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Abstract—We present Rondo, a scalable and reconfiguration-
friendly distributed randomness beacon (DRB) protocol in the
partially synchronous model. Rondo is the first DRB protocol
that is built from batched asynchronous verifiable secret sharing
(bAVSS) and meanwhile avoids the high O(n3) message cost,
where n is the number of nodes. Our key contribution lies in
the introduction of a new variant of bAVSS called batched asyn-
chronous verifiable secret sharing with partial output (bAVSS-
PO). bAVSS-PO is a weaker primitive than bAVSS but allows us
to build a secure and more scalable DRB protocol. We propose
a bAVSS-PO protocol Breeze. Breeze achieves the optimal O(n)
messages for the sharing stage and allows Rondo to offer better
scalability than prior DRB protocols. Additionally, to support
the reconfiguration, we introduce Rondo-BFT, a dynamic and
partially synchronous Byzantine fault-tolerant protocol inspired
by Dyno (S&P 2022). Unlike Dyno, Rondo-BFT provides a
communication pattern that generates randomness beacon output
periodically, making it well-suited for DRB applications.

We implement our protocols and evaluate the performance
on Amazon EC2 using up to 91 instances. Our evaluation results
show that Rondo achieves higher throughput than existing works
and meanwhile offers better scalability, where the performance
does not degrade as significantly as n grows.

I. INTRODUCTION

Randomness beacon, a notion formalized by Rabin [1],
refers to a service that provides a continuous stream of
shared randomness. Randomness beacon is useful in numerous
applications such as Proof-of-Stake based blockchains [2, 3],
blockchain sharding [4], electronic voting [5], asynchronous
Byzantine fault-tolerant (BFT) consensus protocols [6]–[9],
anonymous communication [10]–[13], smart contract based
decentralized finance (DeFi) applications and non-fungible
tokens (NFTs) [14, 15].

While there exists some trusted centralized randomness
sources [16, 17], many recent efforts have been made to
distributed randomness beacons (DRB) that remove the need
for a trusted third party [18]–[27]. DRB can typically be built
from three different cryptographic primitives: verifiable delay
functions (VDF) [22], threshold cryptosystems that require
distributed key generation (DKG) [24]–[27], and verifiable
secret sharing (VSS) [18, 19, 21, 23]. VDF-based approaches
enable efficient DRB with unlimited and open participation.
However, the fixed delay introduced by VDF makes DRB only
work in synchronous networks, where a known upper bound
exists for message transmission and processing. Meanwhile,

threshold cryptosystems make it possible to build DRB in
partially synchronous networks (where the upper bound for
message transmission and processing is unknown [28]) or
fully asynchronous networks (there does not exist an upper
bound). The DKG setup, however, especially during system
reconfiguration (allowing the joining and leaving of nodes),
can be costly. VSS-based DRB protocols thus become a perfect
choice to avoid the need for DKG.

Existing VSS-based DRB protocols all employ a paradigm
that combines VSS and Byzantine fault-tolerant state machine
replication (BFT-SMR), assuming a system with n nodes and
at most t of them are corrupted. A typical VSS-based protocol
proceeds as follows. First, multiple VSS instances are queried
and each node shares its secret. Then, the BFT-SMR commits
the secrets of t + 1 nodes. Finally, nodes reconstruct and
aggregate the secrets, ensuring that the aggregated beacon
value is unbiased and unpredictable. The paradigm works both
as a standalone randomness beacon protocol and an on-chain
randomness beacon provider. In the latter case, the BFT-SMR
can be replaced with a blockchain, and the randomness values
generated can be used on-chain, e.g., for smart contract-based
DeFi applications.

Such a paradigm suffers from some limitations we seek
to address. First, as parallel VSS instances are needed for
every round (by default, one beacon value is expected to be
generated in each round), the performance of the protocols
usually degrades significantly as n grows. Second, most VSS-
based protocols [19, 21, 23, 29] still build DRB under the
synchronous timing assumption and are not that robust in
wide area networks. Third, although VSS-based protocols
are reconfiguration-friendly, it is still unclear how to build
reconfigurable randomness beacon in systems that do not make
a synchronous assumption. Indeed, the only partially syn-
chronous DRB, Spurt [18], does not support reconfiguration,
mainly because the underlying BFT-SMR does not support
reconfiguration. Meanwhile, the only reconfiguration-friendly
DRB solutions, RandPiper [19] and Optrand [29], assume a
synchronous network.

Thus, an interesting research question to answer is:

Can we build a distributed randomness beacon protocol
that is both scalable and reconfiguration-friendly in the par-
tially synchronous network?

Our approach and our results. We propose Rondo, a scal-
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Cachin et al. [27] async. 1/3 ✓ ✓ ✓ ✗ O(λn2) O(n2) O(n) th-sig CDH DKG

RandHerd [26] async. 1/3 ✓ ✓ ✓ ✗ O(λc2 logn)♣ O(c2) O(c2 logn)♣
PVSS
+CoSi DLog DKG

Hashrand [30] async. 1/3 ✓ ✓ ✓ ✗ O(λn2 logn) O(n2) O(λn logn)†
AwVSS¶

+Hash
RO secure

channels

BRandPiper [19] sync. 1/2 ✓ ✓ ✓ ✓ O(λn3) O(n3) O(n2) VSS q−SDH SRS
GRandPiper [19] sync. 1/2 ✓ t + 1 ✓ ✓ O(λn2) O(n2) O(n2) PVSS q−SDH SRS

GRandline [31] sync. 1/2 ✓ ✓ ✓ ✗ O(λn2) O(n2) O(n)
PVSS

+pairing
+th-sig

AGM
+Co-OMDL†† DKG

Optrand [29] sync. 1/2 ✓ ✓ ✓ ✓ O(λn2) O(n2) O(n2)‡
PVSS

+Pairing
q−SDH
+SXDH

SRS
+PKI

Drand [32] sync. 1/2 ✓ ✓ ✓ ✗ O(λn2) O(n2) O(n) th-sig Gap-CDH DKG

Scrape [33] sync. 1/2 ✓ ✓ ✓ ✗ O(λn4) O(n3) O(n2)
PVSS

+Pairing DDH⋆⋆ CRS
+PKI

Spurt [18] partial 1/3 ✓ ✓ ✓ ✗ O(λn2) O(n2) O(n2)‡
PVSS

+Pairing DBDH CRS
+PKI

Dfinity [34] partial 1/3 ✓ ✓ ✓ ✗ O(λn3)§ O(n3) O(n) th-sig CDH DKG

Rondo (this work) partial 1/3 ✓ ✓ ✓ ✓ O(λn2 logn) O(n2) O(n) bAVSS-PO DLog CRS
+PKI

TABLE I: Comparison of existing randomness beacon protocols. ⋆All protocols in the table assume random oracles.†All the protocols count
the complexity of exponentiation, except Hashrand [30], which counts hash functions. ‡The computational cost is O(n2) for the dealer and
O(n) for other nodes. ⋆⋆This scheme can be instantiated both under the Decisional Diffie Hellman (DDH) assumption in the random oracle
model and in the plain model under the Decisional Bilinear Square (DBS) assumption. §The complexity is O(λn2) in the best case. ¶AwVSS
stands for asynchronous weak verifiable secret sharing. The main difference between this scheme and ordinary VSS is that it allows nodes
to reconstruct ⊥ in the reconstruction phase. ††Co-OMDL stands for co-one-more discrete logarithm [35], which is stronger than ordinary
OMDL assumption. ♣ Randherd employs a committee-sampling approach that samples a committee of size c for the protocol to enhance the
scalability. Such an optimization can be applied to almost all other protocols. The computational complexity of some protocols in the table is
not summarized. We provide additional details about the analysis in Appendix A.

able and the first reconfiguration-friendly randomness beacon
protocol in the partially synchronous model. Our starting
point is using batched asynchronous verifiable secret sharing
(bAVSS) [36]–[38] to build DRB. Specifically, bAVSS allows
the dealer to share a batch of B secrets at once, and the secret
can be reconstructed independently. As we can share B secrets
at once, the VSS phase only needs to be executed once every
B rounds and the amortized latency of beacon outputs can be
significantly reduced compared to previous works.

Unfortunately, all known bAVSS protocols have O(n2)
messages. As n parallel instances are required to build DRB,
the DRB protocol has O(n3) messages and the bAVSS phase
might be the bottleneck of the system. Additionally, just as
mentioned above, it is still unclear how to support reconfigu-
ration in a partially synchronous network.

Compared to prior VSS-based DRB protocols, Rondo in-
troduces two crucial building blocks to enhance the scalability
and support reconfiguration: a new primitive called batched
asynchronous verifiable secret sharing with partial output
(bAVSS-PO), and a new dynamic Byzantine fault-tolerant state
machine replication protocol. A comparison between Rondo
and existing works is summarized in Table I.

▷ Batched asynchronous verifiable secret sharing with partial
output (bAVSS-PO) and the Breeze protocol. We propose
a new bAVSS-PO primitive and a protocol called Breeze.
bAVSS-PO has two desirable properties essential for building

a DRB. First, it supports batching, which significantly reduces
the amortized latency of beacon output. Second, bAVSS-PO
is weaker than AVSS in the sense that each node requires
validation data to validate its secret share. Despite this weaker
requirement, the primitive retains the other properties of AVSS
and is sufficient to build a DRB protocol.

Our Breeze protocol has O(n) messages for the sharing
stage, which is optimal for VSS. Indeed, O(n) messages
are required even for a dealer to share the secret shares.
The communication paradigm is inspired by that for con-
sistent broadcast (CBC) [39]. By setting the batch size B
as O(log n), Breeze achieves O(λn) communication and is
the best result known so far. Indeed, existing state-of-the-art
protocols achieve O(λn) amortized communication at the cost
of B = O(n) [38,40]. Due to the reliance on digital signatures,
Breeze is provably secure only in the computational model.
Meanwhile, to support batching, we use Bulletproofs [41]
for batch verification inspired by hbACSS [37]. Compared to
known works that also adopt Bulletproofs for building batched
VSS [37], we optimize the computational cost by a factor of
B for batch verification.

▷ Dynamic Byzantine fault-tolerant state machine replication
(BFT-SMR). Although VSS supports reconfiguration of the
nodes relatively easily (e.g., via proactive secret sharing [42,
43] or asking the nodes to start fresh VSS instances), BFT-
SMR cannot easily do so in the partially synchronous network.
Inspired by a recent work on dynamic BFT called Dyno [44],
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we propose Rondo-BFT, a new partially synchronous and
reconfiguration-friendly BFT protocol, which might be of
independent interest. Different from Dyno that can be viewed
as a reconfiguration-friendly version of PBFT [45], Rondo-
BFT can be viewed as a reconfiguration-friendly version of
HotStuff [46]. The HotStuff-style pipelining communication
pattern is a better fit for randomness beacon, mainly because
the beacons can be output periodically.

Our contributions. We make the following contributions:

• We provide a new DRB protocol Rondo. Rondo consists
of a new bAVSS-PO primitive and dynamic BFT-SMR.
The batching feature of bAVSS-PO and the dynamic fea-
ture of BFT-SMR allow us to achieve scalability and re-
configuration simultaneously. To our knowledge, Rondo is
the first reconfiguration-friendly DRB in the partially syn-
chronous model.
• We propose Breeze, a bAVSS-PO protocol. Breeze is both

communication-efficient and computation-efficient. Breeze
achieves O(n) messages for the sharing stage, in contrast
to O(n2) by prior bAVSS protocols. Meanwhile, the com-
putational cost for batch verification is reduced by a factor
of B compared to existing state-of-the-art batched VSS.
Although the use of Breeze makes Rondo achieve slightly
higher communication complexity than existing state-of-the-
art DRB protocol, we show that Rondo achieves better
scalability thanks to the optimization in message complexity
and computational complexity.
• We propose Rondo-BFT, a dynamic BFT-SMR protocol in

the partially synchronous model. Rondo-BFT can be viewed
as a dynamic version of HotStuff that supports the joining
and leaving of nodes, which is of independent interests.
• Our evaluation results on Amazon EC2 using up to 91

instances across four different regions show that Rondo
achieves high throughput (beacon/min) and scalability. Un-
like prior works, VSS does not become the bottleneck of the
system anymore.

II. RELATED WORK

AVSS, ACSS, and HACSS. In the unconditional security
setting (also known as information-theoretical model where
the only assumption is authenticated channels), AVSS usually
incurs high communication [47]–[49]. In this setting, there are
two types: perfectly secure AVSS [50, 51] and statistically
secure AVSS [52, 53]. In the computational setting, Cachin
et al. [54] (assuming the DL assumption) proposed the first
practical AVSS with optimal O(n2) messages assuming n >
3t. Many follow-up works optimize the communication com-
plexity [55, 56]. If AVSS achieves the completeness property,
it is sometimes called asynchronous complete secret sharing
(ACSS). Additionally, if ACSS supports a high threshold (e.g.,
2t + 1 out of 3t + 1 for the n > 3t setting), it is also called
high-threshold ACSS (HACSS) [55, 57, 58].

In this work, we propose a new bAVSS-PO primitive that
has a weaker commitment property than ACSS. Additionally,
we introduce an efficient bAVSS-PO protocol named Breeze.
Apart from Breeze’s message-efficient design, our technique of
supporting batching is generic and can be integrated with any
ACSS protocol. To demonstrate this, we integrate our approach
with HAVEN [55] and build a batched HACSS protocol called

BatchHAVEN. A concurrent work HAVEN++ [40] shares a lot
of similarities with BatchHAVEN. Furthermore, our Breeze
protocol exhibits some similarities with a concurrent work
by Das et al. [58], which is a conventional ACSS protocol
with O(n2) messages. In contrast, Breeze is a bAVSS-PO
protocol with O(n) messages. Finally, it is worth mentioning
that Breeze can be used to improve multiparty computation
protocols. For example, we can replace the VSS protocols
in the DKG-DL protocol in [59] with Breeze to simplify the
protocol under n ≥ 3t+1 setting. In particular, we can remove
the expensive homomorphic encryption needed for [59].

Batched VSS and packed VSS. Batched AVSS allows
the dealer to share many secrets in parallel [36]–[38, 40].
hbACSS [37] proposes a batched ACSS protocol leveraging
Bulletproofs [41]. Recently, Shoup and Smart (SS) proposed
a lightweight batched AVSS using only lightweight crypto-
graphic primitives, i.e., hash functions [36]. Compared to
hbACSS, SS is less communication-efficient, which might be
less interesting in wide-area networks. Our approach of sup-
porting batching for Breeze is inspired by hbACSS. Compared
to hbACSS, we reduce the computational cost by a factor of
B for batch verification.

Another relevant notion is packed secret sharing, which
packs many secrets in one sharing [60]. Packed VSS does not
suit our needs as all secrets need to be reconstructed at once.

Polynomial Commitment. Polynomial commitment is a cryp-
tographic technique for committing to a polynomial and allow-
ing others to verify its properties (e.g., evaluations at specific
points) without disclosing the polynomial itself [61]. The
notion was first introduced by Kate, Zaverucha, Goldberg [62]
and was found useful in AVSS protocols. In particular, poly-
nomial commitment allows each node to validate the share it
receives from the dealer [18,33,37,55]. In this paper, we used a
batched polynomial commitment scheme to build Breeze (i.e.,
our bAVSS-PO protocol).

Dynamic BFT and reconfiguration for SMR. Reconfigura-
tion for crash fault-tolerant (CFT) protocols or synchronous
BFT protocols is relatively easy. Many CFT protocols have
studied efficient reconfiguration that does not degrade the
overall performance [63]–[65]. Prior synchronous randomness
beacon protocols such as RandPiper [19] and OptRand [29]
also support reconfiguration for BFT-SMR.

BFT-SMaRt is a partially synchronous BFT protocol that
supports reconfiguration [66], where membership requests are
treated as a special type of client requests. It adopts the
workflow of PBFT [45] so it achieves O(n2) messages. It
was mentioned in Dyno [44] that by simplifying treating the
membership requests as regular client requests, a partially
synchronous BFT protocol may have subtle liveness issues.
In this work, we follow the definitions by Dyno and provide
a new dynamic BFT protocol that can be viewed as dynamic
HotStuff [46]. As HotStuff achieves O(n) messages and the
communication pattern allows blocks to be produced periodi-
cally, it is a better fit for DRB. To the best of our knowledge,
dynamic HotStuff has not been studied in the literature.

Randomness Beacon. Chainlink [67] is an industrial solution.
The randomness beacon is generated using the verifiable
random function (VRF) and thus requires a trusted setup.
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A recent work Hashrand [30] uses batched asynchronous
weak verifiable secret sharing (BAwVSS) to construct a DRB
protocol. The BAwVSS primitive shares some similarities
with our bAVSS-PO, both being weaker than AVSS and
supporting batching. However, the weak commitment property
of BAwVSS leads to a Monte-Carlo beacon, where no output
is guaranteed in every round. In practical, by carefully tuning
the parameter, the probability that beacon is not generated is
negligible.

DRB can be viewed as a more lightweight version of
distributed key generation (DKG) although one can directly
use a combination of DKG and threshold cryptosystem to
generate randomness beacon [27,32]. Informally, DRB is more
lightweight because we only need the aggregated secrets.

III. SYSTEM MODEL AND BUILDING BLOCKS

We consider a system consisting of a finite set of nodes
{P1, P2, · · · }, where a fraction of them may fail arbitrarily
(Byzantine failures) and they are controlled by an adversary
A. Nodes that are not Byzantine are called honest or cor-
rect nodes. The set of nodes that participate in the system
may change dynamically. We assume a standard public-key
infrastructure, i.e., each node Pi has a public/private key pair
(pki, ski) and the public key pki is known by all nodes. We
use a collision-resistant hash function H() mapping a message
of arbitrary length to a fixed-length output.

We follow the notations in Dyno [44] for our definition of
a reconfigurable system. In particular, we use configuration
to denote the successive membership of the system. The
configuration number c grows monotonically, beginning with
0. In each configuration c, there is a fixed set of nodes Mc

and we call these nodes members of configuration c. Each
node changes its configuration via configuration installation.
Every correct node is aware of the initial configuration M0

(i.e., the set of nodes when the system is started).

Let nc denote the number of nodes in Mc (i.e., |Mc|) and
tc denote the number of c-faulty nodes in Mc. Dyno defines
two assumptions regarding the relationship of nc and tc. We
assume the standard assumption and additionally require a new
one-correct assumption as summarized below.

(a) Standard assumption: For any configuration Mc, tc ≤
⌊ |Mc|−1

3 ⌋.
(b) One-correct assumption: There exists at least one correct

replica in M0 that never leaves the system.

We may omit the subscript for nc and tc when no ambi-
guity arises. For instance, when we describe our bAVSS-PO
protocol, we use n and t to denote the number of nodes and
the number of faulty nodes in each instance.

We assume that all nodes have an agreement of a common
reference string (CRS): crs = (G, g, h), which contains a
cyclic group G, a vector of generators g and another single
generator h.

We consider the partially synchronous model [68], where
there exists an unknown global stabilization time (GST) such
that after GST, messages sent between two correct nodes arrive
within a fixed delay.

Randomness beacon. We consider a distributed randomness
beacon protocol that operates in epochs and each epoch con-
sists of multiple rounds. By default, the protocol is expected
to generate a beacon output in every round. In our approach,
a batch of secrets is shared once per epoch, and a randomness
beacon is generated in each round. We adopt terminology from
previous studies [18, 20] and refine the security objectives of
the randomness beacon protocol as follows.

• Unpredictability. Let r1, r2, ..., ri be the beacon outputs
generated so far. The protocol is unpredictable if for every
future beacon output rj such that j > i + 1, for any PPT
adversary A as mentioned above and i ≥ 1, there exists a
negligible function negl(λ) such that:

Pr[(j, r′j)← A(r1, r2, ..., ri) : r′j = rj ] ≤ negl(λ)

• Bias-resistance. Let ri(k) be the kth bit of the beacon output
ri, |ri| be the number of bits of ri, and A(r1, r2, ..., ri−1)
be the adversary having access to all the beacon outputs
generated so far. The randomness beacon protocol is bias-
resistant if for any PPT adversary A where i ≥ 1, and
k = 1, ..., |ri|, there exists a negligible function negl(λ) such
that:∣∣∣∣Pr [ (k, r′i(k))← A(r1, r2, ..., ri−1) :

r′i(k) = ri(k)

]
− 1

2

∣∣∣∣ ≤ negl(λ)

|Pr[ri(k) = 0]− 1

2
| ≤ negl(λ)

• Liveness. A beacon output is generated in every round
except with a negligible probability.

• Public verifiability. The randomness beacon protocol is
publicly verifiable if any users that do not participate in the
protocol can verify the beacon outputs.

Notably, the bias-resistance and unpredictability properties
emphasize on different properties. In particular, bias-resistance
focuses on preventing adversaries from "actively" influencing
the output, while unpredictability prevents "passive" guessing
of the output by adversaries.

We consider the public verifiability property an optional
property for a DRB protocol. Indeed, if the protocol serves as
a standalone DRB service, public verifiability is necessary. In
contrast, if the protocol only provides randomness beacons to
participants of the protocol (e.g., providing on-chain random-
ness beacon), public verifiability is not necessary.

We summarize the most frequently used notations in
Table II.

TABLE II: Notations used in this work.

Notation Description
G Cyclic group
|M | Number of elements in set M
B Batch size
Pi Party/Node i
a Vector
a · b Inner product of a and b
a[i] The ith element of vector a
s[i, j] The element in the ith row and jth column of matrix s
s[i, :] The ith row of matrix s
s[:, j] The jth column of matrix s
Ŝ Polynomial commitment of a set of polynomials, a vector
H(·) Hash function
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A. Building Blocks

Dynamic Byzantine fault-tolerant state machine replication
(BFT-SMR or BFT for short) and types of requests. In BFT,
a node delivers or commits requests submitted by clients. A
node then sends a reply to the corresponding client. The client
computes a final response based on the reply messages. There
are two types of requests: the regular request that consists
of normal transactions; the membership request that consists
of requests for membership changes. A membership request
might be either a JOIN request (for adding a new node) or
a LEAVE request (for removing a node). In our case, a valid
JOIN request contains the public key of the sender as a unique
identifier. Requests are also called transactions and we use
them interchangeably in this work. We consider dynamic BFT
in our work to build the reconfigurable randomness beacon.
The correctness of dynamic BFT is defined below.

• Agreement: If a correct node in epoch e delivers a request
rq, then every correct node in the same epoch e eventually
delivers rq.

• Enhanced total order: If a correct node in epoch e delivers a
request with a sequence number k, and another correct node
delivers a request rq′ in epoch e′ with the same sequence
number, then e = e′ and rq = rq′.

• Liveness: If a correct client submits a request rq, then
eventually a correct node in some configuration delivers rq.

• Consistent delivery: A correct client submitting rq will
deliver a correct response which is consistent with the state
in some configuration where rq is delivered.

Batched asynchronous verifiable secret sharing with partial
output (bAVSS-PO). We introduce a new primitive bAVSS-
PO and we first present the non-batched version AVSS-PO.
Similar to conventional AVSS, an AVSS-PO protocol also con-
sists of two stages: sharing and reconstruction. In the sharing
stage, a node, also called a dealer, shares a secret s to all nodes.
In the reconstruction stage, nodes interact to reconstruct secret
s. The sharing stage of AVSS-PO is verifiable and any node
that completes the sharing stage receives some validation data
that can be verified by any node. Additionally, every node
produces some partial output (i.e., in our case a secret share
from the dealer) during the sharing stage. Once a node receives
the validation data proving that some node has completed the
sharing state, the node can verify whether its partial output
is valid. A secure AVSS-PO protocol satisfies the following
properties.

• Privacy. If a correct dealer shared s using ID.d, then before
any correct node starts reconstruction for ID.d, A has no
information about s.

• Liveness. 1) If the dealer Pd is correct throughout the sharing
stage, then all correct nodes complete the sharing stage; 2)
If at least t + 1 correct nodes validate their partial outputs
and start reconstruction for ID.d, then every correct node Pi

reconstructs some zi for ID.d.
• Correctness. Once t + 1 correct nodes have completed the

sharing for ID.d, there exists a fixed value z such that the
following holds: 1) if the dealer shared s using ID.d and is
correct throughout the sharing stage, then z = s and 2) if a
correct node Pi reconstructs zi for ID.d, then zi = z.

• Commitment. Once some node completes the sharing stage,
the following holds: 1) at least t+1 correct nodes that receive

the validation data can validate their partial outputs; 2) there
exists a secret s, such that in the reconstruction stage, if any
honest node outputs s′, s′ = s.

bAVSS-PO is the batched version of AVSS-PO. Namely,
the dealer shares a batch of B shares {s1, · · · , sB} in one
instance and all the secrets are independent to each other.

bAVSS-PO vs. identifiable abort. Identifiable abort of thresh-
old cryptosystems (or multiparty computation) [37, 59] refers
to the capability of aborting the protocol under the existence of
corrupted nodes. In bAVSS-PO, if PO is not valid, the notion
is akin to identifiable abort. We do not emphasize it in our
notion as it is not needed for our DRB.

Batched polynomial commitment. We extend Bullet-
proofs [41] to build polynomial commitments for batching and
use them to build our protocol. Following Bulletproofs, our
scheme requires a common reference string (CRS). Formally,
a polynomial commitment P for a batch of secrets consists of
three sub-algorithms:

• BatchCommit(crs, {Si|i ∈ [1, B]} , p) → Ŝ is given
the common reference string crs, B polynomials
{Si|i ∈ [1, B]}, and the degree p. It outputs a commitment
vector Ŝ.

• BatchEval(crs, {Si|i ∈ [1, B]} , Ŝ, (y1, y2, . . . , ym), p) →
(V,Φ) is given the common reference string crs, B polyno-
mials {Si|i ∈ [1, B]}, polynomial commitment Ŝ, evaluation
points arranged as vectors (y1, y2, . . . , ym), the degree of the
polynomials p. It outputs the evaluations arranged as a matrix
V , and the corresponding proof vector Φ.

• BatchVerifyEval(crs, Ŝ, v, y, ϕ, p) → true\false takes as
input the common reference string crs, a commitment Ŝ,
evaluation point y, evaluation proof ϕ, and the degree of Si,
denoted by p. It outputs a Boolean.

Let G be a cyclic group of a prime order q with a
generator g. Given a polynomial R(x) of degree p: R(x) =
r0 + r1x + · · · + rpx

p, where the coefficients ri ∈ Zq ,
Bulletproofs commitment for R(x) is

∏p
i=0 g

ri
i . A Bulletproofs

commitment for R(x) uniquely determines R(x).

We also need the binding and hiding property of commit-
ments [55]:

• Binding. Let crs ← Setup (1κ,F, D). For any PPT adver-
sary A(crs) that outputs a batching commitment Ŝ, the de-
gree p of the polynomials, and two evaluations e = ⟨v, y, ϕ⟩
and e′ = ⟨v′, y′, ϕ′⟩, there exists a negligible function negl(λ)
such that:

Pr


(Ŝ, e, e′, p+ 1)← A(crs) :

y = y′ ∧ v ̸= v′

∧BatchVerifyEval(crs, Ŝ, v, y, ϕ, p)
∧BatchVerifyEval(crs, Ŝ, v′, y′, ϕ′, p)

 ≤ negl(λ)

• Hiding. Let crs← Setup (1κ,F, D), p be an arbitrary inte-
ger less than D, and I ⊂ F be an arbitrary set of evaluation
points with |I| ≤ p. Randomly choose a batch of polynomials
{Si|i ∈ [1, B]} ← F[x] of degree p and construct its com-
mitment Ŝ = BatchCommit(pp, {Si|i ∈ [1, B]} , p). For all
PPT adversaries A, there exists a negligible function negl(λ)
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such that:

Pr

 E = BatchEval(crs, {Si|i ∈ [1, B]} , Ŝ, I, p, n, |I|) :
(x, v)← A(crs, Ŝ, E)

v[k] = Sk(x), k ∈ [1, n] ∧ x /∈ I


≤ negl(λ)

In this paper, given a batch of polynomials {Si|i ∈ [1, B]},
we use a matrix s to denote the vectors of coefficients of them,
and use s[i, :] to denote the ith row of s, which is the coefficient
vector of Si.

We also present the definitions of other related primitives
in Appendix B.

IV. OVERVIEW OF OUR APPROACH

Rondo follows the generic workflow of conventional ran-
domness beacon protocols: in the commitment phase, each
node first disseminates its secret shares via an AVSS protocol;
in the agreement phase, a BFT-SMR protocol is executed to
agree on a common subset of the secrets; in the reconstruction
phase, nodes reconstruct the secrets corresponding to the
common subset and then output the beacon values.

The concrete workflow of Rondo is illustrated in Figure 1.
Namely, once every B rounds (i.e., an epoch), each node
queries a Breeze instance to share a batch of B secrets.
In the first round of every epoch, Rondo-BFT agrees on a
set of validation data generated in t + 1 Breeze instances.
The validation data can be used for honest nodes to validate
whether their partial outputs (i.e., the secret shares) in Breeze
instances are valid. In other rounds of the epoch, Rondo-BFT
simply agrees on some default data (e.g., the round number).
Finally, after an agreement is reached in every round, nodes
reconstruct one secret in the reconstruction phase.

Our contributions focus on both AVSS and the BFT-SMR,
as summarized below.

Breeze. We propose Breeze, a bAVSS-PO protocol and
bAVSS-PO is a new variant of AVSS as defined in Sec. III-A.
As mentioned in the introduction, bAVSS-PO does not achieve
the conventional completeness property of AVSS and instead
achieves a weaker commitment property. Our insight is that
the weaker property is sufficient for randomness beacon but
allows us to build a more efficient protocol. Namely, any
correct replica that completes the sharing stage receives the
validation data. The commitment property ensures that once
the validation data exists, the secret is "fixed". However, even
if the validation data exists, some nodes may still not terminate
the sharing stage. Any correct node that has not terminated the
sharing stage can validate its secret share after it receives the
validation data. In our DRB protocol, the validation data can
be obtained in the agreement phase. In this way, we can make
the commitment phase more efficient.

The communication paradigm of Breeze is inspired by
consistent broadcast (CBC) [39]: nodes only need to interact
with the dealer, allowing the sharing stage to achieve an
optimal message complexity of O(n). Namely, after receiving
the secret share from the dealer, each node that validates its
share sends a digital signature to the dealer. After the dealer
collects 2t+1 signatures, some secret s shared by the dealer is
fixed. If correct nodes reconstruct the secret, they will output

the same s so our protocol achieves the commitment property.
The 2t+1 signatures serve as the validation data to prove the
existence of the fixed secret.

Our Breeze protocol allows a dealer to share a batch of
B secrets {s1, · · · , sB} at once. A crucial property is that
the reconstruction is flexible. Namely, each secret could be
separately recovered by more than t + 1 honest nodes. In
this way, the commitment phase only needs to be executed
once every epoch and the amortized latency of beacon outputs
becomes very close to the latency of the BFT-SMR.

The technique of support batching draws inspiration from
hbACSS [37], leveraging Bulletproofs for verifying evaluations
of the polynomials. These evaluations are represented as inner
products of coefficients and evaluation points. To efficiently
compute and prove a batch of polynomials of degree p at mul-
tiple evaluation points, Bulletproofs’ inner-product argument is
utilized:

[Pi ↔ Pj ] : {Ŝ[m] =

p∏
k=0

g
s[m,k]
k ∧v = ⟨sm,:,y:,j⟩ ,m ∈ [1, B]}

Here, i, j ∈ [1, n] and m ∈ [1, B]. In this setup, the prover Pi

(acting as the dealer) shares B polynomials Sm | m ∈ [1, B],
while each verifier Pj (a node) verifies all polynomials at a
designated evaluation point yj .

The advantage of using Bulletproofs, also as mentioned
in hbACSS, is that its commitment size is constant and the
proof size is logarithmic. The underlying idea of Bulletproofs
is using a so-called folding technique to recursively halve the
degree of the polynomials to one.

Nevertheless, the drawback of the above approach is that
each polynomial requires a halving computation so the compu-
tational cost is high. We therefore provide a more computation-
efficient verification mechanism. The idea is to use a group of
random numbers to sum the polynomials up to a combined one.
In this way, the subsequent computation can be done based
on a combined polynomial instead of B polynomials. Thus,
our approach can eliminate a B factor of the computational
complexity. Meanwhile, we found some subtle mistakes in the
pseudocode of hbACSS and we fix them in our work.

Dynamic BFT. In Dyno [44], it was mentioned that a par-
tially synchronous BFT may suffer from liveness issues when
treating membership requests as regular client requests. A
dynamic PBFT is then provided. In contrast, Rondo-BFT
can be viewed as a dynamic HotStuff protocol. In Rondo-
BFT, we adopted some techniques in Dyno to address the
liveness issues. Furthermore, when we transform HotStuff into
a dynamic BFT, we face some unique safety and liveness
challenges.

The safety challenge arises because the linear message
complexity of HotStuff makes it extremely challenging to
achieve the agreement property, a required property for build-
ing dynamic BFT [44]. Indeed, the leader is the only node that
collects the quorum certificates (a sufficiently large number
of matching votes, also called QC or certificates) and the
certificates are crucial for correct replicas to deliver client
requests. For instance, when a membership request for adding
a new node to the system is delivered, a faulty leader may
choose to send the certificate to nodes in the system but not
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Fig. 1: The Rondo protocol.

the new node. In this way, the new node will not join the
system. To overcome this challenge, we carefully add some
constraints for nodes that request to join or leave the system
and nodes may need to forward their received messages to
other nodes. Therefore, the agreement property is achieved by
correct nodes nearly simultaneously for membership requests
(i.e., all correct nodes deliver the membership requests with a
bounded network delay). Meanwhile, agreement is eventually
achieved for regular requests.

The liveness challenge mainly arises during view changes.
This is because multiple nodes from different configurations
may compete for becoming a new leader, again due to the
fact that agreement is challenging. To handle this problem,
we additionally introduce some procedures in the normal-case
operation. In particular, before any correct node installs a new
configuration, it needs to collect a view-change certificate vc
signed by at least 2t + 1 nodes in the current configuration.
Accordingly, more than t + 1 correct nodes in the previous
configuration are aware of the new configuration. Finally, only
one leader will be selected once a view change occurs.

V. RONDO

We show the pseudocode of our randomness beacon proto-
col Rondo in Figure 2. The protocol consists of three phases:
the commitment phase where nodes disseminate their secret
shares via n parallel Breeze instances; the agreement phase
where nodes agree on a common subset (denoted as CSe) via
BFT-SMR; the reconstruction phase where nodes reconstruct
the secrets.

A. The Main Workflow

Rondo proceeds in epochs and each epoch has B rounds.
The commitment phase is executed once every epoch where
n bAVSS-PO is executed. The batch size of bAVSS-PO is B.
The agreement and reconstruction phases are executed in every
round. Meanwhile, membership requests (i.e., JOIN or LEAVE
requests) can be issued at any time to add new nodes to the
system or remove existing nodes from the system. However,
they are only processed in the first round of every epoch in
the agreement phase.

Specifically, each phase proceeds as follows. First, every
node executes the commitment phase once every B rounds
(i.e., an epoch). In particular, node Pi starts an bAVSS-PO
instance Breezei and shares B secrets si (lines 07-11). Second,

▷ Initialization.
01: - At the beginning of Rondo, set epoch e←0, round r←1.
02: - At the beginning of round r, if r > B then
03: - Set r ← r mod B, e← e+ 1.
04: - Let CSe denote common subset and CSe ← ∅.
05: - Let Se ← [⊥] be the shares received from other nodes.
06: - Let Me be the members of epoch e.
▷ The commitment phase.
07: - if Pi ∈Me and r mod B = 1 then
08: - Select the random secrets si ← (s

(i)
1 , · · · , s(i)B ).

09: - Query the Breezei.Share(in, share, si) for Breezei

and participate in other Breeze instances
10: - Upon completing the sharing stage of Breezej

11: - Se ← Se∪{cere,j}, in which cere,j is the validation data
for Breezej .

▷ The agreement phase.
12: - if r mod B = 1 then
13: - Wait until |Se|≥ t+1, RondoBFT.Proposei(e, r, (Se,m))

and let S′
e ← Se //m consists of additional input data

14: - Introduce the following predicate to the input S′
e of

Rondo-BFT: S′
e is valid only if Se consists of at least

t+ 1 valid certificates.
15: - Wait until RondoBFT.Returni(e, r, (S

′
e,M, ∗))

16: - CSe ← S′
e, Me+1 ←M .

17: - else
18: - RondoBFT.Proposei(e, r, (−,m))
19: - Wait until RondoBFT.Returni(e, r, (−, ∗))
▷ The reconstruction phase.
20: - if r mod B = 1 then
21: - For j ∈ CSe, invoke ParVerify(cere,j , C, set

e,j
i )

22: - For k ∈ [1, B]
23: - Aggregate the shares received from nodes in CSe

24: - r(i)k ←
∑

j∈CSe
s
(j)
k .

25: - Upon a reconstruction request for round r:
26: - Output Breeze.Reconstruct(in, reconstruct, r, r(i)k ).

Fig. 2: The pseudocode of Rondo for node Pi, round r and epoch e.
The ParVerify is functions provided by Breeze.

the agreement phase is executed in every round r and there
are two cases.

• If r is the first round of an epoch, every node waits until
n − t Breeze instances have completed and then proposes
(Se,m) to Rondo-BFT (lines 12-13). Here, Se consists of the
validation data for Breeze instances. Jumping ahead, we use
ceri to denote the validation data for Breezei. Additionally,
m denotes the input data to Rondo-BFT. Every node then
waits for the output of Rondo-BFT (line 15).

• If r is not the first round of an epoch, every node simply

7



proposes (−,m) to Rondo-BFT and then waits for the output
of Rondo-BFT (lines 18-19).

There are two cases for m mentioned above. If we use
Rondo as a dedicated DRB protocol, the field m is either
⊥ or some membership requests. Alternatively, if Rondo is
a system that generates on-chain randomness beacon, m may
additionally include a batch of regular requests.

Finally, the reconstruction phase is by default triggered
in every round. In each round r, nodes reconstruct the (r
mod e)th secret among the B secrets, where e is the epoch
number. As |CSe| ≥ t + 1, the reconstruction phase in fact
reconstructs the secrets shared in t + 1 Breeze instances. We
thus require each node to first verify its shares based on CSe

via the ParVerify function (line 21, to be described in Sec. VI)
and then aggregate its shares in CSe (lines 22-24). In this way,
we only need one reconstruct instance to reconstruct all the
secrets corresponding to CSe (lines 25-26).

As our protocol supports reconfiguration of the nodes, we
additionally use Me to denote the members of epoch e. To
simplify our protocol and not waste the secrets shared by
Breeze, we only support membership requests at the boundary
of epochs. Namely, any membership requests are included
in the m field as input to Rondo-BFT in the first round
of an epoch (line 13). After Rondo-BFT outputs the results
that involve membership requests, nodes update their Me+1

accordingly (line 16). Starting from epoch e + 1, nodes use
Me+1 to identify the set of nodes in the system. We leave
the discussion about the details in Sec. VII when we present
Rondo-BFT. We show the proof for Rondo in Appendix C and
proof for Rondo-BFT in Appendix F.

B. Discussion

In the reconstruction phase, every node aggegates the
shares in CSe. As our bAVSS-PO does not achieve the com-
pleteness property, some honest nodes may not receive shares.
In this case, nodes need to exchange their shares to ensure
that all correct nodes can receive the shares corresponding to
CSe, which incurs O(λn3) communication. Alternatively, we
can build an optimized solution, inspired by [58]. In particular,
at the end of the commitment phase, every dealer sends the
missing shares and proofs (the shares for those nodes that do
not have a signature in the validation data) to the leader of the
Rondo-BFT. In Rondo-BFT, every correct node first validates
the missing shares before voting. Such an approach ensures
that every honest node has a valid share from each dealer in
CSe before the reconstruction phase and does not increase the
communication complexity of our approach.

VI. BREEZE: COMPUTATION-EFFICIENT BAVSS-PO

In this section, we present the workflow of our Breeze
protocol using the batched polynomial commitment (defined
in Sec. III) in a black-box manner and demonstrate how our
proposed concept of "partial output (PO)" operates within the
protocol.

A. The Main Workflow

The sharing stage (Figure 4). The sharing stage involves
three communication phases: share, reply, and confirm, also

Fig. 3: The Breeze protocol.

as shown in Figure 3. In the share phase, the dealer Pd first
generates B secrets {s1, · · · , sB} and the shares of them. Ad-
ditionally, Pd generates correctness proofs for the shares using
our new batching polynomial commitment BatchCommit and
BatchEval. To guarantee the consistency of the shares, the
dealer Pd also creates a vector commitment C for the shares
by querying the vCom function (line 04). We instantiate the
vector commitment using Merkle Tree.

In the reply phase, if node Pi validates the share it receives
from Pd, Pi sends a digital signature for C to Pd. At least 2t+1
matching signatures form a certificate cerd. After collecting
cerd, Pd sends cerd as the validation data to the nodes.

The share each node receives from Pd is called a partial
output for the batch of secrets. Additionally, cerd is used as the
validation data for the sharing stage. Upon receiving cerd, each
node can verify the validity of its partial output. Since nodes
may not receive cerd during the sharing stage (e.g., when Pd is
faulty), we also define a ParVerify function for each node to
independently verify the validity of its partial output. Namely,
each node may trigger the ParVerify function even if the node
does not complete the sharing stage.

Reconstruction stage (Figure 5). Each reconstruction proce-
dure recovers one secret in the batch of B secrets and we use
idx as the index of the secret to be reconstructed. Specifically,
each node Pi may hold the shares {Rk(i)|k ∈ [1, B]} as the
partial output of the sharing stage. Before participating in the
reconstruction stage, each node needs to validate its partial
output by invoking the ParVerify function (if it has not done so
yet). If so, Pi sends its idxth share Ridx(i) to all nodes. After
receiving t+1 valid shares, Pi interpolates the corresponding
points and recovers the secret Ridx(0).

B. Instantiating Batched Polynomial Commitment

The batched polynomial commitment scheme con-
sists of three functions: BatchCommit, BatchEval and
BatchVerifyEval.

Batching commitments (Figure 6). The BatchCommit func-
tion takes input the common reference string crs, the set of
polynomials {Si|i ∈ [1, B]}, the degree of the polynomials p,
and outputs a commitment Ŝ arranged as a vector.

To do so, for each Si, compute Bulletproofs of Si, and
then set Ŝ[i] as the Bulletproofs. Accordingly, Ŝ is a vector
with n components.

Batching evaluation (Figure 7). The BatchEval function
takes input the common reference string crs, a set of polyno-
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▷ Initialization: Set flag1 ← false. //for validation of the partial output
▷ The share phase.
01: - Upon receiving (ID.d, in, share, s1, · · · , sB), as a dealer (i.e., Pi = Pd):
02: - For k ∈ [1, B], randomly choose a recovery polynomial Rk ∈ F[x] of degree t s.t. Rk(0) = sk.
03: - Compute R̂← BatchCommit(crs, {Rk|k ∈ [1, B]}, t).
04: - Compute C ← vCom(R̂[1], · · · , R̂[B]). //create a root commitment
05: - Compute (Y,Φ)← BatchEval(crs, {Rk|k ∈ [1, B]}, R̂, (1, . . . , n), t). //evaluates of the polynomials
06: - For k ∈ [1, n], yk ← Y [:, k], ϕk ← Φ[k].
07: - For k ∈ [1, n], send (ID.d, send, setk) to node Pk, where setk = {C, R̂, yk, ϕk}.
▷ The reply phase. //executed by any node
08: - Upon receiving (ID.d, send, setd) from the dealer Pd for the first time:
09: - Verify that BatchVerifyEval(crs, R̂, yi, (i), ϕi, t) returns true.
10: - Verify that all entries of R̂ are in C.
11: - Set flag1 ← true and create a digital signature σi for C.
12: - Send (ID.d, reply, σi) to dealer Pd.
▷ The confirm phase.
13: - if Pi is the dealer (i.e. Pi = Pd) then
14: - Let ceri be the set of signatures received from other nodes, ceri ← [⊥].
15: - Upon receiving (ID.d, reply, infoj,i) from Pj for the first time:
16: - If σj is a valid signature for C, then ceri ← ceri ∪ {σj}.
17: - if |ceri| ≥ 2t+ 1 then
18: - Send (ID.d, confirm, C, ceri) to all nodes.
19: - Output (ID.d, out, shared, seti).
20: - Upon receiving (ID.d, confirm, C, cerd) from Pd for the first time where cerd is a valid certificate for C //executed by any node
21: - if flag1 = true then //the partial output is validated
22: - Output (ID.d, out, shared, seti)
▷ func ParVerify(cerd, C, seti):
23: - if cerd is a valid certificate for C and C = seti.C and BatchVerifyEval(crs, R̂, yk, (i), ϕi, t) then
24: - Output true. //the partial output is validated
25: - Output false.

Fig. 4: The sharing stage of Breeze, for node Pi and tag ID.d. A certificate cerd is a valid certificate for C if cerd consists of 2t+ 1 digital
signatures for C.

01: - Upon Breeze.Reconstruct (in, share, s, idx, Ridx(i)): //reconstruct the idxth secret.
02: - Send (reconstruct-share, C, R̂[idx], yi[idx], ϕi[idx]) to node Pj , for j ∈ [1, n].
03: - Upon receiving (reconstruct-share, C, R̂[idx], ym[idx], ϕm[idx]) from node Pm:
04: - if R̂[idx] is in C and BatchVerifyEval(crs, R̂[idx], ym[idx], (m), ϕm[idx], t) returns true then
05: - if t+ 1 valid reconstruct-share messages with the same C are received then
06: - Interpolate R[idx] from the t+ 1 valid points.
07: - Output (out, reconstructed, Ridx(0))

Fig. 5: The reconstruction stage of Breeze for the idxth secret in the batch. Code is shown for node Pi and tag ID.d.

func BatchCommit(crs, {Si|i ∈ [1, B]}, p):
01: - For j ∈ [1, B], compute Ŝ[j] =

∏p+1
i=1 g

s[j,i]
i , where s[j, :]

are the coefficients vector of Sj .
02: - Output Ŝ

Fig. 6: The BatchCommit function.

mials {Si|i ∈ [1, B]}, the polynomial commitment Ŝ, evalua-
tion points (y1, y2, . . . , ym), and the degree of the polynomial
p. For simplicity, we use the evaluation points in their vector
forms, namely [1, y1i , y

2
i , . . . , y

p
i ]. The function outputs (V,Φ),

where V is the evaluation matrix, and Φ is the proof vector.
The function proceeds as follows.

• Line 01-02: Select a blind mask d to mask the coefficients
of the input polynomial.
• Line 03-04: Compute the evaluation matrices V and VD

using inner products and combine the input polynomials into
a single polynomial.
• Line 05-06: Commit σ + d and compute the corresponding

evaluation matrix V ′.

• Line 07-09: Calculate the parameters required for
InnerProductProof .

• Line 10-12: Recursively invoke InnerProductProof to gen-
erate a correctness proof for the inner product and append
the commitment D̂ and evaluation VD to the proof.

• Line 13-16: If the input contains only one coefficient, include
this coefficient in the proof and outputs.

• Line 17-19: Handle cases where the number of coefficients is
odd by excluding the last entry and updating corresponding
parameters.

• Line 20-34: Halve the input vectors and generate sub-
statements for inner product recursion. BatchEval then re-
cursively invokes InnerProductProof .

Batching verification (Figure 8). The function verifies the
correctness of the output of the BatchEval function.

• Line 01-05: Generate the statement in the same way as that
in BatchEval.

• Line 06-22: Parse the parameters from the proof and repeat
the computation in BatchEval to verify the proof.
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func BatchEval(crs, {Si|i ∈ [1, B]}, Ŝ, (y1, y2, · · · , yn), p):
01: - Parse crs as (G, g, h).
02: - Randomly select a blind mask d, then set D̂ as the

commitment of d.
03: - V ← s · y, VD ← d · y.
04: - Compute σ ←

∑B
i=1 γis[i, :], in which γi is the random

number generated by Fiat-Shamir heuristic.
05: - Compute ŜD ← BatchCommit(crs,σ + d, p) as a

commitment of the polynomial covered with blind mask.
06: - Compute V ′ ←

∑B
i=1 γiV [i, :] + VD as the corresponding

evaluations.
07: - For i ∈ [1, n], generate the inner product statement stmti

and the challenges zi ← H(stmti).
08: - Compute ŜD

′
[i]← ŜDhzi·V ′[i].

09: - hz ← (hz1 , . . . , hzn).
10: - Φ← InnerProductProof((G, g, hz), ŜD

′
, y, p,σ + d).

11: - For i ∈ [1, n], Φ[i]← Φ[i]|||D̂||VD[i].
12: - Output (V,Φ).

func InnerProductProof((G, g, h), A, y, p, a):
13: - Initialize the proof and a flag, Φ←⊥, f lag ← 0
14: - if p = 1 then
15: - Affix the proof Φ with the only entry of the vector.
16: - Output Φ.
17: - if p is odd then
18: - Cut off the last entry of a and let ã denote the negative
value of this entry. Set this entry into the proof. Also, cut off the last
entry of y and g.
19: - Set flag ← 1, p← p− 1, A[j, i]← A[j, i]g

ã[j]
p hã[j]y[p,i].

20: - Let p← p/2, then halve a, y, g into sub-matrices: let aL, yL,
gL be the left halves and aR, yR, gR be the right halves.

21: - Set the following local parameters: cL ← aL · yR,
cR ← aR · yL, L[i]← gaL

R hzicL[i], R[i]← gaR
L hzicR[i].

22: - Φ[i]← Φ[i]||(L[i], R[i]).
23: - Build a Merkle Tree over all transcript as follows:
24: - if flag = 1 then
25: - leafi ← H(g, p, hzi , y[:, i],A[i], L[i], R[i], ã)
26: - z ← roothash, bi ←MerkleBranch(i).
27: - else
28: - leafi ← H(g, p, hzi , y[:, i],A[i], L[i], R[i]).
29: - z ← roothash, bi ←MerkleBranch(i).
30: - Φ[i]← Φ[i]||(z, bi).
31: - A′[i]← Lz2 [i]A[i]Rz−2

[i], g′ ← gz−1

L gz1

R .
32: - y′ ← z−1yL + z1yR, a′ ← z1aL + z−1aR.
33: - crs′ = (G, g′, h).
34: - Output Φ = Φ|| InnerProductProof(crs′, A′, y′, p′, a′).

Fig. 7: The BatchEval function.

C. System Optimization in Rondo

When Breeze is used in Rondo, we further optimize the
reconstruction stage to reduce the computational overhead. The
idea is that the reconstruction stage reconstructs t+ 1 secrets
(that belong to the common subset CSe) at a time and every
node computes the Lagrange interpolation as follows:

Ridx =

t+1∑
i=1

Sidx,i(i)
∏

j ̸=i,j∈CSe

−j
i− j

This costs O(n2) multiplication per round. Hence, in each
epoch, each node needs to perform O(n2B) multiplications.

An interesting fact is that the product term is determined

func BatchVerifyEval(crs, Ŝ, v, y, ϕ, p):
01: - Parse crs as (G, g, h).
02: - Generate the inner product statement stmt = (ŜD, y, v′)
03: - z ← H(stmt)

04: - Compute ŜD
′
← ŜDhzv′

.
05: - OutputVerifyInnerProduct((G, g, hz), ŜD

′
, y, p, ϕ).

func VerifyInnerProduct((G, g, h), A, y, p, ϕ):
06: - if p = 1 then
07: - Parse a from ϕ.
08: - Output (A = ga

0h
ay).

09: - if p is odd then
10: - Parse ã from ϕ and update the parameters ϕ,A, y, g, p.
11: - Parse (L,R) from ϕ.
12: - Compute leaf ← H(g, p, hzi , y, A, L,R, ã).
13: - else
14: - Parse (L,R) from ϕ.
15: - Compute leaf ← H(g, p, hzi , y, A, L,R).
16: - Parse c← roothash and b from ϕ.
17: - Verify whether the Merkle Tree commitment is (leaf, c, b).

Otherwise, output false.
18: - Halve g into two sub-matrix gL and gR.
19: - A′ ← Lc2ARc−2

, g′ ← gc−1

L gc1

R .
20: - y′ ← c−1yL + c1yR.
21: - crs′ = (G, g′, h)
22: - Output VerifyInnerProduct(crs′, A′, y′, p′, ϕ).

Fig. 8: The BatchVerifyEval function

by the common subset CSe and CSe is fixed before the
reconstruction stage (for any secret) begins. Therefore, we can
pre-compute this product once in every epoch. Using this trick,
each node only has to perform O(n2) multiplication during
reconstruction, B times lower than the trivial case.

D. Discussion

In our Breeze protocol, the PO is the secret share each
node receives directly from the dealer, and the validation data
consists of 2t + 1 digital signatures. Each node can obtain
the validation data from the agreement phase. Thus, it is not
difficult to see that we do not need the completeness property
for the secret sharing instances.

Informally, the correctness of Breeze is ensured by the
batched polynomial commitment and validation data (i.e.,
signatures). The polynomial commitment ensures the accuracy
of polynomial evaluations. The validation data ensures that at
least t + 1 honest nodes have verified that their shares (i.e.,
PO) are generated based on the same polynomial. The secret
is thus "fixed". We show the proof of Breeze in Appendix D.

Breeze achieves O(λn(B + log n)) communication if we
instantiate the certificate using aggregate signatures. If we
set B as O(log n), Breeze achieves O(λn) amortized com-
munication. Our result is the most optimal result so far, as
existing state-of-the-art protocols achieve O(λn) amortized
communication by setting B as O(n) [38, 40].

Our BatchEval function can be viewed as a computation-
efficient function of that in hbACSS. Specifically, BatchEval
combines B polynomials into a single polynomial (line 04 of
Figure 7). We generate B random numbers, multiply each by
an input polynomial, and aggregate the results to form the
combined polynomial. Remarkably, the proof of the combined
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polynomial also proves the correctness of the evaluations of
the B polynomials. The computational complexity is thus B
times lower than that in hbACSS.

Moreover, it is worth mentioning that our protocol does
not have the subtle issues in hbACSS. First, the hbPolyCommit-
Core algorithm [37, Fig.1] in hbACSS does not use the correct
crs and the verifier will never be able to verify the shares. We
fix this in line 09 of Figure 7. Second, in the sub-algorithm
InnerProductProof of hbACSS, a Merkle Tree is used. When
the size of the input vector is even, it is impossible to add
the final column of the coefficient matrix to the Merkle tree.
We therefore introduce a parameter flag and use it when
generating a Merkle tree (lines 22-28) to distinguish the cases.

Our improvement for using batched polynomial commit-
ment to support batched AVSS is generic and can be used for
any bAVSS protocols. For instance, if we integrate our batched
polynomial commitment with an ACSS protocol HAVEN [55],
we obtain a batched ACSS protocol BatchHAVEN. Compared
to hbACSS, BatchHAVEN only assumes a discrete logarithm
(DLog) in the random oracle model. Besides, BatchHAVEN
does not require PKI. We leave the discussion about Batch-
HAVEN in Appendix E.

VII. RONDO-BFT: DYNAMIC BFT

We present Rondo-BFT, a dynamic HotStuff protocol [46].
HotStuff is a leader-based partially synchronous protocol.
The normal-case operation in HotStuff involves four phases:
propose, prepare, pre-commit, and commit. Following the
notion of Rondo, membership changes only occur at the
boundary of the epochs. Each epoch has B rounds and up
to B blocks can be delivered in an epoch. The protocol is
viewed-based and there is only one leader in each view v and
configuration. We use LEADER(v,M) to denote the leader of
view v given members of a configuration M . A view change
mechanism might be started to elect a new leader. In this
section, we sketch the workflow of the normal-case protocol of
Rondo-BFT. We highlight the difference from HotStuff (which
is designated to handle membership requests) in green. The
implementation-level details of our protocol (normal-case and
view change) and the proofs can be found in Appendix F.

A. Rondo-BFT-Specific Data Structures

Blocks and branches. A block is in the form b =
[pl, view, height, rq], where pl is the hash of the parent block
of b, view is the view number, height is the number of blocks
on the branch led by b, rq is a batch of client requests. The
first block on a branch is set as an empty genesis block with
height 0. For a block b, we use b.x to denote the element x
of b. If block b satisfies b.height ∈ [eB+1, eB+B], then b
is a block in epoch e. If b is the first block in epoch e, i.e.,
b.height mod B = 1, then b.rq may contain membership
requests. Otherwise, b.rq only contains regular requests. In
addition, b.parent denotes the parent block of b.

Quorum certificates (QC) and view-change certificate. A
QC consists of 2t + 1 matching votes for a message m,
which is instantiated by an aggregate signature in our work.
There are three types of QCs in the normal-case operation:
prepareQC, precommitQC, commitQC. Meanwhile, view-
change certificates are generated during view changes. A

view change certificate vc for view v consists of new-view
messages in view v from more than two-thirds of nodes in a
configuration. Based on vc, each node Pi checks whether it is
the correct new leader and then enters the new view. Any node
can verify the identity of Pi via vc. Here, vc is also called a
view-change certificate for Pi.

Rank of QCs and blocks. We use the notion of rank [69]–
[71] in our work. Given a QC qc for a block, the rank(qc)
function does not explicitly return a value. Instead, we only
care if the rank of a block is higher than that of another one.
In our protocol, ranks equal heights by default. During view
changes, a block with a higher view has a higher rank than
other blocks. The rank of qc is the same as that of block(qc).

Local state. Each node maintains the following state pa-
rameters: (i) the current view number cview; (ii) a quorum
certificate highQC, i.e., the highest prepareQC for which the
node has sent a pre-commit message; (iii) a lockedQC, i.e.,
the highest QC for which the node has sent a commit message;
(iv) confirmQC, i.e., the commitQC for the latest delivered
block; (v) the last voted block lv; (vi) the current system
configuration M and its epoch e; and (vii) the temporary
membership of a configuration TM .

B. The Protocol

Normal-case operation (Figure 9). In the propose phase, the
leader PL proposes a new block b with requests (∗,m) (also
specified in the API in Figure 2). Here b.height = (e−1)B+r,
r ∈ [1, B], and b extends the block of the highQC of PL.
If r = 1, membership requests might be included in m.
We distinguish JOIN and LEAVE requests here. For LEAVE
requests, the leader directly includes the requests in b.rq.
For each JOIN request (join, pkε), the leader assigns an id ε
to the new node and then includes a message (add, ε, pkε)
in b.rq. Meanwhile, Pi adds Pε to its temporary member-
ship TM . After the requests are packed, the leader sends
(prepare, cview, b, highQC) to TM .

Upon receiving a (prepare, cview, b, qc) message from the
leader, Pi checks whether one of the conditions is satisfied
for block b. One noteworthy requirement we introduce is
highlighted as condition ii). This check requires that b be the
first block proposed for view v, b extends block(lockedQC)
and block(lockedQC) has already been delivered. Such a
change is crucial for our protocol to achieve liveness. After
the conditions are checked, Pi sends a partially signed prepare
message for b to the leader PL. If r = 1 and b consists of some
(add, ε, pkε) request, Pi helps Pε complete the state transfer
via a catchup message. We ignore the details on state transfer
as it largely follows previous work [44].

After collecting 2t + 1 matching prepare messages, the
signatures in the prepare messages form a prepareQC. PL

updates its highQC as prepareQC and enters the pre-commit
phase. Such a procedure is repeated in the commit phase,
similar to that in HotStuff. We highlight the changes we made
here. First, in the pre-commit phase, the leader broadcasts the
pre-commit message to all nodes in TM ∪Me−1, including
the previous configuration, existing configuration, and the new
nodes to be added. If Pi is a node in Me−1 but not in Me (i.e.,
Pi requests to leave the system), it waits until receiving the
pre-commit message in epoch e and delivering all the blocks
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Propose phase: ▷ Upon RondoBFT.Proposer(e, r, (∗,m)), PL proposes a new block b with a height of (e−1)B+r including
requests (∗,m) If r = 1, for LEAVE requests in m, Pi directly packs them in b.rq; for any JOIN request in m, PL assigns
and ID ε to the new node Pε, includes (add, ε, pkε) in b.rq, and included Pε in its TM . Then PL sends b to all the nodes in
TM via a (prepare, v, b, qc) message, where qc is the highQC of PL.

Prepare phase: ▷ Upon receiving block b from PL, each node Pi checks whether i) b is consistent with HotStuff specifications
using qc; or ii) b is the first block proposed for view v, b extends block(lockedQC) and block(lockedQC) is delivered. If one
of i) and ii) holds, Pi sends a prepare message for b to PL. If r = 1, for any ADD request in b proposed by Pε, Pi adds Pε

to its TM and sends local state to Pε via a catchup message.
Pre-Commit phase: ▷ Upon recieving 2t + 1 prepare messages for block b from nodes in Me, PL forms a prepareQC qc

and sends qc via a pre-commit message to TM ∪Me−1. ▷ Upon receiving a pre-commit message for b from PL, each node
Pi updates its highQC. If Pi ∈ Me, Pi sends a pre-commit message for b to PL. If r = 1, Pi also forwards the received
message to all the leaving nodes in Me−1 −M . If Pi ∈Me−1 −M , then Pi directly leave the system.

Commit phase: ▷ Upon receiving 2t + 1 pre-commit messages for b from nodes in Me, PL forms a precommitQC qc and
broadcasts qc in commit messages to TM . ▷ Upon receiving a pre-commit message for b, each node Pi in Me updates its
lockedQC and sends a commit message for b to PL.

Decide phase: ▷ Upon receiving 2t + 1 commit messages for b from nodes in Me, PL forms a commitQC qc and sends qc
in decide messages to all the nodes in TM . ▷ Upon receiving a decide message for b from PL, each node Pi delivers block
b as that in HotStuff and updates its confirmQC. If r = 1, Pi computes Me+1 according to membership requests in b and
RondoBFT.Returne,r(∗,Me+1,m). If r = B, then Pi forward the decide message to Me+1. If Pi ∈ Me+1, after receiving
commit messages for b from 2t+ 1 notes in Me, Pi updates its view to v + 1 and installs Me+1 as current configuration.

Fig. 9: Normal-case operation of Rondo-BFT in view v, epoch e, and round r. Me denote the configuration for epoch e. PL denote
LEADER(v,Me). By slightly abusing notation, we assume |Me| = 3t+ 1 in the pseudocode.

in epoch e− 1 before leaving the system. In addition, if Pi is
a node in Me, after receiving the pre-commit message for the
first block in epoch e, Pi forwards this message to all nodes in
Me−1. As mentioned in Sec. IV, such changes ensure that the
agreement property for the membership requests is achieved by
all correct nodes nearly simultaneously. Second, in the decide
phase, the leader sends the commit message to all nodes in
TM . If Pi is a node in Me, after receiving the decide message
for block b, Pi delivers the branch led by b as that in HotStuff.
In particular, if b consists of membership requests, Pi outputs
the new configuration according to the client requests. If r is
the last round of an epoch, Pi sends a (decide, cview, b, qc)
message to Me ∪ Me+1, including the current and the next
configuration. The idea is again for correct nodes to achieve
agreement nearly simultaneously so nodes can correctly install
a new configuration. If Pi is a node in the new configuration
Me+1, after receiving the decide message for the last block in
epoch e from 2t + 1 nodes in Me, Pi delivers the block and
then installs the new configuration (which also match lines 2-3
in Figure 2).

The view change protocol. Compared to HotStuff, we made
two major changes for Rondo-BFT to support membership
requests. First, inspired by Dyno, we introduce a novel mes-
sage forwarding process. When view change happens in epoch
e and view v, Pi broadcasts its highQC and confirmQC
via a new-view message to TM . Upon receiving a new-view
message m from node Pj , Pi checks whether Pj has installed
the latest configuration. If the highest QC contained in m
is from a configuration Me′ such that e′ < e, then Pi

forwards the message to the current leader LEADER(v+1,Me).
Otherwise, Pi updates its local state according the latest
QCs. This forwarding process ensures that all correct nodes
are finally aware of the view change and the latest system
configuration. Second, the new leader needs to provide a view-
change certificate signed by 2t + 1 nodes. Note in normal
cases, a correct node only installs a new configuration after
2t + 1 nodes in the current configuration have agreed on the

last block of the current epoch. Thus, during view change,
only one leader can collect a valid view-change certificate and
proposes new blocks, addressing the liveness issue caused by
competing leaders.

Discussion. Rondo-BFT achieves O(n) message complexity
in normal-case operation and has O(n2) messages only during
configuration changes and view changes. Namely, nodes need
to forward their messages to all nodes across configurations
and views. This is "unavoidable" as we need the agreement
property by correct nodes nearly simultaneously. As we use
aggregate signatures to instantiate quorum certificates, Rondo-
BFT achieves O(λn2 log n) communication.

VIII. IMPLEMENTATION AND EVALUATION

We implement Rondo in Golang, including both Breeze and
Rondo-BFT. We use the kyber crypto library1 to implement
our batched polynomial commitment scheme. In the same
library, we also implement the batch verification functions
of hbACSS [37] to compare the computational cost. We use
gRPC as the communication library. We use HMAC to realize
the authenticated channel and SHA256 as the hash function.
Our implementation involves around 13,000 new LOC for the
system and about 1,000 LOC for evaluation.

We evaluate the performance of our protocols on Amazon
EC2 using up to 91 virtual machines (VMs). We use c5.4xlarge
instances for our evaluation. The c5.xlarge instance has 16
virtual CPUs and 32GB memory. We distribute the nodes
evenly in four different regions: us-west-2 (Oregon, US), us-
east-2 (Ohio, US), ap-southeast-1 (Singapore), and eu-west-
1 (Ireland). We vary the network size and batch size B in
our evaluation. We use n to denote the network size where
n = 3t+ 1 nodes are launched in each experiment.

For performance evaluation, we focus on the computational
cost of our batched polynomial commitment scheme and the

1The kyber crypto library: https://github.com/dedis/kyber
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Fig. 10: Evaluation results.

throughput of Rondo. To assess the computational cost, we
compare our scheme with the hbPolyCommit function in
hbACSS. For the DRB protocol, we compare Rondo with that
using threshold Boneh-Lynn-Shacham (TBLS) signature using
the TBLS implementation in kyber. Indeed, some industrial-
level randomness beacon protocols such as Drand2 and Dfin-
ity3 also use TBLS. Such a scheme requires a DKG setup,
which might be expensive. In our evaluation, we ignore the
latency for DKG and only assess the performance of generating
a randomness beacon using TBLS.

Batched polynomial commitment. We first compare the
computational cost of hbPolyCommit and our BatchEval
function. As no network communication is needed, we evaluate
the performance on one machine with Intel i7 CPU with
2.70GHz and 16GB memory. Figure 10a illustrates the proof
generation time with different n, where B is set as 2n. Our
BatchEval function consistently outperforms hbPolyCommit.
When n is greater than 100, BatchEval is 4x-5x faster than
hbPolyCommit. In addition, the latency of BatchEval does not
increase as significantly when n grows.

2Drand: https://github.com/drand/drand
3Dfinity: https://github.com/dfinity-side-projects/random-beacon

Meanwhile, we show the verification time of the
BatchVerifyEval function and hbPolyCommit in Figure 10b.
Our BatchVerifyEval function is 2x-2.5x faster than hbPoly-
Commit in all the experiments we conducted.

Reconstruction. We set B = 2n and evaluate the latency
of reconstructing B secrets. As shown in Figure 10c, our
optimized reconstruction phase improves the performance of
the default reconstruction approach. Besides, the improvement
is more significant as n and B grow, which matches our
analysis in VI-C.

Performance of Breeze. We evaluate the performance of
Breeze on EC2 by varying B and n. As shown in Figure 10i,
given certain n, the latency grows as B grows. This is expected
as a higher computation cost is involved when B grows.
Meanwhile, given certain B, the latency grows as n grows.
This is because higher communication is involved. All of our
experiments were completed within 1.3 seconds. The highest
latency happens when n = 61 and B = 500 (The latency is
slightly higher than that for n = 91 and B = 500, and we
believe this is caused by the variance of network delay), so
the amortized latency for sharing each secret is only 2.68 ms.

Performance of reconfiguration. We evaluate Rondo under
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reconfiguration. In particular, we add/remove one node at a
time and report the latency of the protocol. As shown in
Figure 10g-10h, the latency of reconfiguration grows slightly
when n increases. In all of our experiments, the latency of
reconfiguration is only slightly longer than the average latency
of generating beacon outputs.

Performance of Rondo in the de-coupling mode. We im-
plement a de-coupled mode of Rondo, where the commitment
phase is executed in parallel with the other phases. We summa-
rize the results for B = 10 and 50 in Figure 10g-10h. As the
commitment phase is executed in parallel, the average latency
of generating beacon outputs is further reduced compared to
the default mode, where de-coupling is not implemented.

Performance of Rondo. We compare the performance of
Rondo (default mode) and that using TBLS. For Rondo, we
assess the latency of each epoch of Rondo (which involves run-
ning the commitment phase with n Breeze instances, Rondo-
BFT for B rounds, and reconstruction of secrets in each round)
and then report the throughput accordingly. In practice, the
performance can be further optimized, e.g., the commitment
phase can be executed prior to the beginning of an epoch.

We report the throughput of Rondo with different B in
Figure 10j. As B grows, the throughput of our Rondo also
increases. In our case, the throughput is very close to the
peak when B=50. For a network with more than 4 nodes,
Rondo consistently outperforms that using TBLS and Rondo
does not require DKG. Furthermore, unlike almost all previous
works [18,19,29,31,32,34] (and TBLS) where the throughput
degrades significantly as n grows, the throughput of Rondo
does not degrade much so our protocol offers better scalability.

We show the amortized latency breakdown (for generating
each beacon) in Figure 10d-10f. Our results show that when
B is small, the bottlenecks of the system are the agreement
and reconstruction phases. While as B grows, the overhead is
dominated by the reconstruction phase. The results show that
our Breeze and Rondo-BFT protocols are efficient and are not
the bottleneck of the system.

IX. CONCLUSION

We present Rondo, a scalable distributed randomness
beacon protocol and the first reconfiguration-friendly pro-
tocol in the partially synchronous model. We propose a
new primitive called batched asynchronous verifiable secret
sharing with partial output (bAVSS-PO) and a bAVSS-PO
protocol Breeze, which is both communication-efficient and
computation-efficient. To support reconfiguration, we propose
Rondo-BFT, a dynamic Byzantine fault-tolerant protocol that
supports efficient reconfiguration. We show that Rondo achieve
both high throughput and better scalability than prior works.
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APPENDIX A
ANALYSIS OF COMPUTATIONAL COMPLEXITY

As introduced before, some protocols do not introduce their
computational complexity in the paper. In this section, we use
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GRandline [31] as an example to illustrate how we analyze the
computational complexity. The complexity for other protocols
in Table I can be conducted in a similar way. Besides, in this
paper, all the protocols count the complexity of exponentiation,
except Hashrand [30], which counts hash functions.

GRandline [31] has five phases. First, nodes executes
a distributed key generation protocol to obtain a key pair
(PKi, SKi) := (gf(i), hf(i)) for a hidden polynomial f . Then,
in the commitment phase, each party Pi locally samples an αi

uniformly at random and sends cmi = (gαi , h−αiSKi) to all
nodes. After that, in the third phase, i.e. beacon epoch, each
node creates a partial signature σi := (gαi

r , e (gr, SKi)), in
which gr = H(r), r is the epoch number. Each node then
sends it partial signature to each other. In the reconstruction
phase, nodes collect t+1 valid signatures from distinct parties
and use Lagrange interpolation to combine them. Finally,
nodes compute the hash of the signature and use it as the
beacon output.

The bottleneck of the computational complexity of GRand-
line is the commitment phase and the beacon epoch, since
nodes have to compute exponentiation in these two phases.
Besides, each node has to compute 2n exponentiation to
calculate cmi = (gαi , h−αiSKi) in the commitment phase
and n exponentiation to calculate gαi

r in the beacon epoch.
Therefore, the computational complexity of this protocol is
O(n).

APPENDIX B
ADDITIONAL PRELIMINARIES

Asynchronous verifiable secret sharing (AVSS). AVSS is
an interactive protocol between a set of n nodes where the
adversary A controls t nodes and t < n/3. The dealer (a
particular node) shares a secret among all nodes. For each
AVSS instance, the set of nodes do not change. An AVSS
protocol has two stages:

• Sharing stage. In the sharing stage, the dealer Pd is activated
on an input message of the form (ID.d, in, share, s), where
ID.d is the instance identifier (also called a tag of the
instance) and s is the dealer’s secret. Pd begins the protocol
by sharing s to the nodes. A node Pi has completed the
sharing stage when it generates a local output of the form
(ID.d, out, shared).
• Reconstruction stage. After node Pi has completed the

sharing stage, it may start reconstruction for ID.d when
activated on a message (ID.d, in, reconstruct). Eventually,
the node outputs (ID.d, out, reconstructed, zi), in which case
we say that Pi reconstructs zi for ID.d.

An AVSS protocol can be denoted as (n, p, t)-AVSS, where
p + 1 nodes are required to reconstruct s. When p = t,
the protocol is also called low-threshold AVSS (or AVSS for
short). When p < n−t (e.g., p = 2t), the AVSS protocol is also
called high-threshold AVSS (HAVSS) or dual-threshold AVSS
(DAVSS). Without loss of generality, in this work, we consider
the more generic dual-threshold AVSS with high threshold
(i.e., HAVSS) in this work. Indeed, low-threshold AVSS is
a special case of our construction.

An (n, p, t)-AVSS satisfies the following security proper-
ties.

• Privacy. If a correct dealer shared s using ID.d and at most
p − t correct nodes started reconstruction for ID.d, then A
has no information about s.

• Liveness. 1) If the dealer Pd is correct throughout the sharing
stage, then with overwhelming probability all correct nodes
complete the sharing stage. 2) If some correct node completes
the sharing stage, then all correct nodes complete the sharing
stage. 3) If all correct nodes start reconstruction for ID.d,
then with overwhelming probability every correct node Pi

reconstructs some si for ID.d.
• Correctness. Once p + 1 correct nodes have completed the

sharing for ID.d, there exists a fixed value z such that the
following holds with overwhelming probability: 1) if the
dealer shared s using ID.d and is correct throughout the
sharing stage, then z = s and 2) if a correct node Pi

reconstructs zi for ID.d, then zi = z.

Asynchronous complete secret sharing (ACSS). An ACSS is
an AVSS scheme that additionally achieves the completeness
property:

• Completeness. If a correct node completes the sharing stage,
then there exists a polynomial R(·) of degree p such that
R(0) = s′ and each correct node will hold a secret share s′i
such that s′i = R(i). If the dealer is correct, then s′ = s.

To achieve the completeness property, most constructions
known so far use the commitment scheme. If the commitments
are additively homomorphic, we say it satisfies the ACSS
satisfies the homomorphic partial commitment property [72,
73].

Batched HACSS (bHACSS). We now define bHACSS. More
definitions regarding AVSS and ACSS can be found in Ap-
pendix B. In bHACSS, the dealer shares a batch of B secrets
{s1, · · · , sB} in one HACSS instance, where all the secrets are
independent to each other. Compared to HACSS, HACSS with
batching enjoys the benefits of low amortized communication
complexity and computational complexity [37].

While the definition of bHACSS is an extended version
of HACSS, we provide the definition of bHACSS in de-
tail to facilitate the exposition of our work. The sharing
stage remains the same as that in AVSS, besides that the
secret s is not a single secret but a batch of B secrets
{s1, · · · , sB}. For the reconstruction stage, each node may
start reconstruction for {idx, ID.d} when activated on a mes-
sage (idx, ID.d, in, reconstruct). This allows nodes to recon-
struct the idxth secret for ID.d. bHACSS should satisfy the
following properties.

• Privacy. If a correct dealer shared {s1, · · · , sB} using ID.d
and at most p− t correct nodes start reconstruction for ID.d,
then A has no information about {s1, · · · , sB}. We define
the indistinguishability with an interactive game as below.
Definition 1. A bHACSS protocol satisfies indistinguishabil-
ity if for any PPT adversary A corrupting at most t nodes,
A wins the following game Gbhacss against a challenger C
with negligible dominance.

1) The challenger C generates public parameters and then
sends them to the adversary A.

2) A selects a set of at most t nodes and corrupts them, then
sends the identities of these nodes to C.
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3) C uniformly selects a batch of random numbers as the
dealer’s input and simulates all the honest nodes’ operations
as per the protocol in the sharing stage.

4) When p− t correct nodes start the reconstruction stage, C
halts the protocol.

5) A sends C a number k indicating that it wants to make a
guess about the kth random number sk. Then, C samples
a single bit b ∈ {0, 1}. If b = 0, C sends the kth random
number in the dealer’s inputs to A. Otherwise, C uniformly
selects a random number to A.

6) A makes a guess b′.
7) A wins the game if and only if b = b′.

Formally, we have

|Pr[b← A : b = b′]− 1

2
| ≤ negl(λ)

• Liveness. 1) If the dealer Pd is correct throughout the sharing
stage, then with overwhelming probability all correct nodes
complete the sharing. 2) If some correct node completes
the sharing for ID.d, then all correct nodes complete the
sharing for ID.d. 3) If all correct nodes start reconstruction
for {idx, ID.d}, then with overwhelming probability every
correct node Pi reconstructs some s

(i)
idx for ID.d.

• Correctness. Once p + 1 correct nodes have completed
the sharing for ID.d, there exists a batch of fixed values
{z1, ..., zB} such that the following holds with overwhelming
probability: 1) if the dealer shared {s1, ..., sB} using ID.d
and is correct throughout the sharing stage, then zi = si for
i ∈ [1, B] and 2) if a correct node Pi reconstructs z′idx for
ID.d, then z′idx = zidx.
• Completeness. If a correct node completes the shar-

ing stage, then there exists a batch of degree p poly-
nomial {Rk(·)|k ∈ [1, B]} such that Rk(0) = s′k and
each correct node will hold a batch of secret shares
{s′ki = Rk(i)|k ∈ [1, B]}. If the dealer is correct, then s′k =
sk for all k ∈ [1, B].

APPENDIX C
PROOF OF RONDO

Following previous work [18], we capture the unpre-
dictability and bias-resistance properties based on the indis-
tinguishability game defined below.

Definition 2. Rondo satisfies indistinguishability in an epoch
if for any PPT adversary A corrupting at most t nodes, A
wins the following game Gbeacon against a challenger C with
negligible probability.

1) The challenger C generates public parameters and then sends
them to the adversary A.

2) A selects a set of at most t nodes and corrupts them, then
sends the identities of these nodes to C.

3) C and A interact to execute Rondo as follows:
- C sends inputs to the honest nodes and simulates their
operations as per the protocol in the sharing phase, while
A has the ability to misbehave.
- A aggregates the messages it receives and runs the BFT-
SMR protocol with C. In the protocol, A is able to observe
messages sent between every pair of nodes and reorder them.
- After at least one honest node outputs a common subset
CS, C halt the execution.

4) A sends an index k to C indicating that it will make a guess
of the beacon in the kth round.

5) Then, C samples a bit b ∈ {0, 1}. Subsequently, if b = 0,
C sends the corresponding beacon output of CS for the kth

round to A. Otherwise, C sends a real random number to A.
6) A makes a guess b′.
7) A wins the game if and only if b = b′.

1) Public Parameters

2) Corrupted Set

3) Simulated sharing 

messages M for corrupted 

set

3) Recorded message M 

and simulated messages of 

other honest nodes for 

corrupted set 

4) Run BFT-SMR to get 

CS

6) Index k

7) A number 

8) A guess b’

5) Re-interaction if 

needed

1) Public Parameters

2) Corrupted Set

6) Index k

7) A number 

8) A guess b’

Fig. 11: Depiction of the reduction proof for beacon indistinguisha-
bility

Theorem 1. Assuming the DLog assumption, Rondo satisfies
indistinguishability.

Proof: According to the analysis in Appendix D, assum-
ing DLog, Breeze achieves privacy. Now we show that the
indistinguishability of Rondo can be reduced to the privacy of
Breeze. Concretely, if there exists a PPT adversary A′ who
can win the indistinguishability game Gbeacon of Rondo with
overwhelming possibility, we can construct a PPT adversary
A to break the privacy of Breeze. This is achieved by acting
as an adversary in the game Gbavss−po of bAVSS-PO and a
challenger in the game of randomness beacon, as shown below.

1) A interacts with the challenger C in the game Gbhacss of
Breeze to get the public parameters. Then A sends the
parameters to A′.

2) A′ selects a set of at most t nodes and corrupts them. Then
A′ sends the identities of these nodes to A, who then provide
the identities to C.

3) C uniformly selects a batch of random numbers as the
dealer’s input and simulates all the honest nodes’ operations
as per the protocol in the sharing phase. Then A records the
messages received by the corrupted parties, denoted by M .
Furthermore, it acts like the challenger in the game Gbeacon
of the randomness beacon. Notably, A sends the inputs to
all honest nodes except for only one specified node, denoted
as a. For node a, A does not send to a a real input but
simulates what it has to broadcast in the sharing stage by
directly sending M , the message A has recorded.

4) A′ aggregate the messages it receives from A and run the
BFT-SMR protocol with A. A′ is able to observe messages
sent between every pair of nodes during this protocol and
reorder them.

5) When at least one honest node outputs a CS, A halts the
execution. If a ̸∈ CS, A generates a new randomness beacon
instance and re-interacts with A′ as before until a ∈ CS.
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6) A′ sends an index k to A, who transfers this to C.
7) Then, A receives a number from C and transfers it to A′.

After that, A waits for A′ to respond.
8) A responds to C whatever A′ sends to it.

We point out that in step 3), those recorded information
only consists of the messages that the corrupted nodes re-
ceived. However, these are enough for the simulation since
A does not need to simulate the view of the honest nodes.
Furthermore, in step 5), the iteration cannot be done infinite
times but at most polynomial times. This is adequate for A,
who can directly output 1 to C without doing steps 6)-8). The
probability of this situation is at most 1

(n−t)poly()̇
which is a

negligible function.

Thus, if Rondo fails to achieve indistinguishability, A can
break the privacy of Breeze, a violation of our assumption.

Figure 11 depicts this procedure.

Theorem 2. Assuming the DLog assumption, Rondo achieves
unpredictability.

Proof: From Theorem 1, Rondo achieves indistinguisha-
bility. Assume ∃ a PPT adversary A′, corrupting at most t
nodes, i ≥ 1, j > i + 1, such that for any negligible function
negl(λ),

Pr[(j, r′j)← A(r1, r2, ..., ri) : r′j = rj ] > negl(λ).

Then we can construct a PPT adversary A utilizes A′ as a
sub-algorithm to win the game Gbeacon in Definition 2 as
follows:

Firstly, A interacts with C as per the game Gbeacon in
step 1), then it invokes A′ with current information it receives
from C, including previous beacon output as well as public
parameters. Moreover, A corrupts the nodes that A′ chooses
to corrupt and sends the identities of them to C. After that, A
interact with C as per the step 3), then sends the information
it received from C to A′, who will return a 2-tuple (j, r′j).
Subsequently, A sends j to C in step 4). In step 6), A needs
to make a guess. Here, if the number A receives from C is
equal to r′j , let b′ = 0. Otherwise, let b′ = 1. Here, it is
obvious that A is PPT. Additionally, we have

|Pr[b = b′]− 1

2
| > negl(λ).

As there does not exist such A, Rondo is unpredictable.

Theorem 3. Assuming the DLog assumption, Rondo achieves
bias-resistance.

Proof: From Theorem 1, Rondo achieves indistinguisha-
bility. Assume a PPT adversary A′, i ≥ 1, k ∈ [1, |ri|] for any
negligible function negl(λ),∣∣∣∣Pr [ (k, r′i(k))← A(r1, r2, ..., ri−1) :

r′i(k) = ri(k)

]
− 1

2

∣∣∣∣ ≤ negl(λ)

or
|Pr[ri(k) = 0]− 1

2
| > negl(λ).

Then we can construct a PPT adversary A utilizes A′ as
a sub-algorithm to win the game Gbeacon in Definition 2 as

follows:

Firstly, A interacts with C as per the game Gbeacon in
step 1), then it invokes A′ with current information it receives
from C, including previous beacon output as well as public
parameters. Moreover, A corrupts the nodes that A′ chooses
to corrupt and sends the identities of them to C. After that, A
interacts with C as per step 3), then sends the information it
received from C to A′, who will return a 2-tuple (k, r′i+1(k)).
Subsequently, A sends i + 1 to C in step 4). Furthermore, in
step 6), A needs to make a guess. If the kth bit of the number
it receives from C is equal to r′i+1(k), let b = 0. Otherwise,
let b = 1. It is obvious that A is PPT. Additionally, we have

|Pr[b = b′]− 1

2
| > negl(λ).

As there does not exist such A, Rondo is bias-resistant.

Theorem 4. Rondo achieves liveness.

Proof: In each epoch e there are at least t + 1 correct
nodes acting as dealers of Breeze instances. Without loss of
generality, we assume {Breezei, i ∈ [1, t+1]} are t+1 correct
instances. Subsequently, according to the liveness property of
bAVSS-PO, each ceri of Breezei is eventually received by all
correct nodes and then be proposed in Rondo-BFT. Then, due
to the liveness and agreement properties of our Rondo-BFT,
every correct node will have the same common subset CSe.
Additionally, at least one cerk of a correct instance Breezek is
contained in CSe. Finally, due to the liveness and commitment
of bAVSS-PO, the batch of secrets shared by Breezek can be
reconstructed by all the correct nodes. Thus, in each round of
epoch e, there is a beacon output.

Theorem 5. Rondo achieves public verifiability.

Proof: As our Rondo-BFT protocol is signature-based, a
set of 2t+ 1 matching signatures in the commit phase in the
protocol can be used to prove the identities of CSe in each
epoch.

APPENDIX D
PROOF OF BREEZE

Lemma 1. (Schwartz-Zippel) Let f(x) ∈ F[x] be a nonzero
polynomial of total degree at most p and F is a finite set. Then
if a is randomly chosen from F, then we have:

Pr[f(a) = 0] ≤ p

|F|

Proof: The proof of this lemma directly comes from the
fundamental theorem of algebra.

Lemma 2. Let Ps,t denotes the set of all degree-t univariate
polynomials over F whose constant term is s, where |Ps,t| =
|F|. For any set of distinct non-zero elements α1, ..., αn ∈ F,
any pair of values s, s′, any subset C ⊂ {P1, . . . , Pn} where
|C| = ℓ ≤ t and every y⃗ ∈ Fℓ, it holds that:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f (αi)}Pi∈C

)]
= Pr

g(x)∈RPs′,t

[
y⃗ =

(
{g (αi)}Pi∈C

)]
=

1

|F|ℓ
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where f(x) and g(x) are chosen uniformly and independently
from the set of polynomials Ps,t and Ps′,t, respectively.

Proof: Correctness of the lemma follows [74, Claim 3.2].

Informally, Lemma 2 shows that for each ACSS instance,
the distribution of the shares seen by the adversary is indepen-
dent of the underlying secret.

Corollary 1. For our Breeze protocol, the distributions of the
shares of different Breeze instances seen by the adversary are
independent to each other.

Lemma 3. Assuming the DLog assumption and a collision-
resistant hash function, our polynomial commitment is binding
and hiding for polynomials.

Proof: Firstly, when taking a batch of polynomials
{Si, i ∈ [1, B]} with coefficients {si = (si,0, ..., si,deg(S)), i ∈
[1, B]} as the input, the output of BatchCommit is a vector, in
which every entry is a normal Bulletproofs of Si with the form∏deg(S)

j=0 g
si,j
j . Thus BatchCommit holds the same properties

as Bulletproofs. Secondly, in the BatchEval algorithm, it eval-
uates the underlying polynomials. For each S, we use d as a
blind mask to cover S. Due to the randomness of d, it achieves
a hiding property. Moreover, we generate a group of random
numbers γ to sum the polynomials up. Then according to
Lemma 1, if the verifier validates that σ ·y =

∑B
i=1 γiv[i]+VD

by validating the proof, then with overwhelming probability,
it holds that si · y = v[i], i ∈ [1, B]. Hence, our polynomial
commitment scheme achieves the hiding property.

Theorem 6. Assuming the DLog assumption, our Breeze
protocol is a secure bAVSS-PO protocol.

Proof: We show that Breeze achieves liveness, correct-
ness, commitment, and privacy.

Liveness-1. If the dealer Pd is correct, all nodes will receive
the same root commitment C and polynomial commitments
from Pd. Additionally, each node receives B points for B
recovery polynomial. It is then not difficult to see that every
correct node will eventually send a reply message to the dealer.
Consequently, the dealer Pd will receive at least 2t + 1 valid
reply message and be able to send cerd to all nodes. Therefore,
in the confirm phase, each honest node will receive a cerd for
C and complete the sharing.

Liveness-2. If at least t+1 correct nodes validate their partial
outputs and start reconstruction for ID.d, the correct nodes
must have received a valid cerd for C. The cerd of C contains
at least 2t+ 1 valid signatures, so at least t+ 1 correct nodes
have received valid shares in the sharing stage. Thus, every
correct node will receive at least t + 1 valid secret shares, C
and idx from other correct nodes, and thereby reconstruct the
corresponding zi = R[idx](0).

Correctness-1. Assume that a correct dealer shared a batch of
secrets {s1, ..., sB}. The share polynomial evaluations at all
{Rk(i)}k∈[1,B] lie on a batch of degree t polynomials. If at
least t + 1 correct nodes complete the sharing, correct nodes
will have a common root commitment C. Due to the binding
property of BatchCommit, it must hold zi = si, for i ∈ [1, B].

Correctness-2. If a correct node Pi reconstructs zi, it must
have received at least t+ 1 valid shares with the same vector
commitment C. Any set of t + 1 points uniquely determines
a polynomial of degree t. As nodes have agreed on the com-
mitment C by validating the partial outputs, the commitments
for different subsets of points must be the same due to the
binding property of vector commitment. As BatchCommit is
also binding, the reconstruction is therefore unique.

Commitment-1. Our cerd is used as the validation data. If cerd
is formed, at least t+1 correct nodes have received the partial
outputs in the sharing stage. Thus, after receiving the validation
data, these t+1 correct nodes can validate their partial outputs
by invoking ParVerify.

Commitment-2. First, it is clear that in the reconstruction stage,
correct nodes will output if and only if they receive at least
t+1 valid shares. Therefore, at least t+1 correct nodes have
validated their partial outputs with the same C. Thereby, due
to the binding property of BatchCommit, at least t+1 correct
nodes jointly hold t + 1 valid shares of the same sharing
polynomial Ridx. Accordingly, the sharing polynomials are
determined and every correct node output Ridx[0].

Privacy. From Lemma 3, the commitments that the adversary
A received in the sharing phase, leak no information about
the shares. Subsequently, the information that the adversary A
could learn is only the shares of the corrupted nodes, which
are independent with the underlying secrets due to Lemma 2
and Corollary 1. Hence, the adversary A has no ascendance in
distinguishing the underlying secrets with a batch of random
numbers when the dealer is honest.

Theorem 7. Breeze achieves O(n) message complexity and
O(λn) amortized communication complexity.

Proof: The protocol achieves a message complexity of
O(n), as nodes in the system only need to communicate
with the dealer. In the share phase, the dealer sends n mes-
sages, each of size O(λ(B + log n)) so the communication
is O(λn(B + log n)). In the reply phase, each node sends
a signature to the dealer so the communication is O(λn).
In the confirm phase, the dealer sends a certificate to the
nodes. This costs O(λn2) communication. If we instantiate the
certificate, the length of the certificate is O(λn log n). Breeze
then achieves O(λn(B+log n)). We can set B as O(log n) to
achieve an optimal O(λn) amortized communication, as the
amortized communication of Breeze is O(λ(n + 1

B log n +
1
Bn2)).

Alternatively, if we instantiate the certificate using digital
signatures, the amortized communication is O(λ(n+ 1

B log n+
1
Bn log n)) and we need to set B = O(n) to get O(λn)
amortized communication.

For the computational complexity, we calculate three kinds
of computation: scalar multiplication, hash operation, and
exponentiation. In BatchEval, the most significant part is
in line 03, which costs O(nBp) scalar multiplication to
obtain the evaluation V . For the hash operation, it is to
compute the Fiat-Shamir heuristic and the Merkle Tree, which
consumes O(B + n) and O(n log p) respectively. Hence we
have O(B + n log p) hash operation in total. Furthermore, the
exponentiation required are BatchCommit, computation of L
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and R in line 20 and to compute A′ in line 30. It is clear that
BatchCommit for B polynomials with degree t costs O(Bt).
Besides, the sizes of L, R and A′ are O(p), and for each entry
we need O(1) exponentiation. We have O(log p) iteration, thus
in total, it takes O(p log p) exponentiation. Therefore in total
it costs O(Bt+ p log p) exponentiation.

APPENDIX E
BATCHHAVEN: COMPUTATION-EFFICIENT BATCHED

ACSS

In this section, we present the details of BatchHAVEN. Our
protocol is only based on the assumptions of discrete logarithm
(DLog) and ROM without using any public key cryptography.

A. The Main Workflow

The workflow of BatchHAVEN largely follows the HAVEN
framework [55]. The HAVEN protocol cannot be directly
transformed into a batched version, since its polynomial com-
mitment scheme is not suitable for batching. Thus we use
our new batching polynomial commitment scheme as that in
Breeze for batch verification (defined in Sec. III-A).

The sharing stage (Figure 12). The sharing stage involves
three communication phases: a share phase where the dealer
Pd disseminates the secret shares via a diagonal method; an
echo phase where nodes exchange evaluations about the share
polynomials so as to achieve completeness; a ready phase
where nodes further exchange information and complete the
sharing stage.

The main difference between BatchHAVEN to HAVEN
is that we utilize our new polynomial commitment
BatchCommit, BatchEval to generate commitments and cor-
rectness proof of evaluations for sharing polynomials. In the
echo and ready phase, other nodes use BatchVerifyEval to
validate the proof.

Moreover, for the vector commitment scheme vCom used
in line 07, we also instantiate it with Merkle Tree and assume
each polynomial commitment contains the witness to its own
inclusion in C.

Reconstruction stage (Figure 13). Being different from
HAVEN, the reconstruction procedure needs to be called B
times in order to independently recover every secret in the
batch. Similar to that for Breeze, we use the parameter idx as
the index of the secret to be reconstructed.

Specifically, if Pi completes the sharing stage, it holds the
shares {Ski(i)|k ∈ [1, B]}. After receiving p + 1 valid mes-
sages, Pi interpolates the corresponding points and recovers
the secret Ridx(0).

Our technique works for the case of the low-threshold
ACSS by setting p as t. To do this, one just needs to choose a
recovery polynomial of degree t, while the rest of algorithms
remain the same as those in BatchHAVEN.

B. Proof of BatchHAVEN

We show the proof for our BatchHAVEN protocol. As
mentioned in Sec. III, the proof for our low-threshold ACSS
is a special case of the proof.

Theorem 8. Assuming the DLog assumption, our Batch-
HAVEN protocol is a secure bHACSS protocol.

Proof: We show that BatchHAVEN achieves liveness,
correctness, and completeness.

Liveness-1. If the dealer Pd is correct, all nodes will receive the
same root commitment C and polynomial commitments from
Pd. Additionally, each node receives one point on each share
polynomial. It is then not difficult to see that every correct node
will eventually send an echo message and receive 2t+1 valid
echo messages. Similarly, each node will be able to send ready
messages, receive 2t+1 valid ready messages, interpolate their
own share polynomial, and complete the sharing.

Liveness-2. We show that if a correct node Pi has completed
the sharing for ID.d, any other correct node Pj will also
complete the sharing. We first show that Pj will eventually
receive 2t + 1 ready messages, and then show that Pj will
output some value.

First, as Pi has completed the sharing, it must have received
2t + 1 ready messages with the same root commitment C,
among which at least t+1 are sent from correct nodes. These
t+1 nodes will also send a ready message to all nodes if they
have not done so yet. Hence, Pj will eventually receive 2t+1
ready messages with the root commitment C.

Second, as Pi completed the sharing, Pi must have sent
a ready message with root commitment C. Here, Pi sends
a ready message either because it has received 2t + 1 echo
messages with the same C or t + 1 ready messages. In both
cases, it is not too difficult to see that at least one correct
node has received 2t + 1 echo messages with the same root
commitment C, among which at least t + 1 are sent by
correct nodes. Additionally, according to the binding property
of BatchCommit, these correct nodes will also send consistent
shares in their echo messages. Therefore, Pj can complete the
interpolation in the delivery step and complete the sharing.

Liveness-3. All correct nodes start reconstruction for
{idx, ID.d}. First, there are at least n − t ≥ p + 1 correct
nodes. As these nodes completed the sharing, they each have
an evaluation at Sidx,i(i) that will be accepted by others. Once
p + 1 such points are received, each correct node can verify
the correctness of points and recover a secret.

Privacy. From Lemma 3, the commitments that the adversary
A received in the sharing phase, leak no information about
the shares. Subsequently, the information that the adversary A
could learn is only the shares of the corrupted parties, which
are independent with the underlying secrets due to Lemma 2
and Corollary 1. Hence, the adversary A has no ascendance in
distinguishing the underlying secrets with a batch of random
numbers when the dealer is honest.

Correctness-1. Assume that a correct dealer shared a batch
of secrets {s1, ..., sB}. Then, the share polynomial evalua-
tions at all {Ski(i)}k∈[1,B],i∈[1..n] lie on a batch of degree
p polynomial that will recover {s1, ..., sB}. If a correct node
completes the sharing, correct nodes will have a common root
commitment C. Due to the binding property of BatchCommit,
it must hold zi = si, for i ∈ [1, B].

Correctness-2. If a correct node Pi reconstructs zi, it must
have received at least p+ 1 valid shares with the same vector
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▷ The share phase.
01: - Upon receiving (ID.d, in, share, s1, · · · , sB), as a dealer (i.e., Pi = Pd):
02: - For k ∈ [1, B], randomly choose a recovery polynomial Rk ∈ F[x] of degree p s.t. Rk(0) = sk.
03: - For k ∈ [1, B], j ∈ [1, n], randomly choose a share polynomial Skj ∈ F[x] of degree t s.t. Skj(j) = Rk(j).
04: - For k ∈ [1, B], j ∈ [1, n], let Tkj ← (Rk − Skj).
05: - Compute R̂← BatchCommit(crs, {Rk|k ∈ [1, B]}, p), Ŝ ← BatchCommit(crs, {Skj |k ∈ [1, B], j ∈ [1, n]}, t).
06: - For j ∈ [1, n], compute T̂j ← BatchCommit(crs, {Tkj |k ∈ [1, B]}, p).
07: - Compute C ← vCom(R̂, Ŝ[1], · · · , Ŝ[nB]). //create a root commitment
08: - Compute (Y S ,ΦS)← BatchEval(crs, {Skj |k ∈ [1, B], j ∈ [1, n]}, Ŝ, (1, . . . , n), t). //evaluates of the polynomials
09: - For k ∈ [1, n], y⃗S

k ← Y S [:, k], ϕS
k ← ΦS [k].

10: - For j ∈ [1, n], (y⃗T
j , ϕ

T
j )← BatchEval(crs, {Tkj |k ∈ [1, B]}, T̂j , (j), p).

11: - For k ∈ [1, n], send (ID.d, send, setk) to node Pk, where setk = {C, R̂, Ŝ, y⃗S
k , ϕ

S
k , y⃗

T
k , ϕ

T
k }.

▷ The echo phase.
12: - Upon receiving (ID.d, send, seti) from the dealer Pd for the first time:
13: - Verify that BatchVerifyEval(crs, Ŝ, y⃗S

i , (i), ϕ
S
i , t) and BatchVerifyEval(crs, T̂i, y⃗

T
i , (i), ϕ

T
i , p) return true.

14: - Verify R̂ and all entries of Ŝ are in C.
15: - For k ∈ [1, B], j ∈ [1, n], compute Ŝnew, ynew, ϕnew, Ŝnew[k]← Ŝ[k × j], ynew[k, j]← y⃗S

i [k × j], ϕnew[k, j]← ϕS
i [k × j].

16: - For j ∈ [1, n], send (ID.d, echo, infoi,j) to Pj , where infoi,j = {C, R̂, Ŝnew, ynew[:, j], ϕnew[:, j]}.
▷ The ready phase.
17: - Upon receiving (ID.d, echo, infoj,i) from Pj for the first time:
18: - Verify R̂ and all entries of Ŝnew are in C.
19: - Verify BatchVerifyEval(crs, Ŝnew, ynew[:, i], (i), ϕnew[:, i], t) is true.
20: - If 2t+ 1 echo messages with the same C are received and ready is not sent then
21: - Send (ID.d, ready, C)) to all nodes.
22: - Upon receiving (ID.d, ready, C) from Pj for the first time:
23: - If t+ 1 ready messages with the same C are received and ready is not sent then
24: - Send (ID.d, ready, C) to all nodes.
25: - If 2t+ 1 ready messages with the same C are received then //delivery
26: - Wait until Pi receives t+ 1 valid echo messages with C.
27: - Then interpolate {Sji, j ∈ [1, B]} from these B(t+ 1) valid echo messages.
28: - Compute y∗

ji ← Eval(crs, {Sji, j ∈ [1, B]}, i).
29: - Output (ID.d, out, shared)

Fig. 12: The sharing stage of BatchHAVEN, for node Pi and tag ID.d.

01: - Upon receiving (in, share, s, idx, Sidx,i(i)): //reconstruct the idxth secret.
02: - Send (ID.d, reconstruct-share, C, Ŝidx,i, Sidx,i(i), ϕS

i [i]) to node Pj , for j ∈ [1, n].
03: - Upon receiving (ID.d, reconstruct-share, C, Ŝidx,m, Sidx,m(m), ϕS

i [i]) from node Pm:
04: - If Ŝidx,m = Ŝ[idx×m] and BatchVerifyEval(crs, Ŝidx,m, Sidx,m(m), (m), ϕS

i [i], t) returns true then
05: - If p+ 1 valid reconstruct-share messages with the same C are received then
06: - Interpolate Ridx from the p+ 1 valid points
07: - Output (ID.d, out, reconstructed, Ridx(0))

Fig. 13: The reconstruction stage of BatchHAVEN, for node Pi and tag ID.d.

commitment C. Any set of p+ 1 points uniquely determine a
polynomial of degree p. As we have agreed on the commitment
C, the commitments for different subsets of points must be the
same due to the binding property of vector commitment. As
BatchCommit is also binding, the reconstruction is therefore
unique.

Completeness. This is implied by the correctness and the
liveness-2. Indeed, once a correct node completes the sharing,
each correct node pi will receive at least t+1 valid echo mes-
sages allowing each correct node to obtain its share polynomial
Si and therefore obtain R(i) = Si(i).

Theorem 9. BatchHAVEN achieves O(n2) amortized message
complexity and O(λn3) amortized communication complexity.

Proof: The protocol achieves a message complexity of
O(n2), as only all-to-all communication is involved. In the
send stage, the dealer sends n messages, each of size O(λnB).
In the other two stages, each node broadcasts n messages,
each of size O(λnB). Therefore, BatchHAVEN has O(λn3)

amortized communication.

For the computational complexity, we calculate three kinds
of computation: scalar multiplication, hash operation, exponen-
tiation. In BatchEval, the most significant part is in line 03,
which costs O(nBp) scalar multiplication to obtain the evalua-
tion V . For the hash operation, it is to compute the Fiat-Shamir
heuristic and the Merkle Tree, which consumes O(B+n) and
O(n log p) respectively. Hence we have O(B + n log p) hash
operation in total. Furthermore, the exponentiation required
are BatchCommit, computation of L and R in line 20 and
to compute A′ in line 30. It is clear that BatchCommit for
B polynomials with degree t costs O(Bt). Besides, the sizes
of L, R and A′ are O(p), and for each entry we need O(1)
exponentiation. We have O(log p) iteration, thus in total, it
takes O(p log p) exponentiation. Therefore in total it costs
O(Bt+ p log p) exponentiation.
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APPENDIX F
THE PROTOCOL AND PROOFS OF RONDO-BFT

In this section, we provide implementation-level details of
the Rondo-BFT protocol.

A. The protocol

Normal-case operation (Figure 14). In the propose phase,
the leader proposes a new block b with requests (∗,m) (also
specified in the API in Figure 2). In particular, Pi extends
block(highQC) by setting block(highQC) as the parent block
of b, where highQC is the prepareQC with the highest rank
(to be described shortly). Here b.height = eB + r (lines 01-
02). If b.height mod B = 1, membership requests might be
included in m. We distinguish JOIN and LEAVE requests here.
For LEAVE requests, the leader directly includes the requests
in m (line 04). For each JOIN request (join, pkε), the leader
assigns an id ε to the new node and then includes a message
(add, ε, pkε) in m. Meanwhile, Pi adds Pε to its temporary
membership TM (line 05). After the requests are packed, the
leader sets b.rq as m and sends (prepare, cview, b, highQC)
to TM (line 06). Upon receiving a (prepare, cview, b, qc) mes-
sage from the leader such that b is an extension of block(qc)
(line 08), Pi checks whether one of the conditions is satisfied
for block b in lines 09-10. One noteworthy requirement we
introduce is highlighted in line 09. This check requires that b′
(the parent block of b) has already been delivered. Additionally,
if b′ was proposed in the previous view, Pi also checks whether
block(lockedQC) = b′. Such a change is crucial for our
protocol to achieve liveness. After the conditions are checked,
Pi updates its lv as b and sends a (prepare, cview, b, σi)
message to the leader LEADER(cview,M), where σi is a
digital signature for the tuple (prepare, cview, hash(b)). If
b.height mod B = 1 and b consists of some (add, ε, pkε)
request, Pi helps Pε complete the state transfer via a catchup
message (lines 11-12). We ignore the details on state transfer
as it largely follows previous work [44].

After collecting n − t matching prepare messages, the
signatures in the prepare messages form a prepareQC. Pi

updates its highQC as prepareQC and enters the pre-commit
phase. Such a procedure is repeated in the commit phase,
similar to that in HotStuff. We highlight the changes we made
here. First, in the pre-commit phase, the leader sends the
pre-commit message to all nodes in TM ∪Me−1, including
the previous configuration, existing configuration, and the new
nodes to be added (line 14). If Pi is a node in Me−1 but not
in Me (i.e., Pi requests to leave the system), it waits until
receiving the pre-commit message in epoch e and delivering
all the blocks in epoch e− 1 before leaving the system (lines
15-16). In addition, if Pi is a node in Me, after receiving the
pre-commit message for the first block in epoch e, Pi forwards
this message to all nodes in Me−1 (line 18). As mentioned
in Sec. IV, such changes ensure that the agreement property
for the membership requests is achieved by all correct nodes
nearly simultaneously. Second, in the decide phase, the leader
sends the commit message to all nodes in TM (line 25). If Pi

is a node in Me, after receiving the decide message for block
b, Pi executes additional procedures before delivering b (lines
28-33). In particular, if b consists of membership requests, Pi

outputs the new configuration in addition to the client requests.
If b.height mod B = 0, Pi broadcasts a (decide, cview, b, qc)

message to Me ∪ Me+1, including the current and the next
configuration. The idea is again for correct nodes to achieve
agreement nearly simultaneously so nodes can correctly install
a new configuration. If Pi is a node in the new configuration
Me+1, after receiving the decide message for the last block in
epoch e from ⌈ 2|Me|+1

3 ⌉ nodes in Me, Pi delivers the block
(lines 35-38) and then installs the new configuration (which
also match lines 2-3 in Figure 2).

The view change protocol (Figure 15). Each node Pi may
trigger view change in view v (lines 02-03). When view
change happens, Pi sets cview ← cview + 1 and broadcasts
a (new-view, cview,⊥, (highQC, confirmQC)) message to
TM (line 04). Upon receiving a new-view message m from
node Pj , Pi forwards this message to other nodes following
the Msgforwarding rule (lines 17-22): 1) if m contains a
prepareQC with a height higher than that of highQC, Pi

updates its highQC; 2) if m contains a commitQC qc
with a height higher than that of confirmQC, Pi updates
confirmQC to qc and delivers the corresponding blocks;
3) if prepareQC has a lower height than that of highQC
and Pj ∈ M , Pi forwards m to LEADER(cview,M). The
Msgforwarding rule enforces all correct nodes to be aware
of the view change and addresses the liveness challenge
mentioned in Sec. IV.

After receiving the (new-view, cview,⊥, ∗) messages from
a set of nodes X , every node Pi checks whether Pi =
LEADER(cview,Me), X ∈ Me, and |X| ≥ ⌈ 2|Me|+1

3 ⌉.
If so and the height of block(confirmQC) is between
[(e − 1)B, eB), Pi is the leader in view cview (lines 06-
07). These new-view messages form a view-change certifi-
cate vc. Let bhigh be the block with the highest rank for
which a valid prepareQC is included in vc. Pi broadcasts a
(pre-commit, v, bhigh, highQC) message to M and proceeds
to the pre-commit phase for bhigh (lines 08-09). After bhigh
is delivered, Pi switches to the normal-case operation (line
10). If Pi is not the new leader, after receiving vc and a
pre-commit message from node Pj for block b, Pi verifies
whether Pj is the new leader based on vc and rank(b) ≥
rank(block(lockedQC)). If so, Pi proceeds to the pre-commit
phase for b (lines 10-14). After b is delivered, Pi switches to
the normal-case operation (lines 15-16).

B. The proof of Rondo-BFT

We prove the correctness of the protocol based on the
definitions of correctness specified in Sec. III. Based on the
commonly used syntax in BFT, we use node and replica
interchangeably.

Lemma 4. Suppose that for any epoch ei ∈ [1, 2, ..., E],
any correct replica that sets configuration Me to a non-
empty value sets Me to the same set. Let b and b′ be blocks
such that b.height, b′.height ∈ [1, EB]. If there exist valid
prepareQCs for both b and b′ and b.view = b′.view = v,
then b and b′ are blocks in the same epoch.

Proof: Assume, towards a contradiction, a prepareQC
qc for b and a prepareQC qc′ for b′ are formed in view v,
b.height ∈ ((e − 1)k, ek], b′.height ∈ ((e′ − 1)B, e′B], and
e ̸= e′. W.o.l.g., we assume that e ≤ e′. Based on the standard
assumption, at least ⌈ 2|Me|+1

3 ⌉ replicas in Me are correct and
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▷ Initialization of local parameters: cview ← 1, highQC, lockedQC, confirmQC ← ⊥, lv ← ⊥, TM ←M0.
▷ Initialization of global parameter: epoch e, round r.
▷ The prepare phase in epoch e, round r.
01: - As a leader, upon RondoBFT.Proposei(e, r, (∗,m)) //Pi = LEADER(cview,Me)
02: - Let b′ denote block(highQC). Generate a block b such that b.rq ← ⊥, b.height← eB + r, b.parent=b′.
03: - if b.height mod B = 1 then
04: - For any LEAVE request rq ∈ m, m← m.
05: - For any JOIN request (join, pks) ∈ m, assign the sender Pε with an ID ε, set m← m∪(Add, ε, pkε) and TM ←M ∪ Pε.
06: - b.rq ← (∗,m), broadcast (prepare, cview, b, highQC) to TM .
07: - As a node in Me, upon receiving a message (prepare, cview, b, qc) from LEADER(cview,M) :
08: - Let b′ denote b.parent, bl denote block(lockedQC). Verify that b.height ∈ [eB+1, eB+B] and qc is a prepareQC for b′.
09: - if ((b′.view=cview and rank(b′) ≥ rank(lv)) or (b′.view<cview and lv.view<cview and b′ = bl)) and b′ is delivered) then
10: - if b.height mod B = 1 or b contains no membership requests then lv ← b, send (prepare, cview, b, σi) to LEADER(cview,M)
11: - if b.height mod B = 1 then
12: - For any ADD request (ADD, s, pks) ∈ V , set TM ←M ∪ Pε and send local state to Pε in a catchup message.
▷ The pre-commit phase in epoch e, round r.
13: - As a leader, Wait for (prepare, cview, b, ∗) messages from ⌈ 2|M|+1

3
⌉ nodes in M :

14: - Generate a valid prepareQC qcb for b, highQC←qcb, broadcast (pre-commit, cview, b, qcb) to TM ∪Me−1.
15: - As a node in Me−1, Upon receiving a message (pre-commit, cview, b, qc):
16: - if qc is a prepareQC in epoch e and Pi /∈Me and Pi has delivered all blocks in epoch e−1 then Pi leave the system
17: - As a node in Me, wait for a message m =(pre-commit, cview, b, qc) from LEADER(cview,M):
18: - if b.height mod B = 1 then broadcast m to all node in Me−1\Me

19: - Set highQC ← qc, send a signed message (pre-commit, cview, b, σi) to LEADER(cview,M).
▷ The commit phase in epoch e, round r.
20: - As a leader, wait for (pre-commit, cview, b, ∗) messages from ⌈ 2|M|+1

3
⌉ nodes in M :

21: - Generate a valid precommitQC qc for b, lockedQC←qcb, broadcast (commit, cview, b, qc) to TM .
22: - As a node in M , wait for a message (commit, cview, b, qc) from LEADER(cview,M):
23: - Set lockedQC ← qc and send a signed message (commit, cview, b, σi) to LEADER(cview,M).
▷ The decide phase in epoch e, round r.
24: - As a leader, wait for (commit, cview, b, ∗) messages from ⌈ 2|M|+1

3
⌉ nodes in M :

25: - Generate a valid commitQC qcb for b, updates commitQC←qcb, broadcast (decide, cview, b, qcb) to TM .
26: - As a node in Me, wait for a message (decide, cview, b, qc) from LEADER(cview,M):
27: - Update confirmQC ← qc. Deliver every block b′ on the branch led by b in the following method:
28: - Deliver every block on the branch led by b‘. Let e′ denote ⌊ b.height−1

B
⌋, r′ denote b.height− e′B

29: - if b′.height mod B = 0 then broadcast (commit, cview, b, qc) to Me ∪Me+1

30: - if b′.height mod B = 1 then
31: - Parse b′.rq as (Se′ ,m). Set Me′+1←M . For any LEAVE request (leave, pkj) ∈ rqs, Me′+1←Me′+1\Pj .
32: - For any JOIN request (add, j, pkj) ∈ m, set Me′+1 ←Me′+1 ∪ Pj .
33: - Set TM ←M ∪Me′+1, round ← r′ + 1, RondoBFT.Returni(e

′, r′, (Se′ ,Me′+1,m))
34: - if b′.height mod B ̸= 0 and b′.height mod B ̸= 1 then round ← r′ + 1, RondoBFT.Returni(e

′, r′, b′.rq).
35: - As a node in Me+1, upon receiving (decide, v, b, qc) messages from ⌈ 2|Me|+1

3
⌉ nodes in Me:

36: - If qc is a valid commitQC for b and b.height = eB then
37: - Deliver b and all the ancestors of b
38: - cview ← v + 1

Fig. 14: Normal-case operation of Rondo-BFT for Pi in epoch e and round r.

at least ⌈ 2|Me′ |+1
3 ⌉ replicas in Me′ are correct. According to

Figure 14, correct replicas in Me′ begin to send messages
for consensus in view v only after receiving commitQCs

from ⌈ 2|Me′−1|+1

3 ⌉ replicas included in Me′−1, where the
commitQCs are formed for a block with a height of (e′−1)B
in view v′ < v. Therefore, at least |Me′−1|+1

3 ⌉ correct replicas
in Me′−1 have received a commitQC for b0, set their system
configuration as Me′ before view v. These replicas won’t send
prepare messages for any blocks in an epoch lower than e′ in
any view v′ ≥ v. According to Figure 14 and Figure 15, a
correct replica only sends commit (or pre-commit) message
for b0 after receiving a precommitQC (or prepareQC) for
b0. Then a valid prepareQC for b0 formed in epoch e′ − 1
exists. Similar to the discussion for epoch e′ and e′−1, we can
obtain through induction that at least |Me|+1

3 ⌉ correct replicas
in Me have set their system configuration as Me+1 before view
v. These replicas won’t send prepare messageS for any blocks
in an epoch lower than e+ 1 in any view v′ ≥ v. Due to the

quorum intersection, qc can’t be formed, a contradiction.

Lemma 5. Suppose that for any epoch ei ∈ [1, 2, ..., E],
any correct replica that sets configuration Me to a non-
empty value sets Me to the same set. Let b and b′ be blocks
such that b.height, b′.height ∈ [1, EB] and there exist valid
prepareQCs for both b and b′. If b and b′ are both blocks
proposed in view v, then b and b′ are blocks on the same
branch.

Proof: Assume, towards a contradiction, that b and b′

are conflicting blocks. By Lemma 4, b and b′ are blocks
in the same epoch. Let e denote b.height%B, we have
e ∈ [1, 2, ..., E]. Based on the standard assumption, for each
epoch e ∈ [1, 2, ..., E], at least ⌈ 2|Me|+1

3 ⌉ replicas in Me are
correct. Then we consider two cases:

1) b.height = b′.height. At least one correct replica in
Me must have voted for prepareQCs for both blocks with the
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▷ The new-view phase.
01: - As a node, a view change is triggered when one of the following conditions is satisfied:
02: - Timeout occurs during "wait for" in normal-case operation).
03: - Receiving new-view messages for view v from a node set X such that X ∈M , |X| ≥ |M|+1

3
, and v ≥ cview.

04: - Upon view change: set cview ← cview + 1 and broadcast (new-view, cview,⊥, (highQC, confirmQC)) to TM .
05: - Upon receiving a new-view message, forward it to other nodes following the Msgforwarding rule.
▷ The view-change phase.
06: - As a new leader candidate, upon receiving (new-view, cview,⊥, ∗) messages from nodes X , let b denote block(commitQC):
07: - if Pi = LEADER(cview,Me) and b.height ∈ [(e− 1)B, eB) and X ∈Me and |X| ≥ ⌈ 2|Me|+1

3
⌉ then

08: - vc← received new-view messages, bhigh ← the block with the highest rank for which a valid prepareQC is included in vc.
09: - Broadcast vc and (pre-commit, v, bhigh, highQC) and switch to the pre-commit phase for bhigh.
10: - After bhigh is delivered, switch to the normal-case operation for an extension block of bhigh.
11: - As a node, upon receiving (new-view, cview,⊥, ∗) messages from nodes X , let b denote block(commitQC):
12: - Let bhigh denote the block with the highest rank for which a valid prepareQC is included in V C.
13: - if Pj = LEADER(cview,Me) and b.height ∈ ((e− 1)k, ek] and X ∈Me and |X| ≥ ⌈ 2|Me|+1

3
⌉ then

14: - if rank(bhigh) ≥ rank(lockedQC) then
15: - Wait for a pre-commit message for bhigh and then switch to the pre-commit phase for bhigh.
16: - After bhigh is delivered, switch to the normal-case operation for an extension block of bhigh.
▷ The Msgforwarding rule.
17: - Upon receiving m =(new-view, v,⊥, (qc1, qc2)) from Pj such that qc is a valid QC for b:
18: - if qc1 is a prepareQC and rank(qc1) > rank(highQC) then highQC ← qc
19: - if qc2 is a commitQC and rank(qc2) > rank(confirmQC) then
20: - Deliver b and all the ancestors of b
21: - if Pi ∈M and Pi has broadcast new-view message m′ for view v then forward m′ to LEADER(cview,M)
22: - if rank(qc) < rank(highQC) and Pj ∈M then forward m to LEADER(cview,M)

Fig. 15: The view change protocol for Rondo-BFT.

same rank. This is impossible because the pseudocode allows
voting only once for each height in each view.

2) b.height ̸= b′.height. We assume, w.o.l.g., b.height ≥
b′.height. Let b1 denote the block with the lowest height
on the branch led by b such that b1.view = v and
b1.height ≥ b′.height. According to Figure 14, within view
v, a correct replica votes for a block only after receiving a
valid prepareQC for the parent block of the block. As a
prepareQC for b are formed in view v, a prepareQC for
b1 have been formed. Due to the quorum intersection, at least
one correct replica pj in Me voted for both b1 and b. If
b1.height = b′.height, similar to the discussion in case 1),
that’s a contradiction. If b1.height > b′.height, we have that
the view of b1.parent is lower than v by the definition of b1.
According to Figure 14, b1 is the first block voted by pj in
view v. After voting for b1, pj should update its lv to b1 and
stop voting for blocks with lower heights than b1 in view v.
However, pj has also voted for b′, a contradiction.

Lemma 6. Suppose that for any epoch ei ∈ [1, 2, ..., E], any
correct replica that sets configuration Me to a non-empty value
sets Me to the same set. Let b and b′ be blocks proposed in
the same epoch e. If there exists a valid commitQC qc for b
and a valid prepareQC or commitQC qc′ for b′ such that
qc.view ≤ qc′.view, then b and b′ are blocks on the same
branch.

Proof: Let v denote qc.view and let v′ denote qc′.view.
Then v ≤ v′. Based on the standard assumption, at least
⌈ 2|Me|+1

3 ⌉ replicas in Me are correct. Note that a correct
replica only sends commit (or pre-commit) message for b after
receiving a precommitQC (or prepareQC) for b. As there
exists commitQC qc formed for b in view v, at least |Me|+1

3 ⌉
correct replicas have locked at a precommitQC qcb for b and
sent commit messages for b in view v. As b and b′ are blocks

in the same epoch and qc′ exists, at least one replica pi of
these correct replicas has voted for b′ in view v′. Then we
prove the lemma by induction over the view v′, starting from
view v.

Base case: If v′ = v, we consider four cases:

1) If b.view = b′.view = v, according to Figure 14, no
matter qc′ is a prepareQC or a commitQC, there exists
prepareQCs for both b and b′ formed in view v. By Lemma 5,
b′ cannot conflict with b.

2) If b.view < v and b′.view < v, then pi voted for for b
and b′ during view change in view v. According to Figure 15,
pi voted for only one block during view change. Then we have
that b = b′.

3) If b.view < v and b′.view = v, then correct replicas
sent commit message for b during view change and voted for
b′ in normal cases in view v. No matter if qc′ is a prepareQC
or a commitQC, a valid prepareQC for b′ exists. Note that
within view v, a correct replica votes for a block only after
receiving a valid prepareQC for the parent block of the block.
Let b′0 denote the block with the lowest height on the branch
led by b′ such that b′0.view = v. Then we have that there
exists a prepareQC for b′0 formed in view v and the view
of the parent block of b′0 is proposed before view v. Due to
the quorum intersection, at least one correct replica has sent
commit message for b and prepare message for b′0. According
to Figure 14, b′0 and b′ must extensions of b.

4) If b.view = v and b′.view < v, then pi voted for b′

during view change in view v and qc′ is a commitQC. Then
similar to the discussion in case 3), b must be an extension of
b′.

In all the cases, b′ and b cannot conflict with each other.

Inductive case: Assume this lemma holds for view v′ from
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v to v + k − 1 for some k ≥ 1. We prove that it holds for
v′ = v + k. We consider two cases:

1) If b′.view < v′, then pi voted for b′ during view change
in view v′. Let qcl denote the precommitQC locked by pi
when pi decided to vote for b′. According to Figure 14 and
Figure 15, a correct replica only updates its lockedQC with a
precommitQC with a higher rank than that of its lockedQC.
Thus, rank(qcl) ≥ rank(qcb). Meanwhile, pi has received a
prepareQC qcb′ for b′ such that rank(qcl) ≤ rank(qcb′) before
sent commit message for b′. Therefore, v ≤ qcb′ .view < v′.
According to the inductive hypothesis, b = b′ or b and b′ are
blocks on the same branch.

2) If b′.view = v′, then pi voted for b′ in normal cases in
view v′. Within view v′, if a block extends a block proposed
before view v′, correct replicas vote for the block only after
receiving a valid commitQC formed in view v′ for the parent
block of the block. Let b′0 denote the block with the largest
height on the branch led by b′ such that b′0.view < v′. No
matter if qc′ is a prepareQC or a commitQC, there exists
a precommitQC for b′0 formed in v′. Due to the quorum
intersection, at least one correct replica pj has sent commit
message for b in view v and pre-commit message for b′0
in view v′. Let qcl denote the precommitQC locked by
pj when pj decided to vote for b′. According to Figure 15,
rank(qc′0) ≥ rank(qcl) ≥ rank(qcb). As qc′0.view = b′0.view,
b′0.view > b.view or (b′0.view = b.view and b′0.height ≥
b.height). According to the inductive hypothesis, b′0 is an
extension b or b0 = b. Therefore, b′ is an extension b or b = b′.

Either way, b′ and b cannot conflict with each other. This
completes the proof.

Lemma 7. Suppose that for any epoch ei ∈ [1, 2, ..., E], any
correct replica that sets configuration Me to a non-empty value
set Me to the same set. Let b denote a block in epoch e and b′

be a block in epoch e′, where 1 ≤ e ≤ e′ ≤ E. If there exist
a valid commitQC qc for b and a valid QC qc′ for b′, where
qc′ is a precommitQC or a commitQC, then b and b′ are
blocks on the same branch.

Proof: Let v denote the view in which a commitQC for
b is formed and let v′ denote the view in which a commitQC
for b′ is formed. Based on the standard assumption, at least
⌈ 2|Me|+1

3 ⌉ replicas in Me and at least ⌈ 2|Me′ |+1
3 ⌉ replicas in

Me′ are correct. Then we prove the lemma by induction over
the epoch e′, starting from view e.

Base case: If e′ = e, b and b′ are blocks in the same
epoch. Note that a correct replica only sends commit (or
pre-commit) message for b′ after receiving a precommitQC
(or prepareQC) for b′. By Lemma 6, no matter v ≤ v′ or
v′ ≤ v, b and b′ must be blocks on the same branch.

Inductive case: Assume this lemma holds for view e′ from
e to e + k − 1 for some k ≥ 1. We prove that it holds for
e′ = e+k. Let b0 denote the block on the branch led by b′ such
that b0.height = (e′−1)B+1. Note that a correct replica only
sends commit (or pre-commit) message for b′ after receiving
a precommitQC (or prepareQC) for b′. As a commitQC is
formed for b′, at least ⌈ |Me′ |+1

3 ⌉ correct replicas in Me′ have
received prepareQCs for b′.parent and sent prepare message

to form a prepareQC for b′. Similarly, we have that for any
block on the branch led by b′, a prepareQC for the block
exists. Then at least ⌈ |Me′ |+1

3 ⌉ correct replicas in Me′ have
sent prepare message for b0 to form a prepareQC for b0. Let
m =(prepare, v, b0, qc) denote the prepare message in which b0
is proposed. According to Figure 14, a correct replica pi votes
for b0 only if one of the following two conditions are satisfied:
(1) b′.view = cview and rank(b′, lv) ≥ 1; (2) b′.view <
cview and lv.view < cview and b′ = block(lockedQC) and
b′ is delivered. Let b′0 denote b0.parent, then b′0.height =
(e − 1)B. By Figure 14 and Lemma 6, any replica in Me′

receives commitQCs for b′0, set their cview as b′0.view + 1,
set their lv as b′0, and set their lockedQC as a precommitQC
for b′0 before voting for b0. Therefore, condition (1) can’t be
satisfied and condition (2) is satisfied at pi. Let qc′0 denote
the lockedQC of pi when pi votes for b′0. According to the
inductive hypothesis, the block of qc′0 must be b′0 and b′0 must
be an extension of b. Then b0 and b′ are extensions of b. This
completes the proof.

Lemma 8. For any epoch e > 1, if a correct replica pi sets
the configuration as Me, and another correct replica pj sets
the configuration as M ′

e, then Me = M ′
e.

Proof: Assume, towards a contradiction, that Me ̸= M ′
e.

Note a correct replica installs system configurations in as-
cending order. Let e0 denote the lowest epoch such that pi
and pj have installed different configurations, i.e., for any
epoch e′ such that 1 ≤ e′ < e0, pi and pj installed the
same configuration for epoch e′. As all correct replica has
the same initial configuration, e0 > 1. Let Me0 denote
the configuration installed by pi and Let M ′

e0 denote the
configuration installed by pj , then Me0 ̸= M ′

e0 . As pi sets
its configuration as Me0 in epoch e0, according to Figure 14
and Figure 15, pi has installed configuration Me0−1 for epoch
e0 − 1. Meanwhile, pi has received a commitQC qc for a
block b such that the branch led by b includes a block b0 such
that b0.height = (e0 − 1)B + 1. Me0 was computed based
on Me0−1 and b0 using this method: for any JOIN request
(add, j, pkj) ∈ b0.rq, Me0 ← Me0−1 ∪ pj ; for any LEAVE
request (leave, pkj) ∈ b0.rq, Me0←Me0−1\pj . Similarly, pj
has received a commitQC qc′ for a block b′ such that the
branch led by b′ includes a block b′0 such that b′0.height =
(e0−1)B+1. M ′

e0 was computed based on Me0−1 and b′0: for
any JOIN request (add, j, pkj) ∈ b′0.rq, Me0 ←Me0−1∪pj and
for any LEAVE request (leave, pkj) ∈ b′0.rq, Me0←Me0−1\pj .
According to Lemma 6 and Lemma 7, no matter whether b and
b′ are blocks in the same epoch, they are blocks on the same
branch. Therefore, b0 = b′0 and Me0 = M ′

e0 , contradicting to
the assumption.

Theorem 10. (Enhanced total order) If a correct replica pi
delivers a request with a sequence number k, and another
correct replica delivers a request rq′ with the same sequence
number, then rq = rq′.

Proof: Let b0 denote the block such that rq ∈ b0.rq and
pi delivers b0 and let b′0 denote another block such that rq′ ∈
b′0.rq and pj delivers b′0. Since rq and rq′ are delivered with the
same sequence number, b0 and b′0 are blocks in the same epoch
e and b0.height = b′0.height. As pi delivers b0, according to
Figure 14 and Figure 15, pi has received a valid commitQC
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qc for a block b such that the branch led by b includes b0.
Similarly, pj has received a valid commitQC for a block b′

such that the branch led by b′ includes b′0. By Lemma 8, for
any epoch ei, any correct replica that sets configuration Mei
to a non-empty value set Mei to the same set. Then b and
b′ should be two blocks on the same branch from Lemma 6.
Therefore, rq = rq′.

Lemma 9. Let Me denote the latest configuration installed by
at least one correct replica pi before view v. After GST, if the
designated leader LEADER(v,Me) is correct and timers are
properly set up, a new leader can be successfully elected.

Proof: Let pv denote LEADER(v,Me). The proof is
divided into two parts. Firstly, we prove that in view v,
no replica rather than LEADER(v,Me) can obtain a valid
view-change certificate for itself. Subsequently, we prove that
LEADER(v,Me) can collect a valid view-change certificate for
itself and propose a block such that all correct replicas in Me+1

will vote for the block.

By Lemma 8, for any epoch e′ ∈ [1, e], each correct replica
in Me′ either sets the system configuration as empty or sets
it to the same set Me′ . Then we prove, towards contradiction,
that any replica rather than LEADER(v,Me) can’t obtain a
valid view-change certificate for itself. Assume that pj =
LEADER(v,Me−1) and pj obtains a view-change certificate
from Me−1 for pj in view v. As Me has been installed
by pi, then pi has received (commit, v, b, qc) messages from
⌈ 2|Me−1+1

3 ⌉ replicas in Me−1 and qc is a valid commitQC for
b, where b.height = eB. Then there exists a set S consisting
of at least ⌈ |Me−1+1

3 ⌉ correct replicas in Me−1 such that
each replica in S has set its confirmQC as a commitQC
for b before view v. In the view-change message for view
v, each replica in S should broadcast its latest commitQC.
Note a valid view-change certificate V C from Me−1 contains
⌈ |2Me−1+1

3 ⌉ messages. Therefore, the height of the highest
commitQC in V C is no less than eB. According to Figure 15,
V C could not be a V C for pj . We can prove the same applies
to any epoch e′ ∈ [1, e] using the recursive method.

Then we prove that second part of the proof. As there
exists a correct replica pj that stays in the consensus system
permanently, view-change messages from any correct replica
in Me can be received by pj . pj will forward their messages
to pv . Therefore, pv can obtain a view-change certificate for
itself. Then pv can broadcast a pre-commit message for the
block of the latest prepareQC (denoted as b) and V C. After
receiving V C, each correct replica in Me will switch to the
pre-commit phase for b. This completes the proof.

Theorem 11. (Liveness) If a correct client submits a request
rq, then a correct replica in some configuration c eventually
delivers rq.

Proof: Since each correct leader will propose blocks
consisting of rq until rq is delivered, we only need to prove
that after GST, a correct leader can be successfully elected
and propose a new block such that more than two-thirds of
the replicas vote for the block and reach an agreement. By
Lemma 9, if the designated leader LEADER(v,Me) for view v
is correct and timers are properly set up, a new leader can
be successfully elected. As the LEADER() function returns

replicas in a rotation method, the probability of the designated
leader for view v being correct exceeds 2/3. Therefore, a
correct replica in some configuration c eventually delivers rq.

Theorem 12. (Consistent delivery) A correct client submitting
m will deliver a correct response that is consistent with the
state in com configuration where m is delivered.

Proof: A correct client completes a request if it has
received te+1 matching replies in a configuration Me. Before
this, the client verifies the received configuration history to
ensure that Me has been committed. According to the total or-
der and agreement properties, any correct replica will execute
and deliver m following the same order. Therefore, all correct
replicas will generate matching responses to the client.

Theorem 13. (Agreement) If a correct node in epoch e
delivers a request rq, then every correct node in the same
epoch e eventually delivers rq.

Proof: Let pi denote the correct replica that delivers rq
in epoch e. By Lemma 8, each correct replica in Me either
sets the system configuration as empty or sets it to the same
set Me. Let pk denote another correct replica in Me. Based
on the protocol, pk will stay in the consensus system until that
for any height in epoch e, pk has delivered a block and pk has
received a prepareQC formed in epoch e′ such that e′ > e
and pk /∈ Me′ . By Theorem 10, pk won’t leave the system
before delivering rq.

As there exists a correct replica pj stays in the consen-
sus system permanently and correct replicas broadcast their
prepareQCs and commitQCs during view change or epoch
change phase, prepareQCs formed in higher epoch than e
will be forwarded to pj . According to Theorem 11 pj will
finally forward prepareQCs and commitQCs from pi to pk.
This completes the proof.
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