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Abstract. A multi-signature scheme allows a list of signers to sign a
common message. They are widely used in scenarios where the same
message must be signed and transmitted by N users, and, instead of
concatenating N individual signatures, employing a multi-signature can
reduce the data to be sent. In recent years there have been numerous
practical proposals in the discrete logarithm setting, such as MuSig2
(CRYPTO’21) for the Schnorr signature. Recently, these attempts have
been extended to post-quantum assumptions, with lattice-based proposals
such as MuSig-L (CRYPTO’22). Given the growth of group action-based
signatures, a natural question is whether a multi-signature can be built
on the same models. In this work, we present the first construction of such
a primitive relying on group action assumptions. We obtain a 3-round
scheme achieving concurrent security in the ROM. Moreover, we instanti-
ate it using the three candidates to the additional post-quantum NIST’s
call, namely LESS, MEDS and ALTEQ, obtaining a good compression
rate for different parameters sets.

Keywords: multi-signature, cryptographic group actions, code equiva-
lence

1 Introduction

Aggregate and Multi-Signatures. An aggregate signature scheme allows n users
to combine their individual signatures on separate messages to produce a single,
directly verifiable aggregate signature. This approach aims to achieve shorter
signature lengths compared to trivial concatenation of individual signatures.
Hence, aggregate signatures are particularly useful in scenarios where a large
number of signatures need to be transmitted and the communication costs within
the network are not negligible. The notion of aggregate signatures was initially
introduced in a seminal paper by Boneh et al. [18]. The authors proposed a
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method that allows a third party to aggregate signatures from distinct users using
a public aggregation algorithm. Although this general aggregation approach is
efficient and valuable in many applications, it is notoriously difficult to achieve
in practice without the use of bilinear pairing [18,12], indistinguishability ob-
fuscation [43] or non-interactive arguments of knowledge [3,33,64]. Furthermore,
there are important scenarios where interactive protocols can be employed and
it is enough to aggregate signatures on a common message. Such constructions
are better known as multi-signatures and typically target additional properties,
including key aggregation and signature compatibility with the underlying scheme.
Although multi-signatures were introduced separately from aggregate signatures
[44,57,56] and the usage scenarios are typically distinct, it is well known that
a multi-signature can be easily transformed into an interactive aggregate sig-
nature by requiring participants to agree on a concatenation of messages to be
signed [13]. Numerous multi-signatures have been proposed for Schnorr’s signa-
ture [55,13,6,49,62,50,35,54], with recent near-optimal schemes MuSig2 [53] and
DWMS [4] requiring only one round of interaction and allowing key aggregation.

Increasing activity in the development of post-quantum signatures has led the
community to explore signature aggregation in this field. Lattice-based proposals
were initially introduced in a restricted model where signatures are aggregated
sequentially by each subsequent user [36]. This approach generalizes the original
line of works on sequential aggregation of trapdoor permutations [48,52,21,40],
extending it to hash-and-sign schemes based on the GPV construction [41], allow-
ing aggregation of Falcon signatures. Within the Fiat-Shamir paradigm, which
includes Dilithium, [20] have recently proposed a sequential aggregation scheme,
achieving however only limited compression. Finally, the idea of aggregating
signatures using lattice-based SNARK was recently investigated in [3] and formal-
ized in [1]. Also, in the interactive model, there is a long line of work proposing
lattice-based multi-signatures [37,39,31,24] culminating with MuSig-L [19], which
achieves properties similar to those of MuSig2 for lattices.

Besides lattice-based solutions and generic approaches based on SNARKs, the
landscape of proposals tailored for other post-quantum assumptions is very limited.
Recently, in [51], the authors generalized the sequential aggregation framework
of [48,36] to generic trapdoor functions, making it compatible with hash-and-
sign schemes from multivariate and code-based assumptions. For Fiat-Shamir
signatures, a tailored non-interactive or sequential solution appears difficult
without achieving limited compression, and no scheme has been proposed.

Group Actions. Cryptographic group actions have received a lot of attention in
the last years, mainly due to the isogeny-based cryptography with the CSIDH
action [22]. However, other actions raised interest in the post-quantum panorama
for the competitive digital signatures based on them. Some examples are NIST’s
additional call proposal, LESS [7], MEDS [26] and ALTEQ [17]. Using this
algebraic framework, other primitives can be built, ranging from Pseudo Random
Functions [2] and Updatable Encryption [47] to digital signature schemes with
advanced functionalities. Some examples of the latter are the threshold signature
given in [10], the (linkable) ring one from [15] and the threshold ring signature
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shown in [59]. If we additionally assume the commutativity of the action, the
design space enlarges to Oblivious Transfers [2], Diffie-Hellman key exchange [29]
and group signatures [14].

Following the construction given in [42] for Graph Isomorphism, a sigma
protocol for group actions can be constructed, allowing a prover to convince a
verifier that she knows the group element mapping a set element x0 to another
set element x1. The first message of the protocol is given by x̃ = g̃ ⋆ x0 for a
random group element g̃. The challenge is a random bit b and instructs the
prover to reveal the group element mapping the set element xb to x̃. This sigma
protocol has knowledge error 1

2 , and this quantity can be reduced using parallel
repetitions. Digital signatures based on cryptographic group actions (e.g. [8,27,63])
are obtained by turning parallel instances of the sigma protocol for group actions
into a non-interactive protocol by applying the Fiat-Shamir transform.

1.1 Our techniques

Multi-signature overview. In this paper, we present a novel multi-signature
scheme based on cryptographic group actions. In our scheme, the key held by
an individual party Pi coincides with that of the underlying signature based on
group action: the private key is a group element ski = gi ∈ G, and the public key
is a set element pki = gi ⋆ x0 ∈ X, where x0 is the common base point. In the
signing phase, the n parties will participate in an interactive round-robin protocol
in which they will compute a common commitment x̃, combining the actions of
different group elements so that no party knows entirely the element that maps
x0 to x̃. To achieve this result, party Pi samples a random group element g̃i and,
at the end of the round-robin, the challenge x̃ is equal to (

∏n
j=1 g̃j) ⋆ x0. In this

phase, the signers also generate a random salt r, by firstly committing and then
simultaneously releasing random salts r1, . . . , rn, one for each signer. Once the
commitment and the salt r have been generated, the signing parties compute a
random challenge c ∈ {0, . . . , n}, which specifies the public key pkc = xc of the
c-th signer, and instructs the signers to compute a group element which maps
xc to the commitment x̃. Again, this will require the signers to cooperate to
compute the responses since the knowledge of the group element mapping the
base point x0 to the commitment x̃i is distributed among the signers.

This approach mimics a standard optimization used in the context of group
action-based signatures, whereby multiple public keys are used to increase the
challenge space and decrease the signature size [32]. On the other hand, the
security model where an adversary has to forge a multi-signature involving a
target user with the possibility of corrupting other signatories can be traced back
to the security of a peculiar variant of the centralized scheme, where the user
can generate ephemeral keys during the signing process.

Sigma protocol variant. As an intermediate step in our construction, we introduce
a variant of the digital signature from cryptographic group actions. This variant,
while less efficient than the standard signature scheme, serves as a crucial proof
artifact and aids in the security reduction of our multi-signature scheme.
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More specifically, we define a variant of the sigma protocol from cryptographic
group actions which instructs the signer to generate a number n− 1 of ephemeral
keys {x̂2, . . . , x̂n} that are set elements generated by applying a random group
element ĝi to the base point x0. The challenge c ∈ {1, . . . , n} specifies which set
element (either the signer’s public key or one of the ephemeral keys) should be
used in the response calculation. This modified protocol is then transformed into
a digital signature scheme using the Fiat-Shamir transform.

Although this centralized variant is less efficient due to its higher soundness
error of n/(n + 1), it plays a crucial role in proving the security of our multi-
signature scheme. In fact, the ephemeral public keys in this variant correspond
to the public keys of the parties in our multi-signature scheme.

Technical lemmas. The number of iterations required before applying the Fiat-
Shamir transform to the above Sigma protocol is variable and depends on the
number of ephemeral keys generated. This is a novel and non-standard approach
in the construction of Fiat-Shamir signatures, but one that more closely represents
the adversary’s capabilities in our multi-signature. To prove the security of the
centralized variant scheme, we have shown that the underlying Sigma protocol
is a proof of knowledge by providing an explicit description of the knowledge
extractor. Our proof does not require any additional assumptions about group
action beyond those necessary for the construction of a digital signature.

Concurrent security. In the security proof of our multi-signature, the rewinding of
the adversary is not required to answer the signing queries, so that an adversary
can open multiple concurrent signing sessions. Therefore, the centralized scheme
adversary is able to correctly simulate the unforgeability game of the multi-
signature in polynomial time. This guarantees the concurrent security of our
scheme.

Note that, although random salt r generation requires an additional round
of interaction, its use is crucial in the security reduction from the variant of the
centralised signature. In fact, the reduction can correctly answer the signing
queries without knowing the secret key of the party under its control thanks
to the ability to program the random oracle, keeping negligible the probability
to overwrite the hash table since the values r will be different in every signing
protocol execution.

Current limitations. In this work, our primary focus is on achieving efficient
signature aggregation with provable security in the ROM. The emphasis on sig-
nature compression is particularly important because one of the main drawbacks
of digital signatures based on cryptographic group actions is their typically larger
signature size compared to other post-quantum signature schemes. Our proposed
scheme aims to mitigate this disadvantage, making signatures from cryptographic
group actions a viable option in practical scenarios requiring multiple users to
sign the same message. In addition, our scheme enjoys a tight security reduction
to a centralised signature scheme, which in turn has the same security features
as the underlying group action-based signature scheme, which reduces to the
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one-wayness of the group action. On the other hand, our construction lacks
advanced features such as key aggregation, where signature verification is shared
with the centralized scheme and requires the use of a single key obtained by
combining that of the participants.

Outline. The paper is organised as follows. In Section 2 we recall the preliminar-
ies on group actions-based digital signature schemes, multi-signatures and the
associated security notions. In Section 3 we describe the variant of the centralised
digital signature scheme based on cryptographic group actions, then we define
our main contribution which is our multi-signature scheme. In Section 4 we prove
our multi-signature scheme secure, building a reduction from the unforgeability
of our multi-signature to the unforgeability of the variant of the centralised
digital signature from group actions. Section 5 describes how to reduce the size
of our multi-signature scheme by adapting some well-known techniques used
to optimize group action-based digital signature schemes. Finally, in Section 6
we instantiate our multi-signature scheme using LESS, MEDS and ALTEQ as
underlying centralised digital signature schemes.

2 Notation and Preliminaries

With n ∈ N, we denote by [n] the set { 1, . . . , n }. For a finite set X, we write |X|
for the cardinality of X and by x ←$ X, we denote the sample of the element
x from U(X), the uniform distribution over X. Moreover, for an algorithm A,
we write x← A(y) to denote the assignment of x to the output of A on input y
and for an adversary A and a function F, we write x← AOF the assignment of x
of the output of A with oracle access to F. In an interactive protocol between
n parties P1, . . . , Pn, we assume that each party has access to point-to-point
communication channels. When the interactive protocol is run by a party Pi, we
write x Pj to denote the transmission of x from Pi to Pj . Similarly, we write
x Pj to denote a transmission from Pj to Pi and the subsequent assignment
to x.

2.1 Cryptographic Group Actions

We introduce the algebraic framework of group actions, in which many crypto-
graphic assumptions from the literature can be modelled.

Definition 1. A group G with identity e is said to act on a set X if there is a
map ⋆ : G×X → X such that e ⋆ x = x and (gh) ⋆ x = g ⋆ (h ⋆ x) for every g, h
in G and x in X. In this case, we say that the triple (G,X, ⋆) is a group action.

We need some additional requirements on the group actions we use, in
particular, we want the action to be effective [2], i.e. there exist efficient algorithms
to sample and represent elements in X and G, to compute products and inverses
in G and to compute the action ⋆. On the other hand, the following problem
must be intractable.
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Definition 2. Given the action (G,X, ⋆), the Group Action Inversion Problem
(GAIP) asks, on input (x, y) in X, to find, if any, an element g in G such that
g ⋆ y = x. Given x0 in X, the GAIP for x0 assumes that the input is of the form
(x0, g ⋆ x0).

To prove the security of digital signatures from group actions in the quantum
random oracle model, we need to assume the hardness of the following problem.

Definition 3. Given the action (G,X, ⋆), the Stabilizer Computation Problem
asks, on input x0 in X, to find, if any, an element g in G such that g is not the
identity and g ⋆ x0 = x0. In other words, the problem asks to find a nontrivial
element of Stab(x0) = {g ∈ G | g ⋆ x0 = x0}, the stabilizer group of x0.

Noteworthy post-quantum actions from the cryptographic literature are
CSIDH [22] and the ones concerning tensors [45,63] and linear codes [8,27].

2.2 Digital Signatures

A digital signature scheme Sig is a tuple of three algorithms (KGen,Sign,Vrfy):

– KGen(1λ): takes as input a security parameter 1λ in unary and generates a
key pair (pk, sk).

– Sign(sk,m): takes as input a signing key sk and a message m and returns a
signature σ.

– Vrfy(pk,m, σ): takes as input a verification key pk, a message m and a
signature σ and returns 1 for acceptance or 0 for rejection.

We define the standard notion of existential unforgeability against chosen-
message attack (EUF-CMA) [46, Def. 13.2].

Definition 4 (EUF-CMA security). Let O be a random oracle, let Sig =
(KGen,Sign,Vrfy) be a signature scheme, let A be an adversary. We define the
advantage of A playing the EUF-CMA game against Sig in the random oracle
model as:

AdvEUF-CMA
Sig (A) = Pr

[
Vrfy(pk,m, σ) = 1

OSign(sk, ·) not queried on m

∣∣∣∣ (pk, sk)← KGen(1λ)
(m,σ)← AO,OSign(sk,·)(pk)

]
.

We say that Sig is existential unforgeable against chosen-message attacks if the
advantage AdvEUF-CMA

Sig (A) is negligible for any adversary A.

2.3 Signature from Cryptographic Group Action

It is possible to obtain an identification protocol from a cryptographic group
action, as described in Algorithm 1.

It is known that the protocol in Algorithm 1 is complete, 2-special sound and
HVZK sigma protocol. Through parallel repetitions, it is possible to amplify the
knowledge soundness of the protocol and obtain a digital signature by applying



A Framework for Group Action-Based Multi-Signatures 7

Algorithm 1: Identification Protocol Based on Group Action
Setup: Choose x0 ∈ X.
Private key: g1 ∈ G.
Public key: x1 ← g1 ⋆ x0.

Prover(g1, x1) Verifier(x1)

g̃ ←$ G

x̃← g̃ ⋆ x0
x̃

ch ch←$ {0, 1}

z ← g̃g−ch
1

z

return z ⋆ xch = x̃

the Fiat-Shamir transform [38]. Assuming some standard security notion on the
group action , the EUF-CMA security of the signature is proved in the (Quantum)
Random Oracle Model [34,25].

For the multi-signature of Section 3, we will consider a variant Π of the
previous Sigma protocol. Intuitively, this variant allows the Prover to artificially
enlarge the challenge space using ephemeral keys in the commitment phase. The
resulting signature is inefficient for a direct application, but it more accurately
captures the perspective of the individual signer in the multi-signature of Section 3.
The modified scheme is described in Section 3.1.

2.4 Multi-Signatures

A multi-signature scheme MS is a tuple of four algorithms (Setup,KGen,MuSign,
MuVrfy).

– Setup(1λ): takes as input a security parameter 1λ in unary and outputs a
public parameter pp.

– KGen(pp): takes as input a public parameter pp and generates a key pair
(pk, sk).

– MuSign(sid, sk, pk,m,L): is an interactive protocol that is run by a party Pi

taking as input a session ID sid, a key pair (pk, sk), a message to be signed
m and an ordered set of co-signers’ public keys L = (pk1, . . . , pkn) such that
pki = pk. The protocol terminates with each party obtaining a signature σ
as output.

– MuVrfy(L,m, σ): takes as input an ordered set of public keys L, a message
m and a signature σ and returns 1 for acceptance or 0 for rejection.
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Game 1: MS-UF-CMAMS

Msid is a machine running the instruction of the party Pi in the multi-signature
protocol MuSign(sid, sk⋆, pk⋆,m, L), where L = (pk1, . . . , pkn) such that pki =
pk⋆.

1: Q ← ∅; S ← ∅
2: pp←$ Setup(λ)
3: (pk⋆, sk⋆)←$ KGen(pp)
4: (L,m, σ)←$ AO,OMuSign(pk⋆)
5: if pk⋆ ̸∈ L ∨ (m,L) ∈ Q then
6: return ⊥
7: return MuVrfy(L,m, σ)

OMuSign(sid, msg):
1: if sid ̸∈ S then
2: (m,L)← msg
3: if pk⋆ ̸∈ L then
4: return ⊥
5: Msid ←$ MuSign(sid, sk⋆, pk⋆,m, L)
6: Q ← Q∪ {(m,L)}
7: S ← S ∪ {sid}
8: returnMsid()

9: returnMsid(msg)

Below, we show the definition of multi-signature unforgeability under adaptive
chosen message (MS-UF-CMA). In this model, the forger controls all signers’
private keys except for at least one honest signer. The forger can choose the
keys of the rogue signers and adaptively query an aggregate signature oracle.
Finally, to win the experiment, the forger must produce a valid, non-trivial
multi-signature involving the public key of the honest signer. The security notion
is adapted from [31] and allows the adversary to open concurrent signing sessions.

Definition 5 (MS-UF-CMA Security). Let O be a random oracle, let MS =
(Setup,KGen,MuSign,MuVrfy) be a multi-signature scheme, and let A be an ad-
versary. We define the advantage of A playing the MS-UF-CMA game (Game 1)
against MS in the random oracle model as:

AdvMS-UF-CMA
MS (A) = Pr[MS-UF-CMAMS(A) = 1].

We say that MS is existential unforgeable against chosen-message attacks if the
advantage AdvMS-UF-CMA

MS (A) is negligible for any adversary A.

3 The Multi-Signature Scheme

In this section, we present a multi-signature scheme based on cryptographic
group actions, for which the key pairs used by the signing parties are compatible
with the key pairs of standard digital signatures based on group actions such as
LESS [9], MEDS [27], or ALTEQ [17].

3.1 Modified Centralized Signature

In the following, we present a variant of the base Σ-protocol from cryptographic
group action (Algorithm 1), and we prove the EUF-CMA security of the associated
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signature. The variant allows the signer to use ephemeral keys during signature
creation. Although this has no impact on security, the modified signature allows
the behaviour of an adversary to be abstracted more accurately in the multi-
signature protocol, and is, therefore, a useful tool in the security proof of the
upcoming scheme.

Given a security parameter λ, (G,X, ⋆) will denote a cryptographic group
action, x0 is a fixed element in X, ĝ0 = eG is the identity of G, and N is a fixed
positive integer. Given n ∈ N, let t(n) be the minimum positive integer such that
(n/(n+ 1))t(n) ≤ 2−λ. Let Ch ⊆ [0, N ]t(N) and fn : Ch→ [0, n]t(n) be a family of
maps such that f−1n

(
U([0, n]t(n))

)
∼ U(Ch) for any n ∈ [1, N ].

Protocol 1 (Group Action Σ-protocol with Ephemeral Keys). Given the public
parameters pp = (G,X, ⋆, x0, ĝ0, N,Ch, {fn}), the protocol proceeds as follows:

– (g1, x1)←$ Gen(pp): the key-generation algorithm takes as input the public
parameters pp. It uniformly samples g1 ∈ G and computes x1 ← g1 ⋆ x0. It
returns the witness-statement pair (x1, g1).

– com ←$ P1(g1, x1): given a statement x1 ∈ X and the corresponding wit-
ness g1 ∈ G, the prover chooses n ∈ [1, N ]. Then, it uniformly samples
ĝk and computes x̂k ← ĝk ⋆ x0 for k ∈ [2, n]. Then, it uniformly samples
g̃(j) and computes x̃(j) ← g̃(j) ⋆ x0 for j ∈ [1, t(n)]. Finally, it returns
com← (x̂2, . . . , x̂n, x̃

(1), . . . , x̃(t(n))).
– ch←$ V1(com): given a commitment com, the verifier returns a uniformly

random challenge ch ∈ Ch.
– rsp ← P2(g1, x1, com, ch): given a statement x1, the corresponding witness

g1, a commitment com = (x̂, x̃) and a challenge ch ∈ Ch, the prover sets
ĝ1 = g1, x̂1 = x1 and computes ch′ ← fn(ch). Then, for each component
ch′j ∈ [0, n] of ch′, they compute a response zj ← g̃(j)ĝ−1ch′j

for j ∈ [1, t(n)].
Finally, they output rsp← (z1, . . . , zt(n)).

– {0, 1} ← V2(x1, com, ch, rsp): given a statement x1 ∈ X, a commitment
com = (x̂, x̃), a challenge ch and a response rsp = (z1, . . . , zt(n)), the verifier
proceeds as follows. They compute ch′ ← fn(ch) and set x̂1 = x1. Then, for
each j ∈ [1, t(n)], compute ỹ(j) ← zj ⋆ x̂ch′j

. The verifier accepts (returns 1)
if ỹ = x̃, otherwise rejects (returns 0).

We denote Protocol 1 with Π. In Appendix A, we show that Π is correct,
HVZK, and knowledge sound. Once the Prover choose n ∈ [1, N ], the soundness
of the protocol is κt(n)

n , with κn = n/(n+1). Therefore, due to the choice of t(n),
the protocol has negligible soundness error.

By applying the Fiat-Shamir transform to the protocol Π, we obtain a digital
signature scheme FS[Π]. The signature is obtained by taking the transcript of Π
without the challenge. The challenge can be recovered as the digests of a hash
function H on the commitment com and the message m. In the signature scheme,
instead of computing fn on the output of H, we can consider an additional
argument for the hash function and write H(n) = H(n, ·) : {0, 1}∗ → [0, n]t(n).
Notice that this description still falls within the random oracle model and can be
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Algorithm 2: Variant Signature Scheme based on Group Actions
⋆ : G×X → X is a cryptographic group action. H(n) : {0, 1}∗ → [0, n]t(n) is a
random oracle.

Setup(1λ):
1: x0 ←$ X
2: pp← x0

3: return pp

KGen(pp = x0):
1: g1 ←$ G
2: x1 ← g1 ⋆ x0

3: return (pk = x1, sk = g1)

Vrfy(pk = x̂1, m, σ):
1: (L, x̃, z1, . . . , zt(n))← σ
2: (x̂2, . . . , x̂n)← L
3: ch← H(n)(L, x̃,m)
4: for j ← 1, . . . , t(n) do
5: x̃′

j ← zj ⋆ x̂chj

6: x̃′ ← (x̃′
1, . . . , x̃

′
t(n))

7: return x̃′ = x̃

Sign(sk, pk, m, n):
1: x̂0 ← x0; ĝ0 ← e
2: x̂1 ← pk; ĝ1 ← sk
3: for k ← 2, . . . n do
4: ĝk ←$ G
5: x̂k ← ĝk ⋆ x0

6: L← (x̂2, . . . , x̂n)
7: for j ← 1, . . . , t(n) do
8: g̃(j) ←$ G
9: x̃(j) ← g̃(j) ⋆ x0

10: x̃← (x̃(1), . . . , x̃t(n))
11: ch← H(n)(L, x̃,m)
12: for j ← 1, . . . , t(n) do
13: zj ← g̃(j)ĝ−1

chj

14: return σ ← (L, x̃, z1, . . . , zt(n))

instantiated, for instance, by using an extendable-output function (XOF). The
full description of the signature scheme can be found in Algorithm 2.

Theorem 1. Let Π be as in Protocol 1 for a cryptographic group action (G,X, ⋆)
with base element x0. If no polynomial-time (quantum) adversary can solve the
GAIP (Definition 2) and the Stabilizer Computation Problem (Definition 3)
for x0 except with a negligible probability, then FS[Π] (Algorithm 2) is strong
EUF-CMA in the (quantum) random oracle model.

Sketch of proof. The complete proof can be found in Appendix A. We first prove
that the Sigma protocol underlying Sig[⋆] is a (quantum) proof of knowledge. We
start by taking a simplified Sigma protocol Π[n], with a fixed number of n− 1
ephemeral keys, and showing that it is a proof of knowledge roughly equivalent
to the basic protocol of Algorithm 1, with a higher knowledge error. Next, we
show that we can use the knowledge extractor for Π[n] to extract a witness from
a dishonest prover against Π, moreover, we show that this does not change the
knowledge error of the protocol. Finally, we show that, if the base protocol in
Algorithm 1 is correct, has high min-entropy, and is HVZK, then Π also has
the same properties. We observe that these properties are required in concrete
applications to construct digital signatures from group actions, so we make the
same assumptions in the construction of the variant. Therefore, [34, Theorem 22]
can be applied to show that the signature is EUF-CMA in the QROM.
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x0

x1xn . . .

x̃(1)

x̃(n−1)

x̃

g1gn

g̃(1)

g̃(n)

Fig. 1: High level description of MS-GA scheme of Algorithm 3, answering on
ch = 1. P1 reveals the map from x1 to x̃(1), while all other parties reveal the
ephemeral group element g̃(j).

3.2 Our Multi-Signature Scheme

The multi-signature scheme is designed in a way that closely resembles the
centralized digital signature scheme described in the previous section. In fact, in
the multi-signature that we present in this section, the ephemeral signing keys
used in the centralized signature in Algorithm 2 are replaced by the signing keys of
the other parties taking part in the signing process. We recall that the centralized
signature in Algorithm 2 is not efficient in any way, but it is unforgeable under
chosen message attacks. In the security analysis, we will reduce the security of
the multi-signature scheme, according to Definition 5, to the unforgeability of
the centralized digital signature.

At a high level, the multi-signature signing algorithm that we present instructs
each party in the signing set to perform the following operations. Suppose L
is an ordered signing set of n users P1, . . . , Pn. Each party Pi in L randomly
generates a salt ri, which will be used to generate a shared randomness associated
to the signing session, and contributes to the creation of the sigma protocol
commitment x̃. In particular, the parties in L perform the following operations
in a round-robin fashion:

1. Pi commits to a random salt ri, by computing comi, a commitment which
binds ri also to the commitments of the parties acting before Pi in the ordered
set L4;

2. Pi contributes to the generation of the sigma protocol commitment x̃ by
generating t(n) group elements g̃(i) = (g̃

(i)
1 , . . . , g̃

(i)
t(n)) and using them to

compute the partial commitment in x̃(i) starting from the partial commitment
it received from the party acting before it, namely x̃(i−1).

4 Binding the commitment to ri to the commitments of the previous salts is useful to
avoid broadcasting each commitment to each party. The only commitment that must
be broadcast and seen by every party is comn, which is a commitment to all the salts
r1, . . . , rn.
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Then Pi sends to Pi+1 the cryptographic commitment comi and the sigma
protocol partial commitments x̃(i). The same operations are repeated by each
party, until the last signing party Pn, which broadcasts its commitment comn

and x̃ = x̃(n). Then, all the parties reveal their randomness ri and check that
the cryptographic commitments have been honestly computed. If this is the case,
each party computes the shared randomness r ← H1(r1, . . . , rn) which acts as
a session identifier. Using the shared randomness r and the commitment x̃, the
parties generate the challenge ch← H

(n)
2 (x̃, r, L,m), a string of t(n) elements in

{0, 1, . . . , n}. In the response phase, a challenge chj = i ̸= 0 requires revealing a
map from xi, the public key of Pi to x̃j = x̃

(n)
j . Each party Pk, for k ̸= i, reveals

the ephemeral group element g̃
(k)
j . Pi then computes the response as

zj =

(
n−1∏
k=0

g̃
(n−k)
j

)
g−1i .

Otherwise, if chj = 0 then the response is the group element mapping the base
point x0 to x̃i. Each party reveals the ephemeral group element g̃

(k)
j and the

response is computed as

zj =

(
n−1∏
k=0

g̃
(n−k)
j

)
. (1)

In the latter case, it is agreed that the calculation of zj is entrusted to the
last user Pn. A high-level description of the multi-signature scheme is shown in
Figure 1 for ch = 1. The full description of the protocol is given in Algorithm 3.

4 Security Proof

In the following, we prove the MS-UF-CMA security of the protocol in Algo-
rithm 3. In particular, we reduce security to the EUF-CMA of the centralized
signature variant described in Section 2.3.

Theorem 2. Let ⋆ : G×X → X be a cryptographic group action and let Π be
as in Protocol 1. Let A be a MS-UF-CMA adversary against MS-GA[⋆] in the
random oracle model which makes qS signing queries, qH queries to the random
oracles H0,H1,H2. Then, there exists a EUF-CMA adversary B against FS[Π]
issuing qS signing queries and qH queries to the random oracle H′, such that

AdvMS-UF-CMA
MS-GA[⋆] (A) ≤ AdvEUF-CMA

FS[Π] (B) + qS(qH + qS)

2ℓsalt
+

2qSqH
2ℓM

,

and the running time of B is about that of A.

Proof. In the following, we denote the random oracles and the signing oracle in
the MS-UF-CMA game as H0,H1,H2 and OMuSign. The EUF-CMA adversary
B has access to a signing oracle OSign of the FS[Π] and an outer random oracle
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Algorithm 3: MS-GA[⋆]

⋆ : G × X → X is a cryptographic group action. The random oracles are
H0 : {0, 1}∗ → {0, 1}2λ,H1 : {0, 1}∗ → {0, 1}ℓsalt and H

(n)
2 : {0, 1}∗ → [0, n]t(n).

During the execution of MuSign, each party maintains a list of active session
identifiers in a list S.

Setup(1λ):
1: x0 ←$ X
2: pp← x0

3: return pp

KGen(pp = x0):
1: g ←$ G
2: x← g ⋆ x0

3: return (pk = x, sk = g)

MuVrfy(L, m, σ):
1: (x1, . . . , xn)← L
2: (ch, r, z1, . . . , zt(n))← σ
3: for j ← 1, . . . , t(n) do
4: x̃j ← zj ⋆ xchj

5: x̃← (x̃1, . . . , x̃t(n))

6: if H
(n)
2 (x̃, r, L,m) = ch then

7: return 1
8: else
9: return 0

MuSign(sid, sk, pk, m, L):
1: (pk1, . . . , pkn)← L
2: if sid ∈ S ∨ ∄i : pki = pk then
3: return ⊥
4: Set i such that pki = pk
5: S ← S ∪ {sid}

6: xi ← pk; gi ← sk
7: ri ←$ {0, 1}ℓsalt
8: comi−1, x̃

(i−1) Pi−1 //
com0 = ε, x̃

(0)
j = x0

9: comi ← H0(comi−1, ri)
10: g̃(i) ←$ Gt(n)

11: x̃(i) ← [g̃
(i)
j ⋆ x̃

(i−1)
j ]j∈[t(n)]

12: x̃(i), comi Pi+1

13: x̃ ← (x̃
(n)
1 , . . . , x̃

(n)

t(n)) // If
i = n send to each party

14: ri Pk, rk Pk, ∀k ̸= i
15: if ∃j : comj ̸= H0(comj−1, rj)

then
16: return ⊥
17: r ← H1(r1, . . . , rn)

18: ch← H
(n)
2 (x̃, r, L,m)

19: for j ← 1, . . . , t(n) do
20: if chj = i ∨ (chj = 0 ∧ i = n)

then
21: g̃

(k)
j Pk,∀k ̸= i

22: zj ← (
∏n−1

k=0 g̃
(n−k)
j )g−1

chj
// g0 = eG

23: zj Pk, ∀k ̸= i
24: else
25: g̃

(i)
j Pchj

26: zj Pchj

27: σ ← (ch, r, z1, . . . , zt(n))

H′. After receiving the target public key pk⋆ in the EUF-CMA game, B forwards
pk⋆ to A.

At a high level, we show that controlling n− 1 users in the multi-signature
is no better than choosing n − 1 ephemeral keys in the centralized signature.
We show that B can simulate OMuSign by querying OSign and programming
the random oracle H2 with the challenges provided by the outer random oracle
H′. During a query to OMuSign, the adversary may choose the value of the
commitment x̃ of the sigma protocol by controlling the last user. However, the
adversary can not control the value of the shared salt r, and B is able to program
the random oracle H2 before the adversary learns the value of r. In this way,
the manipulation of the final commitment cannot influence the challenge and be
exploited in parallel sessions.
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Algorithm 4: Full Reduction EUF-CMA =⇒ MS-UF-CMA

B(pk⋆):
1: Q ← ∅; S ← ∅; M← ∅
2: (L,m, σ)←$ AO,OMuSign(pk⋆)
3: (x1, . . . , xn)← L
4: (ch, r, z1, . . . , zt(n))← σ
5: if MuVrfy(L,m, σ) ∧ ∃i : (xi =

x⋆ ∧ (m,L) ̸∈ Q) then
6: Recover x̃ as in MuVrfy
7: m′ ← MT[x̃, r, L,m]
8: if m′ ∈M then
9: raise badmcol

10: L′ ← (x2, . . . , xi−1, x1,
xi+1, . . . , xn)

11: σ′ ← (L′, x̃, z1, . . . , zt(n))
12: return (m′, σ′)

H0(r):
1: if HT0[r] = ⊥ then
2: com←$ {0, 1}2λ
3: HT0[r]← com

4: return HT0[r]

H1(Q):
1: if HT1[Q] = ⊥ then
2: r ←$ {0, 1}2λ
3: HT1[Q]← r

4: return HT1[Q]

H2(Q = (x̃, r, L,m)):
1: if HT2[Q] ̸= ⊥ then
2: return HT2[Q]

3: L← (x1, . . . , xn)
4: if ∄i such that xi = pk⋆ then
5: ch←$ Ch
6: else
7: L′ ← (x2, . . . , xi−1, x1,

xi+1, . . . , xn)
8: m′ ←$ M
9: chB ← H′(L′, x̃,m′)

10: ch← π1,i(ch
B)

11: MT[Q]← m′

12: HT2[Q]← ch
13: return ch

OMuSign(sid,(m,L)):
1: Q ← Q∪ {(m,L)}
2: (x1, . . . , xn)← L
3: if sid ∈ S ∨ ∄i : xi = x⋆ then
4: return ⊥
5: S ← S ∪ {sid}
6: m′ ←$ M
7: M←M∪ {m′}
8: (comB, zB1 , . . . , z

B
t(n)) ←$

OSign(m′)
9: (x̂B

2 , . . . , x̂
B
n , x̃

B
1 , . . . , x̃

B
t(n)) ←

comB

10: chB ← π1,i(H
′(comB,m′))

11: ri ←$ {0, 1}λ
12: comi−1, x̃

(i−1) Pi−1 //
com0 = ε, x̃

(0)
j = x0

13: comi ← H0(comi−1, ri)
14: for j ← 1, . . . , t(n) do
15: if chBj ̸= i then
16: g̃

(i)
j ←$ G

17: x̃
(i)
j ← g̃

(i)
j ⋆ x̃

(i−1)
j

18: else
19: x̃

(i)
j ← x̃B

j

20: x̃(i), comi Pi+1

21: x̃← (x̃
(n)
1 , . . . , x̃

(n)

t(n))
22: Retrieve rk such that

HT0[comk−1, rk] = comk, ∀k ̸= i
23: r ← H1(r1, . . . , rn)
24: if HT2[x̃, r, L,m] ̸= ⊥ then
25: raise badhcol
26: HT2[x̃, r, L,m]← chB

27: ri Pk, r̄k Pk, ∀k ̸= i
28: if ∃j : r̄j ̸= rj then
29: return ⊥
30: for j ← 1, . . . t(n) do
31: if chj = i then
32: g̃

(k)
j Pk,∀k ̸= i

33: zj ← (
∏n−(i+1)

k=0 g̃
(n−k)
j )zBj

34: zj Pk, ∀k ̸= i
35: else if chj = 0 ∧ i = n then
36: g̃

(k)
j Pk,∀k ̸= i

37: zj ← (
∏n−1

k=0 g̃
(n−k)
j )

38: zj Pk, ∀k ̸= i
39: else
40: g̃

(i)
j Pchj
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The main focus of the reduction concerns the simulation of the random
oracle H2. After receiving a query containing the target public key among the
participants’ keys, B queries the outer random oracle H′ and reprograms H2 with
a permutation of the received challenge. When A produces a valid signature, B
will be able to map it into a signature for the centralized scheme using the keys
of the users controlled by A as ephemeral keys.

In the following, we make the simplified assumption that before A outputs a
forged signature, it makes a query on H2, as would be done during the signature
verification. Moreover, we assume that A always outputs a valid signature, and
halts by returning ⊥ otherwise. Notice that we can always modify A to behave
this way by running the verification algorithm on the provided signature, and
checking that the message provided was not queried to the signing oracle with
the same set of signers.

More in detail, we prove the reduction by presenting a sequence of hybrid
games, modifying the MS-UF-CMA game (Game 1) until it can be simulated
by the EUF-CMA adversary B against the centralized signature FS[Π]. In the
following, we use the notation Pr[Gamen(A) = 1] to denote the probability that
Gamen returns 1 when played by A. The complete reduction is described in
Algorithm 4.

Game0 This is the initial strong MS-UF-CMA game against the MS-GA[⋆] scheme,
except that it uses programmable random oracles. At the start of the game,
the challenger initializes three tables, HT0,HT1,HT2 for H0,H1,H2, respec-
tively. When a query Q for H0 is received, if HT0[Q] = ⊥ it uniformly samples
com←$ {0, 1}2λ and stores HT0[Q]← com, finally it returns HT0[Q] (simi-
larly for H1 and H2). It follows that Pr[Game0(A) = 1] = AdvMS-UF-CMA

MS-GA[⋆] (A).
Game1 This game is identical to Game0, except that OMuSign aborts by raising

badhcol when the following happens: being x̃ the commitment and r ←
H1(r1, . . . , rn) the salt generated by A and OMuSign during the sign query
(sid, (m,L)), the challenger aborts the game if the random oracle H2 was
already queried at input Q = (x̃, r, L,m), i.e. HT2[Q] ̸= ⊥. Otherwise,
OMuSign samples ch←$ [0, n]t(n) and programs HT2[Q]← ch. It follows that
|Pr[Game0(A) = 1]− Pr[Game1(A) = 1]| ≤ Pr[badhcol].

Game2 This game is identical to Game1, except that OMuSign and H2 are sim-
ulated as follows. At the start of the game, the challenger initializes an
empty set M, that will be used to track the messages queried by the sim-
ulator to OSign, and a look-up table MT used to map the queries to H2 to
the messages included in the queries to H′. In particular, when OMuSign
receives a query, it samples a random message m′ ∈ M and adds it to M
before sending a sign query to OSign for m′. When H2 receives a query
Q = (x̃, r, L,m) such that pk⋆ ∈ L, it samples a random message m′ ∈ M and
sets MT[Q]← m′ before querying H′ on (L′, x̃,m′). After the adversary out-
puts a valid signature σ = (ch, r, z1, . . . , zt(n)) on message m with users public
keys L = (x1, . . . , xn), the challenger derives x̃ as in the execution of MuVrfy,
and retrieves m′ ← MT[x̃, r, L,m]. If m′ ∈ M, the game aborts by raising
badmcol. It follows that |Pr[Game1(A) = 1]−Pr[Game2(A) = 1]| ≤ Pr[badmcol].
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The reason why in Game2, for the sign query to OMuSign and hash query
to H2, the simulator B is instructed to sample a random message m′ resides in
the definition of forgery in the multi-signature scheme and in the centralized
signature scheme. In particular, in the multi-signature game, A can produce a
forgery on a message m signed on behalf of the public keys in L even if during the
training with the oracle OMuSign it previously queried a signature for the same
m but with a different set of signers L′. This does not hold for the centralized
signature, where the forgery must be associated to a message that has never been
queried to H′.

We now show that the EUF-CMA adversary B can simulate Game2 as de-
scribed in Algorithm 4. At the start of the game, B initializes an empty set
M← ∅ that will store the queries to OSign. In the following, given a vector x,
we will denote with πi,j(x) the permutation of elements with index i and j in x.

Random oracles queries. When a query Q0 for H0 is received, if HT0[Q0] = ⊥,
B uniformly samples com ←$ {0, 1}2λ, stores HT0[Q0] ← com, and returns
HT0[Q0]. Similarly, when a query Q1 for H1 is received if HT1[Q1] = ⊥, B
uniformly samples com ←$ {0, 1}2λ, stores HT1[Q1] ← com, and returns
HT1[Q1]. Instead H2, the random oracle employed to generate the challenge
ch, is simulated as follows. Suppose a query Q2 = (x̃, r, L,m) for H2 is
received and HT2[Q2] = ⊥. Let n = |L|, if pk⋆ ̸∈ L, i.e. the random oracle
query do not refer to the public key that the forger must impersonate,
B uniformly samples ch ←$ [0, n]t(n) and returns it. Otherwise, suppose
L = (x1, . . . , xn) such that xi = pk⋆ and let L′ be the set of public keys
in L after permuting the order of x1 and xi and subsequently removing xi,
i.e. L′ = (x2, . . . , xi−1, x1, xi+1, . . . , xn). This way, L′ can be used as a set
of ephemeral keys for the centralized signature scheme. Then, B samples
a uniformly random message m′ and queries (L′, x̃,m′) to H′(n), obtaining
chB, which acts as the challenge of the centralized signature scheme. Next,
it computes ch as the permutation π1,i(ch

B), making it compatible with the
public keys in L, and stores MT[Q2] ← m′ and HT2[Q2] ← ch. Finally, it
returns HT2[Q2].

Signing queries. On a new query Q = (sid, (m,L)), B runs MuSign up to
Line 9. Suppose L = (x1, . . . , xn) such that xi = pk⋆. Then, it samples a
uniformly random message m′ ←$ M, adds m′ to M, and queries OSign
on m′. The signing oracle response is (comB, zB1 , . . . , z

B
t(n)), with comB =

(x̂B2 , . . . , x̂
B
n , x̃

B
1 , . . . , x̃

B
t(n)). B will only use responses zBj from OSign that

link xi to x̃Bj , which correspond to the values 1 of the challenges sampled
by the oracle. Hence, B computes the permutation of the challenge of the
centralized signature, obtaining chB ← π1,i(H

′(n)(comB,m′)), that will be
used to program the answer of H2. Then, MuSign is simulated up to Line 13
as follows: for each j ← 1, . . . , t(n) it receives x̃

(i−1)
j . Then, if chBj ̸= i, it

samples g̃
(i)
j ←$ G and sets x̃

(i)
j ← g̃

(i)
j ⋆ x̃

(i−1)
j . Otherwise, if chBj = i, it

sets x̃
(i)
j ← x̃Bj , since it knows the group element mapping the public key

xi to x̃Bj from the centralized signature previously queried. Subsequently,
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before revealing ri, B retrieves r1, . . . , rn from HT0. If some comj ’s were not
obtained after a query to H0 for (comj−1, rj), it follows the execution of
MuSign and returns ⊥ on Line 16. Next, it computes r ← H1(r1, . . . , rn) and
programs HT2[x̃, r, L,m]← chB. Finally, the remainder of MuSign’s execution
is simulated as follows: for each j ← 1, . . . , t(n), if chj ̸= i, B reveals g̃

(i)
j .

Otherwise, it receives g̃
(k)
j for k ̸= i and computes zj ← g̃

(n)
j · . . . · g̃(i+1)

j zBj .

Eventually, A will output a valid signature σ = (ch, r, z1, . . . , zt(n)) for a
message m under public keys L = (x1, . . . , xn). If A is winning the MS-UF-CMA
game, then there exists an index i ∈ [n] such that pk⋆ = xi and (m,L) ̸∈ Q. B
can run MuVrfy up to Line 5 to recover x̃ = (x̃1, . . . , x̃t(n)). From our simplifying
assumption on A, σ is valid and Q = (x̃, r, L,m) must have been queried to H2.
Then, B assigns to L′ the set of public keys in L after permuting the order of x1 and
xi and subsequently removing xi, i.e. L′ = (x2, . . . , xi−1, x1, xi+1, . . . , xn). Next, it
retrieves m′ ← MT[x̃, r, L,m] and aborts by raising badmcol if m′ ∈M. Otherwise,
B wins the EUF-CMA game, returning the signature (L′, x̃, z1, . . . , zt(n)) on
message m′. In fact, ch was obtained in the simulation of H2 as ch = π1,i(ch

′),
where ch′ = H′(n)(L′, x̃,m′). Let x̂k ← xk for all k ∈ [n], k ̸= 1, i and let
x̂i ← x1, x̂1 ← xi. For any j ← 1, . . . , t(n), it follows that:

zj ⋆ x̂ch′j
= zj ⋆ xchj = x̃j .

If none of the bad events happen, B perfectly simulate Game2, and we obtain

AdvEUF-CMA
FS[Π] (B) = Pr[Game2(A) = 1]

≥ AdvMS-UF-CMA
MS-GA[⋆] (A)− Pr[badhcol]− Pr[badmcol].

B can simulate Game2 with at most the same running time of A plus the time
required for running MuVrfy.

In the following, we bound the probability of each bad event happening.

Probability of badhcol. The event badhcol occurs on Line 25 of OMuSign on
input (sid, (m,L)) when, after obtaining the commitment x̃ and the salt
r ← H1(r1, . . . , rn), a value for Q = (x̃, r, L,m) was already assigned in HT2.
The table HT2 is populated by either OMuSign or H2, so that its entries are
at most qS + qH. The salt r is obtained from H1 on inputs r1, . . . , rn, where
rk, k ̸= i is provided by A and ri is sampled uniformly random from {0, 1}ℓsalt .
The probability that a uniformly random ri produces a collision with one
of the entries is then at most (qS + qH)2

−ℓsalt . Since at most qS are made to
OMuSign, then Pr[badhcol] ≤ qS(qS + qH)2

−ℓsalt .
Probability of badmcol. The event badmcol occurs on Line 9 of the simula-

tion of B when, after the adversary A outputs a valid signature σ =
(ch, r, z1, . . . , zt(n)) on message m with users public keys L = (x1, . . . , xn), B
derives x̃ as in the execution of MuVrfy, and retrieves m′ ← MT[x̃, r, L,m],
the message sampled during a random oracle query to H2, such that m′ ∈M.
There are two possibilities that can cause the badmcol event: either in H2
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(Line 8) if it samples m′ ∈ M that is already inM, or in OMuSign (Line 6)
if it samples m′ ∈ M such that it is already a value in MT. The set M is
populated by OMuSign, so that its entries are at most qS. Since |M| = 2ℓM ,
the probability that a uniformly random m′ ∈ M produces a collision with
one of the entries ofM is then at most qS/|M| ≤ qS/2

ℓM . Since at most qH
queries are made to H2, the probability of the first occurrence is at most
qHqS/2

ℓM . Similarly, the table MT is populated by H2 with at most qH entries,
and the probability that a uniformly random m′ ∈ M produces a collision
with one of the entries of MT is at most qH/2

ℓM . Since at most qS queries
are made to OMuSign, the probability of the second occurrence is at most
qHqS/2

ℓM . Therefore, we obtain Pr[badmcol] ≤ 2qSqH/2
ℓM .

Combining the previous bound on bad events, we obtain the claimed estimate
of AdvMS-UF-CMA

MS-GA[⋆] (A).

Concurrent executions. Note that the security proof reduces the security of the
multi-signature to the security of a centralized signature, which is concurrently
secure since it does not require interactions between parties. Also, the simulation
does not require B to rewind the adversary during the execution of the training
phase, when the adversary queries the sign oracle and builds signatures of
chosen messages with its support. The rewinding is executed only once, when
the adversary of the multi-signature produces its forgery. This means that the
execution time of the simulator B is polynomial in the execution time of the
adversary, which is polynomial in lambda.

Identifiable abort. Our protocol can be adapted to allow the signers to identify
when a party misbehaves. If during the construction of the commitment, each party
broadcasts their partial commitment, then in an eventual failure of the signature
protocol the honest party will always be able to identify at least one malicious
party for each signing protocol execution. In fact, when the commitments are
opened, one can check that the group element g̃i of the parties Pi which are not
selected by the challenge actually maps the previous partial commitment x̃i−1 to
x̃i.

5 Signature Optimizations

In this section, we apply some standard optimization techniques to MS in order
to decrease the size of the multi-signature. Note that when defining the multi-
signature protocol, it is necessary to ensure that the centralized signature keys
are compatible with the interactive protocol. Therefore, all optimizations that do
not intervene directly on the keys are potentially applicable.

One of the main efficiency measures for the multi-signature scheme is the
compression rate, i.e., the reduction in the length of the signature aggregation
of n users compared to the trivial concatenation of n individual signatures.
Let Σn be the multi-signature of n users and let σ be the individual signature
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of the centralized scheme. The compression rate of n signatures is defined as
τ(n) = 1− |Σn|

n·|σ| . In order to optimize the compression rate, we reduce the size of
Σn without affecting the security of the scheme.

Consider a group action (G,X, ⋆) and a security parameter λ. The non-
optimized version of the Σ-protocol Π is described in Algorithm 1. In the
following, we assume that a group element can be represented with strings of ℓG
bits, while a challenge for a single instance of the protocol can be represented
with a single bit. Since Π is commitment-recoverable, we are only interested in
the size of the restricted transcript (ch, rsp), where the response rsp is an element
of the group. We already discussed that to achieve negligible knowledge error, it
is required to parallel repeat Π for t = λ times, obtaining Π1 = Πt. We present
each optimization as a successive transformation applied on top of Π1, analysing
the updated parameters (e.g., the number of repetitions of the protocol) and the
size of the signature obtained by applying Fiat-Shamir. The centralized signature
associated with Πi is denoted with FS[Πi], while the multi-signature is denoted
with MS[Πi].

The bit size of the non-optimized centralized signature FS[Π1] is given by:

|ch|+ |rsp| = λ+ λℓG.

In the non-optimized version of the multi-signature MS[Π1], the signature
produced by n users is given by Σn = (ch, r, z1, . . . , zt(n)). The expected sizes (in
bits) of the elements of Σn are expressed by

|ch| = log2(n+ 1)t(n), |r| = 2λ, |z| = t(n)ℓG.

5.1 Compression of Random Elements

A basic technique used to reduce the size of the signature FS[Πt] is based on the
following simple observation: when chi = 0 the response for the i-th repetition is
just the uniformly random group element g̃i ∈ G used to build the commitment.
Therefore, in practice, g̃i can be replaced by a short random seed si of size
λ which is used as the input of a Pseudorandom Number Generator PRNG to
generate the group element. Then, every time chi = 0, the signer can set rspi ← si
saving ℓG−λ bits for each 0 challenge. If the challenge array is uniformly sampled
from {0, 1}t, then the expected number of bits saved using this optimization is
t(ℓG − λ)/2. This technique was already adopted in the context of isogenies [61]
and later employed in group action-based signatures.

When random responses are compressed using seed of length λ, it is required
to also employ a random salt of length at least 2λ to prevent collision search
attacks [23]. This corresponds to a slight increase in the signature size, which
now includes the random salt.

Let Π2 be the protocol obtained by applying the aforementioned optimization
to Π1, then the expected bit size of the signature for FS[Π2] is given by

|r|+ |ch|+ |rsp| = 2λ+ λ+ t

(
1

2
λ+

1

2
ℓG

)
,
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where the terms of |rsp| correspond to the size of the responses to non-zero and
zero challenges, respectively. Notice that this holds only on average and that in
the worst case, the size of the response can grow up to tℓG.

When we consider the multi-signature described in Algorithm 3, things get
more complicated because the signers P1, . . . , Pn build the responses zi, i ∈ [t(n)],
in a round-robin fashion by multiplying the group elements that they have
generated as described in Equation (1). Therefore, when the challenge chi = 0, no
contribution is required from the secret keys of the participants, and the response
to the i-th repetition of the sigma protocol can be encoded in two possible ways:

– with the full list of seeds (s1, . . . , sn) corresponding to the group element of
each party, which are multiplied to retrieve the response zi;

– with the direct encoding of the group element zi.

This means that the use of seeds is convenient as long as the representation
of an element in G is heavier than the concatenation of n seeds, i.e. nλ < ℓG,
and if the expected number of zeros in a t(n)-bit long challenge is t(n)

n+1 , then the
expected number of bits saved by using this technique is t(n)(ℓG−nλ)

n+1 .
Similarly, the challenge ch can be expanded from a digest d ∈ {0, 1}2λ obtained

from H2 in Algorithm 3.
Applying the aforementioned optimizations, the expected sizes (in bits) of

the challenge and the response array for MS[Π2] are approximated by

|ch| = 2λ, |r| = 2λ, |z| = t(n)

n+ 1
(nℓG + ℓseeds), ℓseeds = min{nλ, ℓG}

where the terms of |z| correspond to the size of the responses to non-zero and
zero challenges, respectively.

5.2 Seed Trees

A binary tree of seeds (seed tree) can be used to reduce the communication cost
of the seeds used to construct the random elements of the group [15]. The tree
is computed by taking a master seed of length λ as the root of the tree. Then,
from each node, two children are generated from the output of length 2λ of a
PRNG taking as input the value of the node. To represent t seeds, this process
is repeated for ⌈log(t)⌉ times so that the tree has 2⌈log(t)⌉ ≥ t leaves having the
seeds as values. The seeds corresponding to a subset of the leaves can be revealed
by sharing a suitable subset of parent nodes and computing the corresponding
leaves. In particular, to communicate the value of all the t seeds except for those
indexed by a subset of {1, . . . , t} of size ω, it is enough to send the values of the
following number of nodes:

2⌈log2(ω)⌉ + ω(⌈log2(t)⌉ − ⌈log2(ω)⌉ − 1).

The communication cost of using a seed tree is advantageous when there
are at least t

2 zero challenges. This can be enforced by sampling the challenges
according to a fixed-weight distribution, as shown in the next optimization.
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In the multi-signature, the expected number of zero challenges is t(n)
n+1 . There-

fore, the use of a seed tree is already ineffective for n = 2 users.

5.3 Unbalanced Challenges

When random responses corresponding to chi = 0 are compressed with a seed
as described above, the resulting size is much smaller than when the challenge
is non-zero. A standard technique to exploit this imbalance is to modify the
distribution of challenges to increase the number of zero challenges in ch [15,60,9].
More precisely, with this optimization, we choose parameters t, ω such that there
are exactly ω non-zero challenges among t execution of the protocol. When the
challenge space is binary, as in Algorithm 1, the number of challenges in {0, 1}t
having exactly ω components equal to 1 is

(
t
ω

)
. Therefore, the choice of t, ω must

be made so that (
t

ω

)−1
≤ 2−λ. (2)

The security of this solution is well understood in the case of special-sound
Σ-protocol since, as for parallel repetition, the resulting protocol is still special-
sound with challenge space of cardinality

(
t
ω

)
. However, this is not trivial to

extend to generic k-special-sound Σ-protocol of multi-round protocols and was
only recently proved secure in [11].

By applying this optimization on Π2, for each response we send ω group
elements corresponding to chi = 1. The remaining t− ω group elements corre-
sponding to chi = 0 are replaced by random seeds that can be further compressed
using the Seed Tree optimization. We obtain the protocol Π3, the size of the
signature associated with FS[Π3] is given by:

|r|+ |ch|+ |rsp| = 2λ+ λ+
(
2⌈log2(ω)⌉ + ω(⌈log2(t)⌉ − ⌈log2(ω)⌉ − 1)

)
· λ+ ωℓG.

Notice that when λ≪ ℓG, using this optimization with an appropriate choice
of ω compresses the signature considerably. On the other hand, to maintain the
same security level, t must be chosen according to Equation (2). This typically
results in an increase in the number of parallel repetitions, leading to a trade-off
between the size of the signature and the efficiency of the signing and verification
process.

In the multi-signature of Section 3, the use of fixed-weight challenges can
still be useful to decrease the cheating probability of the adversary. In fact, the
best strategy for an adversary is to control all parties except the target user Pi

and to have a challenge with few components chj = i. To make this possibility
negligible, a large number of parallel repetitions t(n) must be chosen, making the
signature inefficient. As a countermeasure, we can consider challenges where each
value i ∈ [1, n] appears the same number of times. More in detail, for each n ∈ N,
we choose t, ω such that the challenges are elements of [0, n]t with exactly ω
components equal to i, for each i ∈ [1, n], and the remaining t− nω components
are equal to 0. Let Cht,ωn denote the challenge set mentioned above. The number
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of challenges in Cht,ωn is
t!

(t− nω)!(ω!)n
.

Once a commitment is fixed, let ηt,ω be the maximum number of challenges in
Cht,ωn an adversary can answer to without knowing the private key (i.e. from the
responses to such challenges it would not be possible to extract the witness).
Then t, ω must be chosen such that

ηt,ω

|Cht,ωn |
≤ 2−λ. (3)

Lemma 1. Given n ∈ N, the value ηt,ω can be expressed as

max
0≤k≤n−1

(t− (n− k)ω)!

(t− nω)!(ω!)k
((n− k)ω)!

(ω!)n−k
. (4)

Proof. Suppose w.l.o.g. that the target user is P1, so that, without knowing their
private key, an adversary cannot answer two challenges with 0 and 1 in the same
component. In the following, let Chn = {0, . . . , n} and let Chtn be the set of
challenge strings of length t. For a subset C ⊂ Chtn, let HC be the undirected
graph whose vertices are the elements of Chn and in which, for any x, y ∈ Chn,
there is a link between x and y in HC if and only if there exist two challenge
strings ch, ch′ ∈ C such that chi = x and ch′i = y for some index 1 ≤ i ≤ t.

Let C be the set of all subsets C of Cht,ωn such that 0 and 1 are not connected
in HC . It follows that ηt,ω is the maximum cardinality among the sets in C.
Given a set C ∈ C, let k be the number of challenges α1, . . . , αk ∈ Chn \ {1}
for which there is a path between 0 and αi in HC . The remaining n − k − 1
challenges β1, . . . , βn−k−1 ∈ Chn \ {0, 1} can either be all connected to 1 or
form smaller connected components. For any ch ∈ Cht,ωn , there are exactly ω
components of ch equal to αi or βj , and t−nω components equal to 0. Therefore,
in C we can have at most (t−(n−k)ω)!

(t−nω)!(ω!)k
choices for the entries that have a path

to 0. The remaining (n− k)ω entries, can have at most ((n−k)ω)!
(ω!)n−k choices when

β1, . . . , βn−k−1 are all connected to 1. Therefore, the maximal size of a set C ∈ C
is given in Equation (4).

In the following, we choose t = (n + 1)ω, so that each value in {0, . . . , n}
appears exactly ω times.

Lemma 2. Given n ∈ N, let ηω = η(n+1)ω,ω. Then

ηω =
(nω)!

(ω!)n
.

Proof. Substituting t = (n+ 1)ω in Equation (4), we obtain

ηω = η(n+1)ω,ω = max
0≤k≤n−1

((k + 1)ω)!

(ω!)k+1

((n− k)ω)!

(ω!)n−k
.
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Consider the discrete function f(k) taking values in { 0, . . . , n− 1 }, defined by

f(k) =
((k + 1)ω)!

(ω!)k+1

((n− k)ω)!

(ω!)n−k
.

Notice that f(k) = f(n− 1− k), it is then sufficient to prove that f is decreasing
for k ≤ ⌊(n− 1)/2⌋. In fact, for any k, it holds that

f(k)

f(k + 1)
=

((k + 1)ω)!

((k + 2)ω)!

((n− k)ω)!

((n− k − 1)ω)!
=

ω−1∏
i=1

(n− k)ω − i

(k + 2)ω − i
.

Notice that for any term in the product, it holds that

(n− k)ω − i ≥ (k + 2)ω − i ⇐⇒ k ≤
⌊
n− 2

2

⌋
.

Therefore ηω = f(0) = f(n− 1) = (nω)!
(ω!)n .

If we substitute the value of ηω from previous lemma in Equation (3), then
the choice of ω should be made such that

2−λ ≥ ηω

|Ch(n+1)ω,ω
n |

=

(
(n+ 1)ω

ω

)−1
.

The choice of ω is made with the aim of minimizing the size of the response
array z, where

|z| = nωℓG + ωℓseeds. (5)

In Section 6 we provide a concrete analysis of the optimal values for ω for
the selected signature schemes.

5.4 Multiple Public Keys

It is possible to consider multiple public keys for each user in order to reduce the
size of the signature. This is a standard technique [32] employed in group action-
based signatures to achieve a trade-off between signature size and public key size.
Unlike previous optimizations, in this case the underlying security assumption is
modified. The signer generates s− 1 public keys associated to different private
keys, and the challenge space is extended from {0, 1} to {0, . . . , s− 1} so that a
challenge can select one of the keys. The response is then generated using the
relevant private key, exhibiting a group element that maps the selected public
key to the commitment. The security assumption underlying the signature is
modified to the following

Definition 6. Given a group action (G,X, ⋆), the Multiple Group Action Inverse
Problem (MGAIP⋆) takes as input a collection of elements x0, . . . , xs−1 in the
orbit G ⋆ x0, and asks to find g ∈ G such that xi = g ⋆ xj, for some i ̸= j.
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This problem is still hard, and reduces tightly to GAIP, for instance, a proof
is given in [8, Theorem 3] and it can be easily generalized. Since the challenge
space of the single instance is extended from a binary space to one of s elements,
the soundness error is reduced to 1/s. Clearly, this also reduces the number of
repetitions required to t = ⌈λ/ log(s)⌉.

To obtain a soundness error negligible in λ with a single instance of the
protocol would require generating an exponential number of keys (s = 2λ). For
this reason, this approach is usually combined with the previous optimizations
to reduce the size of the signature with a limited increase in the public-key
size. Notice that when chi = 0, the response is still a random group element
that can be replaced with a short seed; while for chi ̸= 0 a full group element
is required. We can then apply the fixed-weight optimization to send ω group
elements corresponding to chi ̸= 0 and t−ω short seeds corresponding to chi = 0.
Therefore, the choice of t, ω must be made so that[(

t

ω

)
(s− 1)ω

]−1
≤ 2−λ. (6)

By combining all previous optimizations, we obtain the protocol Π4. The size
of the signature associated with FS[Π4] is given by:

|r|+ |ch|+ |rsp| = 2λ+λ+
(
2⌈log2(ω)⌉+ω(⌈log2(t)⌉−⌈log2(ω)⌉−1)

)
·λ+ωℓG. (7)

Notice that this is the same as the fixed-weight case, but here the number of
repetitions will be smaller due to the increased number of public keys, resulting
in a more compact signature.

Using this optimization in the multi-signature requires minor modifications
to the MS protocol described in Algorithm 3. In fact, the protocol already allows
multi-bit challenges to select a specific user’s key. It is, therefore, sufficient
to extend the challenge space so that one of the user’s keys can be selected.
Notice, however, that this optimization modifies the public keys of the underlying
signature, and is therefore applicable only if the signature scheme provides
for it. The changes described below will then be used in Section 6 for the
parameterization of signatures using multiple public keys.

In the following, we combine the use of multiple public keys with the un-
balanced challenge optimization of the previous section, evaluating its impact
on soundness error and signature size. Concretely, suppose each user Pi has
s public keys x

(0)
i , . . . , x

(s−1)
i ∈ X, where x

(0)
i = x0. For a fixed n ∈ N, let

Chn,s = {0, . . . , n(s− 1)} be the challenge space of the single instance, where 0

identifies x0 and k = (i− 1)(s− 1) + j identifies x
(j)
i of user Pi, with 1 ≤ i ≤ n

and 1 ≤ j ≤ s− 1. Similarly to the single key case, we choose t, ω such that the
challenges are elements of Chtn,s with exactly ω components corresponding to the
i-th user, and the remaining t− nω components are equal to 0. Let Cht,ωn,s denote
the challenge set described above. The number of challenges in Cht,ωn,s is

t!

(t− nω)!(ω!)n
(s− 1)nω.
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Let ηt,ω be the maximum number of challenges in Cht,ωn,s an adversary can answer
to without knowledge of the private key. Then t, ω must be chosen such that

ηt,ω

|Cht,ωn,s|
≤ 2−λ. (8)

As in the case of the single key, we simplify by choosing t = (n+1)ω. By adapting
Lemma 1 and Lemma 2, we obtain that

ηω = max
k1+...+ks=n−1

s∏
i=1

((ki + 1)ω)!

(ω!)ki+1
(s− 1)kiω =

(nω)!

(ω!)n
(s− 1)(n−1)ω.

If we substitute the value of ηω in Equation (8), then the choice of ω should be
made such that

2−λ ≥ ηω

|Ch(n+1)ω,ω
n,s |

=

(
(n+ 1)ω

ω

)−1
(s− 1)−ω. (9)

With respect to Equation (5), the expression for the size of the response size
remains unchanged. On the other hand, as s increases, we can choose a smaller
ω in order to obtain a more compact signature.

6 Instantiation and Evaluation

In this section, we will provide concrete applications of the multi-signature scheme
described in Section 3 to some digital signature schemes based on group actions,
namely LESS, MEDS, and ALTEQ. We evaluate the efficiency of the scheme by
measuring the compression rate, as defined in Section 5.

Consider a group action (G,X, ⋆) and a security parameter λ. Using the
optimizations described in the previous section, in Table 1 we summarize the bit
length of N centralized signatures and the multi-signature of N users5 associated
with the group action. In more detail, we assume that for both centralized and
multi-signature, we have the same size for random salts ℓsalt = 2λ, outputs of
the random oracle ℓdigest = 2λ, seeds for random elements λ, and group elements
ℓG. For the centralized signature, the number of repetitions t and fixed-weight
parameter of the challenges ω are chosen according to Equation (6) and are
reported in the parameter sets of each scheme. In the multi-signature, the fixed-
weight parameter ω′ is chosen according to Equation (9) and depends on the
number of signers. Notice that, as discussed in Section 5.2, only the centralized
signature can exploit the use of seed trees. It follows that the length of N
concatenated signatures is given by N · |σ| = N · (ℓsalt + ℓdigest +ωℓG + ℓseeds), i.e.,

N ·
(
4λ+ ωℓG + (2⌈log2(ω)⌉ + ω(⌈log2(t)⌉ − ⌈log2(ω)⌉ − 1)) · ℓtree_seed

)
.

5 In this section we use N to denote the number of signers as n is often used as an
internal parameter for the underlying signature scheme.
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Table 1: Data sizes (in bits) and choice of parameters comparison between single-
signature and multi-signature schemes with N users.

Centralized Signature Multi-signature

ℓsalt, ℓdigest 2λ

ℓtree_seed λ

ℓG Byte size of elements in G

s Number of public keys

ω min
{
ω
∣∣∣ ( t

ω

)−1
(s− 1)−ω ≤ 2−λ

}
ℓseeds

(2⌈log2(ω)⌉ + ω(⌈log2(t)⌉ −
⌈log2(ω)⌉ − 1)) · ℓtree_seed

min{ωℓG, Nωλ}

ℓsig N · (ℓsalt + ℓdigest + ωℓG + ℓseeds) ℓsalt + ℓdigest +NωℓG + ℓseeds

On the other hand, compression of random elements can also be exploited in the
case of multi-signatures if the number of signers N is less than ⌊ℓG/λ⌋. It follows
that the length of a multi-signature of N users is given by:

|ΣN | = ℓsalt + ℓdigest +Nω′ℓG + ℓseeds = 4λ+Nω′ℓG +min{ω′ℓG, Nω′λ}.

We observe that in both cases, the length of the signatures is dominated by
NωℓG (resp. Nω′ℓG). The fixed-weight parameter ω for the centralized signature
is fixed for each set of parameters so that the term NωℓG grows linearly with
N . On the other hand, the fixed-weight parameter ω′ for the multi-signature
depends on the number of signers, and is given by:

ω′ = argmin
ω

{(
(N + 1)ω

ω

)−1
(s− 1)−ω ≤ 2−λ

}
.

We can use the following bound from [30, Theorem 11.1.3] to find a simplified
expression of ω′: (

n

k

)
≤ 2nHb(k/n),

where Hb(n) = −n log2(n)− (1− n) log2(1− n) is the binary entropy function.
Therefore, for any N > 1,

2(N+1)ω′Hb(1/(N+1))(s− 1)ω
′
≥
(
(N + 1)ω′

ω′

)
(s− 1)ω

′
≥ 2λ,

so that (N + 1)ω′Hb(1/(N + 1)) + ω′ log2(s− 1) ≥ λ, and

ω′ =

⌈
λ

(N + 1)Hb(1/(N + 1)) + log2(s− 1)

⌉
.
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It follows that a rough approximation for the compression rate τ(N) is given by

τ(N) = 1− |ΣN |
N · |σ|

≈ 1−Nω′ℓG
NωℓG

= 1− 1

ω

⌈
λ

(N + 1)Hb(1/(N + 1)) + log2(s− 1)

⌉
.

The above expression provides an initial estimate of the effectiveness of using
multi-signature. In particular, we will have higher compression as the number of
signers increases, and higher maximum compression for parameter sets using a
fixed-weight parameter that is not too low.

A second metric relevant to the analysis of multi-signature efficiency concerns
the computational costs of producing a signature. In the case of group action-
based signatures, the main parameter affecting the performance of the signing
and verification process is the number t of protocol repetitions. In particular, the
computational cost of producing a signature linearly increases with t. Similarly to
the fixed-weight parameter, the number of repetitions for the centralized signature
is fixed for each set of parameters, and when N signatures are concatenated, the
single instance of the protocol is repeated N · t times distributed among N users.
The number of repetitions for the multi-signature is determined by the number
of signers and is given by (N + 1)ω′. Applying a similar analysis as above, the
repetition rate, i.e., the rate of reduction in the number of iterations between
centralized and multi-signature, is given by

1− (N + 1)ω′

N · t
≈ 1− ω′

t
= 1− 1

t

⌈
λ

(N + 1)Hb(1/(N + 1)) + log2(s− 1)

⌉
.

The previous expression compares performance only in terms of iterations of
the underlying protocol. In the case of an interactive multi-signature, however, it
is also necessary to consider the cost associated with the communication rounds
between the parties during the signing process. The analysis of this cost is beyond
the scope of this work and is not further analysed.

6.1 LESS

LESS [16,9] is a signature scheme based on the hardness of the Linear Code
Equivalence. The LESS group action ⋆LEP is given by the action of the monomial
group Mon(n, q) on the set X of k-dimensional linear codes of length n over
Fq, represented by generator matrices in systematic form. A monomial map in
Mon(n, q) is given by the product of a permutation matrix (which permutes the
codewords coordinates) with a diagonal matrix with all non-zero elements, i.e.
Mon(n, q) = Sn ⋊ (F∗q)n. Hence, the action is defined as

⋆LEP : Mon(n, q)×X → X, (Q,G) 7→ SF(GQ).

In the following, we consider the parameters proposed in [7] with respect to
NIST security levels I, III, and V as reported in Table 5 in Appendix B. The
proposed parameterizations for LESS [7] include the unbalanced challenges with
seed tree optimizations and, for some sets only, the use of multiple public keys.
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Table 2: Minimum number of users N to achieve a signature compression, com-
pression rate, repetition rate and fixed-weight parameter ω′ for 50 and 100 users
for the LESS parameters sets.

Set Min. N
Compr. Rate Repet. Rate FW Par. ω′

N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

LESS-1b 5 0.469 0.529 0.922 0.930 19 17

LESS-1i 6 0.351 0.437 0.933 0.942 16 14

LESS-1s 5 0.342 0.396 0.928 0.934 14 13

LESS-3b 11 0.336 0.413 0.962 0.967 28 25

LESS-3s 13 0.259 0.354 0.972 0.975 25 22

LESS-5b 15 0.281 0.365 0.972 0.975 37 33

LESS-5s 11 0.281 0.374 0.963 0.968 33 29

LESS also includes a specific optimization presented in [58] with the introduc-
tion of the Information Set variant of LEP (IS-LEP), which requires two codes
to be equivalent only on an information set.

Concrete Parameters. The elements of the monomial group Mon(n, q) can be
represented with n(⌈log2(n)⌉+ ⌈log2(q− 1)⌉) bits. Thanks to the information set
optimization, it is only required to transmit ℓG = k(⌈log2(n)⌉+ ⌈log2(q − 1)⌉).
Since in LESS, the parameter k is approximately equal to the security parameter
λ, the compression of random elements in the multi-signature can be applied
when the number of users N is less than

⌊
ℓG
λ

⌋
≈ ⌈log2(n)⌉+ ⌈log2(q − 1)⌉.

For each NIST security level I, III, and V, the LESS specification proposes
three sets of parameters with a progressive trade-off between signature size and
public key size, starting with the balanced set that does not use multiple keys,
with a gradual increase in the intermediate and short sets. The increase in the
number of public keys also corresponds to a lower fixed-weight parameter ω,
leading to lower multi-signature compression for “shorter” parameters. However,
for the level I balanced set, we achieve a compression of 30% starting for N > 15.
In Table 2, some parameters for the multi-signature are shown as the number
of users N changes, along with the minimum number of users N to achieve
a compression of the signature. More extensive data concerning different N is
presented in Appendix B.1.

6.2 MEDS

MEDS [27] is a signature scheme based on the hardness of the Matrix Code
Equivalence. In the following, we consider the parameters proposed in [26] with
respect to NIST security levels I, III, and V as reported in Table 6 in Appendix B.
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Table 3: Minimum number of users N to achieve a signature compression, com-
pression rate, repetition rate and fixed-weight parameter ω′ for 50 and 100 users
for the MEDS parameters sets. (S) and (B) stand for short and balanced, respec-
tively.

Set Min. N
Compr. Rate Repet. Rate FW Par. ω′

N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

MEDS-9923 (S) 36 0.030 0.160 0.986 0.988 16 14

MEDS-13220 (B) 7 0.307 0.405 0.920 0.932 15 13

MEDS-41711 (S) 19 0.174 0.250 0.961 0.965 23 21

MEDS-69497 (B) 4 0.407 0.464 0.860 0.874 22 20

MEDS-134180 (S) 3 0.452 0.509 0.846 0.863 29 26

MEDS-167717 (B) 2 0.576 0.622 0.745 0.775 28 25

The MEDS group action ⋆MCE is given by the action of GLn(q)×GLm(q) on
the set X of k×nm matrices in Fq representing the k-dimensional (n×m)-matrix
codes over Fq:

⋆MCE : (GLn(q)×GLm(q))×X → X, ((L,S),G) 7→ SF(G(LT ⊗ S)).

The proposed parameterizations for MEDS [26] include the unbalanced chal-
lenges with seed tree optimizations and the use of multiple public keys.

Concrete Parameters. The elements of the group GLn(q)×GLm(q) can be
represented with ℓG = (n2 +m2)⌈log2 q⌉ bits.

For each NIST security level I, III, and V, the MEDS specification proposes
two sets of parameters with a strong trade-off between signature size and scheme
efficiency due to the heavy use of the fixed-weight optimization. For the shorter
parameterization, the high number of repetitions allows for an extremely low
fixed-weight parameter ω, reducing the compression of the multi-signature. This
is particularly observable in the short parameterization of security level I, where
there is positive aggregation only from N = 36.

The best aggregation rates are obtained with the balanced parameter of
security level V, with a compression rate greater than 25% already for N > 2
and greater than 50% for N > 19.

The best results for the number of repetitions are obtained for level I and III
balanced parameters with reductions in the number of repetitions exceeding 95%
for any number of users.

In Table 3, some parameters for the multi-signature are given for 50 and 100
users. Additional data is presented in Appendix B.2.
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Table 4: Minimum number of users N to achieve a signature compression, com-
pression rate, repetition rate and Fixed-Weight parameter ω′ for 50 and 100 users
for the ALTEQ parameters sets.

Set Min. N
Compr. Rate Repet. Rate FW Par. ω′

N = 50 N = 100 N = 50 N = 100 N = 50 N = 100

Balanced-I 4 0.394 0.443 0.830 0.844 14 13

Short-I 2 0.351 0.429 0.426 0.495 9 8

Balanced-III 6 0.305 0.374 0.893 0.905 21 19

Short-III 2 0.301 0.355 0.634 0.663 14 13

6.3 ALTEQ

ALTEQ [63] is a signature scheme based on the hardness of the Alternating
Trilinear Form Equivalence problem. In the following, we consider the parameters
proposed in [17] with respect to NIST security levels I and III as reported in
Table 7 in Appendix B.

The ALTEQ group action ⋆ATFE is given by the action of GLn(q) on the set
of alternating trilinear forms ATF(n, q) = {ϕ : Fn

q × Fn
q × Fn

q → Fq}:

⋆ATFE : GLn(q)×ATF(n, q)→ ATF(n, q), (A, ϕ) 7→ ϕ ◦A,

where ϕ ◦A is defined as the map sending (x, y, z) to ϕ(ATx,AT y,AT z).
The proposed parameterizations for ALTEQ [17] include the unbalanced

challenges and the multiple public keys optimizations.

Concrete Parameters. The elements of the group GLn(q) can be represented
with a string of length ℓG = n2⌈log2 q⌉.

For each NIST security level I and III the ALTEQ specification proposes two
sets of parameters with a strong trade-off between signature size and public key
size due to heavy use of the Multiple Public Keys optimization. The increase in
the number of public keys also corresponds to a lower fixed-weight parameter ω,
leading to slightly lower multi-signature compression for “shorter” parameters. On
the other hand, the large number of public keys also benefits the multi-signature,
with little reduction in compression compared to the MEDS case.

Concerning the compression rate, similar results are achieved by all parame-
terizations, with Level I sets having slightly higher aggregation for fewer users.
Considering the balanced parameters of security level I, the compression rate
is greater than 30% for N > 17. The best results for the repetitions rates are
obtained for the balanced parameters of level III with reductions in the number
of repetitions exceeding 80% for any number of users.

In Table 4, the minimum number of users N to achieve compression and
some parameters for the multi-signature are shown as the number of users N
changes. More data on how these parameters change for different N can be found
in Appendix B.3.
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A Proof for EUF-CMA of centralized signature
(Theorem 1)

In this section, we prove the EUF-CMA security of a variant of the centralized
signature based on group actions. The signature scheme is then used in the
security proof of Section 4 to prove the security of the multi-signature scheme.

In the following, we adopt the notation of [5] to define an interactive proof
and its main properties. In particular, we recall the following standard definitions.

Definition 7 (Interactive Proof). An interactive proof (P,V) for a binary
relation R is an interactive protocol between two probabilistic machines, a prover
P and a polynomial time verifier V. Both P and V take as public input a statement
x and, additionally, P takes as private input a witness w ∈ R(x). We denote the
protocol instance as (P(w),V)(x). As the output of the protocol, V either returns
accept or reject. Accordingly, we say the corresponding transcript (i.e., the set
of all messages exchanged in the protocol execution) is accepting or rejecting.

Definition 8 (Knowledge Soundness). An interactive proof (P,V) for rela-
tion R is knowledge sound with knowledge error κ : {0, 1}∗ → [0, 1] if there exists
a positive polynomial q and an algorithm E, called a knowledge extractor, with
the following properties: The extractor E, given input x and rewindable oracle
access to a (potentially dishonest) prover P∗, runs in an expected number of steps
that is polynomial in |x| and outputs a witness w ∈ R(x) with probability

Pr
[
(x, EP

∗
(x)) ∈ R

]
≥ ε(x,P∗)− κ(x)

q(|x|)
,

where ε(x,P∗) := Pr[(P∗,V)(x) = accept].

It can be shown [5] that to satisfy the previous definition, it is sufficient to
restrict to deterministic provers P∗.

Definition 9 (Public-Coin). An interactive proof (P,V) is public-coin if all
of V’s random choices are made public.

We refer to a 3-round public-coin interactive proof as a Σ-protocol.
A common strategy to prove the knowledge soundness of a 3-round protocol

is showing that it enjoys (general) special soundness. Informally, given enough
accepting transcripts with a fixed commitment, it is possible to extract a witness.

Definition 10 (k-out-of-N Special-Soundness). Let k,N ∈ N . A 3-round
public-coin protocol (P,V) for relation R, with challenge set of cardinality N ≥ k,
is k-out-of-N special-sound if there exists a polynomial time algorithm that, on
input a statement x and k accepting transcripts (a, c1, z1), . . . , (a, ck, zk) with
common first message a and pairwise distinct challenges c1, . . . , ck, outputs a
witness w ∈ R(x). We also say (P,V) is k-special-sound and, if k = 2, it is
simply said to be special-sound.

It is well known that k-out-of-N special soundness implies knowledge sound-
ness with knowledge error (k − 1)/N .
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Algorithm 5: Group Action Σ-Protocol with n ephemeral keys
Setup: Group G acting on X via ⋆. Choose x0 ∈ X,n ∈ N. Set x̂0 = x0, ĝ0 = e.
Private key: g1 ∈ G.
Public key: x1 ← g1 ⋆ x0. Set x̂1 = x1.

Prover(g1, x1) Verifier(x1)

for j ← 2, . . . , n do

ĝj ←$ G

x̂j ← ĝj ⋆ x0

g̃ ←$ G

x̃← g̃ ⋆ x0
x̂2, . . . , x̂n, x̃

ch ch←$ [n]

z ← g̃ĝ−1
ch

z

Accept if z ⋆ x̂ch = x̃

A.1 Base Sigma Protocol Variant

We start by modifying the base Sigma protocol from a cryptographic group action
⋆ : G×X → X. In the base protocol, to prove the knowledge of a secret g1 ∈ G
such that x1 = g1 ⋆ x0, the prover proceeds as follows: first, it samples a random
g̃ ∈ G and computes the commitment as x̃← g̃ ⋆ x0. Then, they exhibit a path
from either x0 or x1 to x̃ based on the challenge of the verifier. This protocol is
correct, 2-special sound and perfect honest-verifier zero-knowledge (HVZK).

Given n > 1, we denote with Π[n] the variant Σ-protocol where the prover
additionally samples n−1 ephemeral keys x̂2, . . . , x̂n ∈ X during the commitment
phase. The verifier can then request a path to x̃ from x0, x1 or one of the ephemeral
keys. The protocol is detailed in Algorithm 5. This procedure artificially increases
the challenge space to the set { 0, . . . , n } and increases the knowledge error to
(n− 1)/n. Clearly, this is a step back from the basic protocol, but it effectively
represents a protocol where all but one key is potentially under the control of an
adversary.

Proposition 1. Π[n] is complete, (n+1)-special-sound and honest-verifier zero-
knowledge.

Proof. We prove each property separately.

Completeness In an honest execution, the verifier receives z = g̃ĝ−1ch . Com-
pleteness easily follows since z ⋆ x̂ch = g̃ĝ−1ch ĝch ⋆ x0 = x̃.
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(n+ 1)-Special Soundness Suppose the extractor has access to n+1 accepting
transcript (com, ch1, z1), . . . , (com, chn+1, zn+1) with com = (x̂2, . . . , x̂n, x̃)
and pairwise distinct challenges ch1, . . . , chn+1. It follows that there ex-
ists i, j ∈ [n + 1] such that chi = 1 and chj = 0. Then it can run the
special-soundness extractor from the identification scheme of Section 2.3 on
(com, chi, zi), (com, chj , zj) to extract the witness g1.

Honest-Verifier Zero-Knowledge A polynomial time simulator can be ob-
tained as follows. On input a public key x1 ∈ X, the simulator randomly
samples ch ←$ { 0, . . . , n } , z ←$ G, and ĝ2, . . . , ĝn ←$ G. Then it com-
putes x̂j ← ĝj ⋆ x0 and x̃ ← z ⋆ x̂ch. Finally, it returns the transcript
(com = (x̂2, . . . , x̂n, x̃), ch, z). Notice that in the real distribution, x̂2, . . . , x̂n

and x̃ are uniformly distributed in the orbit of x0, ch is uniformly distributed
in { 0, . . . , n }, and z ∈ G is uniquely determined by z ⋆ x̂ch = x̃. This is the
same in the simulated distribution.

Since Π[n] is (n + 1)-out-of-(n+ 1) special-sound Σ-protocol, we can take
its parallel repetition and still obtain a proof of knowledge. In particular, by
applying [5, Theorem 2], we obtain that the t-fold parallel repetition of Π[n] is
knowledge-sound with knowledge error nt/(n+1)t. Moreover, the same approach
can be applied to show that the t-fold parallel repetition of Π[n], with a single
sample of the ephemeral keys x̂2, . . . , x̂n, is still knowledge-sound with knowledge
error nt/(n+ 1)t.

A.2 Variant with Variable Ephemeral Keys

Next, we show that the full variant Π of Section 3.1 is a proof of knowledge. On
a high level, we show that any dishonest prover P∗ attacking Π can be used to
build a prover P∗n against Π[n]t(n) with the same success probability of P∗. Since
Π[n]t(n) is a proof of knowledge, it is possible to extract the witness from P∗n.

In Π, the challenge space Ch is taken together with a family of surjective
maps fn : Ch → [0, n]t(n) such that f−1n (U([0, n]t(n))) ∼ U(Ch). Let P∗ be a
deterministic prover attacking Π on input x1. More precisely, on input c ∈ Ch,
P∗ outputs a fixed first message a and its response z. We define V : Ch ×
{0, 1}∗ → {accept, reject} the function that runs the verification check that
the verifier performs on the transcript (a, c, z). P∗ is successful on input c if
V (c,P∗(c)) = accept. Since P∗ is deterministic, the number of ephemeral keys
n is fixed and known from the first message a. Then, such a prover naturally
induces a (probabilistic) prover P∗n attacking Π[n]t(n). More precisely, on input
c′ ∈ [0, n]t(n), P∗n randomly samples c←$ f−1n (c′), runs z ← P∗(c), and outputs
z. Since Π[n]t(n) is knowledge-sound, we can use the protocol extractor on P∗n
and estimate its success probability with respect to the success probability of P∗.

We know that the knowledge error for Π[n]t(n) is κ
t(n)
n with κn = n/(n+ 1).

Then, given access to P∗n, the extractor for Π[n]t(n) succeeds with probability at
least (ε(x1,P∗n) − κt(n))/poly(|x1|). To conclude, it is enough to show that the
success probability of P∗n is the same as for P∗:
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ε(x1,P∗n) = Prc′←$[0,n]t(n) [V (c,P∗n(c′) = accept]

= Prc′←$[0,n]t(n)

[
V (c,P∗(c)) = accept | c←$ f−1n (c′)

]
= Prc←$Ch[V (c,P∗(c)) = accept] = ε(x1,P∗).

Therefore, the probability that the extractor on P∗ is successful is at least

ε(x1,P∗)− κ
t(n)
n

poly(|x1|)
.

The previous holds for any prover P∗ with n ephemeral keys. Moreover, by
taking n = N , it holds for any dishonest prover against Π. Therefore, Π is a
knowledge-sound Sigma protocol.

A.3 Application of the Fiat-Shamir Transform

We apply the Fiat-Shamir transform [38] to obtain a signature scheme from
the Sigma protocol Π of Section 3.1. To prove the EUF-CMA security of the
signature scheme, we apply [34, Theorem 22]. Since we already showed that Π is
a proof of knowledge, it is enough to prove that Π has perfect unique responses
and is perfect HVZK.

Perfect Unique Responses. A widely adopted assumption used to define digital
signatures on group actions ⋆ : G×X → X states that the group of stabilizers
of any element of the set X is the trivial group. Moreover, in [25, Lemma 1] it is
proven that the sigma protocol in Algorithm 1 supports perfect unique responses
if and only if the group of stabilizers is trivial. It is easy to see that since the
sigma protocol Algorithm 1 supports perfect unique responses, also the sigma
protocol variants that we present support perfect unique responses.

Perfect HVZK. Immediatly follows from the perfect HVZK of Π[n] where the
simulator also randomly sample n←$ [1, N ].

B Additional Evaluation Data

B.1 LESS

LESS [16,9] is a signature scheme based on the hardness of the Linear Code
Equivalence. The parameters proposed in [7] with respect to NIST security levels
I, III, and V are reported in Table 5. Recently, Chou, Persichetti, and Santini
[28] introduced another notion of equivalence for linear codes and proved that it
reduces to linear equivalence. This notion uses canonical forms to achieve further
compression of group elements transmitted in the response. This optimization is
not currently part of the LESS specification, and we refer to [28] for more details.
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Table 5: Proposed parameters for LESS [7] with corresponding signature sizes.

Set NIST
Cat.

Action Params Signature Params |sig|

n k q t ω s (KiB)

LESS-1b

I 252 126 127

247 30 2 8.4

LESS-1i 244 20 4 5.8

LESS-1s 198 17 8 5.0

LESS-3b
III 400 200 127

759 33 2 16.8

LESS-3s 895 26 3 13.4

LESS-5b
V 548 274 127

1352 40 2 29.8

LESS-5b 907 37 3 26.6

Figure 2b shows the compression rates as the number of users increases and
Figure 2c similarly shows the repetitions rates upon varying the number of users.
Here the best results are obtained for level III and V parameters. Finally, in
Figure 2a presents how the Fixed Weight parameter ω′ changes with an increasing
number of users N .

B.2 MEDS

MEDS [27] is a signature scheme based on the hardness of the Matrix Code
Equivalence. In the following, we consider the parameters proposed in [26] with
respect to NIST security levels I, III, and V as reported in Table 6. The proposed
parameterizations for MEDS [26] include the unbalanced challenges with seed
tree optimizations and the use of multiple public keys. MEDS also proposes a
technique to reduce the size of the signature by representing group elements
by linear combinations of a known base (A1, . . . ,Ak). In particular, a matrix
A ∈ Fm×n

q can be written as A =
∑

i λiAi, requiring only the λi ∈ Fq to be
transmitted, obtaining a compression to k⌈log2 q⌉ bits. This optimization is not
currently part of the MEDS proposed parameters, and we refer to [26] for more
details.

The trend of the fixed-weight parameter ω′ for the multi-signature as the
number of users changes is shown in Figure 3a. Figure 3b and Figure 3c show,
respectively, the compression rates and the repetitions rates as the number of
users increases.

B.3 ALTEQ

ALTEQ [63] is a signature scheme based on the hardness of the Alternating
Trilinear Form Equivalence problem. In Table 7, we report the parameters
proposed in [17] with respect to NIST security levels I and III.

The trend of the fixed-weight parameter ω′ for the multi-signature as the
number of users changes is shown in Figure 4a while Figure 4b shows the
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Table 6: Proposed parameters for MEDS [26] with corresponding signature sizes.

Set NIST
Cat.

Action Params Signature Params |sig|

q (n,m, k) t ω s (KiB)

MEDS-9923
I 4093 14

1152 14 4 9.7

MEDS-13320 192 20 5 12.7

MEDS-41711
III 4093 22

608 26 4 40.1

MEDS-69497 160 36 5 53.5

MEDS-134180
V 2039 30

192 52 5 129.4

MEDS-167717 112 66 6 161.6

Table 7: Proposed parameters for ALTEQ [17] with corresponding signature sizes.

Set NIST
Cat.

Action Params Centr. Sig. Params |sig|

n q t ω s (KiB)

Balanced-I
I 13 232 − 5

84 22 7 15.6

Short-I 16 14 458 9.3

Balanced-III
III 20 232 − 5

201 28 7 47.9

Short-III 39 20 229 31.8

compression rates as the number of users increases. Figure 4c similarly shows the
repetitions rates upon varying the number of users.
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(a) Fixed-Weight parameters for LESS parameters.

(b) Compression rates for LESS parameters.

(c) Repetitions rates for LESS parameters.

Fig. 2: Multi-signature rates and parameters for LESS.
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(a) Fixed-Weight parameters for MEDS parameters.

(b) Compression rates for MEDS parameters.

(c) Repetitions rates for MEDS parameters.

Fig. 3: Multi-signature rates and parameters for MEDS.
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(a) Fixed-Weight parameters for ALTEQ parameters.

(b) Compression rates for ALTEQ parameters.

(c) Repetitions rates for ALTEQ parameters.

Fig. 4: Multi-signature rates and parameters for ALTEQ.
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