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Abstract

We propose a generic framework called GAPP for aggregation of polynomial protocols. This
allows proving n instances of a polynomial protocol using a single aggregate proof that has
O(log n) size, and can be verified using O(log2 n) operations. The satisfiability of several uni-
variate polynomial identities over a domain is reduced to the satisfiability of a single bivariate
polynomial identity over a related domain, where the bivariate polynomials interpolate a batch
of univariate polynomials over the domain. We construct an information-theoretic protocol
for proving the satisfiability of the bivariate polynomial identity, which is then compiled using
any bivariate polynomial commitment scheme (PCS) to yield an argument of knowledge for the
aggregation relation. GAPP can be applied to several popular SNARKs over bilinear groups
that are modeled as polynomial protocols in a black-box way.

We present a new bivariate polynomial commitment scheme, bPCLB, with succinct veri-
fication that yields an efficient instantiation of GAPP. In addition, the prover only performs
sublinear cryptographic operations in the evaluation proof. Towards constructing bPCLB, we
show a new folding technique that we call Lagrangian folding. The bivariate PCS bPCLB and
the Lagrangian folding scheme are of independent interest. We implement bPCLB and exper-
imentally validate the practical efficiency of our GAPP instantiation. For the popular PLONK
proof system, we achieve 25-30% faster proof generation than the näıve baseline of generating
n separate PLONK proofs. Compared to all existing aggregation schemes that incur additional
prover overheads on top of the baseline, we achieve significantly more efficient proving, while
retaining succinct verification.

We demonstrate the versatility of our GAPP framework by outlining applications of practical
interest: tuple lookups that significantly outperform existing lookup arguments in terms of
prover overheads; and proofs for non-uniform computation with “à la carte” prover cost.
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1 Introduction

Proof systems have a rich history in the theory of computation (notably in works such as [GMW86,
For87, BGG+90]). At the same time, proof systems are also fundamental building blocks in sev-
eral cryptographic constructions such as public-key encryption [NY90], digital signatures [CS97],
anonymous credentials [CL01], secure multi-party computation [GMW87], and more recently, in
modern systems like ZCash [BCG+14] and Monero [NMT].

Succinct Arguments. Zero-knowledge (ZK) proofs [GMR89, GMW86] allow a prover to con-
vince a verifier about the truth of a statement without revealing anything beyond this. Consider
an NP relation R that defines the language L of all statements x for which there exists a witness
w so that R(x,w) = 1. In a zero-knowledge proof for R, the goal is for a prover who knows a
witness w to convince a verifier that x ∈ L without revealing any additional information about
w. When considering proofs that are only computationally sound (called argument systems) the
communication complexity can be smaller than the length of the witness [BCC88], and are called
succinct arguments [Kil92, Mic94].

Succinct Non-interactive ARguments of Knowledge (SNARKs) enable one to prove the integrity
of a computation such that the proof size and the verifier’s work to check the proof do not scale
with the size of the computation. Zero-knowledge variants (zkSNARKs) additionally guarantee
that the proof hides all private inputs involved in the computation. zkSNARKs are a fundamental
building block in modern cryptographic systems that crucially need small proofs and efficient verifi-
cation. These have been constructed in several works [Gro10, Lip12, BCCT12, BCI+13, GGPR13,
PHGR13, BCG+13, Lip13, BCTV14].

Polynomial Protocols. A design methodology underlying several recent constructions of effi-
cient SNARKs is the following. First, an unconditionally secure idealized protocol is obtained for
some NP complete language, which is then compiled into a computationally sound argument via a
cryptographic compiler. Polynomial protocols, and related notions of Polynomial Interactive Oracle
Proofs (PIOPs) and Algebraic Holographic Proofs (AHPs) offer a mathematically elegant frame-
work for constructing secure idealized protocols. Informally, the prover in this idealized setting is
restricted to sending low-degree polynomial oracles to the verifier, who infers the membership of
the statement in the NP complete language by checking certain identities on the polynomials pro-
vided by the prover. In the compiled cryptographic argument, the polynomial oracles are realized
via a polynomial commitment scheme (PCS) that allows the prover to send a short commitment
to a polynomial and then open evaluations in a verifiable way. The zkSNARK typically inherits
the complexity of the PCS in proof size and prover/verifier complexity. PCSs (and the compiled
zkSNARKs) are either in the Structured Reference String (SRS) model or in idealized models (like
ROM,GGM,AGM) or both.

Polynomial protocols have several useful applications. Many popular SNARKs [CHM+20,
GWC19] are modeled as polynomial protocols. They have also been used to construct lookup
arguments [BCG+18, GW20, EFG22, CFF+24], which are particularly useful in constructing effi-
cient SNARKs by moving “SNARK-unfriendly” operations into lookups over pre-computed tables.
Additionally, arguments for several other useful relations such as permutations etc. have efficient
realizations based on polynomial protocols.

Our Work. We propose generic aggregation of polynomial protocols where n instances of a poly-
nomial protocol can be proved via a single aggregate proof that has O(log n) size, and can be verified
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using O(log2 n) operations (with only O(log n) of these being cryptographic operations). Our proof
aggregation applies in a black-box manner to several popular SNARKs over bilinear groups that
are modeled as polynomial protocols. Along the way, we obtain new lookup arguments over tuples
that, together with our proof aggregation, enable efficient proofs of non-uniform computation with
“à la carte” prover cost.

1.1 Our Contributions

We expand on our results below.

GAPP. We propose a generic technique for aggregating polynomial protocols, that we call GAPP.
Our framework allows proving n instances of a polynomial protocol using a single O(log n)-sized
aggregate proof, which can be succinctly verified. Broadly, we reduce the satisfiability of several
univariate polynomial identities over a domain to the satisfiability of a single bivariate polynomial
identity over a related domain, where the bivariate polynomials interpolate a batch of univariate
polynomials over the domain. We construct an information-theoretic protocol for proving the
satisfiability of the bivariate polynomial identity, which is then be compiled using any bivariate
polynomial commitment scheme (PCS) to yield an argument of knowledge for the aggregation
relation. We refer to Section 3 for a formal exposition.

The use of a bivariate polynomial in Lagrange basis to capture a batch of univariate constraints
has appeared in Caulk [ZBK+22], Sublonk [CGG+24], and Pianist [LXZ+24]. However, in all of
these prior works, the techniques are presented for very specific polynomial protocols, namely, for
multi-unity proof aggregation in [ZBK+22, CGG+24], and PLONK PIOP in [LXZ+24]. As a first
contribution, we present a framework that generalizes these approaches to arbitrary polynomial
protocols. Our framework can be viewed as a natural analogue of representing a batch of arith-
metic constraints via a polynomial identity over interpolated polynomials, which is a key step in
several SNARK constructions. Unlike prior works [ZBK+22, CGG+24, LXZ+24], our framework is
described in a manner that is agnostic to the specific bivariate PCS used. This abstraction high-
lights the role of the bivariate PCS as the key primitive determining the efficiency of aggregated
proof generation.

Bivariate PCS. It turns out that instantiating the GAPP framework with existing bivariate
PCS (such as those based on AFG [AFG+16, BMM+21], Dory [Lee21] and KZG variants [ZBK+22,
LXZ+24]) incurs large overheads with respect to the size of the public parameters and proof gen-
eration (see Section 1.3 for a more detailed discussion). To this end, we present a new bivariate
PCS, which we call bPCLB. At a high level, bPCLB is an analogue of AFG [AFG+16, BMM+21]
in the Lagrange basis. In comparison to KZG-based bivariate PCS [ZBK+22, LXZ+24], which
incur O(mn)-sized public parameters and O(mn) cryptographic operations to generate evaluation
proofs for bivariate polynomials of degree (n,m), the corresponding costs for bPCLB are O(m+n).
While this is similar to the overheads incurred by AFG-based bivariate PCS [AFG+16, BMM+21]
in isolation, the fact that bPCLB operates directly over Lagrangian components of the bivariate
polynomial makes it more suitable for instantiating the GAPP framework than AFG based as well
as Dory-based bivariate PCS [Lee21], which work over the monomial representation of polyno-
mials (again, see Section 1.3 for a more detailed discussion). To achieve succinct verification in
bPCLB, we require a new folding technique that we call Lagrangian folding, and a novel application
of the sumcheck protocol. The bivariate PCS bPCLB and the Lagrangian folding scheme are of
independent interest. See Section 4 for the technical details.
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We present a concrete instantiation of the GAPP framework using bPCLB. Unlike the aggrega-
tion frameworks from [GMN22, ABST23, YZRM24, LXZ+24] that are tailored to specific protocols
(such as Groth16 or PLONK), our scheme is generally applicable to all polynomial protocols, and
features a universal setup that can be reused across different polynomial IOPs. We implement this
scheme and experimentally validate its practical efficiency in several applications, as we discuss
below.

Applications. While the above instantiation of GAPP can be applied to any polynomial protocol,
we showcase certain applications of practical interest, as outlined below. See Section 5 for a more
detailed exposition.

Proof Aggregation. We use the above instantiation of GAPP with PLONK PIOP to obtain a simpler
and modular proof aggregation for PLONK with universal setup. In terms of proof generation, our
scheme outperforms the popular aggregation scheme aPlonk [ABST23] currently used in validity
rollups for the Tezos blockchain. Our scheme also supports more efficient proof generation than
the recently introduced scheme from [LXZ+24] as well as proof aggregation approaches based on
incrementally verifiable computation (IVC) [KST22, KS22, BC23, KS24]. Some other advantages
of our scheme are:

� Unlike [LXZ+24], we avoid the need for customized KZG commitments, which are incompatible
with existing PLONK circuits based on publicly available universal SRS generated using powers
of tau ceremony [pot].

� Unlike IVC-based aggregation frameworks [KST22, KS22, BC23, KS24] that make non-black-
box use of cryptographic primitives (e.g., hash functions, bilinear groups etc.) and are therefore
difficult to instantiate in a plug-and-play manner, we use cryptohraphic primitives in a fully
black-box manner.

We benchmark our scheme against the näıve baseline of generating n separate PLONK proofs in Fig-
ure 1. We achieve 25-30% faster proof generation than the baseline. In comparison with [ABST23,
LXZ+24, KST22, KS22, BC23, KS24], all of which incur additional prover overheads on top of
the baseline, we support significantly more efficient proving, while retaining succinct verification.
Our advantage in proof generation over the baseline stems from the fact that we avoid comput-
ing evaluation proofs for the “quotient” polynomials for each instance, and instead only compute
an evaluation proof for the bivariate polynomial aggregating them. The cryptographic operations
incurred by evaluation proof using our bivariate PCS bPCLB are almost the same as that for one
instance of univariate evaluation proof.

Tuple lookup. We present a new lookup protocol for tuples based on our bivariate PCS bPCLB.
For integers k,m, n, the vector of m-tuples A = (a0, . . . ,an−1) is a subvector of T = (t0, . . . , tk−1),
if for all i ∈ [n], there exists j ∈ [k] such that ai = tj . Typically, we wish to check that A is
a subvector of T given commitments to A and T under a suitable commitment scheme. When
m = 1, this is a regular lookup argument. For most of the m = 1 schemes, the case of m > 1 can be
obtained by committing vectors of m-tuples and then using a random linear combination over the
field vectors to reduce the subvector relation over tuples to the one over field vectors. However, this
straightforward approach causes both the commitment size and verification complexity to scale as
O(m). Recent works [CGG+24, DXNT23] achieve argument size and verification cost independent
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Figure 1: Comparative benchmarks for aggregation of PLONK proofs between the näıve baseline of gener-
ating individual proofs, the aPlonk scheme from [ABST23] and our work. We conservatively estimate a 10%
overhead for aPlonk over the näıve baseline, based on performance reported in [ABST23]. Our verification
time is similar to aPlonk, and proof size scales as ≈ 2.8 log n KB for BLS12-381 curve. Individual circuits
are of size 214. The comparisons were run using all six cores on a desktop class machine with 32GB RAM.

Scheme Setup tP tV |π|

Näıve O(t) O(m+ t) O(m) O(m)
[CGG+24] O(mt) O(mt) O(1) O(1)
[DXNT23] O(mt) O(mt) O(1) O(1)
Our Work O(m+ t) O(m+ t) O(log t) O(log t)

Table 1: Comparison of arguments of knowledge for tuple lookups. Here m denotes the tuple size, n denotes
the size of the subvector, while k denotes the size of the parent table/vector and t = max (n, k). We denote
prover cost by tP , verification cost by tV and argument size by |π|. We only report cryptographic operations
for tP and tV .

of m, but incur a multiplicative overhead (O(mn)) in the size of the public parameters and the
cryptographic operations required by the prover.

We present an approach for tuple lookup based on bPCLB where the size of public parameters is
O(m+n), proof generation requires O(m+n) cryptographic operations, and the argument size and
verification cost are logarithmic. We construct protocols for lookup (the vectors are committed)
and committed index lookup (both the vectors and the positions are committed). We compare our
tuple lookup with [CGG+24] and [DXNT23] in Table 1.

À la carte Prover. À la carte prover cost profile refers to the prover’s complexity being proportional
only to the size (sum of sizes) of circuit(s) of the operations invoked by a program execution (and
independent of the size of circuits corresponding to non-invoked instructions). We combine our
aggregation techniques with the above tuple lookup to achieve an “à la carte” proof system for
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non-uniform computations captured in PLONK constraints. Our scheme makes purely black-box
use of cryptoprimitives, and serves as a practical alternative to non-uniform IVC schemes [KS22,
BC23, KS24].

Our scheme achieves faster proof generation than existing approaches that make black-box use of
cryptographic primitives, such as [DXNT23, CGG+24]. In both the prior works, non-uniform proof
generation involves two key steps (i) prover uses the tuple lookup argument to lookup “sub-circuits”
(modelled as tuples) involved in the computation, from a pre-defined table of such sub-circuits and
later (ii) proves the correctness of the circuit assembled from the looked up sub-circuits. The first
step incurs Õ(mn) cryptographic operations, while the second step invokes Plonk/Marlin prover
on the O(mn)-sized assembled circuit. Following a similar approach, we first use tuple lookup to
commit to circuit polynomials for each step (potentially in an input defined manner), and then
provide an aggregated proof for all the steps. As noted earlier, our tuple lookup is substantially
faster. Further, our proof aggregation is 25 − 30% more efficient than the monolithic proof for
O(mn) sized circuit.

We reiterate that our focus is only to showcase the versatility of the GAPP framework and its
efficient instantiation from our bivariate PCS bPCLB. While à la carte prover for non-uniform com-
putation can also be used to obtain proofs of machine execution (zkVM), where current instruction
determines the invoked computation, we leave detailed, end-to-end optimized construction of zkVM
using our methods and its comparison with existing approaches as future work.

1.2 Related Work

Proof Aggregation. Popular proof aggregation schemes include SnarkPack [GMN22] for aggre-
gating Groth16 proofs, aPlonk [ABST23] for aggregating PLONK [GWC19] proofs, and aHyper-
Proofs [YZRM24] which is a multivariate counterpart to aPlonk and aggregates HyperPlonk [CBBZ23]
proofs. Hyperproofs [SCP+22] provides Merkle-like proofs based on polynomial commitments which
can be efficiently aggregated. [GMN22, ABST23, YZRM24] rely on multi-polynomial commitments
and inner pairing-product arguments from [BMM+21] to fold pairing checks for n proof verifications
into one pairing check over multi-commitments. The PIOP based schemes [ABST23, YZRM24]
subsequently verify the polynomial identities inside a meta arithmetic circuit, whose correctness is
proved using a separate SNARK proof. These existing aggregation frameworks require relation-
specific setup for each instance due to their dependence on the arithmetic circuit defining the
aggregation relation. These approaches are also tailored to specific protocols, such as Groth16 and
PLONK. In contrast, our methods apply more generally and avoid the need for relation-specific
setup.

The recent work of [LXZ+24] uses bivariate polynomials in Lagrange basis to capture a batch of
univariate constraints, albeit towards a completely different goal of distributing a SNARK prover.
Their distributed protocol also requires proof aggregation as a key technique. As noted earlier, their
techniques are very specific to PLONK and crucially rely on customized KZG commitments, which
are incompatible with existing PLONK circuits based on publicly available universal SRS generated
using powers of tau ceremony [pot]. Our proof aggregation mechanism applies generally to any
polynomial protocol, and avoids the need for such customized KZG commitments.

Lookup Arguments. Early lookup arguments such as Arya [BCG+18] and Plookup [GW20]
were constructed as means for “custom gates” in SNARKs. These schemes incur proving cost of
O(n + k) cryptographic operations where n and k are the sizes of the table and the subvector,
respectively. Recent works [BCG+18, GW20, Hab22, ZBK+22, PK22, ZGK+22, GK22, EFG22,
CFF+24] have introduced substantial improvements. The works of [EFG22, CFF+24] based on
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“cached quotients” incur proving cost of O(k), substantially improving over earlier works when
k ≪ n. Moreover, recent work [DGP+24] also obtains committed index lookups via an efficient
reduction to un-indexed lookups. In the context of lookups over m-tuples, all of these works focus
on m = 1. The näıve approach of constructing m-tuple lookup for m > 1 using these works incurs
O(m) multiplicative overhead in commitment/argument size and verification complexity.

Recent works [CGG+24, DXNT23] avoid the O(m) multiplicative overhead by extending CQ
[EFG22] and Plookup [GW20] PIOPs with additional algebraic constraints to atomically associate
each m-tuple in a table T consisting of n such tuples with m distinct positions in a flattened table T̃
of size mn. An m tuple is now interpreted as a set of contiguous positions (equivalently, a segment)
in [CGG+24], or as a coset of a subgroup of order n in [DXNT23]. While both the works achieve
argument size and verification independent of m, they both require a setup of size O(mn) and proof
generation involving Õ(mn) cryptographic operations. In contrast, we propose a lookup argument
for m-tuples with O(m + n) setup, O(m + n) cryptographic operations for proof generation, and
logarithmic argument size and verification cost.

À la carte Prover. Proving correct machine computation involves proving the state transition
function determined at each step by the specific instruction type. This typically incurs large prover
costs due to the use of a universal circuit to capture any instruction supported by the machine.
General purpose SNARKs for such applications require large universal circuits that encompass
all possible execution paths, incurring similar proof generation overheads. the prover cost should
only depend on the actual execution path (i.e., the clause that is actually executed), such that
the cost only grows with the sizes of circuits corresponding to the the operations invoked by the
program execution. Such “à la carte” prover cost profile when proving machine executions is
enabled by recent works on non-uniform IVC [KS22, BC23, KS24]. However, these works make use
of non-black-box use of cryptographic objects such as hash functions, groups etc, which limits their
portability. Certain recent works [AST24, STW24] avoid non-uniform verification of the CPU state
transition by proposing an approach based on lookup arguments.

Verifying non-uniform relations while only making black-box use of cryptography has been ex-
plored in MuxProofs [DXNT23] and SubPlonk [CGG+24]. The authors of [DXNT23, CGG+24]
leverage SNARKs with updatable setup to verifiably obtain computation commitments (similar
to relation-specific public parameters) for the active sub-circuit determined by the inputs. The
correctness of the committed active sub-circuit is then proved by a specific SNARK, namely Mar-
lin [CHM+20] in [DXNT23] and PLONK in [CGG+24]. Our proposed scheme also makes black-box
use of cryptoprimitives, and achieves faster proof generation than [DXNT23, CGG+24].

For disjunctive NP relations, [GGHAK22, GHAKS23] describe stacking protocols for efficiently
handling disjunctions by compiling IOPs and Sigma protocol composition. This approach incurs
prover cost that depends only on the size of the clause executed and is independent of the total
number of clauses. Other recent works such as [YHH+23] have used the MPC-in-the-head paradigm
to construct efficient protocols for disjunctions and batched disjunctions.

1.3 Technical overview

In this section, we present an overview of our core techniques. Throughout, we use [a] for a ∈ N
to denote the set [0, a − 1]. A polynomial protocol involves proving that a polynomial identity
holds over some subset V of F, where the polynomials involved in the identity are committed
using some polynomial commitment scheme PC. Typically, the subset V is taken to be the set of
mth roots of unity for some m ∈ Z. Formally, the goal is to prove a polynomial identity of the
form G(p0(Y ), . . . , pℓ−1(Y )) = 0 vanishes over V, for some multivariate polynomial G, given a set
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of commitments (C0, . . . , Cℓ−1), where each Cj is a commitment to the polynomial pj(Y ) under
the polynomial commitment scheme (PCS) PC. Without loss of generality, we assume that, for
some k ∈ [ℓ], the commitments (C0, . . . , Ck−1) are honestly generated (i.e., trusted by the verifier),
while the remaining commitments (Ck, . . . , Cℓ−1) are adversarially generated. For example, proof
generation in PLONK [GWC19] involves showing that a polynomial

Gp(qM (Y ), qL(Y ), qR(Y ), qO(Y ), qC(Y ), a(Y ), b(Y ), c(Y ))

vanishes over V, where Gp(qM , qL, qR, qO, qC , a, b, c) = qMab + qLa + qRb + qOc + qC . Here, com-
mitments to the circuit polynomials (qM , qL, qR, qO, qC) are trusted (being outputs of one-time
preprocessing), while commitments to the witness polynomials (a, b, c), generated by the prover,
may be malicious.

Aggregating Polynomial Protocols. Now consider a scenario where a prover wishes to prove
n homogeneous polynomial identities

G(pi,0(Y ), . . . , pi,ℓ−1(Y )) = 0 mod ZV(Y ) ∀i ∈ [n], (1)

given a set of commitments (Ci,0, . . . , Ci,ℓ−1), where Ci,j is a commitment to pi,j(Y ) under the
PCS PC. Note that the näıve approach would be to run n instances of any polynomial protocol
compatible with PC. This approach involves proving a statement of size O(nℓ), and results in an
argument size of O(nℓ|πPC|) (where |πPC| denotes the opening size of PC).

Aggregation using Bivariate Polynomials. First, to reduce the statement size from n × ℓ
to ℓ, we create a single commitment to a vector of polynomials (pi,j)i∈[0,n−1] for a given j ∈ [ℓ].

Let H = {1, ω, . . . , ωn−1} be the subgroup consisting of the nth roots of unity in F, and let µH
i (X)

be the corresponding Lagrange polynomial for each i ∈ [n]. We say that the packed polyno-
mial corresponding to the vector of univariate polynomials (pi,j)i∈[n] is the bivariate polynomial

Pj(X,Y ) =
∑n−1

i=0 µH
i (X)pi,j(Y ). For this packing scheme, the satisfiability of a set of n univari-

ate polynomial identities over V reduces to showing that the bivariate polynomial Q(X,Y ) =
G(P0(X,Y ), . . . , Pℓ−1(X,Y )) vanishes over H × V. This is analogous to compressing n arith-
metic constraints into an equivalent polynomial constraint over interpolated polynomials in several
SNARK constructions. See Lemma 3.1 for a precise exposition.

Now the goal is to prove knowledge of bivariate polynomials (P0, . . . , Pℓ−1) corresponding to
commitments (C0, . . . , Cℓ−1) s.t. G(pi,0(Y ), . . . , pi,ℓ−1(Y )) vanishes over V for each i ∈ [n], where for
each j ∈ [ℓ], p0,j(Y ), . . . , pn−1,j(Y ) are the uniquely determined univariate components of Pj(X,Y )
with respect to the polynomial basis (µH

0 (X), . . . , µH
n−1(X)). In a real application, for some k ∈ [ℓ],

the commitments (C0, . . . , Ck−1) would be honestly generated (i.e., trusted by the verifier), while
the remaining commitments (Ck, . . . , Cℓ−1) would serve as aggregated commitments to the prover’s
witness, and thus could be adversarially generated.

The GAPP Relation. Let bPC be a bivariate PCS with public parameter pp. We informally
define the relation RGAPP

pp,G,n,m as follows:

Definition 1.1 (GAPP (informal)). Let C = (C0, . . . , Cℓ−1) be a vector of commitments, and
let w = (P0(X,Y ), . . . , Pℓ−1(X,Y )) be a vector of bivariate polynomials. We say that (C,w) ∈
RGAPP

pp,G,n,m if:

1. For each j ∈ [ℓ], Pj(X,Y ) opens the commitment Cj.
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2. For each i ∈ [n], G(P0(ω
i, Y ), . . . , Pℓ−1(ω

i, Y )) = 0 mod ZV(Y ), where ω is the canonical
primitive nth root of unity in F, and where Pj(ω

i, Y ) is the ith univariate polynomial pi,j(Y )
“packed” into Pj.

In Section 3, we formally define a more generalized version of this relation that allows capturing
polynomial protocols where the same polynomial appears with different parameterizations. See
Definition 3.1 for the details.

Argument of Knowledge for GAPP. To construct an argument of knowledge for RGAPP
pp,G,n,m,

we design: (i) an information-theoretic protocol, where the prover’s messages are restricted to be
low-degree (univariate and bivariate) polynomials, and (ii) a novel bivariate PCS to compile this
information-theoretic protocol into an argument of knowledge for RGAPP

pp,G,n,m with succinct verifica-
tion and an efficient prover.

The Information-Theoretic Protocol. The information-theoretic protocol requires the prover to
show that Q(X,Y ) = G(P0(X,Y ), . . . , Pℓ−1(X,Y )) vanishes over H×V. At a high level, the prover
produces low-degree polynomials Q(X,Y ) and H(X,Y ) such that Q(X,Y )− ZV(Y )H(X,Y ) van-
ishes over H, to which the verifier has oracle access. The verifier probabilistically checks the identity
Q(X, y) − ZV(y)H(X, y) = 0 mod ZH(X) for y ← F. Concretely, the prover produces univariate
polynomials q(X) = Q(X, y), h(X) = H(X, y), and u(X), and the verifier probabilistically checks
q(X) − ZV(y)h(X) = u(X)ZH(X) by querying the oracles for q(X), h(X) and u(X) at a random
point. Finally, to establish that q(X) = Q(X, y) and h(X) = H(X, y), the verifier samples x← F,
queries the polynomials Q and H at (x, y), queries the polynomials q and h at x, and checks that
Q(x, y) = q(x) and H(x, y) = h(x).

Bivariate Polynomial Commitment. The above information-theoretic protocol can be compiled
into an argument of knowledge forRGAPP

pp,G,n,m with succinct verification using any univariate PCS and
any bivariate PCS, such that both schemes support succinct verification of evaluation proofs (see
Section 3.2 for a detailed treatment). Our key innovation is a bivariate PCS that, together with the
KZG PCS for univariate polynomials, yields a concretely efficient argument of knowledge based on
the above information-theoretic protocol while achieving efficient prover and minimizing the size
of the public parameters.

Our starting point is the two-tiered commitment scheme based on a bilinear pairing e : G1 ×
G2 → GT from [AFG+16, BMM+21, GMN22] that computes a commitment CP to a bivariate
polynomial P (X,Y ) as follows: (i) represent P (X,Y ) as

∑n−1
i=0 pi(Y )Xi, (ii) compute commitments

Ci ∈ G1 to polynomials pi(Y ) for all i ∈ [n], and (iii) compute the commitment CP to the vector
C = (C0, . . . , Cn−1) as CP =

∑n−1
i=0 e(Ci, wi), where w = (w0, . . . , wn−1) ∈ Gn

2 is a commitment key.
However, this scheme is not amenable to the above information-theoretic protocol, as we elaborate
below.

Recall that our approach requires computing a commitment to a packed polynomial P (X,Y ) =∑n−1
i=0 µH

i (X)pi(Y ). Further, assume that a commitment to each pi(Y ) is available as part of some
pre-processing step (such a scenario, in fact, arises in our application of GAPP for proving non-
uniform computation in Section 5). To use the commitment scheme from [BMM+21], one needs to
express the polynomial P (X,Y ) as

∑n−1
i=0 p′i(Y )Xi, which is equivalent to computing the monomial

coefficients {p′i(Y )} given the Lagrange coefficients {pi(Y )}. This requires FFT over the polynomial
ring F[Y ], which incurs Ω(mn log n) field operations. Moreover, the prover needs to commit to each
p′i(Y ) and then compute the pairing product, which additionally incurs Ω(mn) group operations
and n pairings. The overall commitment cost is Ω(mn log n)F+Ω(mn)G+ nP.
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In Section 4.1, we present a novel bivariate PCS that totally avoids the overheads for FFT and
the associated group operations by computing the pairing product directly over commitments to
the Lagrange coefficients {pi(Y )} of the bivariate polynomial P (X,Y ). This significantly reduces
the the commitment cost to just n pairings. We now present an overview of our bivariate PCS in
the rest of this section.

Our Bivariate PCS. Similar to the approach in [BMM+21], we use KZG PCS to create com-
mitments {Ci} to the Lagrange coefficients {pi(Y )} of the bivariate polynomial P (X,Y ), and then
compute CP =

∑n−1
i=0 e(Ci, wi), where w = (w0, . . . , wn−1) ∈ Gn

2 is a commitment key. Our core
technical innovation is in achieving a logarithmic size opening for this commitment. To illustrate
the challenges thereof, we recall the techniques used in prior works [BMM+21, GMN22].

To open the bivariate polynomial P (X,Y ) with commitment CP (computed using the monomial
basis), the existing approaches in [BMM+21, GMN22] generalize the “split and fold” technique
used in the inner product protocols in [BCC+16, BBB+18] and in the compressed sigma protocol
framework of [AC20]. In more detail, to open the polynomial commitment to a value v at (x, y),
the prover first computes the commitment Cp to the univariate polynomial P (x, Y ) and sends it to
the verifier. Since P (x, Y ) =

∑n−1
i=0 pi(Y )xi, the homomorphic property of the KZG commitment

scheme implies that Cp =
∑n−1

i=0 xiCi is a commitment to P (x, Y ). Next, the prover opens the
univariate polynomial P (x, Y ) to the value v at Y = y. The key step in the protocol is for the
prover to convince the verifier that the commitment Cp to the univariate polynomial is consistent
with the commitment CP to the bivariate polynomial. In other words, the prover proves knowledge
of the vector C0, . . . , Cn−1 ∈ Gn

1 such that:

CP =
n−1∑
i=0

e(Ci, wi)
∧

Cp =
n−1∑
i=0

xiCi (2)

In the above, CP can be considered a commitment to C = (C0, . . . , Cn−1) under the commitment
key w = (w0, . . . , wn−1) which is doubly homomorphic1, whereas Cp can be considered a linear form
given by the key (1, x, . . . , xn−1).

Note that the relation in Equation 2 can be proved using the split and fold technique of [BCC+16,
BBB+18, AC20]. However, näıvely using the techniques from these works results in a linear time
verifier. This is due to the fact that verifier is required to compute the “folded” commitment
key and linear form in each round. To address this, the prior works [BMM+21, GMN22] consider
commitment keys wi, i ∈ [n] with monomial structure, i.e. wi = τ i·g2 =

[
τ i
]
2
for some trapdoor τ ←

F. The linear form already inherits the monomial structure (1, x, . . . , xn−1) from the representation
of the bivariate polynomial P (X,Y ) in the monomial basis consisting of powers of X. The key
observation made about such structured commitment keys is that the folding can be delegated
to the prover, and the verifier can efficiently (in O(log n) time) check the correctness of the final
commitment key and the linear form.

A New Folding Technique. At a high level, we need to prove a relation similar to the one
in Equation 2, except that Cp =

∑n−1
i=0 µH

i (x)Ci since, in our case, {Ci} are commitments to
the Lagrange coefficients {pi(Y )} of the bivariate polynomial P (X,Y ). Since the commitment key
(µH

i (x))i∈[N ] does not have an obvious tensor (e.g., monomial) structure, the verifier cannot delegate
the folding to the prover, which can be verified in logarithmic time, as in prior works [BMM+21,
GMN22]. To address this, we introduce a new folding technique, which allows a verifier to check

1The commitment is homomorphic both in commitment key and message
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the folding of commitment keys structured as Lagrange basis polynomials (instead of monomial
basis) with logarithmic effort.

Our key insight here is that while Lagrange polynomials has no obvious structure in the mono-
mial basis, they can be succinctly described in the Lagrange basis, where their coefficients corre-
spond to standard unit vectors. This allows us to efficiently fold in the Lagrange basis, and later re-
cover the final folded polynomial in the monomial basis by applying the inverse-FFT transformation
to the final folded polynomial in the Lagrange basis. The protocol for checking correctness of the
inverse-FFT transformation uses a novel application of multivariate sum-check protocol [LFKN92]
over a boolean hypercube. We defer the details to Section 4.2.

2 Preliminaries

We present preliminary background material in this section.

Notations. We use [n] to denote the set of integers {0, . . . , n− 1} and F to denote a prime field
of order p. We denote by λ a security parameter. We use negl to denote a negligible function:
for any integer c > 0, there exists n ∈ N, such that ∀ x > n, negl(x) ≤ 1/xc. We assume a
bilinear group generator BG which on input λ outputs parameters for the protocols. Specifically
BG(1λ) outputs (F,G1,G2,GT , e, g1, g2, gt) where: F = Fp is a prime field of super-polynomial size
in λ, with p = λω(1); G1,G2 and GT are groups of order p, and e is an efficiently computable
non-degenerate bilinear pairing e : G1 × G2 → GT ; Generators g1, g2 are uniformly chosen from
G1 and G2 respectively and gt = e(g1, g2). We write groups G1 and G2 additively, and use the
shorthand notation [x]1 and [x]2 to denote group elements x ·g1 and x ·g2 respectively for x ∈ F. We
implicitly assume that all the setup algorithms for the protocols invoke BG to generate descriptions
of groups and fields over which the protocol is instantiated. We will als use sets F,G1,G2,GT to
specify the type of operations, where additionally, we have P to denote pairings and M to denote
multiexponentiation.

Lagrange Polynomials. At different points, we use groups H, V and K generated by primitive
nth, mth and kth roots of unity. We use {µH

i (X)}n−1
i=0 , {µV

i (X)}m−1
i=0 and {µK

i (X)}k−1
i=0 as the Lagrange

polynomials for sets H, V and K respecitvely. We use ZH(X), ZV(X) and ZK(X) to denote the
vanishing polynomials of the respective sets. We will generally use ω as the nth primitive root of
unity and ν as the primitive mth root of unity.

2.1 Succinct Argument of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x : ∃ w such that
(x,w) ∈ R}. Here, a prover P aims to convince a verifier V that x ∈ L by proving that it knows a
witness w for a public statement x such that (x,w) ∈ R. An interactive argument of knowledge for
a relation R consists of a PPT algorithm Setup that takes as input the security parameter λ, and
outputs the public parameters pp, and a pair of interactive PPT algorithms ⟨P,V⟩, where P takes
as input (pp, x, w) and V takes as input (pp, x). An interactive argument of knowledge ⟨P,V⟩ must
satisfy completeness and knowledge soundness.

Definition 2.1 (Completeness). For all security parameter λ ∈ N and statement x and witness w
such that (x,w) ∈ R, we have

Pr

(
b = 1 :

pp← Setup(1λ)
b← ⟨P(w),V⟩(pp, x)

)
= 1.
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Definition 2.2 (Knowledge Soundness). For any PPT malicious prover P∗ = (P∗
1 ,P2∗), there

exists a PPT algorithm E such that the following probability is negligible:

Pr

 b = 1∧
(x,w) ̸∈ R :

pp← Setup(1λ)
(x, st)← P∗

1 (1
λ, pp)

b← ⟨P∗
2 (st),V⟩(pp, x)

w ← EP∗
2 (pp, x)

 .

A succinct argument of knowledge ⟨P,V⟩ for a relation R, must satisfy completeness and
knowledge soundness and additionally be succinct, that is, the communication complexity between
prover and verifier, as well as the verification complexity is bounded by poly(λ, log |w|).

in Appendix 2.1.

2.2 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) introduced in [KZG10] allows a prover to open evaluations
of the committed polynomial succinctly. A PCS over F is a tuple PC = (Setup,Com,Open,Eval)
where:

� pp← Setup(1λ, n, {Di}i∈[n]). On input security parameter λ, number of variables n and upper
bounds Di ∈ N on the degree of each variable Xi for a n-variate polynomial, Setup generates
public parameters pp.

� (C, c̃) ← Com(pp, f(X1, · · · , Xn), d1, . . . , dn). On input the public parameters pp, and a n-
variate polynomial f(X1, · · · , Xn) ∈ F[X1, . . . , Xn] with degree at most deg(Xi) = di ≤ Di

for all i, Com outputs a commitment to the polynomial C, and additionally an opening hint
c̃.

� b ← Open(pp, f(X1, · · · , Xn), d1, . . . , dn, C, c̃). On input the public parameters pp, the com-
mitment C and the opening hint c̃, a polynomial f(X1, · · · , Xn) with di ≤ Di, Open outputs
a bit indicating accept or reject.

� b ← Eval(pp, C, (d1, . . . , dn), (x1, . . . , xn), v; f(X1, · · · , Xn)). A public coin interactive proto-
col ⟨Peval(f(X1, · · · , Xn)), Veval⟩(pp, C, (d1, . . . , dn), (x1, . . . , xn), v) between a PPT prover and
a PPT verifier. The parties have as common input public parameters pp, commitment C, de-
gree d, evaluation point x, and claimed evaluation v. The prover has, in addition, the opening
f(X1, · · · , Xn) of C, with deg(Xi) ≤ di. At the end of the protocol, the verifier outputs 1
indicating accepting the proof that f(x1, . . . , xn) = v, or outputs 0 indicating rejecting the
proof.

A polynomial commitment scheme must satisfy completeness, binding and extractability.

Definition 2.3 (Completeness). For all polynomials f(X1, · · · , Xn) ∈ F[X1, . . . , Xn] with degree
deg(Xi) = di ≤ Di, for all (x1, . . . , xn) ∈ Fn,

Pr

b = 1 :

pp← Setup(1λ, n, {Di}i∈[n])
(C, c̃)← Com(pp, f(X1, · · · , Xn), d1, . . . , dn)

v ← f(x)
b← Eval(pp, C, (d1, . . . , dn), (x1, . . . , xn), v; f(X1, · · · , Xn))

 = 1.
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Definition 2.4 (Binding). A polynomial commitment scheme PC is binding if for all PPT A, the
following probability is negligible in λ:

Pr

Open(pp, f0,d0, C, c̃0) = 1∧
Open(pp, f1,d1, C, c̃1) = 1∧

f0 ̸= f1

:
pp← Setup(1λ, n, {Di}i∈[n])

(C, f0, f1, c̃0, c̃1,d0,d1)← A(pp)

 .

Definition 2.5 (Knowledge Soundness). For any PPT adversary A = (A1,A2), there exists a
PPT algorithm E such that the following probability is negligible in λ:

Pr

 b = 1∧
REval(pp, C,x, v; f̃ , c̃) = 0

:

pp← Setup(1λ, n, {Di}i∈[n])
(C,d,x, v, st)← A1(pp)

(f̃ , c̃)← EA2(pp, C, d)
b← ⟨A2(st), Veval⟩(pp, C,d,x, v)

 .

where the relation REval is defined as follows:

REval = {((pp, C ∈ G, x ∈ Fn, v ∈ F); (f(X1, · · · , Xn), c̃)) :

(Open(pp, f,d, C, c̃0) = 1) ∧ v = f(x)}

We denote by Prove,Verify, the non-interactive prover and verifier algorithms obtained by
applying FS to the Eval public-coin interactive protocol, giving a non-interactive PCS scheme
(pp← Setup(1λ, n, d), C ← Com(pp, f(X)), (v, π)← Prove(pp, f(X), x), b← Verify(pp, C, v, x, π).

Definition 2.6 (Knowledge Soundness for Non-Interactive PCS). For any PPT adversary A, there
exists a PPT algorithm E such that the following probability is negligible in λ:

Pr

 b = 1∧
REval(pp, C,x, v; f̃ , c̃) = 0

:

pp← Setup(1λ, n, {Di}i∈[n])
(C,d,x, v, π)← ARO(pp)

(f̃ , c̃)← EA,RO(pp, C, d)
b← Verify(pp, C,d,x, v, π)

 .

where the relation REval is defined as follows:

REval = {((pp, C ∈ G, x ∈ Fn, v ∈ F); (f(X1, · · · , Xn), c̃)) :

(Open(pp, f,d, C, c̃0) = 1) ∧ v = f(x)}

Definition 2.7 (Succinctness). We require the commitments and the evaluation proofs to be of size
independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is poly(λ),
|π| is poly(λ) where π is the transcript obtained by applying FS to Eval. Additionally, the scheme
is verifier succinct if Eval runs in time poly(λ) · log(d) for the verifier.

Fiat-Shamir. An interactive protocol is public-coin if the verifier’s messages are uniformly ran-
dom strings. Public-coin protocols can be transformed into non-interactive arguments in the Ran-
dom Oracle Model (ROM) by using the Fiat-Shamir (FS) [FS87] heuristic to derive the verifier’s
messages as the output of a Random Oracle. All protocols in this work are public-coin interactive
protocols in the structured reference string (SRS) model where both the parties have access to a
SRS, that are then compiled into non-interactive arguments using FS. We denote by Prove,Verify,
the non-interactive prover and verifier algorithms obtained by applying FS to the Eval public-
coin interactive protocol, giving a non-interactive PCS scheme (pp ← Setup(1λ, n, d), (C, c̃) ←
Com(pp, f(X)), (v, π)← Prove(pp, f(X), x), b← Verify(pp, C, v, x, π).
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KZG PCS. The KZG univariate PCS was introduced in [KZG10]. We denote the KZG scheme by
the tuple of PPT algorithms (KZG.Setup,KZG.Commit, KZG.Prove, KZG.Verify) as defined below.

Definition 2.8 (KZG PCS). Let (F,G1,G2,GT , e, g1, g2, gt) be output of bilinear group generator
BG(1λ).

� KZG.Setup on input (1λ, d), where d is the degree bound, outputs

srs = ({[τ ]1, . . . , [τd]1}, {[τ ]2, . . . , [τd]2}

� KZG.Commit on input (srs, p(X)), where p(X) ∈ F≤d[X], outputs C = [p(τ)]1

� KZG.Prove on input (srs, p(X), α), where p(X) ∈ F≤d[X] and α ∈ F, outputs (v, π) such that

v = p(α) and π = [q(τ)]1, for q(X) = p(X)−p(α)
X−α

� KZG.Verify on input (srs, C, v, α, π), outputs 1 if the following equation holds, and 0 otherwise:

e(C − v[1]1 + απ, [1]2)
?
= e(π, [τ ]2)

2.3 Polynomial Protocols

A modular approach for designing efficient succinct arguments consists of two steps: (i) constructing
an information theoretic protocol in an idealized model, (ii) compiling the information-theoretic
protocol via a cryptographic compiler to obtain an argument system. Informally, the prover and
the verifier interact where the prover provides oracle access to a set of polynomials, and the verifier
accepts or rejects by checking certain identities over the polynomials output by the prover and
possibly public polynomials known to the verifier. Such a polynomial protocol is compiled into a
succinct argument of knowledge by realizing the polynomial oracles using a polynomial commitment
scheme. A polynomial commitment scheme allows a prover to commit to polynomials, and later
verifiably open evaluations at chosen points by giving evaluation proofs. This enables the verifier to
probabilistically check polynomial identities at random points of F. Many recent constructions of
zkSNARKs [BFS20, CHM+20, GWC19] follow this approach where the information theoretic object
is a polynomial protocol and the cryptographic compiler is a polynomial commitment scheme.

2.4 Models and Assumptions

Algebraic Group Model. We analyze the security of our protocols in the Algebraic Group
Model (AGM) introduced in [FKL18]. An adversary A is called algebraic if every group element
output by A is accompanied by a representation of that group element in terms of all the group
elements that A has seen so far (input and output). In the AGM, an adversary A is restricted
to be algebraic, which in our SRS-based protocol means a PPT algorithm satisfying the following:
Given srs = (srs1, srs2), whenever A outputs an element A ∈ Gi, i ∈ 1, 2, it is accompanied by its
representation, i.e, A also outputs a vector v over F such that A = ⟨v, srsi⟩.

Definition 2.9 (q-DLOG Assumption). The q-DLOG assumption with respect to G holds if for all
λ and for all PPT A, we have:

Pr

[
τ = τ ′

τ ′ ← A(1λ, pp) :
(F,G1,G2,GT , e, g1, g2, gt)← BG(1λ), τ ← F

pp := (gτ1 , g
τ2
1 , . . . , gτ

q

1 , gτ2 , g
τ2
2 , . . . , gτ

q

2 )

]
≤ negl(λ)
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3 Generic Aggregation of Polynomial Protocols

In this section, we present our GAPP framework for generic aggregation of polynomial protocols.
Let G(X0, . . . , Xℓ−1) ∈ F[X0, . . . , Xℓ−1] be an ℓ-variate polynomial. As outlined in the overview,
we consider a scenario where a prover wishes to prove a set of n polynomial identities of the form

G(pi,0(Y ), . . . , pi,ℓ−1(Y )) = 0 mod ZV(Y ) ∀i ∈ [n], (3)

given a set of commitments (Ci,0, . . . , Ci,ℓ−1), where for each (i, j) ∈ [n]× [ℓ], Ci,j is a commitment
to the polynomial pi,j(Y ) ∈ F[Y ] under a polynomial commitment scheme PC.

3.1 Aggregation using Bivariate Polynomials

Packed Polynomials. Let bPC be a generic bivariate polynomial commitment scheme. Let
H = {1, ω, . . . , ωn−1} be the subgroup consisting of the nth roots of unity in F, and let µH

i (X)
be the corresponding Lagrange polynomial for each i ∈ [n]. We say that the packed polynomial
corresponding to the vector of univariate polynomials (pi,j(Y ))i∈[n] is the bivariate polynomial

Pj(X,Y ) =
n−1∑
i=0

µH
i (X)pi,j(Y ). (4)

It turns out that, for the above packing scheme, the satisfiability of a set of n univariate polynomial
identities over V reduces to a single bivariate polynomial identity over the packed polynomials over
the domain H× V, given by

Q(X,Y ) = G(P0(X,Y ), . . . , Pℓ−1(X,Y )) vanishes over H× V.

We capture this formally using the following lemma.

Lemma 3.1 (Packing Lemma). Let m,n, ℓ ∈ N be positive integers. Let V = ⟨ν⟩ and H = ⟨ω⟩ be the
subgroups generated by primitive mth and nth roots of unity in F respectively. Let G(X0, . . . , Xℓ−1) ∈
F[X0, . . . , Xℓ−1] be an ℓ-variate polynomial, and let pi,j(Y ) be a univariate polynomial in F[Y ] for
each (i, j) ∈ [n] × [ℓ]. Let Pj(X,Y ) denote the packed (bivariate) polynomial corresponding to the
vector of univariate polynomials (p0,j(Y ), . . . , pn−1,j(Y )) as in Equation 4. Then the univariate
polynomial G(pi,0(Y ), . . . , pi,ℓ−1(Y )) vanishes over V for all i ∈ [n] if and only if the bivariate
polynomial

Q(X,Y ) = G(P0(X,Y ), . . . , Pℓ−1(X,Y ))

vanishes over the set H× V.

Proof. We first state some identities. Recall that H = {1, ω, . . . , ωn−1} is the subgroup consisting
of the nth roots of unity in F. It follows from Equation 4 that for each i ∈ [N ] and each j ∈ [ℓ], we
have

Pj(ω
i, Y ) =

n−1∑
i′=0

µi′
(
ωi
)
pi′,j(Y ) = pi,j(Y )

which follows from the facts that: (i) µi

(
ωi
)
= 1 for each i ∈ [N ], and (ii) µi′

(
ωi
)
= 0 for each

i, i′ ∈ [N ] such that i ̸= i′. Hence, for all i ∈ [n]:

Q(ωi, Y ) = G(pi,0(Y ), . . . , pi,ℓ−1(Y )) (5)
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We now prove the “if” part of the statement of Lemma 3.1. Suppose thatQ(X,Y ) = G(P0(X,Y ), . . . , Pℓ−1(X,Y ))
vanishes over H × V. This implies that the following must be true for each i ∈ [n]: Q(ωi, Y ) =
0 mod ZV(Y ). By Equation 5, we have that for all i ∈ [n], the following univariate polynomial
holds

Q(ωi, Y ) = 0 mod ZV(Y ) =⇒ G(pi,0(Y ), . . . , pi,ℓ−1(Y )) = 0 mod ZV(Y )

as desired. We now prove the “only if” part of the statement of Lemma 4.1. Suppose that for
all i ∈ [n]: G(pi,0(Y ), . . . , pi,ℓ−1(Y )) = 0 mod ZV(Y ). By equation 5, for all i ∈ [n]: Q(ωi, Y ) =
0 mod ZV(Y ). But this precisely implies that Q(X,Y ) vanishes over K, as desired. This completes
the proof of Lemma 3.1.

The GAPP Relation. In the GAPP relation defined in the overview, we considered ℓ polynomial
commitments for an ℓ-variate form G, intuitively, binding each polynomial to a distinct variable of
G. Often we need to associate the same commitment with more than one variable in G, specifically
when a polynomial appears in the identity with different parameterizations. Looking ahead, in
the application of GAPP to aggregate PLONK proofs, the form of polynomial identity is given by
Equation (19), in which the polynomial z appears with parameterizations as z(Y ) and z(νY ) for
ν ∈ F.

Formally, we consider commitments (C0, . . . , Cr−1) to r ≤ ℓ polynomials (P0, . . . , Pr−1), each of
which is potentially bound to several variables in G with different parameterizations. In general,
we consider s parameterization polynomials hi(Y ) for i ∈ [s], and the maps κ : [ℓ] → [r] and
θ : [ℓ]→ [s]. For each i ∈ [ℓ], we define Ki(X,Y ) = Pκ(i)(X,hθ(i)(Y )) for i ∈ [ℓ], where Ki specifies

the ith input to G.
Let bPC be a bivariate polynomial commitment scheme as before with commitment space C.

Given pp ← bPC.Setup(1λ, (dx, dy)), we define the relation RGAPP
pp,G,n,m for degree bounds (n,m) ≤

(dx, dy) as follows:

Definition 3.1 (GAPP Relation). Let C = (C0, . . . , Cr−1) ∈ Cr be a vector of commitments,
w0 = (P0(X,Y ), . . . , Pr−1(X,Y )) ∈ (F[X,Y ])r be a vector of bivariate polynomials, and let w1 =
(c̃0, . . . , c̃r−1) be a vector of opening hints. Additionally, let h = (h0(Y ), . . . , hs−1(Y )) be a vector
of parameterization polynomials, maps κ : [ℓ]→ [r] and θ : [ℓ]→ [s] assigning witness polynomials
with parameterization for variables in G. We say that (x,w) ∈ RGAPP

pp,G,n,m for x = (κ, θ,h,C) and
w = (w0,w1) if:

1. For each j ∈ [r], bPC.Open(pp, Pj(X,Y ), (dx, dy), Cj , c̃j) = 1.

2. For each i ∈ [n], G
(
K0(ω

i, Y ), . . . ,Kℓ−1(ω
i, Y )

)
= 0 mod ZV(Y ), where ω is the canonical

primitive nth root of unity in F and where for each j ∈ [ℓ], we have Kj(X,Y ) = Pκ(j)(X,hθ(j)(Y )).

Remark 3.1. Typically, RGAPP
pp,G,n,m will be invoked on (C0, . . . , Cr−1) where, without loss of gener-

ality, for some k ∈ [r], (C0, . . . , Ck−1) are honestly generated (i.e., trusted/supplied by the verifier),
while the remaining commitments correspond to the prover’s witness.

3.2 Argument of Knowledge for the GAPP Relation

In this subsection, we present a argument of knowledge for RGAPP
pp,G,n,m given any univariate and

bivariate polynomial commitment schemes. This argument of knowledge relies on certain algebraic
observations which we state next. Recall that the formal definition of RGAPP

pp,G,n,m involves proving
that the bivariate polynomial Q(X,Y ) = G(P0(X,Y ), . . . , Pℓ−1(X,Y )) vanishes over H×V. We use
the following algebraic criterion to show that a bivariate polynomial Q vanishes over the domain
H× V.
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Lemma 3.2. Let m,n, ℓ ∈ N be positive integers and let V and H as before be the subgroups
consisting of the mth and nth roots of unity in F, respectively. A polynomial Q ∈ F[X,Y ] vanishes
over H×V if and only there exists polynomial H ∈ F[X,Y ] with degX(H) < n such that Q(X,Y )−
ZV(Y )H(X,Y ) = 0 mod ZH(X). Moreover, the polynomial H is explicitly described as:

H(X,Y ) =
n−1∑
i=0

µH
i (X)

Q(ωi, Y )

ZV(Y )
(6)

Proof. First, assume that Q vanishes on H×V. Then for i ∈ [n], Q(ωi, Y ) vanishes on V and hence is
divisible by ZV(Y ). Thus all the univariate components of H are indeed polynomials. Substituting
X = ωk in expressions for polynomials Q and H we see that Q(ωk, Y ) = ZV(Y )H(ωk, Y ). Thus, by
factor theorem, (X − ωk) divides Q(X,Y )− ZV(Y )H(X,Y ) for all k ∈ [n]. Since these factors are
relatively prime we have ZH(X) =

∏n−1
k=0(X − ωk) divides Q(X,Y )− ZV(Y )H(X,Y ) which proves

the claim. The other direction is trivial, as existence of H satisfying Q(X,Y )− ZV(Y )H(X,Y ) =
0 mod ZH(X) implies Q vanishes over H× V.

Argument of Knowledge for RGAPP
pp,G,n,m. We now describe an argument of knowledge for the

relation RGAPP
pp,G,n,m. Let uPC and bPC be any univariate and bivariate polynomial commitment

schemes as defined in Section 2.2. The argument of knowledge presented below is an interactive
public-coin protocol (i.e., all of the verifier’s messages are uniformly random strings). It can be
made non-interactive using the standard FS transform. We describe how the interactive protocol
works below. For a succinct description of the protocol, see Figure 2.

Setup and Inputs. The setup phase of the protocol generates the following public parameters
for uPC and bPC: ppuPC ← uPC.Setup(1λ, dx) and ppbPC ← bPC.Setup(1λ, (dx, dy)). The public
input (common to both the prover P and the verifier V) consists of:

� A vector of bivariate commitments C = (C0, . . . , Cr−1) ∈ Cr.

� A vector of parameterization polynomials h = (h0(Y ), . . . , hs−1(Y )).

� The maps κ : [ℓ]→ [r] and θ : [ℓ]→ [s].

The (honest) prover P additionally inputs its witness (w0,w1) where

w0 = (P0(X,Y ), . . . , Pr−1(X,Y )) ∈ (F[X,Y ])r, w1 = (c̃0, . . . , c̃r−1)

such that (x,w) ∈ RGAPP
pp,G,n,m for x = (κ, θ,h,C) and w = (w0,w1). We define the following auxil-

iary polynomials: Kj(X,Y ) = Pκ(j)(X,hθ(j)(Y )) for j ∈ [ℓ] andQ(X,Y ) = G(K0(X,Y ), . . . ,Kℓ−1(X,Y )).

The Interactive Protocol. Given the public parameters (ppuPC, ppbPC) and the inputs as described
above, P and V engage in an interactive protocol that proceeds as follows:

Round-1: In the first round, P computes the polynomial H(X,Y ) according to Lemma 3.2, and
sends a commitment CH to the polynomial H(X,Y ) under the bivariate PCS bPC. To check that
Q(X,Y ) = ZV(Y )H(X,Y ) mod ZH(X), V sends a random challenge y ← F, and asks P to prove
that ZH(X) divides the univariate polynomial Q(X, y)− ZV(y)H(X, y).
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� Setup: Setup generates the following public parameters:

ppuPC ← uPC.Setup(1λ, dx), ppbPC ← bPC.Setup(1λ, (dx, dy)).

� Common Input: C = (C0, . . . , Cr−1) ∈ Cr, h = (h0(Y ), . . . , hs−1(Y )), maps κ : [ℓ]→ [r] and θ : [ℓ]→ [s]

� Prover’s Input: (w0,w1) where w0 = (P0(X,Y ), . . . , Pr−1(X,Y )) ∈ (F[X,Y ])r, and w1 = (c̃0, . . . , c̃r−1),
such that (x,w) ∈ RGAPP

pp,G,n,m for x = (κ, θ,h,C) and w = (w0,w1).

� Additional Notations: Kj(X,Y ) = Pκ(j)(X,hθ(j)(Y )) for j ∈ [ℓ] and

Q(X,Y ) = G(K0(X,Y ), . . . ,Kℓ−1(X,Y ))

� Round 1: P commits to the polynomial H(X,Y ) computed as in Lemma 3.2.

1. P sends commitment CH ← bPC.Com(ppbPC, H).

2. The verifier V sends y ← F.

� Round 2: P commits to an auxiliary univariate polynomial u(X).

1. P computes u(X) = (Q(X, y)− ZV(y)H(X, y))/ZH(X).

2. P sends the univariate commitment Cu ← uPC.Com(ppuPC, u).

3. V sends x← F.

� Round 3: V checks: G(K0(X, y), . . . ,Kℓ−1(X, y)) = ZV(y)hy(X) + u(X)ZH(X).

1. P computes: (h̃, {k̃j}ȷ∈[ℓ], ũ) where h̃ = H(x, y), ũ = u(x), and k̃j = Kj(x, y) for each j ∈ [ℓ].

2. P computes

– πh ← bPC.Prove(ppbPC, H(X,Y ), (x, y)).

– πu ← uPC.Prove(ppuPC, u(X), x).

– πj ← bPC.Prove(ppbPC, Pκ(j)(X,Y ), (x, hθ(j)(y))) for each j ∈ [ℓ].

3. P sends ((h̃, πh), {k̃j , πj}j∈[ℓ], (ũ, πu)).

4. V performs the following verification checks:

– bh = bPC.Verify(ppbPC, CH , (n,m), (x, y), h̃, πh).

– bu = uPC.Verify(ppuPC, Cu, n, x, ũ, πu).

– bj ← bPC.Verify(ppbPC, Cκ(j), (n,m), (x, hθ(j)(y)), k̃j , πj) for each j ∈ [ℓ].

5. V also checks that G(k̃j , . . . , k̃ℓ−1) = ZV(y)h̃+ ũZH(x).

6. If all of the above verification checks pass, V accepts. Otherwise, it rejects.

Figure 2: Argument of Knowledge for the extended relation RGAPP
pp,G,n,m.

Round-2: P computes u(X) = (Q(X, y)−ZV(y)H(X, y))/ZH(X), and sends a commitment Cu to
u(X) under the univariate PCS uPC. Note that P computesQ(X, y) asG(K0(X, y), . . . ,Kℓ−1(X, y))
without explicitly computing the bivariate polynomial Q. At this point, V wishes to check

Q(X, y) = G(K0(X, y), . . . ,Kℓ−1(X, y)) = ZV(y)H(X, y) + u(X)ZH(X)

To check this, V sends a second random challenge x ← F, and asks P to send a set of polynomial
evaluations (h̃, ũ, {k̃j}ȷ∈[ℓ]) where h̃ = H(x, y), ũ = u(x), and for each j ∈ [ℓ], k̃j = Kj(x, y) =
Pκ(j)(x, hθ(j)(y)).

Round-3: P sends the above polynomial evaluations to V, along with the corresponding evaluation
proofs, computed as:

� πh ← bPC.Prove(ppbPC, H(X,Y ), (x, y))
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� πu ← uPC.Prove(ppuPC, u(X), x).

� πj ← bPC.Prove(ppbPC, Pκ(j)(X,Y ), (x, hθ(j)(y))) for each j ∈ [ℓ].

Final Verification Checks: V verifies the evaluation proofs sent by P as:

� bh = bPC.Verify(ppbPC, CH , (n,m), (x, y), h̃, πh).

� bu = uPC.Verify(ppuPC, Cu, n, x, ũ, πu).

� bj = bPC.Verify(ppbPC, Cκ(j), (n,m), (x, hθ(j)(y)), k̃j , πj) for each j ∈ [ℓ].

V also verifies that the following relation holds with respect to the evaluations sent by P: G(k̃0, . . . , k̃ℓ−1) =
ZV(y)h̃+ ũZH(x). If all of these verification checks pass, V accepts. Otherwise, it rejects.

Theorem 3.1. Assuming that uPC and bPC are polynomial commitment schemes as defined in
Section 2.2, the above protocol is a succinct argument of knowledge for the relation RGAPP

pp,G,n,m in
Definition 3.1.

Proof. We argue both knowledge-soundness and succinctness for the protocol in Figure 2 below.

Knowledge-Soundness. Consider a PPT cheating prover A that interacts with an honest verifier
V to produce an accepting transcript of the form

(C = (C0, . . . , Cr−1), (x, y), CH , Cu, (h̃, πh), (ũ, πu), {(p̃j , πj)}j∈[ℓ])

where x, y ← F. Let EuPC and EbPC be the PPT extractors for uPC and bPC, respectively, as per
Definition 2.6. We construct an extractor EGAPP with oracle access to A as follows:

� EGAPP uses its oracle access to A to extract the following:

– (Pj(X,Y ), c̃j)← EAbPC(Cj , (n,m), (x, y), p̃j , πj) for each j ∈ [r].

– (H(X,Y ), c̃H)← EAbPC(CH , (n,m), (x, y), h̃, πh).

– (u(X), c̃u)← EAuPC(Cu, n, x, ũ, πu).

� EGAPP uses the vector of parameterization polynomials h = (h0(Y ), . . . , hs−1(Y )), and the
maps κ : [ℓ]→ [r] and θ : [ℓ]→ [s] to compute for each j ∈ [ℓ]

Kj = Pκ(j)(X,hθ(j)(Y )).

� EGAPP outputs ⊥ if any of the following hold:

– Any of the above extractions fail.

– For some j ∈ [ℓ], p̃j ̸= Kj(x, y) = Pκ(j)(x, hθ(j)(y)), or h̃ ̸= H(x, y), or ũ ̸= u(x).

– For some j ∈ [r], bPC.Open(pp, Pj(X,Y ), (dx, dy), Cj , c̃j) = 0.

� Otherwise, E outputs (w0,w1) where

w0 = (P0(X,Y ), . . . , Pr−1(X,Y )), w1 = (c̃0, . . . , c̃r−1)
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First of all, assuming the knowledge-soundness of uPC and bPC, EGAPP outputs ⊥ with negligible
probability for any PPT adversary A. Indeed, if this is not the case for some PPT adversary A,
then one can use A to construct a PPT adversary A′ that breaks knowledge-soundness of either
uPC or bPC with non-negligible probability.

Now, assuming that EGAPP does not output ⊥, we argue that we must have (C, (w0,w1)) ∈
RGAPP

pp,G,n,m, except with negligible probability. To see this, observe the following:

� Since the above transcript passes all verification checks by an honest V, we must have

G(p̃j , . . . , p̃ℓ−1) = ZV(y)h̃+ ũZH(x)

This follows immediately from the description of the protocol in Figure 2, since the verifier
would reject otherwise.

� Further, since EGAPP did not output ⊥, we must have

p̃j = Kj(x, y) = Pκ(j)(x, hθ(j)(y)) ∀j ∈ [ℓ], h̃ = H(x, y), ũ = u(x).

� Since x ← F and all of the commitments ({Cj}j∈[r], CH , Cu) were produced by A before the
honest V sent across the challenge x, by the Schwartz-Zippel lemma, the following must be
true (except with probability (r + 2)/|F| = negl(λ)):

Q(X, y) = G(p0(X, y), . . . , pℓ−1(X, y)) = ZV(y)H(X, y) + u(X)ZH(X)

which is turn implies
Q(X, y)− ZV(y)H(X, y) = 0 mod ZH(X)

� Finally, since y ← F and the commitments ({Cj}j∈[r], CH) were produced by A before the
honest V sent across the challenge y, by the Schwartz-Zippel lemma, the following must again
be true (except with probability (r + 1)/|F| = negl(λ)):

Q(X,Y )− ZV(Y )H(X,Y ) = 0 mod ZH(X)

This in turn implies that, except with negligible probability, we must have (C, (w0,w1)) ∈
RGAPP

pp,G,n,m by Lemma 3.2.

Succinctness. The succinctness of the protocol in Figure 2 follows immediately from the succinct-
ness of uPC and bPC. Concretely, to argue proof-succinctness of the protocol, it suffices to observe
that:

� |Cj | = poly(λ) and |πj | = poly(λ) for each j ∈ [r].

� |CH | = poly(λ) and |πh| = poly(λ).

� |Cu| = poly(λ) and |πu| = poly(λ).

The first two requirements are satisfied assuming the proof-succinctness of bPC, while the third
requirement is satisfied assuming the proof-succinctness of uPC. Finally, verifier-succinctness of the
protocol follows immediately from the verifier-succinctness of uPC and bPC.

This completes the proof of Theorem 3.1.
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4 Efficient Instantiation of GAPP

We now describe an efficient instantiation of the generic GAPP protocol over the bilinear group BG,
using our new bivariate polynomial commitment scheme bPCLB. Like the earlier works [BMM+21],
our construction also relies on techniques from Inner Product Arguments(IPA) [BCC+16, BBB+18,
BMM+21] and the closely related Compressed Sigma Protocols(CSP) [AC20]. We describe these
techniques as they apply to the bilinear group BG, while a more general exposition may be found
in Appendix A.

Inner Product Arguments, Compressed Sigma Protocols. Let CM denote the commitment
scheme with key space Gn

2 , message space Gn
1 and commitment space as GT , where commitment

to u ∈ Gn
1 under the key v ∈ Gn

2 is given by Cu = CM(v,u) =
∑n−1

i=0 e(ui, vi). For simplicity, we
have considered a non-hiding commitment here, though the modification to a hiding commitment is
straightforward. Similarly, for a ∈ Fn, we call the map La : Gn

1 → G1 defined by u 7→
∑n−1

i=0 aiui as
the linear form on Gn

1 , defined by the vector a. We also conveniently denote the commitment CM
and the linear form as inner products ⟨v , u⟩⊗ and ⟨a , u⟩ respectively. The CSPs and IPAs provide
elegant arguments of knowledge for proving linear forms over committed vectors. In particular, they
provide O(log n) size argument for the following relation over (v,a, CP , Cp;C) given by ⟨v , C⟩⊗ =
CP and ⟨a , C⟩ = Cp.

4.1 Bivariate PCS in Lagrange Basis: bPCLB

Our bivariate polynomial commitment scheme in Lagrange Basis bPCLB is described in Figure 3.
We also describe the key steps here.

Setup. The setup for bPCLB for degree bound (dx, dy) consists of KZG setup (uPC.pk, uPC.ck) =(
(
[
τ i
]
1
)
dy
i=0, [τ ]2

)
for τ ← F, which forms the inner commitment scheme. For outer commitment,

the setup generates v = (
[
βi
]
2
)dxi=0 for β ← F. The setup outputs pk = (uPC.pk,v) and ck =

(uPC.ck, [β]1).
In [BMM+21, GMN22], the authors note that the outer commitment C 7→

∑n
i=0 e(Ci,

[
βi
]
2
)

is not binding, as [β]1 in the verification key can be used to construct a collision; in particular the
vectors ([β]1 , [0]1) and ([0]1 , [1]1) yield the same commitment. To ensure binding, in [BMM+21]
encode only even powers of β in the vector v, while in [GMN22] they also commit the vector
using an independently sampled key in Gn

2 . However, the authors in aPlonk [ABST23] observed
that these mitigation strategies are not required when using KZG as the inner commitment scheme
with an independently sampled setup trapdoor τ . They define precise requirements for the inner
commitment scheme which ensure the overall commitment is binding as inner product binding and
inner product extractable and show that KZG PCS satisfies them. Thus, in this work, we do not
constrain the commitment key v in any way.

Commitment. To commit to polynomial P ∈ F[X,Y ] with degX(P ) < n and degY (P ) < m, the
prover first writes P in Lagrange basis as

P (X,Y ) =
n−1∑
i=0

µH
i (X)pi(Y )

Then, the prover computes inner commitments (Ci, c̃i) = uPC.Com(uPC.pk,m, pi) for i ∈ [n].
Finally, the prover computes the outer commitment (CP , C̃) = CM(v,C) with CP =

∑n−1
i=0 e(Ci, vi)
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Let BG = (F,G1,G2,GT , e, g1, g2, gt), be a bilinear group with efficiently computable non-degenerate bilinear
pairing e : G1 ×G2 → GT . Let uPC denote the KZG univariate PCS with commitments in G1. bPCLB consists
of PPT algorithms (bPCLB.Setup, bPCLB.Com, bPCLB.Eval, bPCLB.Open) defined below.

- bPCLB.Setup(1λ, dx, dy) takes degree bounds dx and dy in variables X and Y respectively as inputs. It outputs
as follows:

1. (uPC.pk, uPC.ck) = KZG.Setup(1λ, dy).

2. v =
( [

βi
]
2

)
i∈[dx]

for β ← F.

3. H = {1, ω, . . . , ωdx−1}, where ω ∈ F is primitive dthx root of unity.

4. pk = (uPC.pk,v), ck = (uPC.ck, [β]1).

5. Output (pk, ck)

- bPCLB.Com(pk, F, (n,m)) takes proving key pk and polynomial F ∈ F[X,Y ] with degX(F ) < n and degY (F ) <
m. The algorithm outputs commitment CF as follows:

1. Compute (Ci, c̃i) ← uPC.Com(uPC.pk, F (ωi
n, Y ),m) for i ∈ [n]. Here ωn ∈ H is a primitive nth root of

unity. We assume that n | dx.
2. Compute CF = CMe(v,C) =

∑n−1
i=0 e(Ci, vi). Here CMe denotes inner product commitment given by

bilinear operator vi ⊗ Ci = e(Ci, vi).

3. Output (CF , c̃) where c̃ = (c̃0, . . . , c̃n−1).

- bPCLB.Eval is an interactive protocol between P(pk, F, c̃, (n,m), (x, y), v) and V(ck, CF , (n,m), (x, y), v).

- Round 1: Prover commits to univariate restriction.

1. P computes f(Y ) = F (x, Y ), commitment Cf = uPC.Com(uPC.pk, f).

2. P computes π ← uPC.Prove(uPC.pk, f, y).

3. P sends the commitment Cf and opening proof π.

- Round 2: Verifier checks consistency of univariate restriction.

1. P and V run a CSP argument of knowledge πcsp to prove knowledge of w = (w0, . . . , wn−1) ∈ Gn
1 for

the relation:
n−1∑
i=0

e(wi, vi) = CF ∧
n−1∑
i=0

µi(x) · wi = Cf (7)

2. V outputs 1 if the πcsp verifier accepts and if

uPC.Verify(uPC.ck, Cf , π, y, v) = 1

Figure 3: Bivariate Polynomial Commitment bPCLB

as the commitment to P . Since, we are considering non-hiding outer commitment, we may assume
that C̃ = [0]1.

Succinct Evaluation Proof. As in [BMM+21], the evaluation proof of a bivariate polynomial
P (X,Y ) at the point (x, y) proceeds in two steps: In the first step, the prover commits to the
univariate polynomial p(Y ) = P (x, Y ). Subsequently, the prover uses the univariate PCS to prove
that p(y) = v, where v is the claimed evaluation. Next, the prover to shows that the commitment
Cp to the polynomial p(Y ) is consistent with the commitment CP to P (X,Y ) by proving knowledge
of the commitments (C0, . . . , Cn−1) ∈ Gn

1 to the univariate components of P satisfying:

n−1∑
i=0

e(Ci, vi) = CP ∧
n−1∑
i=0

µH
i (x) · Ci = Cp (8)
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The above relation can be proved using compressed sigma protocols. We now describe the concrete
CSP for Equation 8, which we denote by πcsp. In the description below, “boxes” highlight those
computations which are delegated by the verifier to obtain succinct verification. Their correctness
is succinctly verified in the final round.

Interactive Protocol πcsp. Let P0 = CP , v0 = Cp,w0 = (C0, . . . , Cn−1), ck0 = v = ([1]2 , [β]2 , . . . ,
[
βn−1

]
2
),

a0 = (µH
0 (x), . . . , µ

H
n−1(x)). The prover and verifier now interact in ℓ rounds where ℓ = log(n). In

round i ∈ [ℓ], the prover (P) and verifier (V) proceed as follows:

- P computes: Prover splits the vectors wi, cki and ai of size n/2i into two vectors of size n/2i+1

each by splitting them in the middle.

(w
(L)
i ,w

(R)
i )← split(wi),

(ck
(L)
i , ck

(R)
i )← split(cki), (a

(L)
i ,a

(R)
i )← split(ai)

- P computes: Ai = ⟨ck(L)i , w
(R)
i ⟩⊗, A

′
i = ⟨ck

(R)
i , w

(L)
i ⟩⊗, ui = ⟨a

(L)
i , w

(R)
i ⟩, u′i = ⟨a

(R)
i , w

(L)
i ⟩. It

sends Ai, A
′
i, ui and u′i to V.

- The verifier sends a challenge ci ← F.

- The prover computes folded vectors wi+1, cki+1 and ai+1, as follows:

wi+1 = w
(L)
i + c−1

i ·w
(R)
i ,

cki+1 = ck
(L)
i + ci · ck(R)

i , ai+1 = a
(L)
i + ci · a(R)

i

- P and V compute: Pi+1 = ci ·A′
i + Pi + c−1

i ·Ai, vi+1 = ciu
′
i + vi + c−1

i ui.

Final Check. After ℓ iterations as above, the prover sends size 1 vectors ckℓ,aℓ and wℓ to the
verifier. The verifier checks e(wℓ, ckℓ) = Pℓ and aℓ ·wℓ = vℓ. Note that we treat size 1 vectors as
scalars here.

Verifier Checks Folding of Inner Product Commitment Key. As noted in prior works [BMM+21,
Lee21], the final folded commitment key ckℓ is a KZG commitment the polynomial g(X) =

∏ℓ−1
i=0(1+

ciX
2ℓ−1−i

) in the group G2 with v as the commitment key. To check this, the verifier requests the
prover for an evaluation proof at a point r ← F. Subsequently, the verifier checks the evaluation
proof using ckℓ as the commitment to g, and g(r) as the evaluation which it computes itself in
O(log n) time.

Verifier Checks Folding of Linear Form. The commitment key for the linear form is

a0 = (µH
0 (x), . . . , µ

H
n−1(x))

where the polynomials {µH
i }

n−1
i=0 are the Lagrange basis polynomials for the subgroup H = ⟨ωn⟩

generated by primitive nth root of unity. To verify folding of such structured keys succinctly, we
introduce a new technique which we call Lagrangian Folding. Looking ahead, the prover shows that
p(x) = aℓ for a polynomial p ∈ F[X], where the verifier “knows” coefficients of p in Lagrange basis.
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Applying the Lagrangian folding technique yields an evaluation proof for bPCLB of size O(log n),
with verification costing O(log2 n) F-operations and O(log n) group operations (see Lemma 4.4).

We now describe the Lagrangian folding technique, where we first consider folding vectors of
polynomials.

Definition 4.1. Let n = 2ℓ for ℓ ≥ 1 and let A = (a0(X), . . . , an−1(X)) be a vector of polynomials
in F[X]. For a scalar c ∈ F, we define Fold(A, c) as a vector A′ of polynomials of length n/2, where
A′[ i ] = A[ i ] + c ·A[n/2 + i ] for i ∈ [n/2]. For A = (a(X)) of size 1, we define Fold(A) = a(X).

Our next definition captures successive folding of keys to obtain the final commitment key.

Definition 4.2. For a vector of polynomials A = (a0(X), . . . , an−1(X)) ∈ F[X]n with n = 2ℓ,
ℓ > 1, and scalar vector c = (c0, . . . , cℓ−1) ∈ Fℓ, we define FullFold(A, c) to be the polynomial
FullFold(Fold(A, c0), (c1, . . . , cℓ−1)). For ℓ = 1, we define FullFold(A, c) = Fold(A, c0) where c =
(c0).

It is readily observed that if (a0(x), . . . , an−1(x)) is the initial commitment key for some poly-
nomials a0(X), . . . , an−1(X), the final commitment key after folding challenges c0, . . . , cℓ−1 for
ℓ = log n is given by p(x), where p(X) = FullFold(A, (c0, . . . , cℓ−1)) withA = (a0(X), . . . , an−1(X)).
The logarithmic verification of prior works is based on the fact that for A = (1, X, . . . ,Xn−1), the

polynomial FullFold(A, (c0, . . . , cℓ−1)) =
∏ℓ−1

i=0(1+ ci ·X2ℓ−1−i
) can be evaluated at any point x ∈ F

in O(log n) time. Our key idea is to fold the vector A = (µH
0 (X), . . . , µH

n−1(X)) in Lagrange basis,
where the polynomial representations are n-dimensional standard unit vectors in Fn. The resulting
(folded) vector p̃ will be the coefficients of the folded polynomial p in Lagrange basis. We then show
that the vector p̃ corresponds to evaluations of a multilinear polynomial fc over the ℓ-dimensional
boolean hypercube Bℓ for ℓ = log n. The polynomial fc is given by Equation (9), which can be
evaluated at any point on the hypercube in logarithmic cost. Now,the evaluation p(x) can be ob-
tained as p̃ ·W · (1, x, . . . , xn−1)T , where W is the inverse-FTT matrix. We cast the last check as
an instance of sum-check protocol of [LFKN92].

We start with Lemma 4.1 below:

Lemma 4.1 (Lagrangian Folding). Let ω be a primitive nth root of unity in F and H = {1, ω, . . . , ωn−1}.
Let A = (µH

0 (X), . . . , µH
n−1(X)) be the vector of Lagrange basis polynomials for the set H. Then

for ℓ = log n, FullFold(A, c0, . . . , cℓ−1) is the unique polynomial p(X) ∈ F<n[X] such that p(ωk) =
fc(k0, . . . , kℓ−1) where k0, . . . , kℓ−1 is the binary decomposition of k and fc(X0, . . . , Xℓ−1) is the
multilinear polynomial given by:

fc(X0, . . . , Xℓ−1) =

ℓ−1∏
i=0

(
1 + (cℓ−1−i − 1) ·Xi

)
(9)

Proof. To a polynomial f ∈ F<n[X], associate an “equivalent” multilinear polynomial f̃ ∈ F[X0, . . . , Xℓ−1],
satisfying f(ωi) = f̃(i) for all i; where as before we identify i ∈ [n], with its binary decomposition in
Bℓ. Thus, a Lagrange basis polynomial µH

i (X) over H is equivalent to the corresponding Lagrange
polynomial eqℓi(X0, . . . , Xℓ−1) over the boolean hypercube Bℓ, which evaluates to 1 precisely at i
viewed as point in Bℓ. It is easy to see that the folding operations preserve the above equivalence
between polynomials in F<n[X] and multilinear polynomials in F[X0, . . . , Xℓ−1]. Consider the fold-
ing of polynomial vector A = (eqℓ0, . . . , eq

ℓ
n−1) using the challenge c0. Let B = (b0, . . . , bn/2−1) be

the resulting vector of polynomials. We see that for all i ∈ [n/2],

bi(X0, . . . , Xℓ−1) = eqℓi(X0, . . . , Xℓ−1) + c0 · eqℓn/2+i(X0, . . . , Xℓ−1)

24



Noticing that for all i ∈ [n/2], the most significant bit of i and n/2+ i are 0 and 1 respectively, we
can write the above equation by substituting the known coefficients of Xℓ−1 as:

bi(X0, . . . , Xℓ−1)

= (1−Xℓ−1)eq
ℓ−1
i (X0, . . . , Xℓ−2) + c0 ·Xℓ−1eq

ℓ−1
i (X0, . . . , Xℓ−2)

=
(
1 +Xℓ−1(c0 − 1)

)
eqℓ−1

i (X0, . . . , Xℓ−2) (10)

Thus, the folded vector B is simply the Lagrange polynomials over the boolean hypercube Bℓ−1,
scaled by the polynomial (1 +Xℓ−1(c0 − 1)). Now, an easy induction shows that the final folded
polynomial is the polynomial fc as in Equation 9. This polynomial is “equivalent” to the univariate
polynomial obtained by folding the vector (µH

0 (X), . . . , µH
n−1(X)) of Lagrange polynomials over H,

which is what we wanted to prove.

4.2 Sumcheck for Lagrangian Folding

Let n, ℓ be as defined previously and ϕ = ω−1. Here we present a sum-check based argument for
checking that given z ∈ F, v ∈ F, c = (c0, . . . , cℓ−1) ∈ Fℓ and the implied multilinear polynomial
fc(X0, . . . , Xℓ−1) =

∏ℓ−1
i=0(1 + (cℓ−1−i − 1) ·Xi), the following holds:

n · v =
(
fc(0), . . . , fc(n− 1)

)
·W ·

(
1, z, . . . , zn−1

)T
(11)

where W is the scaled inverse-FFT matrix defined by W(i, j) = ϕij . We note that to verify the
folding of linear form in a CSP, v will be set to aℓ, the final folded key for linear form. To this
end, we can define 2ℓ-variate multilinear extension W of the matrix W such that W (i, j) = ϕij

The integers i and j are interchangeably viewed as points on the hypercube Bℓ and as elements
of [n]. Similarly, let fz be a multilinear polynomial in ℓ variables given by fz(X) =

∏ℓ−1
k=0

(
1 +

Xk(z
2k − 1)

)
, which satisfies fz(i) = zi for all i ∈ [n]. Then, the identity in (11) can be written as∑

j∈[n] fc(j)
∑

i∈[n]W (i, j)fz(i) = n·v. Further, defining F (X,Y) = fc(Y)·W (X,Y)·fz(X), where
X = (X0, . . . , Xℓ−1) and Y = (Y0, . . . , Yℓ−1), Equation (11) is equivalent to

∑
(x,y)∈B2ℓ F (x,y) =

n · v. The preceding summation can be checked using the sum-check protocol [LFKN92], but it
would incur prover complexity of Õ(n2), which is prohibitive for large values of n. Therefore, we
consider an alternate multivariate extension of the (scaled) inverse-FFT function which incurs a
proving cost of only O(n log n(log log n)2). Our eventual function F will no longer be multilinear,
but multivariate with degree in some variables upto log n.

Reducing Sum-check Cost. Instead of the multilinear extension of the inverse-FFT function
from B2ℓ → F, we will use the following multivariate polynomial, which agrees with the inverse-FFT
function over the hypercube B2ℓ. Define 2ℓ-variate polynomial W̃ as:

W̃ (X,Y) =
ℓ−1∏
k=0

(
1 +Xk

(
ℓ−1∏
t=0

(
1 + Yt(ϕ

2k·2t − 1)
)
− 1

))
(12)

We observe that the above polynomial has degree 1 in variables inX while it has degree ℓ in variables
in Y. Using routine calculation (see Lemma 4.2 below) it can be verified that W̃ (x, y) = ϕxy for
(x, y) ∈ B2ℓ.

Lemma 4.2. For (x0, . . . , xℓ−1) ∈ Bℓ, (y0, . . . , yℓ−1) ∈ Bℓ, we have

W̃ (x0, . . . , xℓ−1, y0, . . . , yℓ−1) = ϕxy

where x =
∑ℓ−1

i=0 2
ixi and y =

∑ℓ−1
i=0 2

iyi.
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Proof. Let (x0, . . . , xℓ−1), (y0, . . . , yℓ−1) be arbitrary but fixed vectors in Bℓ. For yt ∈ {0, 1}, note
that 1 + yt(ϕ

2k·2t − 1) = ϕ2k·(yt2t) = (ϕ2tyt)2
k
. Thus, we have for all k ∈ [ℓ],

ℓ−1∏
t=0

(
1 + yt(ϕ

2k·2t − 1)
)
=

ℓ−1∏
t=0

(
ϕ2tyt

)2k
=
(
ϕ
∑ℓ−1

t=0 2tyt
)2k

= ϕy·2k

where y =
∑ℓ−1

t=0 2
tyt. Now, we can write W̃ (x, y) as:

W̃ (x, y) =
ℓ−1∏
k=0

(
1 + xk

(
ϕy·2k − 1

))
=

ℓ−1∏
k=0

(ϕy)xk2
k

= (ϕy)
∑ℓ−1

k=0 2
kxk = ϕxy

where x =
∑ℓ−1

k=0 2
kxk as required.

We now use the formulation of inverse-FFT function given by Equation (12), for the final
sum-check protocol. Thus, we rewrite the sum-check identity (Equation 11) as:∑

(x,y)∈B2ℓ

F̃ (x,y) = v (13)

where F̃ (X,Y) = fc(Y)·W̃ (X,Y)·fz(X). We recall the outline of sum-check protocol of [LFKN92]
below for the polynomial F̃ where we assume that the order in which the variables are bound to
random challenges is X0, . . . , Xℓ−1 followed by Y0, . . . , Yℓ−1.

- For i ∈ [ℓ], the (i+ 1)th message from the prover is the polynomial hi(Xi) computed as:

hi(Xi) =
∑

F̃ (r0, . . . , ri−1, Xi, xi+1, . . . , xℓ−1, y0, . . . , yℓ−1) (14)

where the summation runs over (xi+1, . . . , xℓ−1, y0, . . . , yℓ−1) ∈ B2ℓ−i−1 and r0, . . . , ri−1 are the
challenges sent by the verifier in the previous rounds.

- After all the variables in X are bound to challenges r = (r0, . . . , rℓ−1), as (ℓ + 1 + i)th message
for i ∈ [ℓ], the prover sends the polynomial h′i(Yi) computed as:

h′i(Yi) =
∑

F̃ (r0, . . . , rℓ−1, r
′
0, . . . , r

′
i−1, Yi, yi+1, . . . , yℓ−1) (15)

where summation is over (yi+1, . . . , yℓ−1) ∈ Bℓ−i−1 and r0 ,. . .,rℓ−1, r
′
0, . . ., r

′
i−1 are the challenges

sent by the verifier in previous rounds.

For notational convenience, we define gk(Y) =
∏ℓ−1

t=0

(
1 + Yt(ϕ

2k·2t − 1)
)
− 1 for all k ∈ [ℓ].

Thus, W̃(X,Y) =
∏ℓ−1

k=0(1 +Xkgk(Y)). We employ techniques from [XZZ+19] and [CBBZ23] to
optimize the sum-check through effective pre-computation and leveraging multiplicative structures
in F̃ .

Lemma 4.3. The polynomials hi, i ∈ [ℓ] can be computed by the prover in O(n log n) F-operations,
while the polynomials h′i, i ∈ [ℓ] incur a total cost of O(n log n(log log n)2) F-operations.

Proof. Consider the computation of hi(Xi) for i ∈ [ℓ]. We write W̃ as:

W̃ (X,Y) =

ℓ−1∏
k=0

(
1 +Xkgk(Y)

)
for gk(Y) =

( ℓ−1∏
t=0

(
1 + Yt(ϕ

2k·2t − 1)
)
− 1
)
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Then, we have
∑

(x,y)∈B2ℓ F̃ (x,y) =
∑

y fc(y)
∑

x W̃ (x,y)fz(x). Now leveraging the multiplicative

structure of W̃ and fz we can re-organize the summation to write hi(Xi) = p0(ri)
∑

y fc(y) ·
p1(ri,y) · p2(i,y) · q(Xi,y), where p0(ri) =

∏i−1
k=0(1 + rk(z

2k − 1)) and

p1(ri,y) =
i−1∏
k=0

(1 + rkgk(y)), q(Xi,y) = (1 +Xigi(y))(1 +Xi(z
2i − 1)),

p2(i,y) =
∑

xi∈Bℓ−i−1

ℓ−1∏
k=i+1

(
(1 + xkgk(y))(1 + xk(z

2k − 1))
)

In the preceding expressions we use ri and xi to denote tuples (r0, . . . , ri−1) and (xi+1, . . . , xℓ−1)
respectively. Next, in the expression for p2(ri,y) we replace each quadratic factor of the form

(1 + xkgk(y))(1 + xk(z
2k − 1)) with the linear term 1 + xk(z

2k + z2
k
gk(y)− 1) using the fact that

x2k = xk for all k. Now, exchanging the sum and the product we get:

p2(i,y) =
ℓ−1∏

k=i+1

 ∑
xk∈{0,1}

(
1 + xk(z

2k + z2
k
gk(y)− 1)

)
=

ℓ−1∏
k=i+1

(1 + z2
k
+ z2

k
gk(y)) (16)

It is clear that hi(α) can be computed for any α ∈ F in O(n) field operations, given pre-computed
tables T (y) = fc(y), Ai(y)=p1(ri,y) and Bi(y) = p2(i,y) for y ∈ Bℓ. Using expressions for
p1(ri,y) and p2(i,y) (Equation 16), we also see that tables Ai+1( · ) and Bi+1( · ) can be computed
from tables Ai and Bi respectively in O(n) F-operations, given access to evaluations gi(y) for
i ∈ [ℓ],y ∈ Bℓ. To interpolate hi(Xi), one computes hi(α) for α ∈ {0, 1, 2}. The computation of
hi(Xi) for all i ∈ [ℓ] takes O(n log n) F-operations by initially computing T ( ·, ), gi( · ), i ∈ [ℓ] over
the boolean hypercube Bℓ in O(n log n) time (O(n) for each of the log n tables) and then updating
in O(n) cost for each of the log n rounds.

Now, consider computing the polynomial h′i(Yi), where the variables in X have been bound to
random values r0, . . . , rℓ−1 and variables Y0, . . . , Yi−1 are bound to r′ = (r′0, . . . , r

′
i−1). For brevity,

let r, r′i and yi denote tuples (r0, . . . , rℓ−1), (r
′
0, . . . , r

′
i−1) and (yi+1, . . . , yℓ−1) respectively. In this

case, we write

h′i(Yi) = fz(r)
∑

yi∈Bℓ−i−1

fc(r
′
i, Yi,yi) ·

ℓ−1∏
k=0

(
1 + rkgk(r

′
i, Yi,yi)

)
(17)

To compute the polynomial h′i(Yi), the prover maintains pre-computed tables Ti(y) = fc(r
′
i,y),

Aik(y) = gk(r
′
i,y), k ∈ [ℓ] where y ∈ Bℓ−i. Initializing the tables for i = 0 costs O(n log n)

operations, while updates from iteration i to iteration (i+1) cost O(n log n/2i) operations using the
update rule below (illustrated for the table Ti, with other multi-linear functions updated similarly).

Ti+1(y) = fc(r
′
i+1,y) = fc(r

′
i, r

′
i,y)

= (1− r′i)fc(r
′
i, 0,y) + r′ifc(r

′
i, 1,y)

= (1− r′i)Ti(0,y) + r′iTi(1,y) (18)

Thus the total cost of initializing and updating the tables costs O(n log n) across log n iterations.
It remains to determine the cost of computing h′i(Yi) given access to the pre-computed tables. We
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follow the approach in [CBBZ23]. For a fixed yi ∈ Bℓ−i, the linear polynomial fc(r
′
i, Yi,yi) can be

inferred from its evaluations at 0 and 1, which are Ti(0,yi) and Ti(1,yi) respectively. Similarly,
the linear polynomials 1 + rkgk(r

′
i, Yi,yi) for k ∈ [ℓ] can be computed by querying the tables

Aik, k ∈ [ℓ]. Finally, the ℓ + 1 linear polynomials can be multiplied recursively using FFT in
O(ℓ log2 ℓ) F-operations2. The polynomial h′i(Yi) is obtained by adding such polynomials for all
yi ∈ Bℓ−i which costs O(nℓ log2 ℓ/2i) for iteration i. Summing over all iterations, and substituting
ℓ = log n, the prover incurs O(n log n(log log n)2) F-operations.

Reducing Communication in Sum-Check to O(log n). The preceding sum-check leads to ar-
gument size of O(log2 n), as the latter log n rounds involve message polynomials of degree log n each.
However, we can reduce argument size to O(log n) by having the prover send a KZG commitment to
the log n degree polynomial. In the final round, the verifier can request for evaluations of the com-
mitted polynomials at the verification points. This modification results in argument size of O(log n)
and verification complexity of O(log2 n) F-operations (to evaluate F̃ at a (r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1))

and O(log n) group operations. One could use data parallel SNARK such as Virgo [ZXZS20] to
model inverse-FFT as a GKR-friendly circuit with depth O(log n). However, it leads to argument
size of O(log2 n).

Parameters for bPCLB. We now state the parameters attained by the bivariate polynomial
commitment scheme bPCLB described in Definition 3, and those by the argument for relation
RGAPP

pp,G,n,m in Figure 2 by using bPCLB as the bivariate commitment scheme in conjunction with the
KZG univariate commitment scheme.

Lemma 4.4. Assuming that the q-DLOG assumption holds for the bilinear group generator BG, the
scheme bPCLB = (Setup,Com,Open,Prove,Verify) obtained by applying Fiat-Shamir heuristic to the
interactive procedure bPCLB.Eval in Figure 3 is a polynomial commitment scheme for polynomials
in F[X,Y ] in the algebraic group model (AGM) and achieves following efficiency parameters:

|πbPCLB| = 2 log nGT + 4 log nG1 + 6 log nF
tbPCLBC = mnM+ nP+mnF
tbPCLBP = O(m+ n)M+O(n)P+O(n log n(log log n)2)F
tbPCLBV = 2 log nGT + 4 log nG1 +O(1)P+O(log2 n)F

In the above, n and m denote the degree bounds on variables X and Y respectively, while |π|, tC,
tP, tV denote the proof size, commit time, prover time and verifier time respectively. We exclude
the time to evaluate F at the evaluation point in the prover time tP.

Proof. Assume that for all nodes p at height d labelled with the statement Cp ,the extractor

outputs vector (wp
0(Y ), . . . , wp

h−1(Y )) such that
∑h−1

i=0 e([wp
i (τ)]1 , ck

p[ i ]) = Cp, where we have

h = 2d and ckp is the folded key ck corresponding to challenges determined by node p. It can
be seen that for a node q at height d + 1, the vector (wq

0(Y ), . . . , wq
h′−1(Y )), with h′ = 2d+1

such that
∑h′−1

i=0 e([wq
i (τ)]1 , ck

q[ i ]) = Cq can be obtained by considering child nodes of q for three
distinct challenges cℓ−1−d. This follows from the usual extraction in CSPs, noticing that underlying
representation can also be linearly combined. All that we need to do is to argue the case d = 0,
for which we invoke the AGM assumption as follows. Consider a node in the tree at depth ℓ
(and thus height 0), after all CSP challenges have been specified. Let the node correspond to the
statement (Cℓ,wℓ, ckℓ) where Cℓ is the folded commitment computed by the verifier, wℓ and ckℓ are

2In practice, for small values of ℓ, Karatsuba’s multiplication gives better concrete efficiency
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the folded witness and commitment key output by A. Since A is algebraic, it outputs polynomials
w(Y ), ḡ(X) of degree at most dy and dx respectively such that wℓ = [w(τ)]1, ckℓ = [ḡ(β)]2. Let z be
the subsequent evaluation challenge at depth ℓ+1, with π as the KZG evaluation proof output by A.
Again, A outputs q(X) such that π = [q(β)]2. Let g(X) be the polynomial

∏ℓ−1
i=0(1+ciX

2ℓ−1−i
). For

an accepting transcript, we must have: e(wℓ, ckℓ) = Cℓ, e([β − z]1 , π) = e([1]1 , ckℓ− [g(z)]2). By q-
DLOG assumption, the second pairing equality implies q(X)(X−z) = ḡ(X)−g(z), otherwise β can
be obtained by factoring the non-zero difference polynomial. Then, with overwhelming probability,
ḡ(X) = g(X), as z was sampled independent of ḡ and g. Now, from first pairing equality we have
e([w(τ)]1 , [g(β)]2) = Cℓ. The extractor outputs w(Y ), thus proving the base case of induction.

We state the following theorem for the protocol in Figure 2, instantiated with the KZG as the
univariate and bPCLBas the bivariate polynomial commitment schemes respectively in the bilinear
group.

Theorem 4.1. Assuming q-DLOG assumption holds for the bilinear group generator BG, there
exists an argument of knowledge for the relation RGAPP

pp,G,n,m in the algebraic group model. Moreover,

the setup pp ← Setup(λ, dx, dy) is universal for all relations RGAPP
pp,G,n,m satisfying n ≤ dx, m ·

deg(G) ≤ dy. The protocol satisfies the following efficiency parameters:

|πGAPP| = (ℓ+ 2)F+ |πbPCLB(n,m)|
tGAPPP = n log(deg(G)) · FFT(mdeg(G))F+ nm deg(G)M+ tbPCLBP (n,m)
tGAPPV = ℓGT + ||G||F+ tbPCLBV (n,m)

In the above ||G|| denotes the size of arithmetic circuit computing G, ℓ denotes number of variables
in G, while π, tP and tV denote proof size, prover complexity and verifier complexity respectively.

Proof. The proof follows from the proof of Theorem 3.1, the security of our bPCLB commitment
scheme proved in Lemma 4.4, and the security of the KZG commitment scheme.

5 Applications

In this section, we present certain illustrative applications of the argument for the relationRGAPP
pp,G,n,m,

and the bivariate polynomial commitment scheme bPCLB.

5.1 Proof Aggregation

Proof aggregation is a natural application of GAPP framework introduced in this paper. For
simplicity, we describe proof aggregation for n identical PLONK circuits. This is a common setting
in rollup applications, with each circuit verifying a batch of transactions. We also benchmark our
scheme against the naive approach of generating n separate proofs. The circuit for a relation in
PLONK PIOP is described by the vector(

(qM (Y ), qL(Y ), qR(Y ), qO(Y ), qC(Y ), Sa(Y ), Sb(Y ), Sc(Y ))
)
∈ (F[Y ])8

where the first five polynomials represent the gate constraints, while the latter three represent the
“wiring” constraints. The commitments to above polynomials are known to the verifier. As part
of the proof, the prover commits to “witness” polynomials a(Y ), b(Y ) and c(Y ) (we ignore public
inputs for simplicity, the parts of witness may be opened orthogonal to the aggregation). Following
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the verifier’s challenges after prover commits to the witness, a PLONK proof essentially requires
prover to show that the polynomial q(Y ) as defined by

q(Y ) ≡
(
qM (Y )a(Y )b(Y ) + qL(Y )a(Y ) + qR(Y )b(Y ) + qO(Y )c(Y ) + qC(Y )

)
+ α

(
(a(Y ) + βY + γ)(b(Y ) + βk1Y + γ)(c(Y ) + βk2Y + γ)z(Y )

)
− α

(
(a(Y ) + βSa(Y ) + γ)(b(Y ) + βSb(Y ) + γ)(c(Y ) + βSc(Y ) + γ)z(νY ))

+ α2µH
0 (Y )(z(Y )− 1) (19)

vanishes over the domain V consisting ofm roots of unity {1, ν, . . . , νm−1}. Herem denotes the num-
ber of gates in the circuit, while α, β and γ denote uniform challenges from the verifier. The poly-
nomials a(Y ), b(Y ), c(Y ) and z(Y ) are supplied by the prover. Let (ai(Y ), bi(Y ), ci(Y ), zi(Y ))i∈[n]
be the prover’s polynomials corresponding to each of the n proofs. Define multivariate polynomial
G as below:

G(X0, X1, . . . , X12, X13) :=

X0X8X9 +X1X8 +X2X9 +X3X10 +X4

+ α
(
(X8 + βX13 + γ) · (X9 + βk1X13 + γ) · (X10 + βk2X13 + γ) ·X11

)
− α

(
(X8 + βX5 + γ) · (X9 + βX6 + γ) · (X10 + βX7 + γ) ·X12

)
+ α2µV

0 · (X12 − 1) (20)

The aggregate proof requires the prover to show that for all i ∈ [n], the polynomial

G(qM , qL, qR, qO, qC , Sa, Sb, Sc, ai, bi, ci, zi, z̄i, Y )

vanishes over V for z̄i(Y ) = zi(νY ). Now, by Lemma 3.1, above is equivalent to proving that the
polynomial

Q(X,Y ) = G(qM , qL, qR, qO, qC , Sa, Sb, Sc, A,B,C, Z, Z, Y ) (21)

where Z(X,Y ) = Z(X, νY ) vanishes over the domain H × V. The aggregate proof using GAPP
framework is described in Figure 4, where we omit details of PLONK argument which can be
found in [GWC19]. Broadly, in the first two messages, the prover commits to packed polynomials
A(X,Y ), B(X,Y ), C(X,Y ), Z(X,Y ), corresponding to univariate polynomials ai(Y ), bi(Y ), ci(Y ),
zi(Y ) for i ∈ [n]. We note that for polynomials which are constant across n instances (circuit
polynomials, Y , etc), their packed polynomial is identical to the univariate polynomial. The prover
and verifier now invoke the protocol in Figure 2 to prove that (κ, θ,h, χ) is a valid statement in
RGAPP

pp,G,n,m where
χ = (χM , χL, χR, χO, χC , χa, χb, χc, χA, χB, χC , χZ ,⊥)

is a vector of commitments to polynomials, with the first eight corresponding to circuit polynomials,
and last four to the prover polynomials. We set the final commitment to polynomial Y as ⊥, as
it can be succinctly evaluated. Next, we set h = (Y, νY ) and set maps κ and θ to ensure that
variable X11 is bound to Z(X,Y ) while variable X12 is bound to Z(X, νY ). Above protocol is
trivially extended to the case, when different circuit polynomials are used in different instances.
Let C = (Ci)n−1

i=0 as a family of circuits, each of which is represented using at most m PLONK
constraints. We define the langugage Ragg

pp,C and say that w = (w0, . . . ,wn−1) ∈ Ragg
pp,C if Ci(wi) = 1

for all i ∈ [n].

Lemma 5.1. Assuming that q-DLOG holds for bilinear group generator BG there exists an argu-
ment of knowledge for the langugage Ragg

pp,C in the algerbraic group model. For the case of identical
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� Setup: Setup generates the following public parameters:

ppuPC ← uPC.Setup(1λ, dx), ppbPC ← bPC.Setup(1λ, (dx, dy)).

� Common Input: Commitments [qM (Y )]1, [qL(Y )]1, [qR(Y )]1, [qO(Y )]1, [qC(Y )]1, [Sa(Y )]1, [Sb(Y )]1,
[Sc(Y )]1 to the circuit polynomials.

� Prover’s Input: Witness polynomials (ai(Y ), bi(Y ), ci(Y )) for i ∈ [n].

� Round 1: The prover P commits to aggregated witness.

1. P computes packed polynomials A(X,Y ), B(X,Y ) and C(X,Y ) as:

A =
∑
i∈[n]

µi(X)ai(Y ), B =
∑
i∈[n]

µi(X)bi(Y ), C =
∑
i∈[n]

µi(X)ci(Y )

2. P computes commitment [A ]bv = bPCLB.Com(ppbPC, A) and similarly commitments [B ]bv, [C ]bv for
polynomials B, C respectively.

3. P sends [A ]bv, [B ]bv and [C ]bv.

4. V sends β, γ ← F.

� Round 2: Prover commits to auxiliary aggregated witness.

1. P computes the polynomials zi(Y ), i ∈ [n] as in [GWC19].

2. P computes packed polynomial Z(X,Y ) =
∑

i∈[n] µi(X)zi(Y ).

3. P computes commitment [Z ]bv = bPCLB.Com(ppbPC, Z).

4. P sends [Z ]bv

5. V sends α← F.

� Round 3: Prover and Verifier execute the GAPP argument.

1. P and V set G(qM , qL, qR, qO, qC , Sa, Sb, Sc, a, b, c, z, z̄) as in Equation (20).

2. P and V define statement x = (κ, θ,h, χ) as in Section 5.1.

3. P and V execute argument of knowledge (Figure 2) for x ∈ RGAPP
pp,G,n,m.

4. V accepts if the above argument accepts.

Figure 4: Aggregated PLONK using GAPP framework

circuits, the protocol in Figure 4 is an argument of knowledge for the sub-language of Ragg
pp,C con-

sisting of identical circuits, with following efficiency parameters:

|πagg| = |πGAPP(n,m)|
taggP = tGAPPP (n,m)
taggV = tGAPPV (n,m) + 12GT + 6F

Comparison with baseline. Note that computing the aggregated polynomial A,B,C,Z incur
effort almost equivalent to computing and committing to the same polynomials when generating
n separate proofs. Computing the univariate components of the H polynomial involves computing
the form G over the univariate polynomials for each i ∈ [n], and committing to them for computing
commitment to H. Again, this effort is identical to computing and committing to the individ-
ual quotient polynomials for the n proof instances. However, when computing separate proofs,
the prover additionally needs to compute opening proofs for the quotient polynomial, which in-
curs additional O(m) cryptographic operations per proof. Existing aggregation schemes such as
aPlonk [ABST23] incur further costs of evaluating all the polynomials and committing to their
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evaluations. By contrast, GAPP protocol only requires opening proofs for the committed bivariate
polynomials at a random point (x, y) which incurs only O(m + n) additional cryptographic op-
erations, instead of O(mn). Thus, for large enough n, proof aggregation achived by our scheme
is almost 25-30% faster than naive proof generation. Moreover, we see that our scheme supports
highly parallel implementation as the univariate components of the bivariate polynomials can be
computed and committed in parallel. More experimental results appear in Figure 1.

5.2 Lookup Protocol for Tuples

Lookup (or subvector) arguments are an important building block in modern zkSNARKs. For
integers k,m, n ∈ Z, we say that the vector of tuples A = (a0, . . . ,an−1) ∈ (Fm)n is a subvector
of the vector T = (t0, . . . , tk−1) ∈ (Fm)k, if for all i ∈ [n], there exists j ∈ [k] such that ai = tj .
We denote such vectors by A ⪯ T. Typically, we wish to check the predicate A ⪯ T given
commitments to vectors A and T under a suitable commitment scheme.

Tuple Lookup Using bPCLB. Let K,H and V denote the subgroups generated by primitive kth,
nth and mth roots of unity in F respectively. Let {µK

i }i∈[k] and {µH
i }i∈[n] denote the Lagrange basis

polynomials for the subgroups K and H respectively. To commit to a vector T = (t0, . . . , tk−1),
we canonically associate m-tuple ti with the polynomial ti(Y ) = EncV(ti) ∈ F<m[Y ]. Similarly, the
components of the vector A = (a1, . . . ,an−1) are associated with polynomials ai(Y ) = EncH(ai) ∈
F<m[Y ]. The commitment to T and A. We encode T and A as interpolating bivariate polynomials
over domains K× V and H× V respectively as below:

EncK×V(T) = T (X,Y ) =
n−1∑
i=0

µK
i (X)ti(Y ),

EncH×V(A) = A(X,Y ) =
k−1∑
i=0

µH
i (X)ai(Y )

We now define the relations we want to check. The first is a lookup relation that proves that one
committed vector is a subvector of the other committed vector without identifying the positions
where the former occurs in the latter. The second variant also commits to positions where the first
vector occurs in the second vector.

Definition 5.1 (Lookup). For pp← bPCLB.Setup(1λ, dx, dy), and integers k,m, n with max(k, n) <

dx, m < dy, we define the relation Rlookup
pp,k,m,n consisting of tuples (x,w) where x = (CA, CT ) ∈ G2

T

and w = (A,T, c̃a, c̃t) such that

� A ⪯ T,

� bPCLB.Open(pp, CA, (n, dy), A, c̃a) = 1 and

� bPCLB.Open(pp, CT , (k, dy), T, c̃t) = 1.

Here A(X,Y ) = EncH×V(A) and T (X,Y ) = EncK×V(T).

Definition 5.2 (Indexed Lookup). For ppbPC ← bPCLB.Setup(1λ, dx, dy), ppuPC ← KZG.Setup(1λ, dx)

and integers k,m, n with max(k, n) < dx, m < dy, we define the relation Rclookup
pp,k,m,n consisting of

tuples (x,w) where x = (CA, CT , Cu) ∈ G2
T ×G1 and w = (A,T,u, c̃a, c̃t, c̃u) such that

� A[ i ] = T[u[i] ] for all i ∈ [n],
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� bPCLB.Open(ppbPC, CA, (n, dy), A, c̃a) = 1,

� bPCLB.Open(ppbPC, CT , (k, dy), T, c̃t) = 1 and

� uPC.Open(ppuPC, Cu, n, u, c̃u) = 1.

Here A(X,Y ) = EncH×V(A), T (X,Y ) = EncK×V(T) and u(X) = EncH(u).

We present an approach based on bPCLB, where the prover incurs only O(m+n) cryptographic
operations, as opposed to O(mn) in [DXNT23, CGG+24]. Our verification is logarithmic, instead
of constant in the prior works. We present our approach for the indexed lookup variant (the case
of un-indexed lookup follows similarly).

Our Approach. Let A(X,Y ), T (X,Y ) and u(X) be polynomials encoding the vectors A, T and
u over respective domains. For γ ∈ F, let Aγ = (a0(γ), . . . , an−1(γ)) and Tγ = (t0(γ), . . . , tk−1(γ))
be vectors obtained by evaluating the constituent polynomials at Y = γ. Now, we note that by
Schwartz-Zippel Lemma, for a random γ ← F, except with negligible probability (kn/|F|) it holds
that:

Aγ [ i ] = Tγ [u[ i ] ]∀i ∈ [n]⇐⇒ A[ i ] = T[u[ i ] ]∀i ∈ [n]

Building on the above observation, and noticing that polynomials A(X, γ) and T (X, γ) encode
the vectors Aγ and Tγ over domains H and K respectively, the verifier sends γ ← F to the
prover, who responds with KZG commitments Ca and Ct to the polynomials Aγ(X) = A(X, γ) and
Tγ(X) = T (X, γ). This reduces the case for general m to that for m = 1. The verifier can now check
that (Ca, Ct, Cu) is a valid statement in RppuPC,k,n,1 using prior work such as [DGP+24][Lemma 3].

Additionally, the verifier needs to to check consistency of commitments Ct and Ca with poly-
nomials T and A respectively. To do so, the verifier sends another challenge x ← F and executes
an argument to check: (i) A(x) = A(x, γ), (ii) T (x) = T (x, γ). Both the conditions are checked by
requesting openings to the univariate and bivariate polynomials at x and (x, γ) respectively. The
complete protocol appears in Figure 5.

Lemma 5.2. Assuming that q-DLOG is hard for the bilienar group generator BG and (Psv,Vsv) is
an argument of knowledge for the relation Rclookup

pp,k,m,n for m = 1 under the q-DLOG and algebraic

group model (AGM), the protocol in Figure 5 is an argument of knowledge for the relation Rclookup
pp,k,m,n

in the algebraic group model. It satisfies following efficiency parameters:

|πlookup(k,m, n)| = |πsv|+ |πbPCLB(t,m)|
tlookupP = tbPCLBP (t,m) + tsvP (n, k) +O(t)M+O(mt)F
tlookupV = tbPCLBV (t,m) + tsvV (n, k)

where t = max(n, k), where the superscript (sv) indicates the complexities of the subvector argument.

5.3 “A la-carte” Proof Systems

In this section, we present an approach based on GAPP framework, using only black-box cryptog-
raphy that further improves over [DXNT23, CGG+24] in terms of efficiency, while being agnostic
to the choice of polynomial IOP.
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� Setup: Setup generates the following public parameters:

ppuPC ← KZG.Setup(1λ, dx), ppbPC ← bPCLB.Setup(1λ, (dx, dy)).

� Common Input: Commitments (CA, CT , Cu) ∈ G2
T ×G1 and integers k ≤ dx, n ≤ dx and m ≤ dy.

� Prover’s Input: Vectors A = (a0, . . . ,an−1) ∈ (Fm)n, T = (t0, . . . , tk−1) ∈ (Fm)k, u ∈ Fn, opening hints
c̃a, c̃t and c̃u. Polynomials A(X,Y ), T (X,Y ) and u(X) encoding vectors A, T and u respectively.

� Round 1: Prover commits to univariate polynomials.

1. V sends γ ← F.
2. P computes vectors Aγ = (ai(γ))i∈[n], Tγ = (ti(γ))i∈[k] and polynomials Aγ(X) and Tγ(X) interpolat-

ing Aγ and Tγ on H and K respectively.

3. P sends commitment Ca and Ct to polynomials Aγ(X) = A(X, γ) and Tγ(X) = T (X, γ) respectively.

4. V sends x← F.

� Round 2: Prover sends evaluations.

1. P sends evaluations ã = Aγ(x), t̃ = Tγ(x).

2. V sends r ← F.

� Round 3: Prover proves evaluations.

1. P computes proofs

π ← KZG.Prove(ppuPC, Tγ(X) + rAγ(X), x),

π′ ← bPCLB.Prove(ppbPC, T (X,Y ) + rA(X,Y ), (x, γ))

2. P sends π and π′ to V.

� Round 4: V checks evaluations and subvector argument.

1. V computes:

b← KZG.Verify(ppuPC, Ct + r · Ca, k + n, x, t̃+ rã, π)

b′ ← bPCLB.Verify(ppbPC, CT + r · CA, (k + n,m), (x, γ), t̃+ rã, π′)

2. P and V execute subvector argument

b′′ ← ⟨Psv(Ca, Ct, Cu; (Aγ ,Tγ ,u, ∗)),Vsv(Ca, Ct, Cu)⟩

to check Aγ ⪯ Tγ .

3. V accepts if b = b′ = b′′ = 1, otherwise it rejects.

Figure 5: Argument of Knowledge for the relation Rlookup
pp,k,m,n.

Model for Non-Uniform Computation. Our description of non-uniform computation is closely
related to that in non-uniform IVC schemes such as [KS22] and prior work [CGG+24]. We represent
our computations as Plonk constraints, though our scheme can be instantiated with other inter-
mediate representations. Let F = {F0, . . . , Fk−1} be a family of k efficiently computable functions,
which can be expressed using at most m plonk constraints. We assume that for all i ∈ [k], the
circuit Fi takes s inputs given by ui ∈ Fs, and outputs vi ∈ Fs possibly taking a non-deterministic
input wi of arbitrary size. The language LnucF ,σ,n,m expressing n-step execution of the non-uniform
computation F with wiring permutation σ : [(2s+ 1)n]→ [(2s+ 1)n] consists of statements of the
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form (wio,wint) where

wio =
(
τ0||u0||v0|| · · · ||τn−1||un−1||vn−1

)
, wint =

(
w0|| · · · ||wn−1)

such that vi = Fτi(ui,wi) for all i ∈ [n], and wio[ j ] = wio[σ(j) ] for all j ∈ [(2s + 1)n]. We call
wires (τ0, . . . , τn−1) as the activation wires, which activate a particular function from the family
at each step. The wires in vector wio are assumed to be interface wires, which may be arbitrarily
shorted using the permutation σ, whereas the wires in wint are exclusive to a specific step of
computation. In typical applications, we expect activation wire τi+1 to be computed as part of the
output vi (which is shorted to τi+1 using σ). In the non-uniform IVC scheme [KS22], the activation
τi+1 is specified as τi+1 = φ(τi||ui||wi) for some efficiently computable function φ. In our setting,
we assume φ is implemented as part of each circuit Fi. We additionally allow modeling “global”
structure among interface wires using the permutation σ.

PLONK Based Instantiation. We now instantiate our scheme for proving n-step non-uniform
computation as described above, using the PLONK PIOP. For all j ∈ [k], let Fj be given by following
vector of PLONK circuit polynomials:(

qjM (Y ), qjL(Y ), qjR(Y ), qjO(Y ), qjC(Y ), Sj
a(Y ), Sj

b (Y ), Sj
c (Y )

)
∈ (F[Y ])8

Let TM , TL, TR, TO, TC , Ta, Tb and Tc denote the tables (vectors) of polynomials
(
qjM (Y )

)
j∈[k],

. . .,
(
Sj
c (Y )

)
j∈[k] respectively. Let TM , . . . , Tc denote the (trusted) commitments to the tables TM ,

. . ., Ta obtained as bPCLB commitments of packed polynomials below (see Section 5.2)

TM (X,Y ) =
k−1∑
j=0

µK(X)qjM (Y ), . . . , Tc(X,Y ) =
k−1∑
j=0

µK(X)Sj
c (Y )

As before, let ai(Y ), bi(Y ) and ci(Y ) be polynomials that interpolate the witness (left, right and
output wires) for each of the m constraints in the circuit Fτi . To make the scheme concrete, we
assume that m > 2s + 1 ans all the interface wires for each step, namely τi,ui and vi appear
as the first 2s + 1 left wires. Thus, we have for all i ∈ [q]: ai(ν

0) = τi, ai(ν
j+1) = ui[j] and

ai(ν
s+1+j) = vi[j] for j ∈ [s]. We now present the argument of knowledge for the language LnucF ,σ,n,m.

In the sketch below, we assume σ to have a simple structure which ensures wire τi+1,vi[ 0 ] have
the same value for i ∈ [n− 1], i.e, the activation wire in a step is computed as the first output wire
of the previous step. The case of general σ is presented in Section 5.4.

Setup and Inputs. The setup phase of the protocol generates the public parameters for polynomial
commitment schemes uPC and bPC:

ppuPC ← KZG.Setup(1λ, dx), ppbPC ← bPCLB.Setup(1λ, (dx, dy))

It also generates commitments CF = (TM , TL, . . . , Tc) to the functions in the family F as defined
earlier. The prover’s input consists of (wio,wint) ∈ LnucF ,σ,n,m.

Interactive Protocol. The interactive protocol between the prover (P) and honest verifier (V)
proceeds as:
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� Prover Commits to Witness and Circuit Polynomials: The prover computes commitments [A ]bv, [B ]bv
and [C ]bv to packed witness polynomials A(X,Y ), B(X,Y ) and C(X,Y ) as described previously.
The prover also computes packed polynomials corresponding to circuit polynomials activated at
each step. Specifically, the prover computes polynomials

qM (X,Y ) =
n−1∑
i=0

µH
i (X)qτiM (Y ), qL(X,Y ) =

n−1∑
i=0

µH
i (X)qτiL (Y ),

qR(X,Y ) =
n−1∑
i=0

µH
i (X)qτiR (Y ), qO(X,Y ) =

n−1∑
i=0

µH
i (X)qτiO (Y ),

qC(X,Y ) =

n−1∑
i=0

µH
i (X)qτiC (Y ), Sa(X,Y ) =

n−1∑
i=0

µH
i (X)Sτi

a (Y ),

Sb(X,Y ) =

n−1∑
i=0

µH
i (X)Sτi

b (Y ), Sc(X,Y ) =

n−1∑
i=0

µH
i (X)Sτi

c (Y )

� The prover sends commitments [A ]bv, [B ]bv, [C ]bv, [ qM ]bv, . . . , [Sc ]bv.

� Verifier checks correctness of circuit polynomials: The verifier checks that the correct polyno-
mials corresponding to vector (τ0, . . . , τn−1) have been looked up from respective tables. The
prover starts by sending commitment Cτ to a polynomial τ(X) which interpolates the vector
(τ0, . . . , τn−1) over H.

� The verifier sends a challenge χ← F to batch the lookup proofs.

� Verifier computes:

Ca = (1, χ, . . . , χ7) · ([ qM ]bv, [ qL ]bv, . . . , [Sc ]bv)

Ct = (1, χ, . . . , χ7) · (TM , TL, TR, TO, TC , Ta, Tb, Tc)

� Prover and Verifier execute an argument of knowledge to show (Ca, Ct, Cτ ) ∈ Rclookup
pp,k,m,n. Moreover

to establish the correctness of the polynomial τ(X), the prover and verifer execute an argument
to show the following:

µV
0 (Y )(A(X,Y )− τ(X)) = 0 over H× V

Note that the above implies that τ(ωi) = A(ωi, ν0) = ai(ν
0) = τi, and thus τ(X) correctly

interpolates the purported vector (τ0, . . . , τn−1) committed in [A ]bv.

� Verifier checks the interface wiring: Checking that τi+1 = vi[ 0 ] for all i ∈ [n − 1] is equivalent
to ensuring A(ωi+1, ν0) = A(ωi, νs+1) for all i ∈ [n− 2]. To this end, the prover and the verifier
define the polynomial

Q′(X,Y ) = (X − ωn−1)µV
0 (Y )(A(ωX, Y )−A(X, νs+1Y ))

and run an argument of knowledge to show that Q′(X,Y ) = 0 over H× V.

� Prover and Verifier aggregate proofs: The protocol now proceeds similar to the one for aggregation
of PLONK proofs in Section 5.1. Verifier starts by sending challenges β, γ ← F.
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� Prover computes polynomial zi(Y ) for each i ∈ [n] according to the PLONK protocol treating(
qτiM (Y ), qτiL (Y ), qτiR (Y ), qτiO (Y ), qτiC (Y ), Sτi

a (Y ), Sτi
b (Y ), Sτi

c (Y )
)

as the circuit polynomials for the step i.

� Prover sends commitment [Z ]bv to the aggregated polynomial Z(X,Y ) =
∑n−1

i=0 µH
i (X)zi(Y ).

� Verifier sends α← F.

� Prover and Verifier execute an argument of knowledge to check that (κ, θ,h,C) is a valid state-
ment in RGAPP

pp,G,n,m by setting C =
(
[ qM ]bv, [ qL ]bv, [ qR ]bv, [ qO ]bv, [ qC ]bv, [Sa ]bv, [Sb ]bv,

[Sc ]bv, [A ]bv, [B ]bv, [C ]bv, [Z ]bv
)
, G as the multivariate polynomial in Equation (20), h, κ

and θ as in the argument in Section 5.1.

Lemma 5.3. Assuming that q-DLOG is hard for the bilinear group generator BG, the above protocol
is an argument of knowledge for the langugage LnucF ,σ,n,m in the algebraic group model with following
efficiency parameters:

|π| = |πagg(n,m)|+ |πlookup(k, n,m)|
tP = taggP (n,m) + tlookupP (k, n,m) +O(mn)F+O(mn)M
tV = taggV (n,m) + tlookupV (k, n,m)

Proof. The proof essentially follows from the properties of arguments of knowledge for RGAPP
pp,G,n,m

and Rclookup
pp,k,m,n.

5.4 Supporting General Wiring Constraints

Given a bivariate polynomial A(X,Y ) with degX(A) < n and degY (m) < m, where we assume that
A encodes a set of wires a = (a0, . . . , anm−1) such that A(ωi, νj) = ami+j . Given a permutation
σ : [nm] → [nm], we present a bivariate PIOP, that checks aσ(i) = ai for all i ∈ [nm]. We define
the following polynomials for the identity permutation and σ:

Sid(X,Y ) =
n−1∑
i=0

m−1∑
j=0

(mi+ j)µH
i (X) · µV

j (Y ),

Sσ(X,Y ) =

n−1∑
i=0

m−1∑
j=0

σ(mi+ j)µH
i (X) · µV

j (Y ) (22)

Our PIOP relies on the following observation.

Lemma 5.4. Let a = (a0, . . . , anm−1) be a vector of length nm interpolated by the polynomial A
over the domain H×V as above. Let σ : [nm]→ [nm] be a permutation. Then, the vector a satisfies
ai = aσ(i) for all i ∈ [mn] if and only if with high probability over the choice β, γ ← F, there exists
polynomials P (X,Y ), U(X,Y ) ∈ F[X,Y ] and Q(X), R(X) ∈ F[X] such that the following hold:

P (X,Y )(γ + βSσ(X,Y ) +A(X,Y ))− (γ + βSid(X,Y ) +A(X,Y )) ≡ 0 over H× V
U(X, νY )(µV

0 (Y )Q(X)− µV
0 (Y ) + 1)− U(X,Y )P (X,Y ) ≡ 0 over H× V

µH
0 (X)(R(X)− 1) ≡ 0 over H

R(ωX)−R(X)Q(X) ≡ 0 over H
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Proof. First, let us assume that the identities are true for some polynomials P,U,Q and R, given
the pre-specified polynomials A, Sid and Sσ and uniformly sampled challenges β, γ ← F. Now,
putting X = ω0 in the third identity implies R(ω0) = 1. Putting X = ωi for i ∈ [n] in the last
equation, implies R(ωi+1) = R(ωi)Q(ωi) and thus

1 =
R(ωn)

R(ω0)
= Q(ω0) ·Q(ω1) · · ·Q(ωn−1) (23)

Now, from the second identity, for all i ∈ [n], we have by substituting Y = ν0, . . . , νm−1,

U(ωi, ν) ·Q(ωi) = U(ωi, ν0) · P (ωi, ν0)

U(ωi, ν2) · 1 = U(ωi, ν) · P (ωi, ν)

...

U(ωi, νm) · 1 = U(ωi, νm−1) · P (ωi, νm−1)

Multiplying and observing that U(ωi, νj) terms cancel off, we are left with Q(ωi) =
∏m−1

j=0 P (ωi, νj).
Now, from Equation (23), we have

n−1∏
i=0

m−1∏
j=0

P (ωi, νj) = 1 (24)

Now, from the first identity, we have by substituting X = ωi and Y = νj ,

P (ωi, νj) =
γ + βSid(ω

i, νj) +A(ωi, νj)

γ + βSσ(ωi, νj) +A(ωi, νj)

Then from Equation (24), we have:

n−1∏
i=0

m−1∏
j=0

(
γ + βSid(ω

i, νj) +A(ωi, νj)

γ + βSσ(ωi, νj) +A(ωi, νj)

)
= 1

Since, the above holds for uniformly sampled β, γ ← F, with high probability, we have the polyno-
mial identity:

n−1∏
i=0

m−1∏
j=0

(X + (mi+ j)Y + ami+j) =

n−1∏
i=0

m−1∏
j=0

(X + σ(mi+ j)Y + aσ(mi+j))

, and thus ami+j = aσ(mi+j) for all (i, j) ∈ [n] × [m]. This proves one direction of the “if and
only if” claim. The other direction is straightforward, where the polynomials P,U,Q and R can be
constructed according to the preceding proof.

The Lemma 5.4 implies a simple argument of knowledge for checking that witness encoded by
polynomial A ∈ F[X,Y ] satisfies wiring constraints given by permutation σ. Let ppsigma = (Cid, Cσ)
denote honestly generated commitments to polynomials Sid, Sσ as define earlier. Let pp denote all
the public parameters (ppuPC, ppbPC, ppσ). We define Rperm

pp,σ to be the relation consisting of pairs
(CA, A) such that bPC.Open(pp,A(X,Y ), (dx, dy), CA, C̃A) = 1 and ak = aσ(k) for all k ∈ [nm],
where ami+j = A(ωi, νj) for (i, j) ∈ [n]× [m]. The protocol is outlined below:
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Setup and Inputs. The setup consists of parameters pp as described above. The common input
consists of (pp, CA) where CA is the commitment of the prover’s polynomial. The prover in addition
knows the witness polynomial A(X,Y ), the underlying witness vector a ∈ Fnm and other publicly
specified polynomials such as Sid and Sσ.

Prover Commits Auxiliary Polynomials. The verifier initiates the protocol by sending β, γ ← F.
The prover constructs polynomials P (X,Y ), U(X,Y ), Q(X), R(X) in Lagrange basis as:

pi(Y ) =

m−1∑
j=0

µV
j (Y )

(
γ + β(mi+ j) + ami+j

γ + βσ(mi+ j) + aσ(mi+j)

)

ui(Y ) =
m−1∑
j=0

µV
j (Y )

j−1∏
k=0

pi(ν
k)

Q(X) =

n−1∑
i=0

µH
i (X)pi(µ

m−1)

R(X) =
n−1∑
i=0

µH
i (X)

i−1∏
j=0

Q(ωj)

The prover sends commitments to polynomials P,U,Q and R using bPCLB as the bivariate PCS
and KZG as the univariate PCS.

Prover and Verifier execute Bivariate PIOP: Prover and Verifier execute an argument of knowl-
edge for the PIOP given by identities in Lemma 5.4 as in Section 3.

References

[ABST23] Miguel Ambrona, Marc Beunardeau, Anne-Laure Schmitt, and Raphael R. Toledo.
aPlonK: Aggregated PlonK from multi-polynomial commitment schemes. In Junji
Shikata and Hiroki Kuzuno, editors, IWSEC 23, volume 14128 of LNCS, pages 195–
213. Springer, Cham, August 2023.

[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–543.
Springer, Cham, August 2020.

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. Jour-
nal of Cryptology, 29(2):363–421, April 2016.

[AST24] Arasu Arun, Srinath T. V. Setty, and Justin Thaler. Jolt: SNARKs for virtual
machines via lookups. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VI, volume 14656 of LNCS, pages 3–33. Springer, Cham, May 2024.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

39



[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for
special-sound protocols. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,
Part II, volume 14439 of LNCS, pages 77–110. Springer, Singapore, December 2023.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
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A Inner Product Arguments, Compressed Sigma Protocols

Compressed Sigma Protocol Framework. We briefly describe the compressed sigma protocol
(CSP) framework of [AC20] using the abstraction of a doubly homomorphic commitment defined
in [BMM+21]. To ease the discussion, we define a deterministic commitment scheme below, the
generalization to a hiding commitment scheme is straightforward.

Definition A.1 ( [BMM+21]). Let (CM,Setup) be a computationally binding commitment scheme
with message space M, key space K and commitment space C. We say that (CM,Setup) is doubly

44

https://github.com/privacy-scaling-explorations/perpetualpowersoftau
https://github.com/privacy-scaling-explorations/perpetualpowersoftau


homomorphic if (M,+), (K,+) and (C,+) are abelian groups such that for all ck, ck′ ∈ K and
m,m′ ∈M, we have:

CM(ck+ ck′,m+m′) = CM(ck,m) + CM(ck′,m) + CM(ck,m′) + CM(ck′,m′) (25)

Inner Product Commitment. We consider doubly homomorphic commitment schemes ob-
tained from bilinear maps ⊗ : K ×M→ C for groups K,M and C with prime order p. For n ∈ N,
we can extend the map ⊗ to the inner product ⟨ , ⟩⊗ : Kn×Mn → C between Zp-vector spaces Kn

andMn given by ⟨a , b⟩⊗ =
∑n−1

i=0 (ai⊗ bi). We call the doubly homomorphic commitment scheme
CM : Kn ×Mn → C defined by CM(ck,w) = ⟨ck , w⟩⊗ as an inner product commitment. Our
notion of inner product commitment is a slight specialization of the same notion in [BMM+21],
where we eschew full generalization to more concretely illustrate our folding techniques.

Linear Form. For K = Zp, the scalar multiplication χ ⊗ w = χ · w is a bilinear operator from
Zp ×M to M. In keeping with terminology used in CSPs, we call the resulting inner product
commitment ⟨ , ⟩ : Zn

p ×Mn →M given by ⟨ck , w⟩ =
∑n−1

i=0 χi ·wi, with ck = (χ0, . . . , χn−1) ∈ Zn
p

and w = (w0, . . . , wn−1) ∈Mn as the linear form onMn.

CSP for Inner Product Commitments Let K and M and C be additive abelian groups of
prime order p. Let (Setup,CM) denote the inner product commitment with message spaceM∗, key
space K∗ and commitment space C given by CM(ck,w) = ⟨ck,w⟩⊗ for |ck| = |w|. Otherwise, we
define CM(ck,w) = ⊥. We now define the relation one proves using CSP.

Definition A.2. Let K,M, C and CM be as above. For n ∈ N, let RCSP
CM,n be the relation consisting

of pairs (x,w) where x = (ck,a, C, v) with ck ∈ Kn, a ∈ Zn
p , C ∈ C, v ∈M and w ∈Mn satisfying

⟨ck,w⟩⊗ = C and ⟨a,w⟩ = v.

In protocol πcsp to prove knowledge ofw ∈Mn such that (x,w) ∈ RCSP
CM,n, where x = (ck,a, C, v)

as in Definition A.2, the prover and verifier execute the following folding step:

� The prover splits the witness vector w into two equal sized vectors wL = (w0, . . . , wn/2−1) and
wR = (wn/2, . . . , wn−1). It similarly computes (ckL, ckR) and (aL,aR) by splitting commitment
key ck and the linear form a respectively. It then computes “cross terms” A = ⟨ckL , wR⟩⊗,
A′ = ⟨ckR , wL⟩⊗, u = ⟨aL , wR⟩ and u′ = ⟨aR , wL⟩. It sends A,A′, u, u′ to the verifier.

� The verifier sends a uniform challenge x0 ← F.

� The prover computes new witness w1 = wL + x−1
0 ·wR.

� Prover and Verifier compute: ck1 = ckL+x0 · ckR, a1 = aL+x0 ·aR, C1 = x0 ·A′+C+x−1
0 ·A,

v1 = x0 · u′ + v + x−1
0 u.

� Prover and Verifier recursively run the argument of knowledge for showing (x1,w1) ∈ RCSP
CM,n/2

where x1 = (ck1,a1, C1, v1).

After log n rounds of the above compression step, the final commitment keys cklogn and alogn have
size 1, in which case the prover sends the witness wlogn (of size 1) for the final relation. The verifier
simply checks cklogn ⊗wlogn = Clogn and alogn ·wlogn = vlogn. Note that we view size 1 vectors
as scalars here. While the recursive folding yields logarithmic argument size, in general the verifier
incurs O(n) effort, as it is required to fold the commitment keys for the commitment and the linear
form.
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CSP with Logarithmic Verifier. To achieve logarithmic verification in the CSP framework,
prior works such as [BMM+21, GMN22] have considered structured commitment keys. In this case,
the verifier delegates the folding of the commitment keys to the prover, and can efficiently check if
the final commitment key is correctly computed. The prior work has considered commitment keys
with monomial structure i.e, ck = (χ0, . . . , χn−1) with χi = xi for some x ← F. Moreover, folding
of structured commitment keys which are encodings of monomials xi in a group, e.g xi · g for a
group generator g can also be verified in logarithmic time. In this work, we show that folding of
commitment keys structured as Lagrange basis polynomials for the subgroup consisting of n roots
of unity can be verified in O(log n) time.
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