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Abstract. In a functional encryption (FE) scheme, a user that holds a ciphertext and a function-key
can learn the result of applying the function to the plaintext message. Security requires that the user
does not learn anything beyond the function evaluation. On the other hand, unclonable encryption
(UE) is a uniquely quantum primitive, which ensures that an adversary cannot duplicate a ciphertext
to decrypt the same message multiple times. In this work we introduce unclonable quantum functional
encryption (UFE), which both extends the notion of FE to the quantum setting and also possesses
the unclonable security of UE.
We give a construction for UFE that supports arbitrary quantum messages and polynomialy-sized
circuits, and achieves unclonable-indistinguishable security for independently sampled function keys.
In particular, our UFE guarantees that two parties cannot simultaneously recover the correct function
outputs using two independently sampled function keys. Our construction combines quantum garbled
circuits [BY22], and quantum-key unclonable encryption [AKY24], and leverages techniques from
the plaintext expansion arguments in [Hir+23]. As an application we give the first construction for
public-key UE with variable decryption keys.
Lastly, we establish a connection between quantum indistinguishability obfuscation (qiO) and quan-
tum functional encryption (QFE); Showing that any multi-input indistinguishability-secure quantum
functional encryption scheme unconditionally implies the existence of qiO.
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1 Introduction

The development of Functional Encryption (FE) marks a significant evolution in cryptography,
enabling a more nuanced and controlled access to encrypted data [O’N10; BSW11]. Traditional
public-key encryption allows either full decryption or none at all, a model insufficient for many
modern applications, such as cloud services, where selective access to data is essential. FE addresses
this by allowing decryption keys to reveal only specific functions of the encrypted data.

In more detail, an FE scheme for a family of functions F enables a specialized form of decryption
that takes as input both a ciphertext ct and a function key skf and outputs the evaluation f(m)
on the plain text m. The security of the scheme ensures that an adversary in possession of (ct, skf )
cannot recover additional information beyond f(m).

A broad goal within quantum cryptography aims to generalize various cryptographic tools
into the quantum setting. This includes works studying verifiable delegation [RUV13; Gri19], ran-
domized encodings and garbled circuits [BY22], and quantum indistinguishablity obfuscation (qiO)
[BK21]. Another approach explores new functionalities uniquely achievable in the quantum setting,
such as unclonable encryption (UE) [BL20], where an adversary is unable to create two ciphertexts
that both decrypt to the same message as the original ciphertext.

While the works mentioned above demonstrate the tremendous progress made in the field, there
remain significant open challenges. Prior to this work, a formal treatment and secure construction
of quantum functional encryption (QFE) had not been provided. Instead, [BY22] suggests QFE as
a potential application of quantum garbled circuits. Additionally, although there has been some
progress, a complete construction for either qiO or UE remains an open problem. We explore how
QFE can advance these topics.

Summary of Results. Our results on the topics of QFE, UE, and qiO are as follows:

1. We give the first formal definitions of QFE, covering both simulation and indistinguishability-
based security. Our treatment spans adaptive and non-adaptive models, as well as multi-
message, multi-query, and multi-input scenarios, addressing all key variants of functional
encryption.

2. We use quantum garbled circuits to give the first construction of single-query, adaptively
simulation-secure QFE.

3. We present and construct unclonable QFE which maintains the properties of functional
encryption for quantum messages while at the same time achieving unclonability for any
message, classical or quantum. As a corollary, we use this to obtain the first indistinguishable-
uncloneable secure public-key encryption scheme with variable decryption keys.

4. Laslty, we establish a connection between quantum indistinguishability obfuscation (qiO)
and QFE; Showing that any multi-input indistinguishability-secure quantum functional en-
cryption scheme unconditionally implies the existence of qiO.

1.1 Quantum Functional Encryption

In this work, we formally define Functional Encryption in the quantum setting, referred to as
Quantum Functional Encryption (QFE). At a high level, a QFE scheme for a class of circuits
C allows for selective decryption with respect to function keys skC , which must satisfy two key
properties: correctness and security. The correctness property ensures that decryption returns
C(ρm) for all C ∈ C and states ρm, and the security property guarantees that no additional
information is revealed beyond C(ρm).

While correctness in QFE is relatively straightforward, defining security requires more nuanced
attention. Security can be analyzed through two primary frameworks: simulation-based security
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(SIM-security) and the generally weaker indistinguishability-based security (IND-security). Both
approaches have further distinctions between adaptive and non-adaptive versions, whether an
adversary has a single or multiple challenge ciphertexts, and depending on whether the adversary
obtains one or more function keys. The formal definitions and detailed treatments are presented
in Section 3 and Appendix B.1. Below we provide the basic structure of QFE and outline notions
of correctness as well as SIM-security and IND-security.

QFE.(Setup,KeyGen,Enc,Dec) Setup(1λ), takes as input the security parameter λ, and outputs
a master public key mpk, and a master secret key msk. Given msk and a circuit C ∈ C, the key gen-
eration algorithm, KeyGen(msk, C), produces a secret function key skC . Encryption, Enc(mpk, ρm),
uses mpk and outputs a ciphertext ρct. Finally, the decryption algorithm, Dec(skC , ρct), takes a
function key skC and the ciphertext ρct, and outputs a quantum state.

Correctness. Correctness requires that for all messages ρm, circuits C ∈ C and random coins
used by Enc and Setup it holds that

C(ρm) = Dec(skC , ρct).

As outlined in Section 3 we additionally require correctness to respect correlation with possible
side information.

Simulation Security. Simulation security is formalized by comparing the output of two experi-
ments: in the real experiment, the adversary interacts with the actual encryption scheme to produce
an encryption of a chosen message, and choice of function key(s) skC . In the ideal experiment, a
simulator is given access to the function key skC and the image state C(ρm), and produces a cipher-
text without access to the underlying message. The scheme is called simulation secure, abbreviated
as SIM-secure, if the outputs of these two experiments are computationally indistinguishable. A
QFE scheme is further said to be adaptively simulation secure if the adversary can either choose
the message first and then the function secret key or the other way around.

The formal definition of simulation security in the restricted setting, where the adversary holds
only a single ciphertext and single function key, is provided in Definition 10.

Indistinguishability Security. In the classical setting, IND-security is defined with respect to
admissible queries. Specifically, an adversary holding a function key skf for some function f cannot
distinguish between encryptions of two admissible queries, meaning that f(m0) = f(m1). Adapting
IND-security to the quantum setting introduces some challenges, particularly in defining admissible
queries. A first naive approach would be to require the trace distance of outputs states C(ρm1

)
and C(ρm1

) to be suitably close in order for them to be admissible. However, as we discuss in
Section 3.2 this approach is insufficient to prevent attacks based on quantum side information.

An alternative, approach would be to take into account the internal state of an adversary and
thereby restricting quantum side information. Although such an approach may be be useful in
some applications, such as when the messages are are not chosen by the adversary, it remains too
restrictive for many use cases. Instead, in Definition 12 we introduce a notion of admissible queries
which allows an adversary to be entangled with part of the message. As in the case in the classical
setting our notion of sim-security is generally stronger and, we show that it implies IND-security.

Multi-message Security. More generally we also consider the notion of SIM-security and IND-
security in the context where an adversary has access to numerous ciphertexts. In Appendix B.1
we provide an extension of the SIM-security from Definition 10 to the multi-message setting. As
in the classical case, we show in Lemma 6 that any non-adaptive single-query simulation-secure
scheme with classical secret keys is also multi-message simulation-secure.
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Multi-query/Collusion Security In the classical setting, functional encryption schemes often
require security to hold even in the presence of colluding key holders. A malicious user should
not be able to combine several function keys to extract unauthorized information. More formally,
a group of users holding secret keys skC1

, . . . , skCq
, along with an encryption of m, should only

be able to learn C1(m), . . . , Cq(m), and nothing more about m. This scenario is often referred
to as "collusion resistance." In our work, we refer to this property as multi-query security. We
note, however, that classical simulation-secure FE is not achievable against an adversary who may
possesses an unbounded number of function keys, a scenario sometimes referred to as unbounded
collusion [Agr+13].4

In the quantum setting, the no-cloning theorem makes it unclear to what extent collusion
is possible and presents challenges to formalising multi-querry security. In particular, without
several copies of the underlying ciphertext it may not be possible to obtain several evaluations.
In Section 6, we introduce a more general form of QFE called quantum multi-input functional
encryption (QMIFE). This framework extends our treatment of both simulation-based security
and indistinguishability-based security, encompassing multi-query security as a special case. Below,
in Section 1.4, we provide an overview of QMIFE and discuss how IND-security and SIM-security
can be adapted to QMIFE.

1.2 QFE for Poly-sized Circuits

In the classical setting, it is known that a non-succinct form of FE can be constructed using a
cryptographic primitive known as randomized encodings (RE). Specifically, [SS10; GVW12] show
that any RE scheme which possess the additional property of being decomposable, can be used to
construct an FE scheme for the class of polynomial-sized circuits. Here the constructed FE scheme
is considered non-succinct as the size of the ciphertext must be at least as large as the size of
allowable circuits.

Randomized Encodings A randomized encoding (RE) of a function f is a probabilistic function
f̂ such that, for any input x, the value of f(x) can be recovered from f̂(x), but no additional
information about f or x is revealed. An RE scheme is called decomposable if a function f and a
sequence of inputs (x1, . . . , xn) can be encoded in two parts: an offline part f̂off, which depends
only on f and some randomness r, and an online part f̂i, which depends on each input xi and the
same randomness r. We write DRE for RE schemes which satisfy this proprety.

In [BY22] Brakerski and Yuen both define and give a construction for decomposable RE in the
quantum setting called the Quantum Garbled circuit (QGC) scheme. Our first main result presents
a constuction for QFE based on QGC.

Theorem 1 (Informal). Given a QGC scheme with perfect correctness and a public key en-
cryption scheme there exists a single-query adaptive SIM-secure QFE scheme for the class of
polynomial-sized circuits.

The formal statement and construction of our QFE scheme is given in Section 4.2. Similar to
the classical constructions given in [SS10; GVW12], our scheme is not succinct. While succinct FE
is needed for many applications, such as delegated computation, we show that the our QFE scheme
can be used to obtain the first public-key unclonable encryption scheme with variable decryption
keys. This in turn provides several applications such as private-key quantum money. Details on
our applications to unclonable cryptography are discussed in Section 1.3. Below we outline our
construction for QFE and highlight the specific challenges which present in the quantum setting.

4 Assuming the existence of a family of weak pseudo-random functions.
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Outline of QFE Construction The basic observation that enables the construction of FE from
garbled circuits is their decomposability. It allows one to decouple the circuit and input by viewing
both as inputs to a universal circuit. Here a universal circuit U takes as input a circuit description
C and state ρm and outputs C(ρm). Due to the decomposability property the encoding of the
classical circuit description and the encoding of the quantum input can be handled separately. In
this way, using a decomposable RE scheme for a universal circuit, combined with a restricted form
of functional encryption for pairs of circuits, enables functional encryption for all polynomial-sized
circuits.

While the above construction is fairly straightforward to translate into the quantum setting
using the QGC, more difficulty arises when creating adaptive security. In the adaptive security
setting the adversary can first request a ciphertext and then a secret key for an arbitrary function.
Since the simulator is not allowed learn the message which the adversary selected, the simulator
only obtains the output of the circuit evaluation during the second stage. Therefore the simulator
needs to first create an ’empty’ ciphertext and later provide a secret key that opens the ciphertext
to the correct value. Techniques for handling the classical part adaptively are well known but they
cannot be applied to the quantum part. To resolve this we employ a ’trick’ inspired by the concept
of computation trough teleportation.

We describe the classical and quantum techniques to achieve this for a single bit or qubit
repectively. For a classical message an ’empty’ ciphertext can be created by encrypting the bit 0
and the bit 1 in two separate slots of the ciphertext and later revealing the key for only one slot.
Clearly in the quantum setting we cannot enumerate all possible values a single qubit can take.
Instead the uniquely quantum phenomenon of teleportation can help us achieve such a construction.
The simulator encrypts one qubit of an EPR pair σAB = 1√

2
(|0⟩A|0⟩B + |1⟩A|1⟩B) pair using the

quantum one time pad: |ct⟩ = XaZbσA.
Later when the simulator learns the output state ρ it teleports the state into the ciphertext. This

results into a randomization of the ciphertext since now the state Xa′
Zb′ρ is contained resulting in

the ciphertext XaZbXa′
Zb′ρ = Xa⊕a′

Zb⊕b′ρ where (a′, b′) are the teleportation correction keys.
We can then use a classical ciphertext as described above to reveal the keys (a⊕ a′, b⊕ b′).

1.3 Unclonable QFE

As an application of our QFE scheme we obtain a novel form of unclonable encryption (UE), which
we call unclonable functional encryption.

Unclonable Encryption Unclonable encryption, first introduced by Broadbent and Lord [BL20],
is an encryption scheme that leverages the no-cloning theorem to achieve a novel cryptographic
functionality. Specifically, it guarantees that an adversary in possession of a ciphertext ρct cannot
generate two states, ρB and ρC , that both correctly decrypt to the same message m. This is
formalised in the following security game with a tripartite adversary A = (A,B,C). In the first
phase A receives a ciphertext ρct that enrcypts a message m and has to produce a state ρBC

by applying an arbitrary quantum channel. In the second phase B and C are activated, they
receive the state ρB and ρC respectively and each get a copy of the decryption key. They win
the experiment if both B and C correctly guess the message m. The strongest security notion
for unclonable encryption is unclonable-indistinguishability security which allows A to choose two
messages m0,m1. To win the game B and C have to both guess correctly which of these message
was encrypted.

Vairable-key UE While currently there is no provably secure construction for the strongest no-
tion of UE there do exists weaker several variants which have allowed for more progress. Kundu and
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Tan consider one such variant called unclonable encryption with variable keys [KT22]. Their mod-
ified version of UE allows a ciphertext to be decrypted using multiple decryption keys, with each
adversary in a cloning attack receiving an independently generated key. In the device-independent
setting [KT22] give a construction for secret-key unclonable encryption with variable keys. They
also further outline that although weaker than UE such a scheme is still useful for known appli-
cations of UE such as quantum money. A private-key quantum money scheme can be constructed
from unclonable encryption as follows: A banknote is created by creating a ciphertext of a random
message. The bank holds a deryption key and can verify the message by decrypting it. In the case
of unclonable encryption with variable decryption keys each bank that needs to verify the banknote
independently samples a decryption key.

Unclonable QFE In this work, we introduce a novel cryptographic primitive called Unclonable
Functional Encryption (Unclonable QFE), which combines the security properties of QFE with the
unclonable security characteristics of UE. The formal definition of Unclonable QFE is provided in
Definition 13, where we extend the security requirements of a QFE scheme to include unclonable
security. Our approach builds on the familiar security game from UE with some key modifications.
In the first phase, the underlying message is encrypted using a QFE scheme. After an adversarial
splitting channel is applied, in the second phase, two adversaries, B and C, each receive indepen-
dently generated function secret keys for some circuit. Our new security notion ensures that both
B and C cannot simultaneously guess which of the two challenge messages was encrypted, thus
preserving unclonability in the functional encryption setting. Notably, we allow for the encryption
of quantum messages. While UE is usually concerned with the protection of classical messages we
maintain the properties of functional encryption for quantum messages while at the same time
achieving unclonability for any message, classical or quantum. In Theorem 7 we prove that such
a scheme can be constructed from any QFE scheme, such as our construction from Section 4.2,
together with an unclonable encryption scheme which allows for quantum decryption keys, such
as that given by [AKY24].

Theorem 2 (Informal). Any single-query QFE scheme for n-qubit messages is a uncloneble
functional encryption scheme with variable decryption keys assuming an unclonable encryption
scheme with quantum decryption keys for single bit messages.

When the function secret keys are fixed to be the identity circuit this implies a public-key
unclonable-indisintguishable secure encryption scheme with variable decryption keys. In contrast
to the standard definition of unclonable encryption here the KeyGen algorithm is run twice to
produce independently sampled secret keys. We assume that the randomness can be chosen in
such a way that the same encryption key is produced with different decryption keys.

Corollary 1 (Informal). There exists a public-key unclonable encryption scheme with variable
decryption keys for n-bit messages assuming a single-query QFE scheme and an unclonable en-
cryption scheme with quantum decryption keys for single bit messages.

Outline of Unclonable QFE Construction The construction is inspired by Hiroka et al.
[Hir+23] who showed a plaintext expansion result for unclonable encryption: A construction based
solely on quantum randomized encodings is a mulit-bit unclonable encryption scheme if there exists
a single bit unclonable-indistinguishable secure encryption scheme. Unfortunately, the existence of
such a scheme is not yet known in the plain model. Our result has a similar plaintext expansion
property but we do not make the same assumption about the existence of such an unclonable
encryption scheme. Instead we rely on an unclonable encryption scheme with quantum decryption
keys which was recently constructed by Ananth, Kaleoglu, and Yuen [AKY24].
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The idea of our construction is that the ciphertext has two modes indicated by a flag bit in
the plaintext. In the first mode (f = 0), which is the mode the real encryption procedure uses, the
plaintext is simply encrypted under the QFE scheme and padded to a certain length:

ρct0 = QFE.Enc(ρm ⊗ |0⟩⟨0|O(λ) ⊗ |f = 0⟩⟨f = 0|)

To prove security we want to reduce to the unclonable decryption scheme with quantum secret
keys UEQ. Therefore we show that, due to the security of the QFE scheme, the first ciphertext
is indistinguishable to the following ciphertext which makes use of the UEQ scheme. Let ek, |dk⟩
be the encryption and decryption keys of the UEQ scheme and let ρUE ← UEQ.Enc(1λ, b) be an
unclonable encryption of a bit b ← {0, 1}. Define ρmb

= ρm and ρm1−b
an arbitrary n-qubit state.

Then a ciphertext in the second mode is created as follows:

ρct1 = QFE.Enc(ρm0 ⊗ ρm1 ⊗ |dk⟩⟨dk| ⊗ ρUE ⊗ |f = 1⟩⟨f = 1|)

Now we can define a class of circuits U(C, ·) that checks the last bit of the message and in the
case of f = 0 outputs the message C(ρm). In case of f = 1 the circuit decrypts the ρUE ciphertext
to get b, selects the message mb and outputs C(ρmb

). Indistinguishability of the ciphertexts ρct0
and ρct1 follows from the security of the QFE scheme.

During the reduction we encounter the issue that we have to create the QFE ciphertext before
we learned the decryption key |dk⟩ for the single-bit unclonable encryption scheme. Only in the
second phase of the experiment is this key revealed. At this point we have to reveal the decryption
key to the adversary who is attacking the QFE construction.

This part of the proof is reminiscent of the transformation given in [AK21] who also use the
mode change via a flag bit trick. They use classical functional encryption to transform secret-key
unclonable encryption into public-key unclonable encryption.5

In their construction it is possible to hardcode the classical decryption key of an unclonable
encryption scheme into the circuit description and then create a function secret key for this circuit
to complete the proof. Unfortunately we cannot directly apply same technique as [AK21]. In our
case the decryption key is a quantum state and our QFE scheme does not support hardcoding
quantum states into the circuit description.

To solve this issue we create 2n EPR pairs and put one qubit of each EPR pair in the ciphertext.
Later we can teleport the quantum decryption keys into the ciphertext and hardcode the correction
keys of the teleportation into the function secret key. The circuit applies the correction keys to the
decryption key and can then use it to decrypt the ρUE ciphertext. Hardcoding the teleportation
keys into the circuit introduces a randomization of the function secret key which is why we do
not achieve fully fledged unclonable encryption but only a version with variable decryption keys.
Furthermore we have to make sure that each part of the reduction B and C who each obtain a
quantum decryption key |dk⟩ can create a valid decryption key for their part of the reduction.
Since the EPR pairs for the teleportation procedure cannot be held by both B and C at the same
time we need to provide two teleportation slots. Then B and C each individually teleport the
decryption key into the ciphertext and create a function secret key based on their teleportation
keys. The teleportation keys (a, b) are uniformly random bits, so the function secret keys that
depend on them are indistinguishable from regular function secret keys that were created with
freshly sampled bits.

In the second step of the proof we construct a ciphertext with the the flag bit set to 1 to reduce
multi-bit security of our unclonable functional encryption scheme to the single bit security of the
unclonable encryption scheme of [AKY24].

5 They also explain very well why a normal public-key encryption scheme is not sufficient but a functional
encryption scheme is.

8



1.4 QMIFE and Applications to Quantum Indistinguishability Obfuscation

In the classical setting much research has focused on improving on the trade-off inherent between
the size of allowable circuits and the length of the ciphertext. Recall the schemes constructed
in [SS10; GVW12], as well as our scheme given in Section 3, are considered non-succinct as the
size of the ciphertext must be at least as large as the circuit description of allowable circuits.
In [Gol+14], a stronger variant on FE, known as multi-input function encryption (MIFE) is in-
troduced. In [Gol+14] it is shown that MIFE enables applications towards indistinguishability
obfuscation without the requirement of succinctness.

MIFE Multi-Input Functional Encryption (MIFE) extends traditional functional encryption to
handle functions over multiple ciphertexts, potentially encrypted under different keys. This general
framework allows for the computation of aggregate information from various data sources, going
beyond single-input functional encryption. In MIFE, the owner of a master secret key (MSK)
can derive special function keys that enable the evaluation of an n-ary function f(x1, . . . , xn) on
ciphertexts corresponding to different messages, even when encrypted by different parties. Such
multi-input functionality has been shown to allow for many powerful applications such as multi-
party delegated computation, and construction of indistinguishability obfuscation (iO) and virtual
black-box obfuscation (VBBO).

QMIFE Analogously, a quantum multi-input functional encryption (QMIFE) scheme is a QFE
scheme that can evaluate a function on multiple, individually encrypted quantum inputs. In our
definition of QMIFE we switch to the secret-key version of functional encryption. Therefore the
ciphertexts cannot be encrypted by anyone but only by the holder of encryption secret keys.
Additionally the scheme is tagged with an encryption limit k which indicates how many ciphertexts
per encryption key can be obtained.

The IND-definition for QMIFE readily generalizes using methods from the IND-security def-
inition for QFE: For any combination of inputs and circuit queries the restriction of admissible
queries has to be fulfilled. In the SIM-security definition a new uniquely quantum challenge arises.
Informally we want to give the simulator exactly the information that we want to allow a par-
ticipant in the QMIFE scheme to learn. In the classical setting this corresponds to the output of
the quantum circuit for any combination of challenge inputs. In the quantum setting we have the
problem that different combinations of inputs are possible but the quantum ciphertexts are not
necessarily reusable. If we give the simulator access to all possible circuit outputs we are giving
him too much information since obtaining all outputs might not be a physical process. On the
other hand, allowing the simulator to obtain only one output is too little information.

For instance, an adversary could attempt to run decryption Dec(skC) on two ciphertext regis-
ters, measure one register, uncompute the decryption, and then swap the first register with a new
state. We solve this issue by giving the simulator access to a trusted party that holds the input
messages. The simulator can query the trusted party by defining a circuit and indices to select
the input messages. Then the trusted party carries out the circuit evaluation, moves the output
into a new register by applying a CNOT gate to every qubit and uncomputes the circuit on the
input registers. The trusted party returns the output to the adversary and proceeds in the same
manner for additional queries. Now the state that is obtained by the simulator is entangled with
the trusted party and any measurements that might be performed by the simulator disturb the
state and influence future circuit evaluations. This simulates the information we expect a recipient
of a number of ciphertexts and function keys to be able to compute without breaking the security
of the QMIFE scheme.

Our formal presentation of QMIFE, including both IND-security and SIM-security definitions,
is given in Section 6. Additionally, our treatment of QMIFE covers multi-query QFE as a special
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case. Our main application is given in Theorem 8 and Theorem 9 which provide the following
quantum analogue of the celebrated reductions to iO and VBBO given in [Gol+14].

Theorem 3 (Informal). Any single-query non-adaptive IND-secure QMIFE unconditionally im-
plies qiO.

Theorem 4 (Informal). Any single-query non-adaptive SIM-secure QMIFE scheme uncondi-
tionally implies virtual black box quantum obfuscation.

1.5 Additional Related Work

Functional Encryption While we are the first to consider functional encryption for quantum
circuits there has been a series of works enhancing classical functional encryption using quantum
techniques. By adding the possibility to certifiably delete the ciphertext of the FE scheme [Hir+24]
construct certified everlasting functional encryption. [KN22] define and create functional encryp-
tion with secure key leasing from any secret-key FE and they construct FE with single decryptor
against bounded collusions assuming sub-exponentially secure indistinguishability obfuscation and
the sub-exponential hardness of the learning with errors (LWE) problem. Using different tech-
niques Çakan and Goyal [ÇG23] construct functional encryption with copy protected secret keys
against unbounded collusions from sub-exponentially secure indistinguishability obfuscation, one-
way functions and LWE.

Unclonable Encryption The notion of unclonable encryption was formally defined by [BL20],
previously a similar notion was introduced by [Got03]. Since then the gold standard of indistinguish-
able-unclonable secure encryption with negligible adversarial advantage has only been achieved in
the quantum random oracle model by [Ana+22] and a construction in the plain model remains an
open question. Various alternative notions of unclonable encryption have been achieved such as
device-independent unclonable encryption with variable secret keys [KT22], unclonable encryption
with interaction [BC23], unclonable encryption with quantum decryption keys [AKY24]. Further-
more the relationship of unclonable encryption to other primitives that require a form of unclonabil-
ity such as quantum money [Wie83; AC12] and copy protected programs [Aar09; AK21; Bro+21;
Ana+22; CMP24; CG24] has been studied.

Quantum Obfuscation Alagic and Fefferman [AF16] provide a quantum analouge of the classical
impossibility result for virtual black box obfuscation (VBB), showing that the notion of quantum
virtual black box obfuscation (QVBB) is also impossible to achieve. Furthermore, [Ala+21] show
that a quantum scheme cannot achieve VBB for classical circuits either. The first feasability result
for qiO was obtained by Broadbent and Kazmi [BK21] for circuits with log-many non-clifford gates
relying on classical iO. Since then several works have put forth candidate constructions using a wide
variety of techniques. Bartusek and Malavolta [BM22] construct qiO for null circuits6 assuming
classical VBB. [Bar+23] construct QVBB for pseudo-deterministic circuits7 with a classical de-
scription assuming classical VBB. [BBV24] improve upon this result by constructing ideal QVBB8

for pseudo-deterministic circuits with a quantum description assuming classical VBB. Since clas-
sical VBB is known to be impossible these constructions are only candidates for qiO meaning we
can hope that if the classical VBB is instantiated with classical iO the constructions can be proven
secure with new ideas.
6 Null quantum circuits are circuits that reject on every input with overwhelming probability.
7 A pseudo-deterministic circuit takes as input a classical string and outputs a deterministic bit with

overwhelming probability taken over the randomness introduced by the quantum circuit.
8 Ideal QVBB is very similar but slightly stronger than QVBB.
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1.6 Open Questions

An important open question is the construction of quantum indistinguishability obfuscation. In
this work we make a step towards exploring the relationship of quantum functional encryption to
qiO via multi-input quantum functional encryption. It is an interesting open question if QMIFE
can be constructed by for example leveraging classical multi-input functional encryption which can
be constructed from classical iO, a reasonable assumption in the construction of qiO.

Another open question that this work raises are enhanced versions of quantum functional
encryption. A QFE scheme with succinct ciphertext would have interesting applications such as
delegated computation [Gol+13] and can potentially provide another route towards qiO. In the
classical setting techniques to transform succinct FE to iO haven been explored extensively [BV15;
AJS15; Gar+16; AJ15] and might be applicable in the quantum setting to.

Lastly we only construct QFE for a single key query and leave it as an open problem to construct
QFE secure against multiple key queries.

Acknowledgements We would like to thank Henry Yuen for helpful discussions.

2 Preliminaries

For an integer n ∈ N we write [n] = {1, . . . , n}. Let p(·) denote a polynomial. Let negl(·) denote a
negligible function f , i.e. for every constant c ∈ N there exists a positive integer n0 such that for
all n > n0, f(n) < n−c.

Let Hn denote a finite dimensional Hilbert space of dimension 2n and let a pure quantum
state be denoted by a vector |ψ⟩ ∈ H. Let a mixed quantum state be denoted as ρ ∈ D(Hn)
where D(Hn) is the set of density operators on Hn which are positive semidefinite and have trace
equal to 1. A general quantum operation is a completely positive trace preserving (CPTP) map
Φ : D(Hn)→ D(Hm).

For a classical string x ∈ {0, 1}n we let |x| = n denote the length of the string and for a
quantum state ρ ∈ D(Hn) we let |ρ| = n denote the size, i.e. the number of qubits.

Let Tr denote the trace operator. Let the partial trace be denoted as Tr(b)[ρab] = ρa = Tr(ρb)ρa.
We write ρxi

to denote taking the partial trace of everything but the i-th qubit Tr(̄i)(ρx) = ρxi
.

We write ρA to denote that the qubits in ρ are conceptually grouped together in a register A.
A family of quantum circuits {Cλ}λ∈N is called uniform if there exists a deterministic Turing

machine running in time poly(λ) such that on input 1λ it outputs a description of Cλ. A quantum
polynomial time (QPT) algorithm is a polynomial-time uniform family of quantum circuits.

A universal gate set for quantum circuits is the Clifford group consisting of the controlled-not
gate CNOT, phase gate P and Hadamard gate H with additionally the T-gate T. Let X and Z be
the following gates

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)

2.1 Indistinguishability of Quantum States

The trace distance between two quantum states ρ, σ ∈ D(Hn) is defined as

TD(ρ, σ) =
1

2
Tr
(√

(ρ− σ)†(ρ− σ)
)

.
Let R = {ρn}n∈N and S = {σn}s∈N be two ensembles of quantum states such that ρn and σn

are n-qubit states. R and S are called perfectly indistinguishable if for all n: ρn = σn.
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R and S are called satistically indistinguishable if there exits a negligible function negl such
that for all sufficiently large n:

TD(ρn, σn) ≤ negl(n)

.
R and S are called computationally indistinguishable if there exits a negligible function negl

such that for all QPT distinguisher D and all states ρn ∈ R and σn ∈ S:

|Pr[D(ρn) = 1]− Pr[D(σn) = 1]| ≤ negl(n)

.
The diamond norm for two quantum channels Φ and Ψ mapping a n-qubit quantum state to a

m-qubit quantum state is defined as follows:

||Φ− Ψ ||⋄ = max
ρ∈D(H2n)

TD((Φ⊗ I)ρ− (Ψ ⊗ I)ρ)

2.2 The Quantum One Time Pad

The Quantum One Time Pad (QOTP) [Amb+00] is the quantum analogue to the classical One
Time Pad.

Definition 1. (Quantum One Time Pad)

Enc(sk, |ϕ⟩ ∈ H1) → |ct⟩ Given a secret key sk = (a, b) and a quantum message |ψ⟩ apply
the following operation to the state to obtain the ciphertext:

|ct⟩ = XaZb|ϕ⟩

Dec(sk, |ct⟩) → |ϕ⟩ Given a secret key sk = (a, b) and a ciphertext apply the following op-
eration to obtain the message:

|ϕ⟩ = XaZb|ct⟩

When the key sk = (a, b) is chosen uniformly at random from {0, 1}2, the QOTP information
theoretically hides the state. The technique generalises to mulit-qubit states by encrypting qubit
by qubit.

2.3 Quantum State Teleportation

Two spatially separated parties A and B can teleport a quantum state from one person to the other
by using shared entanglement and classical communication [Ben+93]. A holds the state ρ and one
qubit of an EPR pair, B holds the other qubit of the EPR pair. A performs a Bell measurement
on the two states and obtains the correction keys (a, b). The keys (a, b) are send to B who applies
an X gate to the state if a = 1 and a Z gate to the state if b = 1. Now Bob holds the state ρ. The
technique generalises to mulit-qubit states by teleporting qubit by qubit.

2.4 Quantum Randomized Encodings

We recall the following definitions from [BY22].
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Classical Description of Quantum Circuits A quantum circuit is a tuple (P,G) where P is the
topology of the circuit and G is a set of unitaries. The topology of a quantum circuit is a tuple
(B, I,O,W, inwire, outwire,Z, T ).

1. I is an ordered set of input terminals.
2. Z is a subset of O which indicates ancilla qubits that are to be initialised to the state |0⟩.
3. O is an ordered set of output terminals.
4. T is the set of output terminals to be traced out.
5. W is the set of wires.
6. B are placeholder gates. For every g ∈ B inwire(g) describes an ordering of input wires
w ∈ W and outwire(g) describes an ordering of output wires w ∈ W. For every g ∈ B the
number of input and output wires is equal.

7. The disjoint sets I,O,B form the nodes of the circuit. Together with the set W as edges
they define a directed acyclic graph.

The gate set G defines a unitary of the appropriate size for every node in B. The evaluation of
a circuit C = (P,G) on state ρ of size |I| is defined as C(ρ, |0⟩⊗|Z|) = σ where σ resulted from
applying the gates in G according to the topology and tracing out the qubits specified by T . The
size of a quantum circuit is the number of wires in W. The descritpion of quantum operations by
a quantum circuit describes a CPTP map.

Definition 2. Quantum Randomized Encodings (QRE)
Let (Encode,Decode,Sim) be QPT algorithms. Let C denote a class of general quantum circuits.

Encode(F, ρx, r, ρe)→ F̂ (ρx, r): Encode(F, ρx, r, ρe) takes a function F ∈ C, quantum input ρx,
classical randomness r and a set of EPR pairs ρe and outputs a quantum randomized encoding
F̂ (ρx, r).

Decode(F̂ (ρx, r), T )→ F (ρx): Decode takes as input a quantum randomized encoding F̂ (ρx, r)
and the topology T of the function F and outputs F (ρx).

Sim(F (ρx), T ): Sim takes as input the value F (ρx) and the topology of F and simulates a quan-
tum randomized encoding.

A QRE scheme fulfills the following properties:

• Correctness For all quantum states (ρx, ρz) and randomness r it holds that

(Decode(F̂ (ρx, r), T ), ρz) = (F (ρx), ρz)

.
• (t,ϵ)-Privacy For all quantum states (ρx, ρz) and distinguishers of size t it holds that

(Sim(F (ρx)), ρz) ≈ϵ (F̂ (ρx, r), ρz)

.

A QRE can additionally fulfill the following property:

Definition 3. Decomposability

• Decomposability: The encoding F̂ is decomposable if there exists an operation F̂off (called the
offline part of the encoding) and a collection of input encoding operations F̂1, . . . , F̂n such that
for all inputs ρx = (ρx1 , . . . , ρxn), F̂ (ρx, r) = (F̂off , F̂1, . . . , F̂n)(rρx, r, ρe) where the functions
F̂off , F̂1, . . . , F̂n act on disjoint subsets of qubits from ρe, ρx (but can depend on all bits of r),
each F̂i acts on a single qubit ρxi , and F̂ does not act on any of the qubits of ρx.
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• Classical Encoding of Classical Inputs: If an input qubit xi is classical, then the input
encoding operation F̂i is computable by a classical circuit.

Definition 4. Quantum Garbled Circuits (QGC)
Quantum Garbled Circuits are an instantiation of QRE that fulfill the Decomposability property

with classical encodings of classical inputs. For a quantum circuit of size s the randomized encoding
can be computed by a circuit of size poly(λ, s) and fulfills computational security, that is for every
polynomial t(λ) there exists a negligible function ε = negl(λ) such that the scheme is (t′, ϵ′) −
private, where t′(λ) = t(λ)−poly(λ, s) and ϵ′(λ) = ϵ(λ) ·s. The decoding and simulation procedures
are computable in time poly(λ) · s.

2.5 Quantum Obfuscation

Definition 5. Let {Cλ}λ∈N be a family of circuits and let Xλ be the input space and let Yλ be the
output space of the circuit family. A quantum obfuscator consists of two QPT algorithms (Obf,Eval)
with the following syntax:

Obf(1λ, C)→ C̃ The obfuscator takes as input the security parameter λ and a classical de-
scription of a quantum circuit C ∈ {Cλ}λ∈N and outputs an obfuscation of C which can be
classical or quantum.

Eval(C̃, ρx)→ ρy The evaluation takes as input the obfuscated program C̃ and an input ρx ∈ X
and outputs ρy ∈ Y.

Quantum Indistinguishability Obfuscation Several definitions for qiO have come up in the
literature. We closely follow the definition of [BK21].9

Definition 6. (Quantum Indistinguishability Obfuscation)
The following three properties are required of a quantum indistinguishability obfuscator:

1. Correctness: The obfuscation scheme is correct if for any circuit C ∈ {Cλ}λ∈N there existat
a negligible functions negl(λ) such that

||Eval(C̃, ·)− C(·)||⋄ ≤ 1− negl(λ)

where C̃ ← Obf(1λ, C).
2. Efficiency: There exists a polynomial p(λ) such that for any C ∈ {Cλ}λ∈N the size of the

obfuscated circuit is only larger by a factor of p(|C|) :

|Obf(C)| ≤ p(|C|)

3. Security: For any two circuits C1, C2 ∈ {Cλ}λ∈N that are perfectly equivalent

||C1 − C2||⋄ = 0

no QPT distinguisher can distinguish their obfuscation with more than negligible probability:

|Pr[D(Obf(C1)) = 1]− Pr[D(Obf(C2)) = 1]| ≤ negl(λ)
9 The qiO definition from the earlier work of [AF16] differs in that they require a weaker notion of

functional equivalence for C1, C2 in item 3. The circuits are required to have a negligible diamond norm
but we (following [BK21]) require a diamond norm of 0. In fact [AF16] show that qiO is impossible to
achieve under their definition.
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Quantum Virtual Black Box Obfuscation

Definition 7. (Quantum Virtual Black Box Obfuscation) The following properties are required of
a QVBB obfuscator:

1. Correctness: The obfuscation scheme is correct if for any circuit C ∈ {Cλ}λ∈N there existat
a negligible functions negl(λ) such that

||Eval(C̃, ·)− C(·)||⋄ ≤ 1− negl(λ)

where C̃ ← Obf(1λ, C).
2. Efficiency: There exists a polynomial p(λ) such that for any C ∈ {Cλ}λ∈N the size of the

obfuscated circuit is only larger by a factor of p(|C|) :

|Obf(C)| ≤ p(|C|)

3. Security: For every QPT adversary A, there exists a QPT simulator Sim with superposition
access to its oracle such that for all circuits C ∈ {Cλ}λ∈N,∣∣∣Pr[A(C̃) = 1]− Pr[SimC(·)(1λ, 1|C|) = 1]

∣∣∣ ≤ negl(λ)
where C̃ ← Obf(1λ, C).

Additional preliminaries regarding classical functional encryption, quantum obfuscation and
unclonable encryption can be found in Appendix A.

3 Definition: Quantum Functional Encryption

In this section we adapt the definition of Functional Encryption to the Quantum setting. First,
we give a defintion for simulation security and then for indistinguishability security. We show that
simulation security implies our definition of indistinguishability security.

Definition 8. Quantum Functional Encryption Let λ be the security parameter and let (Setup,
KeyGen, Enc,Dec) be QPT algorithms.

Setup(1λ)→ (mpk,msk) Given the security parameter λ output a master public key mpk and a
master secret key msk.

KeyGen(msk, C)→ skC Given the master secret key and a quantum circuit C output a secret
key skC .

Enc(mpk, ρm)→ ρct Given the public key mpk and a message ρm output a ciphertext ρct.
Dec(skC , ρct)→ C(ρm) Given a function secret key skC and ciphertext ρct which is an encryption
of ρm output the value C(ρm).

Definition 9 (Correctness of a functional encryption scheme). For all messages ρmz,
circuits C and random coins used by Enc and Setup it holds that

(C(ρm), ρz) = (Dec(skC , ρct), ρz)

where skC ← KeyGen(msk, C), ρct ← Enc(mpk, ρm)and (mpk,msk)← Setup(λ)
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3.1 Simulation Based Security Definition

Definition 10 (Single-query Sim-Security for QFE). Let λ be the security parameter and
let A = (A1,A2) be a QPT adversary and let Sim be a QPT simulator.

ExpReal
A (1λ) ExpIdealA (1λ)

(mpk,msk)← Setup(1λ) (mpk,msk)← Setup(1λ)

(ρm, ρst)← AO1(·)
1 (mpk) (ρm, ρst)← AO1(·)

1 (mpk)
ρct ← Enc(mpk, ρm) ρct ← Sim(1λ,mpk,V)

where V = (C, skC , C(ρm), 1
|ρm|) if A

queried O1 on C and V = ∅ otherwise.
α← AO2(·)

2 (ρct, ρst) α← AO′
2(·)

2 (ρct, ρst)
The experiment outputs the state α The experiment outputs the state α

The QFE scheme is single-query simulation-secure if for any adversary A and all messages
ρm there exists a simulator Sim such that the real and ideal distributions are computationally
indistinguishable:

{ExpReal
A (1λ)}λ∈N ≈c {ExpIdealA (1λ)}λ∈N

.
Adaptive vs Non-adaptive security:

1. Non-adaptive: the adversary A1 is allowed to make one key query to O1(·) where the oracle
O1(·) is KeyGen(msk, C)→ skC .

2. Adaptive: the adversary is allowed to make one key query either to O1(·) or O2(·) (O′2(·) in
the ideal world) where O1(·) and O2(·) are KeyGen(msk, C)→ skC and O′2(·) is a KeyGen ora-
cle controlled by the simulator skC ← Sim(1λ,msk, C, C(ρm), 1

|ρm|). The simulator is stateful,
in this invocation Sim has access to the state of the simulator from it’s first invocation where
it produced the ciphertext.

3.2 Indistinguishability Based Security Definition

In this section we comment on potential issues when trying to find an appropriate indistinguishability-
based definintion of functional encryption for the quantum setting. The simulation-based definition
is generally preferred as indistinguishability-based security does not capture a meaningful security
notion for some functions [O’N10; BSW11]. Nevertheless indistinguishability-based security can be
easier to achieve and still has many important applications as we can see in the extension to the
multi-input setting in Section 6.

First we give the definition for the IND-security experiment and then we discuss the notion of
admissible queries in depth.

Definition 11 (Single-Query IND-Security for QFE).
Let λ be the security parameter and let A = (A0,A1) be a QPT adversary.

ExpIND
A,b (1λ)

(mpk,msk)← Setup(1λ)

(ρm0
, ρm1

, ρst)← AskC←KeyGen(msk,·)
0 (mpk),where ρm0

and ρm1
are admissible queries

for the circuit C that A queries.
ρct ← Enc(mpk, ρmb

)

b′ ← AO(·)
1 (mpk, ρct, ρst)
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The FE scheme is called secure if for any adversary A that makes admissible queries (Definition 12)
it holds that ∣∣∣Pr[1← ExpIndA,b=0

]
− Pr

[
1← ExpIndA,b=1

]∣∣∣ ≤ negl(λ)
where the random coins are taken over the randomnes of A, Setup,KeyGen and Enc.

Adaptive vs. Non-adaptive security

• The scheme is called non-adaptively secure if the the adversary only queries the KeyGen oracle
before receiving a ciphertext. Then the oracle O(·) is the empty oracle.

• The scheme is called adaptively secure if the adversary can either query the KeyGen oracle
before or after receiving the ciphertext. Then the oracle O(·) is the function KeyGen(msk, ·).

In the classical setting admissible queries are defined as C(m0) = C(m1). To adjust this defini-
tion to the quantum setting we have to redefine the condition that the quantum circuit has the same
output on the inputs ρm0 and ρm1 . A natural first attempt to define admissible queries ρm0 , ρm1

is to use the trace distance of the output states since the trace distance bounds the adversaries
probability of distinguishing two quantum states

TD(C(ρm0
), C(ρm1

)) ≤ negl(λ)

This definition is not sufficient as can be seen in the following scenario: A creates the states
ρ = |EPR⟩⟨EPR| and σ = |EPR⟩⟨EPR| and gives one qubit each to the experiment ρm0

= ρ1 and
ρm1 = σ1. A queries the identity circuit and receives ρct. The states ρm0 and ρm1 have trace distance
0 since they are both the maximally mixed state. A can decrypt ρct using the function secret key
and check with non-negl probability which quibt it is by applying a coherent measurement on the
qubit remaining in it’s internal state and the received qubit.

The above attack is not applicable in the simulation-based setting. The scheme that we proved
secure under Sim-security allows an adversary to stay entangled with the challenge message. This
entanglement is maintained by the encryption procedure or the simulator respectively.

An alternative approach to defining IND-security would be to take the adversaries internal
state into account. The messages ρm0

=
∑

i piρm0,i
, ρm1

=
∑

i qiρm1,i
are admissible queries if

TD

(∑
i

piC(ρm0,i
)⊗ ρAi

,
∑
i

qiC(ρm1,i
)⊗ ρAi

)
≤ negl(λ). (1)

where ρA is the adversary’s internal state.
For many functionalities this would enforce the adversary to stay unentangled with the challenge

message queries. The definition might still be useful in some applications, as for example messages
that are not chosen by the adversary fall into this category.

To allow the adversary more freedom and in particular to enable the adversary to stay entangled
with a part of the challenge message we can allow the following way of querying messages.

Definition 12. (Admissible queries) For a challenge message ρEU
mb

the adversary specifies a reg-
ister E that is encrypted and a register U that will be returned unencrypted to the adversary.
The message ρEU

m1−b
which is not used as the challenge is not returned to the adversary. Then the

challenge queries have to fulfill:

TD

(∑
i

piC(ρ
E
m0,i

)⊗ ρUm0,i
⊗ ρAi ,

∑
i

qiC(ρ
E
m1,i

)⊗ ρUm1,i
⊗ ρAi

)
≤ negl(λ) (2)

where ρA is the adversary’s internal state and C is the circuit that the adversary queries.
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In practice this allows for any entanglement to be moved into the challenge query such that
the state of the adversary is unentangled with the message queries and the state can be written as
ρmEU

0
⊗ ρmEU

1
⊗ ρA. This simplifies the check if the query is admissible to

TD

(∑
i

piC(ρ
E
m0,i

)⊗ ρUm0,i
⊗ ρA,

∑
i

qiC(ρ
E
m1,i

)⊗ ρUm1,i
⊗ ρA

)

= TD

(∑
i

piC(ρ
E
m0,i

)⊗ ρUm0,i
,
∑
i

qiC(ρ
E
m1,i

)⊗ ρUm1,i

)
≤ negl(λ).

Useful special cases of Definition 12 are

1. Classical messages. For classical messages the definition reduces to the classical definition of
admissibility since

TD(C(m0)⊗ ρA, C(m1)⊗ ρA) = 0.

exactly when C(m0) = C(m1).
2. Defining both ρm0 and ρm1 with respect to a single quantum state σ. In the IND-security

game the adversary might hold a single copy of a special quantum state σ which he would
like to use for defining both messages ρm0

and ρm1
. Since the experiment only creates a

single ciphertext and discards the other message we can allow the adversary to only provide
a single copy of σ and define ρm0

and ρm1
to each contain the state σ.

This definition of IND-security is implied by simulation secure quantum functional encryption.

Lemma 1. A QFE scheme that is single-query (non)-adaptively SIM-secure (Definition 10) is
also single-query (non)-adaptively IND-secure (Definition 11).

Proof. Let A be an adversary that wins ExpIND
A,b with non-negligible probability. Then we can

define an adversary A∗ that wins the SIM-security experiment with non-negligible probability.
Upon receiving mpk A∗ runs A on input mpk until A outputs (ρEU

m0
, ρEU

m1
, ρst). A key-query of A

is forwarded by A∗ to it’s own key oracle. Then A∗ samples a random bit b and sends ρEmb
as it’s

challenge message and receives ρct. A∗ runs A on input (ρct, ρ
U
mb
, ρst) until it outputs a guess b′.

A∗ outputs the state (b′, b). If A∗ interacted in the ideal world the probability that b = b′ is
1
2 +negl(λ). In the ideal world the simulator receives the state C(ρUmb

) without any information on
the bit b. Let Φ be a completely positive trace preserving (CPTP) map that describes the action of
the simulator in the ideal experiment and Φ′ be a CPTP map that applies Φ on the corresponding
subsystem and the identity everywhere else. After receiving the ciphertext the adversary holds the
state

∑
i Φ(C(ρ

E
mb,i

))⊗ ρUmb,i
⊗ ρAi .

TD(
∑
i

Φ(C(ρEm0,i
))⊗ ρUm0,i

⊗ ρAi ,
∑
i

Φ(C(ρEm1,i
))⊗ ρUm1,i

⊗ ρAi)

= TD(
∑
i

Φ′(C(ρEm0,i
)⊗ ρUm0,i

⊗ ρAi
),
∑
i

Φ′(C(ρEm1,i
)⊗ ρUm1,i

⊗ ρAi
))

= TD(Φ′(
∑
i

C(ρEm0,i
)⊗ ρUm0,i

⊗ ρAi
), Φ′(

∑
i

C(ρEm1,i
)⊗ ρUm1,i

⊗ ρAi
))

≤ TD(
∑
i

C(ρEm0,i
)⊗ ρUm0,i

⊗ ρAi
,
∑
i

C(ρEm1,i
)⊗ ρUm1,i

⊗ ρAi
)

≤ negl(λ)
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The second to last step follows from the fact that the trace distance cannot be increased by applying
a CPTP map. By definition of the trace distance A cannot distinguish the two states with more
than negligible probability in the ideal world.

By assumption A wins the IND-experiment with non-negligible advantage, therefore in the case
of the real world b = b′ with 1

2 + ε where ε is non-negligible probability and we can distinguish the
real and ideal cases with advantage ε/2. ⊓⊔

4 Construction: Quantum Functional Encryption

We construct a single-query adaptively secure functional encryption scheme for quantum circuits.
We start by constructing a simple functional encryption scheme for a single circuit where the cir-
cuit has to be fixed ahead of time. Then we use this construction to achieve single-query adaptively
secure functional encryption for polynomial sized circuits. Our construction follows the ideas used
by [SS10; GVW12] in the classical setting. They show how to leverage classical randomized encod-
ings to achieve classical functional encryption. Similarly, quantum randomized encodings can be
used to achieve quantum functional encryption.

4.1 QFE for a Single Circuit

First we construct a quantum functional encryption scheme that only allows to evaluate a circuit
family consisting of one circuit C = {Cλ}λinN with fixed input size n = poly(λ) and output size d =
poly(λ). To achieve this construction we make use of the Quantum One Time Pad and a classical FE
scheme that allows functional encryption for the identity circuit IdFE = (IdFE.Setup, IdFE.KeyGen,
IdFE.Enc, IdFE.Dec). Such a scheme is constructed in [GVW12]. Let D(Hn) be the input space, let
D(Hd) be the output space and let the circuit be denoted as C.

Setup(1λ) → (mpk,msk) Run the classical IdFE scheme to obtain the keys (pk, sk)← IdFE.Setup(1λ).
Output (mpk = pk,msk = sk).

Enc(mpk, ρm) → ct Sample a pair of keys for the QOTP (a, b), where a, b ∈ {0, 1}d. Compute

ρct0 = XaZbC(ρm)

Encrypt the QOTP keys using the classical FE scheme

ct1 = IdFE.Enc(mpk, (a, b))

Output ct = (ρct0 , ct1).
KeyGen(msk) → sk∗ Run the IdFE scheme to obtain the secret key sk∗ = IdFE.KeyGen(msk).
Dec(sk∗, ct) → ρm Given ct = (ρct0 , ct1) use the key sk∗ to obtain the QOPT keys (a, b) =

IdFE.Dec(sk∗, ct1) and then decrypt the quantum state

ρm = XaZbρct0

Theorem 5. Given a classical FE scheme for the identity circuit that fulfills adaptive sim-security,
there exists an adaptively sim-secure QFE scheme for a single circuit.

Proof.

Correctness Due to the correctness of the classical FE scheme and the correctness of the QOTP
the scheme is correct.
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Security We define a simulator Sim for the scheme. The adversary can either query the key first
and then obtain the ciphertext or obtain the ciphertext first and then the key. We distinguish the
simulator’s behaviour in these two cases.

1. The adversary queries non-adaptively, i.e. it queries the key first. That means the simulator
obtains C(ρm). The simulator creates the ciphertext as the honest encryption algorithm
would.

2. The adversary queries adaptively, i.e. it queries the ciphertext first. The simulator needs to
create a ciphertext without knowledge of the value it should later decrypt to. The simulator
creates d EPR pairs and sends one qubit of each EPR pair to the adversary and keeps the
other qubit of each EPR pair. The classical ciphertext is simulated via the simulator of the
classical FE scheme:

ct = IdFE.Sim(mpk, |x| = 2d)

When the adversary queries the key, the simulator learns C(ρm) and performs the tele-
portation circuit using C(ρm) and the halves of the EPR pairs which he holds. Sim obtains
the correction keys (a, b) ∈ {0, 1}d and creates the key using the simulator for the classical
IdFE-scheme:

sk∗ = IdFE.Sim(sk, (a, b))

. The simulator outputs sk∗.

In the case of a non-adaptive query the simulator behaves as the experiment in the real world.
Therefore real and ideal experiments are indistinguishable. For the case of an adaptive query we
establish security via a series of hybrids:

Hybrid 0: This is the real world, where the ciphertext is created by the Encryption algorithm

Hybrid 1: In this Hybrid we use the simulator of the classical IdFE-scheme to simulate the ciphertext
in case of an adaptive query. The quantum state part of the ciphertext is created honestly and
the corresponding encryption keys are used to answer the key query using the simulator of the
IdFE-scheme.

Claim. Hybrid 0 and Hybrid 1 are computationally indistinguishable.

Proof. Due to the adaptive security of the IdFE-scheme this change is not noticeable to the adver-
sary. An adversary that can distinguish between Hybrid 0 and Hybrid 1 could distinguish between
the real and simulated experiment of the IdFE scheme. ⊓⊔

Hybrid 2: This is the Ideal world where the simulator Sim runs as defined above.

Claim. Hybrid 1 and Hybrid 2 are perfectly indistinguishable.

Proof. The simulator creates d EPR pairs and sends one qubit each as a ciphertext ρct0 . Upon
receiving (ρct0 , ct1) the adversary cannot distinguish ρct0 in Hybrid 1 from the state in Hybrid 2
since 1 qubit of an EPR pair appears as a maximally mixed state, the same as a state encrypted
under the QOTP. Since ct1 is a ciphertext simulated by IdFE as in the previous Hybrid it contains
no information about the QOTP keys. Upon receiving the key query the simulator obtains C(ρm)
and teleports the state through the corresponding EPR pairs and obtains the correction keys
(a, b). The teleported state the adversary now holds is XaZbC(ρm) which is equivalent to a QOTP
encrypted state with the key (a, b). The keys are revealed using the IdFE simulator. ⊓⊔

⊓⊔
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4.2 QFE for a poly-sized family of circuits

In this section we construct a QFE scheme for circuits of polynomial size. We need the following
building blocks:

Let OneQFE = (Setup,KeyGen,Enc,Dec) be the single circuit QFE scheme from the previous
section. Let TwoFE = (Setup,KeyGen,Enc,Dec) be a classical FE scheme for a family of two
circuits [GVW12]. Let QRE = (Encode,Decode) be a quantum randomized encoding scheme that
is also decomposable. In particular we will use the quantum garbled circuits construction of [BY22]
which has the special property that if there is a classical part of the input the encoding procedure
is classical.

Let U be a universal quantum circuit, that is on inputs ρm and C it evaluates to U(C, ρm) =
C(ρm). Let the decription of C have length l and ρm be a quantum state of dimension n. Then we
can create a randomized encoding of U(C, ρm) where due to the decomposability the randomized
encoding can be created in independent pieces where each piece only depends on one bit of the
input. Let R denote classical randomness and e denote a set of EPR pairs, then the randomized
encoding Ũ can be written as

Encode(U,C, ρm, R, e) = Ũ(C, ρm, R, e)

= (Ũ1(C[1], R, e1), . . . , Ũl(C[l], R, e1), Ũx(ρm, R, e2), Ũoff (R, e3))

where e1, e2, e3 are disjoint subsets of the qubits contained in the set of EPR pairs e.
To construct FE for a poly sized family of circuits we use l instances of the classical TwoFE

scheme for the family of two circuits {fC[i]=0, fC[i]=1}:

fC[i]=0(R, t) = Ũi(0, R, t)

fC[i]=1(R, t) = Ũi(1, R, t)

where t is a classical bit that can be obtained from measuring the EPR pairs from the set e1.
During encryption we create l classical ciphertexts that can later be opened to the description

of the circuit using the KeyGen algorithm of TwoFE. Given a description of C the i′th ciphertext
is opened such that it decrypts to Ũi(C[i], R, t), the randomized encoding of the i′th bit of the
description of C.

Additionally we use two instances of the quantum OneQFE scheme for the circuits:

fin(ρm, e, R) = Ũin(ρm, R, e)

foff (e,R) = Ũoff (R, e)

Putting everything together we can see that our encryption procedure produces the individual
pieces of the decomposable randomized encoding scheme by relying on simpler functional encryp-
tion primitives. The final output C(ρm) can be obtained by decrypting the individual parts of the
ciphertext and then the result can be decoded.

Let λ ∈ N be the security parameter and let M = D(Hs) where s = poly(λ) be the message
space. Let C = {Cλ}λ be a family of quantum circuits with inputs of size s, outputs of size
t = poly(λ) and classical description of size l = poly(λ).

Setup(1λ) → (mpk,msk) Create l keys for the TwoFE-scheme:

(pki, ski)← TwoFE.KeyGen(1λ) for i ∈ 1, . . . , l

where the i-th keypair is associated with the circuit family {fC[i]=0, fC[i]=1}.
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Run the OneQFE scheme twice, once for the circuit fin and once for the circuit foff .

(pkin, skin)← OneQFE.KeyGen(1λ)

(pkoff , skoff )← OneQFE.KeyGen(1λ)

Output (mpk = (pk1, . . . , pkl, pkin, pkoff ),msk = (sk1, . . . , skl, skin, skoff )).
Enc(mpk, ρm ∈ M) → ρct Sample R← R and sample l+n+k EPR pairs. The EPR pairs are

split into 3 groups El = {(eli,1, eli,2)}i∈[l], En = {(eni,1, eni,2)}i∈[n] and Ek = {(eki,1, eki,2)}i∈[k].
For i ∈ 1, . . . , l take the first qubit of each EPR pair in the group El and measure it in the
computational basis to obtain ti, then compute

cti ← TwoFE.Enc(pki, R, ti)

Use the quantum OneQFE scheme to compute the ciphertext

ρctin ← OneQFE.Enc(pkin, ρm, R, {eni,1}i∈[n])

and compute the ciphertext

ρctoff
← OneQFE.Enc(pkoff , R, {eni,2}i∈[n], {eli,2}i∈[l], Ek)

Output ρct = ({cti}i∈[l], ρctin , ρctoff ).
KeyGen(msk,C ∈ C) → sk∗C For i ∈ 1, . . . , l create

sk∗i = TwoFE.KeyGen(ski, fC[i])

and create
sk∗in ← OneQFE.KeyGen(skin, fin)

sk∗off ← OneQFE.KeyGen(skoff , foff )

Output sk∗C = (sk∗1, . . . , sk
∗
l , sk

∗
in, sk

∗
off ).

Dec(sk∗C , ρct) → ρm For i ∈ 1, · · · , l decrypt

Ũ(C[i], R, ti) = TwoFE.Dec(sk∗i , cti)

and create
Ũ(ρm, R, e)← OneQFE.Dec(sk∗in, ρctin)

Ũ(R, e)← OneQFE.Dec(sk∗off , ρctoff
)

Output y = Decode(Ũ(C[1], R, t1), . . . , Ũ(C[l], R, tl), Ũ(ρm, R, e), Ũ(R, e)).

Theorem 6. Given an adaptively sim-secure classical FE scheme for a family of two circuits,
an adaptively sim-secure QFE scheme for a single circuit and a QGC scheme, there exists an
adaptively sim-secure QFE scheme for poly sized circuits.

Proof.

Correctness

Dec(skC ,Enc(msk, ρm)) = Dec(sk∗C , ct1, . . . ctl, ρctin , ρctoff
)

= Decode(TwoFE.Dec(sk∗1, ct1), . . . ,TwoFE.Dec(sk
∗
l , ctl),OneQFE.Dec(sk

∗
in, ρctin),

OneQFE.Dec(sk∗off , ρctoff
))

= Decode(Ũ(C[1], R, t1), . . . , Ũ(C[l], R, tl), Ũ(ρm, R, e), Ũ(R, e))

= Decode(Encode(U,C, ρm, R, e))

= C(ρm)
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Security We define a simulator Sim for the scheme. We distinguish whether the adversary makes
an adaptive or non-adaptive query.

1. The adversary queries non-adaptively. The simulator obtains C,C(ρm) and creates the ci-
phertext as follows:

(a) Create the randomized encoding using the simulator of the QRE scheme.

(Û(C[1], R, t1), . . . , Û(C[l], R, tl), Û(ρm, R, e), Û(R, e))← QRE.Sim(C(ρm), TC)

where TC is the topology of the circuit U(·).
(b) Create the ciphertexts using the simulator of the classical TwoFE scheme and the

quantum OneQFE scheme for the non-adaptive case to create ciphertexts:

cti ← TwoFE.Sim(pki, Û(C[i], R, t1)) for i ∈ [l]

ρctin ← OneQFE.Sim(pkin, Û(ρm, R, e))

ρctoff
← OneQFE.Sim(pkoff , Û(R, e))

2. The adversary queries adaptively. The simulator has to create a ciphertext without knowing
the evaluation result.

(a) Use the simulator of the classical TwoFE scheme and the quantum OneQFE scheme
for the adaptive case to create ciphertexts:

(cti, sti)← TwoFE.Sim(pki, 1
|C[i]|+|R|+|ti|) for i ∈ [l]

(ρctin , stin)← OneQFE.Sim(pkin, 1
|m|+|R|+|e|)

(ρctoff
, stoff )← OneQFE.Sim(pkoff , 1

|R|+|e|)

(b) Upon receiving a key query Sim obtains C(ρm) and can create the randomized en-
coding.

(Û(C[1], R, t1), · · · , Û(C[l], R, tl), Û(ρm, R, e), Û(R, e))← QRE.Sim(C(ρm))

(c) Then Sim creates the key by using the simulator of the underlying FE schemes.

sk∗i ← TwoFE.Sim(ski, Û(C[i], sti, R, ti)) for i ∈ [l]

sk∗in ← OneQFE.Sim(skin, stin, Û(ρm, R, e))

sk∗off ← OneQFE.Sim(skoff , stoff , Û(R, e))

Hybrid 0 This is the real world.

Hybrid i For i ∈ {1, . . . , l}. Sample R and El, En, Ek as in Enc.
For 1 ≤ j < l let the ciphertexts be created honestly:

ctj ← TwoFE.Enc(pkj , R, tj)

In the non-adaptive case:
For i ≤ j ≤ l create the partial randomized encoding and simulate the ciphertext using the

simulator of the underlying scheme:

ctj ← TwoFE.Sim(Ũ(C[i], R, ti))

In the adaptive case:
For i ≤ j ≤ l simulate the ciphertext using the simulator of the underlying scheme:

ctj ← TwoFE.Sim(pki, 1
|C[i]|+|R|+|ei|)

Create ρctin , ρctoff
honestly.
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Claim. Hybrids 0 to l are indistinguishable up to negligible probability.

Proof. To show indistinguishability of each pair of games we can invoke the security of the TwoFE
scheme. A distinguisher between the Hybrids can break the security of the TwoFE scheme.

⊓⊔

Hybrid l+1, Hybrid l+2 For ciphertexts ρctin and ρctoff
use the simulator to create the ciphertexts

in Hybrid l+1 and Hybrid l+2 respectively.
In the non-adaptive case:

ρctin ← OneQFE.Sim(pkin, Ũ(ρm, R,E
n))

ρctoff
← OneQFE.Sim(pkoff , Ũ(R,Ek))

In the adaptive case:

ρctin ← OneQFE.Sim(pkin, 1
|m|+|R|+|En|)

ρctoff
← OneQFE.Sim(pkoff , 1

|R|+|Ek|)

Claim. Hybrids l and l+1 are indistinguishable as well as Hybrids l+1 and l+2 up to negligible
probability.

Proof. To show indistinguishability of each pair of games we can invoke the security of the OneQFE
scheme. A distinguisher between the Hybrids can break the security of the OneQFE scheme. ⊓⊔

Hybrid l+3 In the non-adaptive case: Upon receiving the key query C,C(ρm) use the simulator
of the randomized encoding to create Û(C(ρm), TC) ← Sim and use the simulated randomized
encoding to create the ciphertext instead of the real randomized encoding.

In the adaptive case: Upon receiving the key query C,C(ρm) use the simulator of the randomized
encoding to create Û(C(ρm), TC)← Sim and use the simulated randomized encoding to answer the
secret key query.

This is the ideal world.

Claim. Hybrids l+2 and l+3 are indistinguishable up to negligible probability.

Proof. Due to the indistinguishability of the simulated randomized encoding from the real ran-
domized encoding the Hybrids are indistinguishable. ⊓⊔

⊓⊔

5 Unclonable Functional Encryption

In this section we define and construct an unclonable functional encryption scheme. Security re-
quires that two participants who try to copy a ciphertext can obtain independently generated
function secret keys for any circuit and cannot both guess which messages out of two challenge
messages was encrypted. When the function secret keys are fixed to be the identity circuit this
implies a public-key unclonable encryption scheme with variable decryption keys (Definition 29).
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5.1 Definition

An unclonable functional encryption scheme is defined by the syntax and correctness properties of
a QFE scheme, see Definition 8 and Definition 9.

Definition 13. (Non-adaptive Unclonable Functional Encryption)
Let λ be the security parameter, let A = (A,B,C) be a QPT adversary and let Cλ be a family

of circuits.

ExpQFE−UE−IND
A,b (1λ)

(mpk,msk)← Setup(1λ)

(ρm0
, ρm1

, ρst, CB , CC)← A(1λ,mpk)

ρct ← Enc(mpk, ρmb
)

skCB
← KeyGen(msk, CB), skCC

← KeyGen(msk, CC)

ρBC ← A(ρct, ρst)

bB ← B(mpk, ρct, ρstB , skCB
)

bC ← C(mpk, ρct, ρstC , skCC
)

The FE scheme is called unclonable secure if for any adversary A = (A,B,C) and any CB , CC ∈ Cλ

Pr[bB = bC = b] ≤ 1

2
+ negl(λ)

where the random coins are taken over the randomness of A, Setup,KeyGen and Enc.

Remark 1. An adaptive security notion of unclonable functional encryption can be defined by
giving each B and C oracle access to the KeyGen functionality instead of A outputting a description
of the circuits for which secret keys should be produced.

5.2 Construction

We need the following components:

• Let QFE = (Setup,KeyGen,Enc,Dec) be a non-adaptive IND-secure QFE scheme.
• Let UEQ = (KeyGen,Enc,Dec) be a one-time unclonable encryption scheme for single bit

messages with quantum decryption keys of size l(λ) and ciphertext size t(λ) [AKY24].

The construction relies on a QFE scheme for the family of circuits Uλ = {Up(λ),l(λ),s(λ),n(λ)}λ∈N
which has the following structure:

U(C,a,b)(ρm0 , ρm1 , |dk0⟩, |dk1⟩, ρUE , f) =

if f = 0 output C(ρm0)

if f = 1 do:

Compute |dk′0⟩ = XaZb|dk0⟩ and |dk′1⟩ = XaZb|dk1⟩
Measure the first λ bits of |dk′0⟩ in the computational basis,
if they are all 0 remove them and set |dk∗⟩ = sk′0

else measure the first λ bits of |dk′1⟩ in the computational basis,
if they are all 0 remove them and set |dk∗⟩ = sk′1
else if both checks fail output ⊥

Decrypt UEQ.Dec(|dk∗⟩, ρUE) = b

Output C(ρmb
)

25



Then the following is an unclonable functional encryption scheme for a family of quantum
circuits Cλ = {Cp(λ),n(λ)}λ∈N of size p(λ) with classical in X = D(Hn).

Setup(1λ, r) → (mpk,msk) Run (mpk,msk) = QFE.Setup(1λ, r).
Output (mpk,msk).

KeyGen(1λ,C ∈ Cλ, r
′) → skC Sample random strings a, b ← {0, 1}l(λ)+s(λ) using random-

ness r′.
Run skC ← QFE.KeyGen(msk, U(C,a,b)).
Output skC .

Enc(mpk, ρm ∈ X ) → ρct

Compute ρct ← QFE.Enc(mpk, (ρm ⊗ |0⟩⟨0|⊗(n+2l+t) ⊗ |0⟩⟨0|))
Output ρct.

Dec(skC , ρct) → ρm Run QFE.Dec(skC , ρct) = ρm and output ρm.

Theorem 7. Any single-query QFE scheme for n-qubit messages and universal circuits (Defini-
tion 11) is a single-query unclonable functional encryption scheme (Definition 13) assuming an
unclonable encryption scheme with quantum decryption keys for single bit messages (Definition 27).

Proof.

Correctness The scheme is correct based on the correctness of the underlying functional encryption
scheme.

We show security by a series of Hybrids:

Hybrid 0: This is the unclonable functional encrpytion experiment ExpQFE−UE−IND
A,b .

Hybrid 1: In this Hybrid we change how the challenge ciphertext is created, in particular we change
the flag bit f to 1 such that the circuit executes the second case of it’s description.

Enc∗(mpk, ρm0
, ρm1

) :

1. Run UEQ.KeyGen(1λ, r∗) = (ek, |dk0⟩). Produce another copy of the decryption key by using
the same randomness UEQ.KeyGen(1λ, r∗) = (ek, |dk1⟩).

2. Sample 2 sets of l(λ) EPR pairs σAB
0 and σAB

1 . Let σA
0 , σA

1 denote registers containing the
first qubit of each EPR pair and σB

0 ,σB
1 denote registers containing the second qubit of each

EPR pair respectively.
3. Sample b← {0, 1}.
4. Run ρUE ← UEQ.Enc(1λ, b).
5. Create the ciphertext

ρct = QFE.Enc(mpk, (ρmb
⊗ ρm1−b

⊗ σA
0 ⊗ σB

0 ⊗ ρUE ⊗ |1⟩⟨1|))

6. Teleport the key (0λ ⊗ |dk0⟩),(0λ ⊗ |dk1⟩) through the EPR pairs σB
0 , σ

B
1 respectively and

obtain the teleportation keys (a′0, b
′
0), (a

′
1, b
′
1). Output (ρct, (a

′
0, b
′
0), (a

′
1, b
′
1)).

Claim. |p0 − p1| ≤ negl(λ) where p0 is the winning probability of the adversary in Hybrid 0 and
p1 is the winning probability in Hybrid 1.

Proof. We show that an adversaryA = (A,B,C) that can win in Hybrid 0 with a higher probability
than in Hybrid 1 can be used to break IND-security of the underlying QFE scheme.

During the reduction both parties B and C will need to obtain independently sampled secret
keys for the functional encryption scheme. Since our QFE scheme is only single-query secure we
cannot allow the adversary to sample two secret keys. Instead we reduce to the notion of 2-
player single-query IND-security which we define in Definition 30. This security notion allows two

26



recipients of a ciphertext that don’t further communicate to each receive a functional secret key
from the single-query secure QFE scheme. We also show that this security notion is implied by
single-query IND-secure QFE.

Let A∗ = (A∗, B∗, C∗) be the adversary in the 2-player single-query non-adaptive IND-security
game against the quantum functional encryption scheme. A∗ receives the public key mpk from the
experiment and runs A on input (1λ,mpk) until A outputs messages ρm0 , ρm1 . Sample b← {0, 1}.

To create the first challenge message ρm∗
0
A∗ performs the steps of the honest Enc algorithm

without the creation of the QFE ciphertext. Then A∗ sets

ρm∗
0
= (ρmb

⊗ |0⟩⟨0| ⊗ |0⟩⟨0|⊗2l(λ)+t(λ) ⊗ |0⟩⟨0|)
To create the challenge message ρm∗

0
A∗ performs encryption as defined in Enc∗ without the

creation of the ciphertext (step 5) but with the teleportation (step 6) to obtain teleportation keys
(a0, b0), (a1, b1). In step 4 use the bit b that was already sampled. Then the message ρm∗

1
is defined

as

ρm∗
1
= (ρm0 ⊗ ρm1 ⊗ σA

0 ⊗ σB
0 ⊗ ρUE ⊗ |1⟩⟨1|)

Note that A is not required to copy the messages ρm0
and ρm1

to define the challenge messages.
According to the IND-security experiment A∗ can define both messages by referring to a single
quantum state, this is a special case of Definition 12. A∗ declares the messages ρm∗

0
, ρm∗

1
and

additionally outputs the circuit descriptions skCB
= U(C,a0,b0) and skCC

= U(C,a1,b1).
Both skCB

and skCC
are admissible function queries since

U(C,a0,b0)(ρm∗
0
) = ρmb

= U(C,a0,b0)(ρm∗
1
)

and

U(C,a1,b1)(ρm∗
0
) = ρmb

= U(C,a1,b1)(ρm∗
1
)

and A∗ is no longer entangled with the input messages.
A∗ receives the ciphertext ρct and runs A to obtain ρBC .
Then B∗ and C∗ are activated with the state (ρB , skCB

, b) and (ρC , skCC
, b) respectively and

each run B and C on input (ρB , skCB
) and (ρC , skCC

) respectively until they output a bit bB , bC .
A∗, B∗, C∗ simulate Hybrid 0 if ρ∗m0

is picked as challenge and they simulate Hybrid 1 if ρ∗m1
is

picked. Let b∗ ∈ {0, 1} denote the choice of the challenge message.
B∗ outputs b∗B = 0 if bB = b otherwise B∗ outputs b∗B = 1, similarly C∗ outputs b∗C = 0 if

bC = b and otherwise outputs b∗C = 1.
This means that if bB = bC = b we have b∗B = b∗C = 0. For Hybrid 1 we show in Lemma 2 that

bB = bC = b only occurs with negligible advantage.
The winning probability of A∗ is

1

2
(Pr[b∗B = b∗C = 0|b∗ = 0] + Pr[b∗B = b∗C = 1|b∗ = 1])

=
1

2
(Pr[bB = bC = b|b, b∗ = 0] + (Pr[bB ̸= b ∨ bC ̸= b|b, b∗ = 1]))

=
1

2
(Pr[bB = bC = b|b, b∗ = 0]︸ ︷︷ ︸

p0

+(1− Pr[bB = bC = b|b, b∗ = 1]︸ ︷︷ ︸
1/2+negl(λ)

))

=
1

2
(p0 + 1/2− negl(λ))

Therefore, if the advantage of A in Hybrid 0 is non-negligible p0 = 1
2 + non− negl(λ), A∗ can

break the 2-player IND-security of QFE with non-negligible advantage.
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⊓⊔

Lemma 2. In Hybrid 1 the advantage of A = (A,B,C) is negligible if UEQ is secure.

Proof. We show that an adversary that breaks the security of the unclonable functional encryption
scheme breaks uncloneability of the underlying UEQ encryption scheme with quantum decryption
keys with the same advantage.

Let A = (A,B,C) be an adversary that breaks the security of the unclonable functional en-
cryption scheme. Then we can build an adversary A∗ = (A∗, B∗, C∗) that breaks the security of
the UEQ scheme. In the role of A∗ send challenge messages b0 = 0, b1 = 1 to the experiment and
obtain ρUE .

Create the setup for unclonable functional encryption (mpk,msk) ← Setup(1λ) and run A on
input (1λ,mpk). Receive the challenge messages ρm0 , ρm1 from A.

Build the ciphertext as in Hybrid 2: Sample 2 sets of n EPR pairs σAB
0 and σAB

1 . Let σA
0 , σA

1

denote registers containing the first qubit of each EPR pair and σB
0 ,σB

0 denote registers containing
the second qubit of each EPR pair respectively.

Create the ciphertext ρct = QFE.Enc(mpk, (ρm0
⊗ ρm1

⊗ σA
0 ⊗ σB

0 ⊗ ρUE ⊗ |1⟩⟨1|)) and send ρct
to A. If ρUE is an encryption of b = 0 then ρct is an encryption of ρm0

, if ρUE is an encryption of
b = 1 then ρct is an encryption of ρm1

.
Additionally A outputs ρstB = (msk, σB

0 ) and ρstC = (msk, σB
1 ).

A performs the splitting channel and outputs a state ρBC which is also the state that A∗
defines as it’s result of the splitting channel. Now B∗ and C∗ are activated. They take as input
the states ρB , ρstB and ρC , ρstC respectively and each receive a copy of the secret key |dk⟩ from the
experiment.

B∗ teleports the state 0λ⊗|dk⟩ trough the EPR pairs σB
0 and obtains the teleportation correction

keys a0, b0.
He produces the secret key dkB = QFE.KeyGen(msk, U(C,a0,b0)) where C is the identity circuit.

He runs the adversary B on input ρB and the secret key dkB and outputs whatever B∗ outputs.
C∗ does the same actions as B∗ on his respective EPR pairs. He teleports the state 0λ ⊗ |dk⟩

trough the EPR pairs σB
1 and obtains the teleportation correction keys a1, b1.

He produces the secret key dkC = QFE.KeyGen(msk, U(C,a1,b1)) where C is the identity circuit.
He runs the adversary C on input ρC and the secret key dkC and outputs whatever C∗ outputs.

(A∗, B∗, C∗) wins with the same probability as (A,B,C). ⊓⊔

⊓⊔

Lemma 3. Any non-adaptive unclonable functional encryption scheme is a public key unclonable
encryption scheme with variable decryption keys (Definition 29).

Proof. Note that the key queries in the unclonable functional encryption experiment do not have
to be admissible queries. In particular B and C can both obtain a secret key for the circuit that
computes the identity even if ρm0 , ρm1 are different messages. This defines decryption keys for an
unclonable public-key encryption scheme. Security and correctness follow as a special case of the
security and correctness of the unclonable functional encryption scheme. ⊓⊔

Corollary 2. There exists a public-key unclonable encryption scheme with variable decrpytion keys
(Definition 29) for n-bit messages assuming a single-query QFE scheme (Definition 13) and an
unclonable encryption scheme with quantum decryption keys for single bit messages (Definition 27).
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6 From Quantum Multi-input Functional Encryption to Quantum
Indistinguishability Obfuscation

In this section we first define multi-input functional encryption in the quantum setting. Then,
we show that multi-input quantum functional encryption implies quantum indistinguishability
obfuscation. In the classical setting it is known that IND-secure multi-input functional encryption
and qiO are equivalent, one notion can be constructed from the other [Gol+14]. An interesting
open question that we do not address in this work is from what assumptions IND-secure quantum
multi-input functional encryption could be constructed.

6.1 Definitions

In this section we are switching to a secret-key flavor of functional encryption. The adversary
cannot create ciphertexts on its own but has to query the Enc functionality for this. First we
establish the syntax of a quantum multi-input functional encryption scheme.

A quantum multi-input functional encryption scheme QMIFE for a family of circuits {Cλ}λ∈N
with input space Xλ and output space Yλ consists of four algorithms (Setup,KeyGen,Enc,Dec) as
described below.

Setup Setup(1λ, n) → (msk, ek1, . . . , ekn) is a QPT algorithm that takes as input the security
parameter λ ∈ N and the number of input qubits n ∈ N. It outputs n encryption keys
ek1, . . . , ekn and a master secret key msk.

KeyGen KeyGen(msk, C) → skC is a QPT algorithm that takes as input the master secret key
msk and a circuit C ∈ Cλ and outputs a corresponding secret key skC .

Enc Enc(ek, ρx)→ ρct is a QPT algorithm that takes as input an encryption key eki ∈ (ek1, . . . , ekn)
and an input message ρx ∈ X and outputs a ciphertext ρct. In the case where all of the en-
cryption keys eki are the same, we assume that each ciphertext ρct has an associated label
i to denote that the encrypted plaintext constitutes an i’th input the circuit C ∈ Cλ. For
convenience of notation, we omit the labels from the explicit description of the ciphertexts. It
might also be useful to distinguish between classical and quantum input. Since any classical
input can be embedded in a quantum state we do not explicitly differentiate between these
two types of inputs here.

Dec Dec(skC , ρct1 , . . . , ρctn) → ρy is a deterministic algorithm that takes as input a secret key
skC and n ciphertexts ρct1 , . . . , ρctn and outputs a state ρy ∈ Yλ.

In the description of this syntax we only declared inputs, outputs and ciphertexts explicitly as
quantum states but other parts of the scheme such as keys could also contain quantum data in a
specific instantiation.

Indistinguishability Based Security The scheme is parameterized by k which denotes the
number of ciphertexts the adversary is allowed to learn per secret key.

Admissible challenge messages are defined using the same concept as in Section 3.2 for the
IND-security of simple functional encryption. We additionally have to take into account that the
adversary can choose between different combinations of input ciphertexts to evaluate the circuit.

Definition 14. (Admissible queries for QMIFE) Let Q be a set of circuits containing circuits
C ∈ {Cλ}λ∈N with input size n. The adversary in ExpIND−QMIFE

A specifies a challenge query by
states ρm0 , ρm1 with the following structure: A state ρmb

h,j
is defined by taking the partial trace of

ρmb indexed by h ∈ [n], j ∈ [k]:

ρmb
h,j

= Tr(h̄,j̄)[ρmb ]
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The messages are grouped in vectors X0, X1 where Xb = {ρEU
mb

1,j
, · · · , ρEU

mb
n,j
}j∈[k]. For each

challenge message indexed by h ∈ [n], j ∈ [k], b ∈ {0, 1} the adversary can specify a register E
that will be used for encryption and a register U that will be returned unencrypted. The challenge
messages corresponding to 1− b are not returned to the adversary. Let ρU

mb
j∗

be a state that groups

together the registers not used for encryption, the state contains ρU
mb

h,j∗
for all h ∈ [n] and a specific

choice of j∗ = (j1, . . . , jn) with each ji ∈ [k].
We say (X0, X1) and Q are compatible if the following property is satisfied for all C ∈ Q and

for all choices of j∗:

TD

(∑
i

piC(ρ
E
m0

1,j1,i
, · · · , ρEm0

n,jn,i
)⊗ ρUmb

j∗,i
⊗ ρAi

,
∑
i

qiC(ρ
E
m1

1,j1,i
, · · · , ρEm1

n,jn,i
)⊗ ρUmb

j∗,i
⊗ ρAi

)
≤ negl(λ)

where ρA is the local state of the adversary.

Definition 15. (Quantum MIFE IND-Security)
Let QMIFE = (Setup,KeyGen,Enc,Dec) be a quantum multi-input functional encrpytion scheme

for a circuit family {Cλ}λ∈N and let A = (A1,A2) be a QPT adversary.

ExpIND−QMIFE
A

(
1λ
)
:

(ek,msk)← Setup
(
1λ, n

)
(
X0,X1, ρst1

)
← AKeyGen(msk,·)

1

(
1λ, n

)
where Xℓ =

{
ρℓm1,j

, . . . , ρℓmn,j

}
j∈[k]

b← {0, 1}

cti,j ← Enc
(
eki, ρ

b
mi,j

)
∀i ∈ [n], j ∈ [k]

b′ ← AO(·)
2

(
ρst1 , {ρcti,j}i∈[n],j∈[k]

)
Output: (b = b′)

Let Q denote the entire set of key queries made by A. Then, the challenge message vectors X0

and X1 chosen by A1 must be compatible with Q (Definition 14). The scheme is k-IND-secure if
for every QPT adversary A = (A1,A2), the advantage of A defined as

AdvQMIFE,IND
A

(
1λ
)
=

∣∣∣∣Pr[ExpIND−QMIFE
A

(
1λ
)
= 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)
Adaptive vs. Non-adaptive security

• The scheme is called non-adaptively secure if the the adversary only queries the KeyGen oracle
before receiving a ciphertext. Then the oracle O(·) is the empty oracle.

• The scheme is called adaptively secure if the adversary can either query the KeyGen oracle
before or after receiving the ciphertext. Then the oracle O(·) is the function KeyGen(msk, ·).

Simulation Security In the simulation security setting we need to give the simulator access to
the output of the circuit evaluated on any combination of inputs. In the classical setting this is
simple: There is a trusted part which holds the input messages X = {m1,j , . . . ,mn,j}j∈[k] and
the simulator can specify a queries of the form (g, j1, . . . , jn) where g is a function and j1 to jn
are indices selecting the input for the function. The simulator can make multiple queries using an
arbitrary combination of indices and any function that the adversary requested keys for.

30



In the quantum setting we run into the issue that the inputs which are quantum states cannot
be reused arbitrarily. On the other hand for some functionalities it might be possible or even desired
that after obtaining one output the state of the input ciphertext can be restored by uncomputing the
decryption unitary. Then the inputs can be reused to evaluate the same or a different functionality
on a combination of input ciphertexts.

In the quantum setting a standard way of modelling quantum access to a oracle is the fol-
lowing. The user specifies a query |ϕ⟩ =

∑
i αi|xi⟩|ui⟩ and the oracle answers with the state

|ϕ′⟩ =
∑

i αi|xi⟩|ui ⊕ f(xi)⟩. This state is computed by first applying f to the x register, xoring
the result to the u register and uncomputing the function on the x register. We can use the same
concept to define how the trusted party answers queries with the difference that the trusted party
already holds the input register. This allows the trusted party to reuse the input messages and
answer multiple queries of the form (g,

∑
αl|j1,l ⊗ . . . ⊗ jn,l⟩). It is to be noted though that this

causes the answer register to be entangled with the input register. Therefore a measurement by the
simulator will also collapse the input state and multiple evaluations are not guaranteed to work
correctly.

Definition 16. (Quantum MIFE SIM-Security) A multi-input functional encryption scheme for
a circuit family {Cλ}λ∈N is k-SIM-secure if for every QPT adversary A = (A1,A2) there exists
a stateful simulator Sim such that the outputs of the following experiments are computationally
indistinguishable:

ExpReal
A (1λ) ExpIdealA (1λ)

({eki}i∈[n],msk)← Setup(1λ, n)

(X, st)← AKeyGen(·)
1 (1λ, n) (X, st)← AO1(·)

1 (1λ, n)
where X = {ρm1,j , . . . , ρmn,j}j∈[k] where X = {ρm1,j , . . . , ρmn,j}j∈[k]

ρcti,j ← Enc(eki, ρmi,j )∀i ∈ [n], j ∈ [k] {ρcti,j}i,j ← SimTP(·)(1λ, 1|C|, {1|ρmi,j
|}i∈[n],j∈[k])

α← AO′
2(·)

2 ({ρcti,j}i∈[n],j∈[k], st) α← AO2(·)
2 ({ρcti,j}i∈[n],j∈[k], st)

The experiment outputs α The experiment outputs α

where the oracle TP(·) denotes the ideal world trusted party. It accepts queries of the form
(g,
∑
αl|j1,l ⊗ . . .⊗ jn,l⟩) and computes

∑
αl|j1,l, · · · , jn,l⟩ ⊗ ρm ⊗ g(ρm1,j1,l

, . . . , ρmn,jn,l
)

The message register ρm is kept by TP and used for future queries, the rest is returned to the
simulator.

The oracle O1(·) is a KeyGen oracle controlled by the simulator and the oracle O2(·) is a KeyGen
oracle controlled by the simulator with access to the trusted party TP. A simulator is admissible if
it only queries the trusted party on functionalities that A queried to its oracle.

Remark 2. In this definition we have for the first time in this work considered the case of multiple
function queries. We remark that defining a multi-query QFE scheme for only a single ciphertext
runs into the same issues we described above. Given multiple function keys a single ciphertext has
the possibility to be evaluated to different outputs but physically not all these evaluations might
be possible. Therefore a solution as presented here for the multi-input case is necessary and a
definition for a multi-query simulation secure QFE scheme can be derived from this definition by
restricting the input to a single message n = 1.
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6.2 IND-secure QMIFE implies qiO

Theorem 8. A QMIFE scheme that fullfills non-adaptive single-query 2-IND-security uncondi-
tionally implies quantum indistinguishability obfuscation.

Proof. Let QMIFE be a quantum multi input functional encryption scheme. We define an obfus-
cation scheme (Obf,Eval) for a familiy of circuits {Cλ}λ∈N that take as input n qubits and are
described by a classical string of length l.

Obf(C):

• Run QMIFE.Setup(1λ, n′)→ (msk, ek1, . . . , ekn′) where n′ = 3n+ l
• Run QMIFE.KeyGen(U,msk) → skU where U is a variant of a universal circuit that computes
U(C, ρ1, · · · , ρn, a1, b1, . . . , an, bn) = C(Xa1Zb1ρ1, · · · , XanZanρn)

• Create n ciphertexts that encrypt the bit b = 0 and n ciphertexts that encrypt b = 1:

∀i ∈ [2n], b ∈ {0, 1} : ctbi ← QMIFE.Enc(eki, b)

• Create n EPR pairs and take the first qubit of each EPR pair ρe = (ρe1 , ρe2) and encrypt it:

∀i ∈ [n] : ρct2n+i
← QMIFE.Enc(ek2n+i, ρei,1)

.
• Encrypt the circuit C:

ctC ← QMIFE.Enc(ek3n+1, C)

• Output C̃ = (skU , ctC , {ctbi}i∈[n],b∈{0,1}, {ρcti}i∈[n], {ρei,2}i∈[n])

Eval(C̃, ρx)

• Teleport the state ρx which is of size n trough the EPR pairs ρe1,2 ⊗ · · · ⊗ ρen,2 and obtain
((a1, b1), · · · , (an, bn)) as teleportation keys.

• Select the remaining ciphertexts such that they are encryptions of (ai, bi): ∀i ∈ [n] select ctai
i

and ctbii+1.
• Run QMIFE.Dec(skU , ctC , ρct1 , . . . , ρctn , ct

a1
1 , ct

b1
2 , · · · , ct

an
2n−1, ct

bn
2n) = ρy

First we analyse the correctness of the scheme. By correctness of the QMIFE scheme and
correctness of the teleportation gadgets the scheme outputs the correct evaluation.

QMIFE.Dec(skU , ctC , ρct1 , . . . , ρctn , ct
a1
1 , ct

b1
2 , · · · , ct

an
2n−1, ct

bn
2n)

= U(C, ρ1, · · · , ρn, a1, b1, . . . , an, bn)
= C(Xa1Zb1ρ1, · · · , XanZanρn)

= C(ρx1
, . . . , ρxn

)

We note that a honest user will only be guaranteed one use of the obfuscated program since
the teleportation ciphertexts are consumed during this operation. If the quantum circuit belongs
to a class of circuits that only take classical inputs we can avoid the use of the teleportation helper
state and the scheme can be redefined to let the user select it’s classical inputs in the same manner
as the bits (ai, bi) are selected here. This will still not guarantee a reusable qiO scheme since the
obfuscated circuit itself might be a quantum state that collapses during evaluation.

No we show that the security of the qiO scheme can be reduced to the security of the underlying
QMIFE scheme. Let A be an adversary that wins the qiO experiment with non-negligible advantage.
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Then we can construct an adversary B that wins the QMIFE IND-security experiment with non-
negligible advantage.
B receives 1λ and runs A on input 1λ until A outputs (C0, C1). B queries the KeyGen oracle on

the function U as defined above and receives the secret key skU .
B constructs it’s challenge vectors as follows: Sample n EPR pairs ρei =

1√
2
(|0⟩1|0⟩2⊗|1⟩1|1⟩2) =

(ρei,1 , ρei,2) and put the first qubit each in the challenge vector X0 and put the second qubit each in
the ’do not encrypt’ part of the challenge query. X0 = (C0, ρe01,1 , · · · , ρe0n,1

, {ai,1 = 0, ai,2 = 1, bi,1 =

0, bi,2 = 1}i∈[n]) Sample n additional EPR pairs and put the first qubit each in the challenge
vector X1 and put the second qubit each in the ’do not encrypt’ part of the challenge query.
X1 = (C1, ρe11,1 , · · · , ρe1n,1

, {ai,1 = 0, ai,2 = 1, bi,1 = 0, bi,2 = 1}i∈[n]). Let ρUXb = ρeb1,2 ⊗ · · · ⊗ ρebn,2

for each b ∈ {0, 1}.
The experiment sends (ctC , {ρcti}i∈[n], {ctdi }i∈[n],d∈{0,1}, {ρei,2}i∈[n]) where ctC is the encryption

of Cb, {ρcti}i∈[n] are the encryptions of the EPR pair halves, {ctdi }i∈[2n],d∈{a,b} are the encryptions
of ai, bi and the unencrypted second halves of the EPR pairs {ρei,2}i∈[n] to B.

No we need to verify that the query (U,X0, X1) forms an admissible query for the QMIFE
IND-experiment according to Definition 14. The challenge vectors X1, X0 only differ in the first
component which contains Cb. Let the state ρX0,ab and ρX1,ab denote the state containing the
classical bit queries of each challenge vector. Then for the inputs to U(C0, ·), U(C1, ·) it holds that

TD

ρe01,1 ⊗ · · · ⊗ ρe0n,1︸ ︷︷ ︸
ρX0,e

⊗ρX0,ab, ρe11,1 ⊗ · · · ⊗ ρe1n,1︸ ︷︷ ︸
ρX1,e

⊗ρX1,ab

 = 0

B does not need to keep any information other than the secret key in it’s local state ρB , in
particular B is not entangled with any part of the challenge query (the remaining halves of the EPR
pairs of the challenge query are given away to the experiment and returned without encryption
per the definition of admissible queries). Let these qubits be contained in the registers ρUX0 and
ρUX1 respectively.

TD

(∑
i

ρX0,e,i ⊗ ρX0,ab ⊗ ρUX0,i ⊗ ρB ,
∑
i

ρX1,e,i ⊗ ρX1,ab ⊗ ρUX1,i ⊗ ρB

)
= 0

By the requirement of the qiO IND-experiment the circuits C0, C1 are perfectly functionally
equivalent. The circuits U(C0, ·), U(C1, ·) inherit this property.

Then,

TD

(∑
i

U(C0, ρX0,e,i, ρX0,ab)⊗ ρUX0,i ⊗ ρB ,
∑
i

U(C1, ρX1,e,i, ρX1,ab)⊗ ρUX1,i, ρB

)
= 0

which means the query (U,X0, X1) forms an admissible query for the QMIFE IND-experiment.
B sends the obfuscated circuit C̃b = (skU , ctC , {ctdi }i∈[2n],d∈{a,b}, {ρcti}i∈[n], {ρei,2}i∈[n]) to A. B

outputs whatever A outputs. If the QMIFE IND-experiment selected X0 as a challenge it perfectly
simulates an obfuscation of C0 if the QMIFE IND-experiment selected X1 as a challenge it perfectly
simulates an obfuscation of C1. Therefore B wins with the same probability as A.

⊓⊔
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6.3 SIM-secure QMIFE implies QVBB

In this section we show that a simulation-secure QMIFE implies QVBB, even if we cannot hope to
achieve such a construction. It is known that quantum virtual black box obfuscation is impossible
to achieve for general circuits [AF16], therefore, impossibility of QMIFE immediately follows.

Theorem 9. A QMIFE scheme that fulfills non-adaptive single-query 2-SIM-security uncondi-
tionally implies virtual black box quantum obfuscation.

Proof. The same construction as in the previous proof of Theorem 8 implies QVBB if the QMIFE
scheme is 2-SIM secure.

For any adversary A(1λ) we define a simulator Sim(1λ) for the scheme as follows. Let S̃im(1λ)
be the simulator for the QMIFE scheme. Then Sim creates n EPR pairs as required by the con-
struction and runs the simulator S̃im to create the remaining parts of the obfuscated circuit, i.e.
the ciphertexts and the key for the universal circuit pairs as defined in Theorem 8. Upon receiving
a query from S̃im the simulator forwards the query to its own oracle. Indistinguishability follows
from the security of the QMIFE scheme. ⊓⊔
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A Additional Preliminaries

A.1 Classical Functional Encryption

Definition 17. (Functional Encryption) Let λ ∈ N be the security parameter. Let F = {Fλ}λ∈N
be a class of circuits with input space X = {Xλ}λ∈N and output space Y = {Yλ}λ∈N. A functional
encryption scheme is defined by the PPT algorithms FE = (Setup,KeyGen,Enc,Dec).

Setup(1λ)→ (mpk,msk): given the security parameter 1λ outputs the master public key mpk and
the master secret key msk.

KeyGen(msk, f)→ skf : given the master secret key msk and a circuit f and outputs a function
key skf .

Enc(mpk,m)→ ct: given mpk and a message m ∈ X output the ciphertext ct.
Dec(skf , ct)→ y: given a ciphertext ct and skf output a value y ∈ Y.

The scheme has to fulfill the following correctness and security properties:

Definition 18. (Correctness) Let (mpk,msk)← Setup(1λ), skf ← KeyGen(msk, f), ct← Enc(mpk,m).
Then the FE is correct, if for all f ∈ F and m ∈ X it holds that f(m) = Dec(skf , ct).

Definition 19. (Single-Query IND-Security for Classical Functional Encryption) Let λ ∈ N be
the security parameter and let A be a QPT adversary. Consider the experiment expFEA,b(1

λ):

1. FE.Setup(1λ)→ (mpk,msk)

2. (m0,m1, st) ← Askf←KeyGen(msk,·)(1λ,mpk) where m0,m1 have to be admissible queries for a
function f that A queries, they fulfil f(m0) = f(m1).

3. Sample b← {0, 1}
4. ct← Enc(mpk,mb).
5. b′ ← AO(·)(1λ, ct, st).
6. If b′ = b the adversary wins and the experiment outputs 1. Otherwise, the experiment outputs

0.

36

https://doi.org/10.1007/978-3-031-22972-5_20
https://doi.org/10.1007/978-3-031-22972-5_20
https://doi.org/10.1038/nature12035
https://doi.org/10.1145/1866307.1866359
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920


A functional encryption scheme is said to have single-key IND-security if for all QPT adversaries
A, there exists a negligible function negl such that for all λ ∈ N:∣∣∣Pr[1← ExpIndA,b=0

]
− Pr

[
1← ExpIndA,b=1

]∣∣∣ ≤ negl(λ)
where the random coins are taken over the randomnes of A, Setup,KeyGen and Enc.

Adaptive vs. Non-adaptive security

• The scheme is called non-adaptively secure if the the adversary only queries the KeyGen oracle
before receiving a ciphertext. Then the oracle O(·) is the empty oracle.

• The scheme is called adaptively secure if the adversary can either query the KeyGen oracle
before or after receiving the ciphertext. Then the oracle O(·) is the function KeyGen(msk, ·).

Definition 20. (Single-Query SIM-security) Let λ be the security parameter and let A = (A1,A2)
be a QPT adversary and let Sim be a QPT simulator.

ExpReal
A (1λ) ExpIdealA (1λ)

(mpk,msk)← Setup(1λ) (mpk,msk)← Setup(1λ)

(m, st)← AO1(·)
1 (1λ,mpk) (m, st)← AO1(·)

1 (1λ,mpk)
ct← Enc(mpk,m) ct← Sim(1λ,mpk,V)

where V = (C, skC , C(m), 1|m|) if A
queried O1 on C and V = ∅ otherwise.

α← AO2(·)
2 (ct, st) α← AO′

2(·)
2 (ct, st)

The experiment outputs the state α The experiment outputs the state α

The FE scheme is single-query simulation-secure if for any adversary A and all messages m
there exists a simulator Sim such that the real and ideal distributions are computationally indistin-
guishable:

{ExpReal
A (1λ)}λ∈N ≈c {ExpIdealA (1λ)}λ∈N

.
Adaptive vs Non-adaptive security:

1. Non-adaptive: the adversary A1 is allowed to make one key query to O1(·) where the oracle
O1(·) is KeyGen(msk, C)→ skC .

2. Adaptive: the adversary is allowed to make one key query either to O1(·) or O2(·) (O′2(·) in
the ideal world) where O1(·) and O2(·) are KeyGen(msk, C) → skC and O′2(·) is a KeyGen
oracle controlled by the simulator skC ← Sim(1λ,msk, C, C(m), 1|m|). The simulator is state-
ful, in this invocation Sim has access to the state of the simulator from it’s first invocation
where it produced the ciphertext.

In this work we only require a very simple functional encryption schemes: We require a single-
query adaptively SIM-secure FE scheme for the identity circuit and we require a single-query
adaptively SIM-secure FE scheme for a family of two cicruits. Such schemes are constructed in
[GVW12].

A.2 Classical Multi-input Functional Encryption

We recall the syntax and security definition of a classical multi-input functional encryption scheme
(MIFE) [Gol+14]. We only consider the case where all encryption keys are secret. Let X = {Xλ}λ∈N
and Y = {Yλ}λ∈N be ensembles where each Xλ and Yλ is a finite set. Let F = {Fλ}λ∈N be an
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ensemble where each Fλ is a finite collection of n-ary functions. Each function f ∈ Fλ takes as
input n strings x1, . . . , xn, where each xi ∈ Xλ and outputs f(x1, . . . , xn) ∈ Yλ. A multi-input
functional encryption scheme is additionally parametrized by a parameter k which denotes how
many ciphertexts can be produced for one encryption key ek.

A multi-input functional encryption scheme MIFE for F consists of four algorithms (Setup,KeyGen,
Enc,Dec) as described below.

Setup Setup(1λ, n) → (msk, ek1, . . . , ekn) is a PPT algorithm that takes as input the security
parameter λ and the function arity n. It outputs n encryption keys ek1, . . . , ekn and a master
secret key msk.

KeyGen KeyGen(msk,f) → skf is a PPT algorithm that takes as input the master secret key
msk and an n-ary function f ∈ Fλ and outputs a corresponding secret key skf .

Enc Enc(ek, x)→ ct is a PPT algorithm that takes as input an encryption key eki ∈ (ek1, . . . , ekn)
and an input message x ∈ Xλ and outputs a ciphertext ct. In the case where all of the en-
cryption keys eki are the same, we assume that each ciphertext ct has an associated label i
to denote that the encrypted plaintext constitutes an i’th input to a function f ∈ Fλ. For
convenience of notation, we omit the labels from the explicit description of the ciphertexts.
In particular, note that when eki’s are distinct, the index of the encryption key eki used to
compute ct implicitly denotes that the plaintext encrypted in ct constitutes an i’th input to
f , and thus no explicit label is necessary.

Dec Dec(skf , ct1, . . . , ctn)→ y is a deterministic algorithm that takes as input a secret key skf
and n ciphertexts ct1, . . . , ctn and outputs a string y ∈ Yλ.

Definition 21. (Correctness) A multi-input functional encryption scheme FE for F is correct if
for all f ∈ Fλ and all (x1, . . . , xn) ∈ Xn

λ :

Pr

[
Dec(skf ,Enc(ek1, x1), . . . ,Enc(ekn, xn)) = f(x1, . . . , xn) :
(msk, ek1, . . . , ekn)← Setup(1λ, n), skf ← KeyGen(msk, f)

]
= 1− negl(λ)

where the probability is taken over the coins of KeyGen,Setup,Enc.

Definition 22. (Compatibility of function and message queries)
Let {f} be any set of n-ary functions f ∈ Fλ. Let X0, X1 a pair of input vectors where Xb =

{xb1,j , . . . , xbn,j}j∈[k]. We say (X0, X1) and {f} are compatible if they satisfy the following property:
For every f ∈ {f} and every j1, . . . , jn ∈ [k]

f(x01,j1 , . . . , x
0
n,jn) = f(x11,j1 , . . . , x

1
n,jn)

Definition 23. (Classical MIFE selective IND-Security)
A multi-input functional encryption scheme MIFE for n-ary functions F is k-IND-secure if for

every PPT adversary A = (A1,A2), the advantage of A defined as

AdvMIFE,IND
A

(
1λ
)
=

∣∣∣∣Pr[ExpIND−MIFE
A

(
1λ
)
= 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)
where:

ExpIND−MIFE
A

(
1λ
)
:(

X0,X1, st1
)
← A1

(
1λ, n

)
where Xℓ =

{
xℓ1,j , . . . , x

ℓ
n,j

}
j∈[k]

({eki}i∈[n],msk)← Setup
(
1λ, n

)
b← {0, 1}
cti,j ← Enc

(
eki, x

b
i,j

)
∀i ∈ [n], j ∈ [k]

b′ ← AKeyGen(msk,·)
2

(
st1, {cti,j}i∈[n],j∈[k]

)
Output: (b = b′)
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Let {f} denote the entire set of key queries made by A at any point dirung the game. Then, the
challenge message vectors X0 and X1 chosen by A must be compatible with {f} (Definition 22).

Lemma 4. [Gol+14] Let k = k(λ) be a fixed poly(λ). Then, assuming indistinguishability obfus-
cation for all polynomial-time computable classical circuits and one-way functions, there exists a
k −MIFE scheme that is selectively IND-secure.

Definition 24. (Classical MIFE Sim-Security) A multi-input functional encryption scheme for
n-ary functions is k-SIM-secure if for every QPT adversary A = (A1,A2) there exists a stateful
simulator Sim such that the outputs of the following experiments are computationally indistingui-
shable:

ExpReal
A (1λ) ExpIdealA (1λ)

({eki}i∈[n],msk)← Setup(1λ, n)

(X, st)← AKeyGen(msk,·)
1 (1λ, n) (X, st)← AO1(·)

1 (1λ)
where X = {m1,j , . . . ,mn,j}j∈[k] where X = {m1,j , . . . ,mn,j}j∈[k]

cti,j ← Enc(eki,mi,j) ∀i ∈ [n], j ∈ [k] {cti,j}i∈[n],j∈[k] ← SimTP(·)(1λ, 1|mi,j |)

α← AKeyGen(msk,·)
2 ({cti,j}i∈[n],j∈[k], st) α← AO2(·)

2 ({cti,j}i∈[n],j∈[k], st)
The experiment outputs α The experiment outputs α

where the oracle TP(·) denotes the ideal world trusted party. TP accepts queries of the form
(g, (j1, . . . , jn)) and outputs g(m1,j1 , . . . ,mn,jn).

O1(·) is a KeyGen oracle controlled by the simulator and O2(·) is a KeyGen oracle controlled
by the simulator with access to TP. We say Sim is admissible if Sim only queries TP on functions
that A queried to its oracle.

In a single-query secure scheme A (in the real world) can only make a single query to the
KeyGen oracle or (in the ideal world) a single query to either O1(·) or O2(·).

A.3 Unclonable Encryption

Definition 25. (Unclonable Encryption) A unclonable encryption scheme consists of three QPT
algorithms (KeyGen,Enc,Dec)

KeyGen(1λ) → (ek,dk) KeyGen takes as input the security parameter and outputs an en-
cryption key ek and a decryption key dk.
Enc(ek,m) → |ct⟩ Enc takes as input the encryption key and a message and outputs a quan-
tum ciphertext.
Dec(dk, |ct⟩) → m Dec takes as input the decryption key and the quantum ciphertext and
outputs a message

Definition 26. (Correctness)

Pr[m = Dec(dk, |ct⟩) : |ct⟩ ← Enc(ek,m), (ek, dk)← KeyGen(1λ)] ≥ 1− negl(λ)

There are various flavours of unclonable encryption such as secret-key unclonable encryption
with quantum decryption keys where ek is a private classical key and |dk⟩ is a quantum state (see
Definition 27) or public-key unclonable encryption where ek is a classical public key and dk is a
classical decryption key.
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Definition 27. (Unclonable Encryption with Quantum Decryption Keys) An unclonable encryp-
tion scheme with quantum decryption keys is defined as in Definition 25 where KeyGen produces
a secret key pair such that the decryption key is a quantum state |dk⟩ and the encryption key is a
classical key. The algorithm KeyGen is pseudodeterministic such that it can produce several copies
of the same decryption key.

Definition 28. (Unclonable Security for Secret Key UE)
Let A = (A,B,C) be a QPT adversary and let λ ∈ N be the security parameter.
ExpIND−UEQ
A,b (1λ)

1. (m0,m1, st)← A(1λ) where |m0| = |m1| = 1

2. (ek, |dk⟩⊗2)← KeyGen(1λ)
3. |ct⟩ ← Enc(ek,mb)

4. ρBC ← A(|ct⟩, st)
5. bB ← B(ρB , |dk⟩) and bC ← C(ρC , |dk⟩) where B and C are not allowed to communicate.

An unclonable encryption scheme is called one-time unclonable-indisintguishable secure if for
all (A,B,C) if there exists a negligible function negl such that for all λ ∈ N:

Pr[bB = bC = b∗] ≤ 1

2
+ negl(λ)

Such a scheme is presented in [AKY24], where the authors additionally define a security notion
of t-unclonability which allows the adversary to get t copies of the secret key.

Lemma 5. [AKY24] There is a one-time unclonable encryption scheme with quantum decrpytion
keys for single bit messages.

Definition 29. (Unclonable-Indistinguishable Security for Public Key Unclonable Encryption with
Variable Decryption Keys)

Let A = (A,B,C) be a QPT adversary in the unclonable-indistinguishable security experiment
ExpUE−V DK
A .

ExpUE−V DK
A,b

(ek, dk0)← KeyGen(1λ, r0), (ek, dk1)← KeyGen(1λ, r1), where r0 = (r, r′0),

r1 = (r, r′1), r
′
0, r
′
1 ← {0, 1}l(λ), r ← {0, 1}k(λ)

(m0,m1, ρst)← A(1λ, ek) where |m0| = |m1| = n

|ct⟩ ← Enc(ek,mb)

ρBC ← A(|ct⟩, ρst)
bB ← B(ρB , dk0) and bC ← C(ρC , dk1) where B and C are not allowed to
communicate.

An unclonable encryption scheme is called unclonable-indisintguishable secure if for all (A,B,C)
there exists a negligible function negl such that for all λ ∈ N:

Pr[bB = bC = b] ≤ 1

2
+ negl(λ)
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B Additional Definitions and their Relations

B.1 Multi-Message Simulation-Secure QFE

In Definition 10 the adversary only chooses a single message. We can adjust the experiment to allow
the adversary to choose multiple messages, where each message is a quantum state of dimension
d. In the Real world the experiment is adjusted as follows:

(ρm1 , . . . , ρmn , st)← AO1(·)(mpk)

(ρcti)← Enc(mpk, ρmi) for all i ∈ [n]

In the Ideal world the experiment is adjusted as follows:

(ρm1
, . . . , ρmn

, st)← AO1(·)(mpk)

(ρct1 , . . . , ρctn)← Sim(1λ,mpk,V) for all i ∈ [n]

where V = (Cf , skf , Cf (ρm1
), . . . , Cf (ρmn

), 1d)

In the classical world it is known that a non-adaptive single-message secure scheme is also
secure for multiple messages. In the adaptive setting this is not the case [GVW12]. We show that
the implication from single-message schemes to multi-message schemes in the non-adaptive setting
also holds for QFE schemes. To show this we need the function secret key of the QFE scheme to
be classical which is true for our scheme but might not be a requirement for every realisation of
QFE.

Lemma 6. A non-adaptive single-query simulation-secure QFE scheme with classical secret keys
is also a non-adaptive single-query multi-message simulation secure QFE scheme.

Proof. Let (Setup,KeyGen,Enc,Dec) be a non-adaptive single-query simulation-secure QFE scheme
with simulator Sim. Then we can construct the following simulator Sim∗ for the multi-message
scheme:

1. Obtain V = (Cf , skf , Cf (ρm1
), . . . , Cf (ρmn

), 1|ρmn |) from the experiment.
2. For every i ∈ [n] invoke the single message simulator:

ρcti ← Sim(1λ,mpk, {Cf , skf , Cf (ρmi
)})

3. output (ρct1 , · · · , ρctn)

Let A be an adversary that succeeds in distinguishing the Real and Ideal world in the multi-
message experiment. Then there is an adversary A∗ that can distinguish Real and Ideal world of
the single-message experiment. In the following way a Hybrid experiment is defined for each i ∈ [n].
A∗ receives mpk and forwards it to A. When A makes a key query Cf A∗ forwards the query to
it’s KeyGen oracle and receives skf which it forwards to A. When A outputs (ρm1

, . . . , ρmn
) A∗

encrypts messages 1 to i − 1 honestly and forwards ρmi to it’s own experiment and receives ρcti .
Messages i+1 to n are encrypted using the simulator Sim. A∗ send (ρct1 , . . . , ρctn) to A and outputs
whatever A outputs. Indistinguishability between Hybrids i and i+ 1 follows from the security of
the single-message QFE scheme. ⊓⊔

Corollary 3. The schemes in Section 4.1 and Section 4.2 are non-adaptive single-query multi-
message simulation-secure QFE schemes.
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B.2 2-Player Security of QFE

In this Lemma we show that a single-query secure QFE scheme is still secure if two non-communicating
parties each obtain a function secret key. In this definition we consider that a single ciphertext
must be split between the two non-communicating parties. A slightly different notion of security
where both B and C obtain their own copy of the ciphertext would also be implied by a QFE
scheme.

Definition 30 (Non-Adaptive 2-player Single-Query IND-Security for QFE).
Let λ be the security parameter and let A = (A,B,C) be a QPT adversary.

Exp2P−IND
A,b (1λ)

(mpk,msk)← Setup(1λ)

(ρm0
, ρm1

, ρstA , ρstB , ρstC , CB , CC)← A(mpk)

ρct ← Enc(mpk, ρmb
)

ρBC ← A(ρstA , ρct)

skCB
← KeyGen(msk, CB), skCC

← KeyGen(msk, CC)

bB ← B(mpk, ρct, ρstB , skCB
)

bC ← C(mpk, ρct, ρstC , skCC
)

The FE scheme is called secure if for any adversary A = (A,B,C) where (ρm0
, ρm1

, CB , ρstB ) and
(ρm0

, ρm1
, CC , ρstC ) are each admissible queries (Definition 12) it holds that

Pr[bB = bC = b] ≤ 1

2
+ negl(λ)

where the random coins are taken over the randomness of A, Setup,KeyGen and Enc.

Remark 3. One could obtain an adaptive security notion by allowing B and C to make adaptive
function secret key queries themselves.

Difference to Unclonable Functional Encryption Experiment. The experiments for 2-
player single-query IND-Security for QFE and the experiment for unclonable functional encryption
look very similar. Note that in this experiment the function secret keys that are obtained are
restricted to be admissible queries. In the unclonable functional encryption experiment the function
queries are not subject to any admissibility constraint which is a much stronger notion.

Lemma 7. Any non-adaptively IND-secure single-query QFE scheme (Definition 11) is also a
2-player single-query IND-secure QFE scheme (Definition 30).

Proof. An adversary Ã in the single-query QFE IND-experiment can execute an adversary (A,B,C)
that wins the 2-player IND-experiment by only executing A and B and by only making a single key
query CB . Since to break security in the 2-player IND-security experiment both players B and C
need to guess the correct bit b, Ã can win the IND-security experiment with the same probability
as (A,B,C) by outputting the guess B outputs. ⊓⊔
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