All of these
can be done in time O(n log2M) with naive multipli-
cation over logM -bit integers. We also need to test
whether a vector is already in S, using adapted data
structures such as hash tables, this step can be done in
O(n logM) bit-operations. Hence the time spent in the
computation of S is O(d2n log2M). We then need to
sort S according to the norm. Assuming that, for any
vector of S, we also store its norm, finding the right
order can be done in O(d2 log d) comparisons between
logM -bit integers, plus the time required to copy the
vectors in the right place which is O(d2n logM). All of
these lead to a total complexity of O(d2n log2M). Fi-
nally, the memory complexity is given by the amount
of space needed to store S which, as mentioned above,
consists of O(d2) vectors of n integer coefficients. Thus
the memory complexity is O(d2n logM).

The following result is a direct consequence.

Lemma 3.4. The time complexity of an iteration of the
L4 algorithm with input basis B ∈ Zn×d is dominated
by the time of the LLL-reduction, which is

(3.7) Tset = O
(
nd4(d+ logM)(logM + d2)

)
where M is an upper bound on Nmax(B).

Proof. There are roughly three steps in one iteration
of the L4 algorithm. First, compute the set S. Sec-
ond compute an LLL-reduced basis of L(S). Third up-
date the norm of the shortest vector. It is clear that
the last step is dominated by the other two. From
Lemma 3.3, the time complexity of the sample pro-
cedure is O(d2n logM). Then, we estimate the time
complexity of the LLL-reduction with input S. Recall-
ing that S consists of O(d2) vectors and, by construc-
tion, all of them have norm smaller than Nmax(B), from
Lemma 2.4, we have

Tset = O
(
nd2(d+ logM)(d2 logM + d4)

)
.

After simplification, we get the expression given in
Equation 3.7. Since

d2n logM = O
(
nd4(d+ logM)(logM + d2)

)
,

any iteration of L4 is dominated by the LLL step.

The proof of Theorem 3.1 follows from these previ-
ous results.

3.3 Experimental estimation of k. All our tests
were made on lattices from the Darmstadt SVP Chal-
lenge generator, which are all full rank lattices. As such
our empirical assumptions on the number of iterations
in our procedure are made on full rank lattices. We
came up with the following conjecture.

Conjecture 1. Let Λ be a n dimensional full-rank
lattice. Our algorithm terminates after k call to an LLL-
reduction algorithm with k = O(log(n)).

We tested our algorithm on 1000 lattices of dimen-
sions 40 to 200, with an increment of 10. On average,
L4 calls the LLL algorithm between 2 and 5 times, with
a maximum of 14 calls. There is only a slight increase
with the dimension as shown in Figure 1. We therefore
make the empiric assumption that the number of times
the LLL Algorithm is called is O(log(n)) where n is the
lattice’s dimension.

40 60 80 100 120 140 160 180 200
dimension

0

2

4

6

8

10

12

14

16

18
nb

 o
f L

LL
 c
al
ls

on average
maximum
log & 3*log

Figure 1: Number of LLL calls

40 60 80 100 120 140 160 180 200
dimension

0

10

20

30

40

tim
e
(s
)

L4

Figure 2: Average runtime of L4

3.4 Experimental runtime. We also tested the
runtime of L4 on Computer 1. It is almost instantaneous
up to dimension 70, and then slightly increases with the
dimension up to 18.44 seconds in dimension 190. Then
as shown on Figure 2, there is a significant loss of per-
formance between dimension 190 and 200, the runtime
being slightly above 44 seconds in dimension 200. We do
not know for certain what causes this sudden change of
behaviour. One likely possibility is that the amount of
memory handled in this dimension becomes too impor-
tant and the memory access requires more time. This
theory is seconded by the fact that we already had to
increase the amount of RAM from 32 GB to 128 GB
from dimension 180.

Another difficulty we encountered which might be
linked with this sudden drop in performance is that
the numerical instabilities in Pohst variant of LLL
seem more difficult to handle. Indeed, starting from
dimension 190, some of our tests failed due to divisions
by zero. In dimension 190, this rarely happens, only
4 times out of 1000 tests, but in dimension 200 this
phenomena occurs in about 3.5% of our tests. This may
be because the number of vectors in S that are to be
discarded during this phase becomes too high.

40 60 80 100 120 140 160 180 200
dimension

2

4

6

8

10

12

14

16

ap
pr
ox

im
at
io
n
fa
ct
or

LLL
L4

Figure 3: Average approximation factor

4 Norm of the First Vector
We present an empirical estimation of the norm of the
first basis vector. All the lattices considered in this
section and the next one are full-rank and random in
the sense of Goldstein and Mayer [13]. For a given
input basis B of a full-rank lattice Λ we denote by
BL3

=
[
bL

3

1 , . . . ,bL
3

n

]
, and BL4

=
[
bL

4

1 , . . . ,bL
4

n

]
the

respective outputs of LLL, and L4. We also recall
that an estimation of the norm of the shortest vector
of Λ denoted by GH(Λ) is given in equation 2.2. To
estimate how close we are to finding a solution to the
shortest vector problem, we look at the ratio: norm of
the first vector of the output basis divided by GH(Λ).
We call this value the approximation factor and denote
it by γAlgorithm, or simply γ in the general case. If
γ ≈ 1, then b1 is close to the norm of the shortest
vector. Similar to the previous section, we ran tests
in dimensions 40, 50, etc. up to 200. For each
of these dimensions we tested 1000 random lattices,
generated via the Darmstadt SVP Challenge lattice
generator [1]. The experiments in this section were all
run on Computer 1.

4.1 Experimental results. As argued in Section 3,
given as input the same basis B, the outputs of LLL
and L4 satisfy ‖bL4

1 ‖ ≤ ‖bL
3

1 ‖. However, we did not
discuss how shorter bL

4

1 is. We provide an average
comparison between approximation factors γLLL and
γL4. In dimension 40, γL4 is only 4% smaller than γLLL,
however, as shown in figure 3, this gap improves when
the dimension grows. For instance, in dimension 200,
γL4 is about 16% shorter than γLLL, with γLLL being
about 16.7, while γL4 is a bit less than 14.

4.2 Randomizing the algorithm. Although we
improved the approximation factor compared to LLL,
we figured it remains quite large and wondered if we
could obtain better results by re-randomizing the input.
This kind of idea is not new, and is used for instance to

improve the accuracy of enumeration with pruning and
extreme pruning [7, 11].

Given a basis B, our randomization process is
heavily inspired by the one used as a routine in the
BKZ implementation of FPLLL. An unimodular matrix
U is generated as an upper triangular matrix whose
coefficients are 0, 1 or -1 with 1 or -1 on the diagonal.
Then, the rows U are randomly permuted, and a new
basis B′ is computed as BU.

Experimentally, we noticed that the number of non-
zero coefficients in U significantly affects the quality of
the new basis. If U is too dense, running L4 after one
randomization will likely not lead to better results. If it
is too sparse, then it is like performing no randomisation
at all. In practice, we noticed that L4 is likely to output
a basis of lesser quality, if the density of U is more than
2%. One may argue that no improvement after a single
re-randomization does not mean that no improvements
could occur in later re-randomizations. However, we
need to keep in mind that our goal is to produce a fast
sequential algorithm, so repeating the re-randomization
process too much will quickly degrade our runtime.

In our experiments, the density of U is fixed at
1.3%. We first ran 1000 tests per dimension with a
constant number of re-randomization (10, 20 and 50).
We call those variants L4-Rand10, -20, -50 respectively.
Although we noticed a sensible improvement of the ap-
proximation factor between L4 and L4-Rand10, it be-
comes less significant when the number of randomisa-
tion increases. There is barely no improvement at all
between L4-Rand20 and L4-Rand50. For instance,
in dimension 90, γL4-Rand10 is about 16% smaller than
γL4. In comparison the gain between γL4-Rand50 and
γL4-Rand10 is less than 5%. Furthermore, the gap be-
tween the approximation factor does not improve when
the dimension grows and even seems to get thinner. In
dimension 200, γL4-Rand50 is only about 3.4% smaller
than γL4-Rand10, while the runtime is increased by a
factor of 5, so the gain seems rather small for the cost.
As such we deem L4-Rand20 and L4-Rand50 too slow
to be really interesting. Instead, we propose to abort
the randomization process early, when no improvement
is made after a while.

More precisely, if the squared norm of the shortest
vector does not decrease after a fixed number k of re-
randomization, we end the process. We call this variant
L4-Maxk. We ran tests with k equal to 2 and 4.
Interestingly, although L4-Max4 computes about twice
more re-randomisations than L4-Max2, it only slightly
improves the approximation factor. For instance, in
dimension 200, γL4-Max4 is on average 12.27 which is
not much better than the 12.66 obtained after running
L4-Max2

40 60 80 100 120 140 160 180 200
dimension

2

4

6

8

10

12

14

ap
pr
ox

im
at
io
n
fa
ct
or

L4
L4-Max2
L4-Max4
L4-Rand10

Figure 4: Average approximation factor

40 60 80 100 120 140 160 180
dimension

0

25

50

75

100

125

150

175

tim
e
(s
)

L4
L4-Max2
L4-Max4
L4-Rand10

Figure 5: Average runtime

Figure 4 provides the average approximation fac-
tor computed for each tested dimension. We can see
that, although L4-Max2 and L4-Max4 lead to a bet-
ter approximation factor than L4, both provide similar
results, which is again very close to what is obtained
by L4-Rand10. Since L4-Max4 makes about twice
more re-randomisation steps, it is significantly slower
than L4-Max2, yet as shown on Figure 5, L4-Rand10
is slower than both. Similar to the observation made
in section 3.4, we observe a significant drop in the al-
gorithm performance in dimension 200 for all methods.
We did not show this dimension on Figure 5 for more
clarity.

4.3 In small dimension. According to the Darm-
stadt Lattice challenge, 1.05GH(Λ) is a good upper
bound of the norm of the shortest vector. Any vec-
tor whose norm is less than this quantity is considered
to be a solution to their SVP challenge. In small di-
mension, we are able to find a good proportion of such
vectors. For instance, in dimension 40, out of 1000 lat-
tices tested, the LLL algorithm finds 161 vectors of norm
smaller than 1.05GH(Λ), while L4 finds 355 of them.
This number increases to 842 with L4-Max4 and even
up to 915 with L4-Rand10. Of course this proportion
decreases with the dimension, yet we still get some suc-
cess up to dimension 70. For instance, in dimension 60,

while LLL does not find any such short vector anymore,
our L4 still finds 4 of them. With the L4-Max4 algo-
rithm, we find 103 of them, which is a 10% success rate.
Yet this significantly drops for higher dimension. In di-
mension 70, L4-Max4 still recovers 2 of such vectors
and L4-Rand10 4, but none are found in dimension 80
and above.

We do not claim this is a feat, as for small dimen-
sions, there are many algorithms which solve SVP very
efficiently (i.e., BKZ, enumeration, sieving). However,
we thought this result was still worth mentioning.

4.4 Short-comings of L4. We also tried to compare
L4 with BKZ with blocksize β, but the results were
rather disappointing. For instance, BKZ-12 offers much
smaller approximation factors, while being significantly
faster. Indeed, in dimension 140, on average out of
1000 tests, γBKZ12 = 2.38 for a runtime of about 5
seconds, while L4-Max2 is 5 to 6 time slower and leads
to an approximation factor γL4-Max2 = 3.9. Meanwhile,
L4 without randomisation offers a similar runtime than
BKZ12 in dimension 140, but the approximation factor
is about 1.89 bigger than γBKZ12, and the gap grows
with the dimension. While we could improve the
runtime with a better implementation, reducing the
approximation factor seems less straightforward.

Modifying L4 to use a BKZ-β algorithm instead
of LLL for the lattice reduction part is not likely to
work. This is due to the fact that, depending on the
value of β, BKZ-β reduced bases are “more orthogonal”
than LLL-reduced ones. We notice that the number of
pairs (bi,bj) of basis vectors that are not L-reduced is
lesser. This implies that the set S constructed during
each iteration of L4 will likely consists of too few vectors
for the algorithm to correctly work. For instance, in
dimension 70, there are about 58 non L-reduced pairs
after a BKZ-12 reduction, compared to 64 after an LLL
reduction. And this gap increases with the dimension.
In dimension 180, there are only an average of 154 non
L-reduced pair in a BKZ-12 reduced basis, while there
are more than 385 in an LLL-reduced one.

5 L4 as a Pre-processing Step for BKZ
Since using L4 as a Post-processing for BKZ is unlikely
to work, we choose to use it as a pre-processing instead.
At the beginning of the BKZ reduction algorithm, the
input basis is first reduced with LLL, in order to fa-
cilitate the later enumeration steps performed in each
block. We decided to use L4 in this pre-processing step
instead of LLL and compare the results provided by
both algorithms. We call our variant L4+BKZ. Note
that BKZ uses randomizations. To make our compari-
son fairer, we fixed its seed so that, given an input lat-

tice, the same randomizations will be applied to both
BKZ and L4+BKZ. For our experiments, we choose to
focus primary on BKZ with blocksize 24, as it is known
to provide an interesting tradeoff between runtime and
output quality. Indeed, as argued in [10], for block-
size 25 and higher, the runtime of BKZ significantly
increases.

Due to technical reasons, we were not able to run
our tests on Computer 1, and had to use the less
performant Computer 2 instead. It also means that all
of our experiments had to be processed sequentially.
As such, since BKZ-24 becomes quite slow when the
dimension grows, we were not able to make as many
experiments as in previous sections. We only ran 100
tests per dimensions, from 40 to 140 with an increment
of 10. Although this may be a bit too small to draw
strict conclusions, it already helps us figure out the
behaviour of L4+BKZ. The results we present in this
section are those we obtained with BKZ-24. We also
made about 100 experiments per dimension with BKZ-
25 up to 90, and the results we obtained were similar
(c.f., Appendix A). For each test, we compared the
approximation factor γ of the outputs of the usual
BKZ-24 with LLL as pre-processing, and L4+BKZ-24.
For the record, we also compared the runtime of both
algorithms.

5.1 Our experimental results. On average, using
L4 as a pre-processing step for BKZ slightly reduces
approximation factor. From dimension 60 to 140,
γL4+BKZ-24 is about 3% smaller than γBKZ-24, as shown
on Figure 6. From dimension 70, and upwards, we
also note that the number of lattices for which using
L4+BKZ-24 instead of BKZ-24 leads to a smaller γ
appears to stabilize between 70 and 80 out of a hundred
input lattices. We also noticed a pic in dimension 90,
where γL4+BKZ-24 < γBKZ-24 in 87 out of 100 tests. On
average the gain in γ was about 4.3%. However, since we
only have a few number of tests, this may be due to luck.
In dimension 60 and below, the norm of the shortest
vector in a BKZ-24 reduced basis mostly remains below
1.05GH(Λ), so the comparison is less relevant.

Although L4 is significantly slower than LLL, we
noticed that L4+BKZ-24 is not much slower than BKZ-
24, as shown of figure 7 which compares runtime of both
methods. The performances of L4+BKZ-24 do not seem
to worsen with the dimension either. In dimension 140,
L4+BKZ-24 was only 5.9% slower, on average. In every
dimension, we even get between 5 and 15 lattices out
of 100 for which L4+BKZ-24 is faster than BKZ-24.
Furthermore, we have at least one instance for which
L4+BKZ-24 improves both the approximation factor
and the runtime. On average there are about 4.5 of them

40 60 80 100 120 140
dimension

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
ap

pr
ox

im
at
io
n
fa
ct
or

BKZ-24
L4 + BKZ-24

Figure 6: Average approximation factor

40 60 80 100 120 140
dimension

0

100

200

300

400

tim
e
(s
)

BKZ-24
L4 + BKZ-24

Figure 7: Average runtime

per dimension, and a maximum of 10 in dimension 140.
We also compared the runtime of BKZ-24 alone after
being given as input an LLL-reduced basis, BL3

, and a
L4-reduced one, BL4

, of the same lattice Λ. We noted
that from dimension 70 and upwards, BKZ-24 is faster
in 35 to 45 % of our tests when takingBL4

as input, with
the exception of dimension 90, where it is only 24%. On
the downside, the average runtime of BKZ-24 after L4
is not better than BKZ-24 after an LLL-reduction, and
there are even instances where it is slower.

5.2 Other variants. We also ran tests with
L4+BKZ-24, where the Inflate routine quickly de-
scribed in section 3 is used instead of Sample. As a
reminder, at each call, this routine constructs S as in
Equation 3.5. We call Inflate-L4 the variant of L4
which uses this procedure instead of Sample. Oddly
enough, even though L4 and Inflate-L4 provide sim-
ilar results in terms of runtime and approximation fac-
tors, their behaviour while used as a pre-processing step
for BKZ is rather different.

In fact, out of the 100 experiments we ran per
dimension, Inflate-L4+BKZ-24 leads to similar results
than BKZ-24. More precisely, although there were some
cases where we obtain a lower approximation factor
(e.g., for n = 90, γInflate-L4+BKZ-24 < γBKZ-24 in 50
tests out of 100), the improvement is rather small,

both algorithms leading to the same average results.
Similarly, while there are a few cases where L4+BKZ-24
with Inflate is faster than BKZ-24, the average total
runtime of both algorithms is the same.

This difference in behaviour between the two vari-
ants of L4 can be explained by the following. Although
the first vector of both output bases have similar norm,
the bases themselves have a different structure. The
Sample procedure seems to produce bases that have
stronger orthogonality properties. Indeed we notice that
the proportion of L-reduced pairs in a basis B obtained
after L4 is higher than after Inflate-L4. For instance,
in dimension 100, out of 1000 tests, the average number
of non L-reduced pairs in the output of L4 is 102, while
it is 127 for both Inflate-L4 and LLL. In dimension
200, this gap widens with only 282 pairs that are not
L-reduced for L4, while it is about 359 for Inflate-
L4 and 465 for LLL. This stronger orthogonality may
explain why BKZ-24 is able to produce shorter vectors
when given as input an L4-reduced basis.

5.3 Discussion. Although the gain of using L4 as a
pre-processing step instead of LLL may seem scarce, we
would like to point out that our runtime comparison was
not fair. Indeed, we compared our un-optimised Python
implementation of L4, to a code which makes use of the
highly optimised C++ FPLLL Library. So there is a
good hope that a better implementation would lead to
even more interesting results.

More precisely, we think we can improve the run-
time for those 35 to 45% of lattices for which BKZ-
24 is faster after taking as input an L4-reduced basis.
First we could use adequate data structures like hash-
tables or stacks to efficiently check if a vector belongs
to S. Right now our code uses a very naive membership
testing which requires to check all elements in S. This
makes the runtime of our Sample implementation cu-
bic in the dimension of the lattice, while it could be only
quadratic. Other optimisations can be made, like avoid-
ing in-code conversions from Python array to FPyLLL
matrices. Finally, we could use a more performant pro-
gramming language, like C++.

6 Conclusion
We present a polynomial time lattice reduction algo-
rithm, L4 which improves on the quality of LLL while re-
maining fairly efficient. When used as a pre-processing
step for BKZ-24, it allows us to slightly reduce the norm
of the first basis vector. Although the improvement is
only about 3% on average, we argue that it is still signif-
icant, considering that the vectors returned by BKZ-24
were already quite short in the dimension we tested. On
the downside, our hybrid L4+BKZ appears to be slower

than BKZ. However, we have reasons to believe that its
runtime can be improved with a more optimised imple-
mentation. In particular, in our tests, there are about
40% of the lattices for which BKZ is faster when it is
given as input an L4-reduce basis. So we hope we can
bridge the gap in performance, and even get faster than
BKZ for these lattices, offering an alternative to LLL
for BKZ pre-processing.

Future work and food for thought. As mentioned
earlier, we do not know exactly how to tune the pa-
rameters of our L4 to offer the best tradeoff between
efficiency and output quality. In particular, the choice
of parameters α1 and α2 which determine the number
of iterations in our Sample procedure is crucial. The
choice we made here was rather a naive one, and is prob-
ably not optimal. Although our experiment suggests
that increasing their value does not seem to improve
the overall quality of the output, we need to investigate
further to be certain. Indeed, as we noticed when com-
paring L4 and Inflate-L4, even though two algorithms
seem to produce similar results when we consider only
the norm of the first vector, their behaviour can widely
differ when combined with BKZ.

The question of up to which point the number of
iterations inside the Sample procedure can be reduced,
also remains open. We ran some preliminary tests
for Sample when only 0.25d vectors are drawn in the
second loop, and the overall approximation factors look
similar up to dimension 200. However, we have not yet
tested if the results remain interesting when combined
with BKZ, or if they degrade similar to Inflate-L4.

Finally, we did not investigate either how L4 be-
haves when combined with BKZ-β for other values of
24. We did a few experiments for β = 25 but since
this takes a lot of time when processed sequentially, we
did not go far in dimension. It could also be inter-
esting to look at smaller blocksizes, for which BKZ is
already quite fast (i.e., β ≤ 20), and see if we can im-
prove the approximation factor even further, without
getting much slower. On the other hand, it could also
be interesting to see if taking as input an L4-reduced
basis in BKZ-β for higher values of β can help reduce
the runtime of the enumeration routine. If so, it could
be worth considering using L4 as a routine inside each
block before performing the enumeration for large β.

References

[1] Darmstadt, svp challenge. Available at https://www.
latticechallenge.org/svp-challenge, 2010.

[2] Dorit Aharonov and Oded Regev. Lattice problems in
np ∩ conp. J. ACM, 52:749–765, 2005.

[3] Miklós Ajtai. Generating hard instances of lattice
problems (extended abstract). In Proceedings of the
Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 99–108, New York, NY,
USA, 1996. ACM.

[4] Miklós Ajtai. Random lattices and a conjectured 0-1
law about their polynomial time computable proper-
ties. In The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002. Proceedings., pages
733–742. IEEE, 2002.

[5] Johannes Buchmann, Richard Lindner, Markus Rück-
ert, and Michael Schneider. Explicit hard instances
of the shortest vector problem. IACR Cryptol. ePrint
Arch., page 333, 2008.

[6] Hao Chen. A measure version of gaussian heuristic.
IACR Cryptol. ePrint Arch., 2016:439, 2016.

[7] Yuanmi Chen and Phong Nguyen. Bkz 2.0: Better
lattice security estimates. In Advances in Cryptology
– ASIACRYPT 2011, pages 1–20, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[8] Joseph Louis de Lagrange. Recherches d’arithmétique.
In Nouveaux mémoires de l’Académie royale des sci-
ences et belles-lettres de Berlin, 1773.

[9] The FPLLL development team. fplll, a lattice re-
duction library, Version: 5.4.5. Available at https:
//github.com/fplll/fplll, 2023.

[10] Nicolas Gama and Phong Q. Nguyen. Predicting
lattice reduction. In Nigel P. Smart, editor, Advances
in Cryptology - EUROCRYPT 2008, volume 4965
of Lecture Notes in Computer Science, pages 31–51.
Springer, 2008.

[11] Nicolas Gama, Phong Q. Nguyen, and Oded Regev.
Lattice enumeration using extreme pruning. In Henri
Gilbert, editor, Advances in Cryptology - EURO-
CRYPT 2010, 29th Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, Monaco / French Riviera, May 30 - June 3,
2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science, pages 257–278. Springer, 2010.

[12] Oded Goldreich and Shafi Goldwasser. On the limits
of nonapproximability of lattice problems. J. Comput.
Syst. Sci., 60:540–563, 2000.

[13] Daniel Goldstein and Andrew Mayer. On the equidis-
tribution of hecke points. 15(2):165–189, 2003.

[14] Charles Hermite. Extraits de lettres de m. ch. her-
mite à m. jacobi sur différents objects de la théorie des
nombres. Journal für die reine und angewandte Math-
ematik, 40:261–315, 1850.

[15] Ravi Kannan. Improved algorithms for integer pro-
gramming and related lattice problems. Proceedings
of the fifteenth annual ACM symposium on Theory of
computing, 1983.

[16] Ravi Kannan. Minkowski’s convex body theorem
and integer programming. Mathematics of operations
research, 12(3):415–440, 1987.

[17] Korkine and Zolotarev. Sur les formes quadra-
tiques positives quaternaires. Mathematische Annalen,
5:581–583, 1872.

https://www.latticechallenge.org/svp-challenge
https://www.latticechallenge.org/svp-challenge
https://github.com/fplll/fplll
https://github.com/fplll/fplll

[18] Korkine and Zolotarev. Sur les formes quadratiques.
Mathematische Annalen, 6:366–389, 1873.

[19] Arjen Lenstra, Hendrik Lenstra, and László Lovász.
Factoring polynomials with rational coefficients. Math-
ematische Annalen, 261(4):515–534, 1982.

[20] Daniele Micciancio. The shortest vector in a lattice is
hard to approximate to within some constant. SIAM
Journal on Computing, 30(6):2008–2035, 2001.

[21] Hermann Minkowski. Ueber geometrie der
zahlen. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 1:64–65, 1890.

[22] Phong Q Nguyen. Hermite’s constant and lattice algo-
rithms. In The LLL Algorithm: Survey and Applica-
tions, pages 19–69. Springer, 2009.

[23] Phong Q. Nguyen and Damien Stehlé. Floating-point
lll revisited. In International Conference on the Theory
and Application of Cryptographic Techniques, 2005.

[24] Phong Q Nguyen and Damien Stehlé. Low-dimensional
lattice basis reduction revisited. ACM Transactions on
algorithms (TALG), 5(4):1–48, 2009.

[25] Michael Pohst. A modification of the LLL reduction
algorithm. J. Symb. Comput., 4(1):123–127, 1987.

[26] Claus-Peter Schnorr. Block reduced lattice bases and
successive minima. Combinatorics, Probability and
Computing, 3:507–522, 1994.

[27] Claus-Peter Schnorr and Martin Euchner. Lattice basis
reduction: Improved practical algorithms and solving
subset sum problems. Mathematical programming,
66(1-3):181–199, 1994.

[28] C.P. Schnorr. A hierarchy of polynomial time lattice
basis reduction algorithms. Theoretical Computer Sci-
ence, 53(2):201–224, 1987.

[29] Igor Semaev. A 3-dimensional lattice reduction algo-
rithm. In Cryptography and Lattices: International
Conference, CaLC 2001 Providence, RI, USA, March
29–30, 2001 Revised Papers, pages 181–193. Springer,
2001.

[30] Damien Stehlé. Floating-point lll: theoretical and
practical aspects. In The LLL Algorithm: survey and
applications, pages 179–213. Springer, 2009.

[31] Peter van Emde Boas. Another np-complete problem
and the complexity of computing short vectors in a
lattice. Tecnical Report, Department of Mathmatics,
University of Amsterdam, 1981.

A Experimental results for L4+BKZ-25
Here are some additional results obtained with
L4+BKZ-25 up to dimension 90. We made 99 to 100
tests per dimension and the outcome is similar to what
we obtained with L4+BKZ-24 for the same dimensions.
On average γL4+BKZ-25 also seem to be about 3% smaller
than γBKZ-24, with the best ratio obtained in dimen-
sion 90 with γL4+BKZ-25 ≈ 1.15 while γBKZ25 is slightly
above 1.2 as shown in Figure 8. The number of time
L4+BKZ-25 improves either the approximation factor
or the runtime or both, is also very similar to what we

40 50 60 70 80 90
dimension

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

ap
pr
ox

im
at
io
n
fa
ct
or

BKZ-25
L4 + BKZ-25

Figure 8: Average approximation factor

dim # tests smaller γ faster both
40 100 17 15 1
50 99 42 11 2
60 99 70 11 9
70 99 75 9 6
80 100 81 8 5
90 100 81 6 3

Table 1: Number of time L4+BKZ-25 improved on
BKZ-25

obtain with L4+BKZ-24 (c.f., Table 1). The same can
be said about number of times BKZ-25 alone was faster
after taking as input an L4-reduce basis: around 40, the
worst case being 34 in dimension 80 and the best one
56 in dimension 40.

	Introduction
	Our contributions.
	Experiments.

	Preliminary
	Notation.
	Lattices background.
	Shortest Vector Problem.
	Lattice Reduction.

	A new basis reduction algorithm
	Construction of S.
	Analysis of L4.
	Experimental estimation of k.
	Experimental runtime.

	Norm of the First Vector
	Experimental results.
	Randomizing the algorithm.
	In small dimension.
	Short-comings of L4.

	L4 as a Pre-processing Step for BKZ
	Our experimental results.
	Other variants.
	Discussion.

	Conclusion
	Experimental results for L4+BKZ-25

