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Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows per-
forming arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it has
been considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has
evolved to become a practical primitive with strong security guarantees. Most modern construc-
tions are based on well-known lattice problems such as Learning With Errors (LWE). Besides its
academic appeal, in recent years FHE has also attracted significant attention from industry, thanks
to its applicability to a considerable number of real-world use-cases. An upcoming standardization
effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the
main challenges that standards bodies, developers, and end users usually encounter is establishing
parameters. This is particularly hard in the case of FHE because the parameters are not only related
to the security level of the system, but also to the type of operations that the system is able to
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handle. In this paper we provide examples of parameter sets for LWE targeting particular security
levels, that can be used in the context of FHE constructions. We also give examples of complete
FHE parameter sets, including the parameters relevant for correctness and performance, alongside
those relevant for security. As an additional contribution, we survey the parameter selection support
offered in open-source FHE libraries.

1 Introduction

An encryption scheme is said to be fully homomorphic if arbitrary computations can be conducted on
encrypted inputs without knowledge of the decryption key, and thus without access to the plaintext
input. From the time the first construction was proposed in [Gen09], there has been a significant effort to
improve fully homomorphic encryption (FHE) schemes in terms of both efficiency and security. The study
of its potential application started as early as [RAD78]. In fact, FHE supports many applications [KL21],
including computation over data stored on private clouds [BY88], private information retrieval [MCR21],
and secure inference [JVC18].

There has been significant academic and commercial effort towards developing real-world applications
for FHE. As a result, a community initiative towards standardizing FHE called HomomorphicEncryp-
tion.org was launched in 2017. More recently, there is an ongoing effort to formally standardize FHE
schemes by ISO/IEC. The schemes expected to be standardized are BFV [Bra12, FV12], BGV [BGV12],
CKKS [CKKS17], DM [DM15], and CGGI [CGGI16]. A new FHE scheme [LMK+23], which is regarded as a
more efficient alternative to DM [AAB+22], is included in this document under the DM umbrella term16.
These FHE schemes are based on well-known variants of the Learning With Errors (LWE) problem [Reg05],
including Ring-LWE (RLWE) [SSTX09, LPR10] and General-LWE (GLWE) [BGV12, CGGI17]17. To assess
the concrete security of FHE schemes, we must therefore estimate the concrete hardness of the underlying
variant of LWE. Every instance of RLWE and GLWE can be interpreted as an LWE instance. Moreover,
it is not known how to cryptanalytically exploit the algebraic structures of RLWE and GLWE. For this
reason, it is appropriate to restrict focus to the concrete security of LWE.

The main purpose of this document is to support the ISO/IEC effort towards the standardization of FHE
and its goal is two-fold. The first goal is to present LWE parameter sets that can be used in FHE implemen-
tations that target particular levels of security. These parameter sets are presented in Section 5.1. They
are developed using the prevailing methodology to establish parameters for LWE-based cryptography, fol-
lowing works such as [APS15a] and the Lattice Estimator18. We make available our code for estimating
the security of these parameters sets at https://github.com/gong-cr/FHE-Security-Guidelines/.

Our second goal is to present examples of functional parameter sets that could be used for particular
FHE schemes in different contexts. These parameter sets, presented in Section 5.2, mention not only those
parameters that are relevant for security but also those relevant for correctness and functionalities. These
parameter sets are necessarily exemplar and may not suit all implementations in all application contexts.
Thus, in Section 5.3, we also survey the parameter selection support offered in open source FHE libraries.

16 We note that elsewhere in the literature the CGGI, DM, and LMK+ schemes are sometimes thought of as the
same, whilst utilising differing blind rotation algorithms, e.g. in [XZD+23].

17 GLWE is also referred to as Module LWE (MLWE) in the literature [BGV12, LS15], but we will use the termi-
nology “GLWE” in this document for consistency.

18 https://github.com/malb/lattice-estimator.
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1.1 Comparison to prior work [ACC+19]

Our approach builds upon the efforts from previous work by HomomorphicEncryption.org [ACC+19]
(later published as [ACC+21]), by updating and expanding the LWE parameter sets for FHE schemes that
target specific levels of security. While their work provided valuable insights, it had certain limitations.
Specifically, it did not consider parameter sets commonly used in schemes like [DM15, CGGI16, LMK+23]
and similar ones [BR15, BDF18, KS22]. Additionally, it overlooked binary secret distributions, which are
often used in practical applications. Furthermore, the LWE dimensions considered in [ACC+19] are limited
to a range of n = 1024 to n = 32768, despite larger dimensions being employed in practice nowadays.
Since currently there is no scientific evidence against including these parameter sets, we overcome these
limitations in this document. In addition, the security of the parameter sets provided in [ACC+19] was
estimated using the (classical) cost model [BDGL16]19 with the LWE Estimator [APS15b], which is
an old version of the currently maintained Lattice Estimator [APS15a]. The parameter sets provided
in [ACC+19] may now be considered somewhat outdated, due to recent cryptanalytic advancements that
may have implications on the concrete hardness of LWE instances used in FHE applications [CHHS19,
SC19, EJK20, GJ21, BLLW22, MAT22, CST22, DP23b, PS24, DP23a, XWW+24]. In particular, the
security of the parameter sets provided in this work is estimated using the classical cost model [MAT22]
in the Lattice Estimator20. Despite these differences, both [ACC+19] and our work provide bounds of
concrete parameters for certain security levels in the form of lookup tables, and focus on specifying
concrete parameters for power-of-two cyclotomic fields for RLWE schemes.

It is important to note that the goals of this document and [ACC+19] are different. In addition to pre-
senting wider ranges of LWE parameter sets targeting specific levels of security, we also include functional
parameter sets. These functional parameter sets offer examples of complete sets of parameters, rather
than presenting only the parameters that are relevant for security. However, we would like to emphasize
that the functional parameter tables provided are not exhaustive and should be viewed as examples. In
addition, in contrast to [ACC+19], we do not provide details for any particular FHE construction or crypt-
analytic attack. Instead, we encourage readers to consult the existing literature for detailed information
on these aspects.

1.2 Related work

There are many other works in the literature on subjects that are similar to, but not directly addressed
by, this document. Here we present an overview of these topics.

NTRU-based FHE. The NTRU problem [HPS98] is another widely used assumption in lattice-based
cryptography. It has been shown that RLWE-like encryption can be built using statistically hard instances
of NTRU [SS11]. Several FHE schemes based on NTRU have been proposed [LTV12, BLLN13, Klu22,
BIP+22, XZD+23]. However, it is known that the sublattice structure of the NTRU lattice can be used
to optimize attacks [ABD16, CJL16, KF17, DvW21], leaving some NTRU-based FHE schemes insecure.
Concretely, it was shown in [DvW21] that, to avoid the sublattice attacks, one should use modulus smaller
than O(n2.484). This seems to rule out the BGV/BFV-like NTRU-based FHE schemes that require large
modulus (e.g., [LTV12]), but not CGGI-like NTRU-based schemes (e.g., [BIP+22]). As the NTRU-based
schemes that are secure against the sublattice attacks are relatively new, they are not considered further
in this work.

19 Known as BKZ.sieve in the LWE Estimator.
20 Known as RC.MATZOV in the Lattice Estimator.
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Reductions between LWE and other lattice problems. This document considers the hardness of
LWE from the point of view of estimating the concrete security of specific LWE instances. The hardness
of LWE can also be established by considering reductions between this and other lattice problems. It is
known that solving LWE is at least as hard as quantumly [Reg05, Reg10], or classically [Pei09, BLP+13],
solving worst-case lattice hard problems such as the decisional Shortest Vector Problem (Gap-SVP) and
the Shortest Independent Vectors Problem (SIVP). While these hardness proofs mainly focused on the case
that the secret key is sampled from the uniform distribution, there are also reductions from LWE with uni-
form secret to LWE with some other secret key distributions, including the error distribution [ACPS09], a
uniform binary distribution [BLP+13], and a sparse binary distribution [CHK+16]. RLWE (resp. GLWE) is
proved to be at least as hard as worst-case lattice hard problems over ideal (resp. module) lattices [LPR10,
PRSD17, LS15]. Algorithms for solving Ideal-SVP are considered in [CDPR16, PHS19, BL21].

Machine learning attacks. The line of work [WCCL22, LSW+23, LWA+23, SWL+24] shows how a
transformer model may sometimes be used to recover secrets from LWE instances with sparse secrets in
dimensions n ≤ 1024 for relatively large modulus q. It is not clear whether the approach would be feasible
or competitive for attacking LWE instances that are used in FHE, which would either use a much smaller
modulus q than considered in [SWL+24] for n ≤ 1024, or use a larger dimension n. Hence we do not
consider this approach further.

Side channel attacks. Side-channel attacks exploit leakage gained from a specific implementation of an
algorithm on a specific computer system, rather than weaknesses in the implemented algorithm itself. The
discussion and mitigation of potential side-channel leakages in FHE is not considered in this document.
We merely note that prior literature has exploited side channels in certain FHE implementations [PPM17,
AKP+22, DP22, AA22], and that any potential side-channel leakage deserves attention since it can amplify
the utility of algorithmic approaches for solving LWE [DDGR20, DGHK23].

Parameter selection. In Section 5.1 we present LWE parameter sets for FHE that target particular
levels of security. Such sets could be used as part of an automatic parameter selection tool or compiler
that considers functionality and efficiency alongside security. Approaches for automating the selection of
FHE (or partial) parameters were given in e.g. [DKS+20, LHC+22, LCK+23, BBB+23, CHP23]. Similar
such sets [ACC+19] have also been used in major FHE libraries as a lookup table to inform default
parameters. We will mention this further in Section 5.3. Efforts have also explored frameworks or formulas
as alternatives to lookup tables for selecting FHE parameters, e.g. [BBB+23, MML+23, KMR24].

1.3 Structure of document

The remainder of this document is organized as follows. Section 2 introduces the LWE problem and its
algebraic variants used in FHE schemes. Section 3 discusses several security notions relevant to proto-
cols making use of FHE. Section 4 states the security levels that we target and describes the tools and
assumptions that we use to give concrete security estimates of LWE parameter sets. Section 5.1 gives
examples of LWE parameter sets chosen to target a given security level that can be used in FHE appli-
cations. Section 5.2 presents examples of complete FHE parameter sets. These parameters include the
LWE parameters relevant to security, as well as other parameters (such as plaintext modulus) that are
relevant for correctness and performance. Section 5.3 surveys the parameter selection support offered in
open source FHE libraries.
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2 Notation and definitions

In this section, we specify the notation used in the remainder of the document. We define the LWE, RLWE,
and GLWE problems. We also specify the secret and error distributions that are used in practice.

Learning With Errors (LWE).

The LWE problem is parametrized by (n,m, q, χs, χe), where n is the dimension, m is the number of
available samples, q is the modulus, χs is the secret distribution over Zn

q , and χe is the error distribution
over Zm.

Definition 1 (LWE distribution). For a secret s ∈ Zn
q that is chosen according to χs, the LWE distri-

bution samples a ∈ Zn
q uniformly at random, samples e ∈ Z from χe, computes b := a · s+ e mod q, and

outputs (a, b).

Definition 2 (Decision LWE). The Decision LWE problem asks to decide whether samples (a, b) are
from the LWE distribution or are chosen uniformly at random from Zn+1

q .

Definition 3 (Search LWE). The Search LWE problem asks to recover s (or equivalently e1, . . . , em)
given m samples {(ai, bi) : i = 1, . . . ,m} from the LWE distribution.

Ring Learning With Errors (RLWE).

Let Rq = Zq[X]/(fN (x)) be a polynomial ring with modulus q, where fN (x) is an irreducible polynomial
of degree N . We often take a power-of-two cyclotomic ring so that N is a power of two and fN (x) = xN+1.
Let χs denote a secret distribution over Rq, and let χe denote an error distribution over Rq.

Definition 4 (RLWE distribution). For a secret s ∈ Rq that is chosen according to χs, the RLWE
distribution samples a ∈ Rq uniformly, samples an error e ∈ Rq according to χe, computes b := as+ e ∈
Rq, and outputs (a, b).

Definition 5 (Decision RLWE). The Decision RLWE problem asks to decide whether samples (a, b) are
from the RLWE distribution or are chosen uniformly at random from Rq ×Rq.

Definition 6 (Search RLWE). The Search RLWE problem asks to recover s given m samples {(ai, bi =
ai · s+ ei) : i = 1, . . . ,m} from the RLWE distribution.

General Learning With Errors (GLWE).

We again let Rq be an (e.g. cyclotomic) polynomial ring with modulus q. We overload notation to let χs

denote a secret distribution over Rk
q , and to let χe denote an error distribution over Rq.
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Definition 7 (GLWE distribution). For a secret s ∈ Rk
q that is chosen according to χs, sample a ∈ Rk

q

uniformly, and sample an error e ∈ Rq from χe. The GLWE distribution computes b := a · s + e ∈ Rq,
and outputs (a, b).

Definition 8 (Decision GLWE). The Decision GLWE problem asks to decide whether samples (a, b) are
from the GLWE distribution or are chosen uniformly at random from Rk+1

q .

Definition 9 (Search GLWE). The Search GLWE problem asks to recover s given m samples {(ai, bi) :
i = 1, . . . ,m} from the GLWE distribution.

Error distributions.

If the standard deviation of the error distribution is Ω(
√
n), the best-known algorithm to solve the LWE

problem requires exponential time [AG11]. In practice, implementations of RLWE/GLWE-based homomor-
phic encryption schemes typically choose much narrower distributions. For RLWE-based schemes with an
underlying power-of-two cyclotomic ring, each coordinate of the error polynomial is independently sam-
pled from a Gaussian distribution centered at 0 with standard deviation σ. A very common choice is
σ ≈ 3.2 [ACC+19, HS20]. For RLWE-based schemes where the underlying ring is the kth cyclotomic
ring (where k is not a power of two), each coordinate of the error polynomial is sampled from Gaussian
distribution centered at 0 with standard deviation σ

√
k [HS20]. As an alternative, the FIPS 203 [oST24]

makes use of a Centered Binomial Distribution as the error distribution. For example, a Centered Binomial
Distribution resulted from 42 fair coin tosses centered at 0 has standard deviation 3.24. Constant-time
sampling from a centered binomial distribution can be more efficient than that from a discrete Gaussian
distribution when σ is small.

Secret distributions.

Various choices are used in practice for the secret key distribution. Below we list some examples.

– The coefficients of the secret polynomial s are chosen uniformly at random from Zq: this is known as
uniform secret.

– The secret polynomial s is chosen according to the error distribution χe: this is known as normal
form secret or Gaussian secret.

– The coefficients of the secret polynomial s are chosen uniformly at random from {−1, 0, 1}: this is
known as uniform ternary secret.

– The coefficients of the secret polynomial s are chosen uniformly at random from {0, 1}: this is known
as uniform binary secret.

– The coefficients of the secret polynomial s are chosen in {−1, 0, 1} with a restriction that exactly h
of them are 1 or −1, and the rest are all zeros: this is known as fixed Hamming weight secret. The
exact method for sampling the nonzero entries may vary depending on the implementation.

– For a fixed Hamming weight secret such that the Hamming weight is small (e.g., h < 0.25 · n), keys
chosen from this distribution are called sparse secret keys. We discuss sparse secrets in the following
subsection. The LWE parameter sets presented in this document do not have sparse secrets.
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Sparse secrets. Sparse secrets were first used in LWE-based homomorphic encryption to reduce the
complexity of recryption, a part of bootstrapping [HS21], and were previously used to support bootstrap-
ping in Gentry’s original scheme [Gen09]. For certain schemes, the multiplicative depth of bootstrapping
depends on the Hamming weight of the secret key [CH18]. For others, the bootstrapping approach relates
the Hamming weight of the secret key to the approximation interval of a sine function or to the degree
of an interpolation polynomial, and consequently this Hamming weight must be bounded and somewhat
small [CHK+18, CCS19, HK20, MHWW24] (see also Appendix A). For these reasons, many implementa-
tions of BFV, BGV, and CKKS bootstrapping use sparse secret keys [CHK+18, CH18, CCS19, HK20] or
temporarily switch the ciphertext to a sparse secret [BTPH22]. However, some implementations of CKKS
[BMTPH21] and BFV [OPP23] have correct and reasonably efficient bootstrapping with non-sparse keys.

Reductions exist for the sparse secret variant of LWE, denoted as spLWE. It has been shown that spLWE
can be reduced from standard LWE [GKPV10, BLP+13, CHK+16]. As is the case for reductions for LWE
with uniform binary and ternary secrets, the reduction is not sufficiently tight to provide useful insight
into FHE parameter setting based on uniform-secret LWE hardness.

Many attacks and analyses leverage properties of sparse secrets [How07, CP19, CHHS19, May21, CSY22,
HKLS22, LLW24, NMW+24] and thus may be applicable to FHE parameter sets with sparse secrets. Some
of these works provide their own tools for estimating the cost of these attacks for specific parameters.
However, the Lattice Estimator—the tool we use—currently does not support these cost estimates. As a
result, we have opted not to include parameter sets with sparse secrets in the current study, leaving the
discussion for future work. We encourage the integration of these attack cost estimates into the Lattice
Estimator to enable a more rigorous and equitable evaluation of the concrete security of parameter sets
for which these attacks are applicable.

3 Security notions

In this section, we discuss the essential security notions relevant to homomorphic encryption protocols.
Designing a protocol using homomorphic encryption requires a comprehensive review by cryptography
experts, as the interactions within a protocol define the adversary model and introduce potential attack
vectors. To establish the security of a cryptosystem, one must first identify the resources and capabilities
available to an attacker and define the criteria for a successful attack. These concepts are typically
encapsulated in a security model.

Informally, in security modelling, IND refers to the adversary’s goal of distinguishing an encryption of a
message from a collection. The adversary is typically given a challenge, that is, an encryption of a random
message from the collection, and its task is to identify what message is encrypted by the challenge. In
a chosen plaintext attack (CPA) the adversary has access to an encryption oracle, and it is allowed to
choose any two plaintexts to form the challenge ciphertext. In a chosen ciphertext attack (CCA) the
adversary also has access to a decryption oracle. There are two standard versions of IND-CCA. In CCA1,
the adversary only has access to the decryption oracle before it selects the plaintexts to form the challenge.
On the other hand, in CCA2, the adversary also has access to the decryption oracle after it receives the
challenge, with the restriction of not being allowed to query the challenge ciphertext itself.

It is well known that IND-CCA2 cannot be satisfied by any cryptosystem with homomorphic properties. For
instance, in an additive encryption scheme, simply adding an encryption of 0 to the challenge ciphertext
allows the adversary to submit a valid query to the decryption oracle. FHE schemes that are IND-CCA1-
secure, or target security against other types of active attacker, have been considered in several works
[LMSV12, BSW12, FHR22, AGHV22, MN24]. While theoretically possible, achieving IND-CCA1-secure
FHE is currently impractical. In addition, most approaches for achieving IND-CCA1 would require a
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cryptosystem to never share encrypted key material since it can be queried to the decryption oracle,
the response to which would reveal this material in plaintext [LMSV12]. All modern FHE constructions,
including those considered in this document, make use of encrypted key material, such as relinearization
keys, bootstrapping keys, etc. For the above reasons, IND-CPA has historically been the standard security
notion for FHE constructions.

In recent years, there have been several new attacks on all the schemes considered in this paper. The first
one of these attacks was described by Li and Micciancio against CKKS in [LM21]. To perform this attack,
the adversary must first gain access to decrypted results from valid ciphertexts. The original decryption
circuit for CKKS [CKKS17] outputs an approximate version of the encrypted message, thus containing
information about the underlying encryption error. To capture this attack, Li and Micciancio proposed
the notion of IND-CPAD, where the adversary is allowed to request decryptions of ciphertexts for which it
knows the underlying message. Exact scheme instantiations with non-negligible probability of decryption
failure (i.e. probability of decryption failure greater than 1/2Ω(s) for a statistical security parameter21 s)
are not exempt from similar attacks. Recent works [CSBB24, CCP+24, ML24] have proposed attacks on
BFV, BGV, DM, and CGGI, which work by exploiting potential decryption errors22.

There have been several measures proposed to counteract this type of attack. In the case of CKKS, the
most common technique is noise flooding [LM21, LMSS22], which consists of adding a large noise in
2Ω(s) to the message during the decryption step, effectively hiding the noise. Other mitigations such as
rounding and adding a deterministic noise have also been proposed [LM21] and implemented in several
libraries [CHK20]. For exact encryption schemes, the attack can be mitigated by reducing the probability
of decryption failure to negligible levels (i.e., less than 1/2Ω(s)). Further attacks against provably IND-
CPAD secure instantiations have been proposed in [CSBB24, CCP+24, GNSJ24], and countermeasures
have been proposed in [ABMP24, BCM+24, ML24].

The development of definitions and methods to model and guarantee security for FHE schemes is currently
an active area of research, and is beyond the scope of this paper. Hence, in this work we mainly focus on
providing (computational) IND-CPA security for FHE. We leave the consideration of advanced security
notions for future work.

4 Concrete security estimation

In this section we state the security levels that the parameter sets in Section 5.1 target, and we outline
the assumptions under which we give estimates for the concrete security of those parameter sets.

4.1 Security Levels

We define three classical security levels according to the NIST Special Publication 800-57 Part 1 [Bar20],
as follows.

Category 128, 192, 256: Any algorithm that solves the underlying LWE instance must require (classi-
cal) computational resources comparable to or greater than those required for key search on a block
cipher with a 128-bit, respectively 192-bit, respectively 256-bit key.

21 We use the notation s here to distinguish from the computational security parameter λ that is used elsewhere
in the paper. See e.g. [LMSS22] for further details of the statistical security parameter in this context.

22 Other attacks exploiting decryption failure in cryptography more broadly, and for lattice-based cryptography
and FHE specifically, had been previously known (see e.g. [HGS99, LMSV12, BDPS14, DGJ+19]).
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4.2 The Lattice Estimator

We estimate concrete security of the FHE parameter sets given in Section 5.1 using the open-source
Lattice Estimator tool [APS15a]. The Lattice Estimator is widely used in estimating the security of FHE
parameter sets [ACC+19] as well as more broadly in lattice-based cryptography.

Algorithms for solving LWE, that are currently supported in the Lattice Estimator, include the pri-
mal attack [BG14, ADPS16], the dual attack [MR09, Alb17, GJ21, MAT22], decoding attacks [LN13],
Coded-BKW [GJS15, KF15], and algebraic algorithms [AG11, ACF+15]. Some combinatorial algorithms,
including hybrid combinatorial and lattice algorithms [How07, ACW19, CHHS19, EJK20] are also sup-
ported.

However, it is important to note that some cryptanalytic algorithms applicable to LWE instances, includ-
ing those typical of FHE applications, are not supported in the Lattice Estimator. This includes some
combinatorial and hybrid approaches [May21, HKLS22, BLLW22, EGMS23].

4.3 Lattice reduction algorithms and cost models

Since several of the algorithms for solving LWE rely on a lattice reduction subroutine (most commonly
instantiated as BKZ), it is important to specify the cost model used for lattice reduction. There are
several cost models available in the Lattice Estimator and there is not consensus in the literature as to
a universally preferred cost model (see e.g. [ACD+18]). For configuration in the Lattice Estimator, we
choose RC.MATZOV [MAT22] as the cost model in the classical setting.

Quantum cost models. In a prior version of this work, we also considered a quantum sieving cost model
to target security against adversaries with quantum computational resources. This presentation paralleled
that of [ACC+19], who also gave tables developed using classical and quantum sieving cost models. After
feedback from an earlier draft of this work, we decided to remove the parameter sets targeting specific
security levels against quantum adversaries, whose concrete security was estimated using quantum sieving
cost models. The main reason for this is that estimates in [AGPS20] of the concrete performance of
quantum sieving algorithms indicates only a mild improvement over classical sieving even when very
optimistic assumptions are made about the cost of quantum random memory access and quantum error
correction. Indeed, it is shown in [JR23] that assuming quantum random access memory is cheap may be
a very strong assumption. Moreover, it is argued in [AS22] that quantum algorithms “can effectively be
ignored when setting parameters” in lattice-based cryptography.

This decision also makes Tables 5.2 and 5.3 easier to use: for example, in Table 5.2, there is now a clear
maximal bitsize of ciphertext modulus for a fixed choice of ring dimension and secret distribution. As all
our tables are reproducible, users can separately run estimates for any other cost model implemented in
the Lattice Estimator, including a quantum sieving cost model, if so desired. To make this simpler, in the
code that accompanies our work, we have included code for a quantum sieving estimate based on [CL21].

4.4 Computational cost metric

To assess whether we have met a target security level as defined in Section 4.1, we need to define a
metric for the “computational resources”. Multiple such metrics exist (see e.g. [ADPS16, ABD+20]) and
their refinement is the subject of ongoing research. Since we use the Lattice Estimator to estimate the
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concrete cost of algorithms for solving LWE, we use the unit of computation used in the Estimator: “ring
operations”. That is, we will estimate that a particular parameter set meets Category 128 if the Lattice
Estimator estimates that all algorithms cost greater than 2128 ring operations when using a classical
lattice reduction cost model. Note that “ring operations” can be converted into CPU cycles for classical
computers.

5 Tables of parameters

In this section, we provide examples of parameter sets for FHE, targeting security (Section 5.1) and
functionality (Section 5.2). We also review the parameter selection support offered in some of the major
open-source FHE libraries. The notation used in Sections 5.1 and 5.2 is summarised in Table 5.1.

Parameter Definition

λ Security level (classical or quantum) of the parameter set.

N Dimension of the RLWE instance.

n Dimension of the LWE instance, n = kN when modelling GLWE.

q LWE modulus. Largest ciphertext modulus for BGV, BFV, CKKS, DM and CGGI.

qks LWE modulus used for key switching in DM and CGGI when σ = 3.19.

Q Largest modulus of the ciphertext space, for BGV, BFV, CKKS.

P
Auxiliary (hybrid key switching) modulus for BGV, BFV, CKKS,
with q = PQ bounded according to security level.

t BGV/BFV/DM/CGGI plaintext modulus.

χs Probability distribution of the LWE secret.

χe Probability distribution of the error of a fresh LWE sample.

σ
Standard deviation of the LWE error distribution, also target
standard deviation of the error distribution for ciphertexts
after CKKS bootstrapping.

L Level, number of maximal repeated multiplications supported.

dnum Number of digits used for hybrid key switching.

Scaling Factor CKKS scaling factor.

Base prime
size

Smallest modulus of the ciphertext space for CKKS.

Table 5.1: Notation used in Tables 5.2, 5.3, 5.4, 5.6, 5.7 and 5.8.

5.1 Parameter sets that target particular security levels

In this section, we give in Table 5.2 and 5.3 examples of LWE parameter sets that can be used in FHE
applications.

These LWE parameter sets target particular security levels as defined in Section 4.1 using the Lattice
Estimator under the assumptions stated in Section 4.3 and 4.4. As such, the tables in this section are
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similar to those presented in [ACC+19]. The concrete security of the parameter sets is assessed by es-
timating the cost of primal usvp, primal bdd, hybrid bdd (for dimension N ≤ 214), and hybrid dual using
commit 8f1ff7e of the Lattice Estimator, dated Aug 27, 2024.

We want to emphasize that these tables are estimated to meet the target security levels, under the
assumptions we have outlined. The estimated security of these parameter sets may be impacted by
future advancements in cryptanalysis. It may also be affected by implementation choices in the Lattice
Estimator, such as the chosen cost model. We make available scripts that we used to generate the tables
at https://github.com/gong-cr/FHE-Security-Guidelines/, which could be re-run with subsequent
versions of the Lattice Estimator if desired.

Table 5.2 presents the maximal log (base 2) of the modulus q that can be used in dimension N , for
Gaussian error distribution with standard deviation σ = 3.19, and for secret distributions that are either
uniform ternary or Gaussian with standard deviation σ = 3.19, to give LWE parameter sets that target the
Category 128, 192, and 256 security levels. This table is suitable in but not limited to the BFV/BGV/CKKS
application settings where the error distribution standard deviation σ = 3.19 is typically fixed, but the
modulus q can be varied.

We note that the Lattice Estimator models all error distributions as Gaussians of a given standard
deviation. So, using a different fixed error distribution with standard deviation close to σ = 3.19, such
as a Centered Binomial Distribution resulting from 42 fair coin tosses centered at 0, would yield similar
values for the maximal log2(q) as in Table 5.2.

In the DM/CGGI setting, q is typically fixed to either 32-bit or 64-bit, and the error standard deviation
can be varied. Thus, in Table 5.3, we present the minimal log (base 2) of the error distribution standard
deviation σ, that can be used in dimension n = k ·N , for modulus q, and for secret distributions that are
either uniform binary, uniform ternary, or Gaussian, to give LWE parameter sets that target the Category
128, 192, and 256 security levels.
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N log2(q)

Ternary Gaussian

λ = 128

1024 26 28

2048 53 55

4096 106 108

8192 214 216

16384 430 432

32768 868 870

65536 1747 1749

131072 3523 3525

λ = 192

2048 36 38

4096 73 75

8192 147 149

16384 297 299

32768 597 599

65536 1199 1201

131072 2411 2413

λ = 256

2048 27 30

4096 56 58

8192 114 116

16384 230 232

32768 462 464

65536 929 931

131072 1866 1868

Table 5.2: Maximal log (base 2) of the modulus q that can be used in dimension N , for Gaussian error
distribution with standard deviation σ = 3.19, and for secret distributions χs that are either uniform
ternary or Gaussian with standard deviation σ = 3.19, to give LWE parameter sets that target the security
level categories 128, 192 and 256.
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n log2(q) log2(σ)

Binary Ternary Gaussian

λ = 128

630

32

18.5 17.2 14.6

1024 8.3 7.1 4.6

≥ 2048 2.0 2.0 2.0

630

64

50.5 49.2 46.6

750 47.4 46.2 43.5

870 44.3 43.1 40.3

1024 40.3 39.1 36.4

2048 13.7 12.4 10.0

≥ 4096 2.0 2.0 2.0

λ = 192

750

32

22.1 20.8 17.9

1024 17.2 15.9 13.0

≥ 2048 2.0 2.0 2.0

750

64

54.1 52.8 49.9

870 52.0 50.6 47.7

1024 49.2 47.9 45.0

2048 30.9 29.5 26.5

≥ 4096 2.0 2.0 2.0

λ = 256

1024

32

21.8 20.5 17.4

2048 7.6 6.1 3.2

≥ 4096 2.0 2.0 2.0

1024

64

53.8 52.5 49.4

2048 39.6 38.1 35.0

4096 10.9 9.3 6.4

≥ 8192 2.0 2.0 2.0

Table 5.3: Minimal log (base 2) of the error distribution standard deviation σ, that can be used in
dimension n = kN and for secret distributions χs that are either uniform binary, uniform ternary, or
Gaussian with standard deviation σs = 4, to give LWE parameter sets that target the security level
categories 128, 192 and 256. Since DM and CGGI consider LWE ciphertexts, the dimension n is not
restricted to a power of two, and therefore other values of n can be used (similarly, other values of q can
be used). In both cases, the value of log2(σ) should be adapted accordingly.
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5.2 Functional parameter sets

In this section, we give examples of SHE and FHE parameters sets that could be used for BGV, BFV,
CKKS, DM, or CGGI applications. These parameter sets include the LWE parameters relevant to security,
as well as other parameters (such as plaintext modulus for BGV or BFV) that are relevant for correctness
and performance.

Note that the parameter sets presented herein are intended as illustrative examples. They may not
necessarily represent optimal configurations for the individual libraries, and they are not intended for
comparison among libraries.

Functional parameters for BGV and BFV. Table 5.4 and 5.5 provide examples of parameter sets
for (RNS variants of) BGV/BFV in an SHE setting, i.e., without bootstrapping. The parameters were
estimated to illustrate the Category 128, 192, or 256 security levels. The notation used in both tables is
described in Table 5.1. The parameters in Table 5.4 were generated23 using Microsoft SEAL [SEA23]. The
high-level procedure for generating Table 5.4 is to set the modulus q to the maximum value supported
for a given ring dimension, and then find the maximum multiplicative depth that can be achieved by
examining the noise budget after decryption. The parameters in Table 5.5 were generated using the
cryptographic context generation API in OpenFHE v1.2.024. The high-level idea is to allow the user to
enter the main application specifications, such as multiplicative depth, plaintext modulus, and security
level, and let the library estimator find appropriate lattice parameters. Note that the purpose of both
tables is to illustrate the main considerations when selecting parameters, rather than providing optimized
parameters for a given application. Table 5.5 also lists the values of dnum, the number of digits for hybrid
key switching, which affects both the size of the maximal modulus q = PQ and size of evaluation keys for
multiplication and key switching. A higher value of dnum allows the user to reduce P , hence achieving the
largest depth for a given ring dimension, but it also increases the evaluation key size and key switching
runtime25. Hence, dnum is a configurable parameter that may be tailored to application needs.

Since BFV/BGV bootstrapping has seen a lot of recent developments and improvements [GV23, GIKV23,
OPP23, Gee24, KSS24, KDE+24, MHWW24, LW24], we choose not to present example parameters for
BFV/BGV with bootstrapping.

23 Table 5.4 can be reproduced using a script available at https://github.com/WeiDaiWD/SEAL-Depth-Estimator.
24 The OpenFHE cryptographic context generation capability finds parameters using the multiplicative depth,

plaintext modulus, number of digits used for hybrid key switching (dnum), security level, desired scaling modulus
size for BFV, and other parameters. These parameter sets can be reproduced using the scripts available at
https://github.com/gong-cr/FHE-Security-Guidelines/.

25 One evaluation key in this case has the size of dnum ciphertexts with modulus PQ and the key switching
runtime is proportional to dnum; see [HK20] for more details.

26 The depth L is conservatively chosen for both BGV and BFV to achieve negligible practical (via subgaussian
analysis) decryption probability of failure by using the expansion factor of 2

√
n; (see [KPZ21] for more details

on parameter estimation for BGV and BFV in OpenFHE).
27 For BGV, up to 5 additions and 3 key switching operations were allowed per level. The FLEXIBLEAUTOEXT scaling

mode was used.
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λ 128 192 256

log2(n) 14 15 16

log2(q) 424 585 920

log2(t) 20 20 20

χs Ternary Ternary Ternary

σ (χe) 3.2 3.2 3.2

L (BFV) 10 14 23

L (BGV) 8 12 19

Table 5.4: Sample SEAL parameters for BFV/BGV without bootstrapping.

λ 128 192 256

χs Ternary Ternary Ternary

σ (χe) 3.19 3.19 3.19

t 65537 65537 786433

log2(n) 14 15 16

BFV parameters

L26 10 15 18

log2(Q) 360 531 720

log2(P ) 60 60 180

log2(PQ) 420 591 900

dnum 6 9 4

BGV parameters

L27 8 13 16

log2(Q) 337 532 686

log2(P ) 60 60 240

log2(PQ) 397 592 926

dnum 10 15 4

Table 5.5: Sample OpenFHE parameters for BFV/BGV without bootstrapping.

Sample parameters for CGGI and DM. In Table 5.6 we present examples of parameters for CGGI
and DM that are estimated to meet the Category 128 security level. Note that for DM we refer to
the parameters for its optimized variant proposed in [LMK+23] and implemented in OpenFHE. The
notation used in Table 5.6 is as defined in Table 5.1, with the following additions: (χLWE, σLWE) denote
the secret key distribution and the standard deviation of the Gaussian error used in LWE ciphertexts;
(χGLWE, σGLWE) denote the secret key distribution and the standard deviation of the Gaussian error used
in GLWE ciphertexts; (βks, ℓks) denote the digit size and number of digits used in key-switching keys; and
(βpbs, ℓpbs) denote the digit size and number of digits used in the bootstrapping keys. Finally, perror denotes
the error probability for a single bootstrapping operation. The TFHE-rs parameters in Table 5.6 were
generated using the optimization techniques found in Concrete [BBB+23]. The OpenFHE parameters in
Table 5.6 were found using the OpenFHE estimation tool for DM and CGGI variants28.

28 The OpenFHE parameters can be regenerated using the OpenFHE lattice estimator tool at https://github.
com/openfheorg/openfhe-lattice-estimator (commit 4f9e143), which uses the Lattice Estimator for finding
secure LWE parameters.
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λ 128 128 128 128 128 128 128 128

Scheme CGGI CGGI CGGI CGGI CGGI CGGI DM DM

Library TFHE-rs TFHE-rs Concrete Concrete OpenFHE OpenFHE OpenFHE OpenFHE

n 841 785 805 687 503 556 447 556

log2(N) 11 9 11 9 10 10 10 10

k 1 4 1 3 1 1 1 1

q 264 264 264 264 ≈ 227 ≈ 227 ≈ 228 ≈ 227

qks 264 264 264 264 ≈ 214 ≈ 215 ≈ 214 ≈ 215

t 24 2 24 2 2 2 2 2

χLWE Binary Binary Binary Binary Ternary Ternary Gaussian Ternary

χGLWE Binary Binary Binary Binary Ternary Ternary Gaussian Ternary

βks 23 24 23 24 25 25 25 25

ℓks 5 3 5 3 3 3 3 3

βpbs 222 223 215 218 29 27 210 29

ℓpbs 1 1 2 1 3 4 3 3

σLWE 245.72 247.22 215.68 245.99 3.19 3.19 3.19 3.19

σGLWE 215.68 214.05 214.05 249.02 3.19 3.19 3.19 3.19

perror 2−64 2−64 2−64 2−64 2−40 2−220 2−55 2−120

Table 5.6: Sample parameters for CGGI and DM. The first two parameter sets for CGGI (with n =
742 and 777) are taken from the TFHE-rs library29. The third and fourth parameter sets (with n =
805 and 687) are from the Concrete compiler. The fourth (with n = 503) and fifth (with n = 556)
parameter sets are taken from the parameters recommended for the CGGI implementation in OpenFHE
v1.2.0 [MP21, AAB+22]. Finally, the sixth (with n = 447) and seventh (with n = 593) correspond to
the parameters recommended for the DM implementation in OpenFHE v1.2.0 [LMK+23, AAB+22]. Note
that the failure probabilities perror are computed using different techniques (see Appendix B for details).
The parameter t, plaintext modulus, is sometimes also referred to as p in the literature.

Sample parameters for RNS-CKKS. In Table 5.7, respectively Table 5.8, we present example pa-
rameter sets for (an RNS variant) of CKKS without, respectively with, bootstrapping. The parameters
in Table 5.7 are estimated to meet the Category 128, 192, or 256 levels of security. The parameters in
Table 5.8 are estimated to meet the Category 128 level of security.

The parameters in Table 5.7 were selected using OpenFHE v1.2.0 [AAB+22]. The parameters in Table 5.8
are selected30 using Lattigo v5.0.2 [Tun23]31 for Set I and using OpenFHE v1.2.0 [AAB+22] for Set II.
The rescaling method for all OpenFHE parameter sets was set to FLEXIBLEAUTO and dnum was set to 3.
Both libraries contain implementation of several bootstrapping algorithms, including [CHK+18, CCS19,
HK20, BMTPH21, BCC+22].

29 We note that the TFHE-rs parameter sets presented in Table 5.6 are not associated to a public script for
reproducibility.

30 Tables 5.7 and 5.8 can be reproduced using scripts available at https://github.com/gong-cr/

FHE-Security-Guidelines/.
31 Lattigo also provides support by default for the sparse secret encapsulation technique [BTPH22], but this

feature was disabled to instead use a dense secret.
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The total cost in levels of CKKS bootstrapping can be broken down into several specific building blocks,
with the most resource-intensive steps being: (1) CoeffsToSlots, (2) EvalMod and (3) SlotsToCoeffs. Ta-
ble 5.8 provides the number of consumed levels for the execution of each of these blocks.

λ 128 192 256

log2(N) 14 15 15

χs Ternary Ternary Ternary

σ (χe) 3.19 3.19 3.19

Base Prime Size 40 43 40

L 7 9 7

log2(PQ) 427 592 434

log2(Q) 307 412 314

log2(P ) 120 180 120

log2 (Scaling Factor) 38 41 39

Precision Bit 22.3 24.0 22.2

Table 5.7: Sample parameters for RNS-CKKS without bootstrapping

Set I32 Set II33

λ 128 128

log2(N) 16 16

Number of Slots34 32768 32768

χs Ternary Ternary

σ (χe) 3.19 3.19

Base Prime Size 45 60

L (after bootstrapping) 10 6

log2(Scaling Factor) 35 58

log2(PQ) 1734 1691

log2(Q) 1464 1511

log2(P ) 305 180

Level cost of SlotsToCoeffs 4 3

Level cost of EvalMod 12 13

log2(Pr[||I(X)|| > K])35 -37.65 -37.65

K 512 512

Level cost of CoeffsToSlots 3 3

Iterations36 1 1

Precision Bits37 15.9 12.0

Table 5.8: Sample parameters for RNS-CKKS with bootstrapping.
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5.3 Parameter selection in open-source libraries and compilers

Most FHE libraries lack a systematic process to select parameters for a desired application. However,
external tools have been developed to help with this task for some of the most popular libraries. Table
5.9 lists some of the available open-source FHE libraries and the schemes they support. In this section,
we will overview parameter selection approaches in some of the major FHE libraries and compilers.

OpenFHE. OpenFHE [AAB+22] supports the schemes BFV, BGV, CGGI, CKKS and DM. For each of
BFV, BGV, and CKKS, the authors of the library provide a process to select parameters, depending on
various factors such as desired security level, depth support, batch size, key-switching mechanism, etc.
The library then finds38 the appropriate parameters based on the tables in [ACC+19].

SEAL and EVA. Microsoft’s SEAL [SEA23] supports BFV, BGV and CKKS. The main library does
not have an elaborate system to find optimal parameters for the desired application. Nonetheless, it does
provide39 a list of upper bounds for the ciphertext modulus depending on the dimension of the ring, the
desired security level and the distribution of the secret key. This list follows the tables from [ACC+19]. It
is worth noting that SEAL uses, by default, a centered binomial distribution for the generation of LWE
samples. Microsoft’s EVA [DKS+20] is a compiler for homomorphic encryption built to work with the
SEAL library. It contains a mechanism40 to select an adequate decomposition of the ciphertext modulus
depending on the desired application.

Lattigo. Tune Insight’s Lattigo [Tun23] contains implementations of BFV, BGV and CKKS as well as
support for the CGGI-like scheme FHEW. The library allows the user to set their own parameters, only
providing a method to verify that the parameters are valid, i.e., that the parameters follow the hypotheses
required for the construction to work and that they do not lead to a zero secret or error.

TFHE-rs and Concrete. Zama’s TFHE-rs [Zam22b] implements a variant of the CGGI scheme.
The library offers parameter sets for different configurations depending on the application. Zama’s
Concrete [Zam22a] is a compiler for CGGI built on top of THFE-rs. It contains an optimizing tool41

to find appropriate parameters for a given FHE computation. It makes use of the Lattice Estimator to
find the security level of the parameters.

32 The scaling factor in this parameter set does not affect bootstrapping as Lattigo uses different independent
internal scaling factors for each step of the bootstrapping circuit.

33 OpenFHE automatically adds “small” flooding noise on top of existing approximation error as a mitigation for
the case when the decryption result may be accidentally shared; this flooding noise slightly reduces the output
precision.

34 Number of Slots refers to the number of complex numbers that are encrypted in each separate ciphertext.
35 Detailed explanation on this bootstrapping failure probability and the parameterK can be found in Appendix A.
36 Following [BCC+22], Iterations corresponds to the number of repetitions applied to improve the final precision.

Here, Iterations set to 1 means that no additional bootstrapping repetitions are applied.
37 Precision Bits are evaluated as the negative base 2 logarithm of the average L1 norm between results from

standard (cleartext) calculation and those computed homomorphically.
38 The relevant code can be found in files bfvrns-parametergeneration.cpp, bgvrns-parametergeneration.cpp,

and ckksrns-parametergeneration.cpp (Retrieved from OpenFHE v1.2.0).
39 The relevant code can be found in the file hestdparms.h (Retrieved from SEAL v4.1.1 – commit 206648d).
40 The relevant code can be found in the file encryption parameter selector.h (Retrieved from EVA v1.0.1 –

commit 4cd3254).
41 Documentation on the optimizer can be found in the file optimizer.md (Retrieved from Concrete v2.5.0 –

commit 240ae2d).
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Library Link BFV BGV CKKS CGGI/DM Note

blyss blyssprivacy/sdk Combines GSW and ba-
sic LWE.

Cingulata CEA−LIST/Cingulata ✓ Also a compiler
toolchain for its own
BFV implementation
and for TFHElib.

Cupcake facebookresearch/Cupcake Only implements of the
additive version of BFV.

FHE-DECK FHE-Deck/fhe-deck-core Contains only the basics
for RLWE and NTRU in-
frastructure.

FHELib Crypto-TII/fhelib ✓

HEaaN cryptolabinc/heaan ✓ Proprietary. Free for
non-commercial usage.

HELib homenc/HElib ✓ ✓

HEHub primihub/hehub ✓ ✓ ✓

HEU secretflow/heu ✓ ✓ Contains additive homo-
morphic encryption. FHE
algorithms still in devel-
opment.

Lattigo tuneinsight/lattigo ✓ ✓ ✓ ✓

Liberate.FHE Desilo/liberate-fhe ✓

NFLLib quarkslab/NFLlib ✓

OpenFHE openfheorg ✓ ✓ ✓ ✓

Parmesan crates/parmesan Builds on TFHE-rs.

Phantom
encryptorion-lab/

phantom-fhe

✓ ✓ ✓

Poseidon luhang-HPU/Poseidon ✓ ✓ ✓

REDcuFHE
TrustworthyComputing/

REDcuFHE

✓

SEAL microsoft/SEAL ✓ ✓ ✓

TFHE-rs zama-ai/tfhe-rs ✓

TFHElib tfhe/tfhe ✓

Table 5.9: Open-source homomorphic encryption libraries and the algorithms they support.
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HECATE and ELASM. Besides EVA, there have been other efforts proposing automatic scale man-
agement schemes for CKKS through compilers. For instance, HECATE [LHC+22] and ELASM [LCK+23]
target CKKS implementations. HECATE explores the scale management space to optimize for latency,
while ELASM additionally considers the error/latency tradeoff. A survey of earlier FHE compiler works
can be found in [VJH21].

6 Conclusion

This work provides example LWE parameter sets that can be used in FHE implementations to target
particular levels of security. We also make available the code used to estimate the security of these
parameter sets. We recognize the dynamic nature of cryptographic attacks and the necessity of updating
our parameters in response to significant advancements in lattice cryptanalysis. We anticipate if these
advancements are integrated into the Lattice Estimator, then using our methods and code will enable users
to independently update these parameter sets as necessitated by new developments. Furthermore, as the
field of FHE matures and expands, we hope that more types of FHE schemes, diverse noise distributions,
and comprehensive attack scenarios can be integrated into future guidelines.

This work provides examples of functional parameter sets that could be used for particular FHE schemes
in different contexts, and reviews parameter selection support in some of the major FHE libraries. In
practice, it is not only security that must be considered, but also functional correctness and efficiency;
and the optimal choice of parameters may be application- and library-dependent. An advanced parameter
selection framework for FHE that takes into account all these aspects is an important direction for future
research.
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SS11. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 27–47.
Springer, 2011.
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A CKKS bootstrapping failure probability

In this Appendix we give more details about the failure probability in CKKS bootstrapping as briefly
mentioned in Table 5.8. We omit a full description of CKKS bootstrapping and refer the reader to
e.g. [CHK+18, CCS19, HK20, BMTPH21, BCC+22] for more details.

The bootstrapping failure probability plays a crucial role in the practicality of CKKS bootstrapping and
it is related to the EvalMod step. The EvalMod step of the bootstrapping takes as input the message
I(Y ) · Q + ∆m(Y ) with Y = XN/2M (M being the number of complex slots) and aims to vanish the
integer polynomial I(Y ) by homomorphically evaluating the function fmod = x mod 1 in the union of
intervals ∪K

i=−K [i− ϵ, i+ ϵ], with [−ϵ, ϵ] being the expected interval where the original message lies. The
coefficients of the polynomial I(Y ) are the sum of h+ 1 uniform random variables in [−0.5, 0.5), with h
the Hamming weight of the secret.

Remark 1. There have been many works proposing different approaches for the EvalMod step. However,
all practical approaches follow the same blueprint, which is to find a good polynomial approximation of
fmod. Which function is chosen to closely match fmod and how the polynomial approximation is done has
no effect on the failure probability. Only the interval in which it is approximated, i.e. the parameter K,
affects the failure probability.

If ∥I(Y )∥ > K, then the EvalMod step returns an unusable corrupted plaintext. This failure probability is
defined as ffail(K,h,M) = Pr [∥I(Y )∥ > K] by [BTPH22] and they show how to compute it by adapting
the Irwin Hall cumulative distribution function:

ffail(K,h,M) : 1−

 2

(h+ 1)!

⌊K+0.5(h+1)⌋∑
i=0

(−1)i
(
h+ 1

i

)
(K + 0.5(h+ 1)− i)h+1

− 1

2M

. (1)

Usually the bootstrapping parameters are instantiated using a secret with fixed Hamming weight h, which
allows to get an exact estimation of ffail(K,h,M), and thus to choose K according to the desired failure
probability. However, in our case we have a ternary secret with coefficients sampled with probability
[p/2, 1− p, p/2] and p = 2/3, thus the exact value of h is unknown and this prevents from being able to
estimate the exact failure probability. We provide a procedure to find a suitable K in such case given N ,
p and M and a desired failure probability 2δ for some δ < 0:

1. Estimate K based on E[h]: This step is straightforward and can be done with a binary search on K
by successive evaluations of ffail(K,E[h],M).

2. Estimate a correction factor K ′ such that 1 − Pr[ffail(K + K ′, h,M) ≤ 2δ] ≤ 2δ: Since I follows an
Irwin Hall distribution, it is O(

√
h) and we have

K =
⌈
κ ·

√
E[h] + 1

⌉
,

from which we obtain κ. Let now σh =
√

Np(1− p), then the value K will increase by d κσh√
E[h]+1

≈

dκ
√
1− p if h deviates by dσh of E[h]42. Therefore

Pr
[
h ≤ E[h] + dσh

]
= erf

(
dσh√
2σh

)
= erf

(
d√
2

)
.

42 We assume that d is positive since the converse would not have a negative impact on the failure probability.
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Thus given 1− erf
(

d√
2

)
≤ 2δ we have K ′ =

⌈
dκ

√
1− p

⌉
.

3. Set K := K +K ′.

Following the procedure described above, we implemented the following two helper functions:

1. Probability(Xs,K, log2(N), log2(M)) → δ: given Xs the secret distribution,K, log2(N) and log2(M)
returns δ = log2(Pr [∥I(Y )∥ > K]).

2. FindSuitableK(Xs, log2(N), log2(M), δ) → K: given given Xs the secret distribution, log2(N) and
log2(M) and δ, returns K such that Pr [∥I(Y )∥ > K]) ≤ 2δ.

Both 1. and 2. take into account the correction factor K ′ if Xs is specified as a probability den-
sity. The code is available at https://github.com/gong-cr/FHE-Security-Guidelines/blob/main/

RNS-CKKS-examples/lattigo/templates/bootstrapping/failure/failure_probability.go.

Remark 2. Equation 1 require arbitrary precision arithmetic of precision 2h to produce accurate results
due to (i) the alternating sum over K + h/2 and (ii) the exponentiation by h + 1. Thus evaluating 1
is O(h3), making it prohibitively expensive for large values of h. Instead, we can pre-compute a table
of (K, δ) for a fixed large enough h (e.g. 8192) and a range of δ that are likely to be used in practice
(e.g. 0 > δ > −512). Then the value K ′ for some other h′ can be approximated by using the relation
κ ≈ K/

√
h+ 1 ≈ K ′/

√
h′ + 1 for a given δ.

B CGGI/DM bootstrapping failure probability

In this Appendix we give more details about the failure probability in CGGI/DM bootstrapping, as
mentioned in Table 5.6.

The OpenFHE bootstrapping failure probability estimation method is taken from [MP21]. The cor-
rectness of OpenFHE parameters was checked using numerical experiments. The fresh ciphertexts were
pre-bootstrapped before performing any Boolean operations to estimate the error for the case of indepen-
dently refreshed ciphertexts. For each parameter set, we recorded the actual values of the error/noise for
a relatively large sample (1,000 bootstrapping runs), and then estimated the standard deviation of the
error βexp. Assuming the normal distribution of the error, we estimated the decryption failure probability,
i.e., the probability of the error exceeding q/8, for both DM/LMK+ and CGGI cryptosystems. Since we
need to support one homomorphic addition for Boolean gates, we estimated the probability of decryption

failure as 1− erf( q/8
2βexp

).

In TFHE-rs and Concrete, the approach is similar, except that, due to the increased precision considered,
q
8 is replaced by q

2log2(t)+2 . Here, t is the size of the plaintext space. This can be seen to match the above
by setting t = 2.
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