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Abstract

One of the main candidates of post-quantum cryptography is lattice-based cryptography. Its
cryptographic security against quantum attackers is based on the worst-case hardness of lattice
problems like the shortest vector problem (SVP), which asks to find the shortest non-zero vector in
an integer lattice. Asymptotic quantum speedups for solving SVP are known and rely on Grover’s
search. However, to assess the security of lattice-based cryptography against these Grover-like
quantum speedups, it is necessary to carry out a precise resource estimation beyond asymptotic
scalings. In this work, we perform a careful analysis on the resources required to implement several
sieving algorithms aided by Grover’s search for dimensions of cryptographic interests. For such,
we take into account fixed-point quantum arithmetic operations, non-asymptotic Grover’s search,
the cost of using quantum random access memory (QRAM), different physical architectures, and
quantum error correction. We find that even under very optimistic assumptions like circuit-level
noise of 10−5, code cycles of 100 ns, reaction time of 1 µs, and using state-of-the-art arithmetic
circuits and quantum error-correction protocols, the best sieving algorithms require ≈ 1013 physical
qubits and ≈ 1031 years to solve SVP on a lattice of dimension 400, which is roughly the dimension
for minimally secure post-quantum cryptographic standards currently being proposed by NIST.
We estimate that a 6-GHz-clock-rate single-core classical computer would take roughly the same
amount of time to solve the same problem. We conclude that there is currently little to no quantum
speedup in the dimensions of cryptographic interest and the possibility of realising a considerable
quantum speedup using quantum sieving algorithms would require significant breakthroughs in
theoretical protocols and hardware development.
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1 Introduction

Lattice-based cryptography [101, 174, 175, 153] has emerged as an important alternative to traditional
discrete-log-based cryptosystems like RSA, DSA, and Elliptic-curve cryptography since the advent of
Shor’s algorithm in 1994 [186, 185]. Apart from the belief of being cryptographically secure against
quantum attacks, lattice-based cryptography has several other important properties, like being based
on worst-case hardness of lattice problems, e.g., the shortest vector problem (SVP) [8], and allowing
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fully homomorphic encryption schemes [82, 45]. For these reasons, lattice-based cryptography is still
considered one of the main candidates of post-quantum cryptography [38], to the point of being one of
the finalist in NIST’s undertaking of the standardization of post-quantum cryptography schemes [162].
It is therefore of paramount importance to understand the security level provided by lattice-based
cryptography not only against classical attackers but also against quantum ones in order to determine
the security guaranteed at various parameter regimes.

The security assumptions of such schemes are related to the problem of finding the shortest non-zero
vector in a lattice, in the sense that the best attacks on them make use of an oracle for (approximate)
SVP. There are currently three main types of algorithms to solve SVP: sieving [12, 11, 156, 5], enumer-
ation [76, 112, 168], and constructing the Voronoi cell of the lattice [6, 155]. Heuristic versions of lattice
sieving and enumeration have seen a lot of success in solving SVP practically, with lattice sieving [119]
holding the record for breaking an NTRU [101] challenge by Security Innovation Inc. [103] with largest
dimension. By using the BKZ (Block-Korkine-Zolotarev) algorithm [183] with lattice sieving, Kir-
shanova, May, and Nowakowski [119] recently broke a lattice-based construction in dimension D = 181
in 20 core years. Despite this and a long line of work on such algorithms [112, 168, 76, 160, 156, 128],
however, enumeration and sieving algorithms remain notoriously hard to analyze. The situation is fur-
ther complicated by the introduction of quantum subroutines into sieving and enumeration algorithms
like Grover’s search [95, 96], which makes unclear how secure lattice-based cryptography is against
these “quantumly-enhanced” algorithms. It is thus of critical importance to assess the actual quantum
advantage that subroutines like Grover’s search provide in solving SVP.

A few different works have tried to estimate the amount of resources required, and thus the compu-
tational advantage provided, by Grover’s search in sieving [14, 116, 117] and in enumeration [28, 39, 171]
algorithms. However, all of the existing work on such algorithms ignores the spacetime cost of quan-
tum random access memory (QRAM) [89, 90] and/or of quantum error correction on fault tolerant
quantum computers, which can add a significant overhead. In this work, we perform a very thorough
analysis of the quantum resources required to enhance several sieving algorithms with Grover’s search
by taking into consideration fixed-point arithmetic operations, non-asymptotic Grover’s search, the
cost of QRAM, and quantum error correction.

1.1 Previous works

Sieving algorithms, introduced by Ajtai, Kumar, and Sivakumar [12, 11], attempt to solve SVP by
sampling several vectors and combining them together in order to generate shorter vectors. The
sampled vectors are thus repeatedly “sieved” using a norm-reducing operation until a vector with
shortest norm remains. The first practical and heuristic sieving algorithm was designed by Nguyen
and Vidick [160]. The Nguyen-Vidick sieve (NVSieve) solves SVP in a D-dimensional lattice in time
20.415D+o(D) under heuristic assumptions. Shortly after, Micciancio and Voulgaris [156] presented
GaussSieve, a heuristic sieving algorithm with a time complexity conjectured to be equal to that of
NVSieve, i.e., 20.415D+o(D), but with better performance in practice. Since then, several new sieving
algorithms have been proposed [197, 204, 127, 129, 33, 34, 32]. In particular, heuristic sieves like
NVSieve and GaussSieve have been improved with nearest-neighbour-search methods [104] like locality
sensitive hashing (LSH) [57, 20, 21] and locality sensitive filtering (LSF) [33, 32]. These techniques allow
to reduce the number of vector comparisons by storing low-dimensional sketches (hashes) such that
nearby vectors have a higher chance of sharing the same hash than far away vectors. The asymptotically
best classical sieving algorithms are the NVSieve/GaussSieve enhanced with spherical LSH [129] and
NVSieve/GaussSieve enhanced with spherical LSF [32], which can heuristically solve SVP in time
20.2971D+o(D) and 20.2925D+o(D), respectively. For more on sieving algorithms, see the review [192].

Quantum algorithms for SVP have recently been explored. Laarhoven, Mosca, and van de Pol [130]
studied the impact of Grover’s search on the asymptotic complexity of various classical sieving algo-
rithms, including NVSieve and GaussSieve. They concluded that SVP can be heuristically solved
on a quantum computer in time 20.2671D+o(D) by employing Grover’s search on NVSieve/GaussSieve
with spherical LSH, a ≈ 9% reduction in exponent compared to the classical complexity of [129].
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Later, Laarhoven [128] improved the time complexity to 20.2653D+o(D) by employing Grover’s search on
NVSieve/GaussSieve with spherical LSF, again leading to a ≈ 9% reducing in exponent compared to
its classical counterpart [32]. Chailloux and Loyer [54], on the other hand, presented a modified algo-
rithm in which Grover’s search over a filtered list is replaced with a quantum random walk [147]. This
brings down the asymptotic time of the quantum algorithm to 20.2570D+o(D). We note that their algo-
rithm still uses Grover’s search in the update operation of the quantum random walk. Other works on
quantum heuristic sieving algorithms include [118]. Regarding provably correct algorithms, Aggarwal
et al. [4] more recently gave a provable quantum algorithm that solves SVP in time 20.95D+o(D) and re-
quires 20.5D+o(D) classical memory and poly(D) qubits. If given access to a QRAM of size 20.293D+o(D),
their algorithm requires time 20.835D+o(D) while using the same amount of classical memory and qubits.
This improves upon the previously known fastest classical provable algorithm [5].

Beyond asymptotic complexities, Albrecht et al. [14] analysed the cost of quantum algorithms for
nearest neighbor search with focus on sieving algorithms. They presented a quantum circuit for per-
forming a simple version of LSF using a population count filter, which lets two vectors through the
same filter whenever their hashes (using Charikar’s LSH scheme [57]) have small Hamming distance.
The authors then employed Grover’s algorithm inside a quantum amplitude amplification routine [46]
to search over the filtered list of nearby vectors to a given vector. By assuming 32 bits of precision,
taking quantum arithmetic operations into consideration, disregarding the cost of QRAM, and using a
simplified quantum error-correction analysis, Albrecht et al. [14] compared the number of classical and
quantum operations employed by three different sieving algorithms: the NVSieve [160], the bgj1 spe-
cialisation [13] of the Becker-Gama-Joux sieve [33] (which is akin to NVSieve with angular LSH [127]),
and the NVSieve with spherical LSF [32]. They concluded that the number of quantum operations is
indeed asymptotically smaller than the number of classical operations, but are comparable at crypto-
graphic dimensions of interest. For example, at dimension D = 400, which is roughly the dimension
in which SVP has to be solved to be able to break the minimally secure post-quantum cryptographic
standards currently being standardised [27], Albrecht et al. [14, Figure 2] estimated that NVSieve with
spherical LSF (called ListDecodingSearch in their paper) requires either ≈ 1042 quantum operations
or ≈ 1043 classical operations.

Regarding other works on resource estimations of quantum sieving algorithms, Kim et al. [117]
estimated the number of logical qubits and logical quantum gates required by Grover’s search on
NVSieve to solve SVP in lattices of small dimensions. As an example, by ignoring QRAM and quantum
error correction, the authors estimated that a single Grover’s search would require ≈ 7 · 107 logical
quantum gates and ≈ 1.5 · 106 logical qubits in dimension D = 70 (cf. [117, Table 3]). On the
other hand, Prokop et al. [171] proposed a quantum circuit for and studied the resource requirements
of a Grover oracle for SVP and analysed how to combine Grover’s search with the BKZ algorithm.
Beyond sieving algorithms, we briefly mention a variational quantum algorithm proposal with resource
estimations for the NISQ era [15] and estimations for quantum enumeration algorithms [28, 39] and
for Grover’s search attacks on EAS [94, 17, 42, 105] and on SHA-2/SHA-3 [18].

1.2 Our contributions

In this paper, we study how practical quantum speedups for lattice sieves are by performing a precise es-
timate on the amount of resources required to implement Grover’s search on several sieving algorithms.
The sieving algorithms considered in this work are the plain NVSieve [160] and GaussSieve [156] and
their enhanced versions with angular/hyperplane LSH (also known as HashSieve) [127], with spheri-
cal/hypercone LSH (also known as SphereSieve) [129], and with spherical/hypercone LSF (also known
as BDGL sieve) [32], to a total of 8 different sieves. Each of these sieving algorithms perform several
Grover’s searches per sieving step in order to find lattice vectors that can be combined to yield a new
lattice vector with a smaller norm. We compute the amount of physical qubits and time required to
perform all Grover’s searches in a typical instance of the aforementioned sieves. For such, we take into
consideration:
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1. Fixed-point quantum arithmetic. Every entry of a D-dimensional vector is stored using
two’s-complement representation with κ = 32 (qu)bits and arithmetic operations on a quantum
computer are performed modulo 2κ. Possible overflows are ignored. We decompose the Grover
oracle behind each sieving algorithm into basic arithmetic operations like addition, comparison,
and multiplication, and employ quantum circuits for each such arithmetic operation. For quan-
tum addition and comparison, we utilise Gidney’s out-of-place quantum adder [85], which has
the lowest Toffoli-count of all quantum adders that we are aware of. For quantum multiplication,
we utilise a simple decomposition into quantum adders based on schoolbook multiplication that
has lower Toffoli-count compared to previous works. A similar construction has appeared in [25]
and, very recently, in [141].

2. Non-asymptotic Grover’s search. It is well known that Grover’s search requires ⌊π4
√
N/M⌋

iterations to find one out ofM marked elements in a database of size N with high probability if M
and N are known beforehand. We do not assume to know the number of solutions to any Grover’s
search within a sieving algorithm. This requires an exponential search Grover’s algorithm [43]
whose complexity beyond an asymptotic scaling was analysed by Cade, Folkertsma, Niesen, and
Weggeman [50] and which we borrow.

3. Quantum random access memory. We take into consideration the cost of employing quan-
tum random access memory (QRAM) to quantumly access a classical database within Grover’s
search. We work exclusively with QRAMs that access classical data and consider the circuit
implementation from Arunachalam et al. [23] (see also [66]) of the bucket-brigade QRAM archi-
tecture [89, 90], which is conceptually simple, has shallow depth, and is noise resilient [99]. We
assume that the memory content can be classically rewritten without affecting the QRAM circuit.

4. Physical architectures. It is necessary to specify a physical architecture for a general-purpose
fault-tolerant quantum computer. Here we assume two different types of architectures: baseline
architectures with nearest-neighbor logical two-qubit interactions on a 2D grid [138, 78, 55, 56,
41], of which Google’s Sycamore processor [24] is an example, and the active-volume architecture
recently proposed by Litinski and Nickerson [142] that employs a logarithmic number of non-local
connections between logical qubits.

5. Quantum error correction. Physical quantum computers are heavily affected by noise and
a realistic resource estimate should take this into consideration. In this paper we assume an
incoherent circuit-level noise model for the physical qubits with error pphy = 10−5. In order to
protect against errors, we use surface codes introduced by Kitaev [120, 121] to encode logical
qubits, or more precisely, a patch-based surface-code encoding [102]. The time required to mea-
sure all surface-code check operators as part of error detecting and correction defines a code cycle,
which we assume to be 100 ns. The most expensive operations on surface codes are non-Clifford
gates like T and Toffoli gates, which can be performed by consuming “magic states” [48] akin
to teleportation protocols. We take into consideration space and time overheads to consume
magic states by following the framework of [138, 142]. In order to prepare low-error magic states,
short error-detecting quantum procedures known as magic state distillation protocols [48, 176]
are used. Here we employ the distillation protocols from Litinski [139] which are one of the best
we know of. More specifically, we employ a three-level concatenation distillation protocol by
using two 15-to-1 punctured Reed-Muller codes [48, 97] followed by a third and final 8-to-CCZ
distillation protocol [87] to obtain |CCZ⟩ magic states with errors smaller than 10−40, which
are used to perform fault tolerant Toffoli gates. Finally, the time required to perform a layer
of measurements, feed the measurement outcomes into a classical decoder, perform a classical
decoding algorithm like minimum-weight perfect matching [74, 65] or union-find [64, 63], and use
the result to send new instructions to the quantum computer is called reaction time. We assume
a reaction time of 1 µs. We note that, although the values used here for circuit-level noise, code
cycle, and reaction time are not strictly impossible, they are quite optimistic.
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6. Classical hashing operations. Hashing techniques can be used to decrease the time search-
ing for reducing vectors and require purely classical operations. We take into consideration the
amount of time required to classically hash vectors on top of the time required to quantumly
search for reducing vectors with Grover algorithm. We break the hashing operations into ad-
ditions and multiplications and assume that one addition takes 1 cycle/instruction while one
multiplication takes 4 cycles/instructions. We consider a 6-GHz-clock-rate single-core classical
computer, i.e., it performs 6 ·109 instructions per second. We disregard memory allocation times.

For the sake of comparison, we also consider classical versions of NVSieve and GaussSieve in which
the searching part is perform classically in a sequential manner instead of using Grover algorithm.
For such, we decompose the searching operation into basic arithmetic operations like addition and
multiplications (this decomposition is the same for the Grover oracle). Similarly to the classical hashing
operations, we assume that one addition takes 1 instruction and one multiplication takes 4 instructions.
We consider a 6-GHz-clock-rate single-core classical computer.

Although resource estimates as comprehensive as ours have been carried out under similar consider-
ations for algorithms like Shor’s [86, 140], we are not aware of similar results on sieving (or enumeration)
algorithms. The work of Albrecht et al. [14] is the closest to our results, but they fall short of consider-
ing QRAM and conducting a more rigorous analysis on quantum error correction. As an example, the
scripts provided by Gidney and Ekerå [86] and adapted by Albrecht et al. consider two-level distilla-
tion protocols which, although enough in the context of Shor’s algorithm, cannot produce magic states
with small enough errors for sieving algorithms in high dimensions. A three or four-level distillation
protocol is required to reach errors below 10−40 or even 10−50.

Since NVSieve and GaussSieve are inherently randomised algorithms, we carried out the resource
estimates under heuristic assumptions on the value of internal parameters of these sieves. As examples,
we assume that the initial list size in NVSieve is D · 20.2352D+0.102 log2 D+2.45 as numerically computed
by Nguyen and Vidick [160], while the maximum list size in GaussSieve is 20.193D+2.325 as calculated
by us and similarly reported by Mariano et al. [149]. The number of sieving steps in GaussSieve

has been reported to grow as 20.283D+0.335 by Mariano et al. [149] and independently checked by us.
We refer the reader to Section 8.2 for a complete list of assumptions on the average performance of
NVSieve and GaussSieve. On the other hand, the use of hashing techniques (LSH and LSF) introduces
two tunable parameters: the size of the hash space and the number of hash tables. The values used
for these parameters are highly heuristic in practice, while in asymptotic analyses they are chosen
so to guarantee that nearby vectors collide (have the same hash) in at least one hash table with high
probability and to balance out the time spent hashing and the time spent searching for reducing vectors.
Here we follow a (slightly more detailed) version of the asymptotic analysis. To be more precise, we
set the parameters in order to balance the classical hashing time and the quantum searching time
by ignoring overall complexity constant factors, meaning that classically hashing a list of certain size
would be roughly as costly as quantumly searching the same list. Although not an entirely realistic
assumption, it is optimistic in that it lessens the computational burden on hashing. We leave a more
detail analysis on the hashing parameters for a future work.

Our main results are condensed in Figure 1, where we show the amount of physical qubits and
time required by GaussSieve with LSH/LSF as a function of the lattice dimension D. We consider
an active-volume architecture and omit results for the NVSieve for now as GaussSieve has a better
performance. The number of physical qubits from Figure 1a is the number of physical qubits required to
run the largest Grover’s search in GaussSieve, since physical qubits can be reused in different searches.
On the other hand, Figure 1 shows the time required to execute both a classical and a quantum version
of GaussSieve, i.e., where the searching is performed either classically or via Grover’s search. More
precisely, the execution time of the classical GaussSieve is the sum of all searching and hashing
operations, while the execution time of the quantum GaussSieve is the time required to sequentially
execute all Grover’s searches plus the time required to classically hash all vectors.

At dimensions of cryptographic interest, e.g., at dimension D = 400, GaussSieve with spherical
LSF requires ≈ 1013 physical qubits to solve SVP in ≈ 1031 years. As shown in Section 8.3, most of the
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(a) Active-volume physical qubits of GaussSieve (b) Execution time of GaussSieve

Figure 1: Number of physical qubits and execution time of all Grover’s searches in GaussSieve with
LSH/LSF as a function of the lattice dimension D. We assume an underlying active-volume physical
architecture. The execution time is the sum of the time spent searching for pairs of reducing vectors
(either quantumly or classically) and the classical time spent hashing.

physical qubits are coming from the use of a bucket-brigade-style QRAM, since it requires a number of
logical qubits roughly equal to the size of the accessed database. The total time comes mostly from the
quantum arithmetic circuits and the fact that Grover’s search requires, at the end of the day, a deep
circuit. A classical version of GaussSieve with spherical LSF also requires roughly the same amount
of time to solve SVP.

Figure 1 paints a pessimistic scenario for quantum sieving algorithms, with the number of physical
qubits surpassing modern transistor counts by a few orders of magnitude and a total execution time
comparable to their classical counterpart and greater than the age of the universe. While Albrecht
et al. [14] compared the number of (arithmetic) classical and quantum operations, which is not ideal
as the cost of various elementary operations can vary significantly, here we resolve both classical and
quantum operations into actual execution times. The end result as seen in Figure 1b is a small quantum
advantage for dimensions beyond 400: at D = 500, Grover’s search provides a speedup by roughly two
orders of magnitude.

We stress that the above numbers ignore all the memory fetch operations, which although should
worsen both classical and quantum runtimes, will most likely impact the quantum one more severely
since, as we argue in Section 7, the use of hashing techniques yields lists of candidate vectors that
require several RAM calls to be accessed via QRAM and thus be searched with Grover algorithm.
Moreover, classical searching operations can be more easily parallelised than Grover’s search [203], in
the sense that F parallel Grover algorithms running on F separate search spaces have a total width
that is larger by a factor of F compared to a single Grover algorithm on the whole search space while
only reducing the depth by a factor of

√
F .

It is expected that several assumptions, numbers, and protocols used in this work will become dated
in a few years and several new results on circuit design, quantum error correction, and QRAM will be
discovered (and a few new improvements have indeed been posted online by the time this manuscript
was been finalised [158, 88, 198]), but we believe that the overall message remains that Grover’s
search (and quadratic improvements for that matter) offers very little advantage over classical search
in sieving algorithms at dimensions of cryptographic interest. Any considerable speedups will occur
on dimensions far larger than the ones needed for most cryptographic purposes or require significant
breakthroughs in theoretical protocols and hardware development.

The remainder of the paper is organised as follows. In Section 2 we review basic concepts from
quantum computation and hashing techniques like LSH and LSF. In Section 3 we review several key
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ideas from quantum error correction like surface codes, baseline and active-volume architectures, and
magic state distillation protocols. Section 4 covers all quantum arithmetic circuits employed in our
paper. Section 5 reviews Grover’s search algorithm, while Section 6 reviews the bucket-brigade QRAM.
In Section 7 we describe the NVSieve and GaussSieve with and without LSH/LSF and construct
the Grover oracles for them. In Section 8 we perform our resource estimation analysis. This section
is divided into a few parts: Section 8.1 describes how the resource estimation is performed for the
example when D = 400; Section 8.2 describes our main results; Section 8.3 analyses the cost of QRAM;
Section 8.4 explores the impact of depth restrictions as proposed by NIST post-quantum cryptography
standardisation process [162]. Finally, we conclude in Section 9. The source code and data can be
found in [1].

2 Preliminaries

Given n ∈ N := {1, 2, . . . }, define [n] := {1, . . . , n}. Let X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
be the

usual Pauli matrices and In the n-dimensional identity matrix. We shall refer to In simply as I when
the dimension is clear from context. Let 1[clause] ∈ {0, 1} be the indicator function that equals 1 if
the clause is true and 0 otherwise. Given vectors v, w ∈ RD, let ∥v∥ := (

∑D
i=1 v

2
i )

1/2 be the Euclidean
norm of v, θ(v,w) the angle between v and w, and ⟨v,w⟩ :=

∑D
i=1 viwi their inner product. Let

Γ(z) be the gamma function. We denote by SD−1 := {v ∈ RD : ∥v∥ = 1} the D-dimensional unit
hypersphere and by Hv,α := {x ∈ RD : ⟨v,x⟩ ≥ α} the half-spaces, where v ∈ SD−1. Let CD(α) be
the measure of the spherical cap Cv,α := SD−1 ∩Hv,α and WD(α, β, θ) be the measure of the spherical
wedge Wv,α,w,β := SD−1 ∩ Hv,α ∩ Hw,β , where v,w ∈ SD−1 with ⟨v,w⟩ = cos θ. We shall need the
next known facts.

Fact 1 ([128, Lemma 10.7]). The probability density function Θ[θ1,θ2](θ) of angles between vectors
v,w ∈ SD−1 drawn at random from the unit sphere and such that θ1 ≤ θ(v,w) ≤ θ2 is

Θ[θ1,θ2](θ) =
sinD−2 θ∫ θ2

θ1
sinD−2 ϕ dϕ

.

Fact 2 ([136]). Let v ∈ SD−1 and α ∈ (0, 1). The measure CD(α) of the spherical cap Cv,α is

CD(α) :=
µ(Cv,α)
µ(SD−1)

=
1√
π

Γ(D2 )

Γ(D−1
2 )

∫ arccosα

0
sinD−2 ϕ dϕ.

Fact 3 ([132, Case 8]). Let v,w ∈ SD−1 with ⟨v,w⟩ = cos θ. Let α, β ∈ (0, 1) such that θ < arccosα+
arccosβ and (α− β cos θ)(β − α cos θ) > 0. Define θ∗ ∈ (0, π2 ) by tan θ∗ = α/(β sin θ)− 1/ tan θ. The
measure WD(α, β, θ) of the spherical wedge Wv,α,w,β is

WD(α, β, θ) :=
µ(Wv,α,w,β)

µ(SD−1)
= JD(θ

∗, arccosβ) + JD(θ − θ∗, arccosα),

where

JD(θ1, θ2) :=
1√
π

Γ(D2 )

Γ(D−1
2 )

∫ θ2

θ1

CD−1

(
arccos

(
tan θ1
tanϕ

))
sinD−2 ϕ dϕ.

2.1 Quantum computing

We assume the reader is somewhat familiar with quantum computing. The quantum state of a quantum
system is described by a vector from a Hilbert space H , i.e., a complex vector space with inner product
structure. A qubit, the quantum equivalent of a bit, is a quantum system described by a vector in
H ∼= C2, while an n-qubit system is described by a vector |ψ⟩ in H ∼= C2n . Equivalently, an n-qubit
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quantum system can also be described by a density matrix ρ ∈ C2n×2n , i.e., a semi-definite positive
matrix with unit trace. The evolution of a quantum state |ψ⟩ ∈ C2n is described by a unitary operator
U ∈ C2n×2n , UU† = I where U† is the Hermitian conjugate of U. A unitary operator is also referred
to as a quantum gate. In order to extract classical information from a quantum system, a quantum
measurement is usually performed. A quantum measurement is expressed as a positive operator-valued
measure (POVM), i.e., a set {Em}m of positive operators Em ≻ 0 that sum to identity,

∑
m Em = I.

The probability of measuring Em on |ψ⟩ is pm = ⟨ψ|Em|ψ⟩. A quantum circuit is a sequence of quantum
gates acting on a set of qubits. At the end of the circuit, a measurement is performed and a classical
outcome is observed. We refer the reader to [161, 199] for more information.

There are a few sets of universal gates that can serve as building blocks for any quantum circuit.
One of the most common is the Clifford+T gate set comprising the one and two-qubit gates

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0

0 eiπ/4

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Here, H,CNOT, S are Clifford gates, while the T gate is a non-Clifford gate (it does not normalise
the Pauli group). The Clifford+T gate set {H, S,T,CNOT} is universal [67, 44], meaning that any
quantum circuit can be written in terms of its elements as accurately as required. Another universal
gate set is {H,S,CNOT,Toffoli} [187], where

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

Here, Toffoli is a non-Clifford gate. Define also the CZ and CCZ gates as CZ = (I2 ⊗ H)CNOT(I2 ⊗ H)
and CCZ = (I4⊗H)Toffoli(I4⊗H), respectively. In this work, we shall focus on the {H,S,CNOT,Toffoli}
universal gate set, as all of our circuits can be naturally decomposed using these gates. We shall also
consider the CCZ gate to have the same cost as the Toffoli gate and will count them as a single resource.

By ancillary qubits (or simply ancillae) we mean qubits that can be re-used across computation, so
that a gate U2 can use ancillae from some previous gate U1. This means that if two gates U1 and U2 use
c1 and c2 ancillae, respectively, then the joint gate U1U2 requires max(c1, c2) ancillae. By dirty ancillae
we mean auxiliary qubits employed in a quantum gate that are left entangled with other qubits and
therefore cannot be reused in later computations afresh. This means that if two gates U1 and U2 use
c1 and c2 dirty ancillae, respectively, then the joint gate U1U2 requires c1 + c2 dirty ancillae. We will
routinely keep dirty ancillae after some computation to facilitate its uncomputation at a later time.

By C(k)-X we mean an X gate controlled on k qubits, i.e., an X gate is applied conditioned on all k
qubits being on the |1⟩ state. This means that C(1)-X = CNOT and C(2)-X = Toffoli. It is possible to
decompose C(k)-X into Toffoli gates as summarised in the next well-known result.

Fact 4 (Multi-controlled Toffoli). The multi-controlled Toffoli gate C(k)-X with k > 1 controls can be
implemented using k − 1 Toffoli gates and k − 2 ancillae.

2.2 Locality-sensitive hashing and locality-sensitive filtering

In this work, we consider lattice sieving algorithms. These are algorithms that start with (an exponen-
tially) large list of lattice vectors consisting of long vectors and use it to find shorter lattice vectors. If
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the length of the vectors in the initial list is roughly the same, then this can be done by finding nearby
lattice vectors in the list, since their difference would be a shorter lattice vector. More precisely, we
would like to

find vectors v,w from a list L such that ∥v ±w∥ ≤ max{∥v∥, ∥w∥},

which is equivalent to

find vectors v,w from a list L such that θ(v,±w) ≤ π/3

if ∥v∥ ≈ ∥w∥. The above problem can naturally be framed as a nearest neighbour search. In the nearest
neighbour search, a list of D-dimensional vectors L = {w1, . . . ,wN} ⊂ RD is given and the task is to
preprocess L in such a way that given a new vector v /∈ L, it is possible to efficiently find an element
w ∈ L close(st) to v. Locality-sensitive hashing (LSH) is a well-known technique to speed up nearest
neighbour search and it makes use of locality-sensitive hash functions [104]. A locality-sensitive hash
function h(·) projects a D-dimensional vector into a low-dimension sketch and has the property that
nearby vectors have a higher probability of collision than far away vectors. This sketch can then be
used to bucket vectors in L such that the vectors in the same bucket are close and hence speed up the
search. A family of hash functions H = {h : RD → U ⊂ N} is characterised by the collision probability

p(θ) := Pr
h∼H

[h(v) = h(w) | v,w ∈ SD−1, ⟨v,w⟩ = cos θ],

where h ∼ H means a hash function h uniformly picked over H.
Another well-known technique is locality-sensitive filtering (LSF) [32], which employs a filter that

maps a vector to a binary value: a vector either passes a filter or not. A filter that a vector v passes
through is called a relevant filter for v. Applied to a list L, a filter f maps L to an output filtered
list Lf ⊂ L of points that survive the filter. The idea is to choose a filter that yields an output list
Lf of only nearby vectors. A family of filter functions F = {f : RD → {0, 1}} is characterised by the
collision probability

p(θ) := Pr
f∼F

[v,v ∈ Lf | v,w ∈ SD−1, ⟨v,w⟩ = cos θ],

where f ∼ F means a filter function f uniformly picked over F . We note that while p(0) = 1 for hash
families, the same is not true for most filter families, since in general the collision probability of v with
itself is p(0) < 1.

A hash/filter family with p(θ1)≫ p(θ2) can efficiently distinguish nearby vectors at angle θ1 from
distant vectors at angle θ2 by looking at their hash/filter values. The existence of hash/filter families
with p(θ1) ≈ 1 and p(θ2) ≈ 0 is, however, not straightforward. A common technique is to first construct
a hash/filter family with p(θ1) ≈ p(θ2) and use a series of AND- and OR-compositions to amplify the
gap between p(θ1) and p(θ2) and obtain a new hash/filter family with p′(θ1) > p(θ1) and p′(θ2) < p(θ2).

AND-composition. Given a hash family H with collision probability p(θ), it is possible to construct
a hash family H′ = Hk with collision probability p(θ)k by taking k different and pairwise independent
hash functions h1, . . . , hk ∈ H and defining h ∈ H′ such that h(v) = (h1(v), . . . , hk(v)). Clearly
h(v) = h(w) if and only if hi(v) = hi(w) for all i ∈ [k], and thus p′(θ) = p(θ)k. Similarly for a filter
family F .

OR-composition. Given a hash family H with collision probability p(θ), it is possible to construct
a hash family H′ with collision probability 1− (1− p(θ))t by taking t different and pairwise indepen-
dent hash functions h1, . . . , ht ∈ H and defining h ∈ H′ by the relation h(v) = h(w) if and only if
hi(v) = hi(w) for some i ∈ [t]. Clearly h(v) ̸= h(w) if and only if hi(v) ̸= hi(w) for all i ∈ [t], and
thus 1− p′(θ) = (1− p(θ))t. Similarly for a filter family F .
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Suitable hash/filter families together with AND and OR-compositions can be used to find nearest
neighbors as first described by Indyk and Motwani [104]. The idea is to choose t · k hash functions
hi,j ∈ H from some hash family H and use the AND-composition to combine k of them at a time to
build t new hash functions h1, . . . , ht, where hi(·) = (hi,1(·), . . . , hi,k(·)) for i ∈ [t]. Then, given the
list L, we build t different hash tables T1, . . . , Tt and for each hash table Ti we insert a vector w ∈ L
from the list into the bucket labelled by hi(w). This means that all the vectors from L are inserted
into an appropriate bucket in each hash table. Finally, given a target vector v, we compute its t hash
images h1(v), . . . , ht(v) and look only for candidate vectors in the bucket labelled hi(v) in hash table
Ti, for all i ∈ [t] (OR-composition). In other words, we consider only the vectors that collide with v
in at least one of the hash tables. A similar idea applies to filter families. A vector v is inserted into
a filtered bucket Bi if and only if it survives the concatenated filter fi made out of filters fi,1, . . . , fi,k,
for i ∈ [t].

2.2.1 Angular LSH

A famous hash family is the angular (or hyperplane) locality-sensitive hash method of Charikar [57],
which, as we will see in Section 7, can be used to improve sieving algorithms [127]. Charikar proposed
the following hash family Hang,

Hang = {ha : RD → {0, 1} | a ∈ SD−1}, ha(v) =

{
1 if ⟨a,v⟩ ≥ 0,

0 if ⟨a,v⟩ < 0.

The vector a defining the hash function ha also defines a hyperplane (for which a is a normal vector),
and ha maps the two regions separated by the hyperplane onto different bits. Charikar proved [57] that
the probability of collision is p(θ) = 1 − θ/π, which can be seen from the fact that two vectors v,w
define a two-dimensional plane and these two vectors are mapped onto different hashes if a random
line (the intersection between this plane and the hyperplane defined by a) separates v and w.

Under the angular hash family Hang, consider t hash tables, each with 2k hash buckets, constructed
via AND and OR-compositions with randomly sampled hash functions hi,j ∈ Hang as previously
described. It is possible to calculate the average probability p∗1 that two vectors v,w ∈ RD with
θ(v,w) ≤ π/3 collide in at least one of the t hash tables:

p∗1 = Pr
hi,j∼Hang

[∃i ∈ [t], hi(v) = hi(w) | θ(v,w) ≤ π/3] =
∫ π

3

0
Θ[0,π

3
](θ)
(
1− (1− (1− θ/π)k)t

)
dθ.

It can be shown (see [128, Lemma 10.5]) that p∗1 ≥ 1− ε if k = log3/2 t− log3/2 ln(1/ε). On the other
hand, the average probability p∗2 that two vectors v,w ∈ RD with θ(v,w) > π/3 collide in at least one
of the t hash tables is

p∗2 = Pr
hi,j∼Hang

[∃i ∈ [t], hi(v) = hi(w) | θ(v,w) > π/3] =

∫ π
2

π
3

Θ[π
3
,π
2
](θ)
(
1− (1− (1− θ/π)k)t

)
dθ. (1)

It can be shown (see [128, Lemma 10.8]) that p∗2 ≤ t · 2−βD+o(D) if k = log3/2 t+O(1), where

β = − max
θ∈(π

3
,π
2
)

{
log2 sin θ +

log2 t

D log2(3/2)
log2(1− θ/π)

}
> 0. (2)

Ultimately, the choice for t will depend on the balance between the time hashing and the time searching,
as we shall see in Section 7.

2.2.2 Spherical LSH

Another important hash family that can be used to improve sieving algorithms [129] is the spherical
LSH proposed by Andoni et al. [20, 21]. The spherical LSH partitions the unit sphere SD−1 by first
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sampling u = 2Θ(
√
D) vectors g1, . . . ,gu ∈ RD from a standard D-dimensional Gaussian distribution

N (0, 1)D. A hash region Ri is then associated to each gi as

Ri = {x ∈ SD−1 : ⟨x,gi⟩ ≥ D1/4} \
i−1⋃
j=1

Rj , ∀i ∈ [u].

This procedure sequentially “carves” spherical caps of radius
√
2−o(1). The hash of a vector v is given

by the index of the region Ri it lies in. Moreover, the choice of u = 2Θ(
√
D) guarantees that the unit

sphere is entirely covered by the hash regions with high probability since each hash region covers a
fraction 2−Θ(

√
D) of the sphere. Indeed, Prg∼N (0,1)D [⟨x,g⟩ ≥ D1/4] ≥ (2π)−1/2(D−1/4−D−3/4)e−

√
D/2

for any fixed point x ∈ SD−1 [113], and by following the argument in [22, Appendix A.3], u = 2
√
D

hash regions is enough to cover the unit sphere with failure probability super-exponentially small in
D. Andoni et al. [20, 21] proved that the collision probability for the spherical hash family Hsph is

p(θ) = exp

(
−
√
D

2
tan2

(
θ

2

)
(1 + o(1))

)
.

Under the spherical hash family Hsph with randomly sampled hash functions hi,j ∈ Hsph, the
average probability p∗1 that two vectors v,w ∈ RD with θ(v,w) ≤ π/3 collide in at least one of t hash
tables is

p∗1 = Pr
hi,j∼Hsph

[v,w collide | θ(v,w) ≤ π/3] =
∫ π

3

0
Θ[0,π

3
](θ)

(
1−

(
1− e−

k
√
D

2
tan2( θ

2)(1+o(1))
)t)

dθ.

It can be shown (see [128, Lemma 11.5]) that p∗1 ≥ 1− ε if k = 6(ln t− ln ln(1/ε))/
√
D. On the other

hand, the average probability p∗2 that two vectors v,w ∈ RD with θ(v,w) > π/3 collide in at least one
of t hash tables is

p∗2 = Pr
hi,j∼Hsph

[v,w collide | θ(v,w) > π/3] =

∫ π
2

π
3

Θ[π
3
,π
2
](θ)

(
1−

(
1− e−

k
√
D

2
tan2( θ

2)(1+o(1))
)t)

dθ. (3)

It can be shown (see [128, Lemma 11.6]) that p∗2 ≤ 2−βD+o(D) if k = 6 ln(t)/
√
D + o(1), where

β = − max
θ∈(π

3
,π
2
)

{
log2 sin θ −

(
3 tan2

(
θ

2

)
− 1

)
log2 t

D

}
> 0. (4)

2.2.3 Spherical LSF

Becker et al. [32] proposed the spherical LSF family akin to spherical LSH. In spherical LSF, a filter
is constructed by drawing a random a ∈ SD−1 and a vector v passes the filter if ⟨a,v⟩ ≥ α for some
parameter α > 0. In other words,

Fsph = {fa : RD → {0, 1} | a ∈ SD−1}, fa(v) =

{
1 if ⟨a,v⟩ ≥ α,
0 if ⟨a,v⟩ < α.

As shown by Becker et al. [32], the collision probability for the spherical filter family Fsph is

p(θ) =WD(α, α, θ) = exp

(
D

2
ln

(
1− 2α2

1 + cos θ

)
(1 + o(1))

)
, (5)

while the collision probability of a vector with itself is

p(0) = CD(α) = exp

(
D

2
ln
(
1− α2

)
(1 + o(1))

)
.
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Under the spherical filter family Fsph with randomly sampled filters fi,j ∈ Fsph, the average prob-
ability p∗1 that two vectors v,w ∈ RD with θ(v,w) ≤ π/3 collide in at least one of t filters is

p∗1 = Pr
fi,j∼Fsph

[∃i ∈ [t],v,w ∈ Lfi | θ(v,w) ≤ π/3] =
∫ π

3

0
Θ[0,π

3
](θ)(1− (1−WD(α, α, θ)

k)t)dθ. (6)

SinceWD(α, α, θ) is decreasing in θ, it is not hard to see that p∗1 ≥ 1−(1−WD(α, α, π/3)
k)t. Therefore,

p∗1 ≥ 1 − ε if t ≥ ln(1/ε)/ ln
(
1/(1−WD(α, α, π/3)

k)
)
. Regarding the choice for k, the trivial lower

bound k ≥ 1 leads to an upper bound on α, which is normally the optimal choice, see [32] for more
information. This means that we shall take k = 1 in the above expressions.

LSF methods usually yield better asymptotic complexities when it comes to sieving algorithms,
as shown in Section 7. However, a crucial assumption for the use of filter families over hash families
is the existence of an efficient oracle that identifies any of the concatenated filters a vector passes
through in time proportional to the number of relevant filters out of all concatenated filters. Becker
et al. [32] developed such an oracle, called EfficientListDecoding, by employing random product
codes to efficiently obtain the set of relevant filters, which only mildly affects the overall complexities.
The complexity of their oracle is summarised below.

Fact 5 ([32, Lemma 5.1]). Let t = 2Ω(D) be the number of filter buckets. There is an algorithm that
returns the set of filters that a given vectors passes in average time O(log2D · t · CD(α)) by mainly
visiting at most 2 log2D · t · CD(α) nodes for a pruned enumeration.

3 Quantum error correction

Quantum circuits are usually described on a logical level by applying logical gates onto logical qubits.
If one wants to implement a quantum circuit in actual physical devices, then noise should be taken
into consideration. This is not only valid for classical devices, but especially true for quantum com-
puters, where exquisite control of quantum systems is severely affected by noise. One of the greatest
breakthroughs of the 90s was the realisation that redundancy could also be introduced into quan-
tum systems to protect them against several types of noise, and therefore quantum error-correction
codes exist. Starting with Shor’s nine-qubit code [184], several simple quantum error-correction codes
were soon discovered, e.g., Steane’s seven-qubit code [189], the five-qubit code [37, 131], and the CSS
(Calderbank-Shor-Steane) codes [51, 190]. All these codes are examples of stabiliser codes, i.e., quan-
tum error-correction codes based on the stabiliser formalism invented by Gottessman [92, 93]. In any
quantum error-correction code, a set of physical qubits are entangled in particular states and these
joint states are interpreted as logical qubits. As an example, in Shor’s code [184] |0L⟩ is encoded
as (|000⟩ + |111⟩)⊗3/2

√
2 and |1L⟩ is encoded as (|000⟩ − |111⟩)⊗3/2

√
2, which protects against an

arbitrary error on a single qubit.

3.1 Physical error model

Several properties of quantum error-correction codes are functions of the underlying physical error
model. In this work, we assume incoherent circuit-level noise for the physical qubits, meaning that
each physical gate, state initialisation, and measurement outcome is affected by a random Pauli error
with probability pphy. More precisely, at any point of a quantum circuit, the quantum state of a
physical qubit is mapped according to

ρ 7→ (1− pphy)ρ+
pphy
3
· XρX+

pphy
3
· YρY +

pphy
3
· ZρZ.

Even though two-qubit gates are more prone to errors than single-qubit gates, we consider a single
characteristic error rate pphys for both types of gate in circuit-level noise. We will assume that pphy =
10−5 throughout, which is an optimistic but not unrealistic assumption [29, 80, 146, 59, 157, 178].
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3.2 Surface codes

The codes mentioned above are only resilient to very small physical errors. This was later greatly
improved with the introduction of surface codes by Kitaev [120, 121]. In surface codes, the physical
qubits are arranged in a two-dimensional array on a surface of non-trivial topology, e.g., a plane
or a torus, and quantum operations are associated with non-trivial homology cycles of the surface.
Surface codes have several appealing properties, e.g., very high error tolerance [195, 164] and local
check (stabiliser) measurements. We will not review the surface code in detail here, but we will
quote important properties that will be used in our analysis. For more details on the surface code,
see [65, 79, 138, 60].

There are a few different encoding schemes for surface codes, e.g., defect-based [79], twist-based [40],
and patch-based [102] encodings. Here we shall work exclusively with the latter, since surface-code
patches offer lower space overhead and low-overhead Clifford gates [49, 143]. A (rotated) surface-code
patch of distance d employs d2 physical qubits to encode one logical qubit and is able to correct
arbitrary errors on any ⌊(d − 1)/2⌋ qubits. In order to extract information from a surface code and
check for errors, its check operators are measured, which requires d2 extra measurement qubits for a
total of 2d2 physical qubits. Moreover, the subroutine of measuring check operators naturally sets a
time scale in any experiment. By a code cycle we mean the time required to measure all surface-code
check operators. It is also common to define a logical cycle as d code cycles [138], since Ω(d) check-
operator measurements are required to successfully discern measurement errors from physical errors.
We will assume that a quantum computer can perform one code cycle every 100 ns, which is quite an
optimistic but not unrealistic assumption [58, 179, 126, 30].

One of the main results of the theory of quantum fault tolerance is the threshold theorem [123,
7, 120, 124, 170, 93, 161]. On a high level, it states that, under some reasonable assumptions about
the noise of the underlying hardware, an arbitrary long quantum computation can be carried out
with arbitrarily high reliability, provided the error rate pphy per quantum gate is below a certain
critical threshold value pth. Applied to the surface code specifically, the threshold theorem states that
the probability of a logical error occurring on a distance-d surface code after measuring the check
operators and correcting for the observed physical errors vanishes exponentially with the distance d
as long as pphy is below the threshold pth. This means that a quantum computation can be made
arbitrarily reliant by increasing the distance of the surface-code patch. The surface code exhibits a
very high threshold [195, 164, 188] for most error models, and has a threshold of approximately 1% for
circuit-level noise [196, 191]. Therefore, under a circuit-level noise model with error pphy, the logical
error rate per logical qubit per code cycle can be approximated as [78]

pL(pphy, d) = 0.1(100pphy)
(d+1)/2.

If we wish that n logical qubits survive for T code cycles with high probability, say 99.9%, then the
probability that a logical error affects any logical qubit during all code cycles must be smaller than
0.1%. This determines the required code distance d when encoding the logical qubits as

T · n · pL(pphy, d) < 0.001.

3.3 Baseline architecture vs active-volume architecture

It is necessary to specify a physical architecture for a general-purpose fault-tolerant quantum computer
which, together with a compilation scheme, converts quantum computations into instructions for that
architecture. There are mainly two types of architectures that will be taken into consideration in this
work: baseline architectures with nearest-neighbor logical two-qubit interactions on a 2D grid [138, 78,
55, 56, 41], and the active-volume architecture [142] that employs a logarithmic number of non-local
connections between logical qubits.

In baseline architectures, the most relevant parameters are the number of data qubits nQ (i.e.,
the number of logical qubits on a circuit-level quantum computation) and the number of non-Clifford
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gates, which in our case is the number of Toffoli gates nToff . This is because all Clifford gates can be
commuted to the end of the computation and be absorbed by final measurements [138]. Both quantities
nQ and nToff define the circuit volume nQ · nToff , which is proportional to the spacetime volume cost
of the quantum computation, i.e., the total number of logical qubits taking into consideration space
overheads multiplied by the total number of logical cycles. In baseline architectures, a nQ-qubit
quantum computation consists roughly of 2nQ logical qubits. To be more precise, using Litinksi’s fast
data blocks [138], an nQ-qubit quantum computation requires 2nQ +

√
8nQ + 1 logical qubits in total

(in order to efficiently consume magic states). On the other hand, one Toffoli gate is executed in 6
logical cycles, or in 4 logical cycles if the target qubit is in the |0⟩ state, which will be the case of
almost all Toffoli gates in our circuits.

The figure of merit in baseline architectures is the circuit volume. Most of the time, however, a
large portion of the circuit volume is idle volume, i.e., volume attributed to qubits that are not part
of an operation at a certain time and are thus idling. Since idling qubits have the same cost as active
qubits when using surface codes, the cost of logical operations scales with the number of logical qubits
nQ. In active-volume architectures, on the other hand, only active qubits contribute to the spacetime
volume cost of a quantum computation. More specifically, in active-volume architectures, a quantum
computer is made up of modules with d2 physical qubits. Each module can operate as memory or
a workspace module. A memory module increases the memory capacity by one logical qubit, and a
workspace module increases the computational speed by one logical block per logical cycle. An operation
is measured in terms of logical blocks and its cost is basically the amount of workspace modules it
requires per logical cycle. We assume that nQ logical qubits result in nQ/2 memory qubits and a speed
of nQ/2 logical blocks per logical cycle. The figure of merit in an active-volume architecture is the
number of logical blocks, called active volume. In order to obtain the total active volume of a quantum
computation, we must simply sum up all the active volume of its constituent operations, several of
which were given in [142], e.g., a Toffoli has an active volume of 12 plus the active volume of distilling
a magic state (see Section 3.4). Litinski and Nickerson [142] proposed a general-purpose active-volume
architecture that executes quantum computations with spacetime volume cost of roughly twice the
active volume. Contrary to baseline architectures, active-volume ones rely on non-local connections
between components, which allows for several fast operations. As an example, Bell measurements can
be performed in one code cycle, while in baseline architectures it requires 2 logical cycles via lattice
surgery [102, 143, 78]. We point the reader to [142] for a detailed list of assumptions.

Common to both architectures is the time required to perform a layer of single-qubit measurements
(or Bell measurements in active-volume architecture), feed the measurement outcomes into a classical
decoder, perform a classical decoding algorithm like minimum-weight perfect matching [74, 65] or
union-find [64, 63], and use the result to send new instructions to the quantum computer, which is
called reaction time τr. In this work, we shall assume a reaction time of 1 µs, which is an optimistic
assumption, as most previous works assume a reaction time of 10 µs [86, 140]. Related to the reaction
time is the reaction depth of a quantum computation, which is the number of reaction layers, i.e.,
layers of reactive measurements that must be classically decoded and fed back into the circuit. We
thus distinguish between the time required to execute all gates in a circuit when the reaction time is
zero (circuit time) and the reaction depth times the reaction time (circuit reaction (time) limit).

3.4 Magic state distillation

It is known that no quantum error-correction code can transversally implement a universal gate set [73],
i.e., be physically implemented on a logical qubit by independent actions of single-qubit physical gates
on a subset of the physical qubits. For surface codes, this means T and CCZ gates, among others.
In order to overcome this problem, a resource state is first prepared separately and subsequentially
consumed to execute a non-transversal gate like a T or a CCZ gate [48]. For T gates, the resource state is
a magic state |T ⟩ = (|0⟩+ eiπ/4|1⟩)/

√
2, while for CCZ gates the resource state is |CCZ⟩ = CCZ|+⟩⊗3.

A magic state |T ⟩ can be used to perform a T gate by measuring the logical Pauli product Z ⊗ Z
acting on an input state and the magic state [144, 138, 139] akin to teleportation protocols (cf. [161,
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Figure 10.25]). A similar procedure can be used to perform a CCZ gate by consuming one |CCZ⟩
state (see [142, Figure 14(a)]). However, applying a physical T or CCZ gate onto a few physical qubits
yields a resource state with physical error pphy. If this resource state is then used to perform a logical
gate, the error rate of the logical gate will be proportional to pphy, which can be too high for a long
computation and will spoil the final outcome. One common procedure to generate low-error magic
states is to employ magic state distillation protocols [48].

Magic state distillation is a short error-detecting quantum procedure to generate a low-error magic
state from several high-error magic state copies. First introduced by Bravyi and Kitaev [48] and
Reichardt [176], several different protocols have since been developed [47, 77, 150, 109, 72, 71, 52,
163, 97, 53, 138, 139]. There are a few different but equivalent ways to understand magic state
distillation. One is to create the logical magic state using an error-correction code with transversal
T gates, e.g., punctured Reed-Muller codes [48, 97] or code-blocks [47, 109, 77]. As an example, the
15-to-1 distillation procedure [48, 176, 78] employs a punctured Reed-Muller code to first encode a
logical |+L⟩ state within 15 physical qubits. The transversallity of the code allows to perform a logical
TL gate onto |+L⟩ from individual physical T gates, which yields TL|+L⟩. The encoding procedure
is then uncomputed and the logical information is shifted to one of the physical qubits. Measuring
the remaining physical qubits gives information on possible errors and on whether the procedure was
successful or not. If the error probability of the 15 T gates is pphy, then the error probability of
the output state is 35p3phy, where the factor 35 comes from different error configurations that are not
detectable by the protocol. As a result, 15 magic states with error pphy are distilled down to one magic
state with error 35p3phy. A similar distillation procedure exists for creating a low-error |CCZ⟩ state,
e.g., Gidney and Fowler [87] proposed an 8-to-CCZ distillation protocol to output a |CCZ⟩ state with
error 28p2phy from 8 |T ⟩ states with error pphy. In order to achieve lower error rates than 35p3phy or
28p2phy, it is possible to concatenate different distillation protocols, meaning that the output states of
a level-1 distillation protocol can serve as input magic states for a level-2 distillation protocol, etc.

For baseline architectures, we shall employ the magic state distillation protocols from Litinski [139]
which are, as far as we are aware, one of the best to this day. Litinski’s protocols are characterised by
three code distances dX , dZ , dm from several internal patches. As shown in [139], a (15-to-1)dX ,dZ ,dm

distillation protocol outputs a low-error magic state every 6dm code cycles using 2(dX+4dZ)·3dX+4dm
physical qubits. Similarly, a two-level protocol is described by three additional code distances dX2, dZ2,
and dm2, plus the number nL1 of level-1 distillation blocks, where nL1 is an even integer. As an example
quoted from Litinski’s paper [139, Table 1], if pphy = 10−4, then the (15-to-1)47,3,3 × (8-to-CCZ)15,7,9
protocol outputs a |CCZ⟩ state with error pout = 7.2 · 10−14 in 36.1 code cycles using 12, 400 physical
qubits. As will be clear in Section 8, we shall require higher-than-two-level protocols to achieve error
rates below 10−40. Even though Litinski [139] only focuses on one and two-level distillation protocols, it
is not hard to continue with their analysis and derive the resources required for a three-level distillation
protocol: we simply input level-2 magic states into a level-3 protocol with code parameters dX3, dZ3,
and dm3, plus the number nL2 of level-2 distillation blocks. When optimising the code distances, one
usually finds that dX = d, dZ ≈ d/2, dm ≈ d/2 [139, 142]. We shall then consider concatenated
protocols of the form (15-to-1)nL1

d/4,d/8,d/8 × (15-to-1)nL2

d/2,d/4,d/4 × (8-to-CCZ)d,d/2,d/2.
Regarding active-volume architectures, on the other hand, we employ the distillation protocols

from [142] of the form (15-to-1)d,d/2,d/2 and (8-to-CCZ)d,d,d/2. Given a quantum computation with
logical blocks of distance d, then a (15-to-1)ad,ad/2,ad/2 protocol has an active volume of 35a2/2, while
a (8-to-CCZ)ad,ad,ad/2 protocol has an active volume of 25a2/2. Therefore, a (15-to-1)nL1

d/4,d/8,d/8 ×
(15-to-1)nL2

d/2,d/4,d/4 × (8-to-CCZ)d,d,d/2 protocol has an active volume of 35
32nL1nL2 + 35

8 nL2 + 25
2 . By

using nL1 = 8 level-1 protocols and nL2 = 4 level-2 protocols, 16 level-1 distilled |T ⟩ states are produced
every d/4 code cycles, and 8 level-2 distilled |T ⟩ states are produced every d/2 code cycles, meaning that
one level-3 distilled |CCZ⟩ can be produced every d code cycles. Therefore, the (15-to-1)8d/4,d/8,d/8 ×
(15-to-1)4d/2,d/4,d/4× (8-to-CCZ)d,d,d/2 protocol has an active volume of 65 and produces a |CCZ⟩ state
every logical cycle. The output error can be calculated using the approximate expressions in [142], or
using the Python file for the baseline-architecture distillation protocols from [139].
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Figure 2: Gidney’s out-of-place quantum adder (modulo 2κ) that adds two κ-bit numbers a and b
stored in quantum registers.

4 Arithmetic on a quantum computer

In this section, we turn our attention to the resources needed to perform some simple arithmetic
operations on a quantum computer that will be the building blocks for the analysis of quantum sieving.
But first, we need a way to store D-dimensional vectors with integer entries in a quantum computer.
In order to do that, we store the two’s-complement representation xκ−1 . . . x0 of a κ-bit integer x in
a κ-qubit quantum register |xκ−1, xκ−2, . . . , x0⟩, where x0, . . . xκ−1 ∈ {0, 1}. We do not use a sign-
magnitude representation for an integer x = (−1)xκ−1(xκ−2 · 2κ−2 + · · · + x0 · 20), as done by other
works [200, 68], since addition is non trivial in such representation and several known quantum adders
would have to be modified to take negative numbers into consideration. The value of κ is chosen in
advance and remains the same throughout the whole computation. Increasing the value of κ of course
requires more physical resources for the algorithm execution but at the same time reduces the chance
of an overflow occurring. Throughout this work, we assume κ = 32, which translates to a capacity of
working with integers in the range [−231, 231 − 1]. To store an entire D-dimensional vector, we store
each of its entries separately using the above encoding, so that Dκ qubits are required in total.

We now start with reviewing fundamental arithmetic operations on a quantum computer: addition,
comparison, and multiplication.

4.1 Quantum adders

An out-of-place quantum adder (modulo 2κ) is a unitary that adds two κ-bit integers x = xκ−1 . . . x0
and y = yκ−1 . . . y0 together onto a third register,

|xκ−1, . . . , x0⟩|yκ−1, . . . , y0⟩|0⟩⊗κ 7→ |xκ−1, . . . , x0⟩|yκ−1, . . . , y0⟩|(x+ y)κ−1, . . . , (x+ y)0⟩.

It is possible to define an in-place quantum adder which replaces one of the inputs with the outcome,
but in this work we shall focus on out-of-place adders since they have a lower Toffoli-count [85].

Several quantum adders or related circuits have been proposed in the past few decades [35, 91,
194, 201, 70, 62, 69, 137, 107, 19, 108, 85, 159, 134, 133], see [166] for a review. As far as we are
aware, the state-of-the-art quantum adder in terms of Toffoli-count is due to Gidney [85], which is
an improved version of Cuccaro’s adder [62]. Gidney’s adder (Figure 2) concatenates several copies
of the adder building-block, each of which is made of one Toffoli computation and its uncomputation
requiring no Toffoli gates. In order to add two κ-bit integers, Gidney’s adder requires κ−1 Toffoli gates
in total. Even though Gidney’s results are phrased in terms of T gates, we translate them into Toffoli
gates. The Toffoli-count, together with several other quantities like Toffoli-width (maximum number
of Toffoli gates in a single layer), reaction depth, number of logical qubits are shown in Table 1. Its
active volume, on the other hand, was computed by Litinski and Nickerson [142, Table 1] and equals
to (κ− 1)(39 + C|CCZ⟩) + 7, where C|CCZ⟩ is the active volume of distilling one |CCZ⟩ state.

Using Gidney’s quantum (out-of-place) adder, it is easy to develop a quantum controlled (out-of-
place) adder (modulo 2κ): first apply the vanilla adder to get |c⟩|x⟩|y⟩|0⟩⊗2κ 7→ |c⟩|x⟩|y⟩|x + y⟩|0⟩⊗κ,
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followed by κ Toffoli gates to copy each bit (a+ b)i onto another register controlled on c ∈ {0, 1}. This
yields |c⟩|a⟩|x⟩|x+y⟩|c(x+y)⟩. It is possible to uncompute the ancillary register |x+y⟩ by performing
the inverse of the first adder, which uses no Toffoli gates. However, if we keep such ancillary register,
uncomputing the whole controlled adder requires no Toffoli gates, as opposed to 2κ+O(1) if you call
the inverse of the entire controlled adder. Therefore, we shall keep the ancillary register |x+ y⟩ until
the uncomputation of the whole circuit. Finally, we note that the controlled copying of the ancillary
register |x + y⟩ can be done while the out-of-place adder is being performed. The active volume of
the whole computation, while not considered by [142], can be easily calculated from the its separated
parts. The results are described in Table 1.

4.2 Quantum comparator

A quantum comparator is a unitary that compares whether a κ-bit integer x = xκ−1 . . . x0 is bigger
than another κ-bit integer y = yκ−1 . . . y0,

|x⟩|y⟩|0⟩ 7→ |x⟩|y⟩|1[x > y]⟩.

A comparator can be obtained from the highest-order bit of the difference x − y. Whether we use
one’s-complement or two’s-complement arithmetic, the identity x − y = x+ y holds. Therefore, it is
possible to use an out-of-place adder as a comparator: complement x, employ a quantum adder and
keep the highest-order bit, and complement the obtained highest-order bit. All the adders described in
the previous section are modulo 2κ, meaning that the highest-order bit is not calculated. Nonetheless,
we shall assume that there is no overflow and therefore the highest-order bit of the summation modulo
2κ yields the correct answer. Moreover, if one of the inputs is classical, say y, then there is no need to
complement the quantum register holding x, except maybe for the highest-order bit of x−y depending
on whether we are checking for x > y or x < y.

4.3 Quantum multipliers

Similarly to addition, we can define an out-of-place quantum multiplier (modulo 2κ) as the unitary
that multiplies two κ-bit integers x = xκ−1 . . . x0 and y = yκ−1 . . . y0 together and places the outcome
on a third register,

|xκ−1, . . . , x0⟩|yκ−1, . . . , y0⟩|0⟩⊗κ 7→ |xκ−1, . . . , x0⟩|yκ−1, . . . , y0⟩|(x · y)κ−1, . . . , (x · y)0⟩.

Several quantum multipliers have been proposed in the past decade [137, 107, 26, 125, 177, 159, 169,
134, 81, 133, 165, 148]. In terms of T-count, the works of Li et al. [133] and Orts et al. [165] are the
best as far as we are aware. Li et al. [133] proposed a quantum multiplier with 16κ2 − 14κ T gates,
κ+ 1 ancillae, and T-depth of 4κ2 + 4κ+ 4. Orts et al. [165], on the other hand, proposed a quantum
multiplier with 18κ2− 24κ T gates, 2κ2− 2κ+2 ancillae, and T-depth of 14κ− 14. Both T-counts are
comparable, while the trade-off is between ancillae and T-depth.

Since we are mostly concerned with Toffoli-count and are willing to use extra ancillae (including
keeping dirty ones for subsequent uncomputation), we employ a quantum multiplier based on school-
book multiplication with κ − 1 out-of-place additions from Table 1. We note that a similar idea
appeared before in [180], although not modulo 2κ, and only very recently, by the time this manuscript
was finalised, a similar construction with a similar Toffoli-count was proposed by Litinski [141].

The multiplier works as follows. The input registers |xκ−1, . . . , x0⟩ and |yκ−1, . . . , y0⟩ are first copied
κ − 1 times: the bits xi and yi are copied κ − 1 − i times, i = 0, . . . , κ − 2. This can be done with
κ2 − κ CNOTs in depth ⌈log2 κ⌉. We do not need to copy xi and yi a number of κ − 1 times since
the multiplication is done modulo 2κ and high-order bits are ignored. We then perform κ steps in
parallel: in the i-th step, i = 0, . . . , κ−1, the qubits |xi, . . . , x0⟩ are copied onto fresh ancillae |0⟩⊗(i+1)

controlled on one copy of yκ−1−i using Toffoli gates. At the end of this process, we have κ registers
holding all partial sums: the i-th one made up of i + 1 bits, i = 0, . . . , κ − 1. Then, the κ partial
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Table 1: State-of-the-art constructions for several quantum arithmetic circuits on κ-bit integers. All
operations are out-of-place, modulo 2κ, and already include their inverses. The resources are broken
down into Toffoli-count, Toffoli-width, reaction depth, qubit-width (ancillae plus input/output qubits),
and active volume. Here C|CCZ⟩ is the active volume of distilling one |CCZ⟩ state.

Circuit / Resource Toffoli-count Toffoli-width Reaction depth Qubit-width Active volume

Adder/Comparator κ− 1 1 2(κ− 1) 3κ (κ− 1)(39 + C|CCZ⟩) + 7

Controlled adder 2κ− 1 κ 2κ 4κ+ 1 (κ− 1)(51 + C|CCZ⟩) + 19

Multiplier κ2 − κ+ 1 0.5κ2 + 0.5κ 2κ log2 κ− 2κ− 2 log2 κ+ 4 2κ2 + κ
28κ2 − 42κ+ 28

+(κ2 − κ+ 1)C|CCZ⟩

Multiplier (hybrid) 0.5κ2 − 1.5κ+ 1 0.5κ 2κ log2 κ− 2κ− 2 log2 κ+ 2 1.5κ2 + 0.5κ
20.25κ2 − 48.75κ+ 32

+(0.5κ2 − 1.5κ+ 1)C|CCZ⟩

sums are added up using out-of-places adders until the final sum is computed. This can be done in
any particular order, the amount of resources is left unchanged except for the reaction depth. The
optimal reaction depth combination is tree-wise in ⌈log2 κ⌉ layers. For simplicity of analysis, let us
assume the combination is done sequentially. More precisely, at layer i = 1, . . . , κ − 1, the sum of
the previous layer, which has i bits, is added onto the partial sum with i + 1 bits, which requires an
i-bit out-of-place adder (the least significant digit of the second register is just attached to the result
register to form the (i + 1)-bit answer). This means that the total Toffoli-count (already taking into
account the

∑κ−1
i=0 (i+ 1) = (κ2 + κ)/2 Toffoli gates from the controlled copying) is

κ2 + κ

2
+

κ−1∑
i=1

(i− 1) = κ2 − κ+ 1.

By keeping all dirty ancillae from the computation, the inverse circuit can be implemented with no
Toffoli gates! Regarding ancillae, the initial copying requires κ2−κ ancillae, while the controlled copying
requires another (κ2+κ)/2 ancillae. The κ−1 out-of-place adders require

∑κ−1
i=1 i = (κ2−κ)/2 ancillae,

κ of which will be the output. There are thus 2κ2 − 2κ dirty ancillae, and the total width is 2κ2 + κ
(ancillae plus 3κ input and output qubits).

The active-volume calculation is similar to the Toffoli-count. The 2κ2 − 2κ CNOTs (taking into
consideration the inverse) have an active volume of 2

∑κ−2
i=0 (

3
2(κ − 1 − i) + 2) = 1.5κ2 + 2.5κ − 4,

while the (κ2 + κ)/2 Toffoli gates from the controlled copying (plus inverse) have an active volume of
(14 +C|CCZ⟩)(κ

2 + κ)/2. Finally, the active volume of all adders is
∑κ−1

i=1 ((i− 1)(39 +C|CCZ⟩) + 7) =
19.5κ2 − 51.5κ + 32 + (0.5κ2 − 1.5κ + 1)C|CCZ⟩. Summing everything up yields the active volume of
28κ2 − 42κ+ 28 + (κ2 − κ+ 1)C|CCZ⟩.

Concerning the reaction depth, assume for simplicity that κ is a power of 2. The controlled copying
has reaction depth of 2. On the other hand, the κ − 1 out-of-place adders are distributed in log2 κ
layers, and at the j-th layer, j = 0, . . . , log2 κ − 1, we sort the partial sums in increasing number of
bits and add up the i-th partial sum with the (κ/2j − i + 1)-th partial sum, i = 1, . . . , κ/2j+1. For
example, at the 0-th layer, the partial sum with i bits is added to the partial sum with κ− i+ 1 bits,
which requires an i-bit quantum adder, i = 1, . . . , κ/2 (the κ− 2i+1 least significant bits of the larger
partial sum are simply attached to the result register to form the κ-bit answer). At the j-th layer,
there are κ/2j partial sums, ranging from 1+(1−2−j)κ bits to κ bits. The longest addition at the j-th
layer is the summation between the partial sums with (1− 2−j−1)κ and 1 + (1− 2−j−1)κ bits, which
requires an (1− 2−j−1)κ-bit quantum adder with reaction depth of 2(1− 2−j−1)κ− 2. Therefore, the
total reaction depth is

2 + 2

log2 κ−1∑
j=0

((1− 2−j−1)κ− 1) = 2κ log2 κ− 2κ− 2 log2 κ+ 4.
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Hybrid classical-quantum inputs. In the case when one of the inputs is classical, say y, then the
amount of resources decrease a bit. This is because there is no need to copy the registers |x⟩ and |y⟩ a
number of κ− 1 times at the beginning, since |y⟩ becomes classical and there is no need to parallelise
CNOT gates. Moreover, the Toffoli gates used to controlled copy the register |xi, . . . , x0⟩ using yκ−1−i

become classically controlled CNOT gates. This means that the Toffoli-count decreases by (κ2 + κ)/2,
while the CNOT-count decreases to κ2 + κ (already taking the inverse into consideration), which have
an active volume of

∑κ−1
i=0 (

3
2(κ− i) + 2) = 0.75κ2 + 2.75κ.

5 Grover’s quantum search algorithm

Unstructured search can be defined as follows. Given a function f : {0, 1}n → {0, 1}, find a marked
element x ∈ {0, 1}n such that f(x) = 1, or determine that with high probability, no such input exists.
Classically this requires Θ(2n) evaluations of f to find such an input or determine it does not exist
with high probability. By contrast, Grover [95, 96] designed a quantum algorithm that finds a marked
element with high probability and requires only O(2n/2) calls to an binary oracle Uf that evaluates
f in superposition, Uf : |x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩ for all x ∈ {0, 1}n and y ∈ {0, 1}. It was later
shown [36, 43, 203, 31] that Grover’s algorithm is optimal for unstructured search.

Grover’s algorithm is depicted in Figure 3. By starting with the state 2−n/2
∑

x∈{0,1}n |x⟩ (which
can be obtained from |0⟩⊗n by applying one layer H⊗n of n Hadamard gates), the algorithm repeatedly
applies the so-called Grover operator

G = H⊗n(2|0n⟩⟨0n| − I2n)H
⊗nOf

and then measures the state on the computational basis. The operator D := H⊗n(2|0n⟩⟨0n|− I2n)H⊗n is
called diffusion operator and performs a conditional phase shift such that |x⟩ 7→ (−1)1[x ̸=0n]|x⟩ for all
x ∈ {0, 1}n. The oracle Of , on the other hand, is defined as Of : |x⟩ 7→ (−1)f(x)|x⟩ for all x ∈ {0, 1}n.
We note that it is possible to implement the phase oracle Of from the binary operator Uf by simply
applying Uf onto |x⟩|−⟩, where |−⟩ := (|0⟩ − |1⟩)/

√
2.

Let N = 2n be the number of elements and M the number of marked elements such that f(x) = 1.
It can be shown [95, 96, 46] that after m iterations of G, the probability of measuring a marked el-
ement is sin2((2m + 1)θ), where sin2 θ =

√
M/N . Therefore, by using m = ⌊π4

√
N/M⌋ iterations,

the measurement outcome will be a marked state with probability at least 1− M
N , which is sufficiently

close to 1 for N ≫ 1. Each iteration requires one query to the oracle Of (or Uf ) and one application
of the diffusion operator. The diffusion operator, in turn, requires 2n Hadamard gates and one condi-
tional phase |x⟩ 7→ (−1)1[x ̸=0n]|x⟩, which is basically a slightly modified multi-controlled Toffoli. More
precisely, 2|0n⟩⟨0n| − I2n equals (X⊗n ⊗ I)(C(n)-X)(X⊗(n+1)) applied onto |x⟩|−⟩. The multi-controlled
gate C(n)-X can be implemented using n−1 Toffoli gates and n−2 ancillae according to Fact 4 (among
other resources).

We summarise the above discussion in the following result.

Fact 6 (Grover’s algorithm). Let the positive integers N = 2n and M . Consider a Boolean function
f : {0, 1}n → {0, 1}. Assume M = |{x ∈ {0, 1}n : f(x) = 1}| is known and we have access to a
quantum oracle Of : |x⟩ 7→ (−1)f(x)|x⟩. Then it is possible to find one marked element of f with
probability at least 1− M

N by using ⌊π4
√
N/M⌋ queries to Of and the diffusion operator D.

Fact 6 assumes that the number of solutions is known beforehand, which is usually not the case.
Nonetheless, there is a variant of Grover’s algorithm due to Boyer, Brassard, Høyer, and Tapp [43] (see
also [202]) that applies to the case when the number of solutions is not known ahead of time. The main
idea of their algorithm is to start with some parameter m, choose an integer j uniformly at random
such that 0 ≤ j < m, and perform j iterations of Grover’s search. If it does not return a solution,
the value m is increased to λm for any constant 1 < λ < 4/3 and the procedure is repeated. Boyer et
al. [43] showed that this algorithm finds a solution (or determines that no solution exists) with high
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Figure 3: Circuit for Grover’s search algorithm (top) and the Grover oracle G (bottom).

probability in expected time O(
√
N/M). A very thoroughly analysis of Grover’s algorithm has been

done by Cade, Folkertsma, Niesen, and Weggemans [50], which we quote next and expand with the
necessary resources for the diffusion operator.

Fact 7 ([50, Lemma 4]). Let δ ∈ (0, 1) and the positive integer N = 2n. Consider a Boolean function
f : {0, 1}n → {0, 1} with |{x ∈ {0, 1}n : f(x) = 1}| = M , where 0 ≤ M < N/4 and the value M is
not necessarily known. Assume we have access to a quantum oracle Of : |x⟩ 7→ (−1)f(x)|x⟩ and let
D := H⊗n(2|0n⟩⟨0n| − I2n)H

⊗n be the diffusion operator. Then there is a quantum algorithm that, with
probability at least 1− δ,

• returns x ∈ {0, 1}n such that f(x) = 1 if such a solution exists by using an expected number
⌈7.67

√
N/M⌉ of queries to Of and D,

• or concludes that no such solution exists by using ⌈9.2
√
N log3(1/δ)⌉ queries to Of and D.

Moreover, one call to the diffusion operator requires n − 1 Toffoli gates and n − 1 ancillae, and has
reaction depth of 2⌈log2 n⌉, Toffoli-width of ⌊n/2⌋, and active volume of (n − 1)(18 + C|CCZ⟩), where
C|CCZ⟩ is the active volume of distilling one |CCZ⟩ state.

We mention that there exists an exact version of Grover’s algorithm that succeeds with probability 1
(see [46, Section 2.1] and [199, Exercise 7.5]). However, even though this version is query efficient, it
is not necessarily gate efficient, therefore we will not use it.

6 Quantum random access memory (QRAM)

A quantum random access memory (QRAM) is the quantum analogue of the classical random access
memory (RAM) device which allows access to classical or quantum data in superposition. From a
architecture perspective, a QRAM of size 2n and precision κ is composed of a κ2n-(qu)bit memory
register that stores either κ bits or qubits in each of 2n different cells, an n-qubit address register
which points to the memory cell to be addressed, a κ-qubit target address into which the content
of the addressed memory cell is copied, and an O(2n)-qubit auxiliary register that intermediates the
copying of the memory register into the target register controlled on the address register. For more
details on the architecture of QRAMs, we point the reader to [98, 167, 106, 16].

In general, a QRAM allows access to either classical or quantum data stored in some register.
Throughout this paper, we shall work exclusively with QRAMs that access classical data, which are
sometimes referred to as quantum random access classical memory (C-QRAM or QRACM). For sim-
plicity, we stick to the usual QRAM nomenclature. Moreover, we shall consider QRAM calls that keep
a garbage register (dirty ancillae) in order to aid their uncomputation at latter stages.
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Figure 4: The bucket-brigade QRAM circuit from Arunachalam et al. [23]. In every layer, before the
parallel layer of Toffoli gates, a log-depth linear-size gadget copy the index register so the Toffoli gates
can be executed in parallel.

Definition 8 (Quantum random access memory (QRAM)). A QRAM of size 2n and precision κ is a
device that stores classical, indexed data {xi ∈ {0, 1}κ : i ∈ [2n]} and allows oracle queries

QRAM : |i⟩ |0⟩⊗κ |0̄⟩ 7→ |i⟩ |xi⟩ |garbagei⟩, ∀i ∈ [2n].

The first architectures for QRAM were proposed and formalised in [90, 89], namely the Fan-Out
and bucket-brigade architectures. In these architectures, the memory register is accessed by a binary
tree of size O(2n) and depth n. Each qubit of the address register controls the direction from the root
down to the correct memory cell within the binary tree, i.e., the k-th address qubit specifies whether
to go left or right at a router on the k-th level of the binary tree. The target is sent down the tree and
is routed controlled on the address qubits at each level until the memory register, at which point the
information is copied into the target and the target is sent back up the tree. The difference between
the Fan-Out and bucket-brigade architectures is in how the target qubits are routed down the binary
tree. We point out the reader to [90, 89, 23, 99] for more information.

Here we shall be agnostic regarding the underlying architecture of a QRAM and shall work with the
circuit model instead. We assume nonetheless that the contents of the memory are stored statically,
meaning that the classical data is stored in an external physical hardware, e.g., a tape, which is
quantumly queried. This is accomplished by applying classically controlled CNOT gates onto the
target qubit with one classical control (a bit from the memory) and one quantum control (a qubit from
the last layer of the binary tree). We show a circuit implementation of QRAM in Figure 4. Moreover,
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we also assume that the classical memory can be updated independently from the QRAM device itself.
In other words, m different cells from the classical memory can be rewritten in time O(κm) without
the need to update the remaining registers from the QRAM. This differs from Quantum Read-Only
Memory (QROM) or table lookups [25] which usually encode the memory content into the circuit layout.

The fault-tolerance resources required to implement a QRAM have been studied by a few works [66,
145, 142, 140]. Di Matteo, Gheorghiu, and Mosca [66] studied the amount of T gates in bucket-brigade
style QRAMs, while Low, Kliuchnikov, and Schaeffer [145] proposed a T-efficient sequential QROM
circuit. Litinski and Nickerson [142] worked out the active volume of Low et al. proposal. Here we
employ a bucket-brigade QRAM due to its exponentially smaller reaction depth compared to Low,
Kliuchnikov, and Schaeffer’s QROM.

Lemma 9 (Bucket-brigade QRAM). One bucket-brigade QRAM call of size 2n and precision κ requires
(already including its uncomputation) 2n − 2 Toffoli gates, 2n+1 − n − 1 dirty ancillae (plus n + κ
input/output qubits), and has Toffoli-width of 2n−1, reaction depth of 2(n − 1), and active volume of
(25 + 1.5κ+ C|CCZ⟩)2

n.

Proof. All the resources apart from the active volume are straightforward. In the following, we already
take the uncomputation into consideration. A bucket-brigade QRAM can be divided into 2n− 2 blocks
made up of one Toffoli and one CNOT gate and having active volume 14 + 2 · 4 + C|CCZ⟩; κ · 2n
classically controlled CNOTs with average active volume of (322

n + 1)κ (since on average half the
CNOTs is actually performed); and 2n− n− 1 CNOTs to copy the address register with active volume
of 2

∑n−1
i=0 (

3
2(2

i − 1) + 2) = 3 · 2n + n − 3. Summing all active volumes yields the result after some
simple approximations.

7 The shortest vector problem and sieving algorithms

The most important problem on lattices and that underlies many lattice-based cryptography func-
tions [10, 173, 175, 154] is the shortest vector problem (SVP). Given a set B = {b1, . . . ,bN} ⊂ RD of
N linearly independent vectors, the set

L(B) :=


N∑
j=1

λjbj : λ1, . . . , λN ∈ Z


of all integer linear combinations of B is called the lattice associated with B. The set B is called the
basis of the lattice, while the integers N and D are its rank and dimension, respectively. In this work,
we consider full rank lattices, which is the case when N = D. The minimum distance λ(L) of a lattice
L is the length of its shortest non-zero lattice vector, λ(L) := min{∥x∥ : x ∈ L \ {0}}. We shall abuse
notation and write λ(B) instead of λ(L(B)).

Definition 10 (Shortest vector problem). Given a lattice basis B ∈ RD×D, find x ∈ L(B) such that
∥x∥ = λ(B).

SVP is known to be NP-hard under randomised reductions [9, 151, 152] given an arbitrary basis
of an arbitrary lattice. Even the approximate version of SVP, wherein one is tasked to find a lattice
vector with norm at most (1 + ϵ)λ(B) for ϵ > 0, is known to be NP-hard [114, 115]. Nonetheless,
several exponential-time algorithms have been proposed in the past few decades to tackle SPV. There
are currently three main methodologies: enumeration [76, 112, 168], sieving [12, 11, 156, 5], and
constructing the Voronoi cell of the lattice [6, 155]. Whereas enumeration has a polynomial space
complexity but a superexponential time complexity O(2D logD) on the dimension D of the lattice [168,
182, 183, 112], the remaining methods all have both exponential space and time complexities.

In this section, we focus on and review the major sieving algorithms since their introduction by Aj-
tai, Kumar, and Sivakumar [12, 11]. Sieving algorithms work by sampling a long list L = {v1, . . . ,vm}
of lattice vectors (either initially or during the algorithm) and considering all pair-wise differences
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vi ± vj ∈ L(B) from the list. Most of these combinations result into longer vectors than the initial
vectors vi and vj , but some lead to shorter vectors. By keeping the resulting shorter vectors into a new
list, progress is made into finding the shortest vector. The step of combining lattice vectors from a list
in order to form a new list with shorter lattice vectors is called sieving. We hope that, if a substantially
large number of lattice vectors is sampled, then several sieving steps will result into a small list that
contains the shortest vector.

Whereas Ajtai, Kumar, and Sivakumar [12, 11] originally proved that sieving can solve SVP in
time and space 2Θ(D), later works improved their results and showed that sieving can provably solve
SVP in time 22.465D+o(D) and space 21.233D+o(D) [160, 172, 100]. At first glance, these provable bounds
suggest that sieving algorithms would perform poorly in practice, and that solving SVP on dimension
beyond 50 would be impractical. Experimental works suggest otherwise and that sieving algorithms
perform well in practice. This has led to new sieving proposals that can tackle SVP under heuristic
assumptions. The first proposal for a heuristic sieving algorithm was given by Nguyen and Vidick [160],
which we now review. In what follows, we assume that all the vectors have coordinates described using
κ-bits.

7.1 The Nguyen-Vidick sieve

Nguyen and Vidick [160] proposed the first sieving algorithm that relies on heuristic assumptions. A
version of the Nguyen-Vidick sieve (NVSieve) that already incorporates Grover’s algorithm is depicted
in Algorithm 1 (cf. [128, Algorithm 2]). The first step is to sample a list L of lattice vectors using, e.g.,
Klein’s algorithm [122, 83], which samples lattice vectors from a distribution that is statistically close
to a discrete Gaussian on a lattice with a reasonably small variance. A sieving process is then applied
onto L to reduce pairs by considering the differences v − w of pairs of lattice vectors v,w ∈ L. If
v−w yields a shorter vector than v,w, it is stored in a new list L′. Instead of considering all pair-wise
combinations of vectors from the list L, the NVSieve keeps a list of centers S ⊂ L, each covering a part
of the space. Each vector v ∈ L from the list is thus combined with vectors w ∈ S from the list of
centers. If the result is a shorter vector, v−w is added to new list L′, otherwise the initial list vector
v ∈ L is added to the list of centers S to cover a part of the space which was previously left uncovered.
At the end of the sieving step, L← L′. After many sieving steps as necessary, the list L contains the
shortest lattice vector or is left empty, in which case the whole algorithm is repeated.

Under the heuristic assumption that the angle between two list vectors v,w ∈ L follows the same
distribution as the angle between two uniformly random vectors over the unit sphere, Nguyen and
Vidick [160] proved that an initial list of size (4/3)D/2+o(D) = 20.208D+o(D) suffices to find the shortest
vector. This bounds the space complexity of the NVSieve. On the other hand, the time complexity is
dominated by comparing every list vector v ∈ L to a center vector w ∈ S, and since the number of
center vectors is asymptotically equivalent to the number of list vectors, this means that the NVSieve

solves SVP in time 20.415D+o(D).

7.1.1 Numerical experiments and heuristic assumptions

The asymptotic complexity hides a lot of details, especially in case of a quantum algorithm. We want
a more refined analysis of the runtime of this algorithm. Since the analysis of the NVSieve relies on
heuristic assumptions, i.e., that vectors in L∩BD(γ,R) are uniformly distributed in BD(γ,R) := {v ∈
RD : γR ≤ ∥v∥ ≤ R} (where R = maxv∈L ∥v∥), quantities like the number of sieving steps or the
evolution of the list size |L| can behave as random variables and are thus not determined beforehand.
Nonetheless, it is possible to assert average trends and worst-case bounds through plausible assumptions
and numerical experiments. In the following, we list several observations that shall be useful in forming
assumptions.

1. Nguyen and Vidick [160] proved that, given γ ∈ (2/3, 1), the maximum size of the list of centers
S is upper-bounded by NS = ⌈3

√
2π(D + 1)3/2(γ

√
1− γ2/4)−D⌉. By letting γ → 1, then

NS → ⌈3
√
2π(D + 1)3/2(4/3)D/2⌉. Experimentally, Nguyen and Vidick [160] observed that the
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Algorithm 1: The Nguyen-Vidick sieve
Input: Basis B for a D-dimensional lattice and parameter γ ∈ (0, 1)
Output: Shortest vector v∗ of the lattice.

1 Sample L ⊂ RD

2 while L ̸= ∅ do
3 L0 ← L, L′ ← ∅, S ← {0}, R← maxv∈L ∥v∥
4 for each v ∈ L do
5 w← GroverSearch(w ∈ S : ∥v −w∥ ≤ γR)
6 if w ̸= NULL then // ∃w ∈ S : ∥v −w∥ ≤ γR
7 L′ ← L′ ∪ {v −w}
8 else // ∄w ∈ S : ∥v −w∥ ≤ γR
9 S ← S ∪ {v}

10 L← L′

11 return shortest vector v∗ in L0

size of S is upper-bounded by ln |S| ≤ aD+b lnD+c where a = 0.163(±0.017), b = 0.102(±0.65),
and c = 1.73(±1.72) if γ = 0.97. In other words, |S| ≤ 20.2352D+0.102 log2 D+2.45.

2. In practice, one samples an initial list L of considerable size and runs the NVSieve. If the
shortest vector is not found and the NVSieve thus fails, the whole procedure is restarted but
with a larger initial list. Given numerical experiments from [160] and also conducted by us,
an initial list L of size D times that of |S| ≤ 20.2352D+0.102 log2 D+2.45 suffices. Alternatively,
|L| = ⌈3

√
2π(D + 1)3/2(4/3)D/2⌉ also works.

3. As pointed out by Nguyen and Vidick [160], the list size |L| decreases roughly by (γ
√
1− γ2/4)−D

at each sieving step, provided the vectors in L are well distributed in BD(γ,R). Indeed, in Lines 6
to 9 from Algorithm 1, each v ∈ L is either selected to L′ (reduced by w) or to S, and thus
|L′| ≈ |L|−|S| if there are few collisions (v−w = 0). Numerical experiments from [160, Figure 2]
show that the number of collisions is negligible until R/λ(B) ≈ 4/3. Therefore, for most sieving
steps, the size of L is reduced by the size of S, which is at most 20.2352D+0.102 log2 D+2.45.

4. As γ → 1, the expected size of S decreases, while the number of sieving steps clearly increases.
Nguyen and Vidick [160] used a contraction parameter γ = 0.97 in their simulations. By keeping
γ ≈ 0.97, we expect the upper-bound |S| ≤ 20.2352D+0.102 log2 D+2.45 to hold. Moreover, if γ is not
too close to 1, we can abstract away the number of sieving steps by assuming that |L| roughly
decreases by |S|.

5. While the size of S fluctuates within a sieving step in Algorithm 1, there are other implementa-
tions of the NVSieve [127, 128] in which the list of centers S is sampled from L beforehand in
every sieving step and, therefore, |S| is kept constant.

7.1.2 Quantum oracle for Grover search

The NVSieve employs one search subroutine per sieve step, per list vector, which can be done using
Grover’s algorithm (Line 5 in Algorithm 1). For fixed v ∈ L, the search is done over the centers S
in order to find an element w such that ∥v −w∥ ≤ γR, where R = maxv∈L ∥v∥. Define the Boolean
function fNV : [|S|]→ {0, 1} such that fNV(i) = 1 if and only if ∥v−wi∥ ≤ γR. In order to use Grover
search, we must implement the phase oracle ONV : |i⟩ 7→ (−1)fNV(i)|i⟩, as explained next.

Given any index |i⟩ where i ∈ [|S|], we start with one QRAMS call to load wi onto a (κD)-qubit
ancillary register. The list of centers S is already loaded onto the QRAM at the beginning of every
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Table 2: Amount of subroutines required to implement a phase oracle in each Grover search per
sieve step in the following sieving algorithms: NVSieve, NVSieve with LSH/LSF, GaussSieve,
and GaussSieve with LSH/LSF. The NVSieve requires only one type of Grover search, while the
GaussSieve requires two types. All quantum adders, comparators, and multipliers are κ-bit out-of-
place operations. Operations marked by (∗) have hybrid classical-quantum inputs and are thus cheaper.
All subroutines include their inverse.

Sieve/Operations QRAM Adders Multipliers Extra CNOTs
NVSieve 1 2D D 0

NVSieve + LSH/LSF 1 2D D 0

GaussSieve
1 4D − 2 2D 2Dκ+ 4
1 D + 1 D∗ 4

GaussSieve + LSH/LSF 1 4D − 2 2D 2Dκ+ 4
1 D + 1 D∗ 4

sieve step and the resources required for one call are given in Lemma 9. Next we must compute the
value of fNV. Rewrite the inequality defining the Boolean function fNV as

D∑
j=1

(wi)j(wi − 2v)j = wi · (wi − 2v) ≤ γ2R2 − ∥v∥2.

In order to compute
∑D

j=1(wi)j(wi−2v)j , we first compute wi−2v using D parallel κ-bit out-of-place
adders with the classical input 2v. At this point the quantum registers hold |i⟩|wi⟩|wi − 2v⟩. Next,
all the terms (wi)j(wi − 2v)j , j ∈ [D], are computed using D parallel κ-bit out-of-place multipliers.
This yields the quantum registers |i⟩|wi⟩|wi − 2v⟩

⊗D
j=1 |(wi)j(wi − 2v)j⟩. For the next step, all

D terms (wi)j(wi − 2v)j are summed in depth ⌈log2D⌉ by using D − 1 κ-bit out-of-place adders.
Finally, we employ a κ-bit comparator (which counts as an κ-bit adder) between the quantum register
holding

∑D
j=1(wi)j(wi− 2v)j and the classical input λ := γ2R2−∥v∥2, but the output register of the

comparator is initialised in the |−⟩ state instead of the |0⟩ state. This procedure introduces the phase
(−1)fNV(i) as wanted. We summarise the whole chain of operations as follows:

|−⟩|i⟩|0⟩⊗κ(2+3D)

QRAMS−−−−−→|−⟩|i⟩|wi⟩|0⟩⊗κ(2+2D)

D adders−−−−−−→|−⟩|i⟩|wi⟩|wi − 2v⟩|0⟩⊗κ(2+D)

D multipliers−−−−−−−−→|−⟩|i⟩|wi⟩|wi − 2v⟩

 D⊗
j=1

|(wi)j(wi − 2v)j⟩

 |0⟩⊗2κ

D−1 adders−−−−−−−→|−⟩|i⟩|wi⟩|wi − 2v⟩

 D⊗
j=1

|(wi)j(wi − 2v)j⟩

 |w⊤
i (wi − 2v)⟩|0⟩⊗κ

1 adder−−−−→(−1)fNV(i)|−⟩|i⟩|wi⟩|wi − 2v⟩

 D⊗
j=1

|(wi)j(wi − 2v)j⟩

 |w⊤
i (wi − 2v)⟩|w⊤

i (wi − 2v)− λ⟩.

At the end of this chain of operations, after the phase (−1)fNV(i) has been applied, we uncompute
all the 2D adders, D multipliers, and one QRAMS call using their suitable inverses. Even though all
the extra ancillae required for adders, multipliers, and QRAM are not made explicit in the arguments
above, dirty ancillae are kept throughout the computations in order to ease their inverses. In Table 2,
we summarise all the arithmetic and memory modules required in the phase oracle ONV.
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Algorithm 2: The Nguyen-Vidick sieve with LSH
Input: Basis B for a D-dimensional lattice, parameters γ ∈ (0, 1), k, and t, hash family H.
Output: Shortest vector v∗ of the lattice.

1 Sample L ⊂ RD

2 while L ̸= ∅ do
3 L0 ← L, L′ ← ∅, S ← {0}, R← maxv∈L ∥v∥
4 Initialise t empty hash tables T1, . . . , Tt and sample k · t random hash functions hi,j ∈ H
5 For each i ∈ [t], add 0 to the bucket Ti[hi(0)] in the hash table Ti
6 for each v ∈ L do
7 C ←

⋃t
i=1 Ti[hi(v)] is the list of candidate vectors

8 Construct a QRAM for C
9 w← GroverSearch(w ∈ C : ∥v −w∥ ≤ γR)

10 if w ̸= NULL then // ∃w ∈ C : ∥v −w∥ ≤ γR
11 L′ ← L′ ∪ {v −w}
12 else // ∄w ∈ C : ∥v −w∥ ≤ γR
13 S ← S ∪ {v}
14 For each i ∈ [t], add v to the bucket Ti[hi(v)] in the hash table Ti

15 L← L′

16 return shortest vector v∗ in L0

7.1.3 Using LSH/LSF in the Nguyen-Vidick sieve

Locality-sensitive hashing and filtering can be used to speed up sieving, particularly the NVSieve [160].
The main idea of employing nearest-neighbour-search techniques in the NVSieve is to preprocess the
list of centers S and thus replace the brute-force list search over w ∈ S with a smaller list of probable
reducible candidates. As described in Section 2.2, we sample k · t random hash function hi,j ∈ H
from a suitable hash family H, and using the AND and OR-compositions, introduce t hash tables,
each with an exponential number of buckets in the parameter k (2k buckets in angular LSH and 2k

√
D

buckets in spherical LSH). Each vector w ∈ S is then added to its corresponding bucket Ti[hi(v)]
labelled by the hash hi(v) for each hash table Ti. Afterwards, given v ∈ L, only vectors in buckets
T1[h1(v)], . . . , Tt[ht(v)] are considered as possible candidates for reduction. The search space is thus
considerable reduced and many of far-away vectors in S to v are ignored. The NVSieve with LSH is
described in Algorithm 2. A similar procedure applies to LSF: k ·t random filter functions fi,j ∈ F from
a suitable filter family F are sampled and employed to add vectors onto t different filtered buckets
B1, . . . ,Bt. A vector w ∈ S is added onto the bucket Bi if and only if it passes through all filters
fi,1, . . . , fi,k. Afterwards, a query v ∈ L is answered by recovering all the filters that v passes through.
We note that insertions into buckets and searching over relevant filters might use filters with different
internal parameters (an example being the parameter α is spherical LSF). The different between LSH
and LSF is that, in the second case, each hash table is reduced to a single bucket of vectors that survived
the filters. Another difference is the use of random product codes to efficiently find all buckets that
contain a given vector.

Apart from searching over the buckets T1[h1(v)], . . . , Tt[ht(v)] for a reducible vector using Grover’s
algorithm, another big difference between the classical and quantum versions of the NVSieve with LSH
is obtaining the list of candidates vectors C =

⋃t
i=1 Ti[hi(v)] in the first place. Whereas classically

the search over C can be done while sequentially visiting all the t buckets, to retain the quadratic
quantum advantage, we must first classically gather all the indices (or hashes) of the vectors in the
buckets T1[h1(v)], . . . , Tt[ht(v)], after which we can perform Grover’s search over these vectors. If
C = {wj1 ,wj2 , . . . ,wj|C|}, then we start with the state |C|−1/2

∑|C|
i=1 |i⟩ within Grover’s search. To

proceed, we would like to use QRAM to map |i⟩|0⟩⊗κD 7→ |i⟩|wji⟩. This can be done using the QRAM
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of Figure 4 by classically ordering the hashes {j1, j2, . . . , j|C|} so that a classically controlled CNOT is
applied based on the content wji , which is accessed via a RAM call. The phase oracle ONV : |i⟩ 7→
(−1)fNV(i)|i⟩, where fNV : [|C|] → {0, 1} is defined by fNV(i) = 1 if and only if ∥v − wji∥ ≤ γR, is
hence implemented initially as

|i⟩|0⟩⊗κD QRAMC−−−−−→ |i⟩|wji⟩, (7)

after which the remaining addition and multiplication operations explained in the previous section are
performed (plus overall uncomputation). The phase oracle ONV thus requires one QRAM call one of
size |C| and |C| RAM calls of size |L|. All the required subroutines to implement the phase oracle are
summarised in Table 2.

The need to take QRAM into consideration means that the use of Grover’s search in the NVSieve

does not improve its asymptotic scaling, since gathering the list of candidates C for each v ∈ L takes
O(|L| · |C|) time. The only improvement is moving the more expensive norm computation into the
Grover’s search, so that the classical cost of O(D ·|L|·|C|) per sieving step becomes a classical-quantum
cost of O(|L| · |C|+D · |L| ·

√
|C|).

7.1.4 NVSieve with angular LSH

When employing angular LSH, we hash each vector into a k-bit string for each of the t hash tables. Each
hash table has thus 2k buckets. We choose k = log3/2 t− log3/2 ln(1/ε) so that nearby vectors collide
with high probability. Hashing one vector requires computing ai ·v for all i ∈ [k], so kD multiplications
and k(D−1) additions. As pointed out by Laarhoven [127], it is possible to employ sparse vectors ai for
the angular hash functions while still maintaining the same performance [2, 3, 135]. Laarhoven [127]
employed vectors ai with just two non-zero entries, therefore we require 2k multiplications and k
additions to hash v. The time spent hashing all vectors in the list L into the t hash tables is thus
O(k · |L| · t), or more precisely, it requires 2k · |L| · t multiplications and k · |L| · t additions. On the other
hand, the list of candidates on Line 7 has size |C| ≈ |S| · p∗2, where p∗2 is the average probability that
a non-reducing vector collides with another vector in at least one of the t hash tables (Equation (1)).

Classical complexity. The classical time spent searching over C is O(D · |S| · |L| · p∗2) per sieving
step. More precisely, according to Table 2 (the number of classical arithmetic operations is the same
as in the quantum case), searching over C requires D · |L| · |C| = D · |L| · |S| · p∗2 multiplications and
2D · |L| · |C| = 2D · |L| · |S| · p∗2 additions per sieving step. The number of hash tables t is determined
by balancing the time hashing O(k · |L| · t) with the time searching O(D · |L| · |S| · p∗2). Asymptotically
over all sieving steps, t is determined by taking |L| = |S| = (4/3)D/2+o(D) and approximating p∗2 ≈
t · 2−βD+o(D), where β is given by Equation (2). We must then have that (4/3)D/2+o(D) · 2−βD+o(D) =
2o(D) =⇒ β = 1

2 log2(4/3), which yields t ≈ 20.129043D. Therefore, by using t ≈ 20.129043D hash
tables and a hash length of k ≈ 0.220600D, the overall time and space complexities are Õ(|L| · t) =
20.336562D+o(D) [127, 128].

Quantum complexity. The quantum time searching over C is O(D · |L|
√
|S| · p∗2) per sieving step.

The number of hash tables t is determined by balancing the time hashing O(k · |L| · t) with the time
searching O(D · |L|

√
|S| · p∗2). Asymptotically, t is determined by taking |L| = |S| = (4/3)D/2+o(D) and

approximating p∗2 ≈ t · 2−βD+o(D), so that (4/3)D/4+o(D) · 2−βD/2+o(D) =
√
t =⇒ β = 1

2 log2(4/3) −
1
D log2 t. This yields t ≈ 20.078430D. Therefore, by using t ≈ 20.078430D hash tables and a hash length
of k ≈ 0.134077D, the overall time and space complexities are Õ(|L| · t) = 20.285949D+o(D) [130, 128].

7.1.5 NVSieve with spherical LSH

The complexity analysis of the NVSieve with spherical LSH (also known as SphereSieve [130]) is
similar to NVSieve with angular LSH. When employing spherical LSH, we hash each vector into a
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string in [2
√
D]k for each of the t hash tables. Each hash table has thus 2k

√
D buckets. We choose

k = 6(ln t − ln ln(1/ε))/
√
D so that nearby vectors collide with high probability. Hashing one vector

requires comparing ⟨v,gij⟩ ≥ D1/4 for i ∈ [2
√
D] and j ∈ [k]. The time spent hashing all vectors in the

list L into the t hash tables is thus O(D · 2
√
D ·k · t · |L|), or more precisely, it requires D · 2

√
D ·k · t · |L|

multiplications and D ·2
√
D ·k · t · |L| additions. On the other hand, the list of candidates on Line 7 has

size |C| ≈ |S| · p∗2, where p∗2 is the average probability that a non-reducing vector collides with another
vector in at least one of the t hash tables (Equation (3)).

Classical complexity. Classically searching over C requires D · |L| · |S| · p∗2 multiplications and
D · |L| · |S| · p∗2 additions per sieving step. The number of hash tables is determined by balancing the
time hashing O(D · 2

√
D · k · t · |L|) and the time searching O(D · |L| · |S| · p∗2). Asymptotically, t is

determined by taking |L| = |S| = (4/3)D/2+o(D) and approximating p∗2 ≈ 2−βD+o(D), where β is given
by Equation (4). Hence (4/3)D/2+o(D) · 2−βD+o(D) = t =⇒ β = 1

2 log2(4/3) −
1
D log2 t, which yields

t ≈ 20.089624D. Therefore, by using t ≈ 20.089624D hash tables and k ≈ 0.372737
√
D, the time and space

complexities are 20.297143D+o(D) [129, 128].

Quantum complexity. Quantumly searching over C requires O(D · |L|
√
|S| · p∗2) time. The number

of hash tables is determined by balancing the time hashing O(D · 2
√
D · k · t · |L|) and the time

searching O(D · |L|
√
|S| · p∗2). Asymptotically, t is determined by taking |L| = |S| = (4/3)D/2+o(D) and

approximating p∗2 ≈ 2−βD+o(D), so that (4/3)D/4+o(D)·2−βD/2+o(D) = t =⇒ β = 1
2 log2(4/3)−

2
D log2 t.

This yields t ≈ 20.059581D. Therefore, by using t ≈ 20.059581D hash tables and k ≈ 0.247792
√
D, the

overall time and space complexities are 20.267100D+o(D) [130, 128].

7.1.6 NVSieve with spherical LSF

The complexity analysis of the NVSieve with spherical LSF is a bit different than with LSH, the main
reason being that each filter bucket covers an equally large region of RD, which simplifies the analysis.
As shown in [32], fixing k = 1 concatenated filters per bucket is usually optimal, as it allows a larger
α parameter (see Equation (5)). On the other hand, the number of filter buckets t is chosen so that
nearby vectors collide with high probability p∗1 ≥ 1 − ε, where p∗1 is given by Equation (6), meaning
that t = ln(1/ε)/WD(α, α, π/3). Each vector is on average contained in t · CD(α) buckets, meaning
there are |S| · t · CD(α) vectors in total in all buckets and |S| · CD(α) vectors in each bucket on average.
The list of candidates on Line 7 has size |C| ≈ |S| · t · CD(α)2. Inserting vectors into relevant filters
requires an efficient oracle (as mentioned in Section 2.2.3). Becker et al. [32] proposed such an efficient
oracle, called EfficientListDecoding, using random product codes. According to [32, Lemma 5.1]
(see Fact 5), the time complexity of such an oracle is mainly due to visiting at most 2 log2D · t · CD(α)
nodes for a pruned enumeration, which requires mostly addition-like operations. We thus approximate
the time to insert all the vectors in L into relevant filters by 2 log2D · |L| · t · CD(α) additions.

Classical complexity. The classical time spent searching over C requires D · |L| · |S| · t · CD(α)2
additions and multiplications per sieving step. Moreover, we also need to retrieve the relevant filters
of v before performing the search over C. Retrieving the relevant filters of all vectors in L requires
2 log2D·|L|·t·CD(α) additions per sieving step. The parameter α is chosen in order to minimise the time
complexity coming from filtering and from searching, O(logD · |L| · t · CD(α) +D · |L| · |S| · t · CD(α)2).
Asymptotically, we approximate t = O(1/WD(α, α, π/3)) (see Section 2.2.3). On the other hand,
CD(α) = poly(D)(1−α2)D/2 [156, Lemma 4.1] andWD(α, α, θ) = poly(D)(1−2α2/(1+cos θ))D/2 [32,
Lemma 2.2]. Together with |L| = (4/3)D/2+o(D), this means that the total time complexity over all
sieving steps is

Õ

(
|L| · CD(α)(1 + |L| · CD(α))

WD(α, α, π/3)

)
= Õ

((
4(1− α2)

3− 4α2

)D/2
(
1 +

(
4(1− α2)

3

)D/2
))

.
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The high-order term is minimised by taking α = 1/2. Therefore, the time complexity is (3/2)D/2+o(D) ≈
20.292481D+o(D) by choosing α = 1/2, k = 1, and t = (3/2)D/2+o(D) [32, 128]. The space complexity is
also (3/2)D/2+o(D). The list of candidates, i.e., the list of vectors that collide with a given vector, has
average size |C| = |L| · t · CD(α)2 = (9/8)D/2+o(D).

Quantum complexity. The quantum time spent comparing a given vector to other vectors colliding
in one of the filters is now O(D

√
|S| · t · CD(α)2). The total time complexity of one sieving step with list

L is thusO(logD·|L|·t·CD(α)+D·|L|·|S|1/2·t1/2·CD(α)). The α parameter is chosen in order to minimise
the classical hashing time plus the quantum searching time. Asymptotically, the approximations t =
O(1/WD(α, α, π/3)), CD(α) = poly(D)(1−α2)D/2, andWD(α, α, θ) = poly(D)(1−2α2/(1+cos θ))D/2,
together with |L| = (4/3)D/2+o(D), yield the total time complexity over all sieving steps of

Õ

(
|L| · CD(α)
WD(α, α, π/3)

+
|L|3/2 · CD(α)√
WD(α, α, π/3)

)
= Õ

((
4(1− α2)

3− 4α2

)D/2

+

(
8(1− α2)

3
√
3− 4α2

)D/2
)
.

The high-order term is minimised by taking α =
√
3/4. Hence the time complexity is (13/9)D/2+o(D) ≈

20.265257D+o(D) by choosing α =
√
3/4, k = 1, and t = (4/3)D/2+o(D) [128]. The space complexity is also

(13/9)D/2+o(D). The list of candidate vectors has average size |C| = |L| · t · CD(α)2 = (13/12)D+o(D).

7.2 The GaussSieve

A few years after the work of Nguyen and Vidick, Micciancio and Voulgaris [156] presented ListSieve,
a probabilistic algorithm that provably finds the shortest vector with a high probability in 23.199D+o(D)

time and 21.325D+o(D) space, and a heuristic variant called GaussSieve, which we now focus on and
is described in Algorithm 3. The GaussSieve starts with an empty list L and keeps adding shorter
lattice vectors to it. At each sieve step, a new lattice vector v is reduced with all the points in the list
L. By this we mean the rule:

Reduce v with w : if ∥v ±w∥ < ∥v∥ then v← v ±w.

The difference between both sieves is that, in the ListSieve, the reduced vector is then added to the
list, meaning that vectors in L never change, while in the GaussSieve, we also attempt to reduce the
vectors in L with v before adding v to L. In other words, in the GaussSieve, for all vectors v,w ∈ L
such that min(∥v±w∥) < max(∥v∥, ∥w∥), the longer of v and w is replaced with the shorter of v±w.
Consequently, all pairs of vectors in the list are always pairwise reduced: ∀v,w ∈ L : min(∥v±w∥) ≥
max(∥v∥, ∥w∥). Thus any pair of vectors in the list always form a Gauss reduced basis for a two
dimensional lattice, and thus the angle between any two list points is at least π/3 and the list forms
a good spherical code. It follows that the size of the list never exceeds the kissing constant τD in D
dimensions. Therefore the list size (and thus the space complexity of the GaussSieve) is bounded by
20.401D in theory and 20.208D in practice, corresponding to the asymptotic upper and lower bounds on
τD [111]. In contrast, there are no known bounds on the time complexity of the GaussSieve, since
the list L can grow or shrink at any time. One might guess that the time complexity is quadratic
in the list size since at each sieving step every pair of vectors v,w ∈ L is compared at least once to
check for possible reductions. Furthermore, the asymptotic behaviour of the GaussSieve is similar
to that of the NVSieve [156]. A natural conjecture is that the GaussSieve has time complexity
Õ(|L|2) = 20.415D+o(D).

7.2.1 Numerical experiments and heuristic assumptions

Once again, the asymptotic complexity hides a lot of operations when doing a resource estimate. The
overall analysis of GaussSieve is more complicate than the NVSieve, since the size of the list L can
both increase and decrease, which hinders a bound on time complexity. Moreover, the search loops
in Lines 7 and 9 are performed in an exhaustive manner, meaning that a search will be attempted
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Algorithm 3: The GaussSieve

Input: Basis B for a D-dimensional lattice and termination constant ζ.
Output: Shortest vector v∗ of the lattice.

1 L← ∅, S ← ∅, K ← 0
2 while K < ζ do
3 if S = ∅ then
4 v← SampleKlein(B)

5 else
6 v← S.pop()

7 while w← GroverSearch(w ∈ L : ∥v ±w∥ < ∥v∥) and w ̸= NULL do
8 Reduce v with w

9 while w← GroverSearch(w ∈ L : ∥w ± v∥ < ∥w∥) and w ̸= NULL do
10 L← L \ {w}
11 Reduce w with v
12 if w ̸= 0 then
13 S ← S ∪ {w}

14 if v has changed and v ̸= 0 then
15 S.push(v)

16 if v = 0 then
17 K ← K + 1

18 else
19 L← L ∪ {v}

20 return shortest vector v∗ in L

while there are solutions. Nonetheless, it is still possible to gather average trends and bounds through
heuristic assumptions and numerical experiments. In the following, we list several observations that
shall be useful in forming assumptions.

1. Schneider [181] noticed that GaussSieve’s performance in terms of runtime, iterations, list size,
and collisions was not affected by the type of the underlying lattice (ideal, cyclic, and random).

2. Micciancio and Voulgaris [156] proved that the list size |L| never exceeds the kissing number
τD, which is defined as the highest number of points that can be placed on a D-dimensional
sphere such that the angle between any two points is at least π/3. This theoretically bounds
|L| by τD ≤ 20.401D+o(D). However, Micciancio and Voulgaris [156] numerically observed that
the maximum list size grows approximately as 20.2D, which matches lower bounds on the kissing
number τD ≥ 20.2075D+o(D) [61]. A plausible assumption is the maximum list size to be bounded
by a lower bound on the kissing number, e.g., τD ≥ (1+o(1))

√
3π

4
√
2
ln(3/2)D3/2(4/3)D/2 [75]. From

a more numerical perspective, Schneider [181] reported a maximum list size of 20.2D+2.8, while
Mariano et al. [149] reported a maximum list size of 20.199D+2.149. We independently report a
maximum list size of 20.193D+2.325.

3. Schneider [181] observed that the number of times a newly sampled vector from Klein’s algorithm
was reduced by the list vectors and the number of vectors removed from the list L and pushed to
the stack S were approximately 10 times the maximum list size. This means that on average the
first search loop (Line 7) is performed 10 times. This observation was independently confirmed
by us. The number of solutions to Grover’s search in Line 7 varies greatly. A more pessimistic
assumption is to take M = 1 or M = 2 solutions for each of the first 9 calls, while the 10-th call
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has M = 0 solutions. On the other hand, the second search loop (Line 9) is performed only once
with M = 0 number of solutions on the vast majority of cases.

4. The number of sieving steps is roughly 10 times the maximum list size (see [181, Figures 1 and 2]).
Mariano et al. [149] numerically reported the number of iterations I to grow as 20.283D+0.335, while
we obtained a growth of 20.283D+0.491.

5. A natural termination criteria proposed by Micciancio and Voulgaris [156] is to stop after a
certain number ζ of collisions. A conservative option for ζ adopted by [156] is to set it as 10% of
the list size. The authors1 also used an alternative criteria of ζ = 500, which we independently
checked to be enough to find the shortest vector. Under such criteria, the list size does not grow
much beyond the point where a shortest vector is found.

6. The list size |L| starts from 0 and quickly grows to an asymptote which, according to the previous
point, roughly corresponds to the maximum list size. Meanwhile, collisions rarely occur before
the shortest vector is found, after which the number of collisions quickly grows until the exit-
condition is reached. The list size stays above 90% of the maximum list size (i.e., the list size
at the moment a shortest vector is found) for more than 95% the number of iterations for large
enough dimensions (D > 70).

7.2.2 Quantum oracle for Grover search

Similarly to the NVSieve, the two search steps in the GaussSieve (Lines 7 and 9 in Algorithm 3) can
be performed using Grover’s algorithm. Namely, given an ordered list L = {w1,w2, . . . } and a fixed
element v ∈ L,

1. Find an index i ∈ [|L|] such that ∥v ±wi∥ < ∥v∥ ⇐⇒ wi · (wi ± 2v) < 0;

2. Find an index i ∈ [|L|] such that ∥v ±wi∥ < ∥wi∥ ⇐⇒ |v ·wi| ≥ ∥v∥2/2.

Define the Boolean function fgauss : [|L|]→ {0, 1} by fgauss(i) = 1 if and only if either wi ·(wi+2v) < 0
or wi · (wi − 2v) < 0. Similarly, let ggauss : [|L|] → {0, 1} be such that ggauss(i) = 1 if and only if
|v · wi| ≥ ∥v∥2/2. In order to use Grover search in Line 7, we must construct the phase oracle
O(1)

gauss : |i⟩ 7→ (−1)fgauss(i)|i⟩, while the Grover search in Line 9 requires the phase oracle O(2)
gauss : |i⟩ 7→

(−1)ggauss(i)|i⟩. We now describe how they can be constructed.

Phase oracle O(1)
gauss. The construction is similar to the one for the NVSieve. We assume that the

list L is already stored in QRAM. Given any index |i⟩ where i ∈ [|L|], the first step is to load wi

onto a (κD)-qubit register using one QRAML call (Lemma 9). Since we must check for two conditions,
wi · (wi+2v) < 0 or wi · (wi− 2v) < 0, we copy |wi⟩ onto another (κD)-qubit ancillary register using
κD CNOTs. We then use 2D κ-bit out-of-place adders in parallel to get |i⟩|wi⟩⊗2|wi + 2v⟩|wi − 2v⟩.
Next, all the terms (wi)j(wi ± 2v)j , j ∈ [D], are computed in parallel using 2D κ-bit out-of-place
multipliers. Then, all D terms (wi)j(wi+2v)j are summed in depth ⌈log2D⌉ by using D−1 κ-bit out-
of-place adders, and similarly for the terms (wi)j(wi − 2v)j . In order to check whether wi · (wi ± 2v)
is smaller than 0, it suffices to consider its highest-order bit. Since at most one of the conditions
wi · (wi ± 2v) < 0 can be true, we simply compute the parity of their high-bits instead of their logical
OR. Thus, by applying two CNOTs controlled on the high-bits of wi · (wi±2v) onto a qubit in the |−⟩
state, we implement the phase (−1)fgauss(i). After that, we uncompute all the arithmetic operations,
copying of |wi⟩, and QRAM call. The amount of submodules is summarised in Table 2.

1See Appendix B of the unpublished version.
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Algorithm 4: The GaussSieve with LSH
Input: Basis B for a D-dimensional lattice, termination constant ζ, parameters k and t, hash

family H
Output: Shortest vector v∗ of the lattice.

1 L← ∅, S ← ∅, K ← 0
2 Initialise t empty hash tables T1, . . . , Tt and sample k · t random hash functions hi,j ∈ H
3 while K < ζ do
4 if S = ∅ then
5 v← SampleKlein(B)

6 else
7 v← S.pop()

8 C ←
⋃t

i=1 Ti[hi(v)] is the list of candidate vectors
9 Construct a QRAM for C

10 while w← GroverSearch(w ∈ C : ∥v ±w∥ < ∥v∥) and w ̸= NULL do
11 Reduce v with w

12 while w← GroverSearch(w ∈ C : ∥w ± v∥ < ∥w∥) and w ̸= NULL do
13 L← L \ {w}
14 Remove w from all hash tables T1, . . . , Tt
15 Reduce w with v
16 if w ̸= 0 then
17 S ← S ∪ {w}

18 if v has changed and v ̸= 0 then
19 S.push(v)

20 if v = 0 then
21 K ← K + 1

22 else
23 L← L ∪ {v}
24 For each i ∈ [t], add v to the bucket Ti[hi(v)] in the hash table Ti

25 return shortest vector v∗ in L

Phase oracle O(2)
gauss. Once again, one QRAML call is used to load wi, after which D κ-bit hybrid

multipliers are used to obtain all the D terms (wi)jvj , j ∈ [D]. These D terms are then summed up
in depth ⌈log2D⌉ using D − 1 κ-bit out-of-place adders. At this point, one of the registers is |v ·wi⟩.
In order to check for the condition |v ·wi| ≥ ∥v∥2/2, we can first compute the sum v ·wi−∥v∥2/2 by
using a κ-bit adder and copy its highest-order bit onto a qubit in the |−⟩ state for a phase kickback.
The adder generates an ancillary register containing |v · wi − ∥v∥2/2⟩. In order to check whether
−v · wi ≥ ∥v∥2/2 ⇐⇒ v · wi − ∥v∥2/2 < −∥v∥2, we can apply a second κ-bit adder between the
ancillary register |v · wi − ∥v∥2/2⟩ and the classical input ∥v∥2. The highest-order bit of the result
|v · wi + ∥v∥2/2⟩ is then flipped, since we are checking for a negative number, and copied onto the
|−⟩ ancilla for a phase kickback. This implements the phase (−1)ggauss(i) as at most one condition
v · wi ≥ ∥v∥2/2 or −v · wi ≥ ∥v∥2/2 can be true. After this, we uncompute all the arithmetic
operations and QRAM call. The required submodules are summarised in Table 2.

7.2.3 Using LSH/LSF in the GaussSieve

Similarly to the NVSieve, LSH/LSF can be used in the GaussSieve as a filter to get a preliminary set
of vectors to search among: instead of using a brute-force list search, we can only search through the
candidate vectors C that hash to the same value (that is, they are close-by). The modified algorithm
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is given in Algorithm 4. The main idea is again to employ hash tables T1, . . . , Tt and replace the
search over the entire list L with a shorter list of candidates C =

⋃t
i=1 Ti[hi(v)] that collide with

the target vector v in at least one of the buckets T1[h1(v)], . . . , Tt[ht(v)]. Once again, in order to
use Grover’s search, we must first classically gather all the indices of the vectors that collide with v.
If C = {wj1 ,wj2 , . . . ,wj|C|}, then we use the indices {j1, j2, . . . , j|C|} to access the vectors in C via
RAM calls and thus perform the classically controlled CNOTs in during a QRAM call. The phase
O(1)

gauss : |i⟩ 7→ (−1)fgauss(i)|i⟩, where fgauss : [|C|] → {0, 1} is defined by fgauss(i) = 1 if and only if
either wji · (wji + 2v) < 0 or wji · (wji − 2v) < 0, is hence implemented first by one QRAM call
and |C| RAM calls, similarly to Equation (7), after which the remaining addition and multiplication
operations explained in the previous section are performed (plus overall uncomputation). The exact
same procedure is required in the phase oracleO(2)

gauss : |i⟩ 7→ (−1)ggauss(i)|i⟩, where ggauss : [|C|]→ {0, 1}
is defined by ggauss(i) = 1 if and only if |v ·wji | ≥ ∥v∥2/2. Both oracles O(1)

gauss and O(2)
gauss thus require

one QRAM call of size |C|. Table 2 summarises the subroutines needed to implement both phase oracles.

7.2.4 GaussSieve with angular LSH

Hashing all vectors in the list L requires, similarly to NVSieve, 2k · |L| · t multiplications and additions,
where k = log3/2 t− log3/2 ln(1/ε). The list of candidates on Line 8 has size |C| ≈ |L| · p∗2, where p∗2 is
given by Equation (1).

Classical complexity. The classical time spent searching over C is O(D · I · |L| · p∗2), where I is the
number of iterations of GaussSieve. To be more precise, the first search loop over C (Line 10) requires
4D − 2 additions and 2D multiplications to check whether one vector can reduce another, while the
second search loop over C (Line 12) requires D+1 additions and D multiplications (see Table 2). The
number of hash tables t is determined by balancing the time hashing O(k ·|L|·t) with the time searching
O(D · I · |L| · p∗2). The asymptotic classical time and space complexities are 20.336562D+o(D) [127, 128].
We stress that the time complexities are only conjectures, in contrast to the NVSieve, where bounds
can be proven under reasonable assumptions.

Quantum complexity. The quantum time spent searching over C is O(D ·I
√
|L| · p∗2). The number

of hash tables t is determined by balancing the time hashing O(k · |L| · t) with the time searching
O(D ·I

√
|L| · p∗2). The asymptotic quantum time and space complexities are 20.285949D+o(D) [130, 128].

7.2.5 GaussSieve with spherical LSH

Hashing all vectors in the list L requires, similarly to NVSieve, D · 2
√
D · k · t · |L| multiplications and

additions, where k = 6(ln t− ln ln(1/ε))/
√
D. The list of candidates on Line 8 has size |C| ≈ |L| · p∗2,

where p∗2 is given by Equation (3).

Classical complexity. Similarly to angular LSH, the first search loop over C (Line 10) requires
4D − 2 additions and 2D multiplications to check whether one vector can reduce another, while the
second search loop over C (Line 12) requires D + 1 additions and D multiplications (see Table 2).
The number of hash tables t is determined by balancing the time hashing O(D · 2

√
D · k · t · |L|)

with the time searching O(D · I · |L| · p∗2). The asymptotic classical time and space complexities are
20.297143D+o(D) [127, 128].

Quantum complexity. The quantum time spent searching over C is O(D ·I
√
|L| · p∗2). The number

of hash tables t is determined by balancing the time hashing O(k · |L| · t) with the time searching
O(D ·I

√
|L| · p∗2). The asymptotic quantum time and space complexities are 20.267100D+o(D) [130, 128].
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7.2.6 GaussSieve with spherical LSF

We fix k = 1 concatenated filters per bucket and t = ln(1/ε)/WD(α, α, π/3) hash tables. Inserting all
the vectors in L into relevant filters requires approximately 2 log2D · |L| · t · CD(α) additions. The list
of candidates on Line 7 has size |C| ≈ |L| · t · CD(α)2.

Classical complexity. Again, the first search loop over C requires 4D − 2 additions and 2D mul-
tiplications to check whether one vector can reduce another, while the second search loop over C
requires D + 1 additions and D multiplications. The parameter α is determined by minimising the
sum of the time coming from filtering O(logD · |L| · t · CD(α)) and the time coming from searching
O(D · I · |L| · t · CD(α)2). The asymptotic classical time and space complexities are (3/2)D/2+o(D) ≈
20.292481D+o(D) [32, 128].

Quantum complexity. The quantum time spent comparing vectors that collide on relevant filters
is now O(D · I

√
|L| · t · CD(α)2). The parameter α is determined by minimising the time required to

filter plus the time required to search. The asymptotic quantum complexities are (13/9)D/2+o(D) ≈
20.265257D+o(D) [128].

8 Resource estimation analysis

In this section, we perform a thorough resource estimation required to implement Grover’s search to
speed-up the NVSieve and GaussSieve algorithms, both with and without LSH techniques. For such,
we take into consideration the cost of arithmetic circuits from Section 4 and QRAM from Section 6 in
implementing the phase oracles from Grover’s search (Section 5), together with the overhead coming
from quantum error correction and magic state distillation from Section 3. Our analysis will cover
several facets from the quantum computation part within the sieving algorithms: circuit size and
depth, number of logical and physical qubits, and overall runtime. Moreover, we shall analyse the
most expensive sieving step and the total cost of all sieving steps (which includes smaller list sizes).
We shall also gauge the impact of an error-corrected QRAM by suppressing its costs and comparing the
end result with the full algorithmic cost. This shall be important from NIST’s standpoint, because for
the purpose of the standardization of post-quantum cryptographic technologies, it would be prudent
to consider the possibility of a breakthrough quantum memory architecture making efficient queries
possible. We start by describing how all the pieces from the previous sections fit together and the cost
analysis is done in the case of lattice dimension D = 400, which is roughly the dimension in which
SVP has to be solved to be able to break the minimally secure post-quantum cryptographic standards
currently being standardised [27].

8.1 Case study: D = 400

8.1.1 NVSieve without LSH/LSF

Let us consider the case where the rank of the lattice is D = 400 and analyse the cost of employing
Grover’s search in the NVSieve without LSH/LSF from Algorithm 1. For simplicity, we will focus on
one Grover’s search. Even though the sizes of L and S are random, we assume a worst-case list of
centers of size |S| = 20.2352D+0.102 log2 D+2.45 ≈ 2.15 · 1029 and a list of size |L| = D|S| ≈ 8.61 · 1031 as
mentioned in Section 7.1.1. Moreover, we assume there is only one solution to each Grover’s search.

Logical costs. The first step is to gather all the logical costs like Toffoli-count, number of logical
qubits (circuit’s width), and the circuit’s active volume. According to Table 2, the phase oracle ONV

from Grover’s search requires 1 QRAM call, 2D κ-bit adders, and D κ-bit multipliers. Since the
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expected number of Grover iterations is ⌈7.67
√
|S|⌉ per Grover’s search, we require

Toffoli-count : ⌈7.67
√
|S|⌉︸ ︷︷ ︸

Grover iterations

(
|S| − 2︸ ︷︷ ︸
QRAM

+2D(κ− 1)︸ ︷︷ ︸
2D adders

+D(κ2 − κ+ 1)︸ ︷︷ ︸
D multipliers

+ ⌈log2 |S|⌉ − 1︸ ︷︷ ︸
Diffusion operator

)
≈ 7.65 · 1044.

Regarding the number of logical qubits, ancillae can be reused from one iteration to the next, so
the maximum width (dirty ancillae plus input/output qubits) of Grover’s circuit comes from QRAM
plus the arithmetic operations and diffusion operator. One QRAM call needs 2|S|− ⌈log2 |S|⌉− 1 dirty
ancillae, plus ⌈log2 |S|⌉+Dκ qubits from input/output registers. On the other hand, the first D adders
have a width of 3Dκ; the following D multipliers have a width of D(2κ2 + κ); the subsequent D − 1
adders have a width of (2D − 1)κ; the final adder has a width of 3κ. Taking into account the overlap
between different widths, since the output of one step is the input of the subsequent one, the total
amount of logical qubits required is

Logical qubits : 2
(
2|S|+Dκ− 1︸ ︷︷ ︸

QRAM

+ 2Dκ︸︷︷︸
D adders

+ 2Dκ2︸ ︷︷ ︸
D multipliers

+Dκ+ κ︸ ︷︷ ︸
D adders

)
≈ 8.61 · 1029,

where the factor 2 takes into account the space overhead coming from fast data blocks in baseline
architectures, and from workspace qubits in active-volume architectures.

The active volume of the whole circuit is calculated by simply summing up the active volumes of 1
QRAM call, 2D κ-bit adders, and D κ-bit multipliers. Using the bucket-bridage QRAM from Lemma 9
and C|CCZ⟩ = 65, the active volume of one Grover’s search is

Active volume : ⌈7.67
√
|S|⌉︸ ︷︷ ︸

Grover iterations

(
(25 + 1.5κ+ C|CCZ⟩)|S|︸ ︷︷ ︸

QRAM

+2D((κ− 1)(39 + C|CCZ⟩) + 7)︸ ︷︷ ︸
Adders

+D(28κ2 − 42κ+ 28 + (κ2 − κ+ 1)C|CCZ⟩)︸ ︷︷ ︸
Multipliers

+(⌈log2 |S|⌉ − 1)(18 + C|CCZ⟩)︸ ︷︷ ︸
Diffusion operator

)
≈ 1.06 · 1047.

The reaction depth (which, in our case, is double the Toffoli-depth) follows from a simple concate-
nation of all the individual operations. The reaction depth of the phase oracle is the sum of reaction
depths of one QRAM call, one κ-bit multiplier, and 2 + ⌈log2D⌉ κ-bit adders. By adding the reaction
depth of the diffusion operator (Fact 7) and multiplying the result by the number of Grover iterations
⌈7.67

√
|S|⌉, the get

Reaction depth : ⌈7.67
√
|S|⌉︸ ︷︷ ︸

Grover iterations

(
2⌈log2 |S|⌉ − 2︸ ︷︷ ︸

QRAM

+2κ log2 κ− 2κ− 2 log2 κ+ 4︸ ︷︷ ︸
Multipliers

+ 2(⌈log2D⌉+ 2)(κ− 1)︸ ︷︷ ︸
Adders

+2⌈log2⌈log2 |S|⌉⌉︸ ︷︷ ︸
Diffusion operator

)
≈ 4.06 · 1018.

Code distance and time. First consider a baseline architecture. Consider that there are enough
distillation factories (see below) such that each Toffoli layer is performed every 4 logical cycles. Then
one Grover’s search employs 8.61 · 1029 logical qubits and 8.12 · 1018 logical cycles, to a total spacetime
volume of 6.98 · 1048 logical blocks of size d3. In order to keep a logical error probability below 0.1%
per Grover’s search, we must choose a code distance d such that

6.99 · 1048 · d · 0.1(100pphy)(d+1)/2 ≤ 0.001.

With physical error pphy = 10−5, the above is satisfied by d = 34, which yields a logical error probability
of ≈ 0.08%. Since each logical qubit requires 2d2 physical qubits (taking into account the ancillae
required for the check operators measurements), one Grover’s search employs 1.99·1033 physical qubits.
With a code cycle of 100 ns, the circuit time of one Grover’s search is 8.75 · 105 years.
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Consider now an active-volume architecture. With 8.61 · 1029 logical qubits and an active volume
of 1.06 ·1047, the total spacetime volume is 2.11 ·1047 logical blocks of size d3, twice the active volume.
The number of logical cycles is 2(1.06 · 1047)/(8.61 · 1029) = 2.45 · 1017 per Grover’s search, since only
half the logical qubits, the workspace qubits, execute logical blocks in every logical cycle. In order to
keep a logical error probability below 0.1%, we must choose a code distance d such that

2.11 · 1047 · d · 0.1(100pphy)(d+1)/2 ≤ 0.001.

With physical error pphy = 10−5, the above is satisfied by d = 34, which yields a logical error probability
of ≈ 0.002%. Since each logical qubit requires d2 physical qubits, one Grover’s search employs 9.95·1032
physical qubits. With a code cycle of 100 ns, the circuit time of one Grover’s search is ≈ 6, 620 years.

Due to the sequential natural of classical processing associated with surface-code-based quantum
computation, the runtime of every circuit is limited by its reaction depth. Given the reaction depth of
4.06 ·1018 and a reaction time of 1 µs, the Grover’s search is thus reaction limited at ≈ 1.29 ·105 years.
This limits the active-volume architecture to a runtime of 1.29 · 105 years, and not ≈ 6, 620 years.

Distillation protocol. Finally, we determine the distillation protocol necessary for the computation,
which is obtained from the Toffoli-count. We require that the error probability of performing 7.65 ·1044
Toffoli gates be less than 0.1%, which means that each magic state |CCZ⟩ must have an error rate
below 1.31 · 10−48. For baseline architectures with the above code distance d = 34, the distillation
protocol (15-to-1)4⌈d/4⌉,⌈d/8⌉,⌈d/8⌉×(15-to-1)4⌈d/2⌉,⌈d/4⌉,⌈d/4⌉×(8-to-CCZ)d,⌈d/2⌉,⌈d/2⌉ outputs a magic state
|CCZ⟩ with error rate of 5.4 · 10−50 every 108 code cycles by using 111, 192 physical qubits, which is
enough for our needs. Since each Toffoli layer must be executed every 4d = 132 code cycles, we require
≈ 108

132 |S|/2 = 8.54 ·1028 distillation factories running in parallel, which adds another 9.50 ·1033 physical
qubits to a total of 1.15 · 1034 physical qubits. Regarding active-volume architectures, on the other
hand, the same (15-to-1)4⌈d/4⌉,⌈d/8⌉,⌈d/8⌉× (15-to-1)4⌈d/2⌉,⌈d/4⌉,⌈d/4⌉× (8-to-CCZ)d,⌈d/2⌉,⌈d/2⌉ protocol with
d = 34 outputs a magic state |CCZ⟩ with error rate of 5.4 ·10−50. The associated resources are already
included in the active volume cost C|CCZ⟩.

8.1.2 GaussSieve without LSH/LSF

We move on to analysing the cost of Grover’s search in the GaussSieve without LSH/LSF (Algo-
rithm 3). The analysis of GaussSieve is harder since it is a heuristic algorithm with few proven prop-
erties. In each sieving step, there are two search loops that are called while a solution can be found. For
simplicity, we consider one Grover’s search with M = 1 solution. Another heuristic parameter of the
algorithm is the list size. Here we assume a sieving step with list size |L| = 20.193D+2.325 ≈ 8.70 · 1023
as reported by us (see Section 7.2.1).

Logical costs. Once again we gather all the logical costs first. In each sieving steps, there are two
different search loops being performed. According to Table 2, the phase oracle O(1)

gauss from the first
loop requires 1 QRAM call of size |L|, 4D − 2 κ-bit adders, and 2D κ-bit multipliers, while the phase
oracle O(2)

gauss from the second loop requires 1 QRAM call of size |L|, D + 1 κ-bit adders, and D κ-bit
hybrid multipliers. The expected number of Grover iterations is ⌈7.67

√
|L|⌉. The Toffoli-count of the

two search loops is

Toffoli-count loop 1 : ⌈7.67
√
|L|⌉︸ ︷︷ ︸

Iterations

(
|L| − 2︸ ︷︷ ︸
QRAM

+(4D − 2)(κ− 1)︸ ︷︷ ︸
4D−2 adders

+2D(κ2 − κ+ 1)︸ ︷︷ ︸
2D multipliers

+ ⌈log2 |L|⌉ − 1︸ ︷︷ ︸
Difussion operator

)
,

Toffoli-count loop 2 : ⌈7.67
√
|L|⌉︸ ︷︷ ︸

Iterations

(
|L| − 2︸ ︷︷ ︸
QRAM

+(D + 1)(κ− 1)︸ ︷︷ ︸
5D−1 adders

+D(0.5κ2 − 1.5κ+ 1)︸ ︷︷ ︸
D multipliers

+ ⌈log2 |L|⌉ − 1︸ ︷︷ ︸
Difussion operator

)
,

both approximately equal to 6.22 · 1036.
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Table 3: Summary of required resources to perform one Grover’s search with one solution in the
NVSieve with and without LSH/LSF assuming baseline and active-volume physical architectures. Re-
action limit and circuit time are measured in days, and final time is the maximum between both. We
assume a lattice dimension D = 400, topological and magic distillation probability errors smaller than
10−3, and a Grover’s search probability error of 10−3. NVSieve without LSH has list of centers of
size |S| = 20.2352D+0.102 log2 D+2.45. NVSieve with LSH/LSF replaces S with a list of candidates of size
|C| = |S| · p∗2 for LSH and |C| = |S| · CD(α)2 · ln(1/ε)/WD(α, α, π/3) for LSF, where ε = 10−3.

Resource/Sieve NVSieve
NVSieve +

angular LSH
NVSieve +

spherical LSH
NVSieve +

spherical LSF
List size 2.15 · 1029 3.46 · 1021 2.71 · 1020 1.35 · 1015

Hashing parameter k - 83 5 1

Number hash tables t - 2.28 · 1015 2.75 · 107 2.84 · 1038

Filter angle α - - - π/3

Logical qubits 8.61 · 1029 1.39 · 1022 1.08 · 1021 5.42 · 1015

Toffoli-count 7.65 · 1044 1.56 · 1033 3.42 · 1031 3.82 · 1023

Toffoli-width 1.08 · 1029 1.73 · 1021 1.35 · 1020 6.77 · 1014

Active volume 1.06 · 1047 2.16 · 1035 4.71 · 1033 5.28 · 1025

Reaction depth 4.06 · 1018 4.91 · 1014 1.36 · 1014 2.95 · 1011

Reaction limit (days) 1.13 · 109 1.36 · 105 3.79 · 104 8.19 · 101

B
as

el
in

e

Code distance 34 27 25 20

Distillation factories 8.54 · 1028 1.35 · 1021 1.14 · 1020 5.08 · 1014

Physical qubits 1.15 · 1034 1.16 · 1026 8.78 · 1024 2.33 · 1019

Circuit time (days) 7.66 · 109 7.37 · 105 1.89 · 105 3.27 · 102

Final time (days) 7.66 · 109 7.37 · 105 1.89 · 105 3.27 · 102

A
ct

iv
e-

vo
lu

m
e

Code distance 34 26 24 20

Physical qubits 9.95 · 1032 9.37 · 1024 6.24 · 1023 2.17 · 1018

Circuit time (days) 5.80 · 107 5.62 · 103 1.45 · 103 2.71 · 100

Final time (days) 1.13 · 109 1.36 · 105 3.79 · 104 8.19 · 101

Regarding the number of logical qubits, the first search loop requires (already taking overlaps into
account) 2|L|+ κD − 1 qubits for the QRAM, Dκ qubits after copying |wi⟩ once, 4Dκ qubits for the
parallel 2D κ-bit adders, 2D(2κ2−κ) qubits for the parallel 2D κ-bit multipliers, and finally 2κ(D−1)
qubits for the final 2D− 2 κ-bit adders. The second search loop requires (already taking overlaps into
account) 2|L|+κD−1 qubits for the QRAM, D(1.5κ2−0.5κ) qubits for the D κ-bit hybrid multipliers,
(D − 1)κ qubits for the D − 1 κ-bit adders, and finally 3κ qubits for the last 2 κ-bit adders. It is not
hard to see that the first search loop employs the most logical qubits, which is the final count:

Logical qubits : 2
(
2|L|+Dκ− 1︸ ︷︷ ︸

QRAM

+ Dκ︸︷︷︸
Copying

+ 4Dκ︸︷︷︸
2D adders

+2D(2κ2 − κ)︸ ︷︷ ︸
2D multipliers

+ 2(D − 1)κ︸ ︷︷ ︸
2D−2 adders

)
≈ 3.48 · 1024.

The active volume of both search loops is simply the sum of the individual active volumes,

Active volume loop 1 : ⌈7.67
√
|L|⌉︸ ︷︷ ︸

Iterations

(
(25 + 1.5κ+ C|CCZ⟩)|L|︸ ︷︷ ︸

QRAM

+(⌈log2 |L|⌉ − 1)(18 + C|CCZ⟩)︸ ︷︷ ︸
Diffusion operator

+ (4D − 2)((κ− 1)(39 + C|CCZ⟩) + 7)︸ ︷︷ ︸
Adders

+4(2Dκ+ 4)︸ ︷︷ ︸
Extra CNOTs
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+ 2D(28κ2 − 42κ+ 28 + (κ2 − κ+ 1)C|CCZ⟩)︸ ︷︷ ︸
Multipliers

)
,

Active volume loop 2 : ⌈7.67
√
|L|⌉︸ ︷︷ ︸

Iterations

(
(25 + 1.5κ+ C|CCZ⟩)|L|︸ ︷︷ ︸

QRAM

+(⌈log2 |L|⌉ − 1)(18 + C|CCZ⟩)︸ ︷︷ ︸
Diffusion operator

+ (D + 1)((κ− 1)(39 + C|CCZ⟩) + 7)︸ ︷︷ ︸
Adders

+D(20.25κ2 − 48.75κ+ 32 + (0.5κ2 − 1.5κ+ 1)C|CCZ⟩)︸ ︷︷ ︸
Multipliers

)
,

both approximately equal to 8.59 · 1038, while the reaction depth of one Grover’s search in each search
loop is

Reaction depth : ⌈7.67
√
|L|⌉︸ ︷︷ ︸

Iterations

(
2⌈log2 |L|⌉ − 2︸ ︷︷ ︸

QRAM

+2(1 + ⌈log2D⌉)(κ− 1)︸ ︷︷ ︸
Adders

+2κ log2 κ− 2κ− 2 log2 κ+ 4︸ ︷︷ ︸
Multipliers

+ 2⌈log2⌈log2 |L|⌉⌉︸ ︷︷ ︸
Diffusion operator

)
≈ 7.45 · 1015.

Code distance and time. The analysis is the same to the NVSieve case. First consider a baseline
architecture and the Grover’s search with Q = ⌈7.67

√
|L|⌉ iterations from the first search loop. As-

suming enough distillation factories, each Toffoli layer is performed every 4 logical cycles. The Grover’s
search employs a total of 3.48 · 1024 logical qubits and 1.49 · 1016 logical cycles. In order to keep a
logical error probability below 0.1%, we choose a code distance d such that

3.48 · 1024 · 1.49 · 1016 · d · 0.1(100pphy)(d+1)/2 ≤ 0.001.

Give pphy = 10−5, the above is satisfied by d = 29, yielding a logical error probability of ≈ 0.015%.
With each logical qubit requiring 2d2 physical qubits, 5.85 · 1027 physical qubits are used (excluding
distillation qubits). With a code cycle of 100 ns, the Grover’s circuit time is ≈ 1, 370 years. The same
steps can be repeated for the other search loop, which we omit here.

Now consider an active-volume architecture. The Grover’s search with Q = ⌈7.67
√
|L|⌉ iterations

from the first search loop requires 3.48·1024 logical qubits and active volume of 8.59·1038, and therefore
2(8.59 · 1038)/(3.48 · 1024) = 1.49 · 1016 logical cycles. The code distance d is chosen so that

2 · 8.59 · 1038 · d · 0.1(100pphy)(d+1)/2 ≤ 0.001.

Given pphy = 10−5, the above is satisfied by d = 28, yielding a logical error probability of ≈ 0.015%.
With each logical qubit requiring d2 physical qubits, 2.73 · 1027 physical qubits are required. With a
code cycle of 100 ns, the Grover’s circuit time is ≈ 11 years. The same steps can be repeated for the
other search loop, which we omit here.

Finally, given a reaction depth of 7.45 · 1015 and a reaction time of 1 µs, the Grover’s search is thus
reaction limited at ≈ 230 years. This limits the active-volume execution time to ≈ 230 years, and not
≈ 11 years.

Distillation protocol. Finally, we check whether the distillation protocol (15-to-1)4⌈d/4⌉,⌈d/8⌉,⌈d/8⌉×
(15-to-1)4⌈d/2⌉,⌈d/4⌉,⌈d/4⌉ × (8-to-CCZ)d,⌈d/2⌉,⌈d/2⌉ with code distance d = 29 outputs magic states with
error probability smaller than 0.001/(6.22·1036) = 1.61·10−40. Indeed, the distillation protocol outputs
magic states with error rate 1.0 · 10−43 every 96 code cycles using 84, 308 physical qubits. Since each
Toffoli layer must be executed every 4d = 116 code cycles, we require 96

116 |L|/2 = 3.60 · 1023 distillation
factories, which adds another 3.03 · 1028 physical qubits to a total of 3.62 · 1028 physical qubits. For
active-volume architectures, the distillation cost was already computed in C|CCZ⟩.
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Table 4: Summary of required resources to perform one Grover’s search with one solution in
GaussSieve with and without LSH/LSF assuming baseline and active-volume physical architectures.
Reaction limit and circuit time are measured in days, and final time is the maximum between both.
We assume a lattice dimension D = 400, topological and magic distillation probability errors smaller
than 10−3, and a Grover’s search probability error of 10−3. We focus on a Grover’s search from the
first loop search. GaussSieve has list size |L| = 20.193D+2.325 and list of candidates of size |C| = |L| ·p∗2
for LSH and |C| = |L| · CD(α)2 · ln(1/ε)/WD(α, α, π/3) for LSF, where ε = 10−3.

Resource/Sieve GaussSieve
GaussSieve +
angular LSH

GaussSieve +
spherical LSH

GaussSieve +
spherical LSF

List size 8.70 · 1023 5.00 · 1014 3.90 · 1012 5.48 · 109

Hashing parameter k - 99 7 1

Number hash tables t - 1.57 · 1018 5.31 · 109 2.84 · 1038

Filter angle α - - - π/3

Logical qubits 3.48 · 1024 2.00 · 1015 1.56 · 1013 2.19 · 1010

Toffoli-count 6.22 · 1036 8.58 · 1022 5.91 · 1019 3.11 · 1015

Toffoli-width 4.35 · 1023 2.50 · 1014 1.95 · 1012 2.74 · 109

Active volume 8.59 · 1038 1.18 · 1025 8.15 · 1021 4.29 · 1017

Reaction depth 7.45 · 1015 1.68 · 1011 1.46 · 1010 5.37 · 108

Reaction limit (hours) 8.63 · 104 4.66 · 101 4.06 · 100 1.49 · 10−1

B
as

el
in

e

Code distance 29 20 17 15

Distillation factories 3.60 · 1023 1.88 · 1014 1.72 · 1012 2.19 · 109

Physical qubits 3.62 · 1028 8.60 · 1018 6.47 · 1016 5.92 · 1013

Circuit time (hours) 5.00 · 105 1.86 · 102 1.38 · 101 4.47 · 10−1

Final time (hours) 5.00 · 105 1.86 · 102 1.38 · 101 4.47 · 10−1

A
ct

iv
e-

vo
lu

m
e Code distance 28 20 16 14

Physical qubits 2.73 · 1027 8.00 · 1017 3.99 · 1015 4.29 · 1012

Circuit time (hours) 4.00 · 103 1.64 · 100 1.16 · 10−1 3.81 · 10−3

Final time (hours) 8.63 · 104 4.66 · 101 4.06 · 100 1.49 · 10−1

8.1.3 NVSieve and GaussSieve with LSH/LSF

Finally, we consider both NVSieve and GaussSieve with LSH/LSF. Once again, we focus on one
Grover’s search with worst-case list size |S| = 20.2352D+0.102 log2 D+2.45 ≈ 2.15 · 1029 for NVSieve and
|L| = 20.193D+2.325 ≈ 8.70 · 1023 for GaussSieve. We assume the existence of only one solution in each
Grover’s search, and we focus on the first search loop in GaussSieve. The average size of the list of
candidates C to be searched over with Grover’s algorithm is |C| = |L|·p∗2 for LSH and |C| = |L|·t·CD(α)2
for LSF.

The choice for the hashing parameter k and the number of hash tables t (and the angle α for
LSF) is highly heuristic. For LSH the choice of k is usually based on guaranteeing that nearby vectors
collide with high probability in at least one hash table. This yields k = log3/2 t − log3/2 ln(1/ε)

for angular LSH and k = 6(ln t − ln ln(1/ε))/
√
D for spherical LSH. For spherical LSF, k = 1 and

t = ln(1/ε)/WD(α, α, π/3). Here ε = 10−3. On the other hand, the value of t for LSH is based
on balancing the classical hashing time with the quantum searching time, while the parameter α is
obtained by minimising the total runtime (classical hashing time plus quantum searching time). A
precise choice for t and α thus depends on all sieving steps and not just a single Grover’s search. We
refer the reader to Section 8.2 below for a list of assumptions on the performance of NVSieve and
GaussSieve that allows for precise expressions used to derive t and α. For now we just quote the
values k, t, and α in Tables 3 and 4.
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The analysis is very similar to the previous ones, so we omit most of the details and list the results in
Tables 3 and 4. The expressions for Toffoli-count, number of logical qubits, active volume, and reaction
depth are basically the aforementioned ones but replacing |L| or |S| with |C| within a Grover’s search.

Tables 3 and 4 show a rough estimate for one Grover’s search with worst-case list size in each
NVSieve and GaussSieve with and without LSH in dimension D = 400. Even though only one
Grover’s search was taken into consideration, we can already grasp the order of magnitude of each
resource, specially number of physical qubits and overall time, the most important ones. Moreover,
it is possible to observe some of the advantages and disadvantages of each algorithm, e.g., the use of
hashing has a significant impact on time and number of physical qubits as expected from searching a
smaller list. However, a full and complete analysis can only come from considering all Grover’s searches
from all sieving steps, which we shall look at next.

8.2 Resource estimations via heuristic assumptions

In this section, we employ the analysis procedure outlined above in order to gauge the required resources
to fully carry out the NVSieve and GaussSieve aided by Grover’s search. For the sake of comparison, we
also consider a completely classical implementation where vector reductions are searched sequentially.
Since these sieving algorithms involve several quantities which are difficult to precisely measure, we
rely on heuristic and numerical observations from Sections 7.1.1 and 7.2.1 to build plausible worst-case
assumptions on which the resource estimations can be performed. In the following, we assume that:

1. The initial list size |L| in NVSieve is |L| = D · 20.2352D+0.102 log2 D+2.45.

2. In the classical implementation of NVSieve, the list S or C is scanned one full time in order to
find a solution.

3. In the quantum implementation of NVSieve, there is only one solution to each Grover’s search.

4. The center list has size |S| = 20.2352D+0.102 log2 D+2.45 in each sieving step of NVSieve without
LSH/LSF. The list size |L| decreases by |S| per sieving step.

5. In each sieving step of NVSieve with LSH, |S| = 20.2352D+0.102 log2 D+2.45 vectors are inserted
into t hash tables, and the list of candidates has size |C| = |S| · p∗2, where p∗2 is the average
probability that far-away vectors collide. In NVSieve with LSF, |S| = 20.2352D+0.102 log2 D+2.45

vectors are inserted into relevant filters out of t buckets, and the list of candidates has size
|C| = |S| · t · CD(α)2 = |S| · CD(α)2 · ln(1/ε)/WD(α, α, π/3), where ε = 10−3. The list size |L|
decreases by |S| per sieving step.

6. The maximum list size in GaussSieve is 20.193D+2.325, while the number of iterations I grows as
20.283D+0.335.

7. The list size |L| in GaussSieve equals the maximum list size of 20.193D+2.325 for all iterations
and its size therefore does not decrease.

8. In the classical implementation of GaussSieve, the list L or C in the first search loop (Line 7
in Algorithm 3 and Line 10 in Algorithm 4) is scanned 10 times: one vector reduction happens
after every scan until no solutions are left after the 9-th time. The list L or C in the second
search loop (Line 9 in Algorithm 3 and Line 12 in Algorithm 4) is scanned only once.

9. In the quantum implementation of GaussSieve, the first search loop (Line 7 in Algorithm 3 and
Line 10 in Algorithm 4) is performed 10 times: 9 times with M = 1 solution, and 1 final time with
M = 0 solutions. The second search loop (Line 9 in Algorithm 3 and Line 12 in Algorithm 4) is
performed only once with M = 0 solutions.
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Table 5: Amount of classical arithmetic operations in the classical implementation of NVSieve and
GaussSieve with and without LSH/LSF. Here |L| is the maximum list size of NVSieve or GaussSieve,
I is the number of iterations of GaussSieve, and p∗2 is the average probability that a non-reducing
vector collides with another vector in at least one of t hash tables.

Searching Hashing

Sieve/Operations Additions Multiplications Additions Multiplications

NVSieve D · |L|2 1
2
D2 · |L|2 0 0

NVSieve +
angular LSH D · |L|2 · p∗2

1
2
D · |L|2 · p∗2 k · t · |L| 2k · t · |L|

NVSieve +
spherical LSH D · |L|2 · p∗2

1
2
D · |L|2 · p∗2 D · 2

√
D · k · t · |L| D · 2

√
D · k · t · |L|

NVSieve +
spherical LSF D · |L|2 · t · CD(α)2 1

2
D · |L|2 · t · CD(α)2 2 log2 D · |L| · t · CD(α) 0

GaussSieve (41D − 19) · I · |L| 21D · I · |L| 0 0

GaussSieve +
angular LSH (41D − 19) · I · |L| · p∗2 21D · I · |L| · p∗2 k · t · |L| 2k · t · |L|

GaussSieve +
spherical LSH (41D − 19) · I · |L| · p∗2 21D · I · |L| · p∗2 D · 2

√
D · k · t · |L| D · 2

√
D · k · t · |L|

GaussSieve +
spherical LSF (41D − 19) · I · |L| · t · CD(α)2 21D · I · |L| · t · CD(α)2 2 log2 D · |L| · t · CD(α) 0

10. In GaussSieve with LSH, |L| = 20.193D+2.325 vectors are inserted into t hash tables and the list
of candidates has size |C| = |L| · p∗2, where p∗2 is the average probability that far-away vectors
collide. In GaussSieve with LSF, |L| = 20.193D+2.325 vectors are inserted into relevant filters out
of t buckets and the list of candidates has size |C| = |L| · t · CD(α)2.

11. Angular LSH: k = log3/2 t−log3/2 ln(1/ε) and the average collision probability of far-away vectors
p∗2 is given by Equation (1). The total classical hashing time requires 2k · t · |L| multiplications
and k ·t · |L| additions. In the quantum implementations, the number of hash tables is determined
through the equality D2 · |L|

√
|S| · p∗2 = k · t · |L| for NVSieve (there are |L|/|S| = D sieving

steps) and D · I
√
|L| · p∗2 = k · t · |L| for GaussSieve.

12. Spherical LSH: k = 6(ln t − ln ln(1/ε))/
√
D and the average collision probability of far-away

vectors p∗2 is given by Equation (3). The total classical hashing time requires D · 2
√
D · k · t · |L|

additions and multiplications. In the quantum implementations, the number of hash tables is
determined through the equality D2 · |L|

√
|S| · p∗2 = D · 2

√
D · k · t · |L| for NVSieve (there are

|L|/|S| = D sieving steps) and D · I
√
|L| · p∗2 = D · 2

√
D · k · t · |L| for GaussSieve.

13. Spherical LSF: k = 1 and the number of filter buckets is t = ln(1/ε)/WD(α, α, π/3) with ε =
10−3. The total classical time to place vectors into relevant filters requires 2 log2D · |L| · t · CD(α)
additions. In the quantum implementations, the parameter α ≤ 1/2 is determined by minimising
log2D · |L| · t · CD(α) + D2 · |L|

√
|S| · t · CD(α)2 for NVSieve and log2D · |L| · t · CD(α) + D ·

I
√
|L| · t · CD(α)2 for GaussSieve.

14. Classical additions and multiplications require 1 and 4 computational cycles, respectively.

15. The topological error probability and Grover’s search error probability (δ in Fact 7) are ≤ 10−3.

For convenience, under the above assumptions, in Table 5 we collect all classical operations coming
from hashing and searching for the classical implementation of the sieving algorithms.

In Figure 5 we compare the number of physical qubits and reaction limits from NVSieve and
GaussSieve with and without LSH/LSF under an active-volume architecture. The estimated classical
execution times using a 6-GHz-clock-speed single-core classical computer are also included, where GHz
means 109 operations per second. For completeness, we also add the classical hashing time to the
reaction limits coming from the Grover’s search, although the difference is tiny. The use of locality-
sensitive techniques greatly improves both quantities, specially the amount of physical qubits. It
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(a) Active-volume physical qubits of NVSieve (b) Active-volume physical qubits of GaussSieve

(c) Reaction limit of NVSieve (d) Reaction limit of GaussSieve

Figure 5: Number of physical qubits and reaction limit of all Grover’s searches in NVSieve and
GaussSieve with and without LSH/LSF as a function of the lattice dimension D. We assume an
underlying active-volume physical architecture. The reaction limits also include the classical hashing
times. The quantities are computed based on heuristic assumptions described in the main text.

is noticeable the decrease in resources as more sophisticated hashing techniques are employed, from
angular LSH to spherical LSH and LSF. Spherical LSH is more expensive than angular LSH in lower
dimensions due to high lower-order terms, specially coming from the O(2

√
D) hashing time. It is,

however, asymptotically better than angular LSH as expected. At the range of proposed cryptographic
dimensions D ≈ 400, the best attack (GaussSieve with spherical LSF) requires around ≈ 1013 physical
qubits and ≈ 1031 years to find a lattice’s shortest vector. We note that most crossovers between
classical and quantum time complexities happen after dimension 200, or dimension 300 for GaussSieve
specifically.

In Appendix A we revisit the heuristic assumptions made in this section and compare the perfor-
mance of all Grover’s searches under these assumptions to the performance using data from numerical
simulations on classical hardware. In other words, we perform resource estimates using the evolution of
the list L in a real run of GaussSieve on classical hardware. As a brief summary, the time complexities
reported in this section can probably be reduced by half under more realistic and thorough heuristic
assumptions.
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(a) Physical qubits of GaussSieve without QRAM (b) Reaction limit of GaussSieve without QRAM

Figure 6: Number of physical qubits and reaction limit of GaussSieve with and without LSH/LSF
as a function of the lattice dimension D in the scenario where QRAM has negligible cost. We assume
an underlying active-volume physical architecture. The quantities are computed based on heuristic
assumptions described in the main text.

8.3 The cost of QRAM

From the previous sections, specially from the cost expressions of Section 8.1, it should be clear that
QRAM is the most expensive component in our quantum circuits. The need to access an exponentially
large dataset imposes a huge burden on size. Not only that, but the loss of sequential access to the
dataset set by Grover’s search implies that, when using any hashing technique, we must first gather
all candidate vectors and store them separately in order to later use QRAM. For these reasons, we
analyse in this section the required resources for sieving algorithms under the scenario where QRAM
has negligible cost, akin to Albrecht et al. [14]. This is done by repeating the procedure from the
previous sections, but this time zeroing out all contributions from QRAM to Toffoli-count, logical
qubits, active volume, and reaction depth in the expressions from Section 8.1. For simplicity, we focus
on GaussSieve, as it requires less resources than NVSieve and performs classically better in practice.
The number of physical qubits under an active-volume architecture and reaction limit for GaussSieve
with and without QRAM are compared in Figure 6.

The absence of QRAM has little impact on the reaction limit of GaussSieve for dimensions up to
500. According to Sections 6 and 8.1, QRAM is a shallow circuit with reaction depth of 2⌈log2 |L|⌉−2 =
196 for |L| = 20.193·500+2.325 ≈ 5.61 ·1029, while the arithmetic part of one Grover iteration has reaction
depth of 2(1 + ⌈log2D⌉)(κ− 1) + 2κ log2 κ− 2κ− 2 log2 κ+ 4 = 870, hence why there is no noticiable
change in the reaction limit from Figure 6b. On the other hand, however, the number of physical
qubits is drastically reduced from ≈ 1025 down to ≈ 4 · 108 for GaussSieve with spherical LSF at
dimension D = 500, for example. Such drastic change is expected, since a bucket-brigade-style QRAM
with shallow reaction depth requires a number of logical qubits roughly equal to the size of the list
stored in memory. We note that earlier resources estimates on Shor’s algorithm placed the number of
physical qubits to be in the range 108-1010 [193, 110, 79, 163, 84], which is comparable to our estimates
of running GaussSieve without QRAM in high dimensions. From Figure 6a it can be noted that the
number of physical qubits has little dependence on the employed hashing techniques. Without QRAM,
the number of physical qubits comes mainly from the arithmetic modules, which are independent of
the list size. Finally, the sudden changes in the number of physical qubits from Figure 6a are due to
integer increases in the code distance d in order to maintain the error rates below 0.1%.
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(a) Physical qubits of GaussSieve with limited depth (b) Reaction limit of GaussSieve with limited depth

Figure 7: Number of physical qubits and reaction limit of GaussSieve with and without LSH/LSF
as a function of the lattice dimension D in the scenario where the reaction depth of each Grover’s
seach is at most 240. We assume an underlying active-volume physical architecture. The quantities
are computed based on heuristic assumptions described in the main text.

8.4 Depth constraints: NIST standardisation

In many realistic situations, a quantum attacker would have bounded resources, e.g., be constrained
by a total running time or circuit depth. In its call for proposals for the post-quantum cryptography
standardisation process [162], NIST introduced the parameter MAXDEPTH to bound the circuit depth
of any potential attacker, suggesting reasonably values in the range of 240 to 296 logical gates. As
explained in their proposal [162, Section 4.A.5], the value 240 is “the approximate number of gates that
presently envisioned quantum computing architectures are expected to serially perform in a year” [110],
while 296 is “the approximate number of gates that atomic scale qubits with speed of light propagation
times could perform in a millennium”. In this section, we revisit the results from Section 8.2 and
constrain the circuit depth. Since several quantities could be interpreted as the circuit depth, we set
the parameter MAXDEPTH as a limit to the reaction depth of any Grover’s search. This means that,
for MAXDEPTH = 240, any Grover’s search would be time limited to 240 µs ≈ 12.73 days, assuming
a reaction time of 1 µs, while for MAXDEPTH = 296, any Grover’s search would be time limited to
296 µs ≈ 2.51 · 1015 years. This, in turns, limits the number of Grover iterations. In order to meet the
maximum reaction depth, we split the list L in GaussSieve (list of centers S in NVSieve and list of
candidates C when using LSH/LSF) into F disjoint parts, each to be searched by a different instance of
Grover algorithm. The number F of sequential Grover’s searches required to set a maximum reaction
depth of I in GaussSieve is thus determined by the equation

I = ⌈9.2 log3(1/δ)
√
|L|/F ⌉

(
2⌈log2(|L|/F )⌉+ 2(1 + ⌈log2D⌉)(κ− 1)

+ 2κ log2 κ− 2κ− 2 log2 κ+ 2 + 2⌈log2⌈log2(|L|/F )⌉⌉
)
,

which simply follows from the reaction-depth expression from Section 8.1.2. A similar equation to
determining F holds for NVSieve. Here 240 ≤ I ≤ 296 as set by NIST. The value F obtained from the
above equation is then used to determine other quantities like number of physical qubits.

In Figure 7 we depict the number of physical qubits and total reaction limit of GaussSieve with
and without LSH/LSF in the scenario where each Grover’s search has reaction depth at most 240. As
usual, the total number of physical qubits is the maximum number of physical qubits used by any
Grover’s search, while the total reaction limit is the sum of the reaction limits of all Grover’s searches.
For small dimensions, the reaction limit of Grover’s search is smaller than MAXDEPTH = 240, so there
are no differences between Figures 5 and 7. However, the depth restriction begins to take effect for
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dimensions higher than ≈ 250. As a consequence, the number of physical qubits becomes mostly
constant since only lists of at most a certain size can be searched. On the other hand, the reaction
limit of the whole algorithm increases more rapidly with the dimension D, since employing F sequential
Grover’s searches over list of size |L|/F is less time efficient than employing a single Grover’s search
over the whole list L. The end result is a considerable decrease in number of physical qubits, while the
time increases by a few orders of magnitude, specially in GaussSieve without LSH/LSF, whose circuit
depth is capped in smaller dimensions. A similar effect would be observed for a different MAXDEPTH.
We remark that the reaction depth of Grover’s search is smaller than 296 for all dimensions D ≤ 500,
hence why we omit an analysis for MAXDEPTH = 296.

9 Discussions and open problems

In this paper, we considered the most important sieving algorithms (NVSieve and GaussSieve) and
gave rigorous estimates on the time and space required to execute internal searching subroutines with
Grover’s search. Our estimation analysis took into consideration fixed-point quantum arithmetic, the
cost of QRAM, different physical architectures like baseline and active-volume one, and quantum error
correction. For the sake of comparison, we also consider equivalent classical implementations where
Grover’s search was replaced with sequential classical searching operations. We note that using BKZ to
break the security of level-1 NIST candidate cryptosystems like Kyber-512, Falcon-512, and DiLithium
require us to solve SVP in dimensions (block sizes of) over 400. At this lattice dimension, even
GaussSieve with spherical LSF under an active-volume architecture would require ≈ 1013 physical
qubits and ≈ 1031 years to execute all Grover’s search subroutines, which also takes into consideration
classical hashing operations but ignores memory allocation. Most of the required qubits are due to
QRAM, meaning that any quantum advantage will only be possible if QRAM becomes substantially less
costly. On the other hand, a single-core classical computer with 6 GHs clock rate would also require
≈ 1031 years to solve SVP at dimension 400, meaning that there is little advantage at dimensions of
cryptographic interest.

We have not explored the possibility of parallelising the list search by breaking it into smaller parts
and employing different Grover’s searches on each part. However, it is well known that Grover’s search
does not parallelise well [203], meaning that F parallel Grover algorithms running on F separate search
spaces have a total width that is larger by a factor of F compared to a single Grover algorithm on the
whole search space while only reducing the depth by a factor of

√
F . We expect to observe a decrease

in total runtime (Figure 5) via parallelisation by n order of magnitude in exchange to an increase in
number of physical qubits by roughly 2n orders of magnitude.

The hash parameter k and the number of hash tables t were chosen so that nearby vectors collide
with high probability and the classical time hashing is balanced out by the quantum time searching.
A very precise choice for t would require sorting out the constant factors in each of these complexities,
which we did not consider. We leave it to future works a more careful analysis on the choice of k, t, α.

We saw that the introduction of LSH or LSF requires a classical pre-search to gather all candidate
vectors from the buckets with the same hash as a given vector and place them on a QRAM. Albrecht et
al. [14] (partially)2 evaded such a problem by employing just one hash table and considering more than
one bucket via a “XOR and population count trick”. By using their popcount filter and amplifying the
amplitude of the vectors that pass such filter via quantum amplitude amplification [46], Grover’s search
is performed only on a subset of vectors which are close to the target vector with high probability. This
lessens the cost coming from quantum arithmetic circuits in Grover’s oracle. Even though Albrecht et
al. obtained a cost expression for this “filtered” Grover’s search, it requires strong bounds on the number
of solutions M . In particular, the authors assumed that the number of solutions to the filtered search
is known exactly beforehand, which we deem too strong of an assumption. It would be interesting to
obtain more rigorous cost expressions on their filtered Grover’s search (akin to Ref. [50]) and perform
a complete resource estimation on sieving algorithms employing it.

2The problem is still present when considering LSF in their ListDecodingSearch [14, Algorithm 4].
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Finally, we leave to future works a rigorous resource estimate on the quantum-random-walk-based
sieving algorithm of Chailloux and Loyer [54] and on enumeration algorithms and the consideration of
metrics other than time and number of physical qubits like energy consumption.
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A Comparison between heuristic assumptions and numerical simula-
tions

Some of the heuristic assumptions from Section 8.2 are worst-case simplifications, e.g., the assumption
that any Grover’s search in NVSieve and GaussSieve has at most one solution, or that the list size is
maximum throughout all iterations. In reality, we expect NVSieve and GaussSieve to perform better
than described in Section 8.2: the list size should be quite smaller in many iterations than its maximum
size at the end of the algorithm, and several solutions could exist when performing Grover’s search.

In this appendix, we compare the results of Section 8.2 to those obtained from actual numerical
simulations. To be more precise, we solved SVP on a random lattice of dimension 40 ≤ D ≤ 71
using GaussSieve (without LSH/LSF) on a classical hardware and recorded the list Li and number
of solutions Mi at each step i. This creates a history of list and number-of-solution pairs {(Li,Mi)}i.
Given a list size |Li| and a number of solutions Mi, it is then possible to estimate the amount of
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(a) Physical qubits of GaussSieve (b) Time estimate of GaussSieve

Figure 8: Comparison between quantum resources of GaussSieve obtained through heuristic assump-
tions and through numerical data. (a) Comparison between physical qubits under baseline and active-
volume architectures. (b) Comparison between reaction limit and circuit time under baseline and
active-volume architectures. The heuristic data is obtained through the assumptions from Section 8.2,
while the numerical data is obtained by running GaussSieve on a classical hardware and employing
its internal parameters (list size and number of solutions) at every step.

resources that would be required by Grover’s search at that given step i of GaussSieve by following
Section 8.1. The total amount of physical qubits employed by one particular GaussSieve run is the
maximum number of physical qubits that would be required for any search step i, while the total
quantum time complexity due to all Grover algorithms is the sum of the quantum time complexities of
each individual search step i. Since GaussSieve is a randomised algorithm, we repeat this procedure
a few times and take averages of the final number of physical qubits and quantum time complexity3.
The results are displayed in Figure 8.

Figure 8a compares the number of physical qubits, both under baseline and active-volume archi-
tectures, that result from following the heuristic assumptions of Section 8.2 and from considering the
history of list and number of solutions {(Li,Mi)}i of an average run of GaussSieve. There is little
difference between both approaches in the number of physical qubits, which is to be expected since the
number of physical qubits is a function of the maximum list size and its heuristic value of 20.193D+2.325

is a fitting of actual numerical data. More interestingly, though, Figure 8b compares several time
complexities (reaction limit and circuit time under baseline and active-volume architectures) between
heuristic and numerical data. As anticipated, we can observe that GaussSieve has lower quantum
time complexities in “practice” than under the heuristic assumptions of Section 8.2. The improvement
in time complexity is around 50%, meaning that GaussSieve with Grover’s search should be two times
faster than reported in Section 8 for dimensions 40 ≤ D ≤ 71. It is not unreasonable to extend such
advantage to larger dimensions and to GaussSieve with hashing techniques.

B Extra results

In this appendix we provide more results that were omitted from Section 8, e.g., number of physical
qubits and circuit time under baseline and active-volume physical architectures for both NVSieve and
GaussSieve with and without LSH/LSF. Figures 9 to 11 describe results for NVSieve and GaussSieve

with QRAM, without QRAM, and with Grover’s searches reaction-depth limited to 240, respectively.

3For 40 ≤ D ≤ 70 we repeated the procedure 10 times, while for D = 71 we repeated it 3 times.
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(a) Baseline physical qubits of NVSieve (b) Baseline physical qubits of GaussSieve

(c) Active-volume circuit time of NVSieve (d) Active-volume circuit time of GaussSieve

(e) Baseline circuit time of NVSieve (f) Baseline circuit time of GaussSieve

Figure 9: Number of physical qubits and circuit times in NVSieve and GaussSieve with and without
LSH/LSF under baseline and active-volume physical architectures as a function of lattice dimension D.
Reaction limits and circuit time also include classical hashing time.
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(a) Baseline physical qubits of NVSieve without
QRAM

(b) Baseline physical qubits of GaussSieve without
QRAM

(c) Active-volume circuit time of NVSieve without
QRAM

(d) Active-volume circuit time of GaussSieve without
QRAM

(e) Baseline circuit time of NVSieve without QRAM (f) Baseline circuit time of GaussSieve without QRAM

Figure 10: Number of physical qubits and circuit times in NVSieve and GaussSieve with and without
LSH/LSF under baseline and active-volume physical architectures as a function of lattice dimension D
in the scenario where QRAM has negligible cost. Reaction limits and circuit time also include classical
hashing time.
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(a) Baseline physical qubits of NVSieve with limited
depth

(b) Baseline physical qubits of GaussSieve with
limited depth

(c) Active-volume circuit time of NVSieve with
limited depth

(d) Active-volume circuit time of GaussSieve with
limited depth

(e) Baseline circuit time of NVSieve with limited
depth

(f) Baseline circuit time of GaussSieve with limited
depth

Figure 11: Number of physical qubits and circuit times in NVSieve and GaussSieve under baseline
and active-volume physical architectures as a function of lattice dimension D in the scenario where the
reaction depth of each Grover’s search is at most 240. Circuit time includes classical hashing time.
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