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Abstract. Machine-learning systems continue to advance at a rapid
pace, demonstrating remarkable utility in various fields and disciplines.
As these systems continue to grow in size and complexity, a nascent
industry is emerging which aims to bring machine-learning-as-a-service
(MLaaS) to market. Outsourcing the operation and training of these
systems to powerful hardware carries numerous advantages, but chal-
lenges arise when privacy and the correctness of work carried out must
be ensured. Recent advancements in the field of zero-knowledge cryp-
tography have led to a means of generating arguments of integrity for
any computation, which in turn can be efficiently verified by any party,
in any place, at any time. In this work we prove the correct training of
a differentially-private (DP) linear regression over a dataset of 50,000
samples on a single machine in less than 6 minutes, verifying the entire
computation in 0.17 seconds. To our knowledge, this result represents the
fastest known instance in the literature of provable-DP over a dataset of
this size. We believe this result constitutes a key stepping-stone towards
end-to-end private MLaaS.

Keywords: Differential Privacy, Machine-Learning, Linear Regression,
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1 Introduction

The advent of cloud computing and software-as-a-service systems illustrates an
unfolding trend in which many organizations have outsourced large aspects of
their computing infrastructure to specialized external service providers, who in
turn provide streamlined and robust access to networked hardware and soft-
ware, often at a much lower cost than self-hosting such infrastructure. With the
outsourcing of sensitive computing tasks, there arises a need for security infras-
tructure that allows for a consumer of such services to be confident that their
information is protected and handled according to their specific needs.

Machine-learning, particularly generative systems, have continued to advance
at a rapid pace, demonstrating utility in a wide variety of manners. A Deloitte
study [1] found that at least 50% of surveyed organizations planned to use some
form of machine-learning system in 2023. The growing utility of these systems
has largely coincided with their ever-increasing complexity and dependence on



vast troves of data used in the learning process. Training a machine-learning
system is a computationally and financially expensive undertaking, which is often
conducted using specialized hardware such as graphics processing units (GPUs).
Access to this hardware is offered through a variety of commercial services, and it
is the interaction with these services that presents security challenges for anyone
who wishes to leverage a machine-learning system using outsourced hardware on
sensitive training data.

Our penultimate result in this work shows how an MLaaS operator can em-
ploy novel cryptographic techniques with minimal hard assumptions to provide
statements of computational integrity to a consumer, such that:

– The consumer is convinced with high probability that the work was carried
out correctly.

– The verification of such a computation requires a proportionally small amount
of work.

We argue that there is limited utility of an argument system which requires
the consumer of this service to perform the same amount of work as the MLaaS
operator, particularly during an ML training process. This research obtains an
asymptotically optimal solution and applies this mechanism to a relatively open
problem in privacy-preserving machine-learning (PPML) literature, which is the
proving of correct application of differential-privacy during a training process.
We discuss our design in depth in further sections.

The organization of this paper is structured as follows: Section 2 discusses the
fundamental principles of zero-knowledge (ZK) cryptography and computational
integrity arguments, and presents a detailed account of our desired protocol at-
tributes, emphasizing the requirements such as completeness, soundness, and
succinctness that guide the design of our argument system. This section further
explores the minimal hard assumptions necessary for the robustness of the pro-
tocol and provides the theoretical backbone for the argument systems employed
to verify the integrity of computations in machine learning processes.

Section 3 formally defines differential-privacy and illustrates the application
of the mechanism to a simple linear regression, and outlines the various differ-
ential privacy methodologies, comparing their applications and efficacy in main-
taining privacy during data processing. This comparison underscores the selec-
tion of the appropriate differential privacy variant suited for our cryptographic
arguments.

Section 4 examines the different implementation approaches towards achiev-
ing efficient computational integrity statements in practice. Section 5 shifts focus
to the empirical evaluation of the proposed system, detailing the experimental
setup, methodologies, and the performance metrics used to gauge the efficacy of
the argument system in real-world scenarios.

Section 6 contains a literature review and analysis of the closest known result
to ours. We use this result to highlight the contributions and advancements our
approach offers over existing methods. The conclusion in Section 7 encapsulates
the significance of the research, its implications for privacy-preserving machine
learning, and potential future directions.



2 Zero-Knowledge Cryptography and Arguments of
Computational Integrity

This work draws from an active field of cryptography surrounding the study
and application of argument systems, specifically those of the probabilistically-
checkable and non-interactive variety. The celebrated results of [2] realize an
argument system consisting of a series of interactions between a prover P and
a verifier V , in which P tries to convince V of the truth of some statement,
or, in a more applied context, that the output of a computation was obtained
by computing over some input. [2] shows that while V could re-run the entire
computation and compare outputs with P, a logarithmic-size, non-deterministic
sampling of an argument provided by P, will, with extremely high probability,
be sufficient to satisfy V that the output was obtained correctly, and conversely
otherwise. We define this protocol between P and V below.

2.1 Protocol Attribute Constraints

In probabilistic polynomial time, we strive for the following properties for a
robust and efficient argument system under random oracle assumptions: [3]

Completeness: True statements can always be proven by a prover and will
always be accepted by a verifier, except with negligible probability. Formally:
For every instance-witness pair (, ) in a relation R, Pr [V p (,Pp(, )) = 1] = 1
for probability p taken over P and any randomness from P or V .

Soundness: A prover should not be able to deceive a verifier into accepting a
false statement as true, except with negligible probability. Formally: For every

instance not in the language of R and every malicious prover P̃ submitting at

most a polynomial number of queries to a random oracle, Pr
[
V p

(
, P̃p

)
= 1

]
is negligible in the security parameter. [3] shows how a quantifiable lower-bound
of security can be derived from the soundness parameter, which confers a con-
figurable level of n−bit security directly from the security of the choice of un-
derlying hash function.

Succinctness: We define the relationship between the work done by P and V
in our construction. Strictly speaking, if Ω(n) is the amortized asymptotic up-
per bound of complexity for argument generation and verification respectively,
then for our construction, we strictly require that Ω(n)P ≤ quasi(n) and for
Ω(n)V ≤ polylog(n). In other words, we restrict the upper bound on the work
done by the prover as quasi-linear, and the work performed by the verifier as
poly-logarithmic. This definition of succinctness leads to a construction uniquely
suited to the MLaaS setting. An ML operator can perform a computationally
expensive algorithm, the result of which can be verified for correctness in loga-
rithmic time (and size) with respect to the computation itself. This is a signifi-
cant result with important ramifications: a hypothetical computation requiring
10,000,000 steps can be verified with only 23 queries.

Minimal Hard Assumptions: Wherever possible, we desire the protocol to
rely on minimal cryptographic hard assumptions. The result from [3] satisfies



this requirement through the use of only a secure hash function as the underly-
ing primitive, then paired with error-correcting codes, which ultimately lead to
plausibly post-quantum-secure computational integrity statements. We do not
simulate a quantum adversary in this work, but the security of our scheme follows
naturally from the underlying construction [3] in use.

Perfect Zero-Knowledge: We make a subtle divergence from the nomenclature
of [4] in our usage of the term ”computational integrity statements”, by observing
that such statements do not require perfect zero-knowledge in our scheme. ZK
in our result follows trivially from the application of [4] with surprisingly little
overhead, but it is not necessarily a requirement for our protocol because the
MLaaS operator and consumer are assumed in this setting to be the only parties
involved in the computation, both having access to the same sensitive data and
resulting machine-learning model. However, since the argument itself is zero-
knowledge following the application of [4], it indeed reveals nothing of the model
or dataset used in the computation, and could be passed to any public, untrusted
party for safe and efficient verification.

The previously defined parameters for our protocol are realized through the
application of a form of cryptographic non-interactive argument scheme resem-
bling a zero-knowledge scalable transparent argument of knowledge (ZK-STARK)
[4] to a machine-learning algorithm known as a differentially-private linear re-
gression [5].

2.2 Nomenclature

It is common in ZK literature to refer to the computational integrity statement
as a ”proof”, and as the party generating the statement as the ”prover”. A
protocol is characterized with desirable asymptotic traits when requirements
around perfect soundness are relaxed. Hence, throughout this work, we refer to
such statements as arguments, because they do not equivocally prove the truth
of a statement, but rather they argue the truth of the statement. The term ”zero-
knowledge proof” is understood to be equivalent to, and implying meaning of,
the term ”computational integrity (CI) statement”, or ”argument”, and thus we
use these latter two terms throughout the work.

We refer to the party generating the statements as the prover. The honest
prover does in fact posses an entire, complete proof that the given computation
was carried out correctly. To achieve optimal asymptotic complexity, the prover
will transform the proof into an argument. The term ”prover” thus accurately
reflects the role of the party who produces computational integrity statements,
and as such we use this term throughout this work. In section 5, we often use
the phrase ”proving the dataset”. This is shorthand indicating that we create a
CI statement for the training process over the entire dataset.

Lastly, we prefer the terminology in [2] with regards to how we obtain a
linear regression over some dataset. [2] derives this terminology from the study
of ”Probably Approximately Correct” (PAC) learning, which is a framework
for the mathematical analysis of machine learning. We use the term ”learn”



and ”hypothesis” to indicate machine-learning training and the resulting model
respectively.

3 Differential Privacy

The literature arising from the intersectional disciplines of theoretical cryptogra-
phy and applied machine-learning is rich with technical achievements in secure
multi-party computation (MPC) protocol design towards the goal of realizing
machine-learning (ML) systems that can be operated securely and privately.
There are abundant [6], [7], [8] examples of secure privacy mechanisms and con-
structions that can be readily leveraged in a variety of applications. This work
advances the field by exploring the robust and efficient application of cryp-
tographically provable privacy mechanisms towards machine-learning training
processes.

Differential privacy is a mechanism applied solely by an MLaaS operator,
which, in a standard setting, then has no immediate means of attesting that
the mechanism actually was involved in subsequent computations as agreed to
by the consumer. The best the consumer can do in this situation is place trust
in a possibly malicious MLaaS operator that their data was trained over with
the desired privacy mechanism in place. This work develops a means for the
MLaaS operator to act as a prover, and the consumer to act as a verifier in an
Interactive-Oracle-Proof (IOP) model. The consumer performs a small amount
of work to verify that the result of training could only have been obtained by
correct execution of an agreed-upon set of steps.

We begin by introducing differential privacy, which we show can be prov-
ably applied during a machine-learning training process. Differential privacy is
presented formally:

Definition 1. (ϵ, δ) - Differential Privacy [9], [10]: A randomized algorithm M
with domain N |X | is (ϵ, δ) - differentially private if for all S ⊆ Range(M ) and
for all x, y ∈ N |X | such that ||x− y||1 ≤ 1:

Pr[M (x) ∈ S] ≤ exp(ϵ)Pr[y ∈ S] + δ (1)

Where:

– M : A randomized algorithm (query(db) + noise, or query(db+noise))
– S : All possible outputs of M that could be guessed
– x: Entries in database (N )
– y: Entries in parallel database (N ± 1)
– ϵ: Maximum distance between a query on N (x) and the same query on

N (y)
– δ: The probability of some given information being leaked

We emphasize that definition 1 holds for a single query and not for multiple
queries, and that it does not imply that an algorithm is differentially private,
rather it is a measure of how much privacy is leaked to an observer given a single



query on a database. The notion of a parallel database N ±1 is meant to signify
a database that differs by a single entry from N . Definition 2 then shows that
ϵ and δ are measures of by how much the probability distributions of the entries
of N differ from N ∓ 1.

3.1 Epsilon (ϵ)

[10] shows how ϵ is a metric of privacy loss at a differential change in a database,
such as when an entry is added or removed. ϵ is defined as the maximum distance
between a query on database N versus the same query on database N ± 1. It
is necessary to examine the effect that differing values of ϵ has on the privacy of
a given database query.

δ is a value typically defined to be an exceedingly small bias that repre-
sents the possibility that some information is leaked from a given query over a
database. It is common in literature to choose δ to be ||N ||−1, or the inverse of
the size of the given database to be processed.

(ϵ, δ = 0) differential privacy indicates that an adversary cannot distinguish
whether the output of an algorithm M was produced by processing N versus
N ±1. As the value of ϵ approaches zero, the privacy guarantees offered by such
values becomes increasingly similar. Conversely, larger values of ϵ indicate that
there exists an adversary that can distinguish with higher probability whether
the output of M was obtained from either N or N ± 1. ϵ-DP thus facilitates
control over how much privacy can be ”added” to a given database query. Smaller
values of ϵ require that queries over N and N ± 1 produce similar outputs. In
the following sections, we show precisely how this can be achieved in terms of
various probability distribution mechanisms.

3.2 Laplace Mechanism

A numeric database query can be defined as:

f : N |X | → Rk

Such a query maps a database to k real numbers. We proceed to define 1 sen-
sitivity, which is a measure of how a mapping will respond to adjacent datasets
different by only a single entry:

Definition 2 (1 sensitivity:). [9] The 1-sensitivity of a function f : N |X | →
Rk is:

∆f = max
x, y ∈ N |X |

||x− y||1 = 1

||f(x)− f(y)||1. (2)

Definition 2 provides a means of measuring the maximum effect of a single entry
x in a database on the output of the function f , which in turn helps to quantify
the amount of noise that should be added to the output of f in order to hide the
presence of x from the output of f . We proceed to define the Laplace distribution,
which can be leveraged as a source of noise to incorporate into f .



Definition 3. The Laplace Distribution: The Laplace distribution centered at
zero with scale b is the distribution with the probability density function:

Lap(x|µ, b) 1
2b

exp

(
−|x− µ|

b

)
(3)

Definition 3 defines the Laplace distribution as two symmetric exponential dis-
tributions with an additional location parameter [11]. The Laplace mechanism
then will run algorithm f and perturb each input with noise drawn from the
Laplace distribution. The particular amount of noise to be added to an input is

obtained by calculating the 1 sensitivity of f(query)
ϵ , with the added condition

that δ = 0, and thus the Laplace mechanism achieves (ϵ, 0) differential privacy.
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Definition 4. The Laplace Mechanism [9]: Given any function f : N |X | →
Rk, the Laplace mechanism is defined as:

ML(x, f(·), ϵ) = f(x) + (Y1..., Yk) (4)

Where all Yi are independently identically distributed random variables drawn
from Lap (∆f

ϵ ) . Formally stated:

The Laplace Mechanism: Given any function f : N |X | → Rk, the following
definition of F (x) satisfies ϵ-differential privacy:

F (x) = f(x) + Lap(
S

ϵ
) (5)

Where S is the sensitivity of f , and Lap(Sϵ ) denotes sampling from the Laplace
distribution with center 0 and scale S. We use sensitivity in equations 4 and 5



to quantify the change in output from f when the input database changes by
exactly a single entry. We have thus presented a definition of differential privacy
in terms of the Laplace mechanism. If we consider our problem space to be that
of measuring the accuracy of computing f , the Laplace mechanism provides a
general-purpose approach in which we can achieve differential privacy.

3.3 Differential Privacy Variations

Differential-privacy is amenable to instantiation over varying hyperparameter
choices. This allows for a choice of privacy budget which is suitable to the
task at hand. In this context, our research focuses on the efficacy of a novel
non-interactive argument system, specifically engineered to enhance both the
integrity and verification mechanisms essential for the deployment of machine-
learning algorithms under privacy constraints. Among the differential privacy
variants evaluated, Differentially-Private Ordinary Least Squares (DP-OLS) is
identified as the most appropriate privacy-preserving error estimation function
for a linear regression. Other differential privacy methodologies, such as Pure
Differential Privacy (Pure DP), Approximate Differential Privacy (Approximate
DP) and Rényi Differential Privacy (RDP) were also considered.

Pure DP (ε-DP), in which δ = 0, is known as the strongest version of
differential privacy [12]. Originating from a seminal paper by Dwork et al. [13],
which introduced the initial definition of what we now recognize as Pure DP, this
method adjusts the added noise based on the ℓ1 sensitivity of the query or queries
being processed. This approach [13] shows the incorporation of noise scaled to a
privacy parameter, ε, ensuring that the probability of generating any particular
output remains relatively unchanged even if the data of any single individual in
the dataset is modified. Despite its strong privacy assurances, Pure DP typically
necessitates the introduction of a higher level of noise [14], which may dispro-
portionately compromise the utility of simpler statistical models such as OLS.
In the context of implementing DP-OLS, Pure DP could be applied by adding
noise directly to the OLS coefficients. While the stringent privacy guarantees of
Pure DP are well-suited for highly sensitive applications, the considerable noise
added can often markedly diminish the utility of the regression model.

Approximate DP ((ε, δ)-DP), while thoroughly investigated in scenarios
where achieving Pure DP is complex, is less explored when the privacy loss
parameter, δ > 0 [12]. Work by Bun, Ullman, and Vadhan [15] has identified
strong lower bounds for this type of privacy, which are nearly optimal at δ ≈ 1

n .
This level represents the weakest privacy guarantee that still maintains practical
relevance [12]. In contrast, DP-OLS adheres to more rigid differential privacy
mechanisms, closely resembling those used in Pure DP. The (ϵ, δ) differential
privacy model, characteristic of Approximate DP, introduces an additional pa-
rameter δ, which denotes a small probability where the privacy guarantee might
not be fully upheld [16]. For linear regression models, maintaining strong privacy
without significantly affecting model accuracy is crucial. While Approximate DP
may be preferable in scenarios where a minor relaxation of privacy is acceptable



to gain computational efficiency in more complex models, DP-OLS stands out
for its strong privacy guarantees.

Rényi DP ((α, ε)-RDP), represents a natural relaxation of the standard
DP model, preserving many of its core properties while introducing flexibility
through parameterization based on Rényi divergence [17]. Compared with (ϵ, δ)-
DP, RDP provides robust probabilistic privacy guarantees without the risk of
complete privacy breaches that are permissible under the (ϵ, δ)-DP framework,
which allows a δ probability of total information disclosure [17]. RDP’s guaran-
tees are contingent on outcome probabilities, thus prohibiting absolute privacy
violations and preserving uncertainty even under weak parameters [17].

However, this dependency necessitates complex baseline risk assessments, es-
pecially challenging in large or dynamic datasets where probabilities are elusive.
Despite its theoretical benefits, RDP’s integration into cryptographic frame-
works can be cumbersome due to the requisite precise assessments and their
complex incorporation with cryptographic arguments. This complexity makes
RDP less suited for demonstrating the feasibility of privacy-preserving compu-
tations in practical applications, especially those involving co-processing arrange-
ments where trust and verifiability are paramount. In contrast, DP-OLS offers
a simpler, direct method by embedding privacy controls within the regression
algorithm [18], facilitating easier application, verification, and validation in cryp-
tographic contexts, aligning effectively with robust, privacy-preserving research
objectives.

3.4 (ϵ, 0) Differentially Private Regressions Over Linear Subspaces

A linear regression is a simple form of machine-learning algorithm which at-
tempts to find a line passing through a set of points such that the distance,
referred to further as the error of each predicted value with respect to the line
is minimized.

For a domain of values x = (x1...xn)
T mapped to a range of features y =

(y1...xn)
T :

x̃ =
1

n

n∑
i=1

xi, ỹ =
1

n

n∑
i=1

yi

with ncov(x, y) = ⟨x− x1,y− y1⟩

and nvar(x, y) = ⟨x− x1,x− x1⟩ = n · var(x)

The noisy linear regression, in matrix notation, is defined as Y = α · x+ β + e:
y1
y2
.
.
.
yn

 = α


1 x1

1 x2

. .

. .

. .
1 xn

+


β1

β2

.

.

.
βn

+ e



For a noise distribution Fe(0, σ
2
e) and cost function ”mean squared error” defined

as:

L (θ) =
1

n

n∑
i=0

(yi − (αxi + βi))
2

3.5 Differential Privacy With NoisyStats

We select the compact (ϵ, 0)-DP NoisyStats [5] algorithm as a means of introduc-
ing differential privacy which perturbs values in the β vector with noise drawn
from the Laplace mechanism. As specified in [19], we fail if the denominators of
noisy versions of ncov and cov become less than or equal to zero.

Algorithm 1 NoisyStats: (ϵ = 2, 0)-DP

Data: {(xi, yi)}ni=1 ∈ ([0, 1]× [0, 1])n

Privacy Params: ϵ
Hyperparams: none
Define ∆1 = ∆2 = (1− 1/n)
Sample L1 ∼ Lap(0,3∆1/ϵ)
Sample L2 ∼ Lap(0,3∆2/ϵ)
if nvar(x)+L2 > 0 then

α̃ = ncov(x,y)+L1
nvar(x)+L2

∆3 = 1/n · (1 + |α̃|)
Sample L3 ∼ Lap(0,3∆3/ϵ)
β̃ = (ỹ − α̃x̃) + L3

return α̃+ β̃
else

return ⊥
end if

Algorithm 1 produces β, which is now (ϵ, 0) differentially-private. This technique
for private regression modeling is well-studied and common in relevant literature
[19], [20]. The novelty of our approach lies in the pairing of this scheme with
a cryptographic computational attestation of integrity, such that our protocol
definition from section 2.1 is satisfied. Perhaps most importantly, however, is
how we shift the workload of the computation from the verifier to the prover,
which is presented further.

4 Obtaining Computational Integrity Statements

There are two major approaches towards producing a protocol that satisfies the
requirements from section 2.1. The first means of achieving a computational
attestation of integrity for a differentially-private regression resembles that of
constructing an application-specific integrated circuit (ASIC) which describes



an algorithm or computation directly as a circuit using standardized constraint
systems (R1CS, AIR, etc). In a fashion not entirely dissimilar from that of the
early days of computing, a computation to be proven is encoded as a simulation
of a circuit, which is defined over gates and wires. This ”ASIC approach” is
thus far common in ZK literature as a consequence of the field of study being
relatively young, and as a result, few robust general-purpose ZK frameworks and
languages exist at the time of this writing, and even fewer for a STARK-based
approach.

Recent technological breakthroughs [21] have led to the discovery that entire
instruction set architectures (ISAs) can be encoded in such a circuit. It is then
possible to use this construction to simulate a small virtual machine, which is
executed as a provable circuit. An argument of valid computation arising from
such a system is structured to show the correct transition of values stored in
the registers of this machine given a particular set of instructions. This design is
referred to as a zero-knowledge virtual machine (ZKVM). A ZKVM can be built
on top of a wide variety of argument systems. We select the RISC-Zero virtual
machine [21], which constructs an argument system that satisfies the protocol
described in section 2.1. There are two key features of this ZKVM which we
leverage in our result:

– The RISC-Zero ZKVM accepts arbitrary Rust code as input, leading to
a substantial reduction in programming complexity and iteration time as
far as algorithm description is concerned. This approach also facilitates the
development of a richer set of applications that can be expressed due to the
relative ease of using high-level languages to describe a computation to be
proven.

– As a virtual representation of a small RISC-V machine, the RISC-Zero
ZKVM is compatible with essentially any Rust crate which can be targeted
to the RISC-V ISA. Out-of-the-box, this platform is immediately usable by
many existing libraries, types and software in the Rust ecosystem.

Certain functions and algorithms will exhibit performance characteristics
which may vary substantially depending on the hardware in which they are
executed. Modern computing hardware typically includes specialized circuits
designed for targeted applications (such as cryptographic hashing and elliptic
curve operations), and these sub-circuits exhibit runtime performance several
orders of magnitude above what a central processing unit (CPU) may provide.
The ZKVM is a software simulation of a RISC-V computer, so it is executed us-
ing CPU hardware. We remark that executing the simulation in this way incurs
substantial runtime and performance overhead, as we would expect for any soft-
ware simulation of a circuit. The RISC-Zero ZKVM is packaged with an optional
CUDA backend which can leverage GPU hardware for the complex proving ma-
chinery in the background. We observe a substantial reduction in runtime when
using this feature, even on our relatively small and modest laptop GPU.



5 Our Results

This section defines the experimental setup of the study and the results we
obtain. We run our provable differentially-private regression on a single debian-
based laptop with a 13th Gen Intel Core™ i9-13900H CPU, 32 GB of RAM, and
an NVIDIA GeForce RTX™ 4070 Laptop GPU with 8gb of available VRAM.
We observe that this relatively low-cost and modest hardware is more than
sufficient to carry out our experiments and demonstrates how protocols meeting
the attributes defined in Section 2.1 are not necessarily isolated to high-power
and high-cost cloud-based platforms.

For our experiments, we use the ”Kaggle Healthcare Dataset” [22] which
contains 50,000 synthetic records of patients admitted to hospital care, several
factors regarding their health, and the resulting insurance amount billed for the
visit. For a linear-regression over (x, y) pairs, we remove all columns except for
age and insurance cost, and learn a function that approximates the relationship
between the two.

5.1 Training and Experiment Design

We learn two hypotheses: the first is based on a simple ”ordinary least squares
(OLS)” error estimator, and the second is a differentially private version of OLS
(DP-OLS). We observe that the error of the DP-OLS hypothesis initially diverges
significantly from the OLS hypothesis when trained on few data samples. This
is an expected result given how the data is perturbed in the DP-OLS training,
and with few samples to learn from, the noisy hypothesis should display a strong
divergence from the OLS estimator.

Metrics that we are interested in include ”Proof time versus Dataset Size”,
”Verification Time vs Dataset Size”, and ”DP vs OLS Model Accuracy”. We
conduct the linear-regression training over the entire dataset using both the
CPU and the GPU in our laptop. Due to the current limitations of the ZKVM
and our GPU hardware, we must prove the dataset in batches when using the
CUDA feature of the ZKVM. The GPU has limited VRAM which is quickly
exceeded during proof generation. This limitation does not affect the overall
runtime of the experiment, rather it just causes proofs over large datasets to be
carried out in separate runs of the ZKVM.

The ZKVM immediately supports all primitive rust types in a ”no std” en-
vironment. The calculations involved in the Laplace Mechanism are carried out
over the rationals, so initially we performed all of our arithmetic using the built-in
f32 types which are IEEE floating-point decimals. This type lends relative ease
towards rational arithmetic, however we find that we can prove a far greater
number of samples per batch when using fixed-point arithmetic with the GPU
before exceeding the available VRAM. We can prove up to 1400 data points
per batch with fixed-point representation, vs only 175 samples per batch using
floating-point representation. The charts below illustrate the measurements that
we collect during our study.
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Figure 1 represents the observed runtimes during the experiment. We record the
runtimes differently depending on the underlying hardware and number system
in use for the proof system. The first and largest runtime measurement, CPU-FX,
is the total time taken in seconds to prove the DP-training of a linear regression
over the entire dataset of 50,000 samples using a fixed-point number system on
the CPU. The next measured runtime, GPU-FL, measures the total time taken
to prove the DP-training over the entire dataset using the GPU hardware and
the floating-point number system. Lastly, GPU-FX is the time taken for the



same task using the GPU and a fixed-point number system. The differences in
runtime between hardware and number systems are illustrated clearly in the
chart. We find that a GPU with a fixed-point number representation performs
the best in terms of runtimes out of all measured configurations. We do not
collect a CPU-based floating-point representation in these experiments.

Figure 2 conducts the same measurements as in figure 1, but we collect the
measured proving time as a function of dataset size. This is done to expressly
illustrate the linear growth rate of the prover as the dataset size increases. The
graph suggests that the prover is meeting the protocol specified in 2.1. For GPU-
based measurements, the limitation of computation size becomes a factor, and
thus we divide the dataset into batches of 1400 elements and collect the total
runtime by aggregating each batch runtime up to the dataset size.

Lastly, we measure and record the runtime of the verifier in figure 3. We
observe the measurements of the verifier runtime to increase in a roughly loga-
rithmic fashion with respect to the dataset size. This measurement was observed
to be substantially less consistent over multiple runs, in contrast to the prover
runtime. Nonetheless, the relationship between runtime and dataset size for the
verifier appears to be logarithmic, which is the expected result and further vali-
dates that the ZKVM used for this task conforms to the protocol specifications
in 2.1.

The verifier is described as a small and relatively simple computation. As
such, it does not require specialized hardware or optimized number systems.
We observe that the verifier is convinced of the authenticity of the prover’s CI
statement for the task of proving the differentially-private training of the linear
regression over 50,000 samples in approximately 0.17 seconds, regardless of the
number system or hardware used by the prover. We observe a very slow, log-
arithmic growth rate of the verifier over increasing dataset sizes, as illustrated
above. This observation highlights the utility of this argument system; the ver-
ifier can obtain complex and expensive results with relative ease by working in
cryptographic concert with a powerful prover.

5.2 Loading the Dataset

The RISC-Zero ZKVM is packaged with a simulation of a standard input and
output, established as a channel between the prover and verifier (this is entirely
distinct from the cryptographic proof channel of the STARK protocol underly-
ing the argument system). This channel allows the verifier to send data to the
prover. We initially used this channel to send our dataset into the prover, how-
ever we observed during early experiments that this step had a significant and
detrimental effect on the prover performance. The verifier sends messages to the
prover as bytes by serializing any message they wish the prover to receive. The
prover then safely deserializes the message by checking that the bytes conform
to the expected data.

This deserialization step is included in the CI statement, and is observed to
incur a significant degradation in prover performance. We mitigate this issue



by forgoing use of the channel entirely, and directly embed the bytes into the
binary that we send to the prover. Instead of performing a costly deserialization,
the prover simply conducts a pointer-cast to the embedded bytes [23]. In our
experiments, this results in a dramatic reduction from approximately 232 million
cycles to roughly 640 cycles to load the dataset into the RAM of the ZKVM.
Figure 4 illustrates our approach and highlights the savings in computation
cycles when choosing this method.

Verifier
Communication

Channel
Prover

Deserialization

Type-Safety
Check

Dataset Loaded

232m Cycles

640 Cycles

Fig. 4: Optimized Data-Handling Path in the RISC-Zero ZKVM

This technique requires the use of ”unsafe Rust”, which in some settings may
impact an application’s security. In our case, we assume that the verifier com-
petently constructs the binary with the embedded bytes and has performed
due-diligence to ensure the memory-safety of the computation that they send to
the prover. Further, because the size of our dataset is known in advance, it is
represented in Rust as an array in contiguous memory, rather than being stored
in non-contiguous heap-allocated memory. The only manner in which a prover
can generate a valid CI statement is by executing the binary faithfully. They
do not choose array bounds or make any modifications to the program to be
executed without causing the CI statement to become invalid, with high proba-
bility. Thus, as long as the verifier has ensured that the memory access patterns
of the binary are safe and correct, this technique does not pose a risk to the
correct execution of the program.

With the bytes embedded into the ZKVM in this fashion, communication
between the prover and verifier is simplified further. All the verifier needs to
do is simply distribute the compiled binaries to any party who is willing to
execute them. There is no longer a need to communicate with the prover after
the protocol has been established, outside of receiving the CI statement attesting
that the binary was executed successfully.



5.3 Validation

Table 1: Standard vs. Noisy Regression Models

Metric OLS DP-OLS Delta

Slope std. Error 0.01636 0.01634 0.000018
Intercept std. Error 0.90285 0.90285 < 0.00001
Mean Absolute Error 12205.307 12205.302 0.005252

Table 1 measures the overall accuracy of the predictions made by both the
DP and the non-DP estimators. The difference between mean absolute error for
both regressions is low after training over 50,000 samples, indicating that the DP
regression makes predictions almost identical to that of the non-DP regression.
These results both strongly suggest that despite the noisy training data, the DP
estimator converges to almost exactly the same model as the non-DP estimator.

Table 2: Progression of training accuracy over multiple iterations

Iteration Age Label Cost Label Slope Intercept Noisy Intercept

1 25.81 31664.69 2647.30 -5397.57 -5396.66
2 72.82 30000.73 491.68 23344.14 23345.05
3 79.36 25865.49 -1111.96 45260.56 45261.47
4 48.65 27202.88 -942.82 42892.53 42893.44
5 26.28 26494.02 -861.07 41720.79 41721.70
6 59.63 25762.27 -818.02 41089.36 41090.27
7 72.17 25153.07 -782.68 40559.26 40560.17
8 56.42 24992.15 -724.74 39670.81 39671.72
9 74.09 25296.88 -639.09 38328.95 38329.86
10 24.75 26023.56 -530.29 36588.17 36589.08

Table 2 measures the values for the model slope and intercept as training is
carried out over the dataset. As larger volumes of samples are trained over,
we observe both estimators converging to roughly the same hypothesis, which
is again the expected result. This indicates that DP-OLS, despite the noise
perturbation, is successfully learning approximately the same hypothesis as the
OLS regression. If both estimators eventually settled on drastically different
slopes and intercepts, we would take this as an indication that the parameters
for DP were either incorrect or set too aggressively.



5.4 Scaling Up

The limitation of batch-size within the ZKVM is only a limitation on a single
ZKVM running on a single GPU. We observe a means of leveraging the batched
approach within a setting in which proving time could be further dramatically
reduced, given access to multiple machines. In this setting, proving time becomes
a function of each new machine joining the system, up to an optimal number of
nodes. When considering the overhead of instantiating the ZKVM and generating
the proofs, we find that 1400 samples is the optimal batch size for each ZKVM
to prove on our hardware setup. If 50,000 samples are evenly divided across a
network of 36 single GPUs (assuming each GPU is the same as that used in our
experiment), the entire dataset could be proven in less than 10 seconds. The
Ethereum blockchain network is recorded [24] as having a compute power of
603,000 GHz on average at any given time in 2021. Our GPU has a clock speed
of 1.61 GHz [25], suggesting that in 2021, there existed a distributed network
of approximately 374,534 available ”GPU units” available for compute at any
given time.

Lastly, the task of aggregating the individually computed models into a single
regression remains. This step requires O(c) work with respect to the number of
nodes in the system and is carried out by the verifier. It is assumed at this point
that the verifier, as in our experiments, has already carried out verification of
each received proof and can trust with high probability the correctness of each
model it has received from a node. Each linear regression model is represented
by the equation:

y = β1x+ β0

where β1 is the slope and β0 is the intercept. To combine models from multiple
parties, the slopes (β1) and intercepts (β0) of these models are averaged.

1. Averaging Slopes:

β1 =
1

n

n∑
i=1

β1i

where n is the number of parties (or models), and β1i is the slope of the i-th
model.

2. Averaging Intercepts:

β0 =
1

n

n∑
i=1

β0i

where β0i is the intercept of the i-th model. The combined model is then given
by:

y = β1x+ β0

6 Comparison To Other Works

We assess the literature surrounding the topic of provable-DP to be relatively
sparse. The closest result to ours is found in confidential-DP [26]. To the best



of our understanding, this work is derived from a zero-knowledge construction
contained within the EMP toolkit [27], itself based on an argument system re-
ferred to as ”Wolverine” [28]. To the best of our knowledge, confidential-DP does
not report a verifier runtime, and so we are left to assess the complexity of the
underlying argument system in use. We compare our protocol to confidential-DP
in Table 3.

It is implied by [28] that confidential-DP obtains an O(n) prover and an
O(n) verifier. By contrast, our work obtains an O(quasi(n)) prover and an
O(polylog(n)) verifier. confidential-DP is an interactive argument system, re-
quiring the proving and verifying parties to be online and communicating dur-
ing the execution of the protocol. Our result is non-interactive, the prover and
verifier only exchange a single message to instantiate the protocol, and a single
message from the prover is sent containing the result and proof of correctness.
Both results are zero-knowledge, in that the verifying party need not be the same
who initiated the protocol, and the argument of integrity is zero-knowledge and
reveals nothing except that the argument is correct.

Table 3: Asymptotic comparison of this work and confidential-DP

Protocol DP Model Prover Verifier Online

This work
NoisyStats,
(ϵ = 2, 0)

Linear O(n) O(logn) No

confidential-
DP

DP-SGD,
ϵ = 0.55,
δ = 10−5

Logistic O(n) O(n) Yes

Other observed differences between results are that confidential-DP classifies im-
ages, while our model predicts labels from data points represented as pairs of
single numbers. Confidential-DP reports a total proving time of 100 hours over
the CIFAR10/MNIST dataset with 60,000 samples, while we observe a best-case
6 minute proving time over our Kaggle Healthcare dataset with 50,000 samples.
We remark however that runtime in this context is not a meaningful comparison
of performance between the two results, since the tasks are performed over dif-
ferent data with different model architectures. Our aforementioned analysis of
verifier complexity stands as the major difference between this result and [26].

Lastly, confidential-DP proves only the DP portion of their training. They
first extract features from the training data with a deep network, then train
on those features with a DP-logistic regression. This is done because describing
an entire deep network (particularly the computation graphs and gradients for
back-propagation) as a ZK-circuit remains a highly non-trivial and contrived
task. Our work argues the integrity of the entire training process, however our
training regimen is a comparatively simple model consisting of a compact number
of operations that are readily programmed into the ZKVM.



7 Conclusion

This work shows a robust and efficient means of cryptographically proving and
verifying the correct execution of an agreed-upon machine-learning training pro-
cess. We achieve record-breaking proving times for a differentially-private, simple
linear-regression over a large dataset, and we show how to effectively optimize
large data transfers into zero-knowledge virtual machines. We leverage mod-
est but powerful graphics hardware to accelerate proving performance orders of
magnitude over a standard, CPU-based approach. We also describe a means of
establishing a network of machines to prove sections of the data in parallel, which
can lead to further dramatic reductions in proving time for cryptographically-
secure machine-learning training.

We improve over the state-of-the-art verifier performance in this research do-
main from an O(n) verifier to a O(log(n)) verifier, showing how a differentially-
private regression can be securely obtained with high confidence from an un-
trusted third-party in a fraction of a second. Lastly, we show how the use of
fixed-point arithmetic over IEEE floating point numbers leads to a dramatic im-
provement in prover runtimes. The use of integer-based arithmetic in this fashion
lays a foundation for realizing more complex operations in the future, such as
gradient computation for back-propagation training.

We believe our design results in an attestation of integrity which shows that
machine-learning algorithms, (albeit simple algorithms, for the time-being) are
well-suited to this particular form of non-interactive argument system, demon-
strating a practical application of introducing an ”asymmetry” into a heavy
computation in order to leverage powerful hardware which may exist in a differ-
ent physical or temporal location. Our result shows how a verifying party can
apply this framework to efficiently obtain an irrefutably correct machine-learning
model from an untrusted but powerful outside source.

Argument systems of this variety facilitate what seems at first to be a counter-
intuitive, yet intriguing result; by working in concert with a prover, the verifier
has learned the exact same machine-learning model, but appears to have done
so with only O(polylog(n)) work with respect to the dataset size [2]. As the
dependence on outsourced ML hardware continues to grow, we anticipate the
need for secure ”co-processing” solutions of this nature to expand in kind. We
believe this work shows that state-of-the-art ZKVM constructions are uniquely
equipped to play an important role in the growth of privacy-preserving machine-
learning.

We believe that this research constitutes a vital advancement in the devel-
opment of completely private end-to-end machine-learning, in which distinct
and distrustful parties (model operators and consumers) may interact with each
other in complete privacy. During the inference phase of this research, the model
itself and the data to be classified are revealed out of necessity. This could hypo-
thetically be remedied by recent advancements in the field of fully-homomorphic
encryption. [29] demonstrates the practical feasibility of conducting regressions
over encrypted data, while [23] leverages the RISC-Zero ZKVM to prove fully-



homomorphic computations over encrypted ciphertexts. Future work targets the
understanding of the costs of fully homomorphic and provable differentially-
private regressions and classifications using the ZKVM, along with other frame-
works and tools. We include all experiments and the entire construction from
this work in a GitHub repository [30]. The code is readily executed with ease
assuming the proper hardware configuration.
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